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~ 402

Generate initial simulation data by providing first sets of first values of first input
parameters to a simulation of a physical system, each set of the first sets indicating a
first value of each of the first input parameters

v o

Develop at least one surrogate model based on the initial simulation data

Y r 406

Select second input parameters from the first input parameters based on the at least
one surrogate model, where a count of the second input parameters is less than a count
of the first input parameters

Y Vs 408

Generate second simulation data by providing second sets of second values of the
second input parameters to the simulation, each set of the second sets indicating a
second value of each of the second input parameters

v 40

Develop at least a second surrogate model based on the second simulation data

FIG. 4
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PHYSICAL SYSTEM SIMULATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority from and is
a continuation of pending U.S. Patent Application No.
63/073,186 entitled “PHYSICAL SYSTEM SIMULA-
TION,” filed Sep. 1, 2020, the contents of which are
incorporated by reference in their entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure is generally related to simu-
lation of a physical system.

BACKGROUND

[0003] Testing for failure modes of physical systems can
be destructive, expensive, or both. For example, the testing
could include measuring the effect of destruction of an
expensive component of a physical system on other com-
ponents. Complex physical systems can include a large
number of variables. Performing multiple tests to analyze
the effect on the components of the physical system of
changes in the many variables can be destructive, time-
consuming, and expensive.

SUMMARY

[0004] In a particular implementation, a device for physi-
cal system simulation includes a memory and one or more
processors. The memory is configured to store a simulation
of a physical system. The one or more processors are
configured to generate initial simulation data by providing
first sets of first values of first input parameters to the
simulation. Each set of the first sets indicates a first value of
each of the first input parameters. The one or more proces-
sors are also configured to develop at least one surrogate
model based on the initial simulation data. The one or more
processors are further configured to select second input
parameters from the first input parameters based on the at
least one surrogate model. A count of the second input
parameters is less than a count of the first input parameters.
The one or more processors are also configured to generate
second simulation data by providing second sets of second
values of the second input parameters to the simulation.
Each set of the second sets indicates a second value of each
of the second input parameters. The one or more processors
are further configured to develop at least a second surrogate
model based on the second simulation data.

[0005] In another particular implementation, a method of
physical system simulation includes generating initial simu-
lation data by providing first sets of first values of first input
parameters to a simulation of a physical system. Each set of
the first sets indicates a first value of each of the first input
parameters. The method also includes developing at least
one surrogate model based on the initial simulation data. The
method further includes selecting second input parameters
from the first input parameters based on the at least one
surrogate model. A count of the second input parameters is
less than a count of the first input parameters. The method
also includes generating second simulation data by provid-
ing second sets of second values of the second input param-
eters to the simulation. Each set of the second sets indicates
a second value of each of the second input parameters. The
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method further includes developing at least a second surro-
gate model based on the second simulation data.

[0006] In another particular implementation, a non-tran-
sitory, computer readable medium storing instructions that,
when executed by one or more processors, cause the one or
more processors to generate initial simulation data by pro-
viding first sets of first values of first input parameters to a
simulation of a physical system. Each set of the first sets
indicates a first value of each of the first input parameters.
The instructions, when executed by the one or more pro-
cessors, also cause the one or more processors to develop at
least one surrogate model based on the initial simulation
data. The instructions, when executed by the one or more
processors, further cause the one or more processors to
select second input parameters from the first input param-
eters based on the at least one surrogate model. A count of
the second input parameters is less than a count of the first
input parameters. The instructions, when executed by the
one or more processors, further cause the one or more
processors to generate second simulation data by providing
second sets of second values of the second input parameters
to the simulation. Each set of the second sets indicates a
second value of each of the second input parameters. The
instructions, when executed by the one or more processors,
also cause the one or more processors to develop at least a
second surrogate model based on the second simulation
data.

[0007] The features, functions, and advantages described
herein can be achieved independently in various implemen-
tations or may be combined in yet other implementations,
further details of which can be found with reference to the
following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a diagram that illustrates a system con-
figured to perform simulation of a physical system.

[0009] FIG. 2 is a diagram that illustrates an example of a
method that can be performed by the system of FIG. 1.
[0010] FIG. 3 is a diagram that illustrates an example of a
method that can be performed by the system of FIG. 1.
[0011] FIG. 4 is a diagram that illustrates a flow chart of
an example of method of physical system simulation.
[0012] FIG. 5 is a block diagram of a computing environ-
ment including a computing device configured to support
aspects of computer-implemented methods and computer-
executable program instructions (or code) according to the
present disclosure.

DETAILED DESCRIPTION

[0013] Aspects disclosed herein present systems and
methods for physical system simulation. For example, a
simulation of a physical system can be used to design
experiments to test the physical system and update design
parameters of the physical system. However, because a
highly accurate physical system simulation can be compu-
tationally expensive and time-intensive to run, relatively few
physical system simulations are run to gather data that is
then used to generate lower-complexity, surrogate models.
[0014] To illustrate, the physical system simulation may
use a relatively large number of input parameters (referred
to as a “set” of input parameters), and the values of these
input parameters can be adjusted for each run of the system
simulator in order to test the response of the system to
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different initial conditions. For an example, one of the input
parameters of a turbine simulation may be “impeller speed.”
For different runs of the simulation, different values of the
input parameter “impeller speed” can be used. A first set of
values of the input parameters that includes “8,000 rotations
per minute (RPM)” for the impeller speed can be used for a
first run, a second set of values of the input parameters that
includes “10,000 RPM” for the impeller speed can be used
for a second run, and a third set values of the input
parameters that includes “12,000 RPM” for the impeller
speed can be used for a third run, to roughly determine how
the overall system reacts to changes in impeller speed over
the range of 8,000-12,000 RPM. However, when the system
simulation uses a large set (e.g., hundreds) of input param-
eters, it becomes infeasible to exhaustively test the reaction
of the system to different values for each of the input
parameters.

