US011816593B2

a2 United States Patent

Karlinsky et al.

US 11,816,593 B2
Nov. 14, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

TAFSSL: TASK ADAPTIVE FEATURE
SUB-SPACE LEARNING FOR FEW-SHOT
LEARNING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Leonid Karlinsky, Mazkeret Batya
(IL); Joseph Shtok, Binyamina (IL);
Eliyahu Schwartz, Haifa (IL)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 632 days.

Appl. No.: 17/000,319
Filed: Aug. 23, 2020

Prior Publication Data

US 2022/0058505 Al Feb. 24, 2022

Int. CL.

GO6N 20/00 (2019.01)

GO6N 7/01 (2023.01)

GO6F 16/55 (2019.01)

GO6V 10/762 (2022.01)

GO6V 10/764 (2022.01)

GO6V 10/774 (2022.01)

U.S. CL

CPC ... GO6N 7/01 (2023.01); GO6F 16/55

(2019.01); GO6N 20/00 (2019.01); GO6V
10/762 (2022.01); GO6V 10/764 (2022.01);
GO6V 10/774 (2022.01)
Field of Classification Search

CPC GO6N 7/01; GO6N 20/00; GOGF 16/55;
GO6V 10/762; GO6V 10/764; GO6V
10/774

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0082468 Al* 42008 Longccc... GO6V 10/764
706/12
GO6V 10/776

706/12

2016/0078359 Al* 3/2016 Csurka

(Continued)

OTHER PUBLICATIONS

Li Fe-Fei, Fergus, Perona, A Bayesian Approach to Unsupervised
One-Shot Learning of Object Categories, Proceedings Ninth IEEE
International Conference on Computer Vision, Oct. 13, 2003, https://
ieeexplore.icee.org/document/1238476.

(Continued)

Primary Examiner — Md K Talukder
(74) Attorney, Agent, or Firm — Gregory J Kirsch

(57) ABSTRACT

Embodiments may include novel techniques for Task-Adap-
tive Feature Sub-Space Learning (TAFSSL). For example,
in an embodiment, a method may be implemented in a
computer system comprising a processor, memory acces-
sible by the processor, and computer program instructions
stored in the memory and executable by the processor, the
method comprising: training a machine learning system to
classify features in images by: generating a sample set
comprising one or a few labeled training samples and one or
a few additional samples containing instances of target
classes, performing dimensionality reduction computed on
the samples in the sample set to form a dimension reduced
sub-space, generating class representatives in the dimension
reduced sub-space using clustering, and classifying features
in images using the trained machine learning system.

17 Claims, 6 Drawing Sheets

120
102 TRANSDUCTIVE: 104
UNSUPERVISED

s+Q LOW-DIMENSIONAL
PROJECTION
118 124
TASKTINF: ~.OR... TASKTINA:
S+Q(+U) S+Q(+U)
122
S+U SEMI-SUPERVISED:
UNSUPERVISED 112 106
110 LOW-DIMENSIONAL
PROJECTION
114
125
TRANSDUCTIVE:
126 UNSUPERVISED
CLUSTERING
5+Q (MODELING DATA
136 DISTRIBUTION)
CLASS INFERENCE
PREDICTIONS 5
FORQ SEMI-SUPERVISED:
j S+U UNSUPERVISED
CLUSTERING
134 Q 13 (MODELING DATA
DISTRIBUTION)

\ 100

US 11,816,593 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0091637 Al* 3/2017 Chaecccceeenn. G16B 40/20
2020/0130177 Al* 4/2020 Kolouri GO6N 3/045

2022/0058505 Al* 2/2022 Karlinsky . GO6V 10/762

OTHER PUBLICATIONS

Mengye Ren, Eleni Triantafillou Sachin Ravi, Jake Snell, Kevin
Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S.
Zemel, Meta-Learning for Semi-Supervised Few-Shot Classifica-
tion, ICLR 2018, Mar. 2018, https://www.researchgate.net/publication/
323550056.

Christian Simon, Piotr Koniusz, Mehrtash Harandi, Projective Subspace
Networks for Few-Shot Learning, ICLR 2019, ICLR 2019, Pub-
lished Date: Sep. 28, https://openreview.net/forum?id=rkzfuiA9F7.
Moshe Lichtenstein, Prasanna Sattigeri, Rogerio Feris, Raja Giryes,
Leonid Karlinsky, TAFSSL: Task-Adaptive Feature Sub-Space Learn-
ing for few-shot classification, ResearchGate, Mar. 2020, https://
www.researchgate.net/publication/339972107.

Nan Lai, Meina Kan, Shiguang Shan, Xilin Chen, Task-adaptive
Feature Reweighting for Few Shot Classification, Computer Vision—
ACCYV 2018, May 2019, https://www.researchgate net/publication/
333360181.

