
THE TOWN TOWN DITU MINUTUL MILITARIA NATURE
US 20180107471A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0107471 A1

SINGH et al . (43) Pub . Date : Apr . 19 , 2018

(54) ADD A NEW INSTANCE TO A SERIES

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(72) Inventors : Jaskaran SINGH , Redmond , WA (US) ;
Dipak Sarjerao Pawar , Redmond , WA
(US) ; Szymon Madejczyk ,
Sammamish , WA (US) ; Roberto
Ribeiro da Fonseca Mendes , Seattle ,
WA (US)

Publication Classification
Int . Cl .
GOOF 9 / 54 (2006 . 01)
H04L 12 / 58 (2006 . 01)
G06F 11 / 14 (2006 . 01)

(52) U . S . CI .
CPC GUF 8 / 03 (2013 . VI) , G06F 8 / 65 (2013 . 01) ; G06F 11 / 1433 VOI

(2013 . 01) ; H04L 51 / 046 (2013 . 01) ; GO6F 9 / 54
(2013 . 01)

(57) ABSTRACT
Adding an instance to a series in a fashion that preserves the
series for both modern and legacy systems , even when the
addition would not ordinarily be compatible with the legacy
system . A method includes identifying a master message .
The master message includes default values for events in the
series . The method further includes identifying user input for
a new event in the series . The user input identifies exceptions
to the default values . The method further includes creating
an instance message that includes default values from the
master message for which there are no exceptions identified
in the user input and includes the exceptions from the user
input .

(21) Appl . No . : 15 / 832 , 993

(22) Filed : Dec . 6 , 2017

Related U . S . Application Data
(63) Continuation of application No . 14 / 842 , 084 , filed on

Sep . 1 , 2015 .

XS

106 . 5
104 a - XXXXXXXXXXXXXXXXXXXXXXXXX
101 E - 1
01 - - D2

PY 116 D2 D3
D3 111 D4 wamewawemmenen ????????????? 05 D4

? D6
18 . 12 .

aman
ALANANANANAMAMA

108 D6

X XXXXsissi888 . 818 . V . 108 - 1 E - 1 - 1

113
. X

-

88WW . V .
102

XXX . XX . X . XXXXXXXXXX . X . X . XXX . XX . X2

XXX

106 - 5

WARE

the

110

Patent Application Publication

§ 106 - 5

104 107

XXXNXX

D1 D2

E - 1 D2 D3

-

D3

111

D4

w

?

KAKAKKAKKAKE

D6

*

*

* *

* *

* *

108

Apr . 19 , 2018 Sheet 1 of 15

? ,

108 - 1

E - 1 - 1

h

We 113

ZOT

US 2018 / 0107471 A1

Figure 1A

the
In

pe 110

Patent Application Publication

or 106 - 5

1 + + +

+ + + + + + + + + + -

+ + +

+ + - + + + +

104

104

e

107

E - 1

01 '

D2

116

D2

D3

ww

D3 !

D4 wwwwwww

D3

D4

GO

D5 D6

108

Apr . 19 , 2018 Sheet 2 of 15

108 - 1

E - 1 - 1

113

WKAKKUKAKUKKAKAKKUA

102

US 2018 / 0107471 A1

5008

Figure 1B

106 - 1

M

110

Patent Application Publication

106 - 2

s 106 - 3

106 -
1

D?

104

104

a .

107

E - 1 - 1

D1

SH
D1

D1

D1 D2

E - 1 - 1

D2 D3 D4 D5

D3 D4

116 - 1

D6

108

DO

Apr . 19 , 2018 Sheet 3 of 15

108 - 1

E - 1 - 1

02

US 2018 / 0107471 A1

Figure 1C

106 - 1

Olt ut

Patent Application Publication

ce
106 - 1

104

104

107

E - 1 - 1

01

D2

D2

D1 '

D3 ' D4

D3

D3

?4

D5 D6

D5 D6

116 - 1

108

108 - 1

Apr . 19 , 2018 Sheet 4 of 15

102

US 2018 / 0107471 A1

Figure 1D

106 - 4

10

* 110

Patent Application Publication

1067 5 106 - 1 D?
5 106 -
2

5

s

106 - 3
@

5 106 - 4

106 - 3

104

R

@

106 - 2

107 D1 D2

E - 1 - 1 D2 D3

E - 1 - 1

D3

D4 D5

?4 D5

116 - 1

D6

108

DO

Apr . 19 , 2018 Sheet 5 of 15

108 - 1

E - 1 - 1

R

113

102

US 2018 / 0107471 A1

Figure 1E

*

100

D1

22275 $ $ $ $ * * *

2 + +

* * * * * * $ 1 $ $ + +

D2

WZEE W

Patent Application Publication

D3 D4 D5 DO

|

4

2106 - 1

104

. 106 - 2

(106 - 3

? ? 88

Apr . 19 , 2018 Sheet 6 of 15

102

105

112

US 2018 / 0107471 A1

Figure 2A

Patent Application Publication Apr . 19 , 2018 Sheet 7 of 15 US 2018 / 0107471 A1

YYY ! * *
* K itty * 11011 * * * 1 * 11 11411

* * * * * 11111111111111 * * * * * * * *

trt114 * 11111 * * * * * * * wiin Vi 1 - 2 whiriting * * 1 * 111 1 * * * * * * * * * * * * *
* * *
!

e tuttet wanits17 Whitnicy
TA

* * * * * * * * * *

vitit ty
ty tttt * : 4917

D2 D2

106 - 1 2106 - 2 (106 - 3

Figure 2B

att1541 AN * * 1931 Wuli * * * * * * * *
1 * 111

*
14111611614 tittittttttttt ihatin * * * * * * * * * with si Witininei + 3x + 7113

es pour itineri VAN * 3 * * * * * * birinizinin Vuner4 * 11411

D2 D2 D2 ODH D3

106 - 1 106 - 2 106 - 3

Figure 2C

W
* * *

* * *
* * * * * * Kini $ { + 47 41

W

1111111
111 * * *

* * * # 1

* 1 " 1943 * 4314976414 ??????? XX * * Ver Weisiin * Viitattu Voici V61 - 22
D2
D3

D2
poimimin Wii Wh78574 * * * * * * * * * * * * * * *

VIAI
D2
D3

(106 - 1 106 - 2 1106 - 3

Figure 2D

Patent Application Publication Apr . 19 , 2018 Sheet 8 of 15 US 2018 / 0107471 A1

77777
* * * * isti * * * * * *

1
* * *

th
At Aut17011

Vitit 4 * 1 * 4 * 816 Vr1714 Wikidata bitiritisini * 16 * 1 * 10 * 11
t

* * * * * Hitbetta width Viisilla With staitis ritenitori * * * * * * * * * * *
MI Whitinin Visuality * * * * * 1131231 : 111 : * yeter947571

* * *

D2 D2
D3 D3

D4 D4
D5

D2
D3
D4
D5
DO

D5
D6 D6

Figure 3

* * * *
> stilah 4114 17111111 E1 - 2 . D1

D2
N Hai X2

* * * * * * * *
* * * * * *

Vt141140136 * * * * * *
* * HIN 1301311 * 1937 wutnit ? * * * * * *

Nitas
* * *

TATLAR city * * * * * * * * * * * *
* * * * * * * * * * * *
* ! * * 7 * 11113117 Vry

D2 D2
D3 '
D4

D3
D4

D3
D2
D3 '
D4
D5

D4
D5 D5

D6
D5
D6 D6 D6

106 - 1 106 - 2 106 - 3

Figure 4A

D1 * * *

* * * * * * * * * * * * * ttttttttty vicii
* * * * * * * * * * *

11 Vio st 4941
* * . i viii primis * * *

*
* * * * * * * *
* * * tishi *

D2
isterio Viriviti ini * vitriitsitis SHEN

12

nincirini * * Withichibritti ICHIGIEN 1410 * * * * * * * vih D2 D2
D3 '

D2
D3 ' D3 ' D3 '

?? . D4 D4 D4
D5 D5 D5 D5
D6 D6 DO DO

106 - 1 106 - 2 106 - 3

Figure 4B

Patent Application Publication Apr . 19 , 2018 Sheet 9 of 15 US 2018 / 0107471 A1

108
R

Server 102

Figure 5

106
s 101 + LG

104

106 - 4

2 , ???????

