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PHYSICAL SYSTEM SIMULATION 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] The present application claims priority from and is 
a continuation of pending U.S. Patent Application No. 
63 / 073,186 entitled “ PHYSICAL SYSTEM SIMULA 
TION , ” filed Sep. 1 , 2020 , the contents of which are 
incorporated by reference in their entirety . 

FIELD OF THE DISCLOSURE 

[ 0002 ] The present disclosure is generally related to simu 
lation of a physical system . 

BACKGROUND 

method further includes developing at least a second surro 
gate model based on the second simulation data . 
[ 0006 ] In another particular implementation , a non - tran 
sitory , computer readable medium storing instructions that , 
when executed by one or more processors , cause the one or 
more processors to generate initial simulation data by pro 
viding first sets of first values of first input parameters to a 
simulation of a physical system . Each set of the first sets 
indicates a first value of each of the first input parameters . 
The instructions , when executed by the one or more pro 
cessors , also cause the one or more processors to develop at 
least one surrogate model based on the initial simulation 
data . The instructions , when executed by the one or more 
processors , further cause the one or more processors to 
select second input parameters from the first input param 
eters based on the at least one surrogate model . A count of 
the second input parameters is less than a count of the first 
input parameters . The instructions , when executed by the 
one or more processors , further cause the one or more 
processors to generate second simulation data by providing 
second sets of second values of the second input parameters 
to the simulation . Each set of the second sets indicates a 
second value of each of the second input parameters . The 
instructions , when executed by the one or more processors , 
also cause the one or more processors to develop at least a 
second surrogate model based on the second simulation 
data . 
[ 0007 ] The features , functions , and advantages described 
herein can be achieved independently in various implemen 
tations or may be combined in yet other implementations , 
further details of which can be found with reference to the 
following description and drawings . 

[ 0003 ] Testing for failure modes of physical systems can 
be destructive , expensive , or both . For example , the testing 
could include measuring the effect of destruction of an 
expensive component of a physical system on other com 
ponents . Complex physical systems can include a large 
number of variables . Performing multiple tests to analyze 
the effect on the components of the physical system of 
changes in the many variables can be destructive , time 
consuming , and expensive . 

SUMMARY 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

[ 0004 ] In a particular implementation , a device for physi 
cal system simulation includes a memory and one or more 
processors . The memory is configured to store a simulation 
of a physical system . The one or more processors are 
configured to generate initial simulation data by providing 
first sets of first values of first input parameters to the 
simulation . Each set of the first sets indicates a first value of 
each of the first input parameters . The one or more proces 
sors are also configured to develop at least one surrogate 
model based on the initial simulation data . The one or more 
processors are further configured to select second input 
parameters from the first input parameters based the at 
least one surrogate model . A count of the second input 
parameters is less than a count of the first input parameters . 
The one or more processors are also configured to generate 
second simulation data by providing second sets of second 
values of the second input parameters to the simulation . 
Each set of the second sets indicates a second value of each 
of the second input parameters . The one or more processors 
are further configured to develop at least a second surrogate 
model based on the second simulation data . 
[ 0005 ] In another particular implementation , a method of 
physical system simulation includes generating initial simu 
lation data by providing first sets of first values of first input 
parameters to a simulation of a physical system . Each set of 
the first sets indicates a first value of each of the first input 
parameters . The method also includes developing at least 
one surrogate model based on the initial simulation data . The 
method further includes selecting second input parameters 
from the first input parameters based on the at least one 
surrogate model . A count of the second input parameters is 
less than a count of the first input parameters . The method 
also includes generating second simulation data by provid 
ing second sets of second values of the second input param 
eters to the simulation . Each set of the second sets indicates 
a second value of each of the second input parameters . The 

[ 0008 ] FIG . 1 is a diagram that illustrates a system con 
figured to perform simulation of a physical system . 
[ 0009 ] FIG . 2 is a diagram that illustrates an example of a 
method that can be performed by the system of FIG . 1 . 
[ 0010 ] FIG . 3 is a diagram that illustrates an example of a 
method that can be performed by the system of FIG . 1 . 
[ 0011 ] FIG . 4 is a diagram that illustrates a flow chart of 
an example of method of physical system simulation . 
[ 0012 ] FIG . 5 is a block diagram of a computing environ 
ment including a computing device configured to support 
aspects of computer - implemented methods and computer 
executable program instructions ( or code ) according to the 
present disclosure . 

a 

DETAILED DESCRIPTION 

a 

[ 0013 ] Aspects disclosed herein present systems and 
methods for physical system simulation . For example , a 
simulation of a physical system can be used to design 
experiments to test the physical system and update design 
parameters of the physical system . However , because a 
highly accurate physical system simulation can be compu 
tationally expensive and time - intensive to run , relatively few 
physical system simulations are run to gather data that is 
then used to generate lower - complexity , surrogate models . 
[ 0014 ] To illustrate , the physical system simulation may 
use a relatively large number of input parameters ( referred 
to as a “ set ” of input parameters ) , and the values of these 
input parameters can be adjusted for each run of the system 
simulator in order to test the response of the system to 
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different initial conditions . For an example , one of the input 
parameters of a turbine simulation may be “ impeller speed . ” 
For different runs of the simulation , different values of the 
input parameter “ impeller speed ” can be used . A first set of 
values of the input parameters that includes “ 8,000 rotations 
per minute ( RPM ) ” for the impeller speed can be used for a 
first run , a second set of values of the input parameters that 
includes “ 10,000 RPM ” for the impeller speed can be used 
for a second run , and a third set values of the input 
parameters that includes “ 12,000 RPM ” for the impeller 
speed can be used for a third run , to roughly determine how 
the overall system reacts to changes in impeller speed over 
the range of 8,000-12,000 RPM . However , when the system 
simulation uses a large set ( e.g. , hundreds ) of input param 
eters , it becomes infeasible to exhaustively test the reaction 
of the system to different values for each of the input 
parameters . 
[ 0015 ] To conserve time and resources , initial simulation 
data is generated using a relatively small number of sets of 
parameter values ( e.g. , performing a small number of simu 
lation runs , with each run using a different set of values for 
the input parameters ) . Because processing each set of 
parameter values for a large number of input parameters can 
be time - intensive , a small number of sets ( e.g. , a small 
number of simulation runs ) are processed to generate the 
initial simulation data relatively quickly . 
[ 0016 ] One or more first surrogate models are developed 
to identify a subset of the input parameters that are signifi 
cant . An input parameter is significant relative to measured 
responses from an engine test ( e.g. , a potentially destructive 
test ) . For example , in a destructive fan blade - out test , input 
parameters that most significantly affect the axial or rota 
tional maximum loading that causes engine failure are to be 
identified as significant input parameters . In a particular 
example , the significant input parameters are identified 
using a multi - stage process . A first stage includes using an 
elastic net surrogate model developed based on the initial 
simulation data to identify a group of the input parameters 
that are significant . Additional stages include using one or 
more linear models , inferential statistics , engineering 
knowledge , or a combination thereof , to identify a subset of 
the group of input parameters that are significant . Having 
identified the most significant input parameters , additional 
runs ( e.g. , a large number of simulation runs ) of the physical 
system simulation are performed that focus on these input 
parameters to generate second simulation data . Processing 
parameter values for selected input parameters reduces 
computation time , while processing a higher number of sets 
of parameter values increases coverage and reliability of the 
produced simulation data . 
[ 0017 ] One or more second surrogate models are devel 
oped based on the second simulation data ( e.g. , the more 
reliable simulation data ) . For example , a Kriging model is 
developed based on the second simulation data . The one or 
more second surrogate models are used to determine test 
parameters , design parameters , or both , for the physical 
system . Using the second surrogate models ( e.g. , reliable 
surrogate models ) to determine test parameters , design 
parameters , or both , can result in fewer expensive ( and in 
some cases , destructive ) tests to have to be performed on the 
physical system . 
[ 0018 ] The figures and the following description illustrate 
specific exemplary embodiments . It will be appreciated that 
those skilled in the art will be able to devise various 