* cited by examiner

U.S. Patent Nov. 14,2023 Sheet 1 of 6 US 11,816,593 B2

Fig. 1
120
102 TRANSDUCTIVE: 104
UNSUPERVISED
S+Q LOW-DIMENSIONAL
PROJECTION
118 124
TASK T IN F: ...OR... TASK T IN A:
S+Q(+U) S+Q(+V)
122
S+U SEMI-SUPERVISED:
UNSUPERVISED 112 106
110 LOW-DIMENSIONAL ‘\
PROJECTION
114 —
125 \
TRANSDUCTIVE:
126 UNSUPERVISED
CLUSTERING
S+Q (MODELING DATA
136 = DISTRIBUTION)
CLASS
PREDICTIONS/* INFERENCE
FOR Q 128
SEMI-SUPERVISED:
I S+U UNSUPERVISED
‘/ CLUSTERING
134 Q 130 (MODELING DATA
DISTRIBUTION)

\ 100

U.S. Patent Nov. 14,2023 Sheet 2 of 6 US 11,816,593 B2

Fig. 2

202
GENERATE S+Q(+U)

204
DIMENSIONALITY REDUCTION/ LOW-DIMENSIONAL
PROJECTION

206
CLUSTERING (MODELING DATA DISTRIBUTION) AND
INFERENCE (BKM, MSP, ETC.)

208
END-TO-END META-TRAINING

\ 200

U.S. Patent Nov. 14,2023 Sheet 3 of 6 US 11,816,593 B2

Fig. 3
150 1302
Train classes
MI(C; F)inF
100 -
50 -
0 1 I T I
0.00 0.05 0.10 0.15 0.20 0.25 0.30
150 304
Train classes|
MI(C; F)inF
100
50
0 — 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30
2.0 T 306
Train classes
15 - MI(C; F)inF
1.0 T
0.5 -
0.0 T | | I I

0.00 0.05 0.10 0.15 0.20 0.25 0.30

US 11,816,593 B2

Sheet 4 of 6

Nov. 14,2023

U.S. Patent

(y = (Dyasgsng) g - (y = (Maopsnple = (D)7)d ﬂ?rw Ey—

(sg={gyempsnpa) g (gla—hi—idxe ©

W

L B
SN ES v AN DS AN frn
*.,.ww.\“”\.m._v..fw,wm::\muv.uﬁw..NMNW_m.:!.wwmr:.wf%mmw { = mf& — nw\vw&wkm B\NL_.\.\ _ T@vuv

K

- ﬁw& - ﬁ.m,,tmwmi ?&Q

Y IDISND JO PIOIUDD 91} - 10 0] Yord JUIIRIDOSSE ‘CIa)sno Y oyur (Apanrosadsar 7S
POsTATDANS-TIIDS 10 ATIONPSURIY UL § 1 /7 10 § 1 () L 3sel Jo sopdures o) 1a)sny))

(JANET) STeepy -3 Teisoleg

b 81

US 11,816,593 B2

Sheet 5 of 6

Nov. 14, 2023

U.S. Patent

& 2 ba(b)o spqel wangaa

(1 = (X)) JO P10 FUSLIIDDD UL PII0S ¢ = ()0 aary jey] sojdures
31 doy oyy oaw tg osoym {x §EErT L =} wod&yoroad msu oy gnduo)
o Ajunu =y
rogotered progsaay v 81 7, oxoym L= zid vi=0mo T = iy
(1 = ()7) "xewBie = (1) suopoipaxd ognduon

—

il yaxe T
(L fitd—xii—yduxs | A .m I A.L\ V\an& ﬂvu‘zgﬁmemu

¥
op SO} N J0
N$B) Ul SJ01S JO # Sty oIoym “{s SO b . ul} sadAyogord & SmESM
_L 3581 W SJOUS JO FF ST Y 9dalM "5 7 T 0y SadAlol0Id naiton
oZIBIIU]

(¢nasr10)8nd 3 2A

s B

(SN monesedor g Pryg-uespy

G "31q

U.S. Patent Nov. 14,2023 Sheet 6 of 6 US 11,816,593 B2

Fig. 6

600
COMPUTER SYSTEM

610
604 602A 602N 606

INPUT/ || cPU |@ @ ®| cPU ||NETWORK ||| NETWORK

OUTPUT ADAPTER

608
MEMORY

614
UNSUPERVISED LOW-DIMENSIONAL
PROJECTION ROUTINES
616
UNSUPERVISED CLUSTERING/INFERENCE
ROUTINES
618
BKM ROUTINES

620
MSP ROUTINES

622
META-TRAINING ROUTINES

624
OPERATING SYSTEM

US 11,816,593 B2

1
TAFSSL: TASK ADAPTIVE FEATURE
SUB-SPACE LEARNING FOR FEW-SHOT
LEARNING

BACKGROUND

The present invention relates to for Task-Adaptive Fea-
ture Sub-Space Learning (TAFSSL).

The field of Few-Shot Learning (FSL) involves machine
learning models learning from very few (typically 1 or 5)
examples per novel class (classes that are unseen during
training) has received a lot of attention and significant
performance advances in the recent literature. While a
number of techniques have been proposed for FSL, several
factors have emerged as important for FSL performance,
thus even the simplest of techniques may be state of the art.
For example, techniques such as the backbone architecture
used for FSL (bigger is better), the type of pre-training on
the base classes used (meta-training vs regular, currently
regular wins), the quantity and diversity of the base classes
set (the more the better, as these things make the feature
space richer and better adaptive to novel classes), and the
usage of self-supervised tasks during pre-training (serving as
a proxy for increasing the diversity and the number of base
classes).

While these factors may practically eliminate the perfor-
mance gaps between simple and more complex FSL meth-
ods, little to no attention has been given to another simple,
yet very important factor for FSL performance—Task-Adap-
tive Feature Sub-Space Learning (TAFSSL), or a search for
a compact sub-space that is most discriminative for a given
few-shot task.

Accordingly, a need arises for improved techniques for
Task-Adaptive Feature Sub-Space Learning (TAFSSL).

