US011868759B2

a2 United States Patent
Ben-Moshe et al.

US 11,868,759 B2
Jan. 9, 2024

(10) Patent No.:
45) Date of Patent:

(54) SHADER SOURCE CODE PERFORMANCE (56) References Cited
PREDICTION
U.S. PATENT DOCUMENTS
(71) Applicant: Advanced Micro Devices, Inc., Santa 2010/0141678 Al 62010 Abdo ef al.
Clara, CA (US) 2015/0348224 Al 12/2015 Avkarogullari et al.
2016/0179490 Al* 6/2016 Lee ..ccooeovvvvveennee GOGF 8/447
(72) Inventors: Amit Ben-Moshe, Boston, MA (US); 717/146
Ian Charles Colbert, San Diego, CA 2020/0380754 Al* 12/2020 Nevraev GO6T 1/20
(US) 2021/0294579 Al 9/2021 .Ben-Moshe et al.
(Continued)
(73) Assignee: Advanced Micro Devices, Inc., Santa
Clara, CA (US) OTHER PUBLICATIONS
. “Machine Learning: Strengthening Performance Predictions”, Com-
(*) Notice: Subj eCt. to any dlSCIalmer’. the term of this puting LLNL [retrieved Oct. 12, 2021]. Retrieved from the Internet
patent is extended or adjusted under 35 <https://computing.llnl.gov/projects/machine-learning-strengthens-
US.C. 154(b) by 21 days. performance-predictions™>., 2 Pages.
(21) Appl. No.: 17/545,801 (Continued)
(22) Filed: Dec. 8, 2021 Primary Examiner — Duy Khuong T Nguyen
(74) Attorney, Agent, or Firm — FIG. 1 Patents
(65) Prior Publication Data 57 ABSTRACT
US 2023/0176847 Al Jun. 8, 2023 Shader source code performance prediction is described. In
(51) Int. CL accordance with the (.1escribed Fechniques, an update to
GOGF 8/65 (2018.01) shad.er source code for implementing a shader is rece.lved. A
GO6T 15/00 (2011 '01) prediction of performance of the shader on a processing unit
’ is generated based on the update to the shader source code.
GOG6N 20/00 (2019.01) Feedback about the update is output. The feedback includes
GO6F 8/51 (2018.01) the prediction of performance of the shader. In one or more
GOGF 8/41 (2018.01) implementations, generating the prediction of performance
(52) US. CL of'the shader includes compiling the shader source code with
CPC . GOG6F 8/65 (2013.01); GO6F 8/443 the update to generate a representation of the shader, input-
(2013.01); GOGF &/51 (2013.01); GO6N 20/00 ting the representation of the shader to one or more machine
(2019.01); GO6T 15/005 (2013.01) learning models, and receiving the prediction of perfor-
(58) Field of Classification Search mance of the shader as an output from the one or more

CPC GOGF 8/441; GOGF 8/425; GOGF 8/443;
GOG6F 8/51; GO6F 8/65
See application file for complete search history.

200 =t

Inermediate Language 206

machine learning models.

20 Claims, 8 Drawing Sheets

Source Code Update 114

Developer Tools

‘tpdated Shader Soirce Code 264

Cotnplier
202

Shader Representation 118

Prediction Engine: 106

Machine Learning
Models 208

~Z

Prediction 120

Parormance Predicled
Prediction Trend
210 22

US 11,868,759 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2022/0058476 Al* 2/2022 Calidasc.c....... GO6N 3/08

OTHER PUBLICATIONS

“Program Performance Prediction with Deep Learning”, CSAIL
[retrieved Oct. 12, 2021]. Retrieved from the Internet <https://www.
csail.mit.edu/research/program-performance-prediction-deep-
learning>., Apr. 28, 2020, 3 Pages.

Braun, Lorenz et al., “A Simple Model for Portable and Fast
Prediction of Execution Time and Power Consumption of GPU
Kernels”, Cornell University arXiv, arXiv.org [retrieved Oct. 12,
2021]. Retrieved from the Internet <https://arxiv.org/pdf/2001.07104.
pdf>., Jan. 20, 2020, 23 Pages.

Chennupati, Gopinath et al., “Machine Learning Enabled Scalable
Performance Prediction of Scientific Codes”, Cornell University
arXiv, arXiv.org [retrieved Oct. 12, 2021]. Retrieved from the
Internet <https://arxiv.org/pdf/2010.04212.pdf>., Nov. 12, 2020, 28
Pages.

U.S. Appl. No. 17/205,993, filed Aug. 4, 2022 , “Non-Final Office
Action”, U.S. Appl. No. 17/205,993, filed Aug. 4, 2022, 13 pages.
U.S. Appl. No. 17/205,993, filed Apr. 13, 2023 , “Final Office
Action”, U.S. Appl. No. 17/205,993, filed Apr. 13, 2023, 16 pages.

* cited by examiner

,368,759 B2

US 11

Sheet 1 of 8

2024

9,

Jan

U.S. Patent

g0t
auibug uonoipaid

I "Old

uooIPaId

7 et
4

gl
uoljejuesasdey

Jopeys

|

ol
5100 Jadojeas(

80T
isjjonucn Aejdsig

ai7
¥orqpesd

7T
siepdn
8pO0) /NG

PO JUSUIUOHAUT

wewdopaag

201 @pod
B0IN0G JBPRYS

U.S. Patent Jan. 9, 2024

200 Y

Sheet 2 of 8

US 11,868,759 B2

Source Code Update 114 I

<L

110

Developer Tools

Updated Shader Source Code 204 I

Intermediate Language 206 l

202

y

Compiler

Shader Representation 118 l

<7

Prediction Engi

ne 106

Machine Learning
Models 208

N\

Prediction 120

Performance
Prediction
210

Predicted
Trend
212

FIG. 2

US 11,868,759 B2

Sheet 3 of 8

Jan. 9, 2024

U.S. Patent

¢ Old

3

wibdpua s
JOWOD BUOR QA OA "LA "LA Odjt e — a.x;m
0L ‘On‘On P99 T8l 9l And oA
CAZA ‘LA EEQ 2E) 9L Zmd iAo A
Z0e ‘LA OA 268 zg) zd diogul A
AQINE ‘LA ‘BA Zee zes 2d dusu A
XOME ‘LA ‘ZA 288 zey zd disyur A
Z'0HI8 'OA ‘OA zee zey 1Ld dispa A
A0 "0 ‘oA zea ze) 1d diulA
XOIE On ‘ZA Zee zes 1d dsu A
28 ‘ow 2eq Aow s

spuesadQ 8poadQ

| 8 ,

S

[ap!

}

}

{

. i

oy {
&

- i

= }
ke

o) |
Q
o]
g
<
[&]
@
>
1
Sem
o)
o}
@
pei
D

] /

-~

i

§

" SojonBeiy,oionBels = sojonbes

i }
90¢% % {urewt pIoA

— sBumieg ping £

— s augadid)

woah
sojonbesy ©oaa Ut {§ = uogeoopInoAe] 258}

sigeue | §100{qo Jepeys guy 15 UOISUBIXaf
axnbai : spnppul” STOOD 1O UOISURIXSH)

FATALM

!

!

|

!

!

|

1

LOIODING o8 N0 ((= uoneooinode; “
!

i

|

!

|

|

{. poyetauab-ony ./ _

swieN jo9foigd

\

/ aoeuaU} Josn ~ JoupT weiboid

~ 144

~ AV

US 11,868,759 B2

Sheet 4 of 8

Jan. 9, 2024

U.S. Patent

¥ "Old

3

wibdpua s
JOWOD BUOR QA OA "LA "LA Odjt e — a.x;m
0L ‘On‘On P99 T8l 9l And oA
CAZA ‘LA EEQ 2E) 9L Zmd iAo A
Z0e ‘LA OA 268 zg) zd diogul A
AQINE ‘LA ‘BA Zee zes 2d dusu A
XOME ‘LA ‘ZA 288 zey zd disyur A
Z'0HI8 'OA ‘OA zee zey 1Ld dispa A
A0 "0 ‘oA zea ze) 1d diulA
XOIE On ‘ZA Zee zes 1d dsu A
28 ‘ow 2eq Aow s

spuesadQ 8poadQ

| 8 /

0¢ 'l &
Al
{107 L aojonBeig)posa = 10j001ne W
Yo
(Qurews pioa — wosh
f
0[O0 o8 Inc {§ = uoneoopinode; |
sojonbesy ©oaa Ut {§ = uogeoopInoAe] M — 258}
t
sjqeua : spefqoepeys gy 19D UOISUBIXaH |
aanbai : spnppul” SO0 1O UOIBURIXSH | —)
H
H
!