arrangements that , although not explicitly described or 
shown herein , embody the principles described herein and 
are included within the scope of the claims that follow this 
description . Furthermore , any examples described herein are 
intended to aid in understanding the principles of the dis 
closure and are to be construed as being without limitation . 
As a result , this disclosure is not limited to the specific 
embodiments or examples described below , but by the 
claims and their equivalents . 
[ 0019 ) Particular implementations are described herein 
with reference to the drawings . In the description , common 
features are designated by common reference numbers 
throughout the drawings . In some drawings , multiple 
instances of a particular type of feature are used . Although 
these features are physically and / or logically distinct , the 
same reference number is used for each , and the different 
instances are distinguished by addition of a letter to the 
reference number . When the features as a group or a type are 
referred to herein ( e.g. , when no particular one of the 
features is being referenced ) , the reference number is used 
without a distinguishing letter . However , when one particu 
lar feature of multiple features of the same type is referred 
to herein , the reference number is used with the distinguish 
ing letter . For example , referring to FIG . 1 , multiple param 
eter value sets are illustrated and associated with reference 
numbers 101a and 101b . When referring to a particular one 
of these designs , such as the parameter value set 101a , the 
distinguishing letter “ a ” is used . However , when referring to 
any arbitrary one of these parameter value sets or to these 
parameter value sets as a group , the reference number 101 
is used without a distinguishing letter . 
[ 0020 ] As used herein , various terminology is used for the purpose of describing particular implementations only and is 
not intended to be limiting . For example , the singular forms 
“ a , " " an , ” and “ the ” are intended to include the plural forms 
as well , unless the context clearly indicates otherwise . 
Further , some features described herein are singular in some 
implementations and plural in other implementations . To 
illustrate , FIG . 1 depicts a model generator 110 that gener 
ates one or more surrogate models 104 ( “ surrogate model 
( s ) ” 104 in FIG . 1 ) , which indicates that in some implemen 
tations the model generator 110 generates a single surrogate 
model 104 and in other implementations the model genera 
tor 110 generates multiple surrogate models 104. For ease of 
reference herein , such features are generally introduced as 
“ one or more ” features , and are subsequently referred to in 
the singular unless aspects related to multiple of the features 
are being described . 
[ 0021 ] The terms “ comprise , " " comprises , ” and “ compris 
ing ” are used interchangeably with “ include , ” “ includes , " or 
“ including . " Additionally , the term “ wherein ” is used inter 
changeably with the term “ where . " As used herein , “ exem 
plary ” indicates an example , an implementation , and / or an 
aspect , and should not be construed as limiting or as 
indicating a preference or a preferred implementation . As 
used herein , an ordinal term ( e.g. , “ first , ” “ second , ” “ third , ” 
etc. ) used to modify an element , such as a structure , a 
component , an operation , etc. , does not by itself indicate any 
priority or order of the element with respect to another 
element , but rather merely distinguishes the element from 
another element having a same name ( but for use of the 
ordinal term ) . As used herein , the term “ set ” refers to a 
grouping of one or more elements , and the term “ plurality " 
refers to multiple elements . 

> 
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workflow manager 154 is configured to update the simula 
tion 102 based on the sensor data 161. For example , the 
workflow manager 154 uses the sensor data 161 as feedback 
to update the simulation 102 to more closely represent the 
physical system 152 , such as to account for any changes in 
the physical system 152 over time . 
[ 0026 ] During operation , the workflow manager 154 pro 
vides a plurality of parameter value ( “ PV ” ) sets 101 to the 
simulation 102. For example , the workflow manager 154 
provides the parameter value sets 101 to the simulation 102 
in response to receiving a request ( e.g. , a user input ) to 
generate parameters for testing the physical system 152. The 
parameter value sets 101 indicate parameter values of a 
plurality of input parameters 131. In a particular aspect , the 
parameter value sets 101 indicate the changing parameter 
values of the input parameters 131 over simulation time . For 
example , the parameter value sets 101 include a parameter 
value set 101a that indicates parameter values 133 of the 
input parameters 131 to be simulated as detected at a first 
simulation time ( or detected during a first simulation time 
range ) . To illustrate , the parameter value set 101a indicates 
that an input parameter 131a ( e.g. , a speed ) and an input 
parameter 131b ( e.g. , fuel level ) have an input parameter 
value 133a ( e.g. , a first speed ) and an input parameter value 
133b ( e.g. , a first fuel level ) , respectively , to be simulated as 
detected at the first simulation time ( or detected during the 
first simulation time range ) . As another example , the param 
eter value sets 101 include a parameter value set 101b that 
indicates parameter values 135 of the input parameters 131 
to be simulated as detected at a second simulation time ( or 
detected during a second simulation time range ) . To illus 
trate , the parameter value set 1016 indicates that the input 
parameter 131a ( e.g. , the speed ) and the input parameter 
131b ( e.g. , the fuel level ) have an input parameter value 
135a ( e.g. , a second speed ) and an input parameter value 
135b ( e.g. , a second fuel level ) , respectively , to be simulated 
as detected at the second simulation time ( or detected during 
the second simulation time range ) . In a particular aspect , the 
parameter value sets 101 indicate parameter values of the 
input parameters 131 at various simulated time intervals 
( e.g. , every 30 seconds of simulation time ) . For example , a 
difference between the second simulated time ( or the second 
simulated time range ) and the first simulated time ( or the 
first simulated time range ) corresponds to a particular time 
interval ( e.g. , 30 seconds ) . 
[ 0027 ] In a particular aspect , the parameter value sets 101 
indicate initial conditions for separate simulations ( e.g. , 
instead of changing parameter values of the input parameters 
131 over simulation time ) . In an example , the parameter 
value sets 101 include a parameter value set 101a that 
indicates parameter values 133 of the input parameters 131 
as initial conditions for a first simulation run . In addition , the 
parameter value sets 101 include a parameter value set 1016 
that indicates parameter values 135 of the input parameters 
131 as initial conditions for a second simulation run . The 
second simulation run is independent of the first simulation 