SUMMARY

Embodiments may include novel techniques for Task-
Adaptive Feature Sub-Space Learning (TAFSSL). Such
techniques may significantly boost the performance in FSL
scenarios when some additional unlabeled data accompanies
the novel few-shot task, whether it is the set of unlabeled
queries (transductive FSL) or some additional set of unla-
beled data samples for which predictions are not needed
(semi-supervised FSL). Specifically, on the challenging few-
shot benchmarks, embodiments of the present techniques
may improve the current state-of-the-art in both transductive
and semi-supervised FSL setting by, for example, more than
5%, while increasing the benefit of using unlabeled data in
FSL to above 10% performance gain.

For example, in an embodiment, a method may be imple-
mented in a computer system comprising a processor,
memory accessible by the processor, and computer program
instructions stored in the memory and executable by the
processor, the method comprising: training a machine learn-
ing system to classify features in images by: generating a
sample set comprising one or a few labeled training samples
and one or a few additional samples containing instances of
target classes, performing dimensionality reduction com-
puted on the samples in the sample set to form a dimension
reduced sub-space, generating class representatives in the
dimension reduced sub-space using clustering, and classi-
fying features in images using the trained machine learning
system.

In embodiments, the generated sample set may comprise
one or a few labeled training samples and one of one or a few
bulk query samples that are used as unlabeled samples or

25

35

40

45

50

2

one or a few unlabeled samples for which predictions are not
needed and wherein the generated sample set is Gaussian,
the dimensionality reduction may be performed by finding
dimensions of maximal variance, and the clustering may be
performed using Bayesian K-Means processing. The gener-
ated sample set may comprise one or a few labeled training
samples and one of one or a few bulk query samples that are
used as unlabeled samples or one or a few unlabeled samples
for which predictions are not needed and wherein the
generated sample set is non-Gaussian, the dimensionality
reduction may be performed by finding dimensions that are
maximally independent from each other and that best
approximate the data, and the clustering may be performed
using Bayesian K-Means processing. The generated sample
set may comprise one or a few labeled training samples and
one of one or a few bulk query samples that are used as
unlabeled samples or one or a few unlabeled samples for
which predictions are not needed and wherein the generated
sample set is Gaussian, the dimensionality reduction may be
performed by finding dimensions of maximal variance, and
the clustering may be performed using Mean-Shift Propa-
gation processing. The generated sample set may comprise
one or a few labeled training samples and one of one or a few
bulk query samples that are used as unlabeled samples or
one or a few unlabeled samples for which predictions are not
needed and wherein the generated sample set is non-Gauss-
ian, the dimensionality reduction may be performed by
finding dimensions that are maximally independent from
each other and that best approximate the data, and the
clustering may be performed using Mean-Shift Propagation
processing. The method may further comprise performing
end-to-end meta training of the neural network model using
the generated class representatives. The generated sample
set may comprise one or a few labeled training samples and
one of one or a few bulk query samples that are used as
unlabeled samples or one or a few unlabeled samples for
which predictions are not needed and normalization of the
bulk query samples and support samples and the query and
unlabeled samples is performed separately.

In an embodiment, a system may comprise a processor,
memory accessible by the processor, and computer program
instructions stored in the memory and executable by the
processor to perform: training a machine learning system to
classify features in images by: generating a sample set
comprising one or a few labeled training samples and one or
a few additional samples containing instances of target
classes, performing dimensionality reduction computed on
the samples in the sample set to form a dimension reduced
sub-space, generating class representatives in the dimension
reduced sub-space using clustering, and classifying features
in images using the trained machine learning system.

In an embodiment, a computer program product compris-
ing a non-transitory computer readable storage having pro-
gram instructions embodied therewith, the program instruc-
tions executable by a computer, to cause the computer to
perform a method comprising: training a machine learning
system to classify features in images by: generating a sample
set comprising one or a few labeled training samples and one
or a few additional samples containing instances of target
classes, performing dimensionality reduction computed on
the samples in the sample set to form a dimension reduced
sub-space, generating class representatives in the dimension
reduced sub-space using clustering, and classifying features
in images using the trained machine learning system.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, can best be understood by referring to the

US 11,816,593 B2

3

accompanying drawings, in which like reference numbers
and designations refer to like elements.

FIG. 1 illustrates an exemplary overview of TAFSSL
processing according to embodiments of the present tech-
niques.

FIG. 2 is an exemplary flow diagram of TAFSSL pro-
cessing according to embodiments of the present techniques.

FIG. 3 illustrates examples of improved signal to noise
ratio (SNR) in task adapted feature space according to
embodiments of the present techniques.

FIG. 4 illustrates an exemplary overview of BKM pro-
cessing according to embodiments of the present techniques.

FIG. 5 illustrates an exemplary overview of MSP pro-
cessing according to embodiments of the present techniques.

FIG. 6 is an exemplary block diagram of a computer
system, in which processes involved in the embodiments
described herein may be implemented.

DETAILED DESCRIPTION

Embodiments may include novel techniques for Task-
Adaptive Feature Sub-Space Learning (TAFSSL). Such
techniques may significantly boost the performance in FSL
scenarios when some additional unlabeled data accompanies
the novel few-shot task, whether it is the set of unlabeled
queries (transductive FSL) or some additional set of unla-
beled data samples for which predictions are not needed
(semi-supervised FSL). In embodiments, the unlabeled data
samples may contain unrelated samples, that is label noise,
including images not belonging to any of the classes of
interest. Specifically, on the challenging few-shot bench-
marks, embodiments of the present techniques may improve
the current state-of-the-art in both transductive and semi-
supervised FSL setting by, for example, more than 5%, while
increasing the benefit of using unlabeled data in FSL to
above 10% performance gain.

