
HEMREN TARUHALLINTO US 20180007166A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0007166 A1

Joshi et al . (43) Pub . Date : Jan . 4 , 2018

(54) PRIORITY - DRIVEN BOXCARRING OF
ACTION REQUESTS FROM
COMPONENT - DRIVEN CLOUD
APPLICATIONS

(52) U . S . CI .
CPC H04L 67 / 327 (2013 . 01) ; H04W 4 / 001

(2013 . 01) ; H04L 67 / 02 (2013 . 01) ; H04L 67 / 42
(2013 . 01)

(71) Applicant : salesforce . com , inc . , San Francisco , CA
(US) (57) ABSTRACT

@ (72) Inventors : Shweta Joshi , Newark , CA (US) ;
Ashraya Raj Mathur , Fremont , CA
(US) ; Ronnie Fong , San Jose , CA
(US) ; Jianxun Jason Ding , Cupertino ,
CA (US)

(73) Assignee : salesforce . com , inc . , San Francisco , CA
(US)

@

Improved perceived load time for browser and mobile
application pages is achieved by adjusting boxcarring of
action requests from coupled data consuming applications
on the user device , using the priority level of regions and
components in component - driven cloud applications . Prior
ity labels differentiate among display regions rendered by
the data consuming application and the priority labels fur
ther differentiate among components within respective dis
play regions . The middleware application batches the action
requests into batches based at least in part on the priority
labels , into boxcars segregated by priority label according to
a predetermined segregation schedule , and dispatches the
boxcars of batched action requests to the server . Perfor
mance is also dynamically speeded up , by adjusting inter
boxcar intervals used to dispatch batches of action requests
from the user device to a production server , based on the
dynamically measured network communication latency
between the user device and the server .

(21) Appl . No . : 15 / 199 , 768
(22) Filed : Jun . 30 , 2016

Publication Classification
(51) Int . Ci .

H04L 29 / 08 (2006 . 01)
H04L 29 / 06 (2006 . 01)
H04W 4 / 00 (2009 . 01)

mume 100
Multi - tenant Software as a Service Platform 106
www wwwwwwww w wwwwwwwwww - - - - -

Application Server 116 Analytical Read Only
Data Store 102

Server Dispatcher Engine 126

11111111111111111111111

Network
145 GUI Client Engine 146 - -

-
External Data Store 142 -

- Browser - based Applications 148
w w - - - - - - - -

- - - - - - - - - - - - - - -
Mobile Device Applications 149 - -

164
- Miodicware Application 156

- -

Latency Measurement Engine 166
165 1000 Clieni Boxcar Engine 178

wwwwwwwwwwwwwwwwwwwwwwwww

Client Dispatcher Engine ISO

w .

- - - -

- - - - - - - - - - - -

Configuration UI 196
- - -

- - -

mercon 100

Multi - tenant Software as a Service Platform 16

ODOODOOOOOOOOOOOOOOOOOOOOOOOOO

Ada

Patent Application Publication

Analytical Read Only Data Store 102

Application Server 116 Server Dispatcher Engine 126

wana

Network 145

* - - . como

GUI Client Engine 146 Browser - based Applications 148

External Data Store 142

- - - - - - * - . com

Mobile Device Applications 149

-

- - - - - .

Jan . 4 , 2018 Sheet 1 of 9

-

164

- * * * - - -

Middleware Application 156

- - -

Latency Measurement Engine 166 Client Boxcar Engine 178

dd

Client Dispatcher Engine 186

-
* * * -

0 . 00 0 . 00 0 . 00 0 . 00 0 . 00

- - - - -

- - - - * - * * -

Configuration UI 196

-

US 2018 / 0007166 A1

die

FIG . 1

Patent Application Publication

External Data Store 14 %

Users 24 %
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
898

3633 API - 1 246

Component 1 244

SOL - 1 248

AAA . 246 XHR - N 255

OSV

SOL - D 258

HUQUODILO
N

Browser Client Page 264

Jan . 4 , 2018 Sheet 2 of 9

Application Server 10 %

US 2018 / 0007166 A1

FIG . 2

Patent Application Publication Jan . 4 , 2018 Sheet 3 of 9 US 2018 / 0007166 A1

Clent 344 Server 348

- 356

Request start time 354 Server start time 358

- 366
Response end time 364 Server end time 368

FIG . 3A

FIG . 3B

US 2018 / 0007166 A1

.

1

.

.

.

. . .

. .

Jan . 4 , 2018 Sheet 4 of 9

3

Patent Application Publication

og 00

Women

315

- 304 , 314

HOW

US 2018 / 0007166 A1

.

.

. aaa

. . . aaaaa aaaaa aaa . . . aaaaa nina naan inna

. aaa nina nina

.

.

.

.

.

.

.

.

.

. aaa . . . aaaaa nanna aaaa inna

SOS

SOS . OLT

SOLE
* *

$

põed jad sisanbox OLX

* . * . . * . * . . * . * . . * * . * . * . * * . * * * . * . * .

% 40

% 0

%

6061

* * . * . * . * . * . * . * . * . * . * . * . * . * * . * . * . * . * . * . * . * . * . * . * . * . * . * * * . . * * . * . * . * . * . * . * . * . *

Noam 160 @ 10 %

' ' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

+ + + + + + + + + + + + + +

+ +

+

+ + + + + + + + + + + + + + + + +

' * * ' ' ' ' ' ' ' ' ' ' ' ' * * ' ' ' * ' * ' * ' ' * ' * ' ' ' ' ' ' *

$ $

SS

* ODE

SU 00€ - 00L

Su 00

Koua X204N

*

*

*

Jan . 4 , 2018 Sheet 5 of 9

0 0006 - 008

*

Patent Application Publication

ST

+ 7

OOF

SOL

US 2018 / 0007166 A1

*

*

*

*

.

: : :

MY
* *

*

iscriccicriverviersriccrcrcrccriciriiriscirccccccccccccris ,

*

Jan . 4 , 2018 Sheet 6 of 9

* * *

* * *

* 320XXXXXX

M

* *

*

*

COS

?)

www

*

*

TV * * * * *

* * * * * *

. : " 37
: : *

*

* ,

10W
GVW * * * * * * * 440 * 302

* * *

* * 3 .

7

10 : 07 : 02

XV - X0A

*

MX .

* *

. . .

. .

WWW . *
83

* *

940 3 286 * *

.

. . .

*

WWW74 - 169

* *

. . ,

.

* *

?

. 5

N .

,

,

. .

* * *

OSO

.

. .

.

Patent Application Publication

0 $

VOG

3535

49472

K Visw

33 : 59 . WWISS

IIIIIIIIIIITTTTTTTTTTTTTTTTTTEET

S

Patent Application Publication

633

< body >

< div class = " DESKTOP uiContainer Manager flexipage EditorSurface >

000

< div class = " forceStyle flexipage EditorSurface " >
< div data - type = " page " class = " flexipage EditorPage " >

< div class = " responsiveContents homeDesktop Template " >
< div class = " coMaio - >

< div class = " top " > www

632

< div data - iype = " region " data - max - allowed = " 25 " data - allow - drop = " true " data - allowed = " flexipage :

645

availableForAllPaye Types , hone :
availableForDesktop "

class = " flexipageEditorRegioni " priority = " 1 " >

< a class = ;

" flexipage Editor Region Placeholder " href = " javascript : void (0) ; " > Add Component (s) Here < / a >

< / div >

div >

< div class = " bottom Wrapper " >

< div class = " bottomLeft " >

< div data - iype = " region " data - max - alowed = " 250 " data - allow - drop = " true " dat - allowed = " flcxipage :

663

availableForAllPageTypes , home :
availableForDesktop "

class = " flexipage Editor Region " priority = " 2 " >

< a class = " flexipageEditorRegion Placeholder " href = " javascript : void (0) ; " > Add Component (s) Herexas

< / div >

< div

Jan . 4 , 2018 Sheet 7 of 9

* * ?

US 2018 / 0007166 A1

FIG . 6

Patent Application Publication Jan . 4 , 2018 Sheet 8 of 9 US 2018 / 0007166 A1

200
710

Run a middleware application on the user device coupled in communication with a
data consuming app and a browser or app running on the user device , and also
coupled in communication with at least one server through the browser or app

715 S

Receive action requests , from data consuming app , qualified by priority labels
applied to regions and components in the regions and

Return data received from a server responsive to the action requests

720 -

Priority labels differentiate among display regions rendered by the data
consuming application and at least some of the priority labels further differentiate
among components within respective display regions

999

LOO

725 mm
Batch the action requests into batches based at least in part on the

priority labels , into boxcars segregated by priority label according to a
predetermined segregation schedule and

Dispatch boxcars of batched action requests to the server

FIG . ?

800

804

Patent Application Publication

Tenant App 816

Tenant2 App 818

Tenanti Metadata 81 %
Tenant2 Metadata 814

1

* *
,

* * * * * * *
? , , .

'

,

'

.

Pivot Tables

.

. .

.

.

.

.

.

.

'

.

. '

:

artom

.

B

+

.