a 

[ 0022 ] As used herein , “ generating , " " calculating , " 
" using , " " selecting , " " accessing , " and " determining " are 
interchangeable unless context indicates otherwise . For 
example , “ generating , ” “ calculating , ” or “ determining ” a 
parameter ( or a signal ) can refer to actively generating , 
calculating , or determining the parameter ( or the signal ) or 
can refer to using , selecting , or accessing the parameter ( or 
signal ) that is already generated , such as by another com 
ponent or device . As used herein , " coupled ” can include 
" communicatively coupled , " " electrically coupled , " or 
" physically coupled , ” and can also ( or alternatively ) include 
any combinations thereof . Two devices ( or components ) can 
be coupled ( e.g. , communicatively coupled , electrically 
coupled , or physically coupled ) directly or indirectly via one 
or more other devices , components , wires , buses , networks 
( e.g. , a wired network , a wireless network , or a combination 
thereof ) , etc. Two devices ( or components ) that are electri 
cally coupled can be included in the same device or in 
different devices and can be connected via electronics , one 
or more connectors , or inductive coupling , as illustrative , 
non - limiting examples . In some implementations , two 
devices ( or components ) that are communicatively coupled , 
such as in electrical communication , can send and receive 
electrical signals ( digital signals or analog signals ) directly 
or indirectly , such as via one or more wires , buses , networks , 
etc. As used herein , “ directly coupled ” is used to describe 
two devices that are coupled ( e.g. , communicatively 
coupled , electrically coupled , or physically coupled ) without 
intervening components . 
[ 0023 ] FIG . 1 depicts an example of a system 100 that is 
configured to perform physical system simulation . The sys 
tem 100 includes a device 150 coupled via a test platform 
156 to a physical system 152. As an illustrative non - limiting 
example , the physical system 152 can include one or more 
components of a manufacturing system , an aircraft , a ground 
vehicle , an aquatic vehicle , an aerospace system , or a 
combination thereof . In a particular example , the physical 
system 152 includes a large - scale complex engineering 
system ( LSCES ) . 
[ 0024 ] In a particular aspect , the system 100 includes one 
or more sensors 158 configured to monitor the physical 
system 152. For example , the sensor 158 include a tempera 
ture sensor , a chemical sensor , a video camera , an image 
sensor , a humidity sensor , a flow sensor , an altitude sensor , 
a speed sensor , or a combination thereof . In a particular 
example , one or more of the sensor 158 are coupled to the 
physical system 152. In a particular example , one or more of 
the sensor 158 are proximate to the physical system 152. The 
device 150 , the test platform 156 , the physical system 152 , 
the sensor 158 , or a combination thereof , are interconnected 
via one or more networks to enable data communications . 
[ 0025 ] The device 150 includes a workflow manager 154 , 
a simulation 102 of the physical system 152 , a model 
generator 110 , a parameter selector 106 , a test parameter 
generator 116 , or a combination thereof . The workflow 
manager 154 is configured to manage the simulation 102 , the 
model generator 110 , the parameter selector 106 , the test 
parameter generator 116 , or a combination thereof , to gen 
erate one or more physical test parameters 157 and to 
provide the physical test parameters 157 to the test platform 
156. The test platform 156 is configured to initiate testing 
159 of the physical system 152 based on the physical test 
parameters 157. The sensor 158 is configured to provide the 
sensor data 161 to the device 150. In a particular aspect , the 

a 

a 

a 

run . 

[ 0028 ] In a particular aspect , the parameter value sets 101 
indicate possible parameter values of the input parameters 
( “ IPs ” ) 131. In a particular aspect , the workflow manager 
154 generates the parameter value sets 101 using various 
experiment design techniques . For example , the workflow 
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manager 154 generates the parameter value sets 101 using 
orthogonal array sampling , Latin hypercube sampling , or 
random sampling . 
[ 0029 ] The workflow manager 154 generates simulation 
data 111 by providing the parameter value sets 101 to the 
simulation 102. In a particular aspect , the simulation 102 is 
based on finite element modeling , finite volume modeling , 
eigenmode decomposition analysis , eigenvalue analysis , 
eigenstate analysis , iterative first - principle modeling , or a 
combination thereof . For example , finite element modeling 
can be used to simulate physics of the physical system 152 
with high fidelity . In a particular example , the simulation 
data 111 corresponds to sensor data predicted to be gener 
ated by the sensor 158 during testing of the physical system 
152 based on test parameters corresponding to the parameter 
value sets 101 . 
[ 0030 ] In a particular aspect , the model generator 110 
evaluates the simulation 102 using a sparse design of 
experiment ( DoE ) approach , such as an orthogonal array 
experimental design approach . For example , the model 
generator 110 generates one or more surrogate models 104 
based on the simulation data 111 , the parameter value sets 
101 , or a combination thereof , as further described with 
reference to FIG . 2. In a particular aspect , the surrogate 
model 104 includes an elastic net surrogate model . The 
parameter selector 106 selects a plurality of input parameters 
141 to be included in parameter value sets 103 for additional 
processing at the simulation 102. For example , the input 
parameters 141 include an input parameter 141a , an input 
parameter 141b , one or more additional input parameters , or 
a combination thereof . The input parameters 141 are 
selected from the input parameters 131 based on the surro 
gate model 104 , as further described with reference to FIG . 
2. For example , the parameter selector 106 uses the elastic 
net surrogate model to select the input parameters 141 from 
the input parameters 131 . 
[ 0031 ] In a particular aspect , the input parameters 141 are 
selected in multiple stages . For example , during a first stage , 
the parameter selector 106 uses a first set of the surrogate 
models 104 to select a group ( e.g. , input parameters 105 ) of 
the input parameters 131. During a second stage , the model 
generator 110 uses the input parameters 105 to generate a 
second set of the surrogate models 104 , and the parameter 
selector 106 selects the input parameters 141 from the input 
parameters 105 based on the second set of surrogate models 
104 , as further described with reference to FIG . 2 . 
[ 0032 ] For example , the parameter selector 106 uses the 
elastic net surrogate model to select input parameters 105 
from the input parameters 131. To illustrate , the elastic net 
surrogate model identifies the input parameters 105 as 
significant input parameters . The model generator 110 gen 
erates a linear surrogate model based on the input param 
eters 105 ( e.g. , the significant input parameters ) . In this 
example , the parameter selector 106 selects the input param 
eters 141 from the input parameters 105 based on the linear 
surrogate model , as further described with reference to FIG . 
2. Using the elastic net surrogate model enables identifica 
tion of significant input parameters that can be modeled by 
the linear surrogate model . Evaluating the linear surrogate 
model can be more efficient ( e.g. , less time , fewer compu 
tation cycles , or both ) than evaluating the simulation 102. In 
a particular aspect , the parameter selector 106 , during addi 
tional stages of the input parameter selection , adds or 
removes input parameters from the input parameters 141 