[0015] To conserve time and resources, initial simulation
data is generated using a relatively small number of sets of
parameter values (e.g., performing a small number of simu-
lation runs, with each run using a different set of values for
the input parameters). Because processing each set of
parameter values for a large number of input parameters can
be time-intensive, a small number of sets (e.g., a small
number of simulation runs) are processed to generate the
initial simulation data relatively quickly.

[0016] One or more first surrogate models are developed
to identify a subset of the input parameters that are signifi-
cant. An input parameter is significant relative to measured
responses from an engine test (e.g., a potentially destructive
test). For example, in a destructive fan blade-out test, input
parameters that most significantly affect the axial or rota-
tional maximum loading that causes engine failure are to be
identified as significant input parameters. In a particular
example, the significant input parameters are identified
using a multi-stage process. A first stage includes using an
elastic net surrogate model developed based on the initial
simulation data to identify a group of the input parameters
that are significant. Additional stages include using one or
more linear models, inferential statistics, engineering
knowledge, or a combination thereof, to identify a subset of
the group of input parameters that are significant. Having
identified the most significant input parameters, additional
runs (e.g., a large number of simulation runs) of the physical
system simulation are performed that focus on these input
parameters to generate second simulation data. Processing
parameter values for selected input parameters reduces
computation time, while processing a higher number of sets
of parameter values increases coverage and reliability of the
produced simulation data.

[0017] One or more second surrogate models are devel-
oped based on the second simulation data (e.g., the more
reliable simulation data). For example, a Kriging model is
developed based on the second simulation data. The one or
more second surrogate models are used to determine test
parameters, design parameters, or both, for the physical
system. Using the second surrogate models (e.g., reliable
surrogate models) to determine test parameters, design
parameters, or both, can result in fewer expensive (and in
some cases, destructive) tests to have to be performed on the
physical system.

[0018] The figures and the following description illustrate
specific exemplary embodiments. It will be appreciated that
those skilled in the art will be able to devise various
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arrangements that, although not explicitly described or
shown herein, embody the principles described herein and
are included within the scope of the claims that follow this
description. Furthermore, any examples described herein are
intended to aid in understanding the principles of the dis-
closure and are to be construed as being without limitation.
As a result, this disclosure is not limited to the specific
embodiments or examples described below, but by the
claims and their equivalents.

[0019] Particular implementations are described herein
with reference to the drawings. In the description, common
features are designated by common reference numbers
throughout the drawings. In some drawings, multiple
instances of a particular type of feature are used. Although
these features are physically and/or logically distinct, the
same reference number is used for each, and the different
instances are distinguished by addition of a letter to the
reference number. When the features as a group or a type are
referred to herein (e.g., when no particular one of the
features is being referenced), the reference number is used
without a distinguishing letter. However, when one particu-
lar feature of multiple features of the same type is referred
to herein, the reference number is used with the distinguish-
ing letter. For example, referring to FIG. 1, multiple param-
eter value sets are illustrated and associated with reference
numbers 101a and 1015. When referring to a particular one
of these designs, such as the parameter value set 101a, the
distinguishing letter “a” is used. However, when referring to
any arbitrary one of these parameter value sets or to these
parameter value sets as a group, the reference number 101
is used without a distinguishing letter.

[0020] As used herein, various terminology is used for the
purpose of describing particular implementations only and is
not intended to be limiting. For example, the singular forms
“a,” “an,” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise.
Further, some features described herein are singular in some
implementations and plural in other implementations. To
illustrate, FIG. 1 depicts a model generator 110 that gener-
ates one or more surrogate models 104 (“surrogate model
(s)” 104 in FIG. 1), which indicates that in some implemen-
tations the model generator 110 generates a single surrogate
model 104 and in other implementations the model genera-
tor 110 generates multiple surrogate models 104. For ease of
reference herein, such features are generally introduced as
“one or more” features, and are subsequently referred to in
the singular unless aspects related to multiple of the features

are being described.
[0021] The terms “comprise,” “comprises,” and “compris-
ing” are used interchangeably with “include,” “includes,” or
“including.” Additionally, the term “wherein” is used inter-
changeably with the term “where.” As used herein, “exem-
plary” indicates an example, an implementation, and/or an
aspect, and should not be construed as limiting or as
indicating a preference or a preferred implementation. As
used herein, an ordinal term (e.g., “first,” “second,” “third,”
etc.) used to modify an element, such as a structure, a
component, an operation, etc., does not by itself indicate any
priority or order of the element with respect to another
element, but rather merely distinguishes the element from
another element having a same name (but for use of the
ordinal term). As used herein, the term “set” refers to a
grouping of one or more elements, and the term “plurality”
refers to multiple elements.

29 <
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[0022] As wused herein, “generating,” “calculating,”
“using,” “selecting,” “accessing,” and “determining” are
interchangeable unless context indicates otherwise. For
example, “generating,” “calculating,” or “determining” a
parameter (or a signal) can refer to actively generating,
calculating, or determining the parameter (or the signal) or
can refer to using, selecting, or accessing the parameter (or
signal) that is already generated, such as by another com-
ponent or device. As used herein, “coupled” can include
“communicatively coupled,” “electrically coupled,” or
“physically coupled,” and can also (or alternatively) include
any combinations thereof. Two devices (or components) can
be coupled (e.g., communicatively coupled, electrically
coupled, or physically coupled) directly or indirectly via one
or more other devices, components, wires, buses, networks
(e.g., a wired network, a wireless network, or a combination
thereof), etc. Two devices (or components) that are electri-
cally coupled can be included in the same device or in
different devices and can be connected via electronics, one
or more connectors, or inductive coupling, as illustrative,
non-limiting examples. In some implementations, two
devices (or components) that are communicatively coupled,
such as in electrical communication, can send and receive
electrical signals (digital signals or analog signals) directly
or indirectly, such as via one or more wires, buses, networks,
etc. As used herein, “directly coupled” is used to describe
two devices that are coupled (e.g., communicatively
coupled, electrically coupled, or physically coupled) without
intervening components.