In the task of few shot learning, or learning recognition
models that can be adapted to new concepts (classes) using
only few (for example, one) examples, little attention has
been given to adaptation of the feature space at test time.
Embodiments may focus on “filtering” the feature space and
improving class representations using additional unlabeled
data accompanying the few-shot task (with novel classes
unseen during base training).

However, a slight adaptation of the backbone’s feature
space to a given task, using few iterations of fine-tuning on
the support set or other techniques, may not be sufficient to
bridge over the generalization gap introduced by the FSL
backbone observing completely novel classes unseen during
training (as demonstrated by relatively moderate perfor-
mance gains obtained from these techniques). Intuitively,
this may be attributed in part to many of the feature space
dimensions (feature vector entries) becoming ‘useless’ for a
given set of novel classes in the test few-shot task. Indeed,
every feature vector entry may be seen as a certain ‘pattern
detector’ which fires strongly when a certain visual pattern
is observed on the input image. The SGD (or other) back-
bone training may make sure these patterns are discrimina-
tive for the classes used for pre-training. But for novel
classes, many of these pattern detectors fail to find their
patterns (which were in a sense ‘over-fitted’ to the base
classes) and hence these entries mainly produce ‘noise
values’—some mode of the pattern detector distribution of
activation which corresponds to ‘pattern not observed’.
Hence, we could conclude that that the ‘signal-to-noise’ of
the FSL backbone feature space or the ratio of useful feature
vector entries to ones which mainly output ‘noise’ signifi-

10

20

35

40

45

50

55

4

cantly decreases when the backbone is presented with a
novel classes few-shot task and it is unlikely that small
modifications to the feature space can save the situation and
recover a significant portion of the ‘noise producing’ feature
entries. The high level of noise in the feature vectors
intuitively has significant bad implications on the perfor-
mance of the FSL classifier operating on this vector, espe-
cially the popular distance based classifiers such as nearest-
neighbor [SimpleShot] and Prototypical Networks [PN] may
be affected.

In light of this intuition, in order to obtain a significant
performance boost, embodiments may concentrate on the
so-called Task-Adaptive Feature Sub-Space Learning
(TAFSSL)—seeking sub-spaces of the backbone’s feature
space that are discriminative for the novel classes of the test
few-shot task and which are as noise free as possible, in
which most of the sub-space dimensions indeed ‘find’ the
patterns they represent in the images of the novel categories
belonging to the task.

Embodiments or the present techniques may provide an
approach for linear TAFSSL under transductive and semi-
supervised FSL settings. In many practical applications of
FSL, alongside the few labeled training examples (the
support set) of the few shot task, additional unlabeled
examples containing instances of the target novel classes are
available. Such is the situation in transductive FSL which
assumes that the query samples arrive in a ‘bulk’ and not
one-by-one, and hence we can answer all the queries ‘at
once’ while using the query set as unlabeled data. A similar
situation exists in semi-supervised FSL, where an unlabeled
set of images simply accompanies the few-shot task.

An exemplary overview of TAFSSL processing 100 is
shown in FIG. 1. It is best viewed in conjunction with FIG.
2, which a flow diagram of TAFSSL processing 200.
TAFSSL processing 100 may include pathways for trans-
ductive FSL 102, 104, 106, 108 semi-supervised FSL 110,
112, 114, 116. In this example, T represents a few-shot task;
S represents a support set; Q represents a query set; U
represents an optional set of additional unlabeled examples
(semi-supervised FSL); F represents an original feature
space; A represents a task adapted feature sub-space.

Process 200 may begin with 202, in which, given a
few-shot task T in an original feature space F, the process
may generate a conjunction of a support set S and a query
set Q (S+Q) 118 and may generate a conjunction of a support
set S and/or an optional set of additional unlabeled examples
U (S+U) 118. Embodiments may perform normalization of
the query and support samples and the query and support
samples may be normalized separately. At 204, dimension-
ality reduction/low-dimensional projection may be per-
formed. S+Q 118 may be sent to transductive processing
block 120, where unsupervised low-dimensional projection
may be performed. Alternatively, or in addition, S+U 118
may be sent to semi-supervised processing block 122, where
unsupervised low-dimensional projection may be per-
formed. For example, a neural network (NN) module, such
as may be included in transductive processing block 120
and/or semi-supervised processing block 122 may be
attached implementing Principal Component Analysis
(PCA) or Independent Component Analysis (ICA) dimen-
sionality reduction computed on all the samples of the
few-shot episode (task instance) extended with unlabeled
data (optional, if semi-supervised). In embodiments, PCA/
ICA may be applied to reduce the dimensions according to
the number of “ways” (number of target classes) in the task.