based on inferential statistics , engineering knowledge , 
experiment design techniques , or a combination thereof , as 
further described with reference to FIGS . 2-3 . In a particular 
aspect , one or more of the input parameters 141 are prede 
termined . For example , one or more of the input parameters 
141 are selected based on user input , a configuration setting , 
default data , or a combination thereof . 
[ 0033 ] The input parameters 141 ( e.g. , including a signifi 
cantly reduced count of significant input parameters ) 
selected from the input parameters 131 are processed by the 
simulation 102. For example , the workflow manager 154 
generates simulation data 113 by providing a plurality of 
parameter value sets 103 to the simulation 102. The param 
eter value sets 103 indicate parameter values corresponding 
to the input parameters 141. To illustrate , the parameter 
value sets 103 includes a parameter value set 103a , 
parameter value set 103b , one or more additional parameter 
value sets , or a combination thereof . The parameter value set 
103a and the parameter value set 103b include parameter 
values 143 and parameter values 145 , respectively , of the 
input parameters 141 . 
[ 0034 ] In a particular aspect , the parameter value sets 103 
indicate changing parameter values of the input parameters 
141 over simulation time . For example , the parameter value 
set 103a includes the parameter values 143 of the input 
parameters 141 associated with a first simulation time ( or a 
first simulation time range ) , and the parameter value set 
1036 includes the parameter values 145 of the input param 
eters 141 associated with a second simulation time for a 
second simulation time range ) . To illustrate , the parameter 
value set 103a indicates that an input parameter 141a ( e.g. , 
a speed ) and an input parameter 141b ( e.g. , fuel level ) have 
an input parameter value 143a ( e.g. , a first speed ) and an 
input parameter value 143b ( e.g. , a first fuel level ) , respec 
tively , to be simulated as detected at the first simulation time 
( or detected during the first simulation time range ) . As 
another example , the parameter value set 103b indicates that 
the input parameter 141a ( e.g. , the speed ) and the input 
parameter 141b ( e.g. , the fuel level ) have an input parameter 
value 145a ( e.g. , a second speed ) and an input parameter 
value 145b ( e.g. , a second fuel level ) , respectively , to be 
simulated as detected at the second simulation time ( or 
detected during the second simulation time range ) . 
[ 0035 ] In a particular aspect , the parameter value sets 103 
indicate initial conditions for separate simulations ( e.g. , 
instead of changing parameter values of the input parameters 
141 over simulation time ) . In an example , the parameter 
value sets 103 include a parameter value set 103a that 
indicates parameter values 143 of the input parameters 141 
as initial conditions for a first simulation run . In addition , the 
parameter value sets 103 include a parameter value set 1035 
that indicates parameter values 145 of the input parameters 
141 as initial conditions for a second simulation run . The 
second simulation run is independent of the first simulation 
run . 

[ 0036 ] In a particular aspect , a count of the input param 
eters 141 is less than a count of the input parameters 131 , 
and a count of the parameter value sets 103 is greater than 
a count of the parameter value sets 101. For example , 
selection of relevant input parameters by the parameter 
selector 106 enables more sets of parameter values corre 
sponding to fewer input parameters to be processed by the 
simulation 102 to generate the simulation data 113. In a 
particular aspect , more sets of parameter values for fewer 
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input parameters are processed by the simulation 102 to 
generate the simulation data 113 as compared to the simu 
lation data 111. Processing more sets of parameter values of 
relevant input parameters increases coverage of the simula 
tion data 113 with a low impact ( e.g. , no impact ) on 
reliability of the simulation data 113 . 
[ 0037 ] The model generator 110 develops one or more 
surrogate models 114 based on the simulation data 113 , as 
further described with reference to FIG . 3. In an example , 
the surrogate model 114 includes at least one of a Kriging 
model , a least squares analysis of variance ( ANOVA ) model , 
a heuristic model , or a metaheuristic model . In a particular 
aspect , the model generator 110 performs adjustment of the 
surrogate model 114 using an optimization technique ( e.g. , 
a gradient - based descent , a multi - objective optimization 
approach , a metaheuristic approach , etc. ) until an adjustment 
criterion is met , as further described with reference to FIG . 
3. For example , the model generator 110 determines that the 
adjustment criterion is met in response to detecting expira 
tion of a time period , detecting that a threshold count of 
iterations of adjustment of the surrogate model 114 have 
been performed , detecting a convergence of the surrogate 
model 114 , or a combination thereof . In a particular aspect , 
the model generator 110 detects convergence of the surro 
gate model 114 in response to determining that the gradient 
and / or Hessian matrix falls below a specified tolerance , the 
rate of change of quantities of the surrogate model 114 falls 
below a specified threshold tolerance , or both . The model 
generator 110 performs an adjustment of the surrogate 
model 114 by selecting particular input parameters based on 
the surrogate model 114 , generating simulation data by 
providing the parameter values of the particular input 
parameters to the simulation 102 , and using the simulation 
data to develop ( e.g. , adjust ) the surrogate model 114 , as 
further described with reference to FIG . 3 . 
[ 0038 ] The model generator 110 , in response to determin 
ing that the adjustment criterion is met , provides the surro 
gate model 114 to the test parameter generator 116. The test 
parameter generator 116 uses the surrogate model 114 to 
determine one or more physical test parameters 157 for 
testing the physical system 152 , as further described with 
reference to FIG . 3. In a particular aspect , the test parameter 
generator 116 provides the physical test parameters 157 to 
the test platform 156. The test platform 156 performs testing 
159 of the physical system 152 based on the physical test 
parameters 157. For example , the test parameter generator 
116 , in response to determining that the surrogate model 114 
indicates that a first set of input parameters corresponds to 
( e.g. , is predicted to result in ) a first set of predicted sensor 
data and that the first set of input parameters , the first set of 
predicted sensor data , or a combination thereof , correspond 
to a condition to be tested , generates the physical test 
parameters 157 to indicate the first set of input parameters . 
[ 0039 ] In an illustrative example , the test parameter gen 
erator 116 determines that the condition to be tested includes 
failure of a particular component ( e.g. , a fan blade out ) of the 
physical system 152. The test parameter generator 116 uses 
the surrogate model 114 to identify a first set of input 
parameters that corresponds to a first set of predicted sensor 
data that indicate a failure of the particular component . The 
test parameter generator 116 generates the physical test 
parameters 157 to indicate the first set of input parameters 
and provides the physical test parameters 157 to the test 
platform 156. The test platform 156 performs the testing 159 

