
US 20190034349A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0034349 A1
MCAVOY et al . (43) Pub . Date : Jan . 31 , 2019

(54) PRECISE INVALIDATION OF VIRTUALLY
TAGGED CACHES

(52) U . S . CI .
CPC . . . GO6F 12 / 1045 (2013 . 01) ; G06F 2212 / 60

(2013 . 01) ; G06F 2212 / 683 (2013 . 01) ; G06F
12 / 0891 (2013 . 01) (71) Applicant : QUALCOMM Incorporated , San

Diego , CA (US)

(57) ABSTRACT (72) Inventors : William MCAVOY , Raleigh , NC (US) ;
Brian STEMPEL , Raleigh , NC (US) ;
Spencer WILLIAMS , Raleigh , NC
(US) ; Robert Douglas CLANCY , Cary ,
NC (US) ; Michael Scott MCILVAINE ,
Raleigh , NC (US) ; Thomas Philip
SPEIER , Wake Forest , NC (US)

(21) Appl . No . : 15 / 658 , 819
(22) Filed : Jul . 25 , 2017

Publication Classification
(51) Int . Cl .

G06F 12 / 1045 (2006 . 01)
G06F 12 / 0891 (2006 . 01)

A translation lookaside buffer (TLB) index valid bit is set in
a first line of a virtually indexed , virtually tagged (VIVT)
cache . The first line of the VIVT cache is associated with a
first TLB entry which stores a virtual address to physical
address translation for the first cache line . The TLB index
valid bit of the first line is cleared upon determining that the
translation is no longer stored in the first TLB entry . An
indication of a received invalidation instruction is stored .
When a context synchronization instruction is received , the
first line of the VIVT cache is cleared based on the TLB
index valid bit being cleared and the stored indication of the
invalidate instruction .

200

Start

210
Setting a translation lookaside buffer (TLB) index valid bit in a first line of a

virtually indexed virtually tagged (VIVT) cache , wherein the first line of the VIVT
cache is associated with a first TLB entry which comprises a virtual address to

physical address translation for the first cache line

220

Upon determining that the translation for the first cache line is no longer in the
first TLB entry , clearing the TLB index valid bit in the first line of the VIVT cache

- 230

Responsive to receiving an invalidation instruction for the virtual address for the first
cache line , storing an indication of the invalidate instruction in invalidate vector

240
Responsive to receiving a context synchronization instruction , invalidating the
first cache line based on the TLB index valid bit being cleared and the stored

indication of the invalidate instruction in invalidate vector

End

Patent Application Publication Jan . 31 , 2019 Sheet 1 of 17 US 2019 / 0034349 A1

100

104
VIRTUAL
ADDRESS TLB PHYSICAL

ADDRESS

- 106

INVALIDATE
102

www

PROCESSOR 108

CACHE MEMORY

FIG . 1A

100

7104

7106

7 108

TLB

Invalidate

VIVT CACHE

Idx | VA | PA

Attrs

Idx

Pend

TLB

Patent Application Publication

Set

TLB Index Valid

Tag

Data

Index

0

A

0

A

|

N - 1

N - 1

M - 1

N

Jan . 31 , 2019 Sheet 2 of 17

TLB Entry Allocation

110
Translation Page Table Walk

111

114
Cache Line
|

Filled

- 112 Update invalidate vector

V

Cache Line Data Request
113

FIG . 1B

US 2019 / 0034349 A1

100

r 104

7106

7 108

TLB

Invalidate

VIVT CACHE

Patent Application Publication

Idx , VA | | PA

Attrs

Idx

Pend

TLB

Set

Tag

TLB Idx Vld

Data

Idx

0

AB | | -

0

0

A

lo
10

B

N - 1

N - 1

M - 1

Jan . 31 , 2019 Sheet 3 of 17

TLB Entry Allocation

115
Translation Page Table Walk

116

119
Caché Line Filled

Update invalidate vector 117

Cache Line Data Request 118

US 2019 / 0034349 A1

FIG . 1C

100

7104

7 108

106 Invalidate

TLB

VIVT CACHE

Patent Application Publication

Idx

VA

PA

Attrs

Idx

Pend

Set

| Tag

TLB Idx

TLB Idx Vld

Data

0

B

| |

-

0

1

A

0

0

B01

N - 1

N - 1

M - 1

Jan . 31 , 2019 Sheet 4 of 17

N

01

121

Search TLB using VA “ A ” No TLB Index Match for VA “ A ”