The output(s) from processing blocks 120 and/or 122 may
form a task adapted feature sub-space A 124. At 206,

US 11,816,593 B2

5

sub-space A 124 may be sent to transductive processing
block 125, where unsupervised clustering (modeling data
distribution) may be performed and clustered S+Q 126 may
be generated and sent to inference processing block 132.
Likewise, at 206, sub-space A 124 may be sent to semi-
supervised processing block 128, where unsupervised clus-
tering (modeling data distribution) may be performed and
clustered S+U 130 may be generated and sent to inference
processing block 132. Together, transductive processing
block 125 and inference processing block 132 and/or semi-
supervised processing block 128 and inference processing
block 132 may apply one a clustering and inference tech-
nique to query set Q 134 produce class prediction represen-
tatives for query set Q 136 in a dimension-reduced (cleaned)
sub-space. In embodiments, clustering and inference tech-
niques such as Bayesian K-Means (BKM), Mean-Shift
Propagation (MSP), etc., may be used and may provide
soft-multiple association, and probabilistically grounded
inference techniques.

At 208, end-to-end meta-training may be applied to
co-optimize the backbone representation generator and the
aforementioned components of the system to jointly work
together to obtain improved performance. Embodiments
using these techniques may improve transductive and semi-
supervised FSL results by over 5%, and the benefit of using
unlabeled data may increase the improvement to above 10%
on multiple benchmarks. Once trained as desired, the system
may be used for few-shot classification of sample data, such
as images.

Examples of improved signal to noise ratio (SNR) in task
adapted feature space A that may be obtained using embodi-
ments of the present techniques is shown in FIG. 3. In the
examples shown in FIG. 3, the normalized (by minimum
entropy) Mutual Information (MI) between either train or
test classes and the features in F (of dimension 1024) or in
A (7-dim) provides the motivation to use A over F, as is
further described below.

The formal definition of TAFSSL may be derived as
follows:

FSSL and TAFSSL: Let a CNN backbone @& (for
example, ResNet or DenseNet) pre-trained for FSL on a

(large) dataset Z with a set of base (training) classes &.
Here for simplicity, we equally refer to all different forms of
proposed pre-training for FSL, whether meta-training or
‘regular’ training of a multi-class classifier for all the classes

&. Denote by B(x)e ? =R™ to be a feature vector corre-
sponding to an input image x represented in the feature space
7 by the backbone B. Under this notation, we define the
goal of linear Feature Sub-Space Learning (FSSL) to find an
‘optimal’ (for a certain task) linear sub-space ,# of 7 and
a linear mapping W of size rxm (typically with r«m) such
that:

RO, 424=W-8(x) 1

is the new representation of an input image x as a vector A
in the feature sub-space ,# (spanned by rows of W).

Now, consider an n-way-+k-shot few-shot test task 7 with
a query set Q, and a support set:

S={s{|lsisn,lsjsk,[(s{):i},

20

25

30

35

40

45

50

55

60

65

6

where £ (x) is the class label of image x, so in S we have
k training samples (shots) for each of the n classes in the task
7. Using the PN paradigm we assume k=1 (otherwise
support examples of the same class are averaged to a single
class prototype) and that each qeQ is classified using
Nearest Neighbor (NN) in 7 :

argmin @
i

CLS(q) = ||B(§:) - B(q)”z

Then, in the context of this given task %7, we can define
linear Task-Adaptive FSSL (TAFSSL) as a search for a
linear sub-space ,# <7 of the feature space % defined by a
<7 -specific projection matrix 2¢, such that the probability:

exp(=T - [Wr (B(sh) - B ®

> exel=T W (8(s}) - 8@l

of predicting g to belong to the same class as the ‘correct’
support

1
SL@)

is maximized, while of course the true label 1.(q) is unknown
at test time (here 7 in eq. 3 is a temperature parameter, we
used t=1).

Discussion Using the ‘pattern detectors’ intuition
described above, consider the activations of each dimension
F, of Fe Z as a random variable with a Mixture of (two)
Gaussians (MoG) distribution:

Fg~Py=py-N(itn, 00) + ps-N(is, 0°5) Q)

where (u,,, 6,,) and (us, ©,) are the expectation and variance
of the F,'s distribution of activations when F, does not

n

detect (noise) or detects (signal) the P3tern respectively.
The p,, and p, are the noise and the signal prior probabilities
respectively

(pntps =1).

For brevity, we drop the index d from the distribution
parameters. Naturally, for the training classes C,, for most
dimensions F, the p,»0 implying that the dimension is
‘useful’ and does not produce only noise (FIG. 3, 302).
However, for the new (unseen during training) classes of a
test task T this is no longer the case, and it is likely that for

the majority of dimensions p‘;TT ~) (FIG. 3, 304). Assum-
ing (for the time being) that F, are conditionally indepen-
dent, the square Euclidean distance could be seen as an
aggregation of votes for the ‘still useful’ (for the classes of
T) patterns, and a sum of squares of i.i.d (zero mean)
Gaussian samples for the patterns that are ‘noise only’ on the
classes of J. The latter ‘noise dimensions’ randomly
increase the distance on the expected order of

US 11,816,593 B2

7

- a2, where is the number of noise features of the
feature space 7 or the classes of task T. Using this
intuition, if we could find such a TAFSSL sub-space

A adapted to the task T so that N7-57 is reduced (FIG. 3,
304), we would improve the performance of the NN clas-
sifier on T. With only few labeled samples in the support set

NT,T NT,T

S, we cannot expect to effectively learn the Wy projection
to the sub-space A, using SGD on S. Yet, when unlabeled
data accompanies the task 7(Q in transductive FSL, or an
additional set of unlabeled samples U in semi-supervised

FSL), we can use this data to find such Wy that: (a) the
dimensions of A, are ‘disentangled’, meaning their pair-
wise independence is maximized; (b) after the ‘disentangle-
ment’ we choose the dimensions that are expected to ‘exhibit
the least noise’ or in our previous MoG notation have the
largest p, values.