based on the physical test parameters 157 ( e.g. , the first set 
of input parameters ) . In a particular aspect , the testing 159 
is destructive , expensive , or both . For example , the testing 
159 causes destruction ( or damage ) to the particular com 
ponent that is expensive , time - consuming , or both , to 
replace . 
[ 0040 ] In a particular aspect , the sensor 158 generates 
sensor data 161 during the testing 159 and provide the sensor 
data 161 to the device 150. In a particular aspect , the 
workflow manager 154 updates the simulation 102 based on 
the sensor data 161. For example , the workflow manager 
154 dynamically updates the simulation 102 over time based 
on feedback ( e.g. , the sensor data 161 ) from the sensor 158 . 
Dynamically updating the simulation 102 improves reliabil 
ity of the simulation 102 in modeling the physical system 
152 and predicting the resulting sensor data . 
[ 0041 ] The system 100 thus enables the test parameter 
generator 116 to determine the physical test parameters 157 
that correspond to a condition to be tested in fewer tests 
( e.g. , a single test ) rather than trying various physical test 
parameters to create the condition to be tested . Fewer tests 
conserve resources , such as time and money . The simulation 
102 can be validated for test conditions that are rarely 
observed in actual usage of the physical system 152. In some 
examples , the simulation 102 can be used to make inferences 
and update the design of the physical system 152 . 
[ 0042 ] Although the workflow manager 154 , the simula 
tion 102 , the model generator 110 , the parameter selector 
106 , the test parameter generator 116 , the device 150 , the 
sensor 158 , and the test platform 156 are depicted as 
separate components , in other implementations the 
described functionality of two or more of the workflow 
manager 154 , the simulation 102 , the model generator 110 , 
the parameter selector 106 , the test parameter generator 116 , 
the device 150 , the sensor 158 , and the test platform 156 can 
be performed by a single component . In some implementa 
tions , each of the workflow manager 154 , the simulation 
102 , the model generator 110 , the parameter selector 106 , 
the test parameter generator 116 , the device 150 , the sensor 
158 , and the test platform 156 can be represented in hard 
ware , such as via an application - specific integrated circuit 
( ASIC ) or a field - programmable gate array ( FPGA ) , or the 
operations described with reference to the elements may be 
performed by a processor executing computer - readable 
instructions . 
[ 0043 ] Referring to FIG . 2 , a method is shown and gen 
erally designated 200. One or more operations of the method 
200 can be performed by the simulation 102 , the model 
generator 110 , the parameter selector 106 , the test parameter 
generator 116 , the workflow manager 154 , the device 150 , 
the test platform 156 , the physical system 152 , the sensor 
158 , the system 100 of FIG . 1 , or a combination thereof . 
[ 0044 ] As described previously in FIG . 1 , the workflow 
manager 154 generates the parameter value sets 101 ( e.g. , 
representing an orthogonal array ) to query the simulation 
102. For example , the workflow manager 154 determines 
input parameters and settings , at 204 , and designs an experi 
ment , at 206. The workflow manager 154 generates control 
scripts , at 208. For example , the control scripts indicate the 
parameter value sets 101. The workflow manager 154 pro 
vides the control scripts to the simulation 102 , at 210. For 
example , the workflow manager 154 provides control scripts 
indicating the parameter value sets 101 to the simulation 
102 , as described with reference to FIG . 1. To illustrate , the 
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workflow manager 154 uses the simulation 102 to process 
the parameter value set 101a followed by the parameter 
value set 101b in an ordered sequence . The simulation 102 
generates the simulation data 111 by processing the param 
eter value sets 101 , at 212 . 
[ 0045 ] The model generator 110 processes the simulation 
data 111 , at 214 , to develop a surrogate model 104a ( e.g. , an 
elastic net surrogate model ) , at 216. The parameter selector 
106 selects input parameters 105 from the input parameters 
131 based on the surrogate model 104a ( e.g. , the elastic net 
surrogate model ) , at 218. For example , the parameter selec 
tor 106 uses the elastic net surrogate model to select the 
input parameters 105 ( e.g. , significant input parameters ) 
from the input parameters 131. To illustrate , the parameter 
selector 106 uses the elastic net surrogate model to deter 
mine that the input parameters 105 are included in a main 
effect of a response of the elastic net surrogate model ( e.g. , 
an elastic net model ) . 
[ 0046 ] The model generator 110 generates a surrogate 
model 1046 ( e.g. , a linear surrogate model ) based on the 
input parameters 105 ( e.g. , the significant input parameters ) , 
at 220. The model generator 110 adds input parameters to the 
input parameters 105 , at 222. For example , the model 
generator 110 generates the surrogate model 104b ( e.g. , the 
linear model ) based on the input parameters 105 and a 
second group of input parameters . The second group of input 
parameters are not included in a main effect of the response 
of the elastic net surrogate model , but are included in an 
interaction or quadratic effect of the response of the elastic 
net surrogate model . 
[ 0047 ] The parameter selector 106 develops a balanced 
experimental design , at 224 , and evaluates the surrogate 
model 104b ( e.g. , the linear surrogate model ) at DOE points , 
at 226 , to select the input parameters 141 from the input 
parameters 131. The parameter selector 106 uses inferential 
statistics and plots , at 228 , to add or remove one or more of 
the input parameters 131 to the input parameters 141. The 
parameter selector 106 uses engineering knowledge to add 
or remove one or more of the input parameters 131 to the 
input parameters 141 , at 230. For example , the parameter 
selector 106 adds or removes one or more parameters to the 
input parameters 141 based on user input , configuration 
data , default data , or a combination thereof In a particular 
example , the parameter selector 106 adds a predetermined 
input parameter to , or removes a predetermined input param 
eter from , the input parameters 141. The workflow manager 
154 manages optimization , at 232 , as described with refer 
ence to FIG . 3 . 
[ 0048 ] Referring to FIG . 3 , an example of the optimization 
232 is sho The workflow manager 154 sel input 
parameters and settings , at 302 , designs an experiment , at 
304 , generates control scripts at 306 , and provides the 
control scripts to the simulation 102 , at 308. For example , 
the workflow manager 154 selects the parameter value sets 
103 corresponding to the input parameters 141. The work 
flow manager 154 uses experiment design techniques to 
design an experiment and provides control scripts corre 
sponding to the experiment to the simulation 102 to process 
the parameter value sets 103. The simulation 102 generates 
the simulation data 113 by processing the parameter value 
sets 103 , at 310 . 
[ 0049 ] The model generator 110 generates the surrogate 
model 114 ( e.g. , a Kriging surrogate model ) based on the 
simulation data 113 , at 314. The model generator 110 uses 