— sBumieg ping £

— s augadid)

112 uosiong
f« payesousB-oiny .

swieN jo9foigd

\

/ aoeuaU} Josn ~ JoupT weiboid

. 70t

/.. ALY

US 11,868,759 B2

Sheet 5 of 8

Jan. 9, 2024

U.S. Patent

~ %02
- %0V

H
OFN 2 fen} oum
208 |-%00

\
i
H
]
m !
” m
W fopaenosa 0 w
| 9P0D 10} SuimuNI SBEIIAR PBIOIPAIA JO LORNGLISIC |
m

6L0Z 44 10} UOROIPBI] SOUSULIOLD)

Nrml/c N e AR T T T I >

P e e R I R R W R

w\ V202 44 BL0C 44 LLOT 44

»

pRERNERRRRRE. §
m — !
%i- | 1

{

H

{

{

§

§

i

i

909 x/H

P !
I ge]) weeio e 802012 @ !
“Mmcywmm weogoL e gozole |
! suljpwi uoiezZIwndD

N -

%

UORDIPBI JOIABYSE piBD mﬁm&a&o&

e e o e e e e e e e e

]
\ 510 44 40} UOROIPRID BOUBULIOUS -

3

e \
0¢ 'l &
S al
{107 L aojonBeig)posa = 10j001ne W
Yo
(Qurews pioa — woah
f
0[O0 o8 Inc {§ = uoneoopinode; |
sojonbesy ©oaa Ut {§ = uogeoopInoAe] M — 258}
t
sjqeua : spefqoepeys gy 19D UOISUBIXaH |
aanbai : spnppul” SO0 1O UOIBURIXSH | —)
H
H
!

— sBumieg ping £

— s augadid)

112 uosiong
f« payesousB-oiny .

swieN jo9foigd

/ aoeuaU} Josn ~ JoupT weiboid

/.. ALY

US 11,868,759 B2

Sheet 6 of 8

Jan. 9, 2024

U.S. Patent

~

/)
f 7y
| =
. \\sl.l.m.l.l.l‘.v.l‘ll.m.l.l.l.N.l..l.l«l..l..l.o.l,l// !
| {
{ OFN m:_ oy | §
i ~HOZ iy
! ! —uor My
| i 5409 w , sbumes ping £¥
f i .y !
! i Gaeaosd 0 w i
" M 2poo 10} wuns abelese palaipaid JO UORNGLESI u “ — oyEs eutedig @
" 717 I/ m/ 8107 44 10} UoOIpaLd mo:mE._otwn_\ “
B ot w5 e N |
i &y w\ — / i -
B! 209 90§ — iy { _
Ifyl-——-~—m———— - ~ % |41 30° 1 10100Be)p0eA = sOj001IN0 :
" { “ { mo\wm.u ;) uonezumdo 0 " i a0 i1 }

{ - i 5 { f
PRI o1 wdigsoiesocoiz @} e 111 (uiews pioa — b
PR el wdoguowesosoiz | o it)
i i i+l wesroL e gozoiz |y aa ; { JOI0OIN0 HO8A ING AO = COSNOOCE;O%E
Pl [wed weicopesgozoiz |y %" 1210} 1 aojenbely coaa u (g = uogesapnoAe] 3591
“ { “Mmc._wmmm_ wegeioL Je R0Z0LT “ f o %S § “

i f .] . e
PRIl ounown uopeziupdo | | e ! e L Homonat
PN~~~ —~ — /N/lll — ,coao.vo& oiaByeq pien mwamhmano\ i ! L8phpul SO00H O UOIsUSIXSH 088}
B N ene 0] T e e e e t
i - y04 9,6 &g pasesioap awguns ebelane vmwo_vm(_w\ , 112 LOISIONS
\ sisA{eay pusi 1L, \ /. paretsusf-ony ./

3\ 51.02 4 10} UORDIPAIT SOUBLIOHS
/ / aoepal} Josn ~ JoyupT weiboid
_ poe Ay /.
A 20¢
009 9L

U.S. Patent Jan. 9, 2024 Sheet 7 of 8 US 11,868,759 B2

700 ——~

702
Receive an update to shader source code for implementing a shader

704
Generate a prediction of performance of the shader on a processing unit
based on the update to the shader source code

Y

706
Output feedback about the update, the feedback including the prediction of
performance of the shader

FIG. 7

U.S. Patent Jan. 9, 2024 Sheet 8 of 8 US 11,868,759 B2

800
R

802
Receive a shader representation of a shader, the shader representation
generated by compiling shader source code for the shader

804
Generate a first performance prediction of the shader on a processing unit
based on the shader representation

806
Receive an updated shader representation of the shader, the updated shader
representation generated by compiling the shader source code after an update to
the shader source code

808
Generate a second performance prediclion of the shader on the processing unit
based on the updated shader representation

810
Determine a predicted trend of the shader by comparing the first performance
prediction of the shader to the second performance prediction of the shader, the
predicted trend indicating an improvement or decline in performance of the
shader caused by the update to the shader source code

FIG. 8

US 11,868,759 B2

1
SHADER SOURCE CODE PERFORMANCE
PREDICTION

BACKGROUND

A shader is a program that runs on a stage (e.g., a
programmable stage) of a processing unit (e.g., a graphics
processing unit (GPU)). In various deployments, for
example, shaders provide code for programmable stages of
rendering pipelines. In scenarios involving a rendering pipe-
line, a shader is run on a respective processing unit to
perform one or more calculations in connection with ren-
dering a scene for display on a display device.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures.

FIG. 1 is a block diagram of a non-limiting example
system having a prediction engine that predicts performance
of a shader on a processing unit from source code of the
shader according to some implementations.

FIG. 2 depicts a non-limiting example in which a predic-
tion engine uses machine learning models to generate pre-
dictions of performance of a shader from source code for
implementing the shader.

FIG. 3 depicts a non-limiting example of a user interface
of'a development environment that is used to update source
code for implementing a shader.

FIG. 4 depicts a non-limiting example in which the user
interface of the development environment displays an
update to the source code for implementing the shader.

FIG. 5 depicts a non-limiting example in which the user
interface of the development environment displays feedback
about predicted performance of the shader based on the
update to the source code.

FIG. 6 depicts a non-limiting example in which the user
interface of the development environment is updated to
display feedback about predicted performance of the shader
based on additional updates to the source code.

FIG. 7 depicts a procedure in an example implementation
of outputting feedback to an update to shader source code.

FIG. 8 depicts a procedure in an example implementation
of generating predictions of performance of a shader.

DETAILED DESCRIPTION

Overview

During development of a shader, developers are unable to
obtain an accurate prediction of whether updates to the
source code for the shader will have a positive or negative
effect on the performance of the shader on a processing unit.
Conventionally, in order to predict performance of a shader,
a developer runs the finished code on an actual processing
unit but doing so requires the developer to have access to the
processing unit itself. Moreover, the time to run the code on
the processing unit, measure the performance, and determine
the reasons for an increase or decrease in performance is
cumbersome and time consuming, while also causing a
break in the flow of development. Alternately, the source
code could be simulated or emulated, but simulators and
emulators are expensive and require extensive developer
time to build. Additionally, running a shader in a simulation
and measuring performance also consumes valuable time
and ties up computing resources. Moreover, even if a
developer has access to the processing unit, a simulator, or
an emulator, it can be difficult to pinpoint the reasons for

25

35

40

45

55

2

increased or decreased performance of the shader relative to
previous versions of the shader. The performance of a shader
may also vary across different processing units, making it
difficult to accurately determine whether an update to the
shader will improve performance of the shader across mul-
tiple different processing units.

To solve these problems, shader source code performance
prediction is leveraged. A development environment pro-
vides developer tools including a user interface for devel-
oping source code for a shader. A developer interacts with
the developer tools to make updates to the shader source
code, such as by adding a line of code to the shader source
code via the user interface, removing a line of code from the
shader source code, or making a modification within a line
of the shader source code. In one or more examples, the
developer tools also enable the developer to make changes
which are different from updates made directly to the shader
source code, such as by making a change to a compiler
setting which is used for compiling the shader (e.g., chang-
ing an optimization flag) or changing an application pro-
gramming interface (API) state of a pipeline associated with
the shader. Responsive to the update, feedback is provided
to the developer via the user interface. The feedback, for
example, includes performance predictions, such as whether
the source code update will cause the performance of the
shader on a processing unit to improve or decline as com-
pared to a previous version of the source code prior to the
update.