Luckily, simple classical methods can be used for
TAFSSL approximating the requirements (a) and (b). Both
Principle Component Analysis (PCA) and Independent
Component Analysis (ICA) applied in F on the set of
samples: SUQ (transductive FSL) or SUU (semi-supervised
FSL) can approximate (a). PCA under the approximate joint
Gaussianity assumption of F , and ICA under approximate
non-Gaussianity assumption. In addition, if after the PCA
rotation we subtract the mean, the variance of the (zero-
mean) MoG mixtures for the transformed (independent)
dimensions would be:

2

P (.un “@

+03) + ps (4 +07)

Then assuming p,, and G, are roughly the same for all
dimensions (which is reasonable due to heavy use of Batch
Normalization (BN) in the modern backbones), choosing the
dimensions with higher variance in PCA would lead to larger
P U, and 6.—all of which are likely to increase the
signal-to-noise ratio of the NN classifier. Larger p_ leads to
patterns with stronger ‘votes’, larger 6, means wider range
of values that may better discriminate multiple classes, and
larger p, means patterns that are more frequent for classes of

7. Similarly, the dimensions with bigger p, exhibit stronger
departure from Gaussianity and hence would be chosen by
ICA. Embodiments may perform normalization of the query
and support samples separately.

TAFSSL summary. To summarize, both PCA and ICA
may be used as simple approximations for TAFSSL using
unlabeled data and therefore may be used to perform the
‘unsupervised low-dimensional projection’ 120, 122 of FIG.
1. PCA and ICA on their own (when directly followed by an
NN classifier) may lead to significant FSL performance
boosts.

Clustering. Clustering may be a useful tool for transduc-
tive and semi-supervised FSL assuming that modes of the
task T data distribution (including both labeled and unla-
beled image samples) correspond classes. However, in the
presence of feature ‘noise’ in F, the ‘class’ modes may
become mixed with the noise distribution modes, which may
blur the class modes boundaries or swallow the class modes
altogether.

In contrast, after applying PCA or ICA based TAFSSL,
the feature noise levels may be significantly reduced (FIG.
3), making the task-adapted feature sub-space A, of the
original feature space F more effective for clustering.
Embodiments may utilize, for example, either of two clus-

20

25

30

35

40

45

50

55

60

65

8
tering-based algorithms, the Bayesian K-Means (BKM) and
Mean-Shift Propagation (MSP). Following PCA or ICA
based TAFSSL, these clustering techniques may add, for
example, about 5% to the performance. These techniques
may be used to perform the ‘unsupervised clustering” 125,
128+inference’ 132 processing (FIG. 1).

The BKM is a soft k-means variant accompanied with
Bayesian inference for computing class probabilities for the
queries. In BKM, each k-means cluster, obtained for the
entire set of (labeled+unlabeled) task T data, is treated as a
Gaussian mixture distribution with a mode for each class.
The BKM directly computes the class probability for each
query qeQ by averaging the posterior of q in each of the
mixtures with weights corresponding to ¢’s association
probability to each cluster. The details of BKM are shown in
FIG. 4.

The MSP is a mean-shift based approach, that is used to
update the prototype of each class. In MSP we perform a
number of mean-shift like iterations on the prototypes of the
classes taken within the distribution of all the (labeled and
unlabeled) samples of T In each iteration, for each proto-
type pi (of class i), we compute a set of K most confident
samples within a certain confidence radius and use the mean
of this set as the next prototype (of class i). The K itself is
balanced among the classes. The details of MSP are shown
in FIG. 5. Following MSP, the updated prototypes are used
in standard NN classifier fashion to obtain the class prob-
abilities.

Implementation details. Embodiments of TAFSSL
approaches may be implemented in, for example, PyTorch.
For example, the PyTorch native version of SVD may be
used for PCA, and FastICA from sklearn may be used for
ICA. The k-means from sklearn may be used for BKM.
Examples of sub-space dimensions were 4 for PCA based
TAFSSL, and 10 for ICA based TAFSSL. The T=0.3 and
N=4 were used for MSP, and k=5 for BKM, all set using
validation. Embodiments may use the backbone implemen-
tations from, for example, SimpleShot. Embodiments may,
for example, use the DenseNet backbone Using the most
time consuming of the proposed TAFSSL approaches (ICA+
BKM) running time was, for example, measured as below
0.05 seconds (CPU) for a typical 1-shot and 5-way episode
with 15 queries per class.

An exemplary block diagram of a computer system 600,
in which processes involved in the embodiments described
herein may be implemented, is shown in FIG. 6. Computer
system 600 may be implemented using one or more pro-
grammed general-purpose computer systems, such as
embedded processors, systems on a chip, personal comput-
ers, workstations, server systems, and minicomputers or
mainframe computers, or in distributed, networked comput-
ing environments. Computer system 600 may include one or
more processors (CPUs) 602A-602N, input/output circuitry
604, network adapter 606, and memory 608. CPUs 602A-
602N execute program instructions in order to carry out the
functions of the present communications systems and meth-
ods. Typically, CPUs 602A-602N are one or more micro-
processors, such as an INTEL CORE® processor. FIG. 6
illustrates an embodiment in which computer system 600 is
implemented as a single multi-processor computer system,
in which multiple processors 602A-602N share system
resources, such as memory 608, input/output circuitry 604,
and network adapter 606. However, the present communi-
cations systems and methods also include embodiments in
which computer system 600 is implemented as a plurality of

US 11,816,593 B2

9

networked computer systems, which may be single-proces-
sor computer systems, multi-processor computer systems, or
a mix thereof.