Patent Application Publication

106 - 2

106 - 3

101

108

106 - 3

106 - 4 |

115

| 118

1

106 -

106 - 2

Apr . 19 , 2018 Sheet 10 of 15

Server 102

Figure 6

US 2018 / 0107471 A1

Patent Application Publication Apr . 19 , 2018 Sheet 11 of 15 US 2018 / 0107471 A1

s 1083

er 108 - B 108 - A

+ 208
S210

Legacy APIs New API

06 - 205 FOÍD
102

Figure 7A

Patent Application Publication Apr . 19 , 2018 Sheet 12 of 15 US 2018 / 0107471 A1

?108)

108 - B 108 - A

~ 208
r210

Legacy APIs New API

= = Legacy
Folder Sync

New
Folder

(204 (206

Figure 7B

Patent Application Publication Apr . 19 , 2018 Sheet 13 of 15 US 2018 / 0107471 A1

Monday Tuesday Wednesday Thursday Friday

10 AM Metadata for the Series

212 11 AM

12 PM Instance Instance

216 - 1 ? 216 - 2 1 PM Instance

216 - 3 2 PM

Figure 8

Patent Application Publication Apr . 19 , 2018 Sheet 14 of 15 US 2018 / 0107471 A1

8 +

1902 Identify A Master Message , Wherein The Master Message
Includes Default Values For Events In The Series

1904 Identify User Input For A New Event , Wherein The
User Input Identifies Exceptions To The Default Values

906 Create A Instance Message That Includes Default Values Form The
Master Message When There Are No Exceptions Identified In The

User Input And Includes The Exceptions From The User Input

Figure 9

Patent Application Publication Apr . 19 , 2018 Sheet 15 of 15 US 2018 / 0107471 A1

1000
?

1002 Identify A Master Message , Wherein The Master Message
Includes Default Values For Events In The Series

- 1004 1004 Identify User Input For An Existing Event In The Series , Wherein
The User Input Identifies Exceptions To The Default Values

1006 Create An Instance Message That Includes Default Values From The
Master Message For Which There Are No Exceptions Identified In
The User Input And Includes The Exceptions From The User Input

Figure 10

US 2018 / 0107471 A1 Apr . 19 , 2018

ADD A NEW INSTANCE TO A SERIES
CROSS REFERENCE TO RELATED

APPLICATION
[0001] This application is a continuation of U . S . patent
application Ser . No . 14 / 842 , 084 , filed Sep . 1 , 2015 , and
entitled “ ADD A NEW INSTANCE TO A SERIES , ” the
entire contents of which are incorporated by reference herein
in their entirety .

BACKGROUND

Background and Relevant Art
100021 Computers and computing systems have affected
nearly every aspect of modern living . Computers are gen
erally involved in work , recreation , healthcare , transporta
tion , entertainment , household management , etc .
[0003] As computer technology advances , new features
may be added to new (referred to herein as modern) versions
of existing systems . As these features are added , there may
be older (referred to herein as legacy) versions of the
existing systems that are not able to natively implement the
new features . However users of these legacy versions of
systems may wish to take advantage the new features in the
modern versions of the systems .
[0004] For example , modern versions of scheduling sys
tems (such as the calendar functionality included in Micro
soft Exchange Server and Microsoft Outlook client available
from Microsoft Corporation of Redmond , Wash .) may
include functionality that allows advanced scheduling fea
tures , such as the ability to have exceptions for appointments
in a series of appointments , modify individual appointments
in a series of appointments , add additional appointment
instances to a series of appointments , collaborate on
appointment details , etc . In some situations a server may
have this functionality enabled and modern clients can make
use of the functionality while legacy clients are unable to
make use of the functionality , even though the server sup
ports it . While some legacy systems allow for some of this
functionality as well , later changes to a series will destroy
any exceptions . This can create difficulties for users of both
the modern clients and the legacy clients . In particular , a user
at a modern client may utilize some of the functionality of
the modern server and expect other users , including users at
legacy clients , to be aware of the utilization . For example , a
user at a modern client may update an instance of a series of
appointments . Other users using modern clients would be
made aware of the update , but users on legacy clients may
not be made aware of the update , or may be made aware of
the update in a way that breaks the series of appointments as
a series . It would be useful to implement systems where
modern and legacy clients could both implement new func
tionality and still be able to interact with one another .
[0005] The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above . Rather ,
this background is only provided to illustrate one exemplary
technology area where some embodiments described herein
may be practiced .

including a series of events . The method includes acts for
adding an instance to the series in a fashion that preserves
the series for both modern and legacy systems , even when
the addition would not ordinarily be compatible with the
legacy system . The system includes identifying a master
message . The master message includes default values for
events in the series . The method further includes identifying
user input for a new event in the series . The user input
identifies exceptions to the default values . The method
further includes creating an instance message that includes
default values from the master message for which there are
no exceptions identified in the user input and includes the
exceptions from the user input .
[0007] Another embodiment illustrated herein includes a
method that may be practiced in a computing environment
including a series of events . The method includes acts for
changing an instance to the series in a fashion that preserves
the series for both modern and legacy systems , even when
the change would not ordinarily be compatible with the
legacy system . The system includes identifying a master
message . The master message includes default values for
events in the series . The method further includes identifying
user input for an existing event in the series . The user input
identifies exceptions to the default values . The method
further includes creating an instance message that includes
default values from the master message for which there are
no exceptions identified in the user input and includes the
exceptions from the user input .
[0008] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used as an aid
in determining the scope of the claimed subject matter .
[0009] Additional features and advantages will be set forth
in the description which follows , and in part will be obvious
from the description , or may be learned by the practice of the
teachings herein . Features and advantages of the invention
may be realized and obtained by means of the instruments
and combinations particularly pointed out in the appended
claims . Features of the present invention will become more
fully apparent from the following description and appended
claims , or may be learned by the practice of the invention as
set forth hereinafter .

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] In order to describe the manner in which the
above - recited and other advantages and features can be
obtained , a more particular description of the subject matter
briefly described above will be rendered by reference to
specific embodiments which are illustrated in the appended
drawings . Understanding that these drawings depict only
typical embodiments and are not therefore to be considered
to be limiting in scope , embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which :
[0011] FIG . 1A illustrates a server configured to add new
events to a series ;
10012] . FIG . 1B illustrates additional details regarding the
server configured to add new events to a series ;
[0013] . FIG . 1C illustrates a server configured to update
existing events in a series ;
[0014] FIG . 1D illustrates additional details regarding the
server configured to update existing events in a series ;

BRIEF SUMMARY
[0006] One embodiment illustrated herein includes a
method that may be practiced in a computing environment

US 2018 / 0107471 A1 Apr . 19 , 2018

[0015] FIG . 1E illustrates additional details regarding the
server configured to update existing events in a series
10016] FIG . 2A illustrates a server and system for propa
gating values from a master message to instance messages ;
[00171 . FIG . 2B illustrates instance messages being
updated ;
[0018] FIG . 2C illustrates instance messages being
updated ;
[0019] FIG . 2D illustrates instance messages being
updated ;
10020] FIG . 3 illustrates instance messages being updated ;
[0021] FIG . 4A illustrates instance messages being
updated ;
[0022] FIG . 4B illustrates instance messages being
updated ;
[0023] FIG . 5 illustrates an email server configured to
order messages ;
10024) FIG . 6 illustrates additional details of the email
server configured to order messages ;
[0025) FIG . 7A illustrates a modern server that facilitates
legacy clients ;
[0026] FIG . 7B illustrates a modern server that facilitates
legacy clients ;
[0027] FIG . 8 illustrates a calendar view ;
10028] FIG . 9 illustrates a method for adding an instance
in a series in a fashion that preserves the series for both
modern and legacy systems ; and
[0029] FIG . 10 illustrates a method for changing an
instance in a series in a fashion that preserves the series for
both modern and legacy systems .

DETAILED DESCRIPTION
[0030] Modern calendaring systems have a notion of
recurring meetings in which a user can define a pattern . For
example , typically a user can define a calendar event to
occur daily , weekly , monthly , or yearly . This functionality
has existed for quite some time in calendaring systems
whereby the systems determine , by following various rules ,
when items should be placed on a calendar . The recurrences
can be limited to some user defined time frame or in some
cases perpetual . Typically , a series of events are contained in
a single message delivered by a calendaring server which
can be understood by clients of the calendaring server .
10031] Previously , users have not been able to add indi
vidual instances in the series . Or , if a user could add an
individual instance , later when a change is made to the series
itself , the additional will be lost . Thus , for example , a series
may have a meeting scheduled with a default value of every
Tuesday at 11 : 00 AM . A change may be made to the series
to add one additional meeting at 10 : 00 AM on a particular
Monday . Later , the series may be changed to have the default
value be at 12 : 00 PM on Tuesdays . In some legacy systems ,
this would cause the extra instance to be lost , if it could have
been added at all , and all meetings to be at 12 : 00 PM .
[0032] Further , previously , users have been able to modify
individual instances in the series , but with some risk that
those modifications will be lost . For example , a user may
modify an individual instance , but later when a change is
made to the series itself , the modification will be lost . Thus ,
for example , a series may have a meeting scheduled with a
default value of every Tuesday at 11 : 00 AM . A change may
be made to the series to have one series exception instance
of the meeting at 10 : 00 AM . Later , the series may be
changed to have the default value be at 12 : 00 PM . In legacy