The feedback is provided in real-time, as the developer is
editing the source code for the shader. Thus, the feedback
provides a basis for further updates to the shader source
code. In other words, based on the feedback, the developer
can decide whether to undo the source code update, keep the
source code update in the shader source code, or attempt to
introduce additional updates to the shader source code. In
this way, the development environment provides a guided
optimization process that enables the developer to make
changes to the shader source code to improve the perfor-
mance of the shader during development. For example, the
developer can continue to interact with the user interface to
incrementally update the shader source code, and then view
the feedback with performance predictions to decide
whether more updates are warranted. This process can
continue through any number of iterations until the shader
source code is optimized.

In accordance with various implementations, a prediction
engine generates the prediction about performance of the
shader based on the updated shader source code using one or
more machine learning models. Leveraging the machine
learning models to generate the predictions eliminates the
need to run the shader (on the actual processing units or in
a simulation of those processing units) and measure perfor-
mance of the shader as run. Because the shader need not be
run on the actual processing unit, the developer or entity
optimizing the shader does not need to purchase or other-
wise access the hardware processing unit. Moreover, gen-
erating predictions of shader performance using the machine
learning models guides the developer in real-time (or near
real-time) as updates to the code are received and processed.
Conventional techniques that involve running a shader (e.g.,
on a processing unit or in a simulation) and measuring
performance of the shader are not capable of providing
real-time or even near real-time feedback. This is because
the runtime of shaders and collection of information intro-
duce too much lag to enable real-time feedback to be
provided. In some cases, the machine learning models are
trained with data for multiple processing units which enables

US 11,868,759 B2

3

the machine learning models to predict the performance of
a shader on each of those multiple processing units thereby
allowing the developer to optimize the shader for multiple
processing units.

In some aspects, the techniques described herein relate to
a method including: receiving an update to shader source
code for implementing a shader; generating a prediction of
performance of the shader on a processing unit based on the
update to the shader source code; and outputting feedback
about the update, the feedback including the prediction of
performance of the shader.

In some aspects, the techniques described herein relate to
a method, wherein generating the prediction of performance
of the shader further includes: compiling the shader source
code with the update to generate a representation of the
shader; inputting the representation of the shader to one or
more machine learning models trained based on historical
data describing performance of one or more other shaders on
the processing unit; and receiving the prediction of perfor-
mance of the shader as an output from the one or more
machine learning models.

In some aspects, the techniques described herein relate to
a method, wherein the prediction of performance is gener-
ated without running or simulating the shader on the pro-
cessing unit.

In some aspects, the techniques described herein relate to
a method, wherein the prediction of performance includes an
estimation of a statistic based on execution time of the
shader to perform at least one operation for the processing
unit.

In some aspects, the techniques described herein relate to
a method, wherein the statistic based on execution time
includes an average execution time of the shader to perform
the at least one operation for the processing unit.

In some aspects, the techniques described herein relate to
a method, wherein the statistic based on execution time
includes a variance in execution time of the shader to
perform the at least one operation for the processing unit.

In some aspects, the techniques described herein relate to
a method, wherein the prediction of performance includes a
predicted trend between a first performance prediction of the
shader before the update to the shader source code and a
second performance prediction of the shader after the update
to the shader source code.

In some aspects, the techniques described herein relate to
a method, wherein the predicted trend includes a percentage
improvement in the performance of the shader.

In some aspects, the techniques described herein relate to
a method, wherein the predicted trend includes a percentage
decline in the performance of the shader.

In some aspects, the techniques described herein relate to
a method, wherein the update to the shader source code
includes at least one of: an addition of at least one line of
code to the shader source code; removal of at least one line
of code from the shader source code; a modification within
at least one line of code of the shader source code; or a
change to compiler settings.

In some aspects, the techniques described herein relate to
a method, wherein the update is received via user input to a
user interface, and wherein the feedback about the update is
output via the user interface.

In some aspects, the techniques described herein relate to
a method, wherein the update is received from an automated
bot, and wherein the feedback about the update is output to
the automated bot.

In some aspects, the techniques described herein relate to
a method, further including generating an additional predic-

20

25

30

40

45

50

55

65

4

tion of performance of the shader on at least one additional
processing unit based on the update to the shader source
code, wherein the feedback further includes the additional
prediction of performance of the shader.

In some aspects, the techniques described herein relate to
a system including: at least one developer tool to update
shader source code for implementing a shader; a compiler to
generate a representation of the shader by compiling the
updated shader source code; and a prediction engine to
generate a prediction of performance of the shader on a
processing unit by processing the representation of the
shader using one or more machine learning models.

In some aspects, the techniques described herein relate to
a system, wherein the one or more machine learning models
are trained based on historical data describing performance
of one or more other shaders on the processing unit.

In some aspects, the techniques described herein relate to
a system, further including a display controller to display the
prediction of performance of the shader in a user interface.

In some aspects, the techniques described herein relate to
a system, wherein the compiler generates the representation
of the shader in an intermediate language.

In some aspects, the techniques described herein relate to
a method including: receiving a shader representation of a
shader, the shader representation generated by compiling
shader source code for the shader; generating a first perfor-
mance prediction of the shader on a processing unit based on
the shader representation; receiving an updated shader rep-
resentation of the shader, the updated shader representation
generated by compiling the shader source code after an
update to the shader source code; generating a second
performance prediction of the shader on the processing unit
based on the updated shader representation; and determining
a predicted trend of the shader by comparing the first
performance prediction of the shader to the second perfor-
mance prediction of the shader, the predicted trend indicat-
ing an improvement or decline in performance of the shader
caused by the update to the shader source code.

In some aspects, the techniques described herein relate to
a method, further including outputting, in a user interface,
the predicted trend indicating the improvement or decline in
the performance of the shader caused by the update to the
shader source code.

In some aspects, the techniques described herein relate to
a method, further including outputting, in the user interface,
the second performance prediction of the shader, the second
performance prediction of the shader displayed concurrently
with the predicted trend in the user interface.

FIG. 1 is a block diagram of a non-limiting example
system 100 having a prediction engine that predicts perfor-
mance of a shader on a processing unit from source code of
the shader according to some implementations. In particular,
the system 100 includes shader source code 102, develop-
ment environment 104, and prediction engine 106.

In accordance with the described techniques, the shader
source code 102 implements a shader or a pipeline of
shaders, e.g., the shader source code 102 is configured to be
compiled by a compiler to produce a shader or a pipeline of
shaders. A shader is a program that runs on a stage (e.g., a
programmable stage) of a processing unit (e.g., a graphics
processing unit (GPU)). In various deployments, for
example, shaders provide code for programmable stages of
rendering pipelines. In some variations involving a render-
ing pipeline, a shader is run on a respective processing unit
to perform one or more calculations in connection with
rendering a scene for display on a display device, including,
for example, calculations for: shading; altering a position of

US 11,868,759 B2

5

pixels, vertices, and/or textures; altering hue, saturation,
brightness, and/or contrast; producing blur, light bloom,
volumetric lighting, a normal mapping (for depth effects),
bokeh, cel shading, posterization, bump mapping, distortion,
chroma keying, and, edge and motion detection. Addition-
ally or alternatively, shaders provide code for various on-
processing unit computations, including, for instance, on-
GPU computations such as general-purpose computing on
graphics processing units. It is to be appreciated that shaders
are run on processing units in some implementations to
provide different functionality from the functionality listed
above without departing from the spirit or scope of the
techniques described herein.

The development environment 104 supports development
of shaders, such as one or more shaders implemented using
the shader source code 102. In this example, the develop-
ment environment 104 includes display controller 108 and
developer tools 110. The display controller 108 causes
output of a user interface 112 of the development environ-
ment 104. For example, the display controller 108 causes the
user interface 112 to be displayed via a display device (not
shown). Alternatively or additionally, the display controller
108 causes the user interface 112 (or a portion of the user
interface 112) to be output in different ways, such as audibly
via a voice assistant device.

In various implementations, the user interface 112 pres-
ents information (e.g., to a user) that is related to updating
the shader source code 102 and generating a shader from the
shader source code 102. For example, the display controller
108 causes the user interface 112 to display the shader
source code 102 (or portions of the code) in one or more
scenarios. The display controller 108 also enables a user to
interact with the developer tools 110 via the user interface
112 to update the shader source code 102. In accordance
with the described techniques, for instance, the display
controller 108 is configured to receive user input for inter-
acting with the developer tools 110 such as to receive touch
input via a touch enabled display device, keyboard input,
stylus input, mouse input, and verbal commands. In one or
more implementations, the system 100 provides tools that
enable a user to provide input to update the shader source
code 102 outside the development environment 104, such as
by using an integrated development environment of the
user’s choice (or a text editor).