122

Invalidate Index N Marked Pending Invalidation

120

Invalidate by VA “ A ”

123)

FIG . ID

US 2019 / 0034349 A1

100

7104

106

108

TLB

Invalidate

VIVT CACHE

.

Patent Application Publication

Idx

Va | | PAAttrs

Idx | Pend

TLB

.

TLB Idx Vld
.

Data

Set | Tag | Idx

.

| B

| | - |

010

.

0

.

| - A - - - - - - - - - - - - - - - - - -

1

B

0 1

1

N - 1

N - 1

M - 1

Jan . 31 , 2019 Sheet 5 of 17

N

1

10

125

Invalidate Vector Searched for Pending Invalidates

127

124) Context synchronization event

Invalidation Index N Found
Pending

All Cache Lines with TLB Index valid bit = 0) invalidated , Invalidate Vector Bit at Index N Cleared

126

US 2019 / 0034349 A1

FIG . 1E

100

- 104

7106

7 108

TLB

Invalidate

VIVT CACHE

Idx

| VA | | PA

Attrs

Idx

Pend

Set |

TLB Idx

Patent Application Publication

Tag

TLB Idx Vld

Data

0

B 10

1 1

C

1

N - 1

N - 1

M - 1

Jan . 31 , 2019 Sheet 6 of 17

N

TLB Entry Allocation 129

128) Translation Page Table Walk

132
Caché Line Filled

Update invalidate vector 130

Cache Line Data Request 131

US 2019 / 0034349 A1

FIG . 1F

100

104

7 106

7 108

TLB

Invalidate

Idx | VA | | PAAttrs

Patent Application Publication

Idx

VIVT CACHE
TLB

TLB

Idx Vld

Pend

Set | Tag | Idx

Data

0

BD

0

B

0

10

1

C

1 C11 2 Doll

N - 1

N - 1

Jan . 31 , 2019 Sheet 7 of 17

M - 1

TLB Entry Allocation

1337

134

Translation Page Table Walk

Update invalidate vector 135

Cache Line Filled
(137

Cache Line Data Request 136

US 2019 / 0034349 A1

FIG . 16

100

7104

106

- 108

TLB

Invalidate

VIVT CACHE

Patent Application Publication

Idx | VA | | PA

Attrs

Idx

Pend

TLB

TLB Idx

Data

Set | Tag | Idx

0

Vid

|

D

o

| |

0 | Bolo
1 C1 1 | | 2001

N - 1

N - 1

Jan . 31 , 2019 Sheet 8 of 17

N

01

139

Search TLB using VA “ B ”

M - 1

No TLB Index Match for VA “ B ”

140

138

Invalidate Index N Marked Pending Invalidation

Invalidate by VA “ B ”

141

FIG . 1H

US 2019 / 0034349 A1

- 104

7 106

7 108

TLB

Invalidate

VIVT CACHE

Patent Application Publication

Idx

VA |

PA

Attrs

Idx

Pend

Set

Tag

TLB Idx

TLB Idx Vld

Data

OD 1 -

0

EE

70

10

D

10

N - 1

N - 1

3

|

E

1

1

Jan . 31 , 2019 Sheet 9 of 17

TLB Entry Allocation

M - 1

142

143 -

Translation Page Table Walk

Update invalidate vector - 144

Cache Line Filled
(146

Cache Line Data Request 145

US 2019 / 0034349 A1

FIG . 11

7 104 TLB

7 106

108

Invalidate

VIVT CACHE

Patent Application Publication

IdxVA | | PA

Attrs

Idx

Pend

TLB

Set | Tag

TLB Idx

Idx

Data

Vld

0

| D

| -

0

| BOL

IE

.