systems , this would cause the exception information to be
lost , and all meetings to be at 12 : 00 PM .
[0033] However , a modern calendaring system has imple
mented functionality where non - pattern recurrence can be
combined with the recurring model to have the ability to add
extra instances of events that do not meet the defined
recurrence pattern and to be persisted . For example , a series
may be for a weekly meeting at 11 : 00 AM every Tuesday .
There may be a desire to add one additional meeting at 10 : 00
AM on a particular Monday . When the series is later
changed to have the default value of the meeting be at 12 : 00
PM , the new instance at 10 : 00 AM on a particular Monday
will not be lost . Users of legacy systems may wish to take
advantage of this functionality as well . The following illus
trates how this is accomplished by embodiments described
herein .
[0034] Further , a modern calendaring system has imple
mented functionality where non - pattern recurrence can be
combined with the recurring model to have instances of
events that do not meet the defined recurrence pattern be
persisted . For example , embodiments may allow for having
two instances on the same day , moving exceptions across
instance boundaries , etc . , and for these exceptions to be
persisted even when changes are made to default values . For
example , a series may be for a weekly meeting at 11 : 00 AM
every Tuesday . There may be a desire to update one of the
meetings to a series exception instance of Wednesday at 3 : 00
PM . When the series is later changed to have the default
value of the meeting be at 12 : 00 PM , the series exception
instance at Wednesday at 3 : 00 PM will not be lost . Users of
legacy systems may wish to take advantage of this func
tionality as well . The following illustrates how this is
accomplished by embodiments described herein .
100351 One embodiment illustrated herein is able to persist
new instance information for legacy systems by creating an
instance message when a new instance is added to a series .
(0036] For example , FIG . 1A illustrates a modern server
102 . The modern server 102 is able to handle a series with
non - pattern recurrences and persist any non - pattern recur
rences when default values are changed for the entire series .
Such functionality is illustrated below for reference and
understanding , however , it should be appreciated that
embodiments may be implemented in other contexts .
[0037] FIG . 1A illustrates a master message 104 . The
master message 104 , includes a view 107 , default informa
tion 111 , and exception information 113 .
10038] The view 107 defines a graphical view of calendar
items to be displayed on a calendar user interface at a client
such as one of the clients 108 . This may define graphically
how and where events on a calendar may be placed on the
graphical user interface at a client . This may include infor
mation for all instances in a series such that a client can use
the view 107 to graphically render all instances in a given
series . This information can be used by legacy clients or
modern clients to render events on a calendar . The view 107
can include exceptional view items as well which are
readable by both modern and legacy clients .
[0039] The default information 111 includes default values
for instances in the series . For example , a given default value
may include a meeting location , a list of attendees , a default
day , a default time , or other default value . These default
values are used for any instances in the series in which there
are no exceptions . The default information is viewable by
both legacy and modern systems .

US 2018 / 0107471 A1 Apr . 19 , 2018

[0040] The exception information 113 identifies any
exception values to default values for a given instance . Thus ,
for example , an exception may identify that the first instance
in a series occurs on a Wednesday instead of a Tuesday .
Alternatively , the exception information 113 may identify
that an extra instance in the series exists , and details about
the extra instance . In some embodiments , the exception
information may be included specifically in the master
message 104 while in other embodiments , the exception
information may be included by virtue of pointers to loca
tions where the actual exception values are stored . In the
illustrated example , the exception information 113 is per
sistable and readable for modern systems , but may not be for
legacy systems .
[0041] Embodiments herein can create individual instance
messages readable by legacy systems that can supersede
and / or replace exceptions noted in the master message 104 .
In particular , the embodiments herein are able to receive user
input adding an instance in a series , and as a result create an
instance message that is readable by a legacy client . The
instance message can be maintained separately , such that
updates to default items do not destroy the instance message ,
and thus , the exception for a particular instance can be
maintained .
[0042] For example , FIG . 1A illustrates that the server 102
receives a user message 116 - 1 from a client 108 - 1 . The user
message 116 - 1 includes an exception value El that is an
exception value for a new instance in a series . For example ,
assuming a series of four instances , the exception value E1
may be meant to add a new instance and replace the default
value D1 for the new instance in the series . The other
instances would retain the default value D1 . All instances ,
assuming no other exceptions , would retain the other default
values D2 , D3 , D4 , D5 and D6 . The client 108 - 1 can be a
legacy client or a modern client . At the server 102 , the server
102 updates the master message 104 to include the exception
E1 in the exception information 113 . However , the default
value D1 is still retained for use by other existing instances
in the series .
[0043] The server also creates a new instance message
106 - 5 . The instance message 106 - 5 includes the exception
value El as well as the default values D2 , D3 , D4 , D5 and
D6 . The view 107 can be updated as needed as well .
10044] As noted above , in some embodiments , the excep
tion value El can be included in the master message 104 by
using a pointer . In some embodiments , this may be done by
using a pointer directly to the exception value El in the
instance message 106 - 5 . This can be done to conserver
storage space at the server 102 .
10045] The master message 104 and instance message
106 - 5 can then be sent to the clients 108 that are interested
in the series . Any modern clients in the clients 108 can use
the master message to update the series with the instance
exception by reading the exception information 113 and will
not need the instance message 106 - 5 , except insofar as the
master message 104 points to values in the instance message
106 - 5 . The modern clients will not use the default values
from the instance message 106 - 5 , but rather can use default
values from the master message 104 .
(0046] In some embodiments , the master message 104 and
any instance messages can be sent to the clients 108 by
placing the messages in mailboxes 110 for the clients 108 .
10047] Legacy clients use information from the instance
messages 106 while modern clients obtain default informa

tion from the master message 104 and exception information
from the instance messages 106 (or alternatively from the
master message 104 , if such information exists in the master
message) .
[0048] As will now be illustrated , the instance message
106 - 5 can be used to persist the exception value E1 , even
when changes are made to the series as a whole .
0049] . For example , FIG . 1B illustrates an example where
the client 108 - 1 sends a user change message 116 that is
intended to update the default value D1 to D1 ' and D3 to D3 ' .
In this example , the server recognizes that this update is an
update to the entire series and not just an update to a
particular instance in the series . Thus , the server 102 will
update the master message 104 to replace the value D1 with
the value D1 ' and the value D3 with the value D3 ' . Because
the instance message 106 - 6 already has an exception value
E1 to D1 the instance message 106 - 5 will not be updated
with the value of D1 ' . However , because the instance mes
sage 106 - 5 includes the default value D3 , the instance
message 106 - 5 will be updated to include the default value
D3 ' in place of the default value D3 . These messages , once
updated , can then be propagated to the clients 108 , where the
clients 108 can use them to update series information at the
clients as illustrated above .
[0050] One embodiment illustrated herein is able to persist
exception information for legacy systems by creating an
instance message when an instance in a series is updated to
change a value for the instance from a default value to an
exception value for the instance .
10051] For example , FIG . 1C illustrates a modern server
102 . The modern server 102 is able to handle a series with
non - pattern recurrences and persist any non - pattern recur
rences when default values are changed for the entire series .
Such functionality is illustrated below for reference and
understanding , however , it should be appreciated that
embodiments may be implemented in other contexts .
[0052] FIG . 1C illustrates a master message 104 . The
master message 104 , includes a view 107 , default informa
tion 111 , and exception information 113 .
[0053] The view 107 defines a graphical view of calendar
items to be displayed on a calendar user interface at a client
such as one of the clients 108 . This may define graphically
how and where events on a calendar may be placed on the
graphical user interface at a client . This may include infor
mation for all instances in a series such that a client can use
the view 107 to graphically render all instances in a given
series . This information can be used by legacy clients or
modern clients to render events on a calendar . The view 107
can include exceptional view items as well which are
readable by both modern and legacy clients .
[0054] The default information 111 includes default values
for instances in the series . For example , a given default value
may include a meeting location , a list of attendees , a default
day , a default time , or other default value . These default
values are used for any instances in the series in which there
are no exceptions . The default information is viewable by
both legacy and modern systems .
[0055] The exception information 113 identifies any
exception values to default values for a given instance . Thus ,
for example , an exception may identify that the first instance
in a series occurs on a Wednesday instead of a Tuesday . In
some embodiments , the exception information may be
included specifically in the master message 104 while in
other embodiments , the exception information may be