Responsive to such user input, the developer tools 110 or
other code updating tools perform various operations on the
shader source code 102. Examples of operations performed
on the shader source code 102 by the developer tools 110
and responsive to user input include, but are not limited to,
adding a line of code to the shader source code 102,
removing a line of code from the shader source code 102,
and making a modification within at least one line of the
shader source code 102. In one or more implementations, the
developer tools 110 facilitate updating the shader source
code 102 in a “high-level” language, examples of which
include High-Level Shader Language (HLSL) and OpenGL
Shading Language (GLSL). It is to be appreciated that the
developer tools 110 enable a variety of operations to be
performed on the shader source code 102 to update the code.

In one or more implementations, the developer tools 110
also enable operations to be performed which affect the
shader produced from the shader source code 102, but which
are different from updates made directly to the shader source
code 102, such as those discussed just above. By way of
example, the developer tools 110 also enable compiler flags,

10

15

20

25

30

35

40

45

6

build settings, and/or specific API states to be updated
without departing from the spirit or scope of the techniques
described herein.

In one or more implementations, for instance, the devel-
oper tools 110 include one or more tools configured to
receive input from a user (e.g., a human user or automated
bot) to update API-specific metadata (i.e., a “state”) that is
taken into account while a compiler compiles a piece of
code. In some variations, where the developer tools 110
enable a human user to update API-specific states, the
display controller 108 is configured to display such tools via
the user interface 112. In addition, such tools enable the
specific API states to be updated without updating the shader
source code 102 or compiler settings.

It is to be appreciated that the developer tools 110 enable
other operations to be performed that affect the shader
implemented by the shader source code 102 without depart-
ing from the spirit or scope of the described techniques. In
accordance with the described techniques, the prediction
engine 106 generates performance predictions of the shader
responsive to such updates—in addition to responsive to
updates to the source code.

Through use of the developer tools 110, the development
environment 104 receives a source code update 114, an
update that affects the shader as compiled, or an update that
affects an API state. Alternatively or additionally, through
use of an integrated development environment outside of the
development environment 104, the system 100 receives the
source code update 114, an update that affects the shader as
compiled, or an update that affects the API state. As men-
tioned above, for instance, a user interacts with the devel-
oper tools 110 via the user interface 112 to update the shader
source code 102, such that the developer tools 110 remove
a line of code, add a line of code, or modify a line of code.
As the shader source code 102 is updated, the development
environment 104 provides feedback 116. In accordance with
the described techniques, for instance, the display controller
108 causes presentation of the feedback 116 via the user
interface 112. When displayed via the user interface 112, the
feedback 116 includes graphical information, such as infor-
mation indicating whether the source code update 114 to the
shader source code 102 causes performance of the shader to
improve or decline. By informing a user regarding whether
the source code update 114 causes the performance of the
shader to improve or decline, the feedback 116 provides a
basis for further updates to the shader source code 102, such
as whether to undo the source code update 114, keep the
source code update 114 in the shader source code 102, or
attempt to introduce additional updates to the shader source
code 102.

To the extent that the feedback 116 indicates a perfor-
mance improvement or decline, it is to be appreciated that
the developer tools 110 are used in one or more implemen-
tations by an automated “bot” to update the shader source
code 102, e.g., without any human-user interaction. Con-
sider an example in which an automated bot utilizes the
developer tools 110 to introduce an update (e.g., a random
update) to the shader source code 102. For instance, the
automated bot determines the update to the shader source
code 102 (e.g., to remove a line of code, add a line of code,
or modify a line of code) and interacts with the developer
tools 110 (e.g., via an application programming interface
(APD)) to provide the source code update 114. The feedback
116 indicating whether the source code update 114 causes
performance of the shader to improve or decline on a target
processing unit is then output to the automated bot.

US 11,868,759 B2

7

Based on the feedback 116, indicating performance
improvement or decline, the automated bot “learns” how to
make further updates to the shader source code 102. For
instance, parameters of one or more underlying machine
learning models which implement the automated bot are
adjusted based on the feedback 116, e.g., according to an
architecture and/or algorithms used to implement those
models. Using reinforcement learning models as an
example, the determination of the source code update 114 by
the automated bot is positively reinforced (e.g., “rewarded”)
when the feedback 116 indicates performance improvements
and is negatively reinforced (e.g., “penalized”) when the
feedback 116 indicates performance declines. Certainly,
such an automated bot is not limited to implementations that
use reinforcement learning models. Rather, various machine
learning models are usable to implement an automated bot
that leverages the developer tools 110 to update the shader
source code 102 and produce a shader that is optimized.

In accordance with the described techniques, the feedback
116 includes or is otherwise based on predictions generated
by the prediction engine 106. As input, the prediction engine
106 receives a shader representation 118 of the shader
derived from the shader source code 102. Examples of the
shader representation 118 include, but are not limited to, an
intermediate language produced by a compiler that compiles
the shader source code 102 (e.g., by compiling the source
code from a high-level language), machine-level code, a
control-flow graph, and other components, such as a live
register analysis of the shader, and data flow graph of the
shader. Accordingly, in one or more implementations, the
shader representation 118 is an intermediate representation
that comprises one or more of the intermediate language, the
machine-level code, a control-flow graph, or the other
components (or a combination of any one or more of them).
Alternatively or in addition, the prediction engine 106
receives as input a shader representation 118 configured
differently from the forms mentioned just above without
departing from the spirit or scope of the described tech-
niques. In one or more implementations, the shader repre-
sentation 118 captures updates to additional and/or different
aspects for implementing the shader, such as updates to
compiler flags, build settings, and/or specific API states.

The prediction engine 106 generates a prediction 120
about performance of the shader based on the shader rep-
resentation 118. In this way, the prediction engine 106
generates the prediction 120 about the shader or a pipeline
of shaders statically from the shader source code 102
without running the shader or the pipeline of shaders, e.g.,
without running a shader and measuring its performance
using a simulation or on the actual hardware for which the
shader is developed and compiled. Thus, the prediction
engine 106 generates a prediction about performance of the
shader implemented by the shader source code 102 without
running the code, without profiling the code, and without
emulating execution of the code. Instead, the prediction
engine 106 generates the prediction 120 using one or more
machine learning models, as discussed in more detail in
relation to FIG. 2. Notably, the prediction engine also takes
into account (if applicable) the accompanying compiler
settings or API-specific state when generating the prediction
120.

Alternatively or in addition, the prediction engine 106
generates the prediction 120 about performance of pipeline
state objects based on one or more representations of them,
e.g., generates a prediction about performance of each
pipeline state object of a pipeline. In accordance with the
described techniques, the prediction engine 106 generates

5

10

15

20

25

30

35

40

45

50

55

60

8

this prediction about the performance of the pipeline state
objects without running corresponding source code, without
profiling the code, and without emulating execution of the
code. Instead, the prediction engine generates the prediction
120 using one or more machine learning models.

By generating the prediction 120 without running the
code, without profiling the code, and without emulating
execution of the code, the prediction engine 106 eliminates
obstacles that arise in connection with optimizing shaders by
updating their source code. In particular, the prediction
engine 106 eliminates the need to run the shader on an actual
processing unit (hardware) for which the shader is coded and
compiled. Because the shader need not be run on the actual
processing unit, a developer or entity optimizing the shader
does not need to purchase or otherwise access the hardware.
When the development environment 104 enables the shader
source code 102 to be compiled for multiple processing units
(e.g., a family of processing units from a particular entity or
processing units of a comparable class from different enti-
ties), the developer or entity is able to optimize the shader
without purchasing or otherwise accessing the multiple
processing units.

In accordance with the described techniques, the predic-
tion engine 106 generates the prediction 120 of performance
of the shader (implemented by the shader source code 102)
for one or more processing units. By way of example, the
prediction engine 106 generates the prediction 120 as one or
more estimated statistics that describe a distribution of a
performance metric of the shader on the one or more
processing units, e.g., an estimated mean and/or an esti-
mated variance of the performance metric. Alternatively or
in addition, the prediction engine 106 generates the predic-
tion 120 as an estimate of a trend, e.g., an estimate of
performance change of the shader between the shader source
code 102 before the source code update 114 and after the
source code update 114. As described in more detail below,
the estimate of the performance change may indicate a
direction of the performance change (e.g., an improvement
or a decline in performance) and/or an amount of the
performance change (e.g., a percentage improvement or an
improvement in absolute time such as microseconds and
nanoseconds). In the context of generating the prediction
120, consider the following discussion of FIG. 2.