[0023] FIG. 1 depicts an example of a system 100 that is
configured to perform physical system simulation. The sys-
tem 100 includes a device 150 coupled via a test platform
156 to a physical system 152. As an illustrative non-limiting
example, the physical system 152 can include one or more
components of a manufacturing system, an aircraft, a ground
vehicle, an aquatic vehicle, an acrospace system, or a
combination thereof. In a particular example, the physical
system 152 includes a large-scale complex engineering
system (LSCES).

[0024] In a particular aspect, the system 100 includes one
or more sensors 158 configured to monitor the physical
system 152. For example, the sensor 158 include a tempera-
ture sensor, a chemical sensor, a video camera, an image
sensor, a humidity sensor, a flow sensor, an altitude sensor,
a speed sensor, or a combination thereof. In a particular
example, one or more of the sensor 158 are coupled to the
physical system 152. In a particular example, one or more of
the sensor 158 are proximate to the physical system 152. The
device 150, the test platform 156, the physical system 152,
the sensor 158, or a combination thereof, are interconnected
via one or more networks to enable data communications.

[0025] The device 150 includes a workflow manager 154,
a simulation 102 of the physical system 152, a model
generator 110, a parameter selector 106, a test parameter
generator 116, or a combination thereof. The workflow
manager 154 is configured to manage the simulation 102, the
model generator 110, the parameter selector 106, the test
parameter generator 116, or a combination thereof, to gen-
erate one or more physical test parameters 157 and to
provide the physical test parameters 157 to the test platform
156. The test platform 156 is configured to initiate testing
159 of the physical system 152 based on the physical test
parameters 157. The sensor 158 is configured to provide the
sensor data 161 to the device 150. In a particular aspect, the
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workflow manager 154 is configured to update the simula-
tion 102 based on the sensor data 161. For example, the
workflow manager 154 uses the sensor data 161 as feedback
to update the simulation 102 to more closely represent the
physical system 152, such as to account for any changes in
the physical system 152 over time.

[0026] During operation, the workflow manager 154 pro-
vides a plurality of parameter value (“PV”) sets 101 to the
simulation 102. For example, the workflow manager 154
provides the parameter value sets 101 to the simulation 102
in response to receiving a request (e.g., a user input) to
generate parameters for testing the physical system 152. The
parameter value sets 101 indicate parameter values of a
plurality of input parameters 131. In a particular aspect, the
parameter value sets 101 indicate the changing parameter
values of the input parameters 131 over simulation time. For
example, the parameter value sets 101 include a parameter
value set 101a that indicates parameter values 133 of the
input parameters 131 to be simulated as detected at a first
simulation time (or detected during a first simulation time
range). To illustrate, the parameter value set 101a indicates
that an input parameter 131a (e.g., a speed) and an input
parameter 1315 (e.g., fuel level) have an input parameter
value 133a (e.g., a first speed) and an input parameter value
1335 (e.g., a first fuel level), respectively, to be simulated as
detected at the first simulation time (or detected during the
first simulation time range). As another example, the param-
eter value sets 101 include a parameter value set 1015 that
indicates parameter values 135 of the input parameters 131
to be simulated as detected at a second simulation time (or
detected during a second simulation time range). To illus-
trate, the parameter value set 1015 indicates that the input
parameter 131a (e.g., the speed) and the input parameter
1315 (e.g., the fuel level) have an input parameter value
135a (e.g., a second speed) and an input parameter value
1354 (e.g., a second fuel level), respectively, to be simulated
as detected at the second simulation time (or detected during
the second simulation time range). In a particular aspect, the
parameter value sets 101 indicate parameter values of the
input parameters 131 at various simulated time intervals
(e.g., every 30 seconds of simulation time). For example, a
difference between the second simulated time (or the second
simulated time range) and the first simulated time (or the
first simulated time range) corresponds to a particular time
interval (e.g., 30 seconds).

[0027] In a particular aspect, the parameter value sets 101
indicate initial conditions for separate simulations (e.g.,
instead of changing parameter values of the input parameters
131 over simulation time). In an example, the parameter
value sets 101 include a parameter value set 101a that
indicates parameter values 133 of the input parameters 131
as initial conditions for a first simulation run. In addition, the
parameter value sets 101 include a parameter value set 1015
that indicates parameter values 135 of the input parameters
131 as initial conditions for a second simulation run. The
second simulation run is independent of the first simulation
run.

[0028] In a particular aspect, the parameter value sets 101
indicate possible parameter values of the input parameters
(“IPs™) 131. In a particular aspect, the workflow manager
154 generates the parameter value sets 101 using various
experiment design techniques. For example, the workflow
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manager 154 generates the parameter value sets 101 using
orthogonal array sampling, Latin hypercube sampling, or
random sampling.

[0029] The workflow manager 154 generates simulation
data 111 by providing the parameter value sets 101 to the
simulation 102. In a particular aspect, the simulation 102 is
based on finite element modeling, finite volume modeling,
eigenmode decomposition analysis, eigenvalue analysis,
eigenstate analysis, iterative first-principle modeling, or a
combination thereof. For example, finite element modeling
can be used to simulate physics of the physical system 152
with high fidelity. In a particular example, the simulation
data 111 corresponds to sensor data predicted to be gener-
ated by the sensor 158 during testing of the physical system
152 based on test parameters corresponding to the parameter
value sets 101.

[0030] In a particular aspect, the model generator 110
evaluates the simulation 102 using a sparse design of
experiment (DoE) approach, such as an orthogonal array
experimental design approach. For example, the model
generator 110 generates one or more surrogate models 104
based on the simulation data 111, the parameter value sets
101, or a combination thereof, as further described with
reference to FIG. 2. In a particular aspect, the surrogate
model 104 includes an elastic net surrogate model. The
parameter selector 106 selects a plurality of input parameters
141 to be included in parameter value sets 103 for additional
processing at the simulation 102. For example, the input
parameters 141 include an input parameter 141qa, an input
parameter 1415, one or more additional input parameters, or
a combination thereof. The input parameters 141 are
selected from the input parameters 131 based on the surro-
gate model 104, as further described with reference to FIG.
2. For example, the parameter selector 106 uses the elastic
net surrogate model to select the input parameters 141 from
the input parameters 131.