US 2018 / 0107471 A1 Apr . 19 , 2018

included by virtue of pointers to locations where the actual
exception values are stored . In the illustrated example , the
exception information 113 is persistable and readable for
modern systems , but not for legacy systems .
[0056] Embodiments herein can create individual instance
messages readable by legacy systems that can supersede
and / or replace exception noted in the master message 104 .
In particular , the embodiments herein are able to receive user
input changing an instance in a series , and as a result create
an instance message that is readable by a legacy client . The
instance message can be maintained separately , such that
updates to default items do not destroy the instance message ,
and thus , the exception for a particular instance can be
maintained .
[0057] For example , FIG . 1C illustrates that the server 102
receives a user change message 116 - 1 from a client 108 - 1 .
The user change message 116 - 1 includes an exception value
E1 - 1 that is an exception value that replaces the default
value D1 for one instance in a series . For example , assuming
a series of four instances , the exception value E1 - 1 may be
meant to replace the default value D1 for the first instance
in the series . The other instances would retain the default
value D1 . All instances , assuming no other exceptions ,
would retain the other default values D2 , D3 , D4 , D5 and
D6 . The client 108 - 1 can be a legacy client or a modern
client . At the server 102 , the server 102 updates the master
message 104 to include the exception E1 - 1 in the exception
information 113 . However , the default value D1 is still
retained for use by other instances in the series .
[0058] The server also creates a new instance message
106 - 1 . The instance message 106 - 1 includes the exception
value E1 - 1 as well as the default values D2 , D3 , D4 , D5 and
D6 . The view 107 can be updated as needed as well .
10059] As noted above , in some embodiments , the excep
tion value E1 - 1 can be included in the master message 104
by using a pointer . In some embodiments , this may be done
by using a pointer directly to the exception value E1 - 1 in the
instance message 106 - 1 . This can be done to conserver
storage space at the server 102 .
[0060] The master message 104 and instance message
106 - 1 can then be sent to the clients 108 that are interested
in the series . Any modern clients in the clients 108 can use
the master message to update the series with the instance
exception by reading the exception information 113 and will
not need the instance message 106 - 1 , except insofar as the
master message 104 points to values in the instance message
106 - 1 . The modern clients will not use the default values
from the instance message 106 - 1
[0061] In some embodiments , the master message 104 and
any instance messages can be sent to the clients 108 by
placing the messages in mailboxes 110 for the clients 108 .
[0062] Legacy clients use information from the instance
messages 106 while modern clients obtain default informa
tion from the master message 104 and exception information
from the instance messages 106 (or alternatively from the
master message 104 , if such information exists in the master
message) . As will now be illustrated , the instance message
106 - 1 can be used to persist the exception value E1 - 1 , even
when changes are made to the series as a whole .
[0063] For example , FIG . 1D illustrates an example where
the client 108 - 1 sends a user change message 116 that is
intended to update the default value D1 to Dl ' and D3 to D3 ' .
In this example , the server recognizes that this update is an
update to the entire series and not just an update to a

particular instance in the series . Thus , the server 102 will
update the master message 104 to replace the value D1 with
the value Dl ' and the value D3 with the value D3 ' . Because
the instance message 106 - 1 already has an exception value
E1 - 1 to D1 the instance message 106 - 1 will not be updated
with the value of D1 ' . However , because the instance mes
sage 106 - 1 includes the default value D3 , the instance
message 106 - 1 will be updated to include the default value
D3 ' in place of the default value D3 . These messages , once
updated , can then be propagated to the clients 108 , where the
clients 108 can use them to update series information at the
clients as illustrated above .
[0064] Referring now to FIG . 1E , additional details are
illustrated . FIG . 1E illustrates that in the present example , it
may be possible to create as many as four instance message
106 - 1 , 106 - 2 , 106 - 3 and 106 - 4 as there are four instances in
the example series . Each instance message can contain any
exceptions for its corresponding instance as well as any
unchanged default values for the particular instance .
[0065] Some embodiments herein may be implemented
using a master message and a set of instance messages for
a series of messages . The master message stores all of the
default values for the series of messages . The instance
messages store any exceptions to the default values . It may
be desirable to apply the default values to the instance
messages for any values that are not exception values . This
may be particularly true when a default value is updated and
that update needs to be propagated to the instance messages .
Thus , embodiments may apply the same operation to a
number of distinct items , in this case , messages . In some
embodiments , the messages may be calendar items , and the
series of messages may be a series of recurring calendar
items .
The following illustrates examples of propagating values to
instance messages .
[0066] Some embodiments herein may be implemented
using a master message and a set of instance messages for
a series of messages . The master message stores all of the
default values for the series of messages . The instance
messages store any exceptions to the default values . It may
be desirable to apply the default values to the instance
messages for any values that are not exception values . This
may be particularly true when a default value is updated and
that update needs to be propagated to the instance messages .
Thus , embodiments may apply the same operation to a
number of distinct items , in this case , messages . In some
embodiments , the messages may be calendar items , and the
series of messages may be a series of recurring calendar
items .
10067] Referring now to FIG . 2A , an example is illus
trated . FIG . 2 illustrates a series 100 of messages . The series
100 of messages includes a master message 104 and a set of
instance messages 106 - 1 , 106 - 2 and 106 - 3 . The master
message 104 includes a plurality of default values D1 , D2 ,
D3 , D4 , D5 , and D6 . In the example where the series 100 of
messages are calendar items , these values might include
values defining dates , times , meeting attendees , locations ,
etc .
10068] FIG . 2A further illustrates the instance messages
106 - 1 , 106 - 2 and 106 - 3 . While three instance messages are
shown , it should be appreciated that any appropriate number
of messages may be used . These instance messages include
exceptions to the default values in the master message 104 .
For example , instance message 106 - 1 is shown with an

US 2018 / 0107471 A1 Apr . 19 , 2018

exception value E1 - 1 , instance message 106 - 2 is shown with
an exception value E1 - 2 , and instance message 106 - 3 is
shown with an exception value E1 - 3 . The exception values
in the instance messages may modify and / or replace the
default values in the master message 104 . Thus , for example ,
D1 may be a date . E1 - 1 , E1 - 2 , and E1 - 3 may be different
dates .
[0069] Embodiments may wish to apply any default values
from the master message 100 that are not superseded by
exception values to the instance messages 106 - 1 , 106 - 2 and
106 - 3 . Thus , in the illustrated example , the default values
D2 through D5 may need to be applied to the instance
messages 106 - 1 , 106 - 2 and 106 - 3 . Various operations may
be performed to apply the default values D2 through D5 to
the instance messages .
[0070] Thus , in this example , the same operation (s) needs
to be applied to a number of distinct items , in this example ,
messages . Embodiments may have a command queue 105 in
which the command to perform an operation is logged . In
this example shown in FIG . 2A , the command queue 105 is
included in the master message 104 . Thus , in the example ,
for non - pattern recurrence embodiments (as discussed in
more detail below) , there is a command queue 105 on each
series master (e . g . , master message 104) which is used to
store any series level updates . These need to be applied , in
the order they appear on the queue , to each instance message
106 to facilitate interoperability with legacy clients . While
the examples here illustrate the command queue 105 on each
master message 104 , in other embodiments , the command
queue 105 may be stored in other locations and associated
with the master message 104 .
[0071] In the illustrated example , there are two mecha
nisms configured to apply update commands from the com
mand queue 105 to the instance messages , namely an in - line
tool 110 and a background service 112 which will apply the
command . On a series update , a command is queued up by
the in - line tool 110 which tries to apply the command to each
individual instance message 106 . The in - line tool 110 may
be , for example , an application programming interface (API)
on a server 102 . For example , the server 102 may be a
calendaring system such as the calendaring system available
in Exchange Server available from Microsoft Corporation of
Redmond , Wash .
[0072] A call to the in - line tool 110 may be terminated due
to system failure , operating errors , or for some other reason ,
in between when the call to the in - line tool 110 is made and
when updates have been applied to instance messages .
However , as noted , embodiments may include a background
service 112 which obtains commands from the command
queue 105 and applies these commands to the instance
messages 106 in concert with the in - line tool 110 . As the
background service 112 is running independently of the
in - line tool 110 , there could be a race condition with the
inline tool 110 . Additionally or alternatively , resources may
be wasted when the background service 112 first checks to
see if a particular command has already been applied to each
instance message 106 . To optimize on both of these , embodi
ments may be configured to have the background service
112 apply commands from the command queue 105 to the
instance messages 106 - 1 , 106 - 2 and 106 - 3 in reverse order
with respect to the order used by the in - line tool 110 . For
example , if the instance messages 106 - 1 , 106 - 2 and 106 - 3
are ordered , e . g . ordered by their start times , then the inline
tool is configured to update 106 - 1 , then 106 - 2 , and then