FIG. 2 depicts a non-limiting example 200 in which a
prediction engine uses machine learning models to generate
predictions of performance of a shader from source code for
implementing the shader. Example 200 includes from FIG.
1 the developer tools 110 and the prediction engine 106. The
illustrated example 200 also includes compiler 202. The
compiler 202 receives updated shader source code 204,
which is updated based on receipt of the source code update
114 made using the developer tools 110. In one or more
implementations, the updated shader source code 204 cor-
responds to the shader source code 102 with the source code
update 114, as depicted in FIG. 1. For example, when the
source code update 114 removes a line of code, the updated
shader source code 204 corresponds to the shader source
code 102 with the line of code removed. It is to be appre-
ciated that the compiler 202 is also capable of compiling the
shader source code 102 prior to a source code update, e.g.,
to serve as a baseline implementation of the shader. The
compiler 202 is also capable of compiling the shader source
code 102 based on other updates that affect the shader, such
as updates to compiler flags, build settings, and/or API-
specific states.

The compiler 202 compiles the updated shader source
code 204. In one or more implementations, the compiler 202

US 11,868,759 B2

9

compiles the updated shader source code 204 based on a
selection to compile the source code, e.g., a selection
received via the user interface 112. Alternatively or addi-
tionally, the compiler 202 compiles the updated shader
source code 204 as source code updates 114 are received.
For example, responsive to user input via the user interface
112 to remove, add, or modify a line of the shader source
code 102, the compiler 202 automatically compiles the
updated shader source code 204, e.g., in real time. By
“automatically” it is meant that the compiler 202 compiles
the updated shader source code 204 without user input
expressly selecting to compile the shader source code 102.

In response, the prediction engine 106 generates the
predictions 120, and the display controller 108 provides the
feedback 116 about shader performance, as the source code
updates 114 are made to the shader source code 102.
Alternatively or additionally, the compiler 202 compiles the
updated shader source code 204 at an interval of time, e.g.,
every 5 seconds. It is to be appreciated that the compiler 202
compiles the updated shader source code 204 in various
implementations according to other bases without departing
from the spirit or scope of the techniques described herein,
such as responsive to a selection to save updates to the
source code, responsive to user input to “check-in” the code
to a code repository, or responsive to occurrence of a
different predefined event.

In example 200, the compiler 202 compiles the updated
shader source code 204, which corresponds to a high-level
language in one or more implementations, by processing it
to generate an intermediate language 206 representation of
the shader. Examples of the intermediate language 206
include, but are not limited to, Standard Portable Interme-
diate Representation (SPIR and SPIR-V) and DirectX Inter-
mediate Language (DXIL). The compiler 202 then compiles
the updated shader source code 204 into an intermediate
representation. In one or more implementations, the shader
representation 118 corresponds to the intermediate repre-
sentation as mentioned above.

The shader representation 118 is fed into the prediction
engine 106. In accordance with the described techniques, the
prediction engine 106 includes machine learning models 208
that generate the prediction 120 of performance of the
shader on at least one processing unit. By using the machine
learning models 208, the prediction engine 106 eliminates
the need to run the shader (on the actual processing units or
using a simulation of those processing units) and measure
performance of the shader as run. In one or more imple-
mentations, the prediction engine 106 pre-processes the
shader representation 118 to produce data for input to the
machine learning models 208. By way of example, the
prediction engine 106 converts a shader representation 118,
corresponding to executable code in a text or byte format,
into a different format that is suitable for input to one or
more machine learning models, such as into one or more
vectors (e.g., that are representative of the executable code
in the text or byte format).

In accordance with the described techniques, the machine
learning models 208 are trained prior to generating the
prediction 120, e.g., the machine learning models 208 are
trained prior to their deployment as part of the prediction
engine 106. By way of example, the machine learning
models 208 are trained using historical data describing
performance of other shaders (e.g., shaders different from
the shader implemented with the shader source code 102) on
one or more processing units.

The one or more processing units relative to which the
historical data is collected for such training correspond to

10

15

20

25

30

35

40

45

50

55

60

65

10

the one or more processing units for which the machine
learning models 208 generate the prediction 120. Accord-
ingly, the machine learning models 208 generate the pre-
diction 120 for particular processing units for which those
models have been trained. In one or more implementations,
the machine learning models 208 are trained using data
describing shader performance on multiple processing units.
For example, the machine learning models 208 are trained
using historical data describing shader performance on a
family of processing units from a particular entity or are
trained using historical data describing shader performance
on processing units of a comparable class from different
entities (e.g., flagship processing units of the different enti-
ties).

By training the machine learning models 208 with data for
multiple processing units, the machine learning models 208
are able to predict the performance of a shader on each of
those multiple processing units and do so without actually
running the shader on those processing units or using a
simulation of those processing units, which is done by
conventional techniques. Generating predictions about
shader performance using the machine learning models 208
provides feedback about the performance of shaders faster
than running the shaders on the actual processing units or in
simulations and measuring their performance. Moreover,
using the predictions rather than actual performance mea-
surements allows the system to generate and output the
feedback 116 via the user interface 112 in real-time (or near
real-time) to guide a user to optimize the shader, as updates
to the code are received. Conventional techniques that
involve running a shader (e.g., on a processing unit or in a
simulation) and measuring performance of the shader are not
capable of providing real-time or even near real-time feed-
back. This is because the runtime of shaders and collection
of information introduce too much lag to enable real-time
feedback to be provided.

In one or more implementations, the machine learning
models 208 are supervised machine learning models, e.g.,
trained using one or more supervised learning techniques.
For example, the machine learning models 208 are trained
using classification techniques or regression techniques. In
addition or alternatively, the machine learning models 208
receive a shader representation as input during training. This
received shader representation corresponds to a shader that
has actually been run on a processing unit for which the
models are being trained or has been run in a simulation
involving that processing unit. Moreover, the performance
of'this training shader, as run on the processing unit or in the
simulation, has been measured. Responsive to receipt of the
shader representation as input, the machine learning models
208 generate a prediction of performance of the training
shader on the processing unit by processing the representa-
tion of the training shader. The machine learning models 208
provide this prediction of performance as training output.

Once output, the predicted performance of the shader is
compared to the measured performance of the shader on the
actual processing unit or in the simulation. For example, the
prediction of performance is compared to the shader’s
measured performance using a loss function. Based on the
comparison, one or more parameters of the machine learning
model 208 are adjusted, e.g., according to an optimization
algorithm such as gradient descent. When the machine
learning models 208 include a neural network, for example,
internal weights of nodes of the neural network are adjusted
based on the comparison. The machine learning models 208
continue to be trained (e.g., by iteratively receiving a shader
representation as input, predicting the shader’s performance,

US 11,868,759 B2

11

and having parameters adjusted based on a comparison to
measured performance) until the training predictions satisfy
a threshold, e.g., when differences between the training
predictions generated by the machine learning models 208
and the measured performance of the shaders are within
some threshold amount of error.

It is to be appreciated that in one or more implementa-
tions, the machine learning models 208 include a single
model trained using historical data that describes perfor-
mance of shaders on at least two different processing units.
Alternatively or additionally, the machine learning models
208 correspond to a single model trained using historical
data that describes performance of shaders on a single
processing unit. Alternatively or additionally, the machine
learning models 208 include at least two models, where each
model is trained using historical data describing perfor-
mance of shaders on a respective processing unit, such that
in operation each model generates performance predictions
for a respective processing unit, but because there are
multiple models, predictions for performance on multiple
processing units are generated. In such implementations, the
machine learning models 208 correspond to an ensemble of
models.

Although supervised training of models is discussed
above, in one or more implementations, the machine learn-
ing models 208 include or are otherwise implemented using
different types of models, such as unsupervised models.
Additionally, the machine learning models 208 include
models trained in different ways (e.g., at least one model
trained using a supervised training technique and at least one
different model trained using an unsupervised training tech-
nique) and/or having different architectures in one or more
implementations. Accordingly, the above discussion should
not be seen to limit the types of models included in the
machine learning models 208 or the particular training
techniques used to train those models.

Here, the machine learning models 208 are depicted
outputting two types of predictions 120, which include
performance prediction 210 and predicted trend 212. In one
or more implementations, the machine learning models 208
are configured to output just one type of prediction 120, e.g.,
the performance prediction 210 or the predicted trend 212.
Alternatively or additionally, the machine learning models
208 are configured to output both types of predictions 120,
e.g., both the performance prediction 210 and the predicted
trend 212. It should be appreciated that the machine learning
models 208 are trained in further implementations to output
various types of predictions (in addition to and/or instead of
one or more of those mentioned just above) without depart-
ing from the spirit or scope of the techniques described
herein.

In one or more examples, the performance prediction 210
estimates a distribution of a performance metric of the
shader. An example of the performance metric is execution
time of the shader, although other metrics are contemplated
in the spirit and scope of the described techniques. In one or
more implementations, for example, the performance pre-
diction 210 includes one or more statistics that parameterize
the distribution of the performance metric. Examples of a
statistic that parameterizes the distribution include but are
not limited to average (e.g., mean), variance, and standard
deviation. Alternatively or additionally, the performance
prediction 210 is configured to estimate the distribution in
the form of an estimated position of the performance metric
in a probability distribution, such as in some variations
where the prediction engine 106 receives information about
the probability distribution. Examples of information about

10

15

20

25

30

35

40

45

50

55

60

65

12

the probability distribution include, but are not limited to,
confidence intervals for a resolution and a cumulative dis-
tribution function. In one or more other examples, the
performance prediction 210 estimates an absolute prediction
of performance instead of a distribution of performance.