813 Data

Operating System 828

Jan . 4 , 2018 Sheet 9 of 9

w

Multi - Tenant Database

Processor

VO 834

Memory 838
848

Network 845

OOIOV81 HAAYYYYY OLOOGIA

US 2018 / 0007166 A1

FIG . 8

US 2018 / 0007166 A1 Jan . 4 , 2018

PRIORITY - DRIVEN BOXCARRING OF
ACTION REQUESTS FROM

COMPONENT - DRIVEN CLOUD
APPLICATIONS

improves perceived page performance of browser and appli
cation pages with multiple regions and components .

SUMMARY
RELATED APPLICATION

[0001] This application is related to U . S . Patent Applica
tion entitled “ DYNAMIC ADJUSTMENT OF BOXCAR
RING OF ACTION REQUESTS FROM COMPONENT
DRIVEN CLOUD APPLICATIONS " filed concurrently
(Atty . Docket No . SALE 1163 - 1) . The related application is
hereby incorporated by reference for all purposes .

BACKGROUND
[0002] The subject matter discussed in the background
section should not be assumed to be prior art merely as a
result of its mention in the background section . Similarly , a
problem mentioned in the background section or associated
with the subject matter of the background section should not
be assumed to have been previously recognized in the prior
art . The subject matter in the background section merely
represents different approaches , which in and of themselves
may also correspond to implementations of the claimed
inventions .
[0003] In today ' s world , both developers and end users are
dealing with large numbers of clients and huge data vol
umes , popularly referred to as “ Big Data ” . Web applications
that serve and manage millions of Internet users , such as
FacebookTM InstagramTM , TwitterTM , banking websites , or
even online retail shops , such as Amazon . comTM or eBayTM
are faced with the challenge of delivering applications as
fast as possible so that the end users can be provided with a
real - time experience .
[0004] Another major contributor the need to deliver fast
applications is a concept and paradigm called “ Internet of
Things ” (IOT) . IoT is about a pervasive presence in the
environment of a variety of things / objects that through
wireless and wired connections are able to interact with each
other and cooperate with other things / objects to create new
applications and services . These applications and services
are in areas likes smart cities (regions) , smart car and
mobility , smart home and assisted living , smart industries ,
public safety , energy and environmental protection , agricul
ture and tourism .
[00051 Transaction speed is a critical part of user experi
ence — with more than three billion plus transactions daily
for a single very large enterprise . A fast experience encour
ages users to return to the applications of an enterprise more
often and to feel delighted about using them . Currently , there
is a need for dynamic optimization of the speed of transac
tions between client and application servers , for users of
component - driven multi - tenant cloud applications delivered
as software as a service .
[0006] Therefore , an opportunity arises to speed up per
formance of a browser page or a client application with
multiple components , including improving the network per
formance , and maintaining a performant user experience .
The disclosed technology relates to dynamically adjusting
boxcarring of action requests from component - driven cloud
applications to speed up performance of a browser or
application page with multiple components , in a cloud - based
multi - tenant environment . The disclosed technology also

[0007] A simplified summary is provided herein to help
enable a basic or general understanding of various aspects of
exemplary , non - limiting implementations that follow in the
more detailed description and the accompanying drawings .
This summary is not intended , however , as an extensive or
exhaustive overview . Instead , the sole purpose of this sum
mary is to present some concepts related to some exemplary
non - limiting implementations in a simplified form as a
prelude to the more detailed description of the various
implementations that follow .
[0008] Disclosed systems are usable for speeding up per
formance of a web page with multiple components rendered
on a user device . A data consuming application , running on
a user device , makes action requests to at least one server
and consumes data received from the server responsive to
the action requests . A middleware application , also running
on the user device , measures network communication
latency , adjusts inter - boxcar intervals used to dispatch
batches of action requests ; and dispatches boxcars of
batched action requests . The measured network communi
cation latency is calculated as dispatch - to - completed
response time minus server processing time and the server
processing time is received from the server for a boxcar of
completed responses . The inter - boxcar intervals are
adjusted , taking into account at least (a) a number of
connections supported between the user device and the
server and (b) the measured network communication
latency . A browser or app running on the user device , in
communication with the middleware application , supports
the data consuming application ; and the server runs a
dispatcher and one or more application programs . The
dispatcher receives the transmitted boxcar of action
requests , forwards the action requests to the application
programs , and returns the boxcar of completed responses ;
and calculates the server processing time as the difference
between when the boxcar of action request is received and
when the boxcar of completed responses is ready to be
returned , and reports the calculated server processing time
back to the middleware application .
[0009] A disclosed method for conserving connections
between a browser or app running on a user device and one
server includes running a middleware application on the user
device , coupled in communication with a data consuming
application and a browser or app running on the user device ,
and also coupled in communication with at least one server
through the browser or app . The middleware application
receives action requests from the data consuming applica
tion qualified by priority labels applied to regions and
components in the regions and returns data received from
the server responsive to the action requests . The priority
labels differentiate among display regions rendered by the
data consuming application and at least some of the priority
labels further differentiate among components within
respective display regions . The middleware application
batches the action requests into batches based at least in part
on the priority labels , into boxcars segregated by priority
label according to a predetermined segregation schedule ,
and dispatches the boxcars of batched action requests to the
server .

US 2018 / 0007166 A1 Jan . 4 , 2018

[0010) Other aspects and advantages of the technology
disclosed can be seen on review of the drawings , the detailed
description and the claims , which follow .

usable to speed up performance of a browser page or a client
application with multiple components , to optimize the net
work performance , and maintain a performant user experi
ence in a cloud - based environment . Dynamically adjusting
boxcarring of action requests from component - driven cloud
applications is usable to can speed up performance for a
plurality of tenants who are managing their digital data on
independent software instances , as well as for a group of
users who share a common access with a specific set of
privileges to a software instance of at least one application .
[0024] To increase perceived web page performance , the
goal is to prioritize delivery of specified regions and com
ponents , in addition to adjusting the loading of component
actions based on the user ' s dynamic network communica
tion latency .
[0025] The disclosed dynamic network optimization envi
ronment described next is usable to enhance both absolute
and perceived page performance for applications , as a criti
cal part of the user experience .

Environment

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The included drawings are for illustrative purposes
and serve only to provide examples of possible structures
and process operations for one or more implementations of
this disclosure . These drawings in no way limit any changes
in form and detail that may be made by one skilled in the art
without departing from the spirit and scope of this disclo
sure . A more complete understanding of the subject matter
may be derived by referring to the detailed description and
claims when considered in conjunction with the following
figures , wherein like reference numbers refer to similar
elements throughout the figures .
[0012] FIG . 1 illustrates an example business information
and analytics architecture environment capable of dynami
cally adjusting boxcarring of action requests from compo
nent - driven cloud applications .
[0013] FIG . 2 shows an example page delivery architec
ture block diagram for browsers and mobile device appli
cations .
[0014] FIG . 3A shows a message diagram for measuring
network communication latency between a client and a
server .
[0015) FIG . 3B shows a dynamic browser scorecard for
deducing network communication latency .
[0016] FIG . 4 shows a pie chart that displays network
communication latency metric data that spans a week .
[00171 . FIG . 5 shows an example use case of component
loading prioritization for optimization of perceived page
load time .
[0018] FIG . 6 shows an example code snippet for design
ing web pages for priority - driven boxcarring via a region
based app editor .
[0019] FIG . 7 shows an overview of the flow for adjusting
boxcarring of action requests using the priority level of
regions and components in component - driven cloud appli
cations .
[0020] FIG . 8 is a block diagram of an example multi
tenant computer system capable of dynamically adjusting
boxcarring of action requests from component - driven cloud
applications .

[0026] FIG . 1 illustrates one environment 100 for imple
menting dynamic adjustment of boxcarring of action
requests from component - driven cloud applications . Envi
ronment 100 includes GUI client engine 146 which includes
browser - based applications 148 , mobile device applications
149 and middleware application 156 . Middleware applica
tion 156 includes latency measurement engine 166 , client
boxcar engine 178 and client dispatcher engine 186 . Latency
measurement engine 166 dynamically determines the
latency : the time required for a round trip for a boxcar
packet , from the client dispatcher engine 186 of GUI client
engine 146 to application server 116 , for recent transactions .
The network communication latency for each server request
is the time between a client dispatching a request and the
client receiving a response , excluding the time spent on the
server . Client boxcar engine 178 arranges requests for action
into a batch , and client dispatcher engine 186 sends each
batch of action requests to the server as a single network
request — in a boxcar — from the browser - based applications
148 and mobile device applications 149 to application server
166 .

DETAILED DESCRIPTION

Introduction
[0021] The following detailed description is made with
reference to the figures . Sample implementations are
described to illustrate the technology disclosed , not to limit
its scope , which is defined by the claims . Those of ordinary
skill in the art will recognize a variety of equivalent varia
tions on the description that follows .
[0022] Application speed is a critical part of user experi
ence . A fast experience will encourage users to return to
applications more often and enjoy using the applications .
For example , timely delivery of browser pages with " live "
data analytics can illuminate puzzling business quandaries .
The applications are available to users across smartphones ,
tablets , laptops and desktops , as well as other form factors .
[0023] Dynamic adjustment of boxcarring of action
requests from component - driven cloud applications is

[0027] Perceived page performance includes the delivery
of prioritized regions and components . GUI client engine
146 also includes client configuration UI 196 that provides
a region - based app editor for adding priority rankings . The
user can rank the components in a priority order of their
choosing , for optimizing perceived page performance for
customized pages . Using an app builder interface , a user is
able to specify which components are assigned to which
regions and also allocate a priority for each of these regions .
Each component added within the specified region gets
loaded based on the assigned priority for that region .
[0028] Also shown in the environment are analytical read
only data store 102 , external data store 142 and multi - tenant
software - as - a - service platform 106 which includes applica
tion server 116 and server dispatch engine 126 . For a very
large enterprise , as many as twenty to thirty multi - tenant
software - as - a - service platforms 106 can handle user trans
actions across the globe simultaneously . Server dispatch
engine 126 receives the transmitted boxcar of action
requests , forwards the action requests to the application
programs , and returns the boxcar of completed responses .