D011

N - 1

N - 1

E

1

1

| |

Jan . 31 , 2019 Sheet 10 of 17

148

Search TLB using VA “ C ” No TLB Index Match for VA “ C ”

M - 1

149

.
.

147

Invalidate by VA “ C ”

TLB Index N Remains Marked Invalidate Pending

FIG . 1J

150

US 2019 / 0034349 A1

100

7104

7106

r 108

TLB

Invalidate

VIVT CACHE

Idx

VA

PA

Attrs

Idx

Pend

TLB

Patent Application Publication

Set

TLB Idx Vid

Tag

Data

Idx

0

0

- B - - - - - - - - - - -

1

- -

- - -

-

- - -

- -

N - 1

N - 1 N

10

Jan . 31 , 2019 Sheet 11 of 17

152

M - 1

Invalidate Vector Searched for Pending Invalidates

151

r 154

Context synchronization event

Invalidate of TLB Index N

Found Pending (153

FIG . IK

All Cache Lines with TLB Index valid bit = 0) invalidated , Invalidate Vector Bit at Index N Cleared

US 2019 / 0034349 A1

Patent Application Publication Jan . 31 , 2019 Sheet 12 of 17 US 2019 / 0034349 A1

C Start

M 210
.

Setting a translation lookaside buffer (TLB) index valid bit in a first line of a
virtually indexed virtually tagged (VIVT) cache , wherein the first line of the VIVT

cache is associated with a first TLB entry which comprises a virtual address to
physical address translation for the first cache line

220

Upon determining that the translation for the first cache line is no longer in the
first TLB entry , clearing the TLB index valid bit in the first line of the VIVT cache

230

Responsive to receiving an invalidation instruction for the virtual address for the first
cache line , storing an indication of the invalidate instruction in invalidate vector

c 240
. . Responsive to receiving a context synchronization instruction , invalidating the

first cache line based on the TLB index valid bit being cleared and the stored
indication of the invalidate instruction in invalidate vector

End

FIG . 2 .

Patent Application Publication Jan . 31 , 2019 Sheet 13 of 17 US 2019 / 0034349 A1

300

Start block 210

7310
Upon detecting a miss for the first line of the VIVT cache ,
performing a translation page table walk to receive the
translation of the virtual address to the physical address

7320
Create first TLB entry storing translation of virtual address

to physical address for first line of VIVT cache

- 330

Clear pending bit for first TLB entry in invalidate vector

- 340

Receive data for first line of VIVT cache

- 350

Fill received data in first line of VIVT cache , associate first
line with first TLB entry , and set TLB index valid bit

End block 210

FIG . 3

Patent Application Publication Jan . 31 , 2019 Sheet 14 of 17 US 2019 / 0034349 A1

400
Start block 220

- 410

Upon detecting a miss for a second line of the VIVT cache , performing
a translation page table walk to receive the translation of the virtual
address to the physical address for the second line of the VIVT cache

+ 420

Evict translation for the first cache line in the first TLB entry and
replace with the translation for the second line of the VIVT cache

- 430

Clear invalidate pending bit in invalidate vector for first TLB entry

- 440

Receive data for second line of VIVT cache

450

Fill received data in second line of VIVT cache , associate
second line with first TLB entry , and set TLB index valid bit

460

Clear the TLB index valid bit in the first line of the VIVT cache

End block 220

FIG . 4

Patent Application Publication Jan . 31 , 2019 Sheet 15 of 17 US 2019 / 0034349 A1

500

Start block 230

- 510

Receive invalidate instruction specifying to invalidate
the virtual address of first cache line

Reference TLB using virtual address

530
Determine no entry in TLB matches virtual address

540

Store indication of invalidation instruction in invalidate vector

End block 230

FIG . 5

Patent Application Publication Jan . 31 , 2019 Sheet 16 of 17 US 2019 / 0034349 A1

600
Start block 240

- 610

Reference invalidate vector to determine entry for replaced TLB
entries indicates at least one pending invalidation

620

For each line of VIVT cache

630

NO TLB Index valid
bit cleared ?