The performance prediction 210 is generated by the
machine learning model 208 from a version of source code
at a particular time. By way of example, the machine
learning models 208 generate the performance prediction
210 for a shader implemented by the shader source code
102, and generate a separate performance prediction 210 for
a shader implemented by the updated shader source code
204, which corresponds to the shader source code 102 with
the source code update 114. It is to be appreciated, therefore,
that the shader implemented by the shader source code 102
corresponds to a different version of the shader (e.g., an
older version) than the shader implemented by the updated
shader source code 204.

In accordance with the described techniques, the pre-
dicted trend 212 compares a first predicted performance of
a shader implemented by a first version of source code to at
least a second performance of a shader implemented by at
least a second version of the source code. As an example, the
first version of source code corresponds to the shader source
code 102 prior to the source code update 114 and the second
version of source code corresponds to the shader source
code 102 after the source code update 114, i.e., the updated
shader source code 204.

Thus, the predicted trend 212 is a relative prediction in
which the machine learning models 208 predict a difference
in shader performance after a source code update 114. This
difference in shader performance thus represents an effect of
the source code update 114 on the shader performance
relative to a previous version of the source code. An example
of this difference is a percentage change in the predicted
performance, such as a percentage improvement of the
shader’s performance relative to a previous version of the
source code or a percentage decline of the shader’s perfor-
mance relative to the previous version of the source code. In
one or more implementations, an improvement in perfor-
mance is indicated by displaying one or more graphical
indicators in the user interface 112, such as a negative
percentage (‘=’) indicating a beneficial reduction of the
performance metric (e.g., runtime), a first color (e.g., green),
or other visual emphases. Similarly, a decline in perfor-
mance is indicated by one or more graphical indicators in the
user interface 112, such as a positive percentage (‘+°)
indicating a detrimental increase of the performance metric
(e.g., runtime), a second color (e.g., red), or other visual
emphases. By displaying the predicted trend 212 via the user
interface 112, the development environment 104 guides a
user in a code optimization process, by informing the user
whether the source code updates 114 are predicted to cause
performance of the shader implemented by the source code
to improve or decline.

In one or more implementations, and as mentioned above,
the machine learning models 208 generate the predictions
120 of performance as statistics describing distributions of a
performance metric rather than predict the metric itself. By
way of example, the machine learning models 208 generate
the predictions 120 of performance by outputting one or
more of parameterizations describing the performance met-
ric—such as predicted average (e.g., mean), variance, and/or
standard deviation of the performance metric—rather than
by predicting the performance metric.

In one or more implementations, for instance, the perfor-
mance metric corresponds to an execution time of the shader

US 11,868,759 B2

13

to perform an operation for the processing unit. In such
implementations, the machine learning models 208 thus
generate the predictions 120 to include one or more of
predicted mean execution time, predicted variance of the
execution time, and/or predicted standard deviation of the
execution time to describe a distribution of the execution
time. It is to be appreciated that in one or more implemen-
tations, the machine learning models 208 generate the pre-
dictions in terms of performance metrics that are different
from execution time and by parameterizing the performance
metric in different ways from mean, variance, and standard
deviation without departing from the spirit or scope of the
techniques.

By generating the predictions 120 in terms of parameter-
izations describing distributions of a performance metric
rather than predicting the actual performance metric (e.g.,
execution time), the machine learning models 208 generate
more informative predictions of a shader’s performance than
conventional techniques. For example, while the conven-
tional process of running and measuring performance on real
hardware may be “accurate,” it does not provide a holistic
picture of the expected results. This is because the shader
will ultimately be run on a specific system, with a specific
load (e.g., other apps running at the same time) with specific
peripherals (e.g., memory). Thus, unlike conventional sys-
tems, the prediction 120 takes into account different con-
figurations and gives either a distribution or an absolute
prediction that allows the developer to make a more infor-
mative decision.

Notably, this reflects the environment and conditions
under which shaders are run on processing units in the real
world. By way of example, a state of an application (e.g., a
video game) calling on the processing unit to perform an
operation, such as to render a scene via the rendering
pipeline, is capable of differing widely from call to call.
Consequently, parameters passed to the processing unit to
perform the operation are capable of differing widely, e.g.,
depending at least on the state of the application. Moreover,
different combinations of parameters involve using different
combinations of shaders and depend on availability of
hardware resources at a time of a call, such that the avail-
ability affects which resources are used to carry out opera-
tions. Thus, although a shader is used by a processing unit
to perform operations in a variety of scenarios in the real
world, a given scenario in which a shader is used is rarely,
if ever, exactly the same as another, e.g., in terms of
application state and/or usage of other hardware resources.
Given this, generating the predictions 120 as parameteriza-
tions, describing distributions of a performance metric,
effectively covers a variety of application states and resource
usage and accurately reflects the real-world operation of
shaders as run on processing units.

In one or more implementations, the machine learning
models 208 generate the performance prediction 210 and the
predicted trend 212 for each basic block of the shader.
Alternatively or additionally, the machine learning models
208 generate the performance prediction 210 and the pre-
dicted trend 212 for each instruction of the shader. The
prediction engine 106 then aggregates the predictions 120
generated by the machine learning models 208 so that
performance of the shader, as a whole, is predicted. When
the predictions 120 are generated by the machine learning
models 208 at the instruction level, for instance, the predic-
tion engine 106 aggregates the predictions for the instruc-
tions of a given block. In one or more examples, the
prediction engine 106 aggregates the predictions by sum-
ming those predictions. In other examples, the prediction

10

15

20

25

30

35

40

45

50

55

60

65

14

engine 106 aggregates the predictions by determining the
average, median, maximum value, or minimum value of the
predictions. The prediction engine 106 thus computes the
prediction for each block of the shader by aggregating the
predictions generated for the respective block’s instructions.
Similarly, when the predictions are generated by the
machine learning models 208 at the block level, the predic-
tion engine 106 aggregates the predictions for the different
blocks of the shader, e.g., the prediction engine 106 sums
those predictions. The prediction engine 106 thus computes
the prediction for performance of the shader by aggregating
the predictions generated for the different blocks of the
shader.

The prediction engine 106 is capable of aggregating such
predictions as mentioned above because as a shader
executes, it follows a control flow graph (CFG), which
executes each basic block in the shader according to the
defined control flow. In this way, the execution of a shader
corresponds to an aggregation of the execution of the
shader’s basic blocks, which is defined by the following
equation, in one or more implementations.

t,=aggregate(t,/)Vb,EB,

Here, the term b’ represents a given basic block and the
term t, represents the execution time of a shader, which is
represented by the term s. Further, the term t,i represents the
execution time of a given basic block b’, and the term B,
represents the set of all basic blocks of the shader s. The term
‘aggregate()’ represents an aggregation function, such as a
total sum. It should be appreciated that in various imple-
mentations the prediction engine 106 aggregates predictions
for levels of abstraction of a shader that are different from
instructions and blocks without departing from the spirit or
the scope of the described techniques. In the context of
incorporation of the predictions 120 into the feedback 116
provided via the user interface 112, consider the following
discussion of FIGS. 3-6, in accordance with the described
techniques.

FIG. 3 depicts a non-limiting example 300 of a user
interface of a development environment that is used to
update source code for implementing a shader. Example 300
includes from FIG. 1 the user interface 112 of the develop-
ment environment 104.

In this example 300, the user interface 112 includes a first
portion 302 and a second portion 304. In various implemen-
tations, the user interface 112 includes different numbers of
portions to facilitate updating the shader source code 102.
Certainly, the user interface 112 of the development envi-
ronment 104 should not be seen as limited to the following
illustrated examples or to the following description. Instead,
the user interface 112 of the development environment 104
is configurable in various ways in accordance with the
described techniques.

Here, the first portion 302 displays an example of source
code, e.g., the shader source code 102. By way of example,
the displayed source code includes both line 306 and line
308 of code (among others). In one or more implementa-
tions, the first portion 302 corresponds to one of the devel-
oper tools 110, such as a source code editor which allows a
user to provide inputs to update source code. As mentioned
above and below, examples of updates to the source code
include but are not limited to addition of lines of code,
removal of lines of code, and modification (e.g., of charac-
ters) within lines of code. In this example 300, the second
portion 304 displays additional information related to the
shader source code 102, e.g., compiled code (machine-level
instructions or intermediate representation) of the shader

US 11,868,759 B2

15

corresponding to the shader source code 102. In accordance
with the described techniques, the second portion 304 cor-
responds to a second tool of the developer tools 110 and
facilitates development and optimization of shaders. In one
or more implementations, the second portion 304 displays
different information. Alternatively or in addition, the sec-
ond portion 304 is not displayed in some variations, e.g.,
while updating source code in the first portion 302.