Input/output circuitry 604 provides the capability to input
data to, or output data from, computer system 600. For
example, input/output circuitry may include input devices,
such as keyboards, mice, touchpads, trackballs, scanners,
analog to digital converters, etc., output devices, such as
video adapters, monitors, printers, etc., and input/output
devices, such as, modems, etc. Network adapter 606 inter-
faces device 600 with a network 610. Network 610 may be
any public or proprietary LAN or WAN, including, but not
limited to the Internet.

Memory 608 stores program instructions that are executed
by, and data that are used and processed by, CPU 602 to
perform the functions of computer system 600. Memory 608
may include, for example, electronic memory devices, such
as random-access memory (RAM), read-only memory
(ROM), programmable read-only memory (PROM), electri-
cally erasable programmable read-only memory (EE-
PROM), flash memory, etc., and electro-mechanical
memory, such as magnetic disk drives, tape drives, optical
disk drives, etc., which may use an integrated drive elec-
tronics (IDE) interface, or a variation or enhancement
thereof, such as enhanced IDE (FIDE) or ultra-direct
memory access (UDMA), or a small computer system
interface (SCSI) based interface, or a variation or enhance-
ment thereof, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc., or Serial Advanced Technology Attachment
(SATA), or a variation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) interface.

The contents of memory 608 may vary depending upon
the function that computer system 600 is programmed to
perform. In the example shown in FIG. 6, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above. How-
ever, one of skill in the art would recognize that these
routines, along with the memory contents related to those
routines, may not be included on one system or device, but
rather may be distributed among a plurality of systems or
devices, based on well-known engineering considerations.
The present systems and methods may include any and all
such arrangements.

In the example shown in FIG. 6, memory 608 may include
unsupervised low-dimensional projection routines 614,
unsupervised clustering/inference routines 616, which may
include BKM routines 618 and MSP routines 620, meta-
training routines 622, and operating system 630. Unsuper-
vised low-dimensional projection routines 612 may include
software routines to implement PCA or ICA based TAFSSL,
as described above. Unsupervised clustering/inference rou-
tines 614 may include software routines to perform Bayesian
K-Means (BKM) 620 and Mean-Shift Propagation (MSP)
622, as described above. Meta-training routines 622 may
include software routines to perform end-to-end meta-train-
ing, as described above. Operating system 630 may provide
overall system functionality.

As shown in FIG. 6, the present communications systems
and methods may include implementation on a system or
systems that provide multi-processor, multi-tasking, multi-
process, and/or multi-thread computing, as well as imple-
mentation on systems that provide only single processor,
single thread computing. Multi-processor computing
involves performing computing using more than one pro-
cessor. Multi-tasking computing involves performing com-
puting using more than one operating system task. A task is
an operating system concept that refers to the combination

10

15

20

25

30

35

40

45

50

55

60

65

10

of a program being executed and bookkeeping information
used by the operating system. Whenever a program is
executed, the operating system creates a new task for it. The
task is like an envelope for the program in that it identifies
the program with a task number and attaches other book-
keeping information to it. Many operating systems, includ-
ing Linux, UNIX®, OS/2®, and Windows®, are capable of
running many tasks at the same time and are called multi-
tasking operating systems. Multi-tasking is the ability of an
operating system to execute more than one executable at the
same time. Each executable is running in its own address
space, meaning that the executables have no way to share
any of their memory. This has advantages, because it is
impossible for any program to damage the execution of any
of the other programs running on the system. However, the
programs have no way to exchange any information except
through the operating system (or by reading files stored on
the file system). Multi-process computing is similar to
multi-tasking computing, as the terms task and process are
often used interchangeably, although some operating sys-
tems make a distinction between the two.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device.

The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

US 11,816,593 B2

11

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart

10

15

20

25

30

35

40

45

50

55

60

65

12

or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

Although specific embodiments of the present invention
have been described, it will be understood by those of skill
in the art that there are other embodiments that are equiva-
lent to the described embodiments. Accordingly, it is to be
understood that the invention is not to be limited by the
specific illustrated embodiments, but only by the scope of
the appended claims.

What is claimed is:

1. A method, implemented in a computer system com-
prising a processor, memory accessible by the processor, and
computer program instructions stored in the memory and
executable by the processor, the method comprising:

training a machine learning system to classity features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or
a few unlabeled samples for which predictions are
not needed, and wherein the generated sample set is
Gaussian,

performing dimensionality reduction computed on the
samples in the sample set to form a dimension
reduced sub-space, wherein the dimensionality
reduction is performed by finding dimensions of
maximal variance,

generating class representatives in the dimension
reduced sub-space using clustering, wherein the
clustering is performed using Mean-Shift Propaga-
tion processing; and

classifying features in images using the trained machine

learning system.

2. The method of claim 1, further comprising performing
end-to-end meta training of the neural network model using
the generated class representatives.

3. The method of claim 1, wherein the generated sample
set comprises one or a few labeled training samples and one
of'one or a few bulk query samples that are used as unlabeled
samples or one or a few unlabeled samples for which
predictions are not needed and normalization of the bulk
query samples and support samples and the query and
unlabeled samples is performed separately.