106 - 3 . Contemporaneously , the background service is con
figured to start with 106 - 3 , then 106 - 2 , and then 106 - 1 . For
example , FIG . 2B illustrates an example where the in - line
tool 110 applies value D2 to the instance message 106 - 1
while the background service 112 applies the value D2 to the
instance message 106 - 3 .
[0073] FIG . 2C illustrates an example where the in - line
tool 110 has stopped applying updates for some reason . For
example , perhaps the in - line tool 110 has encountered an
error . In this example , the background service 112 applies
the value D2 to the instance message 106 - 2 . Since the
command for applying the value D2 to the instance mes
sages 106 has completed , the background service 112 starts
executing the command (s) for applying the value D3 to the
instance messages 106 . In FIG . 2C , the value D3 is applied
to the instance message 106 - 3 by the background service
112 . FIG . 2D illustrates that the value D3 is then applied to
the instance message 106 - 2 by the background service 112 .
10074) Propagation of values from the master message 104
to the instance messages 106 - 1 , 106 - 2 , and 106 - 3 may be
performed in a number of different fashions . For example , in
the examples illustrated in FIGS . 2A , 2B , 2C and 2D default
values are propagated in a first instance when the instance
messages have no pre - existing default values or correspond
ing exception values . Thus , FIGS . 2A , 2B , 2C and 2D
illustrate examples where exception values E1 - 1 , E1 - 2 , and
E1 - 3 exist superseding the default value D1 . Other than the
exception values E1 - 1 , E1 - 2 , and E1 - 3 , the instance mes
sages 106 - 1 , 106 - 2 , and 106 - 3 do not include , initially , any
of the other default values D2 , D3 , D4 , D5 , and D6 . FIGS .
2A , 2B , 2C and 2D illustrate initial application of the default
values D2 , D3 , D4 , D5 , and D6 . FIGS . 2A , 2B , 2C and 2D
illustrate an example where default values are added one
default value at a time to the instance messages .
[0075] Alternatively , as illustrated in FIG . 3 , when ini
tially applying default values , embodiments could add all
appropriate defaults to an instance message (i . e . , default
values for which there is not a superseding exception value)
and then move to next instance message . In the example
illustrated in FIG . 3 , the in - line tool 110 applies default
values D2 , D3 , D4 , D5 , and D6 to the instance message
106 - 1 while the background service 112 applies the default
values D2 , D3 , D4 , D5 , and D6 to the instance message
106 - 3 .
[0076] In yet an alternative embodiment , the default val
ues D1 , D2 , D3 , D4 , D5 , and D6 are applied to the instance
messages 106 - 1 , 106 - 2 , and 106 - 3 , as appropriate , when
those messages are created and exception values E1 - 1 , E1 - 2 ,
and E1 - 3 can be applied to instance messages 106 - 1 , 106 - 2 ,
and 106 - 3 respectively later . Alternatively , the exception
values E1 - 1 , E1 - 2 , and E1 - 3 can be applied to instance
messages 106 - 1 , 106 - 2 , and 106 - 3 respectively , while the
default values D2 , D3 , D4 , D5 , and D6 are applied during
the creation process of the instance messages 106 - 1 , 106 - 2 ,
and 106 - 3 .
[0077] Once default values have been applied to the
instance messages 106 - 1 , 106 - 2 , and 106 - 3 there may be a
need to update a default value that should be applied to all
messages . For example , FIG . 4A illustrates that default
value D3 is updated to D3 ' in the master message 104 . This
change is propagated to the instance messages in a fashion
as illustrated above . For example , in FIG . 4A , the in - line tool
110 (from FIG . 2A) is used to update the instance message
106 - 1 while the background service 112 is used to update the

US 2018 / 0107471 A1 Apr . 19 , 2018

instance message 106 - 3 . FIG . 4B illustrates completion of
updating all instance messages 106 - 1 , 106 - 2 and 106 - 3 by
using the in - line tool 110 and / or the background service 112 .
[0078] Notably , however , updating the default value D3 to
D3 ' does not result in an overwrite of the exception values
E1 - 1 , E1 - 2 , and E1 - 3 as would normally occur in some
legacy systems .
[0079] The following now illustrates additional details
related to a framework in which embodiments may be
implemented . In particular , the following illustrates an
example of a modern system that is configured to natively
implement non - patter recurrence messages but to still allow
legacy clients to also use such functionality using their
legacy mechanisms .
[0080] In some embodiments , the messages are email
messages . For example , in some embodiments , a string of
emails may exist . In some legacy systems , hashtags for a
string of emails , or social media “ likes ” of the string of
emails may be able to be added to the entire string . However ,
to remove a “ like ” or a hashtag from an individual message
in the string , embodiments can create an exception that
indicates the removal of the “ like ” or hashtag . The exception
can be propagated as appropriate to an instance message
while maintaining other default values .
[0081] The following illustrates an example of how
ordered messages may be delivered .
10082] Some embodiments described herein implement a
system for ordering a series of messages when the messages
in the series of messages may be received out of order . That
is , embodiments can address issues where there is no guar
antee that messages will be received in order . Embodiments
can accomplish this functionality by using a master message
for a series of instance messages where the master message
identifies the order for the instance messages in the series of
instance messages . For example , FIG . 5 illustrates a server
102 . The server comprises a set of mailboxes 109 for clients
108 . The server 102 may receive a series of messages 101 .
The series of messages 101 includes a master message 104
and a plurality of instance messages 106 . The instance
messages 106 may be ordered messages that have a particu
lar order to them . The master message 104 includes infor
mation identifying the order of the messages in the series of
messages 101 .
[0083] However , as illustrated in FIG . 6 , messages in the
series of messages 101 may be received out of order . FIG .
6 illustrates that message 106 - 3 is received , followed by
message 106 - 1 , followed by the master message 104 , fol
lowed by message 106 - 4 , followed by message 106 - 2 . Thus ,
the master message 104 may be received by a system after
one or more of the other instance messages in the series of
messages 106 .
[0084] To address this , embodiments may store instance
messages 106 in a series of messages in a temporary storage
container 115 such as a temporary mailbox . The instance
messages 106 in the series of instance messages may be
stored in the temporary storage container until the master
message 104 is received . Once the master message 104 is
received , the master message 104 can be used to order other
instance messages in the series of messages 101 . Once the
instance messages 106 have been ordered , they can be
provided to the user . This may be done , for example by
sending the series of messages 101 to the mailboxes 109
where they can be accessed by the clients 108 .

[0085] In some embodiments , the temporary storage con
tainer 115 may not be accessible to a user (e . g . , the clients
108 may not be able to access the temporary storage
container 115) . However , in some embodiments , the tem
porary storage container 115 may be available to the user ,
but the user is made aware that the instance messages are
ordered instance messages and that there is not currently
sufficient ordering context , i . e . , the master message 104 has
not yet been received , for the instance messages 106 in the
set of instance messages to be properly ordered .
0086] For example , the temporary storage container 115
may be on a mail server , and may include an additional set
of mailboxes for clients 108 . However , mailboxes in the
temporary storage container 115 , while accessible by clients ,
would be known to have incomplete information . Users at
each the clients 108 could access a corresponding mailbox
for the client in the temporary storage containers 115 .
10087] Ordering the instance messages can be done in a
number of different ways . In some embodiments , using the
master message 104 , an ordering tool 118 can identify
whether or not all of the instance messages in the series of
instance messages 101 have been received . Once all instance
messages are received , the series of instance messages 101
can be released to a user . This may be done by providing all
of the instance messages in the series of instance messages ,
in their correct order , to a user repository , such as a user
mailbox (for example , the mailboxes 109) or other reposi
tory . Alternatively , the instance messages may be provided
one at a time to the user according to the order specified in
the master message .
[0088] . In an alternative embodiment , the master message
104 may be used by an ordering tool 118 , which may be a
data processing service at the server 102 , to provide instance
messages in the series of instance messages to a user , such
as for example to a mailbox or other repository at the server
accessible to the client , as soon as they are in order to be
provided to a user . For example , some embodiments may be
implemented where all instance messages must be received
in order . In such a system , once the master message arrives
at the system , there are at least two different scenarios that
may occur .
[0089] In the first scenario , the first instance message in
the series , and potentially a set of one or more immediately
subsequently ordered instance messages (i . e . , there are no
intervening instance messages that have not yet been
received in the set of one or more immediately subsequently
ordered instance messages) , may already have arrived at the
system . In this case , the system can move the first instance
messages and the set of one or more immediately subse
quently ordered instance messages (to the extent that the set
exists) to a user mailbox accessible by the user at a client .
However , if one or more instance message are missing in the
series , any already received instance messages that should
be ordered after the missing instance messages will not be
moved to the mailbox until the missing instance messages
are received at the system . Thus , an instance message is only
provided to users for access when all other instance mes
sages ordered before the instance message have been sent .
[0090] In the second scenario , while other instance mes
sages may have been received , the first instance message in
the series has not been received by the system . Thus , the
system will wait until the first instance message , as identified
in the master message 104 , has been received before moving
the instance messages to the mailbox . Once the first instance