In the example represented across FIGS. 3-6, the illus-
trated example 300 represents a first stage, such as a stage
in which the display controller 108 causes display of the
shader source code 102 via the user interface 112 and which
is prior to receiving the source code update 114. In the
context of receiving the source code update 114, consider the
following discussion of FIG. 4.

FIG. 4 depicts a non-limiting example 400 in which the
user interface of the development environment displays an
update to the source code for implementing the shader. In
particular, the example 400 includes the user interface 112
having the first portion 302 and the second portion 304, as
depicted in FIG. 3.

In contrast to the example 300 depicted in FIG. 3 though,
the first portion 302 displays the line 308 of source code but
not the line 306 of source code. This represents a scenario in
which the shader source code 102 is updated via the devel-
opment tools 110, e.g., to remove the line 306 of source
code. Removal of the line 306 of source code corresponds to
the source code update 114 in this scenario. Based on the
source code update 114 (e.g., removal of the line 306 of
source code), the developer tools 110 produce the updated
shader source code 204. A mentioned above and below, the
developer tools 110 enable updates to be made to shader
source code in various ways without departing from the
spirit or scope of the described techniques. An example of
the updated shader source code 204 is depicted in the first
portion 302 in this example 400. In the context of feedback
provided responsive to receiving the source code update
114, consider the following discussion of FIG. 5.

FIG. 5 depicts a non-limiting example 500 in which the
user interface of the development environment displays
feedback about predicted performance of the shader based
on the update to the source code. The example 500 includes
from FIG. 4 the user interface 112 having the first portion
302 and the second portion 304, where the first portion 302
displays the updated shader source code 204 which includes
the line 308 of source code but not the line 306 of source
code, e.g., based on receiving the source code update 114.

In contrast to FIG. 4 though, the second portion 304 is
updated to display the feedback 116 to the source code
update 114. By way of example, the display controller 108
causes the user interface 112 to display the feedback 116
about predicted performance of the corresponding shader
responsive to the source code update 114. In one or more
implementations, the display controller 108 causes the user
interface 112 to display the feedback 116 to shader source
code updates in substantially real time as those updates are
received. In this way, the feedback 116 helps developers
make updates that optimize performance of the shader
implemented by the source code.

Here, the feedback 116 displayed via the user interface
112 includes the performance prediction 210 and the pre-
dicted trend 212. One example of presenting the perfor-
mance prediction 210 as part of the feedback 116 includes
displaying a performance graphic 502, such as a distribution
of a performance metric, as predicted for a shader imple-
mented using the updated shader source code 204.

20

25

30

35

40

45

50

55

60

16

Examples of presenting the predicted trend 212 as part of
the feedback 116 include displaying an optimization time-
line 504 and displaying a comparison graphic 506. In one or
more implementations, the optimization timeline 504 indi-
cates a trend 508 in predicted performance of a shader
relative to a predicted performance prior to the source code
update 114. Here, the optimization timeline 504 indicates a
trend 508 relative to a baseline version of the source code,
e.g., ‘=3%’ which corresponds to a predicted decrease in
runtime (an improvement of the shader relative to the
previous version). In the illustrated example 500, the com-
parison graphic 506 compares predicted performance of
shaders implemented by the updated shader source code 204
for different processing units, e.g., on a first processing unit
(‘FF 2017”), a second processing unit (‘FF 2019°), and a
third processing unit (‘FF 2021”). Notably, the feedback 116
with the predictions 120 (e.g., the performance prediction
210 and the predicted trend 212) is displayed concurrently
with the updated shader source code 204.

FIG. 6 depicts a non-limiting example 600 in which the
user interface of the development environment is updated to
display feedback about predicted performance of the shader
based on additional updates to the source code.

The example 600 also includes the user interface 112
having the first portion 302 and the second portion 304.
Further, the second portion 304 displays the feedback 116.
Here, the feedback 116 displayed via the user interface 112
includes the performance prediction 210 and the predicted
trend 212, including the optimization timeline 504. In con-
trast to the optimization timeline 504 depicted in the previ-
ous example 500, the optimization timeline 504 in this
example 600 includes trends for more than one source code
update 114. In particular, this example 600 illustrates a
scenario in which at least four updates are made to the
shader source code. Each update referenced in the optimi-
zation timeline 504 includes a trend relative to a previous
version of the source code, e.g., relative to the source code
prior to receiving at least one respective source code update.

Further, the optimization timeline 504 includes a total
optimization 602, which represents a performance trend
across all the updates to the source code, e.g., a predicted
trend between a baseline version of the shader source code
and a most recent version of the shader source code. The
comparison graphic 506 also includes total optimizations for
the different processing units. Thus, the comparison graphic
506 concurrently presents a trend relative to a previous
version of source code (e.g., within each bar of the graphic)
and a trend relative to a baseline version of the source code
(e.g., above each bar of the graphic). It is to be appreciated
that the user interface 112 is configurable in a variety of
ways to present the feedback 116, including one or more of
the predictions 120, in accordance with the described tech-
niques.

FIG. 7 depicts a procedure 700 in an example implemen-
tation of outputting feedback to an update to shader source
code.

An update to shader source code for implementing a
shader is received (block 702). By way of example, through
use of the developer tools 110, development environment
104 receives a source code update 114. In one or more
examples, a user interacts with the developer tools 110 via
the user interface 112 to update the shader source code 102,
such that the developer tools 110 remove a line of code, add
a line of code, or modify a line of code. In other examples,
an automated bot updates the shader source code 102, e.g.,
without any human-user interaction.

US 11,868,759 B2

17

A prediction of performance of the shader on a processing
unit is generated based on the update to the shader source
code (block 704). By way of example, prediction engine 106
generates prediction 120 of performance of the shader
(implemented by the shader source code 102) for one or
more processing units. In one or more implementations,
prediction engine 106 includes machine learning models 208
that generate the prediction 120 of performance of the
shader on at least one processing unit. By using the machine
learning models 208, the prediction engine 106 eliminates
the need to run the shader (on the actual processing units or
in a simulation of those processing units) and measure
performance of the shader as run.

Feedback about the update is output (block 706). In
accordance with the principles discussed herein, the feed-
back includes the prediction of performance of the shader. In
one or more examples, display controller 108 causes pre-
sentation of feedback 116 via the user interface 112. The
feedback 116 includes the prediction 120 about the perfor-
mance of the shader. When displayed via the user interface
112, the feedback 116 includes graphical information, such
as information indicating whether the source code update
114 to the shader source code 102 causes performance of the
shader to improve or decline. By informing a user regarding
whether the source code update 114 causes the performance
of the shader to improve or decline, the feedback 116
provides a basis for further updates to the shader source code
102, such as whether to undo the source code update 114,
keep the source code update 114 in the shader source code
102, or attempt to introduce additional updates to the shader
source code 102. In other examples, the feedback 116 is
output to the automated bot.

FIG. 8 depicts a procedure 800 in an example implemen-
tation of generating predictions of performance of a shader.

A shader representation of a shader implemented by
shader source code is received (block 802). In accordance
with the principles discussed herein, the shader representa-
tion is generated by compiling the shader source code. By
way of example, prediction engine 106 receives shader
representation 118 of a shader implemented by shader
source code. The shader representation 118 is generated by
compiler 202 which compiles the shader source code to
generate the shader representation 118. The shader source
code compiled by the compiler 202 to generate the shader
representation 118, in some cases, corresponds to updated
shader source code 204. Alternately, the shader representa-
tion received at block 802 by the prediction engine 106
corresponds to a first version (e.g., a baseline version) of
shader source code compiled by the compiler 202.

A first performance prediction of the shader on a process-
ing unit is generated based on the shader representation
(block 804). By way of example, prediction engine 106
generates a first performance prediction 210 of the shader
(implemented by the shader source code 102) on a process-
ing unit. In one or more implementations, prediction engine
106 includes machine learning models 208 that generate the
first performance prediction 210 of the shader on the pro-
cessing unit. By using the machine learning models 208, the
prediction engine 106 eliminates the need to run the shader
(on the actual processing units or in a simulation of those
processing units) and measure performance of the shader as
run. In accordance with the described techniques, the per-
formance prediction 210 estimates a distribution of a per-
formance metric of the shader. An example of the perfor-
mance metric is execution time of the shader, although other
metrics are contemplated in the spirit and scope of the
described techniques.