various optimization techniques ( e.g. , a multi - objective opti 
mization technique ) to adjust ( e.g. , optimize ) the surrogate 
model 114 ( e.g. , the Kriging surrogate model ) , at 316. The 
model generator 110 determines additional calibration 
points , at 318. The model generator 110 determines whether 
an adjustment criterion is met , at 320. For example , the 
model generator 110 determines that the adjustment criterion 
is not met in response to detecting that adjustment time 
period has not expired , detecting that the surrogate model 
114 has not converged , that fewer than a threshold count of 
adjustment iterations have been performed , or a combination 
thereof . In a particular aspect , the workflow manager 154 
initiates the adjustment time period in response to receiving 
a request ( e.g. , a user input ) to generate parameters for 
testing the physical system 152. In a particular aspect , 
duration of the adjustment time period is based on user 
input , a configuration setting , or both . The model generator 
110 , in response to determining that the adjustment criterion 
is not met , at 320 , generates simulation data 113 based on the 
additional calibration points , at 310 , increments a counter 
indicating adjustment iterations , or both . Alternatively , the 
model generator 110 , in response to determining that the 
adjustment criterion is met , provides the surrogate model 
114 ( e.g. , the Kriging surrogate model ) to the test parameter 
generator 116 . 
[ 0050 ] The test parameter generator 116 interprets the 
results ( e.g. , the simulation data 113 ) , at 322. For example , 
the test parameter generator 116 generates the physical test 
parameters 157 based on the surrogate model 114 ( e.g. , the 
Kriging surrogate model ) . The test parameter generator 116 
deploys design settings to the physical system 152 , at 324 . 
For example , the test parameter generator 116 updates 
settings of the physical system 152. In a particular example , 
the test parameter generator 116 provides the physical test 
parameters 157 to the test platform 156. The test platform 
156 initiates testing 159 of the physical system 152 based on 
the physical test parameters 157 . 
[ 0051 ] The test parameter generator 116 thus determines 
the physical test parameters 157 that can be used to update 
the design of the physical system 152. In some examples , the 
physical test parameters 157 are based on inferences made 
from simulation data generated by the simulation 102 . 
[ 0052 ] Referring to FIG . 4 , a method of physical system 
simulation is shown and generally designated 400. In a 
particular aspect , one or more operations of the method 400 
can be performed by the simulation 102 , the model generator 
110 , the parameter selector 106 , the test parameter generator 
116 , the workflow manager 154 , the device 150 , the test 
platform 156 , the physical system 152 , the sensor 158 , the 
system 100 of FIG . 1 , or combination thereof . 
[ 0053 ] The method 400 includes generating initial simu 
lation data by providing first sets of first values of first input 
parameters to a simulation of a physical system , at 402. For 
example , the workflow manager 154 of FIG . 1 generates the 
simulation data 111 by providing the parameter value sets 
101 of first values ( e.g. , the parameter values 133 , the 
parameter values 135 , or a combination thereof ) of the input 
parameters 131 to the simulation 102 of the physical system 
152 , as described with reference to FIG . 1. Each set of the 
parameter value sets 101 indicates a first value of each of the 
input parameters 131. For example , the parameter value sets 
101 include the parameter value set 101a and the parameter 
value set 101b . The parameter value set 101a indicates a 
parameter value 133a and a parameter value 133b of an 
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input parameter 131a and an input parameter 131b , respec 
tively . The parameter value set 101b indicates a parameter 
value 135a and a parameter value 135b of the input param 
eter 131a and the input parameter 131b , respectively . 
[ 0054 ] The method 400 also includes developing at least 
one surrogate model based on the initial simulation data , at 
404. For example , the model generator 110 of FIG . 1 
develops at least one surrogate model 104 based on the 
simulation data 111 , as described with reference to FIG . 1 . 
[ 0055 ] The method 400 further includes selecting second 
input parameters from the first input parameters based on the 
at least one surrogate model , at 406. For example , the 
parameter selector 106 of FIG . 1 selects the input parameters 
141 from the input parameters 131 based on the at least one 
surrogate model 104 , as described with reference to FIG . 1 . 
There is a larger number of input parameters in the input 
parameters 131 ( e.g. 100 total parameters ) than in the input 
parameters 141 ( e.g. , 20 parameters ) , such that a count of the 
input parameters 141 is less than a count of the input 
parameters 131 . 
[ 0056 ] The method 400 also includes generating second 
simulation data by providing second sets of second values of 
the second input parameters to the simulation , at 408. For 
example , the workflow manager 154 of FIG . 1 generates the 
simulation data 113 by providing the parameter value sets 
103 of second values ( e.g. , the parameter values 143 , the 
parameter values 145 , or a combination thereof ) of the input 
parameters 141 to the simulation 102. Each set of the 
parameter value sets 103 indicates a second value of each of 
the input parameters 141. For example , the parameter value 
sets 103 include the parameter value set 103a and the 
parameter value set 103b . The parameter value set 103a 
indicates a parameter value 143a and a parameter value 
143b of an input parameter 141a and an input parameter 
141b , respectively . The parameter value set 103b indicates a 
parameter value 145a and a parameter value 145b of the 
input parameter 141a and the input parameter 141b , respec 
tively . 
[ 0057 ] The method 400 further includes developing at 
least a second surrogate model based on the second simu 
lation data , at 410. For example , the model generator 110 of 
FIG . 1 develops at least the surrogate model 114 based on 
the simulation data 113 , as described with reference to FIG . 
1 . 
[ 0058 ] The method 400 thus enables the model generator 
110 to generate the surrogate model 114 based on reliable 
simulation data that is generated efficiently . For example , the 
simulation 102 generates the simulation data 113 based on 
more sets of parameter values for fewer input parameters 
that have been identified as significant based on the surro 
gate model 104. The higher number of sets increases reli 
ability and the lower number of input parameters increases 
computational efficiency . 
[ 0059 ] FIG . 5 is a block diagram of a computing environ 
ment 500 including a computing device 510 configured to 
support aspects of computer - implemented methods and 
computer - executable program instructions ( or code ) accord 
ing to the present disclosure . For example , the computing 
device 510 , or portions thereof , is configured to execute 
instructions to initiate , perform , or control one or more 
operations described with reference to FIGS . 1-4 . 
[ 0060 ] The computing device 510 includes one or more 
processors 520. The processor ( s ) 520 are configured to 
communicate with system memory 530 , one or more storage 