US 2018 / 0007166 A1 Jan . 4 , 2018

[0029] Analytical read - only data store 102 includes read
only datasets , with attributes of multiple users , usable for
querying and viewing query results in real time , for large
data sets being analyzed . Analytical read - only data store 102
includes datasets extracted from multi - tenant software - as - a
service platform 106 on a batch basis , in one example . The
data extracted from large data repositories can be compiled
into analytical read - only data store 102 , and is usable to
create “ raw " datasets — read - only data structures for analyt
ics — that can be augmented , transformed , flattened , etc . and
published as customer - visible datasets for business entities .
(0030) External data store 142 can include data from
sources that are not part of an enterprise ' s content manage
ment system . Examples of external systems include but are
not limited to SAPTM , ORACLE E - BUSINESSTM ,
PEOPLESOFTTM , NETSUITETM and WORKDAYTM . This
data can include customer purchase history , demographics ,
relationships , and preferences . In one example , data can be
represented as comma separated values (CSV) that represent
sales quotas for a competitor , provided in a spreadsheet
format . Data can be received in other formats — including ,
but not limited to , other delimiter - separated formats , bit
mapped images , Ogg format containers for different types of
multimedia , and proprietary file formats .
10031] The environment shown in FIG . 1 includes appli
cation server 116 , which runs all kinds of apps in the
cloud - providing software as a service , such as customer
relationship management , HR , accounting , and much more .
Environment 100 also includes multi - tenant software - as - a
service platform 106 , which includes application server 116
and can be of varying types including a workstation , server ,
computing cluster , blade server , server farm , or any other
data processing system or computing device .
[0032] Additionally network 145 can be any network or
combination of networks of devices that communicate with
one another , and communicate among the data stores , serv
ers , and engines described herein . For example , network 145
can be implemented using one or any combination of a LAN
(local area network) , WAN (wide area network) , telephone
network (Public Switched Telephone Network (PSTN) , Ses
sion Initiation Protocol (SIP) , 3G , 4G LTE) , wireless net
work , point - to - point network , star network , token ring net
work , hub network , WiMAX , Wi - Fi , peer - to - peer
connections like Bluetooth , Near Field Communication
(NFC) , Z - Wave , ZigBee , or other appropriate configuration
of data networks , including the Internet . In other implemen
tations , other networks can be used such as an intranet , an
extranet , a virtual private network (VPN) , a non - TCP / IP
based network , any LAN or WAN or the like .
[0033] Analytical read - only data store 102 , external data
store 142 , and multi - tenant software - as - a - service platform
106 can be implemented using a general - purpose distributed
memory caching system . In some implementations , data
structures can store information from one or more tenants
into tables of a common database image to form an on
demand database service (ODDS) , which can be imple
mented in many ways , such as a multi - tenant database
system (MTDS) . A database image can include one or more
database objects . In other implementations , the databases
can be relational database management systems (RDBMSS) ,
object oriented database management systems (OOD
BMSs) , distributed file systems (DFS) , no - schema database ,
or any other data storing systems or computing devices .
Analytical , read - only databases can implement response

times of under two seconds when searching over twenty
million records and compiling aggregate statistics from
selected records .
[0034] . In some implementations , user computing device
164 can be a personal computer , a laptop computer , tablet
computer , smartphone or other mobile computing device ,
personal digital assistant (PDA) , digital image capture
devices , and the like . In some implementations , user mobile
device 165 can be a tablet computer , smartphone or other
mobile computing device , personal digital assistant (PDA) ,
digital image capture devices , and the like .
[0035] GUI client engine 166 can take one of a number of
forms , running in a browser or as an application , including
user interfaces , dashboard interfaces , engagement consoles ,
and other interfaces , such as mobile interfaces , tablet inter
faces , summary interfaces , or wearable interfaces . In some
implementations , it can be hosted on a web - based or cloud
based server in an on premise environment . In one imple
mentation , GUI client engine 166 can be accessed from a
browser running on a computing device . The browser can be
CHROMETM , INTERNET EXPLORERTM , FIREFOXTM
SAFARITM OPERATM , ANDROIDTM , BLACKBERRYTM
and the like . In other implementations , dispatcher engine
176 and batch engine 178 can run on a computer desktop
application
[0036] In other implementations , environment 100 for
implementing dynamic adjustment of boxcarring of action
requests from component - driven cloud applications may not
have the same elements or components as those listed above
and / or may have other / different elements or components
instead of , or in addition to , those listed above , such as a web
server and template database . The different elements or
components can be combined into single software modules
and multiple software modules can run on the same hard
ware . Communication between component - driven cloud
applications and application servers is considered at multiple
levels in the data flow for a system ; one example is described
next .
[0037] FIG . 2 shows an example page delivery architec
ture which includes users 242 of browser web pages and
mobile app pages . Components are self - contained , reusable
units of an app that represent a reusable section of the UI ,
and can range in granularity from a single line of text to an
entire app . Users can interact with a data consuming appli
cation running on a user device via browser client page 264
includes component 1 244 to component N 254 . Each
component can request information from the server using
" server actions ” to make action requests , and each compo
nent can employ the use of multiple server actions to deliver
the " component view ” of the page to the user . The data
consuming application running on the user device consumes
the data received from the server responsive to the action
requests . In one implementation , an enterprise employs a
framework that includes a set of prebuilt components that
can be assembled and configured to form new regions which
are rendered to produce HTML DOM elements within the
browser or for a mobile app UI .
[0038] Boxcarring is a method of grouping a set of action
requests together and executing them at once . A page can
employ multiple XHRs to deliver the " page view ” to the
user . Boxcars , XHR - 1 245 to XHR - N 255 , include sets of
component action requests A , A , . . . Ay . In one use case ,
XHR data can be in the form of XML , JSON , HTML or
plain text . The response data can be evaluated by client - side

US 2018 / 0007166 A1 Jan . 4 , 2018

scripting . For example , if a component was formatted as
JSON by the web server , the component can convert the
received JSON into a client - side data object for delivering
the " component view ” of the page to the user .
[0039] Middleware application 156 , also running on the
user device , measures network communication latency ,
adjusts inter - boxcar intervals used to dispatch batches of
action requests , and dispatches boxcars of batched action
requests . Multiple actions are boxcarred into an
XMLHttpRequest (HR) . XHR is an API that provides
client functionality for transferring data between a client and
a server — for sending HTTP or HTTPS requests to a web
server and loading the response data received from the
server responsive to the action requests back to the client
page .
[0040] Continuing with the description of FIG . 2 , boxcars
XHR - 1 245 to XHR - N 255 transport the groups of action
requests to application server 116 to API - 1 246 to API - n 256 ,
which use SQL 1 248 to SQL - n 258 to execute the compo
nent requests . Each action can call multiple different APIs on
application server 116 ; and XHR - 1 245 to XHR - N 255 can
each include multiple actions , each calling multiple different
APIs . A single XHR , with multiple actions batched inside ,
gets processed by a single application server . Multiple
XHRs from the same client on the same page can get
serviced by different app servers .
10041] Server dispatcher engine 126 receives the trans
mitted boxcar of action requests , forwards the action
requests to the application programs , and returns the boxcar
of completed responses . Responses are grouped by server
dispatcher engine 126 into the same boxcar as those in which
they arrived , for return to the client page 264 . Server
dispatcher engine 126 calculates the server processing time
as the difference between when the boxcar of action request
is received and when the boxcar of completed responses is
ready to be returned , and reports the calculated server
processing time back to the middleware application 156 .
[0042] Structured query language SQL 1 248 to SQL - n
258 can be used to access and manipulate data in external
data store 142 . In one use case , application servers use
Salesforce Object Query Language (SOQL) to access and
manipulate data . In other use cases , application servers use
SQL to access and manipulate data in MySQL , SQL Server ,
Access , Oracle , Sybase , DB2 , and other database systems .
[0043] Because most responses to component action
requests are small in the 2 kB to 5 kB range , based on
analyzed experimental data - bandwidth typically has little
effect on the speed of transactions for users . Next we
describe the measurement of network latency for improving
application performance .
[0044] The disclosed process of improving the application
performance for a user includes dynamically measuring and
characterizing the network latency for end users . Measured
network latency is calculated as dispatch - to - completed
response time minus server processing time , and the server
processing time is received from the server for a boxcar of
completed responses . In one application context , network
latency for each server request is the time spent between the
client making a request and the client receiving a response ,
excluding the time spent on the server .
0045] FIG . 3A shows a message diagram 300 between
client and server , with labeled time measurements usable for
measuring network latency . In FIG . 3A , client 344 sends
XHR request packet 356 at request start time 354 . Upon