[0031] In a particular aspect, the input parameters 141 are
selected in multiple stages. For example, during a first stage,
the parameter selector 106 uses a first set of the surrogate
models 104 to select a group (e.g., input parameters 105) of
the input parameters 131. During a second stage, the model
generator 110 uses the input parameters 105 to generate a
second set of the surrogate models 104, and the parameter
selector 106 selects the input parameters 141 from the input
parameters 105 based on the second set of surrogate models
104, as further described with reference to FIG. 2.

[0032] For example, the parameter selector 106 uses the
elastic net surrogate model to select input parameters 105
from the input parameters 131. To illustrate, the elastic net
surrogate model identifies the input parameters 105 as
significant input parameters. The model generator 110 gen-
erates a linear surrogate model based on the input param-
eters 105 (e.g., the significant input parameters). In this
example, the parameter selector 106 selects the input param-
eters 141 from the input parameters 105 based on the linear
surrogate model, as further described with reference to FIG.
2. Using the elastic net surrogate model enables identifica-
tion of significant input parameters that can be modeled by
the linear surrogate model. Evaluating the linear surrogate
model can be more efficient (e.g., less time, fewer compu-
tation cycles, or both) than evaluating the simulation 102. In
a particular aspect, the parameter selector 106, during addi-
tional stages of the input parameter selection, adds or
removes input parameters from the input parameters 141
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based on inferential statistics, engineering knowledge,
experiment design techniques, or a combination thereof, as
further described with reference to FIGS. 2-3. In a particular
aspect, one or more of the input parameters 141 are prede-
termined. For example, one or more of the input parameters
141 are selected based on user input, a configuration setting,
default data, or a combination thereof.

[0033] The input parameters 141 (e.g., including a signifi-
cantly reduced count of significant input parameters)
selected from the input parameters 131 are processed by the
simulation 102. For example, the workflow manager 154
generates simulation data 113 by providing a plurality of
parameter value sets 103 to the simulation 102. The param-
eter value sets 103 indicate parameter values corresponding
to the input parameters 141. To illustrate, the parameter
value sets 103 includes a parameter value set 103a, a
parameter value set 1035, one or more additional parameter
value sets, or a combination thereof. The parameter value set
103a and the parameter value set 1035 include parameter
values 143 and parameter values 145, respectively, of the
input parameters 141.

[0034] In a particular aspect, the parameter value sets 103
indicate changing parameter values of the input parameters
141 over simulation time. For example, the parameter value
set 103¢ includes the parameter values 143 of the input
parameters 141 associated with a first simulation time (or a
first simulation time range), and the parameter value set
1035 includes the parameter values 145 of the input param-
eters 141 associated with a second simulation time (or a
second simulation time range). To illustrate, the parameter
value set 103a indicates that an input parameter 141a (e.g.,
a speed) and an input parameter 1415 (e.g., fuel level) have
an input parameter value 143a (e.g., a first speed) and an
input parameter value 1435 (e.g., a first fuel level), respec-
tively, to be simulated as detected at the first simulation time
(or detected during the first simulation time range). As
another example, the parameter value set 1035 indicates that
the input parameter 141a (e.g., the speed) and the input
parameter 1415 (e.g., the fuel level) have an input parameter
value 145a (e.g., a second speed) and an input parameter
value 14556 (e.g., a second fuel level), respectively, to be
simulated as detected at the second simulation time (or
detected during the second simulation time range).

[0035] In a particular aspect, the parameter value sets 103
indicate initial conditions for separate simulations (e.g.,
instead of changing parameter values of the input parameters
141 over simulation time). In an example, the parameter
value sets 103 include a parameter value set 103a that
indicates parameter values 143 of the input parameters 141
as initial conditions for a first simulation run. In addition, the
parameter value sets 103 include a parameter value set 1035
that indicates parameter values 145 of the input parameters
141 as initial conditions for a second simulation run. The
second simulation run is independent of the first simulation
run.

[0036] In a particular aspect, a count of the input param-
eters 141 is less than a count of the input parameters 131,
and a count of the parameter value sets 103 is greater than
a count of the parameter value sets 101. For example,
selection of relevant input parameters by the parameter
selector 106 enables more sets of parameter values corre-
sponding to fewer input parameters to be processed by the
simulation 102 to generate the simulation data 113. In a
particular aspect, more sets of parameter values for fewer
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input parameters are processed by the simulation 102 to
generate the simulation data 113 as compared to the simu-
lation data 111. Processing more sets of parameter values of
relevant input parameters increases coverage of the simula-
tion data 113 with a low impact (e.g., no impact) on
reliability of the simulation data 113.

[0037] The model generator 110 develops one or more
surrogate models 114 based on the simulation data 113, as
further described with reference to FIG. 3. In an example,
the surrogate model 114 includes at least one of a Kriging
model, a least squares analysis of variance (ANOVA) model,
a heuristic model, or a metaheuristic model. In a particular
aspect, the model generator 110 performs adjustment of the
surrogate model 114 using an optimization technique (e.g.,
a gradient-based descent, a multi-objective optimization
approach, a metaheuristic approach, etc.) until an adjustment
criterion is met, as further described with reference to FIG.
3. For example, the model generator 110 determines that the
adjustment criterion is met in response to detecting expira-
tion of a time period, detecting that a threshold count of
iterations of adjustment of the surrogate model 114 have
been performed, detecting a convergence of the surrogate
model 114, or a combination thereof. In a particular aspect,
the model generator 110 detects convergence of the surro-
gate model 114 in response to determining that the gradient
and/or Hessian matrix falls below a specified tolerance, the
rate of change of quantities of the surrogate model 114 falls
below a specified threshold tolerance, or both. The model
generator 110 performs an adjustment of the surrogate
model 114 by selecting particular input parameters based on
the surrogate model 114, generating simulation data by
providing the parameter values of the particular input
parameters to the simulation 102, and using the simulation
data to develop (e.g., adjust) the surrogate model 114, as
further described with reference to FIG. 3.