YES

640

Invalidate current line of VIVT cache

- 650

YES More lines of VIVT cache remain ?
NO

660
Clear invalidate vector entry

for replaced TLB entries

Enabledk 200 End block 240

FIG . 6

- 728

730

700

742

DISPLAY

INPUT DEVICE

DISPLAY

INPUT DEVICE

Patent Application Publication

726

7102

- 104

- 110

DISPLAY CONTROLLER
PROCESSOR

MEMORY

VA

TLB

740

WIRELESS CONTROLLER

106

734

INVALIDATE

736

Jan . 31 , 2019 Sheet 17 of 17

SPEAKER
L
-

108

- 738

-

CODEC
-

MICROPHONE E
ty

CACHE

-

-

-

-

- 744

US 2019 / 0034349 A1

FIG . 7

POWER SUPPLY

US 2019 / 0034349 A1 Jan . 31 , 2019

PRECISE INVALIDATION OF VIRTUALLY
TAGGED CACHES

virtual address page may cover a physical address space
which is greater than the size of a cache line of the cache .
Accordingly , even if only a single entry of the TLB or a
single page is to be invalidated for a given TLB invalidate
operation , there are no efficient processes for determining
which specific cache lines of the cache are to be correspond
ingly invalidated . Thus , in conventional implementations , in
the case of a TLB invalidate operation , the entire VIVT
cache is invalidated .
[0006] Some techniques attempt to mitigate the number of
lines invalidated in a VIVT instruction cache (I - cache) by
filtering invalidates using a TLB . In such cases , the VIVT
I - cache lines associated with a TLB entry being displaced
must be invalidated .

SUMMARY

BACKGROUND
[0001] Aspects disclosed herein relate to processing sys
tems designed to handle virtual addresses . More specifically ,
aspects disclosed herein relate to precise and efficient invali
dation mechanisms for virtually tagged structures , such as a
virtually indexed virtually tagged (VIVT) cache .
[0002] Virtual memory extends physical memory space
and improves the efficiency of sharing the physical memory
among applications , processors , and other entities of a
processing system . A virtual address is used to address the
virtual memory space , which is divided into blocks of
contiguous virtual memory addresses , or “ pages . ” Software
programs may be written with reference to virtual addresses ,
while for execution of program instructions by the proces
sors , a translation of the virtual addresses to physical address
may be performed .
[0003] Memory management units (MMU) may be used
for looking up page tables which map virtual addresses to
corresponding physical addresses to obtain translations of
the virtual addresses to physical addresses , a process
referred to as a “ page table walk . ” Page table walks are often
time consuming , so MMUs may include hardware such as a
translation lookaside buffer (TLB) to cache translations for
frequently accessed pages . The TLB may be implemented as
a tagged hardware lookup table , which is tagged using the
virtual addresses . Thus , if a virtual address hits in the TLB
(i . e . , there is a matching tag in the TLB for the virtual
address) , the corresponding physical address translation may
be retrieved from the TLB , without having to incur the costs
associated with a page table walk . The retrieved physical
address may then be used for accessing memory structures
such as the shared memory or one or more caches which
may be present between the processors and the shared
memory .
[0004] A cache is a small , high speed memory structure
which stores a limited number of frequently accessed data
(and / or data determined to have high likelihood of future
use) and offers a faster access path for the data stored in the
cache , in comparison to the longer access times which may
be incurred for accessing a backing storage location of the
cache (e . g . , another cache or the shared memory such as a
main memory) . While the cache may be indexed and tagged
with physical addresses associated with the data stored
therein (also referred to as a physical indexed physically
tagged or “ PIPT ” cache) , it may be beneficial to alternatively
implement the cache as a memory structure which is indexed
and tagged using virtual addresses (also referred to as a
virtually indexed and virtually tagged or “ VIVT ” cache) .
[0005] Since the VIVT cache may be accessed using the
virtual addresses , a translation of the virtual addresses to
physical addresses is not required to search the cache , and so
the VIVT cache may offer a faster access time . However , in
some cases , the VIVT cache may be made to appear as a
PIPT cache to software , to avoid scenarios where an entire
cache may be invalidated by software upon a translation
change (e . g . , pursuant to a context switch between applica
tions which use different pages and correspondingly , differ -
ent virtual to physical address translations) that might not
even be relevant to the cache . However , conventional imple
mentations of a VIVT cache which appears as a PIPT cache
to software suffer from drawbacks . For example , each