receipt of the packet , server 348 begins processing the
contents , at server start time 358 . When the server actions
are complete , server 348 sends XHR response packet 366 to
client 344 . The XHR response packet 366 arrives at the
client at response end time 364 .
[0046 Total server time equals server end time minus
server start time . Instrumenting the server 348 to capture the
server start time 358 and server end time 368 makes it
possible to measure the total server time . The data received
by instrumenting the client app to record the time at which
each XHR request packet 356 is sent and the time when each
corresponding XHR response packet 366 is received is
usable to calculate the measured server latency .
100471 For an implementation of the disclosed technology ,
server metrics are appended to the server response and sent
to the client 344 , and the calculation of total network latency
equals the response end time 364 minus the request start
time 354 minus the total server time described earlier in this
paragraph .
[0048] Determining the optimal path for component action
requests for a user includes deducing the number of requests
from components to boxcar together for the trip to the
application server . Middleware application 156 adjusts the
inter - boxcar intervals , taking into account the number of
connections supported between the user device and the
server and the measured network communication latency .
[0049] The server dispatcher engine 126 calculates the
server processing time as the difference between when the
boxcar of action requests is received and when the boxcar of
completed responses is ready to be returned , and reports the
calculated server processing time back to the middleware
application 156 .
10050] In another implementation , to determine the opti
mal path , the total network latency can be calculated on the
client and aggregated over a significant sample size of
recorded latencies , for each action request , to characterize
the user ' s latency . In addition , this latency information can
also be beaconed to the server and logged . For some use
cases , this information can be utilized on the server for
future optimizations .
[0051] In some use cases , users 242 can configure their
preferences for dynamic adjustment of boxcarring of action
requests from component - driven cloud applications to be
based on either absolute page performance or perceived
page performance . Perceived page load time is the time
required to fetch the components on the client page 264 that
make the page partially usable for the user . This will be
discussed further later .
[0052] Absolute page load time is the time required to
fetch all the components on the page from the application
server 116 and render them on the client page 264 . In this
configuration , the goal is to deliver the optimal absolute
page performance based on the user ' s network communica
tion latency .
[0053] The disclosed technology includes speeding up
performance of a page with multiple components , in a
cloud - based environment , by delivering the most optimal
absolute page performance . Based on the dynamic network
latency of the user , the grading engine 158 , in latency engine
146 , categorizes the user ' s transactions and assigns the user
to one of several groupings . In one use case , the categories
for grouping the users include low latency , average latency ,
and high latency - listed next , in milliseconds (ms) .

US 2018 / 0007166 A1 Jan . 4 , 2018

[0054] Low latency < 100 ms
[0055] Average latency > 100 ms and < 300 ms
[0056] High latency > 300 ms
[0057] The number of categories and the groupings for the
user ' s transactions can adapt over time , with the values
determined empirically . The system adjusts latency catego
ries according to feedback received as a browser or mobile
device changes network connections or the network condi
tions change . Numbers for delay can also programmatically
change or be tuned . That is , hard - coded numbers can
change , with more buckets or different values learned with
experience . In another use case , the number of latency
categories for grouping the users may be different , based on
the results of analyzing transaction data for over a period of
time described by a number of transmissions , seconds ,
minutes , hours , days , weeks or months .
10058] . When the dynamic network latency falls in the low
latency category of less than one hundred ms , action
requests can be sent in parallel — utilizing the connections
offered by the browser effectively . That is , each action
request can be sent as soon as it is received . The number of
nearly - concurrent connections used to service components
of the web page can be rationed . Middleware application
156 determines the browser or app through which it is
coupled in communication with the server and looks up the
number of connections supported by the respective browser
or app .
[0059] Most modern browsers support between six and
thirteen concurrent connections per hostname (number of
http / 1 . 1 connections that can be opened for the browser) , so
a default number of nearly - concurrent connections can be
initialized to a value of six and the number of available
connections can take into consideration the network latency .
In one implementation , Browserscope a community
driven project for profiling web browsers — is usable for
discerning the number of concurrent connections per host
name for a client server . Browserscope tracks browser
functionality , and gathers latency and other test results from
users “ in the wild ” < May 9 , 2016 : http : / / www . browserscope .
org > .
[0060] FIG . 3B shows an example dynamic Browserscope
browser scorecard for deducing network latency . Users can
choose to view results for only desktop browsers , only
mobile device browsers , results for a particular family of
browsers , or other optional groupings . Network 304 shows
tests that address network performance issues , including
connections per hostname 314 . The column labeled maxi
mum connections 315 refers to the number of connections
that the browser will open across all hostnames , which has
a typical upper limit of 60 .
[0061] In the low latency scenario , each component , from
component 1 244 to component N 254 of browser / client
page 264 , makes its own server request directly without
enqueuing it into a global action queue . This saves the
queuing time and since each action is executed individually
on the server , the server time is also optimized . This ensures
that the server responses come , in the fastest way , back to the
client — thereby delivering the most optimal network perfor
mance , based on the user ' s good latency .
[0062] Most users fall in the average latency category
with a measured latency of between 100 ms and 300 ms . For
a composite component page , each component requests
information from the server by enqueuing its actions into a
global action queue . Each component is oblivious to other

components on the same page and can make their action
requests at any time in their respective component lifecycle .
[0063] Client boxcar engine 178 collects all actions that
are requested from the composite components around the
same time and batches them into a single network request
action boxcar XHR - N 255 . Client dispatcher engine 186
sends the batched network request to the application server
116 . Upon receiving the response boxcar from application
server 116 , the client 264 decomposes the respective
responses to each of the constituent components . Instead of
making multiple XHR requests — XHR - 1 245 to XHR - N
255 to the server - one for each of the requested component
actions , the disclosed technology dynamically adjusts box
carring of action requests from component - driven cloud
applications - reducing the number of network requests to
application server 116 . In the average case , the batching of
action requests to be routed to the server improves network
utilization .
[0064] The process for handling component requests
includes measuring the network latency from initial XHR
requests and establishing a network latency category , and
dynamically calculating the queue wait time based on the
established network latency category . The process includes
continuously gathering actions into a collector within the
queue wait time window , batching the actions , A , , A , . . . A , ,
245 collected during the calculated queue wait time . The
process also includes creating XHR requests 255 with these
enqueued action requests A1 , A2 . . . A , 245 and sending the
boxcars to the application server 162 . The process includes
adapting the queue wait time based on measured network
latency feedback and action / XHRs in - flight - sent but not
yet received , and in - queue . The code snippet listed next
shows one implementation of the process . The following
function for enqueuing actions gets activated from within an
event loop for a component or region .

AuraActionService = function AuraActionService () {
this . NOOP = function () { } ;
var auraXHR = new Aura . Services . AuraClientService $ AuraXHRO) ;
var XHRLatency = new
Aura . Services . AuraClient Service $ XHRLatency () ;
this . availableXHRS = [auraXHR] ;
this . allXHRs = [auraXHR] ;
this . actionStoreMap = { } ;
this . collector = undefined ;
this . setQueueSize (this . Browser . MaxConnectionsPerHost) ;

AuraClient Service . prototype . enqueue Action = function (action) {
$ A . assert (! $ A . util . isUndefinedOrNull (action) , “ EnqueueAction ()

cannot be called on an undefined or null action . ") ;
$ A . assert ($ A . util . isAction (action) , " Cannot call EnqueueAction ()

with a non Action parameter . ”) ;
this . actionsQueued . push (action) ;

[0065] The next code snippet shows the function for
getting an available XHR .

AuraClientService . prototype . getAvailableXHR = function () {
var auraXHR = this . availableXHRs . pop () ;
return auraXHR ;

[0066] The next code snippet shows the function for
releasing an XHR back into the pool .

US 2018 / 0007166 A1 Jan . 4 , 2018

AuraClientService . prototype . releaseXHR = function (auraXHR) {
auraXHR . reset () ;
this . availableXHRs . push (auraXHR) ;
if (this . inFlightXHRS () = = = 0) {

this . processXHRIdleQueue () ;

AuraClient Service . prototype . collectServerAction =
function (action , index) {

this . collector . collected [index] = action ;
this . collector . actionsToCollect - = 1 ;
this . finishCollection () ;

AuraClientService . prototype . finishCollection = function () {
if (this . collector . actionsToCollect ! = = 0 | |
this . collector . clientActions . length) {

return ;

if (this . collector . actionsCompleted) {
this . fireDone Waiting () ;

[0067] The following code snippet shows the entry point
for processing actions : creating a collector , and parceling out
the action request handling . After this , action requests will
be either getting values from storage or will be executed on
the server , and the client action requests will be queued to be
executed in the order set via setTimeout , giving server
actions entry points to collect .