[0038] The model generator 110, in response to determin-
ing that the adjustment criterion is met, provides the surro-
gate model 114 to the test parameter generator 116. The test
parameter generator 116 uses the surrogate model 114 to
determine one or more physical test parameters 157 for
testing the physical system 152, as further described with
reference to FIG. 3. In a particular aspect, the test parameter
generator 116 provides the physical test parameters 157 to
the test platform 156. The test platform 156 performs testing
159 of the physical system 152 based on the physical test
parameters 157. For example, the test parameter generator
116, in response to determining that the surrogate model 114
indicates that a first set of input parameters corresponds to
(e.g., is predicted to result in) a first set of predicted sensor
data and that the first set of input parameters, the first set of
predicted sensor data, or a combination thereof, correspond
to a condition to be tested, generates the physical test
parameters 157 to indicate the first set of input parameters.

[0039] In an illustrative example, the test parameter gen-
erator 116 determines that the condition to be tested includes
failure of a particular component (e.g., a fan blade out) of the
physical system 152. The test parameter generator 116 uses
the surrogate model 114 to identify a first set of input
parameters that corresponds to a first set of predicted sensor
data that indicate a failure of the particular component. The
test parameter generator 116 generates the physical test
parameters 157 to indicate the first set of input parameters
and provides the physical test parameters 157 to the test
platform 156. The test platform 156 performs the testing 159
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based on the physical test parameters 157 (e.g., the first set
of input parameters). In a particular aspect, the testing 159
is destructive, expensive, or both. For example, the testing
159 causes destruction (or damage) to the particular com-
ponent that is expensive, time-consuming, or both, to
replace.

[0040] In a particular aspect, the sensor 158 generates
sensor data 161 during the testing 159 and provide the sensor
data 161 to the device 150. In a particular aspect, the
workflow manager 154 updates the simulation 102 based on
the sensor data 161. For example, the workflow manager
154 dynamically updates the simulation 102 over time based
on feedback (e.g., the sensor data 161) from the sensor 158.
Dynamically updating the simulation 102 improves reliabil-
ity of the simulation 102 in modeling the physical system
152 and predicting the resulting sensor data.

[0041] The system 100 thus enables the test parameter
generator 116 to determine the physical test parameters 157
that correspond to a condition to be tested in fewer tests
(e.g., a single test) rather than trying various physical test
parameters to create the condition to be tested. Fewer tests
conserve resources, such as time and money. The simulation
102 can be validated for test conditions that are rarely
observed in actual usage of the physical system 152. In some
examples, the simulation 102 can be used to make inferences
and update the design of the physical system 152.

[0042] Although the workflow manager 154, the simula-
tion 102, the model generator 110, the parameter selector
106, the test parameter generator 116, the device 150, the
sensor 158, and the test platform 156 are depicted as
separate components, in other implementations the
described functionality of two or more of the workflow
manager 154, the simulation 102, the model generator 110,
the parameter selector 106, the test parameter generator 116,
the device 150, the sensor 158, and the test platform 156 can
be performed by a single component. In some implementa-
tions, each of the workflow manager 154, the simulation
102, the model generator 110, the parameter selector 106,
the test parameter generator 116, the device 150, the sensor
158, and the test platform 156 can be represented in hard-
ware, such as via an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA), or the
operations described with reference to the elements may be
performed by a processor executing computer-readable
instructions.

[0043] Referring to FIG. 2, a method is shown and gen-
erally designated 200. One or more operations of the method
200 can be performed by the simulation 102, the model
generator 110, the parameter selector 106, the test parameter
generator 116, the workflow manager 154, the device 150,
the test platform 156, the physical system 152, the sensor
158, the system 100 of FIG. 1, or a combination thereof.
[0044] As described previously in FIG. 1, the workflow
manager 154 generates the parameter value sets 101 (e.g.,
representing an orthogonal array) to query the simulation
102. For example, the workflow manager 154 determines
input parameters and settings, at 204, and designs an experi-
ment, at 206. The workflow manager 154 generates control
scripts, at 208. For example, the control scripts indicate the
parameter value sets 101. The workflow manager 154 pro-
vides the control scripts to the simulation 102, at 210. For
example, the workflow manager 154 provides control scripts
indicating the parameter value sets 101 to the simulation
102, as described with reference to FIG. 1. To illustrate, the
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workflow manager 154 uses the simulation 102 to process
the parameter value set 101a followed by the parameter
value set 1015 in an ordered sequence. The simulation 102
generates the simulation data 111 by processing the param-
eter value sets 101, at 212.

[0045] The model generator 110 processes the simulation
data 111, at 214, to develop a surrogate model 1044 (e.g., an
elastic net surrogate model), at 216. The parameter selector
106 selects input parameters 105 from the input parameters
131 based on the surrogate model 104a (e.g., the elastic net
surrogate model), at 218. For example, the parameter selec-
tor 106 uses the elastic net surrogate model to select the
input parameters 105 (e.g., significant input parameters)
from the input parameters 131. To illustrate, the parameter
selector 106 uses the elastic net surrogate model to deter-
mine that the input parameters 105 are included in a main
effect of a response of the elastic net surrogate model (e.g.,
an elastic net model).

[0046] The model generator 110 generates a surrogate
model 1045 (e.g., a linear surrogate model) based on the
input parameters 105 (e.g., the significant input parameters),
at 220. The model generator 110 adds input parameters to the
input parameters 105, at 222. For example, the model
generator 110 generates the surrogate model 1045 (e.g., the
linear model) based on the input parameters 105 and a
second group of input parameters. The second group of input
parameters are not included in a main effect of the response
of the elastic net surrogate model, but are included in an
interaction or quadratic effect of the response of the elastic
net surrogate model.