[0007] In one aspect , a method comprises setting a trans
lation lookaside buffer (TLB) index valid bit in a first line of
a virtually indexed virtually tagged (VIVT) cache . The first
line of the VIVT cache is associated with a first TLB entry
which stores a virtual address to physical address translation
for the first cache line . Upon determining that the translation
for the first cache line is no longer in the first TLB entry , the
TLB index valid bit in the first line of the VIVT cache is
cleared . Responsive to receiving a translation invalidate
instruction that may be for the virtual address , an indication
of the invalidate instruction is stored . Responsive to receiv
ing a context synchronization instruction , the first line of the
VIVT cache is invalidated based on the TLB index valid bit
being cleared and the stored indication of the invalidate
instruction .
[0008] In one aspect , a non - transitory computer - readable
medium stores instructions that , when executed by a pro
cessor , cause the processor to perform an operation com
prising setting a translation lookaside buffer (TLB) index
valid bit in a first line of a virtually indexed virtually tagged
(VIVT) cache . The first line of the VIVT cache is associated
with a first TLB entry which stores a virtual address to
physical address translation for the first cache line . Upon
determining that the translation for the first cache line is no
longer in the first TLB entry , the TLB index valid bit in the
first line of the VIVT cache is cleared . Responsive to
receiving a translation invalidate instruction that may be for
the virtual address , an indication of the invalidate instruction
is stored . Responsive to receiving a context synchronization
instruction , the first line of the VIVT cache is invalidated
based on the TLB index valid bit being cleared and the
stored indication of the invalidate instruction .
[0009] In one aspect , an apparatus comprises a translation
lookaside buffer (TLB) and a virtually indexed virtually
tagged (VIVT) cache . The apparatus further comprises logic
configured to perform an operation comprising setting a
translation lookaside buffer (TLB) index valid bit in a first
line of a virtually indexed virtually tagged (VIVT) cache .
The first line of the VIVT cache is associated with a first
TLB entry which stores a virtual address to physical address
translation for the first cache line . Upon determining that the
translation for the first cache line is no longer in the first TLB
entry , the operation clears the TLB index valid bit in the first
line of the VIVT cache . Responsive to receiving a translation
invalidate instruction that may be for the virtual address , the
operation stores an indication of the invalidate instruction .
Responsive to receiving a context synchronization instruc
tion , the operation invalidates the first line of the VIVT

US 2019 / 0034349 A1 Jan . 31 , 2019

cache based on the TLB index valid bit being cleared and the
stored indication of the invalidate instruction .
[0010] In one aspect , an apparatus comprises a translation
lookaside buffer (TLB) and a virtually indexed virtually
tagged (VIVT) cache . The apparatus further comprises
means for setting a translation lookaside buffer (TLB) index
valid bit in a first line of a virtually indexed virtually tagged
(VIVT) cache . The first line of the VIVT cache is associated
with a first TLB entry which stores a virtual address to
physical address translation for the first cache line . The
apparatus further includes , upon determining that the trans
lation for the first cache line is no longer in the first TLB
entry , means for clearing the TLB index valid bit in the first
line of the VIVT cache . The apparatus further includes ,
responsive to receiving a translation invalidate instruction
that may be for the virtual address , the means for storing an
indication of the invalidate instruction . The apparatus fur
ther includes , responsive to receiving a context synchroni
zation instruction , means for invalidating the first line of the
VIVT cache based on the TLB index valid bit being cleared
and the stored indication of the invalidate instruction .