AuraClientService . prototype . process = function () {
if (this . collector) { .

return ;

this . collector = new
Aura . Services . AuraClientService $ AuraActionCollector () ;
this . continue Processing () ;

10070) If a user has very high network latency greater than
300 ms , more conservative choices are implemented for
network requests to improve the user ' s network perfor
mance . The time window for collecting component action
requests can be increased to 300 ms to allow for more
actions to be boxcarred into the same network request . This
helps to mitigate the high latency cost of a user ' s slow
network . In most scenarios , this reduces the number of
network requests and thereby delivers a more optimal net
work performance within the user ' s bad latency constraints .
10071] The process includes boxcarring into a single XHR
composite actions enqueued around the same time , and for
measured latency values , waiting for an additional 100 ms
and then sending possibly additional actions via a single
boxcar XHR , as shown in the following code snippet shows .
If the measured latency increases , then the process includes
waiting an additional 300 ms , and sending possibly addi
tional actions as a single boxcar XHR .

[0068] The process includes dividing actions into client
actions and server actions . Server actions are further divided
into stored and non - stored actions , and the following code
snippet also protects against server actions collecting early .
In the example , actions Queued refers to the queue of actions
that have yet to be processed .

var i = 0 ;
var length ;
var collected = this . collector . collected ;
this . collector . collected = [] ;
for (i = 0 , length = collected . length ; i < length ; i + +) {

if (collected [i]) {
this . actionsDeferred . push (collected [i]) ;

AuraClientService . prototype . continue Processing = function () {
var i ;
var index = 0 ;
var action ;
var actionList ;
this . collector . actions To Collect + = 1 ;
actionList = this . actions Queued ;
this . actionsQueued = [] ;
for (i = 0 ; i < actionList . length ; i + +) {

action = actionList [i] ;
try {

if (action . abortIfComponentInvalid (true)) {
/ / action already aborted .
/ / this will only occur if the component is no longer valid .
continue ;

if (this . actionsQueued . length) {
this . continueProcessing () ;
return ;

if (action . getDef () . isServerAction ()) {
this . collector . actions ToCollect + = 1 ;
this . collector . collected [index] = undefined ;
this . collector . collecting [index] = action ;
this . collectServerAction (action , index) ;
index + = 1 ;

if (this . actionsDeferred . length) {
if (XHRLatency . latencyCategory = = = " average ") {

if (XHRLatency . increasedWait) {
XHRLatency . increased Wait = false ;
this . sendActionXHRs (false) ;

} else { }
setTimeout (function () {
XHRLatency . increased Wait = true ;
this . continue Processing () ;
return ;
} , 100 } catch (e) {

var errorWrapper = new $ A . auraError (null , e) ;
errorWrapper . action = action ;
$ A . logger . reportError (errorWrapper) ;

this . collector . actions ToCollect - = 1 ;

} else if (XHRLatency . latencyCategory = = = " high ") {
if (XHRLatency . increasedWait) {
XHRLatency . increased Wait = false ;
this . sendActionXHRs (false) ;

} else { }
setTimeout (function () {
XHRLatency . increasedWait = true ;
this . continue Processing () ;
return ;
} , 300

[0069] Next in the process , the following code snippet
shows collecting a single action into the list , finishing the
collection process , and sending the XHR .

US 2018 / 0007166 A1 Jan . 4 , 2018

- continued - continued

} else if (XHRLatency . latencyCategory = = = " low ") {
this . sendActionXHRs (true) ;

} else if (latency < 100) {
XHRLatency . latencyCategory = “ low ” ;

} else {
XHRLatency . latencyCategory = “ average ” ;
}

V

[0072] The process includes sending requests with the
maximum parallelism possible , in cases in which the mea
sured latency is low , and ensuring that all actions get sent ,
marked as duplicates , or put into a deferred queue . Callback
for an XHR for a set of actions includes correctly dealing
with the case of interrupted communications , and aborts of
requests . The next code snippet shows code for setting the
XHR receive time , and a segment of the code used for
catching errors , as needed .

[0074] The process and code snippets described above for
dynamic adjustment of boxcarring of action requests from
component - driven cloud applications for a user show an
implementation for dynamically measuring and character
izing the network latency for end users and for implement
ing boxcars , based on the measured network latency .
10075] FIG . 4 shows a pie chart graph of network latency
metrics 400 for a production page . This example set of
metric measurement results covers a week of time , for ten
requests per page . The graph 400 shows that 61 . 6 % of
requests 425 incurred a network latency of less than one
hundred ms , so less than one second to transmit ten requests
and receive ten component action requests . Only 0 . 4 % of
action requests 424 incurred a network latency of greater
than five seconds , translating to more than fifty seconds
close to a minute for ten requests .

AuraClientService . prototype . receive = function (auraXHR , timedOut) {
auraXHR . XHREndTime = Date . now () ;

var response Message ;
this . auraStack . push (" AuraClientService $ receive ”) ;
try {

response Message = this . decode (auraXHR . request , false , timedOut) ;
if (response Message [" status "] = = = " SUCCESS ”) {

this . process Responses (auraXHR , response Message [" message "]) ;
this . processXHRLatency (auraXHR , response Message [" perf " ']) ;

} else if (response Message [" status "] = = = " INCOMPLETE ") {
this . processIncompletes (auraXHR) ;

} else if (response Message [" status "] = = = “ ERROR ") {
this . processErrors (auraXHR , response Message [" message "]) ;

this . fireDoneWaiting () ;
} catch (e) {

throw (e instanceof $ A . auraError) ? e : new
$ A . auraError (" AuraClientService . receive action callback failed ” , e) ;

} finally {
this . auraStack . pop () ;
this . releaseXHR (auraXHR) ;
this . process () ;

return responseMessage ;

[0073] In this example case , if the latency is greater than
300 ms , the boxcarring is in the “ high ” category , if the
latency is between 100 ms and 300 ms , the latency is in the
average category , and if the latency is less than 100 ms , the
latency category is " low ” . The next code snippet shows the
receiving of the server start and end timestamps from the
server performance instrumentation , and using the values to
calculate network latency from the XHR to establish the
network latency category .

Perceived Page Performance
[0076] For network utilization improvements based on
perceived page performance , users 242 can configure their
loading preferences to specify the order for the loading of
regions for a page that is , what components in what
regions get loaded in what order . The goal is to deliver the
most optimal perceived performance based on the user ' s
network latency . The user perception can be based on
configurable options .
[0077] Component loading based on a user ' s viewing
choices can include an algorithm that identifies rules for
choosing order , or can include an explicit loading order for
components that specifies which components to prioritize in
the component load order . For example , similar to the way
one reads a book , the focus of a user ' s gaze moves from left
to right , and then top to bottom . To give the user the
perceived sense of responsiveness when viewing the book ,
the rules for prioritizing the component load order can
specify starting at the top left and then moving across the
displayed page , before moving toward the bottom right
corner of the page .
[0078] FIG . 5 shows an example use case of component
loading prioritization based on the typical direction of a
user ' s gaze . The example page 500 includes four compo
nents : sales rep at a glance 501 , account insights 502 ,
quarterly performance 503 and assistant 504 , positioned as
shown on the page . Rules for prioritizing the component
load order can be expressed : Load sales rep at a glance 501 ,
then account insights 502 , then quarterly performance 503
and load assistant 504 last . In some use cases , to minimize
perceived page load time latency , network latency and
boxcarring of action requests can occur separately for the
components within the region being loaded .
[0079] In another use case , component loading prioritiza
tion can be based on user - specified ranking of constituent
components of a page prioritizing one component over
another . A client configuration UI can provide a list of all the
components on the page to the user , in the page setup , and

AuraClientService . prototype . processXHRLatency = function (auraXHR) {
var latency ;
var perf = response Message [“ perf ” '] ;
if (perf) {
auraXHR . ServerStartTime = perf . serverStartTime ;
auraXHR . ServerEndTime = perf . serverEndTime ;
var _ totalServerTime = auraXHR . ServerEndTime -

auraXHR . ServerStartTime ;
var _ totalXHRTime = auraXHR . XHREndTime -
auraXHR . XHR Start Time :
latency = _ totalXHRTime - totalServer Time ;

XHRLatency . last KnownLatency = latency ;
if (latency > = 300) {

XHRLatency . latencyCategory = “ high " ;

US 2018 / 0007166 A1 Jan . 4 , 2018

client configuration UI feature empowers the designer to fine
tune the page load time for a page , independently .

region .