[0047] The parameter selector 106 develops a balanced
experimental design, at 224, and evaluates the surrogate
model 1045 (e.g., the linear surrogate model) at DOE points,
at 226, to select the input parameters 141 from the input
parameters 131. The parameter selector 106 uses inferential
statistics and plots, at 228, to add or remove one or more of
the input parameters 131 to the input parameters 141. The
parameter selector 106 uses engineering knowledge to add
or remove one or more of the input parameters 131 to the
input parameters 141, at 230. For example, the parameter
selector 106 adds or removes one or more parameters to the
input parameters 141 based on user input, configuration
data, default data, or a combination thereof In a particular
example, the parameter selector 106 adds a predetermined
input parameter to, or removes a predetermined input param-
eter from, the input parameters 141. The workflow manager
154 manages optimization, at 232, as described with refer-
ence to FIG. 3.

[0048] Referring to FIG. 3, an example of the optimization
232 is shown. The workflow manager 154 selects input
parameters and settings, at 302, designs an experiment, at
304, generates control scripts at 306, and provides the
control scripts to the simulation 102, at 308. For example,
the workflow manager 154 selects the parameter value sets
103 corresponding to the input parameters 141. The work-
flow manager 154 uses experiment design techniques to
design an experiment and provides control scripts corre-
sponding to the experiment to the simulation 102 to process
the parameter value sets 103. The simulation 102 generates
the simulation data 113 by processing the parameter value
sets 103, at 310.

[0049] The model generator 110 generates the surrogate
model 114 (e.g., a Kriging surrogate model) based on the
simulation data 113, at 314. The model generator 110 uses
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various optimization techniques (e.g., a multi-objective opti-
mization technique) to adjust (e.g., optimize) the surrogate
model 114 (e.g., the Kriging surrogate model), at 316. The
model generator 110 determines additional calibration
points, at 318. The model generator 110 determines whether
an adjustment criterion is met, at 320. For example, the
model generator 110 determines that the adjustment criterion
is not met in response to detecting that adjustment time
period has not expired, detecting that the surrogate model
114 has not converged, that fewer than a threshold count of
adjustment iterations have been performed, or a combination
thereof. In a particular aspect, the workflow manager 154
initiates the adjustment time period in response to receiving
a request (e.g., a user input) to generate parameters for
testing the physical system 152. In a particular aspect,
duration of the adjustment time period is based on user
input, a configuration setting, or both. The model generator
110, in response to determining that the adjustment criterion
is not met, at 320, generates simulation data 113 based on the
additional calibration points, at 310, increments a counter
indicating adjustment iterations, or both. Alternatively, the
model generator 110, in response to determining that the
adjustment criterion is met, provides the surrogate model
114 (e.g., the Kriging surrogate model) to the test parameter
generator 116.

[0050] The test parameter generator 116 interprets the
results (e.g., the simulation data 113), at 322. For example,
the test parameter generator 116 generates the physical test
parameters 157 based on the surrogate model 114 (e.g., the
Kriging surrogate model). The test parameter generator 116
deploys design settings to the physical system 152, at 324.
For example, the test parameter generator 116 updates
settings of the physical system 152. In a particular example,
the test parameter generator 116 provides the physical test
parameters 157 to the test platform 156. The test platform
156 initiates testing 159 of the physical system 152 based on
the physical test parameters 157.

[0051] The test parameter generator 116 thus determines
the physical test parameters 157 that can be used to update
the design of the physical system 152. In some examples, the
physical test parameters 157 are based on inferences made
from simulation data generated by the simulation 102.
[0052] Referring to FIG. 4, a method of physical system
simulation is shown and generally designated 400. In a
particular aspect, one or more operations of the method 400
can be performed by the simulation 102, the model generator
110, the parameter selector 106, the test parameter generator
116, the workflow manager 154, the device 150, the test
platform 156, the physical system 152, the sensor 158, the
system 100 of FIG. 1, or a combination thereof.

[0053] The method 400 includes generating initial simu-
lation data by providing first sets of first values of first input
parameters to a simulation of a physical system, at 402. For
example, the workflow manager 154 of FIG. 1 generates the
simulation data 111 by providing the parameter value sets
101 of first values (e.g., the parameter values 133, the
parameter values 135, or a combination thereof) of the input
parameters 131 to the simulation 102 of the physical system
152, as described with reference to FIG. 1. Each set of the
parameter value sets 101 indicates a first value of each of the
input parameters 131. For example, the parameter value sets
101 include the parameter value set 101a and the parameter
value set 1015. The parameter value set 101a indicates a
parameter value 133a and a parameter value 1335 of an
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input parameter 131a and an input parameter 1315, respec-
tively. The parameter value set 1015 indicates a parameter
value 135a and a parameter value 1355 of the input param-
eter 131a and the input parameter 1315, respectively.
[0054] The method 400 also includes developing at least
one surrogate model based on the initial simulation data, at
404. For example, the model generator 110 of FIG. 1
develops at least one surrogate model 104 based on the
simulation data 111, as described with reference to FIG. 1.
[0055] The method 400 further includes selecting second
input parameters from the first input parameters based on the
at least one surrogate model, at 406. For example, the
parameter selector 106 of FIG. 1 selects the input parameters
141 from the input parameters 131 based on the at least one
surrogate model 104, as described with reference to FIG. 1.
There is a larger number of input parameters in the input
parameters 131 (e.g. 100 total parameters) than in the input
parameters 141 (e.g., 20 parameters), such that a count of the
input parameters 141 is less than a count of the input
parameters 131.

[0056] The method 400 also includes generating second
simulation data by providing second sets of second values of
the second input parameters to the simulation, at 408. For
example, the workflow manager 154 of FIG. 1 generates the
simulation data 113 by providing the parameter value sets
103 of second values (e.g., the parameter values 143, the
parameter values 145, or a combination thereof) of the input
parameters 141 to the simulation 102. Each set of the
parameter value sets 103 indicates a second value of each of
the input parameters 141. For example, the parameter value
sets 103 include the parameter value set 103a and the
parameter value set 1035. The parameter value set 103a
indicates a parameter value 143a and a parameter value
1435 of an input parameter 141a and an input parameter
1415, respectively. The parameter value set 1035 indicates a
parameter value 1454 and a parameter value 1456 of the
input parameter 141a and the input parameter 1415, respec-
tively.

[0057] The method 400 further includes developing at
least a second surrogate model based on the second simu-
lation data, at 410. For example, the model generator 110 of
FIG. 1 develops at least the surrogate model 114 based on
the simulation data 113, as described with reference to FIG.
1.