US 2018 / 0107471 A1 Apr . 19 , 2018

message has been received , sending instance messages to
the user can proceed as described above in the first scenario .
[0091] In an alternative embodiment , no instance mes
sages are provided to the user until all instance messages in
the series can be provided to the user in the appropriate
order . In this scenario , in the particular example illustrated
in FIG . 6 , the master message 104 and all instance messages
in the series of messages 101 are moved from the temporary
storage container 115 to the mailboxes 109 as a group , in
order , so that the clients 108 have access to all of the
messages in the series of messages 101 together in order or
none of the messages in the series of messages 101 . Note
that each client has a corresponding mailbox . Thus , a copy
of the series of messages 101 will be placed in each mailbox
for each client .
[0092] Some embodiments may be practiced in an envi
ronment where a system attempts to accommodate non
pattern recurrence (NRP) for calendar meeting messages .
Non - pattern recurrence is explained in more detail below .
However , briefly , non - pattern recurrence is related to the
ability for some modern systems to accommodate calendar
items which allow advanced scheduling features , such as the
ability to have exceptions for appointments in a series of
appointments , modify individual appointments in a series of
appointments , add additional appointment instances to a
series of appointments , collaborate on appointment details ,
etc . In some situations a server may have this functionality
enabled and modern clients can make use of the function
ality while legacy clients and / or other legacy servers are
unable to make use of the functionality .
[0093] One solution that has been developed is to create a
new message for every instance in a series of calendar
meeting messages . This results in a series of messages which
includes N + 1 messages (e . g . , the master message 104 and
the series messages 106) sent to attendees of the meetings
for the series of calendar meeting messages . As discussed
above (and as discussed below for non - pattern recurrence) ,
for maintenance of temporal context , there may be a need for
a certain order for the calendar meeting messages to arrive
at an attendee end to provide a seamless user experience .
Attendees that are able (by virtue of using a modern client
that uses a modern calendar API) interact only with series
level messages (e . g . , the master message 104) without
needing to be presented with instance messages (e . g . ,
instance messages 106) .
[0094] However , as illustrated above a mechanism is
implemented that detects that messages for a series opera
tion are coming out of order and can hold up instance
messages and deliver them after a series master message is
delivered . The messages are parked in a spare location , such
as a separate folder , which is typically (although not always)
not visible to the user . Once the master message arrives ,
these parked messages are released and delivered to the
mailboxes .
[0095] The following now illustrates additional details
related to a framework in which embodiments may be
implemented . In particular , the following illustrates an
example of a modern system that is configured to natively
implement non - pattern recurrence messages but to still
allow legacy clients to also use such functionality using their
legacy mechanisms .
[0096] Embodiments may be implemented in a framework
where there is a creation of a series of meetings that does not
have a recurrence pattern . Unless explicitly stated , anything

that applies to a traditional recurring series applies here as
well . For example , an organizer should be able to : add an
attendee to all instances ; add an attendee only to one
instance ; cancel the whole series ; cancel only one instance
in the series , set the location for the whole series ; change the
location only in one instance ; etc .
0097] Conversely , in the illustrated example , operations
that are not allowed on a recurring series (like adding an
existing meeting to a series) will not be allowed here . One
exception to this rule is the ability to have multiple instances
on the same day (which is not currently allowed for a
recurring series) .
[0098] Using the functionality set forth herein , legacy
clients will be able to see all instances of the series without
changing their implementation . However , in the illustrated
examples , they will be seen as individual appointments
because in some legacy schema , it is not possible to repre
sent such instances as a single appointment .
0099] Referring now to FIG . 4A , an example is illustrated
which illustrates a single calendar folder 205 . Both modern
clients 108 - A and legacy clients 108 - B connect to this folder
205 on the server 102 . But for legacy APIs 208 used by
legacy clients , the server 102 hide the series master 104 . The
legacy clients can see the instance messages , where they can
get default information and exception information on an
event by event basis . Modern clients 108 - A , using the new
API can see both the series master 104 to obtain default
information for the entire series of events and the instance
messages 106 to obtain exception information for each
event .
[0100] Referring now to FIG . 4B , an alternative example
is illustrates which illustrates a server 102 is illustrated with
two calendar folders . A first legacy calendar folder 204 for
legacy clients using legacy APIs 208 and a second new
calendar folder 206 is for clients that use a new API 210 .
10101] The legacy calendar folder 204 continues to store
items according to a legacy schema in a way that legacy
clients can understand the items . For example , for legacy
clients that do not understand non - pattern recurrences , these
items will be stored as single items (such as the instance
messages 106) instead of as part of a non - pattern recurrence
series (such as the master message 104) . The legacy calendar
folder 204 will remain visible to legacy clients 108 - B and
they will interact with it in the same way that they have
previously interacted with the legacy calendar folder 204 .
[0102] The legacy calendar folder 204 will not be visible
to modern clients 108 - A , and the modern clients 108 - A will
not communicate with the legacy calendar folder 204 .
Instead , the modern clients 108 - A will use the new calendar
folder 206 with a new schema . This folder is not visible to
the legacy clients 108 - B (since it will contain items stored in
a different way , which would not be understood by legacy
protocols) . It will only be accessible through the new API
210 and not through legacy APIs 208 . Therefore , any details
of how data is represented will be completely abstracted
from clients . For example , non - pattern recurrences will be
stored with a representation that has all the desired seman
tics and that will be exposed via the new API 210 .
[0103] A sync mechanism to keep data updated on both
folders may be implemented .
[0104] The following illustrates details regarding storing a
non - pattern recurrence . Previously , a recurring series in a
legacy system , such as a legacy Exchange Server from
Microsoft Corporation of Redmond , Wash . has a top - level

US 2018 / 0107471 A1 Apr . 19 , 2018

master which has information about the recurrence pattern ,
exceptions and is also used to represent the first instance of
the series .
[0105] In contrast , a modern system may include an object
(e . g . , the master message 104) solely responsible for repre
senting the non - pattern recurrence . It holds the following
pieces of data :

[0106] The properties that are common to all instances
(unless they are exceptions of course) ;

[0107] Information about when the series starts and
when the series ends ; and

[0108] A link to the instances of the non - pattern recur
rence .

[0109] A difference between the non - pattern recurrence
master and the “ traditional recurring series ” master is that
this item is just metadata and only meant to be consumed by
a modern server , such as a modern Exchange server avail
able from Microsoft Corporation of Redmond , Wash . (and
therefore it isn ' t visible to clients , modern or legacy) . For
example , FIG . 8 illustrates a representation of a non - pattern
recurrence with instances 216 - 1 , 216 - 2 , and 216 - 3 on Mon -
day , Wednesday and Thursday respectively . Only these
items are visible to client . In some embodiments , during a
calendar view embodiments internally query for both
instance messages 106 and master messages 104 and then
merge data from the master message 106 with instance data
to get the latest state of the instance (in case background
propagation has not yet caught up) . At this point only
instances are returned from calendar view API call .
[0110] Note that the item 212 holding the metadata begins
on the same day of the first instance and ends at the last day .
This allows for a more efficient query when obtaining a
calendar view .
[0111] On legacy systems , when a client requests a view ,
two queries are made to the server 102 : one for single and
one for recurring items . Single item retrieval is simple : the
legacy system can simply request the items that are in the
desired window based on their start and end dates . When
recurring items are in the picture , however , the server 102
has to examine the entire calendar and filter items in
memory . This is because data for the series master also
doubles as the first item and therefore may be outside of
the query window .
[0112] In contrast , in the non - pattern recurrence model ,
this is resolved by having the data related to the start and end
of the series in the item 212 that represents the series . Since
it stretches and shrinks with the instances , it is always in the
same window as the instances 216 - 1 , 216 - 2 and 216 - 3 . This
detail allows modern systems to have one single query and
have every object of interest returned by it with no need to
filter anything in memory .
[0113] As explained above , in one alternative embodi
ment , there are two calendar folders (i . e . , a legacy calendar
folder 204 and a new calendar folder 206) , accessed by
different clients (i . e . , legacy clients 108 - B and modern
clients 108 - A respectively) . The two calendar folders have
the same data (but represented in different ways as appro
priate for the different clients) .
10114] . Each time a modern client writes to the new
calendar folder 206 , an equivalent operation is executed
against the legacy calendar folder 204 (and vice - versa) . As
each folder has a different data model , an operation cannot
be simply replayed . Instead , there is a translation into
equivalent operations .