the user can rank the components in a priority order of their
choosing . This is useful in scenarios in which the user has a
personal preference for a specific component to load as soon
as possible , since that component is the most critical piece
of information for them on the page . In one example , a user
may want to view assistant 504 first , while the remaining
regions of their page are loading .
[0080] When a new page is being designed or a page
design is being optimized , the designer can use a region
based app editor for adding priority rankings that rank the
components in a priority order of the user ' s choosing , for
enhancing perceived page performance for customized
pages . Using a region - based app builder interface , a user is
allowed to specify which components are assigned to which
regions and also allocate a priority for each of these regions .
Each component added within the specified region will be
loaded based on the assigned priority for that region .
[0081] FIG . 6 includes a snippet of code 600 for a region
based app editor , showing example priority labels for
regions . In an iFrame , the body includes a series of classes
that represent regions of a web page . In the example snippet
of code 600 , the “ top ” region 632 is priority one 645 and the
bottom left region 652 is priority two 665 . Similarly , addi -
tional classes can define regions such as bottom right with a
priority of three and a region of column side with a priority
of four (not shown) .
[0082] Data consuming applications — browser - based
applications 148 or mobile device applications 149 running
on a user device 164 , 165 , make action requests qualified by
the priority labels applied to regions and components in the
regions and consume data received from at least one appli
cation server 116 responsive to the action requests . The
priority labels differentiate among display regions rendered
by the data consuming application and at least some of the
priority labels further differentiate among components
within respective display regions .
[0083] Middleware application 156 , also running on the
user device , batches the action requests into batches based at
least in part on the priority labels 645 , 665 , and dispatches
boxcars of batched action requests , in which the priority
labels differentiate among display regions rendered by the
data consuming application and at least some of the priority
labels further differentiate among components within
respective display regions . The boxcars are segregated by
priority label according to a predetermined segregation
schedule ; and the action requests that are qualified by higher
priority labels are dispatched ahead of the action requests
with lower priority labels . The server dispatcher engine 126
receives the transmitted boxcar of action requests , forwards
the action requests to the application programs , collects
responses from the application programs , and returns a
responsive boxcar of completed responses . The server dis
patcher engine 126 calculates the server processing time as
the difference between when the boxcar of action request is
received and when the boxcar of completed responses is
ready to be returned , and reports the calculated server
processing time back to the middleware application 156 .
[0084] Region load order configuration is very useful for
enterprise customers who need to optimize customized
pages for enterprise applications in which their clients can
add any number of new and third party components of their
liking to a page . Predicting the runtime performance of a
completely re - architected page can be challenging , and this

System Flow
[0085] FIG . 7 illustrates a flowchart of one implementa
tion 700 of implementing a system for priority - driven box
carring of action requests from component - driven cloud
applications . Flowchart 700 can be implemented at least
partially with a database system , e . g . , by one or more
processors configured to receive or retrieve information ,
process the information , store results , and transmit the
results . Other implementations may perform the steps in
different orders and / or with different , fewer or additional
steps than the ones illustrated in FIG . 7 . The actions
described below can be subdivided into more steps or
combined into fewer steps to carry out the method described
using a different number or arrangement of steps .
10086) At action 710 , run a middleware application on the
user device , coupled in communication with a data consum
ing application and a browser or app running on the user
device , and also coupled in communication with at least one
server through the browser or app .
[0087] At action 715 , the middleware application receives
action requests from the data consuming application quali
fied by priority labels applied to regions and components in
the regions and returns data received from the server respon
sive to the action requests .
[0088] At action 720 , the priority labels differentiate
among display regions rendered by the data consuming
application and at least some of the priority labels further
differentiate among components within respective display
regions .
[0089] At action 725 , the middleware application batches
the action requests into batches based at least in part on the
priority labels , into boxcars segregated by priority label
according to a predetermined segregation schedule , and
dispatching the boxcars of batched action requests to the
server .
[0090] The technology disclosed can be implemented in
the context of any computer - implemented system including
a database system , a multi - tenant environment , or the like .
Moreover , this technology can be implemented using two or
more separate and distinct computer - implemented systems
that cooperate and communicate with one another . This
technology can be implemented in numerous ways , includ
ing as a process , a method , an apparatus , a system , a device ,
a computer readable medium such as a computer readable
storage medium that stores computer readable instructions
or computer program code , or as a computer program
product comprising a computer usable medium having a
computer readable program code embodied therein .
Integration
[0091] FIG . 8 presents a block diagram of an exemplary
multi - tenant system 800 suitable for implementing dynamic
adjustment of boxcarring of action requests from compo
nent - driven cloud applications in environment 100 of FIG .
1 . In general , the illustrated system 800 of FIG . 8 includes
a server 804 that dynamically creates and supports virtual
applications 816 and 818 , based upon data 822 from a
common database 832 that is shared between multiple
tenants , alternatively referred to herein as a “ multi - tenant
database ” . Data and services generated by the virtual appli

US 2018 / 0007166 A1 Jan . 4 , 2018

cations 816 and 818 , including GUI clients , are provided via
a network 845 to any number of client devices 848 or 858 ,
as desired .
0092] As used herein , a " tenant ” or an “ organization ”
refers to a group of one or more users that shares access to
common subset of the data within the multi - tenant database
832 . In this regard , each tenant includes one or more users
associated with , assigned to , or otherwise belonging to that
respective tenant . Stated another way , each respective user
within the multi - tenant system 800 is associated with ,
assigned to , or otherwise belongs to a particular tenant of the
plurality of tenants supported by the multi - tenant system
800 . Tenants may represent users , user departments , work or
legal organizations , and / or any other entities that maintain
data for particular sets of users within the multi - tenant
system 800 . Although multiple tenants may share access to
the server 804 and the database 832 , the particular data and
services provided from the server 804 to each tenant can be
securely isolated from those provided to other tenants . The
multi - tenant architecture therefore allows different sets of
users to share functionality and hardware resources without
necessarily sharing any of the data 822 belonging to or
otherwise associated with other tenants .
[0093] The multi - tenant database 832 is any sort of reposi
tory or other data storage system capable of storing and
managing the data 822 associated with any number of
tenants . The database 832 may be implemented using any
type of conventional database server hardware . In various
implementations , the database 832 shares processing hard
ware with the server 804 . In other implementations , the
database 832 is implemented using separate physical and / or
virtual database server hardware that communicates with the
server 804 to perform the various functions described herein .
The multi - tenant database 832 may alternatively be referred
to herein as an on - demand database , in that the multi - tenant
database 832 provides (or is available to provide) data at
run - time to on - demand virtual applications 816 or 818
generated by the application platform 817 , with tenant1
metadata 812 and tenant2 metadata 814 securely isolated .
[0094] In practice , the data 822 may be organized and
formatted in any manner to support the application platform
817 . In various implementations , conventional data relation
ships are established using any number of pivot tables 813
that establish indexing , uniqueness , relationships between
entities , and / or other aspects of conventional database orga
nization as desired .
[0095] The server 804 is implemented using one or more
actual and / or virtual computing systems that collectively
provide the dynamic application platform 817 for generating
the virtual applications . For example , the server 804 may be
implemented using a cluster of actual and / or virtual servers
operating in conjunction with each other , typically in asso
ciation with conventional network communications , cluster
management , load balancing and other features as appropri
ate . The server 804 operates with any sort of conventional
processing hardware such as a processor 836 , memory 838 ,
input / output features 834 and the like . The input / output 834
generally represent the interface (s) to networks (e . g . , to the
network 845 , or any other local area , wide area or other
network) , mass storage , display devices , data entry devices
and / or the like . User interface input devices 834 can include
a keyboard ; pointing devices such as a mouse , trackball ,
touchpad , or graphics tablet ; a scanner ; a touch screen
incorporated into the display ; audio input devices such as

voice recognition systems and microphones ; and other types
of input devices . In general , use of the term “ input device ”
is intended to include possible types of devices and ways to
input information into computer system 817 .
[0096] User interface output devices can include a display
subsystem , a printer , a fax machine , or non - visual displays
such as audio output devices . The display subsystem can
include a cathode ray tube (CRT) , a flat - panel device such as
a liquid crystal display (LCD) , a projection device , or some
other mechanism for creating a visible image . The display
subsystem can also provide a non - visual display such as
audio output devices . In general , use of the term " output
device ” is intended to include all possible types of devices
and ways to output information from processor 836 to the
user or to another machine or computer system .
[0097] The processor 836 may be implemented using any
suitable processing system , such as one or more processors ,
controllers , microprocessors , microcontrollers , processing
cores and / or other computing resources spread across any
number of distributed or integrated systems , including any
number of “ cloud - based ” or other virtual systems . The
memory 838 represents any non - transitory short or long
term storage or other computer - readable media capable of
storing programming instructions for execution on the pro
cessor 836 , including any sort of random access memory
(RAM) , read only memory (ROM) , flash memory , magnetic
or optical mass storage , and / or the like . The computer
executable programming instructions , when read and
executed by the server 804 and / or processor 836 , cause the
server 804 and / or processor 836 to create , generate , or
otherwise facilitate the application platform 817 and / or
virtual applications 816 and 818 , and perform one or more
additional tasks , operations , functions , and / or processes
described herein . It should be noted that the memory 838
represents one suitable implementation of such computer
readable media , and alternatively or additionally , the server
804 could receive and cooperate with external computer
readable media that is realized as a portable or mobile
component or application platform , e . g . , a portable hard
drive , a USB flash drive , an optical disc , or the like .
[0098] The application platform 817 is any sort of soft
ware application or other data processing engine that gen
erates the virtual applications 816 and 818 that provide data
and / or services to the client devices 848 and 858 . In a typical
implementation , the application platform 817 gains access to
processing resources , communications interfaces and other
features of the processing hardware using any sort of con
ventional or proprietary operating system 828 . The virtual
applications 816 and 818 are typically generated at run - time
in response to input received from the client devices 848 and
858 .
[0099] With continued reference to FIG . 8 , the data and
services provided by the server 804 can be retrieved using
any sort of personal computer , mobile telephone , tablet or
other network - enabled client device 848 or 858 on the
network 845 . In an exemplary implementation , the client
device 848 or 858 includes a display device , such as a
monitor , screen , or another conventional electronic display
capable of graphically presenting data and / or information
retrieved from the multi - tenant database 832 .
[0100] In some implementations , network (s) 845 can be
any one or any combination of Local Area Network (LAN) ,
Wide Area Network (WAN) , WiMAX , Wi - Fi , telephone
network , wireless network , point - to - point network , star net