devices 540 , one or more input / output interfaces 550 , one or 
more communications interfaces 560 , or any combination 
thereof . The system memory 530 includes volatile memory 
devices ( e.g. , random access memory ( RAM ) devices ) , 
nonvolatile memory devices ( e.g. , read - only memory 
( ROM ) devices , programmable read - only memory , and flash 
memory ) , or both . The system memory 530 stores an oper 
ating system 532 , which may include a basic input / output 
system for booting the computing device 510 as well as a 
full operating system to enable the computing device 510 to 
interact with users , other programs , and other devices . The 
system memory 530 stores system ( program ) data 536 , such 
as the parameter value sets 101 , the parameter value sets 
103 , the simulation data 111 , the simulation data 113 , the 
physical test parameters 157 , the sensor data 161 , the input 
parameters 131 , the input parameters 141 , the parameter 
values 133 , the parameter values 135 , the parameter values 
143 , the parameter values 145 , or a combination thereof 
[ 0061 ] The system memory 530 includes one or more 
applications 534 ( e.g. , sets of instructions ) executable by the 
processor ( s ) 520. As an example , the one or more applica 
tions 534 include instructions executable by the processor ( s ) 
520 to initiate , control , or perform one or more operations 
described with reference to FIGS . 1-4 . To illustrate , the one 
or more applications 534 include instructions executable by 
the processor ( s ) 520 to initiate , control , or perform one or 
more operations described with reference to the workflow 
manager 154 , the simulation 102 , the model generator 110 , 
the parameter selector 106 , the test parameter generator 116 , 
the surrogate model 04 , the surrogate model 114 , or a 
combination thereof 
[ 0062 ] In a particular implementation , the system memory 
530 includes a non - transitory , computer readable medium 
storing the instructions that , when executed by the processor 
( s ) 520 , cause the processor ( s ) 520 to initiate , perform , or 
control operations to perform a simulation of a physical 
system . The operations include generating initial simulation 
data by providing first sets of first values of first input 
parameters to a simulation of a physical system . Each set of 
the first sets indicates a first value of each of the first input 
parameters . The operations also include developing at least 
one surrogate model based on the initial simulation data . The 
operations further include selecting second input parameters 
from the first input parameters based on the at least one 
surrogate model . A count of the second input parameters is 
less than a count of the first input parameters . The operations 
also include generating second simulation data by providing 
second sets of second values of the second input parameters 
to the simulation . Each set of the second sets indicates a 
second value of each of the second input parameters . The 
operations further include developing at least a second 
surrogate model based on the second simulation data . 
[ 0063 ] The one or more storage devices 540 include 
nonvolatile storage devices , such as magnetic disks , optical 
disks , or flash memory devices . In a particular example , the 
storage devices 540 include both removable and non - remov 
able memory devices . The storage devices 540 are config 
ured to store an operating system , images of operating 
systems , applications ( e.g. , one or more of the applications 
534 ) , and program data ( e.g. , the program data 536 ) . In a 
particular aspect , the system memory 530 , the storage 
devices 540 , or both , include tangible computer - readable 
media , such as a computer - readable storage device . In a 
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particular aspect , one or more of the storage devices 540 are 
external to the computing device 510 . 
[ 0064 ] The one or more input / output interfaces 550 that 
enable the computing device 510 to communicate with one 
or more input / output devices 570 to facilitate user interac 
tion . For example , the one or more input / output interfaces 
550 can include a display interface , an input interface , or 
both . For example , the input / output interface 550 is adapted 
to receive input from a user , to receive input from another 
computing device , or a combination thereof . In some imple 
mentations , the input / output interface 550 conforms to one 
or more standard interface protocols , including serial inter 
faces ( e.g. , universal serial bus ( USB ) interfaces or Institute 
of Electrical and Electronics Engineers ( IEEE ) interface 
standards ) , parallel interfaces , display adapters , audio adapt 
ers , or custom interfaces ( “ IEEE ” is a registered trademark 
of The Institute of Electrical and Electronics Engineers , Inc. 
of Piscataway , N.J. ) . In some implementations , the input / 
output device 570 includes one or more user interface 
devices and displays , including some combination of but 
tons , keyboards , pointing devices , displays , speakers , micro 
phones , touch screens , and other devices . 
[ 0065 ] The processor ( s ) 520 are configured to communi 
cate with devices or controllers 580 via the one or more 
communications interfaces 560. For example , the one or 
more communications interfaces 560 can include a network 
interface . The devices or controllers 580 can include , for 
example , the test platform 156 , one or more other devices , 
or any combination thereof . 
[ 0066 ] In some implementations , a non - transitory , com 
puter readable medium stores instructions that , when 
executed by one or more processors , cause the one or more 
processors to initiate , perform , or control operations to 
perform part or all of the functionality described above . For 
example , the instructions may be executable to implement 
one or more of the operations or methods of FIGS . 1-5 . In 
some implementations , part or all of one or more of the 
operations or methods of FIGS . 1-5 may be implemented by 
one or more processors ( e.g. , one or more central processing 
units ( CPUs ) , one more graphics processing units 
( GPUs ) , one or more digital signal processors ( DSPs ) ) 
executing instructions , by dedicated hardware circuitry , or 
any combination thereof . 
[ 0067 ] The illustrations of the examples described herein 
are intended to provide a general understanding of the 
structure of the various implementations . The illustrations 
are not intended to serve as a complete description of all of 
the elements and features of apparatus and systems that 
utilize the structures or methods described herein . Many 
other implementations may be apparent to those of skill in 
the art upon reviewing the disclosure . Other implementa 
tions may be utilized and derived from the disclosure , such 
that structural and logical substitutions and changes may be 
made without departing from the scope of the disclosure . For 
example , method operations may be performed in a different 
order than shown in the figures or one or more method 
operations may be omitted . Accordingly , the disclosure and 
the figures are to be regarded as illustrative rather than 
restrictive . 
[ 0068 ] Moreover , although specific examples have been 
illustrated and described herein , it should be appreciated that 
any subsequent arrangement designed to achieve the same or 
similar results may be substituted for the specific implemen 
tations shown . This disclosure is intended to cover any and 