4. A method, implemented in a computer system com-
prising a processor, memory accessible by the processor, and
computer program instructions stored in the memory and
executable by the processor, the method comprising:

training a machine learning system to classity features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or

US 11,816,593 B2

13

a few unlabeled samples for which predictions are
not needed and wherein the generated sample set is
non-Gaussian;
performing dimensionality reduction on the samples in
the sample set to form a dimension reduced sub-
space by finding dimensions that are maximally
independent from each other and that best approxi-
mate the data,
generating class representatives in the dimension
reduced sub-space using clustering performed using
Mean-Shift Propagation processing; and
classifying features in images using the trained machine
learning system.

5. The method of claim 4, further comprising performing
end-to-end meta training of the neural network model using
the generated class representatives.

6. The method of claim 4, wherein the generated sample
set comprises one or a few labeled training samples and one
or a few bulk query samples that are used as unlabeled
samples or one or a few unlabeled samples for which
predictions are not needed and normalization of the bulk
query samples and support samples and the query and
unlabeled samples is performed separately.

7. A system comprising a processor, memory accessible
by the processor, and computer program instructions stored
in the memory and executable by the processor to perform:

training a machine learning system to classify features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or
a few unlabeled samples for which predictions are
not needed and wherein the generated sample set is
Gaussian,

performing dimensionality reduction computed on the
samples in the sample set to form a dimension
reduced sub-space, wherein the dimensionality
reduction is performed by finding dimensions of
maximal variance,

generating class representatives in the dimension
reduced sub-space using combined clustering and
inference performed using Mean-Shift Propagation
processing; and

classifying features in images using the trained machine

learning system.

8. The method of claim 7, further comprising performing
end-to-end meta training of the neural network model using
the generated class representatives.

9. The method of claim 7, wherein the generated sample
set comprises one or a few labeled training samples and one
or a few bulk query samples that are used as unlabeled
samples or one or a few unlabeled samples for which
predictions are not needed and normalization of the bulk
query samples and support samples and the query and
unlabeled samples is performed separately.

10. A system comprising a processor,

memory accessible by the processor, and computer pro-

gram instructions stored in the memory and executable
by the processor to perform:

training a machine learning system to classify features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or
a few unlabeled samples for which predictions are
not needed and wherein the generated sample set is
non-Gaussian;

10

15

20

25

30

35

40

45

50

55

60

65

14

performing dimensionality reduction on the samples in
the sample set to form a dimension reduced sub-
space by finding dimensions that are maximally
independent from each other and that best approxi-
mate the data using a neural network model imple-
menting Independent Component Analysis dimen-
sionality reduction,

generating class representatives in the dimension
reduced sub-space using combined clustering and
inference performed using Mean-Shift Propagation
processing; and

classifying features in images using the trained machine

learning system.

11. The system of claim 10, further comprising perform-
ing end-to-end meta training of the neural network model
using the generated class representatives.

12. The system of claim 10, wherein the generated sample
set comprises one or a few labeled training samples and one
or a few bulk query samples that are used as unlabeled
samples or one or a few unlabeled samples for which
predictions are not needed and normalization of the bulk
query samples and support samples and the query and
unlabeled samples is performed separately.

13. A computer program product comprising a non-
transitory computer readable storage having program
instructions embodied therewith, the program instructions
executable by a computer, to cause the computer to perform
a method comprising:

training a machine learning system to classity features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or
a few unlabeled samples for which predictions are
not needed and wherein the generated sample set is
Gaussian,

performing dimensionality reduction computed on the
samples in the sample set to form a dimension
reduced sub-space, wherein the dimensionality
reduction is performed by finding dimensions of
maximal variance,

generating class representatives in the dimension
reduced sub-space using combined clustering and
inference performed using Mean-Shift Propagation
processing; and

classifying features in images using the trained machine

learning system.

14. The computer program product of claim 13, further
comprising performing end-to-end meta training of the
neural network model using the generated class representa-
tives and the generated sample set comprises one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or a few
unlabeled samples for which predictions are not needed and
normalization of the bulk query samples and support
samples and the query and unlabeled samples is performed
separately.

15. A computer program product comprising a non-
transitory computer readable storage having program
instructions embodied therewith, the program instructions
executable by a computer, to cause the computer to perform
a method comprising:

training a machine learning system to classity features in

images by:

generating a sample set comprising one or a few
labeled training samples and one or a few bulk query
samples that are used as unlabeled samples or one or

US 11,816,593 B2

15

a few unlabeled samples for which predictions are
not needed and wherein the generated sample set is
non-Gaussian;

performing dimensionality reduction on the samples in
the sample set to form a dimension reduced sub-
space by finding dimensions that are maximally
independent from each other and that best approxi-
mate the data,

generating class representatives in the dimension
reduced sub-space using combined clustering and
inference performed using Mean-Shift Propagation
processing; and

classifying features in images using the trained machine

learning system.

16. The computer program product of claim 15, further
comprising performing end-to-end meta training of the
neural network model using the generated class representa-
tives.

17. The computer program product of claim 15, wherein
the generated sample set comprises one or a few labeled
training samples and one or a few bulk query samples that
are used as unlabeled samples or one or a few unlabeled
samples for which predictions are not needed and normal-
ization of the bulk query samples and support samples and
the query and unlabeled samples is performed separately.

#* #* #* #* #*

10

15

20

25

16