US 2018 / 0007166 A1 Jan . 4 , 2018

work , token ring network , hub network , mesh network ,
peer - to - peer connections like Bluetooth , Near Field Com -
munication (NFC) , Z - Wave , ZigBee , or other appropriate
configuration of data networks , including the Internet .
[0101] The foregoing description is merely illustrative in
nature and is not intended to limit the implementations of the
subject matter or the application and uses of such imple
mentations . Furthermore , there is no intention to be bound
by any expressed or implied theory presented in the tech
nical field , background , or the detailed description . As used
herein , the word " exemplary ” means “ serving as an
example , instance , or illustration . ” Any implementation
described herein as exemplary is not necessarily to be
construed as preferred or advantageous over other imple
mentations , and the exemplary implementations described
herein are not intended to limit the scope or applicability of
the subject matter in any way .
[0102] The technology disclosed can be implemented in
the context of any computer - implemented system including
a database system , a multi - tenant environment , or a rela
tional database implementation like an ORACLETM com
patible database implementation , an IBM DB2 Enterprise
Server compatible relational database implementation , a
MySQL or PostgreSQL compatible relational database
implementation or a Microsoft SQL Server compatible rela
tional database implementation or a NoSQL non - relational
database implementation such as a VampireTM compatible
non - relational database implementation , an Apache Cassan
draTM compatible non - relational database implementation , a
Big Table compatible non - relational database implementa
tion or an HBase or DynamoDB compatible non - relational
database implementation .
[0103] Moreover , the technology disclosed can be imple
mented using two or more separate and distinct computer
implemented systems that cooperate and communicate with
one another . The technology disclosed can be implemented
in numerous ways , including as a process , a method , an
apparatus , a system , a device , a computer readable medium
such as a computer readable storage medium that stores
computer readable instructions or computer program code ,
or as a computer program product comprising a computer
usable medium having a computer readable program code
embodied therein .

with lower priority labels . The disclosed system also
includes a browser or app running on the user device , in
communication with the middleware application , that sup
ports the data consuming application ; and the server , run
ning a dispatcher and one or more application programs ; and
the dispatcher receives the boxcar of action requests , for
wards the action requests to the application programs , col
lects responses from the application programs , and returns a
responsive boxcar of completed responses .
[0106] For some implementations of the disclosed system ,
the priority labels are set using an attribute of a DIV html
tag . The disclosed system further includes the middleware
application , further implementing measurement of network
communication latency , setting of inter - boxcar intervals
used to dispatch the batches of action requests , wherein the
measured network communication latency is calculated as
dispatch - to - completed response time minus server process
ing time and the server processing time is received from the
server for a boxcar of completed responses . The inter - boxcar
intervals are adjusted taking into account at least (a) a
number of connections supported between the user device
and the server and (b) the measured network communication
latency .
[0107] In one implementation of the disclosed system , the
middleware application repeatedly measures network com
munication latency and readjusts the inter - boxcar intervals
used to dispatch batches of action requests based on updated
measurements , and adjusts the inter - boxcar intervals used to
time when to dispatch batches of action requests to 250 - 350
ms when the measured network communication latency
exceeds 300 ms . The middleware application also can iden
tify the browser or app through which it is coupled in
communication with the server and looks up the number of
connections supported by the identified browser or app . For
the disclosed system , the middleware application receives
the boxcar of completed responses grouped to respond to a
respective boxcar of action requests .
[0108] For one implementation , a user device runs a
middleware application , coupled in communication with a
data consuming application and a browser or app running on
the user device , and also coupled in communication with at
least one server through the browser or app ; wherein the
middleware application receives action requests from the
data consuming application qualified by priority labels
applied to regions and components in the regions and returns
data received from the server responsive to the action
requests . The priority labels differentiate among display
regions rendered by the data consuming application and at
least some of the priority labels further differentiate among
components within respective display regions . The action
requests that are qualified by higher priority labels are
dispatched ahead of the action requests with lower priority
labels . The middleware application batches the action
requests into batches based at least in part on the priority
labels , into boxcars segregated by priority label according to
a predetermined segregation schedule , and dispatches the
boxcars of batched action requests . The middleware appli
cation further measures network communication latency and
adjusts inter - boxcar intervals used to dispatch the batches of
action requests , and calculates the measured network com
munication latency as dispatch - to - completed response time
minus server processing time , using the server processing
time received from the server for a boxcar of completed
responses . The inter - boxcar intervals are adjusted , taking

Particular Implementations
[0104] Some particular implementations and features are
described in the following discussion .
[0105] In one implementation , a disclosed system includes
a user device and a server , coupled in communication ,
including a data consuming application , running on a user
device , that makes action requests qualified by priority
labels applied to regions and components in the regions and
that consumes data received from at least one server respon -
sive to the action requests . A middleware application , also
running on the user device , batches the action requests into
batches based at least in part on the priority labels , and
dispatches boxcars of batched action requests . The priority
labels differentiate among display regions rendered by the
data consuming application and at least some of the priority
labels further differentiate among components within
respective display regions . The boxcars are segregated by
priority label according to a predetermined segregation
schedule ; and the action requests that are qualified by higher
priority labels are dispatched ahead of the action requests

US 2018 / 0007166 A1 Jan . 4 , 2018

into account at least (a) a number of connections supported
between the user device and the server and (b) the measured
network communication latency .
10109] . For some implementations of the user device , the
middleware application repeatedly measures network com
munication latency and readjusts the inter - boxcar intervals
used to dispatch batches of action requests based on updated
measurements . The middleware application adjusts the
inter - boxcar intervals used to time when to dispatch batches
of action requests to 250 - 350 ms when the measured net
work communication latency exceeds 300 ms , and the
middleware application identifies the browser or app
through which it is coupled in communication with the
server and looks up the number of connections supported by
the identified browser or app . The middleware application
receives the boxcar of completed responses grouped to
respond to a respective boxcar of action requests .
[0110] In another implementation , a disclosed server runs
a dispatching application , coupled in communication with a
multiplicity (100 or more) of middleware applications run
ning on respective user devices and one or more application
programs running on the server . The dispatcher receives
boxcarred batches of action requests from the middleware
applications in priority - based batches , forwards the action
requests to the application programs , and returns responsive
boxcars of completed responses ; and calculates a server
processing time as a difference between when a particular
boxcar of action requests is received and when a respective
boxcar of completed responses is ready to be returned and
further reports the calculated server processing time back to
the middleware application for the respective boxcar of
completed responses . The dispatcher further identifies
respective application programs that will respond to the
action requests received in a particular boxcar from one of
the middleware applications and dispatches the action
requests from the particular boxcar to the responsive appli
cation programs . In some implementations of the disclosed
server , the dispatcher postpones returning responses to
action requests from a particular boxcar until it has received
(or timed out on responses to all of the action requests in the
particular boxcar .
0111] In yet another implementation , a disclosed method
conserves connections between a browser or app running on
a user device and at least one server , including running a
middleware application on the user device , coupled in
communication with a data consuming application and a
browser or app running on the user device , and also coupled
in communication with at least one server through the
browser or app . The middleware application receives action
requests from the data consuming application qualified by
priority labels applied to regions and components in the
regions and returns data received from the server responsive
to the action requests . The priority labels differentiate among
display regions rendered by the data consuming application
and at least some of the priority labels further differentiate
among components within respective display regions ; and
the middleware application batches the action requests into
batches based at least in part on the priority labels , into
boxcars segregated by priority label according to a prede
termined segregation schedule , and dispatches the boxcars
of batched action requests to the server . The middleware
application measures network communication latency and
adjusting inter - boxcar intervals used to dispatch batches of
action requests , and calculates the measured network com

munication latency as dispatch - to - completed response time
minus server processing time , using the server processing
time received from the server for a boxcar of completed
responses . The middleware application also adjusts the
inter - boxcar intervals taking into account at least (a) a
number of connections supported between the user device
and the server and (b) the measured network communication
latency . The disclosed method further includes repeatedly
measuring network communication latency and readjusting
the inter - boxcar intervals used to dispatch batches of action
requests based on updated measurements .
0112] For some implementations , the disclosed method
further includes adjusting the inter - boxcar intervals used to
time when to dispatch batches of action requests to 250 - 350
ms when the measured network communication latency
exceeds 300 ms . The middleware application identifies the
browser or app through which it is coupled in communica
tion with the server and looking up the number of connec
tions supported by the identified browser or app . The
middleware application receives the boxcar of completed
responses grouped to respond to a respective boxcar of
action requests .
[0113] In one implementation a disclosed method con
serves connections between a browser or app running on a
user device and at least one server , including a dispatcher
running on the server and coupled in communication with a
multiplicity of middleware applications running on respec
tive user devices and one or more application programs
running on the server . The dispatcher receives boxcarred
batches of action requests in priority - based batches from the
middleware applications , forwards the action requests to the
application programs , and returning responsive boxcars of
completed responses ; and calculates a server processing
time as a difference between when a particular boxcar of
action requests is received and when a respective boxcar of
completed responses is ready to be returned and further
reporting the calculated server processing time back to the
middleware application for the respective boxcar of com
pleted responses . The dispatcher identifies respective appli
cation programs that will respond to the action requests
received in a particular boxcar from one of the middleware
applications and dispatching the action requests from the
particular boxcar to the responsive application programs . In
some implementations , the dispatcher postpones returning
responses to action requests from a particular boxcar until it
has received (or timed out on) responses to all of the action
requests in the particular boxcar .
[0114] While the technology disclosed is disclosed by
reference to the preferred embodiments and examples
detailed above , it is to be understood that these examples are
intended in an illustrative rather than in a limiting sense . It
is contemplated that modifications and combinations will
readily occur to those skilled in the art , which modifications
and combinations will be within the spirit of the invention
and the scope of the following claims .
What is claimed is :
1 . A system including a user device and a server , coupled

in communication , including :
a data consuming application , running on a user device ,

that makes action requests qualified by priority labels
applied to regions and components in the regions and
that consumes data received from at least one server
responsive to the action requests ;