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0011] So that the manner in which the above recited
aspects are attained and can be understood in detail , a more
particular description of aspects of the disclosure , briefly
summarized above , may be had by reference to the appended
drawings .
[0012] It is to be noted , however , that the appended
drawings illustrate only aspects of this disclosure and are
therefore not to be considered limiting of its scope , for the
disclosure may admit to other aspects .
[0013] FIGS . 1A - 1K illustrate a processing system and
exemplary aspects of performing invalidations according to
aspects of the disclosure .
[0014] FIG . 2 is a flow chart illustrating a method to
provide precise invalidation of virtually indexed virtually
tagged caches , according to one aspect .
[0015] FIG . 3 is a flow chart illustrating a method to set a
TLB index valid bit in a first line of a virtually indexed
virtually tagged cache , according to one aspect .
[0016] FIG . 4 is a flow chart illustrating a method to clear
a TLB index valid bit in a first line of a virtually indexed
virtually tagged cache , according to one aspect .
[0017] FIG . 5 is a flow chart illustrating a method to store
an indication of an invalidate instruction , according to one
aspect .
[0018] FIG . 6 is a flow chart illustrating a method to
invalidate a first cache line , according to one aspect .
[0019] FIG . 7 is a block diagram illustrating a computing
device integrating a virtually indexed virtually tagged cache ,
according to one aspect .

for the cache line is valid (e . g . , the translation for the cache
line is resident in the TLB index) . When a cache line is filled
and a TLB entry is established , the index of the TLB entry
is stored in the cache line , and the TLB index valid bit is set .
10021] Aspects of the disclosure further provide an invali
date vector which tracks whether an invalidate instruction
has been received for a TLB index . Advantageously , how
ever , the invalidate vector is configured to track whether an
entry in the TLB has been evicted and / or replaced . More
specifically , assuming the TLB has N entries , the invalidate
vector has N + 1 entries , where the extra entry is used to
reflect whether an evicted and replaced TLB entry has been
invalidated . Therefore , when the cache line is filled , and the
TLB entry is established , an entry corresponding to the TLB
index in the invalidate vector is cleared .
[0022] Therefore , assume a first cache line is filled and
associated with a TLB index value of 0 , and the TLB entry
at TLB index value of 0 is established . The TLB valid bit for
the first cache line is set (e . g . , to a value of 1) , and the
invalidate vector at index 0 is cleared (indicating no invali
date instructions have been received since the TLB entry at
TLB index 0 was established) . Subsequently , the virtual to
physical translation for the first cache line stored at TLB
index 0 is evicted and replaced with another translation . In
response , aspects disclosed herein clear the TLB index valid
bit in the first cache line (e . g . , update the value to 0) . The
TLB may then receive an invalidate instruction (e . g . , a cache
invalidate and / or a TLB invalidate) specifying to invalidate
the virtual address of the first cache line . Aspects disclosed
herein may then translate the virtual address specified in the
invalidate instruction to a physical address , which is then
used to search the TLB . However , since the entry for the first
cache line has been evicted from the TLB , no matches are
found in the TLB . In response , aspects disclosed herein set
the bit in the invalidate vector corresponding to evicted and
replaced TLB entries (e . g . , entry N + 1 of the invalidate
vector) . When a context synchronization instruction is
received , aspects disclosed herein reference the invalidate
vector to determine that at least one invalidate instruction is
pending (e . g . , based on the set bit at entry N + 1 of the
invalidate vector) . Because at least one invalidate instruction
is pending , aspects disclosed herein then determine to invali
date at least one line of the VIVT cache . Specifically , aspects
disclosed herein invalidate each line of the VIVT cache
having a TLB index valid bit that is cleared (e . g . , having a
value of 0) .
[0023] FIG . 1A illustrates a processing system 100 which
performs precise invalidations of virtually tagged structures ,
according to one aspect . As shown , the processing system
100 includes a processor 102 coupled to a translation
lookaside buffer (TLB) 104 , an invalidate vector structure
106 , a cache 108 , and a memory 110 . Processor 102 may be
a central processing unit (CPU) or any processor core in
general . Processor 102 may be configured to execute pro
grams and software which may reference virtual addresses .
Cache 108 is representative of one or more caches , each of
which may be an instruction cache , a data cache , or a
combination thereof . In one aspect , cache 108 is configured
as a VIVT cache which may be accessed by the processor
102 using virtual addresses . Cache 108 , as well as one or
more backing caches which may be present (but not explic
itly shown) may be in communication with a main memory
such as memory 110 . Memory 110 may comprise physical
memory in a physical address space and a memory man