[0058] The method 400 thus enables the model generator
110 to generate the surrogate model 114 based on reliable
simulation data that is generated efficiently. For example, the
simulation 102 generates the simulation data 113 based on
more sets of parameter values for fewer input parameters
that have been identified as significant based on the surro-
gate model 104. The higher number of sets increases reli-
ability and the lower number of input parameters increases
computational efficiency.

[0059] FIG. 5 is a block diagram of a computing environ-
ment 500 including a computing device 510 configured to
support aspects of computer-implemented methods and
computer-executable program instructions (or code) accord-
ing to the present disclosure. For example, the computing
device 510, or portions thereof, is configured to execute
instructions to initiate, perform, or control one or more
operations described with reference to FIGS. 1-4.

[0060] The computing device 510 includes one or more
processors 520. The processor(s) 520 are configured to
communicate with system memory 530, one or more storage
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devices 540, one or more input/output interfaces 550, one or
more communications interfaces 560, or any combination
thereof. The system memory 530 includes volatile memory
devices (e.g., random access memory (RAM) devices),
nonvolatile memory devices (e.g., read-only memory
(ROM) devices, programmable read-only memory, and flash
memory), or both. The system memory 530 stores an oper-
ating system 532, which may include a basic input/output
system for booting the computing device 510 as well as a
full operating system to enable the computing device 510 to
interact with users, other programs, and other devices. The
system memory 530 stores system (program) data 536, such
as the parameter value sets 101, the parameter value sets
103, the simulation data 111, the simulation data 113, the
physical test parameters 157, the sensor data 161, the input
parameters 131, the input parameters 141, the parameter
values 133, the parameter values 135, the parameter values
143, the parameter values 145, or a combination thereof

[0061] The system memory 530 includes one or more
applications 534 (e.g., sets of instructions) executable by the
processor(s) 520. As an example, the one or more applica-
tions 534 include instructions executable by the processor(s)
520 to initiate, control, or perform one or more operations
described with reference to FIGS. 1-4. To illustrate, the one
or more applications 534 include instructions executable by
the processor(s) 520 to initiate, control, or perform one or
more operations described with reference to the workflow
manager 154, the simulation 102, the model generator 110,
the parameter selector 106, the test parameter generator 116,
the surrogate model 104, the surrogate model 114, or a
combination thereof

[0062] In aparticular implementation, the system memory
530 includes a non-transitory, computer readable medium
storing the instructions that, when executed by the processor
(s) 520, cause the processor(s) 520 to initiate, perform, or
control operations to perform a simulation of a physical
system. The operations include generating initial simulation
data by providing first sets of first values of first input
parameters to a simulation of a physical system. Each set of
the first sets indicates a first value of each of the first input
parameters. The operations also include developing at least
one surrogate model based on the initial simulation data. The
operations further include selecting second input parameters
from the first input parameters based on the at least one
surrogate model. A count of the second input parameters is
less than a count of the first input parameters. The operations
also include generating second simulation data by providing
second sets of second values of the second input parameters
to the simulation. Each set of the second sets indicates a
second value of each of the second input parameters. The
operations further include developing at least a second
surrogate model based on the second simulation data.

[0063] The one or more storage devices 540 include
nonvolatile storage devices, such as magnetic disks, optical
disks, or flash memory devices. In a particular example, the
storage devices 540 include both removable and non-remov-
able memory devices. The storage devices 540 are config-
ured to store an operating system, images of operating
systems, applications (e.g., one or more of the applications
534), and program data (e.g., the program data 536). In a
particular aspect, the system memory 530, the storage
devices 540, or both, include tangible computer-readable
media, such as a computer-readable storage device. In a
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particular aspect, one or more of the storage devices 540 are
external to the computing device 510.

[0064] The one or more input/output interfaces 550 that
enable the computing device 510 to communicate with one
or more input/output devices 570 to facilitate user interac-
tion. For example, the one or more input/output interfaces
550 can include a display interface, an input interface, or
both. For example, the input/output interface 550 is adapted
to receive input from a user, to receive input from another
computing device, or a combination thereof. In some imple-
mentations, the input/output interface 550 conforms to one
or more standard interface protocols, including serial inter-
faces (e.g., universal serial bus (USB) interfaces or Institute
of Electrical and Electronics Engineers (IEEE) interface
standards), parallel interfaces, display adapters, audio adapt-
ers, or custom interfaces (“IEEE” is a registered trademark
of The Institute of Electrical and Electronics Engineers, Inc.
of Piscataway, N.J.). In some implementations, the input/
output device 570 includes one or more user interface
devices and displays, including some combination of but-
tons, keyboards, pointing devices, displays, speakers, micro-
phones, touch screens, and other devices.

[0065] The processor(s) 520 are configured to communi-
cate with devices or controllers 580 via the one or more
communications interfaces 560. For example, the one or
more communications interfaces 560 can include a network
interface. The devices or controllers 580 can include, for
example, the test platform 156, one or more other devices,
or any combination thereof.

[0066] In some implementations, a non-transitory, com-
puter readable medium stores instructions that, when
executed by one or more processors, cause the one or more
processors to initiate, perform, or control operations to
perform part or all of the functionality described above. For
example, the instructions may be executable to implement
one or more of the operations or methods of FIGS. 1-5. In
some implementations, part or all of one or more of the
operations or methods of FIGS. 1-5 may be implemented by
one or more processors (e.g., one or more central processing
units (CPUs), one or more graphics processing units
(GPUs), one or more digital signal processors (DSPs))
executing instructions, by dedicated hardware circuitry, or
any combination thereof.

[0067] The illustrations of the examples described herein
are intended to provide a general understanding of the
structure of the various implementations. The illustrations
are not intended to serve as a complete description of all of
the elements and features of apparatus and systems that
utilize the structures or methods described herein. Many
other implementations may be apparent to those of skill in
the art upon reviewing the disclosure. Other implementa-
tions may be utilized and derived from the disclosure, such
that structural and logical substitutions and changes may be
made without departing from the scope of the disclosure. For
example, method operations may be performed in a different
order than shown in the figures or one or more method
operations may be omitted. Accordingly, the disclosure and
the figures are to be regarded as illustrative rather than
restrictive.