all subsequent adaptations or variations of various imple 
mentations . Combinations of the above implementations , 
and other implementations not specifically described herein , 
will be apparent to those of skill in the art upon reviewing 
the description 
[ 0069 ] The Abstract of the Disclosure is submitted with 
the understanding that it will not be used to interpret or limit 
the scope or meaning of the claims . In addition , in the 
foregoing Detailed Description , various features may be 
grouped together or described in a single implementation for 
the purpose of streamlining the disclosure . Examples 
described above illustrate but do not limit the disclosure . It 
should also be understood that numerous modifications and 
variations are possible in accordance with the principles of 
the present disclosure . As the following claims reflect , the 
claimed subject matter may be directed to less than all of the 
features of any of the disclosed examples . Accordingly , the 
scope of the disclosure is defined by the following claims 
and their equivalents . 
What is claimed is : 
1. A device for physical system simulation , the device 

comprising : 
a memory configured to store a simulation of a physical 

system ; and 
one or more processors configured to : 

generate initial simulation data by providing first sets of 
first values of first input parameters to the simula 
tion , each set of the first sets indicating a first value 
of each of the first input parameters ; 

develop at least one surrogate model based on the 
initial simulation data ; 

select second input parameters from the first input 
parameters based on the at least one surrogate model , 
wherein a count of the second input parameters is 
less than a count of the first input parameters ; 

generate second simulation data by providing second 
sets of second values of the second input parameters 
to the simulation , each set of the second sets indi 
cating a second value of each of the second input 
parameters ; and 

develop at least a second surrogate model based on the 
second simulation data . 

2. The device of claim 1 , wherein the second surrogate 
model includes at least one of a Kriging model , a least 
squares analysis of variance ( ANOVA ) model , a heuristic 
model , or a metaheuristic model . 

3. The device of claim 1 , wherein the one or more 
processors are further configured to perform adjustment of 
the second surrogate model until an adjustment criterion is 
met . 

4. The device of claim 3 , wherein the one or more 
processors are configured to determine that the adjustment 
criterion is met in response to detecting expiration of a time 
period , detecting a convergence of the second surrogate 
model , or both . 

5. The device of claim 1 , wherein the one or more 
processors are configured to perform a particular adjustment 
of the second surrogate model by : 

selecting particular input parameters based on the second 
surrogate model ; and 

generating particular simulation data by providing par 
ticular sets of particular values of the particular input 

or 
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parameters to the simulation , each set of the particular 
sets indicating a particular value of each of the par 
ticular input parameters . 

6. The device of claim 1 , wherein second particular input 
parameters are predetermined , and wherein the second simu 
lation data is further based on second particular values of the 
second particular input parameters . 

7. A method of physical system simulation , the method 
comprising : 

generating initial simulation data by providing first sets of 
first values of first input parameters to a simulation of 
a physical system , each set of the first sets indicating a 
first value of each of the first input parameters ; 

developing at least one surrogate model based on the 
initial simulation data ; 

selecting second input parameters from the first input 
parameters based on the at least one surrogate model , 
wherein a count of the second input parameters is less 
than a count of the first input parameters ; 

generating second simulation data by providing second 
sets of second values of the second input parameters to 
the simulation , each set of the second sets indicating a 
second value of each of the second input parameters ; 
and 

developing at least a second surrogate model based on the 
second simulation data . 

8. The method of claim 7 , wherein the physical system 
includes a large - scale complex engineering system 
( LSCES ) . 

9. The method of claim 7 , further comprising using the 
second surrogate model to determine one or more test 
parameters of a test of the physical system . 

10. The method of claim 9 , wherein the test is expensive , 
destructive to the physical system , or both . 

11. The method of claim 9 , further comprising : 
receiving , during the test , sensor data from sensors con 

figured to monitor the physical system ; and 
updating the simulation based on the sensor data . 
12. The method of claim 11 , wherein at least one of the 

sensors is coupled to the physical system . 
13. The method of claim 11 , wherein at least one of the 

sensors is proximate to the physical system . 
14. The method of claim 7 , wherein a first count of the 

first sets is less than a second count of the second sets . 
15. The method of claim 7 , further comprising generating 

the first sets by using orthogonal array sampling , Latin 
hypercube sampling , or random sampling . 

16. The method of claim 7 , wherein the simulation of the 
physical system is based on finite element modeling , finite 
volume modeling , eigenmode decomposition analysis , 
eigenvalue analysis , eigenstate analysis , iterative first - prin 
ciple modeling , or a combination thereof . 
17. The method of claim 7 , further comprising : 
developing an elastic net surrogate model based on the 

initial simulation data , the at least one surrogate model 
including the elastic net surrogate model ; and 

selecting a group of input parameters from the first input 
parameters based on the elastic net surrogate model . 

18. The method of claim 17 , further comprising : 
developing one or more linear models based on the group 

of input parameters , the at least one surrogate model 
including the one or more linear models ; and 

selecting at least one of the second input parameters from 
the group of input parameters based on the one or more 
linear models . 

19. The method of claim 18 , wherein the second input 
parameters are further based on user input , a configuration 
setting , default data , or a combination thereof 

20. A computer - readable storage device storing instruc 
tions that , when executed by one or more processors , cause 
the one or more processors to : 

generate initial simulation data by providing first sets of 
first values of first input parameters to a simulation of 
a physical system , each set of the first sets indicating a 
first value of each of the first input parameters ; 

develop at least one surrogate model based on the initial 
simulation data ; 

select second input parameters from the first input param 
eters based on the at least one surrogate model , wherein 
a count of the second input parameters is less than a 
count of the first input parameters ; 

generate second simulation data by providing second sets 
of second values of the second input parameters to the 
simulation , each set of the second sets indicating a 
second value of each of the second input parameters ; 
and 

develop at least a second surrogate model based on the 
second simulation data . 

21. The computer - readable storage device of claim 20 , 
wherein the instructions , when executed by the one or more 
processors , further cause the one or more processors to use 
the second surrogate model to determine one or more test 
parameters of a test of the physical system . 

* * * 