20

40

45

55

18

An updated shader representation of the shader imple-
mented by the shader source code is received (block 806). In
accordance with the principles discussed herein, the updated
shader representation is generated by compiling the shader
source code after an update to the shader source code. By
way of example, prediction engine 106 receives shader
representation 118 of a shader implemented by shader
source code. The shader representation 118 is generated by
compiler 202 which compiles the updated shader source
code 204 to generate the shader representation 118. Thus, the
shader representation 118 received at block 806 is generated
based on source code that has been updated as compared to
the version of the source code compiled to generate the
shader representation 118 that is received at block 802.

A second performance prediction of the shader on the
processing unit is generated based on the updated shader
representation (block 808). By way of example, prediction
engine 106 generates a second performance prediction 210
of the shader (implemented by the updated shader source
code 204) on a processing unit. In contrast to the first
performance prediction of the shader generated at block 804,
the second performance prediction 210 predicts perfor-
mance of the shader after the update to the shader source
code. As an example, the first performance prediction gen-
erated at block 804 corresponds to a first predicted execution
time of the shader, whereas the second performance predic-
tion generated at block 808 corresponds to a second pre-
dicted execution time of the shader. Notably, the first and
second execution times, in this example, may vary (e.g., the
second execution time has decreased relative to the first
execution time, or vice versa) due to the update to the shader
source code.

A predicted trend of the shader is determined by compar-
ing the first prediction of performance of the shader to the
second prediction of performance of the shader (block 810).
In accordance with the principles discussed herein, the
predicted trend indicates a predicted improvement or decline
in the performance of the shader after the update to the
shader source code. By way of example, the prediction
engine 106 determines a predicted trend 212 of the shader by
comparing the first performance prediction generated at
block 804 to the second performance prediction generated at
block 808. Thus, the predicted trend 212 is a relative
prediction in which the machine learning models 208 predict
a difference in shader performance after a source code
update 114. The trend in shader performance thus represents
an effect of the source code update 114 on the shader
performance relative to a previous version of the source
code.

It should be understood that many variations are possible
based on the disclosure herein. Although features and ele-
ments are described above in particular combinations, each
feature or element is usable alone without the other features
and elements or in various combinations with or without
other features and elements.

The various functional units illustrated in the figures
and/or described herein (including, where appropriate, the
development environment 104, the prediction engine 106,
the display controller 108, and the developer tools 110) are
implemented in any of a variety of different manners such as
hardware circuitry, software or firmware executing on a
programmable processor, or any combination of two or more
of hardware, software, and firmware. The methods provided
are implemented in any of a variety of devices, such as a
general purpose computer, a processor, Or a processor core.
Suitable processors include, by way of example, a general
purpose processor, a special purpose processor, a conven-

US 11,868,759 B2

19

tional processor, a digital signal processor (DSP), a graphics
processing unit (GPU), a parallel accelerated processor, a
plurality of microprocessors, one or more microprocessors
in association with a DSP core, a controller, a microcon-
troller, Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs) circuits, any
other type of integrated circuit (IC), and/or a state machine.

In one or more implementations, the methods and proce-
dures provided herein are implemented in a computer pro-
gram, software, or firmware incorporated in a non-transitory
computer-readable storage medium for execution by a gen-
eral purpose computer or a processor. Examples of non-
transitory computer-readable storage mediums include a
read only memory (ROM), a random access memory
(RAM), a register, cache memory, semiconductor memory
devices, magnetic media such as internal hard disks and
removable disks, magneto-optical media, and optical media
such as CD-ROM disks, and digital versatile disks (DVDs).

Conclusion

Although the systems and techniques have been described
in language specific to structural features and/or method-
ological acts, it is to be understood that the systems and
techniques defined in the appended claims are not necessar-
ily limited to the specific features or acts described. Rather,
the specific features and acts are disclosed as example forms
of implementing the claimed subject matter.

What is claimed is:

1. A method comprising:

receiving, using hardware of one or more computing

devices, an update to shader source code for imple-
menting a shader;
after the update to the shader source code and using the
hardware, compiling the shader source code with the
update to generate a representation of the shader;

providing the representation of the shader as input to one
or more machine learning models trained based on
historical data describing performance of one or more
other shaders on a processing unit;

receiving, as an output from the one or more machine

learning models, a prediction of performance of the
shader on the processing unit based on the update to the
shader source code; and

outputting, using the hardware, feedback about the

update, the feedback including the prediction of per-
formance of the shader.

2. The method of claim 1, wherein the prediction of
performance is generated without running or simulating the
shader on the processing unit.

3. The method of claim 1, wherein the prediction of
performance includes an estimation of a statistic based on
execution time of the shader to perform at least one opera-
tion for the processing unit.

4. The method of claim 3, wherein the statistic based on
execution time comprises an average execution time of the
shader to perform the at least one operation for the process-
ing unit.

5. The method of claim 3, wherein the statistic based on
execution time comprises a variance in execution time of the
shader to perform the at least one operation for the process-
ing unit.

6. The method of claim 1, wherein the prediction of
performance includes a predicted trend between a first
performance prediction of the shader before the update to
the shader source code and a second performance prediction
of the shader after the update to the shader source code.

15

20

25

35

40

45

50

55

60

20

7. The method of claim 6, wherein the predicted trend
comprises a percentage improvement in the performance of
the shader.

8. The method of claim 6, wherein the predicted trend
comprises a percentage decline in the performance of the
shader.

9. The method of claim 1, wherein the update to the shader
source code includes at least one of:

an addition of at least one line of code to the shader source

code;

removal of at least one line of code from the shader source

code;

a modification within at least one line of code of the

shader source code;

a change to compiler settings; or

a change to a state specific to an application programming

interface.

10. The method of claim 1, wherein the update is received
via user input to a user interface, and wherein the feedback
about the update is output via the user interface.

11. The method of claim 1, wherein the update is received
from an automated bot, and wherein the feedback about the
update is output to the automated bot.

12. The method of claim 1, further comprising generating
an additional prediction of performance of the shader on at
least one additional processing unit based on the update to
the shader source code, wherein the feedback further
includes the additional prediction of performance of the
shader.

13. A system comprising:

at least one developer tool, implemented at least in part

using hardware of one or more computing devices, to
update shader source code for implementing a shader;

a compiler, implemented at least in part using the hard-

ware, to generate a representation of the shader by
compiling the updated shader source code; and

a prediction engine, implemented at least in part using the

hardware, to generate a prediction of performance of
the shader on a processing unit after the update of the
shader source code by processing the representation of
the shader using one or more machine learning models,
wherein the one or more machine learning models are
trained based on historical data describing performance
of one or more other shaders on the processing unit.

14. The system of claim 13, further comprising a display
controller to display the prediction of performance of the
shader in a user interface.

15. The system of claim 13, wherein the representation of
the shader comprises one or more of:

an intermediate language;

machine-level code; or

a control-flow graph.

16. The system of claim 13, wherein the prediction of
performance includes an estimation of a statistic based on
execution time of the shader to perform at least one opera-
tion for the processing unit.

17. A method comprising:

receiving, using hardware of one or more computing

devices, a shader representation of a shader, the shader
representation generated by compiling shader source
code for the shader;

generating, using the hardware, a first performance pre-

diction of the shader on a processing unit based on the
shader representation, the first performance prediction
of the shader corresponding to a first output from one
or more machine learning models, wherein the one or
more machine learning models are trained based on

US 11,868,759 B2

21

historical data describing performance of one or more
other shaders on the processing unit;

receiving, using the hardware, an updated shader repre-
sentation of the shader, the updated shader representa-
tion generated by compiling the shader source code
after an update to the shader source code;

generating, using the hardware, a second performance
prediction of the shader on the processing unit, the
second performance prediction generated using the
updated shader representation, the second performance
prediction of the shader corresponding to a second
output from the one or more machine learning models;
and

determining, using the hardware, a predicted trend of the
shader by comparing the first performance prediction of
the shader to the second performance prediction of the
shader, the predicted trend indicating an improvement

10

15

22

or decline in performance of the shader caused by the
update to the shader source code.

18. The method of claim 17, further comprising output-
ting, in a user interface, the predicted trend indicating the
improvement or decline in the performance of the shader
caused by the update to the shader source code.

19. The method of claim 18, further comprising output-
ting, in the user interface, the second performance prediction
of the shader, the second performance prediction of the
shader displayed concurrently with the predicted trend in the
user interface.

20. The method of claim 17, wherein the first performance
prediction and the second performance prediction include
respective estimations of a statistic based on execution time
of the shader to perform at least one operation for the
processing unit.