[0068] Moreover, although specific examples have been
illustrated and described herein, it should be appreciated that
any subsequent arrangement designed to achieve the same or
similar results may be substituted for the specific implemen-
tations shown. This disclosure is intended to cover any and
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all subsequent adaptations or variations of various imple-
mentations. Combinations of the above implementations,
and other implementations not specifically described herein,
will be apparent to those of skill in the art upon reviewing
the description.

[0069] The Abstract of the Disclosure is submitted with
the understanding that it will not be used to interpret or limit
the scope or meaning of the claims. In addition, in the
foregoing Detailed Description, various features may be
grouped together or described in a single implementation for
the purpose of streamlining the disclosure. Examples
described above illustrate but do not limit the disclosure. It
should also be understood that numerous modifications and
variations are possible in accordance with the principles of
the present disclosure. As the following claims reflect, the
claimed subject matter may be directed to less than all of the
features of any of the disclosed examples. Accordingly, the
scope of the disclosure is defined by the following claims
and their equivalents.

What is claimed is:

1. A device for physical system simulation, the device
comprising:

a memory configured to store a simulation of a physical

system; and

one or more processors configured to:

generate initial simulation data by providing first sets of
first values of first input parameters to the simula-
tion, each set of the first sets indicating a first value
of each of the first input parameters;

develop at least one surrogate model based on the
initial simulation data;

select second input parameters from the first input
parameters based on the at least one surrogate model,
wherein a count of the second input parameters is
less than a count of the first input parameters;

generate second simulation data by providing second
sets of second values of the second input parameters
to the simulation, each set of the second sets indi-
cating a second value of each of the second input
parameters; and

develop at least a second surrogate model based on the
second simulation data.

2. The device of claim 1, wherein the second surrogate
model includes at least one of a Kriging model, a least
squares analysis of variance (ANOVA) model, a heuristic
model, or a metaheuristic model.

3. The device of claim 1, wherein the one or more
processors are further configured to perform adjustment of
the second surrogate model until an adjustment criterion is
met.

4. The device of claim 3, wherein the one or more
processors are configured to determine that the adjustment
criterion is met in response to detecting expiration of a time
period, detecting a convergence of the second surrogate
model, or both.

5. The device of claim 1, wherein the one or more
processors are configured to perform a particular adjustment
of the second surrogate model by:

selecting particular input parameters based on the second

surrogate model; and

generating particular simulation data by providing par-

ticular sets of particular values of the particular input
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parameters to the simulation, each set of the particular
sets indicating a particular value of each of the par-
ticular input parameters.
6. The device of claim 1, wherein second particular input
parameters are predetermined, and wherein the second simu-
lation data is further based on second particular values of the
second particular input parameters.
7. A method of physical system simulation, the method
comprising:
generating initial simulation data by providing first sets of
first values of first input parameters to a simulation of
a physical system, each set of the first sets indicating a
first value of each of the first input parameters;

developing at least one surrogate model based on the
initial simulation data;

selecting second input parameters from the first input

parameters based on the at least one surrogate model,
wherein a count of the second input parameters is less
than a count of the first input parameters;

generating second simulation data by providing second

sets of second values of the second input parameters to
the simulation, each set of the second sets indicating a
second value of each of the second input parameters;
and

developing at least a second surrogate model based on the

second simulation data.

8. The method of claim 7, wherein the physical system
includes a large-scale complex engineering system
(LSCES).

9. The method of claim 7, further comprising using the
second surrogate model to determine one or more test
parameters of a test of the physical system.

10. The method of claim 9, wherein the test is expensive,
destructive to the physical system, or both.

11. The method of claim 9, further comprising:

receiving, during the test, sensor data from sensors con-

figured to monitor the physical system; and

updating the simulation based on the sensor data.

12. The method of claim 11, wherein at least one of the
sensors is coupled to the physical system.

13. The method of claim 11, wherein at least one of the
sensors is proximate to the physical system.

14. The method of claim 7, wherein a first count of the
first sets is less than a second count of the second sets.

15. The method of claim 7, further comprising generating
the first sets by using orthogonal array sampling, Latin
hypercube sampling, or random sampling.
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16. The method of claim 7, wherein the simulation of the
physical system is based on finite element modeling, finite
volume modeling, eigenmode decomposition analysis,
eigenvalue analysis, eigenstate analysis, iterative first-prin-
ciple modeling, or a combination thereof.
17. The method of claim 7, further comprising:
developing an elastic net surrogate model based on the
initial simulation data, the at least one surrogate model
including the elastic net surrogate model; and
selecting a group of input parameters from the first input
parameters based on the elastic net surrogate model.
18. The method of claim 17, further comprising:
developing one or more linear models based on the group
of input parameters, the at least one surrogate model
including the one or more linear models; and

selecting at least one of the second input parameters from
the group of input parameters based on the one or more
linear models.
19. The method of claim 18, wherein the second input
parameters are further based on user input, a configuration
setting, default data, or a combination thereof
20. A computer-readable storage device storing instruc-
tions that, when executed by one or more processors, cause
the one or more processors to:
generate initial simulation data by providing first sets of
first values of first input parameters to a simulation of
a physical system, each set of the first sets indicating a
first value of each of the first input parameters;

develop at least one surrogate model based on the initial
simulation data;

select second input parameters from the first input param-

eters based on the at least one surrogate model, wherein
a count of the second input parameters is less than a
count of the first input parameters;

generate second simulation data by providing second sets

of second values of the second input parameters to the
simulation, each set of the second sets indicating a
second value of each of the second input parameters;
and

develop at least a second surrogate model based on the

second simulation data.

21. The computer-readable storage device of claim 20,
wherein the instructions, when executed by the one or more
processors, further cause the one or more processors to use
the second surrogate model to determine one or more test
parameters of a test of the physical system.
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