US 2018 / 0007166 A1 Jan . 4 , 2018

a middleware application , also running on the user device ,
that batches the action requests into batches based at
least in part on the priority labels , and that dispatches
boxcars of batched action requests ;
wherein the priority labels differentiate among display

regions rendered by the data consuming application
and at least some of the priority labels further
differentiate among components within respective
display regions ;

wherein the boxcars are segregated by priority label
according to a predetermined segregation schedule ;
and

wherein the action requests that are qualified by higher
priority labels are dispatched ahead of the action
requests with lower priority labels ;

a browser or app running on the user device , in commu
nication with the middleware application , that supports
the data consuming application ; and

the server , running a dispatcher and one or more appli
cation programs ; and
wherein the dispatcher receives the boxcar of action

requests , forwards the action requests to the appli
cation programs , collects responses from the appli
cation programs , and returns a responsive boxcar of
completed responses .

2 . The system of claim 1 , wherein the priority labels are
set using an attribute of a DIV html tag .

3 . The system of claim 1 , further including :
the middleware application , further implementing mea

surement of network communication latency , setting of
inter - boxcar intervals used to dispatch the batches of
action requests ,
wherein the measured network communication latency

is calculated as dispatch - to - completed response time
minus server processing time and the server process
ing time is received from the server for a boxcar of
completed responses ; and

wherein the inter - boxcar intervals are adjusted taking
into account at least (a) a number of connections
supported between the user device and the server and
(b) the measured network communication latency .

4 . The system of claim 3 , wherein the middleware appli
cation repeatedly measures network communication latency
and readjusts the inter - boxcar intervals used to dispatch
batches of action requests based on updated measurements .

5 . The system of claim 3 , wherein the middleware appli
cation adjusts the inter - boxcar intervals used to time when to
dispatch batches of action requests to 250 - 350 ms when the
measured network communication latency exceeds 300 ms .

6 . The system of claim 3 , wherein the middleware appli
cation identifies the browser or app through which it is
coupled in communication with the server and looks up the
number of connections supported by the identified browser
or app .

7 . The system of claim 3 , wherein the middleware appli
cation receives the boxcar of completed responses grouped
to respond to a respective boxcar of action requests .

8 . A user device running a middleware application ,
including :

a middleware application , running on the user device ,
coupled in communication with a data consuming
application and a browser or app running on the user
device , and also coupled in communication with at
least one server through the browser or app ;

wherein the middleware application receives action
requests from the data consuming application quali
fied by priority labels applied to regions and com
ponents in the regions and returns data received from
the server responsive to the action requests ;

wherein the priority labels differentiate among display
regions rendered by the data consuming application
and at least some of the priority labels further
differentiate among components within respective
display regions ;

wherein the action requests that are qualified by higher
priority labels are dispatched ahead of the action
requests with lower priority labels ; and

wherein the middleware application batches the action
requests into batches based at least in part on the
priority labels , into boxcars segregated by priority
label according to a predetermined segregation
schedule , and dispatches the boxcars of batched
action requests .

9 . The user device of claim 8 , wherein :
the middleware application further measures network

communication latency and adjusts inter - boxcar inter
vals used to dispatch the batches of action requests ;
wherein the middleware application calculates the mea

sured network communication latency as dispatch
to - completed response time minus server processing
time , using the server processing time received from
the server for a boxcar of completed responses ; and

wherein the inter - boxcar intervals are adjusted , taking
into account at least (a) a number of connections
supported between the user device and the server and
(b) the measured network communication latency .

10 . The user device of claim 9 , wherein the middleware
application repeatedly measures network communication
latency and readjusts the inter - boxcar intervals used to
dispatch batches of action requests based on updated mea
surements .

11 . The user device of claim 9 , wherein the middleware
application adjusts the inter - boxcar intervals used to time
when to dispatch batches of action requests to 250 - 350 ms
when the measured network communication latency exceeds
300 ms .
12 . The user device of claim 9 , wherein the middleware

application identifies the browser or app through which it is
coupled in communication with the server and looks up the
number of connections supported by the identified browser
or app .

13 . The user device of claim 9 , wherein the middleware
application receives the boxcar of completed responses
grouped to respond to a respective boxcar of action requests .

14 . A server running a dispatching application , including :
the dispatcher running on the server and coupled in

communication with a multiplicity (100 or more) of
middleware applications running on respective user
devices and one or more application programs running
on the server ;
wherein the dispatcher receives boxcarred batches of

action requests from the middleware applications in
priority - based batches , forwards the action requests
to the application programs , and returns responsive
boxcars of completed responses , and

wherein the dispatcher further calculates a server pro
cessing time as a difference between when a particu
lar boxcar of action requests is received and when a

US 2018 / 0007166 A1 Jan . 4 , 2018
13

respective boxcar of completed responses is ready to
be returned and further reports the calculated server
processing time back to the middleware application
for the respective boxcar of completed responses .

15 . The server of claim 14 , wherein the dispatcher further
identifies respective application programs that will respond
to the action requests received in a particular boxcar from
one of the middleware applications and dispatches the action
requests from the particular boxcar to the responsive appli
cation programs .

16 . The server of claim 14 , wherein the dispatcher post
pones returning responses to action requests from a particu
lar boxcar until it has received (or timed out on) responses
to all of the action requests in the particular boxcar .

17 . A method that conserves connections between a
browser or app running on a user device and at least one
server , including :

running a middleware application on the user device ,
coupled in communication with a data consuming
application and a browser or app running on the user
device , and also coupled in communication with at
least one server through the browser or app ;

the middleware application receiving action requests from
the data consuming application qualified by priority
labels applied to regions and components in the regions
and returns data received from the server responsive to
the action requests ;

wherein the priority labels differentiate among display
regions rendered by the data consuming application and
at least some of the priority labels further differentiate
among components within respective display regions ;
and

the middleware application batching the action requests
into batches based at least in part on the priority labels ,
into boxcars segregated by priority label according to a
predetermined segregation schedule , and dispatching
the boxcars of batched action requests to the server .

18 . The method of claim 17 , further including :
the middleware application measuring network commu

nication latency and adjusting inter - boxcar intervals
used to dispatch batches of action requests ;

the middleware application calculating the measured net
work communication latency as dispatch - to - completed
response time minus server processing time , using the
server processing time received from the server for a
boxcar of completed responses ; and

the middleware application adjusting the inter - boxcar
intervals taking into account at least (a) a number of
connections supported between the user device and the
server and (b) the measured network communication
latency .

19 . The method of claim 18 , further including repeatedly
measuring network communication latency and readjusting
the inter - boxcar intervals used to dispatch batches of action
requests based on updated measurements .

20 . The method of claim 18 , further including adjusting
the inter - boxcar intervals used to time when to dispatch
batches of action requests to 250 - 350 ms when the measured
network communication latency exceeds 300 ms .

21 . The method of claim 18 , further including the middle
ware application identifying the browser or app through
which it is coupled in communication with the server and
looking up the number of connections supported by the
identified browser or app .
22 . The method of claim 18 , further including the middle

ware application receiving the boxcar of completed
responses grouped to respond to a respective boxcar of
action requests .

23 . A method that conserves connections between a
browser or app running on a user device and at least one
server , including :

a dispatcher running on the server and coupled in com
munication with a multiplicity of middleware applica
tions running on respective user devices and one or
more application programs running on the server ;

the dispatcher receiving boxcarred batches of action
requests in priority - based batches from the middleware
applications , forwarding the action requests to the
application programs , and returning responsive boxcars
of completed responses ; and

the dispatcher further calculating a server processing time
as a difference between when a particular boxcar of
action requests is received and when a respective
boxcar of completed responses is ready to be returned
and further reporting the calculated server processing
time back to the middleware application for the respec
tive boxcar of completed responses .

24 . The method of claim 23 , further including the dis
patcher identifying respective application programs that will
respond to the action requests received in a particular boxcar
from one of the middleware applications and dispatching the
action requests from the particular boxcar to the responsive
application programs .

25 . The method of claim 23 , further including the dis
patcher postponing returning responses to action requests
from a particular boxcar until it has received (or timed out
on) responses to all of the action requests in the particular
boxcar .

* * * * *