[0115] For instance , assume that , in the new model , excep
tions of a recurring series are treated like top - level partial
items (like in non - pattern recurrences) and that a legacy API
(from among the legacy APIs 208) is creating an exception .
[0116] Conversely , if a new API 210 (which operates
against the new folder 206) had created the partial item for
the recurring series exception , synchronization operations
would have to update the corresponding item on the legacy
folder by creating an attachment .
[0117] Thus , after each create / update / delete operation ,
embodiments will take the object as a whole and fully update
the equivalent object on the other folder .
[0118] Instances of non - pattern recurrences are full items
and contain all data required for them to be displayed . This
includes series information that will be used only by the
modern clients 108 - A and all the properties expected by
legacy clients 108 - B .
[0119] To guarantee the backwards compatibility , data that
would be only in the master message 104 is propagated to all
the instance messages 106 as illustrated above .
[0120] Creating or modifying a non - pattern recurrence as
a series is done through the new API 210 . In this scenario ,
embodiments are aware of series versus exceptions and
perform bulk updates whenever appropriated . There will be
a master item , which will only be understood by the new
API . MAPI clients will not see it at all .
10121] Thus , for backwards compatibility , each instance
of a series will have all the properties necessary to display
the item as a single item . Changes to the series as a whole
(like changing the subject for all instances) will be written
against the master message . Embodiments will attempt to
update the other instances inline with the save . Updates that
cannot be performed online (either because of failures ,
because there are too many instances , or for other reasons)
will be done in the background process .
[0122] The following discussion now refers to a number of
methods and method acts that may be performed . Although
the method acts may be discussed in a certain order or
illustrated in a flow chart as occurring in a particular order ,
no particular ordering is required unless specifically stated ,
or required because an act is dependent on another act being
completed prior to the act being performed .
0123] Referring now to FIG . 9 , a method 900 is illus
trated . The method 900 may be practiced in a computing
environment including a series of events . The method 900
includes acts for changing an instance in the series in a
fashion that preserves the series for both modern and legacy
systems , even in cases where the change would not ordi
narily be compatible with legacy systems . The method
includes identifying a master message , wherein the master
message includes default values for events in the series (act
902) . Thus for example , the server 102 may identify the
master message 104 which includes default values D1 , D2 ,
D3 , D4 , D5 , and D6 .
[0124] The method 900 further includes identifying user
input for a new event in the series , wherein the user input
identifies one or more exceptions to the default values . For
example , as illustrated in FIG . 1A , the server 102 may
receive the exception value El as a replacement for the
default value D1 in a first instance event in a series of events
(act 904) .
[0125] The method 900 further includes creating an
instance message that includes default values from the
master message for default values where there are no excep

US 2018 / 0107471 A1 Apr . 19 , 2018

tions identified to those default values in the user input and
includes the exceptions from the user input (act 906) . Thus ,
in the example illustrated in FIG . 1A , the server 102 creates
the instance message 106 - 5 which includes the default
values D2 , D3 , D4 , D5 , and D6 because there are no
exceptions identified for those values in the user input in the
user change message 116 - 1 . However , the server includes
the exception value E1 in place of the default value D1 as
this exception value is identified in the user input in the user
change message 116 - 1 .
[0126] In some embodiments , creating the instance mes
sage is performed as a result of identifying that the excep
tions would not be allowed on the legacy system . Thus , for
example , in the explanation of FIG . 1A above , it was
indicated that the exception information 113 is not readable
by legacy systems . However , there may be examples where
certain portions of the exception information is , in - fact ,
readable by legacy systems and can be used by those legacy
systems . Some embodiments may recognize this fact that
certain exceptions are allowed and accommodated by legacy
systems . In such cases , there may be no need to create an
exception message . Thus , systems can configured to create
exception messages when exceptions would not be allowed
on particular legacy systems and when such exceptions are
identified .
0127] Thus , in some embodiments , the method may fur
ther include receiving additional exceptions for an instance
where the additional exceptions would be allowed by a
legacy system , and as a result updating the master message
instead of creating a new instance message .
[0128] In some embodiments , the instance message may
include information identifying which parts of the instance
message are exceptional . In particular , the instance message
106 - 5 may include metadata indicating that the value El is
an exception value and not a default value . This can be used
to quickly identify exceptional values in instance messages .
In some embodiments , this may be used to quickly identify
exceptions for cases where the master message 104 includes
exceptions by reference using pointers to the instance mes
sages .
[0129] The method 900 may further include , as a result of
creating the instance message , sending the instance message
to other entities associated with the series of events . Thus for
example , the instance message may be sent to each of the
clients 108 , where users at the clients 108 are interested in
the series of events .
[0130] The method 900 may further include identifying
additional user input to other events in the series ; determin
ing that the other user input in combination with the user
input for a new event in the series would be allowed on the
legacy system ; and as a result , updating the master message
to reflect the additional user input and the user input for a
new event in the series as a series operation . Thus for
example , FIG . 1A illustrates where instance messages 106 - 2
and 106 - 3 include the value D1 . If the complete set of
instance messages includes messages 106 - 5 , 106 - 2 and
106 - 3 , and user input is received updating D1 to E1 for
messages 106 - 2 and 106 - 3 , then the master message 104 can
simply update the value D1 to be E1 as a default value for
all events in the series of events . In some such embodiments ,
the method 900 may include , as a result , discarding the
instance messages 106 - 5 , 106 - 2 and 106 - 3 .
[0131] Referring now to FIG . 10 , a method 1000 is
illustrated . The method 1000 may be practiced in a com

puting environment including a series of events . The method
1000 includes acts for changing an instance in the series in
a fashion that preserves the series for both modern and
legacy systems , even in cases where the change would not
ordinarily be compatible with legacy systems . The method
includes identifying a master message , wherein the master
message includes default values for events in the series (act
1002) . Thus for example , the server 102 may identify the
master message 104 which includes default values D1 , D2 ,
D3 , D4 , D5 , and D6 .
[0132] The method 1000 further includes identifying user
input for an existing event in the series , wherein the user
input identifies one or more exceptions to the default values .
For example , as illustrated in FIG . 1A , the server 102 may
receive the exception value E1 - 1 as a replacement for the
default value D1 in a first instance event in a series of events
(act 1004) .
[0133] The method 1000 further includes creating an
instance message that includes default values from the
master message for default values where there are no excep
tions identified to those default values in the user input and
includes the exceptions from the user input (act 1006) . Thus ,
in the example illustrated in FIG . 1A , the server 102 creates
the instance message 106 - 1 which includes the default
values D2 , D3 , D4 , D5 , and D6 because there are no
exceptions identified for those values in the user input in the
user change message 116 - 1 . However , the server includes
the exception value E1 - 1 in place of the default value D1 as
this exception value is identified in the user input in the user
change message 116 - 1 .
10134] . In some embodiments , creating the instance mes
sage is performed as a result of identifying that the excep
tions would not be allowed on the legacy system . Thus , for
example , in the explanation of FIG . 1A above , it was
indicated that the exception information 113 is not readable
by legacy systems . However , there may be examples where
certain portions of the exception information is , in - fact ,
readable by legacy systems and can be used by those legacy
systems . Some embodiments may recognize this fact that
certain exceptions are allowed and accommodated by legacy
systems . In such cases , there may be no need to create an
exception message . Thus , systems can configured to create
exception messages when exceptions would not be allowed
on particular legacy systems and when such exceptions are
identified .
[0135] Thus , in some embodiments , the method may fur
ther include receiving additional exceptions for an instance
where the additional exceptions would be allowed by a
legacy system , and as a result updating the master message
instead of creating a new instance message .
[0136] In some embodiments , the instance message may
include information identifying which parts of the instance
message are exceptional . In particular , the instance message
106 - 1 may include metadata indicating that the value E1 - 1
is an exception value and not a default value . This can be
used to quickly identify exceptional values in instance
messages . In some embodiments , this may be used to
quickly identify exceptions for cases where the master
message 104 includes exceptions by reference using pointers
to the instance messages .
[0137] The method 1000 may further include , as a result
of creating the instance message , sending the instance mes
sage to other entities associated with the series of events .
Thus for example , the instance message may be sent to each

US 2018 / 0107471 A1 Apr . 19 , 2018

of the clients 108 , where users at the clients 108 are
interested in the series of events .
[0138] The method 1000 may further include identifying
additional user input to other events in the series ; determin
ing that the other user input in combination with the user
input for an existing event in the series would be allowed on
the legacy system ; and as a result , updating the master
message to reflect the additional user input and the user input
for an existing event in the series as a series operation . Thus
for example , FIG . 1A illustrates where instance messages
106 - 2 and 106 - 3 include the value D1 . If the complete set of
instance messages includes messages 106 - 1 , 106 - 2 and
106 - 3 , and user input is received updating D1 to E1 - 1 for
messages 106 - 2 and 106 - 3 , then the master message 104 can
simply update the value D1 to be E1 - 1 as a default value for
all events in the series of events . In some such embodiments ,
the method 1000 may include , as a result , discarding the
instance messages 106 - 1 , 106 - 2 and 106 - 3 .
[0139] Further , the methods may be practiced by a com
puter system including one or more processors and com
puter - readable media such as computer memory . In particu
lar , the computer memory may store computer - executable
instructions that when executed by one or more processors
cause various functions to be performed , such as the acts
recited in the embodiments .
[0140] Embodiments of the present invention may com
prise or utilize a special purpose or general - purpose com
puter including computer hardware , as discussed in greater
detail below . Embodiments within the scope of the present
invention also include physical and other computer - readable
media for carrying or storing computer - executable instruc
tions and / or data structures . Such computer - readable media
can be any available media that can be accessed by a general
purpose or special purpose computer system . Computer
readable media that store computer - executable instructions
are physical storage media . Computer - readable media that
carry computer - executable instructions are transmission
media . Thus , by way of example , and not limitation ,
embodiments of the invention can comprise at least two
distinctly different kinds of computer - readable media : physi
cal computer - readable storage media and transmission com
puter - readable media .
[0141] Physical computer - readable storage media includes
RAM , ROM , EEPROM , CD - ROM or other optical disk
storage (such as CDs , DVDs , etc) , magnetic disk storage or
other magnetic storage devices , or any other medium which
can be used to store desired program code means in the form
of computer - executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer .
[0142] A “ network ” is defined as one or more data links
that enable the transport of electronic data between com
puter systems and / or modules and / or other electronic
devices . When information is transferred or provided over a
network or another communications connection (either
hardwired , wireless , or a combination of hardwired or
wireless) to a computer , the computer properly views the
connection as a transmission medium . Transmissions media
can include a network and / or data links which can be used
to carry or desired program code means in the form of
computer - executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer . Combinations of the above are also
included within the scope of computer - readable media .
[0143] Further , upon reaching various computer system
components , program code means in the form of computer
executable instructions or data structures can be transferred

automatically from transmission computer - readable media
to physical computer - readable storage media (or vice versa) .
For example , computer - executable instructions or data
structures received over a network or data link can be
buffered in RAM within a network interface module (e . g . , a
“ NIC ”) , and then eventually transferred to computer system
RAM and / or to less volatile computer - readable physical
storage media at a computer system . Thus , computer - read
able physical storage media can be included in computer
system components that also (or even primarily) utilize
transmission media .
[0144] Computer - executable instructions comprise , for
example , instructions and data which cause a general pur
pose computer , special purpose computer , or special purpose
processing device to perform a certain function or group of
functions . The computer - executable instructions may be , for
example , binaries , intermediate format instructions such as
assembly language , or even source code . Although the
subject matter has been described in language specific to
structural features and / or methodological acts , it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the described features or
acts described above . Rather , the described features and acts
are disclosed as example forms of implementing the claims .
[0145] Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computer system configurations ,
including , personal computers , desktop computers , laptop
computers , message processors , hand - held devices , multi
processor systems , microprocessor - based or programmable
consumer electronics , network PCs , minicomputers , main
frame computers , mobile telephones , PDAs , pagers , routers ,
switches , and the like . The invention may also be practiced
in distributed system environments where local and remote
computer systems , which are linked (either by hardwired
data links , wireless data links , or by a combination of
hardwired and wireless data links) through a network , both
perform tasks . In a distributed system environment , program
modules may be located in both local and remote memory
storage devices .
[0146] Alternatively , or in addition , the functionally
described herein can be performed , at least in part , by one or
more hardware logic components . For example , and without
limitation , illustrative types of hardware logic components
that can be used include Field - programmable Gate Arrays
(FPGAs) , Program - specific Integrated Circuits (ASICs) ,
Program - specific Standard Products (ASSPs) , System - on - a
chip systems (SOCs) , Complex Programmable Logic
Devices (CPLDs) , etc .
[0147] The present invention may be embodied in other
specific forms without departing from its spirit or charac
teristics . The described embodiments are to be considered in
all respects only as illustrative and not restrictive . The scope
of the invention is , therefore , indicated by the appended
claims rather than by the foregoing description . All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope .
What is claimed is :
1 . A system , comprising :
one or more processors ; and
one or more computer - readable storage media having

stored thereon computer - executable instructions that
are executable by the one or more processors to cause
the system to perform at least the following :
identify a master message that includes default values

for events in a temporal series of events ;

US 2018 / 0107471 A1 Apr . 19 , 2018

identify first user input for a new event in the temporal
series of events , the first user input identifying
exceptions to the default values ;

identify that the exceptions to the default values would
not be compatible with a legacy system ;

as a result of identifying that the exceptions would not
be compatible with the legacy system , create an
instance message for use at the legacy system that
includes default values from the master message for
which there are no exceptions identified in the first
user input and includes the exceptions from the first
user input , the instance message being capable of
being displayed at the legacy system as a discrete
event decoupled from the temporal series of events ;

modify the master message to include the exceptions to
the default values ;

send the instance message to the legacy system for
display ; and

send the modified master message to one or more
modern systems for display .

2 . The system of claim 1 , wherein the instance message
includes information identifying which parts of the instance
message are exceptional .

3 . The system of claim 1 , wherein the computer - execut
able instructions are also executable by the one or more
processors to cause the system to , as a result of creating the
instance message , send the instance message to other entities
associated with the temporal series .

4 . The system of claim 1 , wherein the computer - execut
able instructions are also executable by the one or more
processors to cause the system to :

identify additional user input to other events in the
temporal series of events ;

determine that the additional user input in combination
with the first user input would be allowed on the legacy
system ; and

as a result of the determination , update the master mes
sage to reflect the additional user input and the first user
input as a series operation .

5 . The system of claim 4 , wherein the computer - execut
able instructions are also executable by the one or more
processors to cause the system to , as a result of the deter
mination , discard the instance message .

6 . The system of claim 1 , wherein the computer - execut
able instructions are also executable by the one or more
processors to cause the system to , as a result of receiving
second user input for an addition to the temporal series of
events that is allowed on the legacy system , update the
master message and the instance message .

7 . The system of claim 1 , wherein the legacy system
comprises a legacy event calendaring system and the one or
more modern systems comprise one or more modern event
calendaring systems .

8 . A method , implemented at a computer system that
includes one or more processors , for changing an instance of
a temporal series of events in a fashion that preserves the
temporal series for both modern and legacy event calendar
ing systems , even when the addition would not ordinarily be
compatible with a particular legacy system , the method
comprising :

identifying a master message that includes default values
for events in the temporal series of events ;

identifying first user input for a new event in the temporal
series of events , the first user input identifying excep
tions to the default values ;

identifying that the exceptions to the default values would
not be compatible with a legacy event calendaring
system ;

as a result of identifying that the exceptions would not be
compatible with the legacy event calendaring system ,
create an instance message for use at the legacy event
calendaring system that includes default values from
the master message for which there are no exceptions
identified in the first user input and includes the excep
tions from the first user input , the instance message
being capable of being displayed at the legacy event
calendaring system as a discrete event decoupled from
the temporal series of events ;

modify the master message to include the exceptions to
the default values ;

send the instance message to the legacy event calendaring
system for display ; and

send the modified master message to one or more modern
event calendaring systems for display .

9 . The method of claim 8 , wherein the instance message
includes information identifying which parts of the instance
message are exceptional .

10 . The method of claim 8 , further comprising , as a result
of creating the instance message , sending the instance mes
sage to other entities associated with the temporal series .

11 . The method of claim 8 , further comprising :
identifying additional user input to other events in the

temporal series of events ;
determining that the additional user input in combination

with the first user input would be allowed on the legacy
event calendaring system ; and

as a result of the determination , updating the master
message to reflect the additional user input and the first
user input as a series operation .

12 . The method of claim 11 , further comprising , as a result
of the determination , discarding the instance message .

13 . The method of claim 8 , further comprising , as a result
of receiving second user input for an addition to the temporal
series of events that is allowed on the legacy system ,
updating the master message and the instance message .

14 . A computer program product comprising one or more
hardware storage devices having stored thereon computer
executable instructions that are executable by one or more
processors to cause a system to perform at least the follow
ing :

identify a master message that includes default values for
events in a temporal series of events ;

identify first user input for a new event in the temporal
series of events , the first user input identifying excep
tions to the default values ;

identify that the exceptions to the default values would
not be compatible with a legacy system ;

as a result of identifying that the exceptions would not be
compatible with the legacy system , create an instance
message for use at the legacy system that includes
default values from the master message for which there
are no exceptions identified in the first user input and
includes the exceptions from the first user input , the
instance message being capable of being displayed at
the legacy system as a discrete event decoupled from
the temporal series of events ;

modify the master message to include the exceptions to
the default values ;

send the instance message to the legacy system for
display ; and

send the modified master message to one or more modern
systems for display .

US 2018 / 0107471 A1 Apr . 19 , 2018

15 . The computer program product of claim 14 , wherein
the instance message includes information identifying which
parts of the instance message are exceptional .

16 . The computer program product of claim 14 , wherein
the computer - executable instructions are also executable by
the one or more processors to cause the system to , as a result
of creating the instance message , send the instance message
to other entities associated with the temporal series .

17 . The computer program product of claim 14 , wherein
the computer - executable instructions are also executable by
the one or more processors to cause the system to :

identify additional user input to other events in the
temporal series of events ;

determine that the additional user input in combination
with the first user input would be allowed on the legacy
system ; and

as a result of the determination , update the master mes
sage to reflect the additional user input and the first user
input as a series operation .

18 . The computer program product of claim 17 , wherein
the computer - executable instructions are also executable by
the one or more processors to cause the system to , as a result
of the determination , discard the instance message .

19 . The computer program product of claim 14 , wherein
the computer - executable instructions are also executable by
the one or more processors to cause the system to , as a result
of receiving second user input for an addition to the temporal
series of events that is allowed on the legacy system , update
the master message and the instance message .

20 . The computer program product of claim 14 , wherein
the legacy system comprises a legacy event calendaring
system and the one or more modern systems comprise one
or more modern event calendaring systems .

* * * *