DETAILED DESCRIPTION
[0020] Aspects disclosed herein provide techniques to
selectively invalidate cache lines in a virtually tagged
memory structure , such as a virtually indexed virtually
tagged (VIVT) cache . Generally , each cache line is tagged
with a TLB index value of a TLB entry which stores a virtual
address to physical address translation for the cache line .
Furthermore , each cache line includes a TLB index valid bit
which reflects whether the TLB entry storing the translation

US 2019 / 0034349 A1 Jan . 31 , 2019

agement unit comprising TLB 104 may be used to obtain
translations of virtual addresses (e . g . , from processor 102) to
physical addresses for ultimately accessing memory 110 .
Although the memory 110 may be shared amongst one or
more other processors or processing elements , these have
not been illustrated , for the sake of simplicity . The process
ing system 100 includes logic such as control logic (not
pictured) to selectively invalidate cache lines from the cache
108 , the functionality of which is described in greater detail
below .
10024] The invalidate vector 106 stores indications of
whether a given TLB entry in the TLB 104 is pending
invalidation . The cache 108 also includes , for each cache
line , a tag of the TLB index which stores the translation for
the virtual address to the physical address for the cache line ,
and a TLB index invalid bit which reflects whether the
translation for the virtual address to the physical address for
the cache line remains stored in the TLB index . Furthermore ,
as discussed in greater detail below , the invalidate vector
106 includes an entry for TLB entries that have been
replaced . Means for storing data in the TLB 104 , invalidate
vector 106 , and cache 108 include one or more memory
cells .
[0025] FIG . 1B depicts the TLB 104 , invalidate vector
106 , and cache 108 in greater detail . As shown , the TLB 104
is a structure of N entries , each of which includes an index
value (indexed from 0 to N - 1) , a virtual address , a physical
address and other attributes (such as an application space
identifier (ASID) , processor identifier (PID) , etc . , each of
which is not pictured for the sake of clarity) . The invalidate
vector 106 is a structure of N + 1 entries . The index values of
O to N - 1 of the invalidate vector 106 each correspond to the
indices 0 to N - 1 of the TLB 104 , includes a pending bit
which specifies whether the corresponding TLB index has a
pending invalidation . In this example , the Nth index value of
the invalidate vector 106 is associated with TLB entries that
have been evicted and replaced from the TLB 104 (or are
otherwise no longer resident in the TLB 104) , and the
pending bit for this entry specifies whether an invalidate is
pending for these evicted and replaced entries . However , any
one of the index values of the invalidate vector 106 may be
associated with TLB entries that have been evicted and
replaced from the TLB 104 .
[0026] The cache 108 is depicted as a set - associative
cache , with M sets 0 to M - 1 , with only one representative
cache line shown in each set , which is tagged with a virtual
address (the “ tag ” column) . Each set is shown as including
one cache line for the sake of simplicity , as each set may
comprise more than one cache line . Furthermore , the cache
108 includes a TLB index field and a TLB index valid bit .
The TLB index field associates each cache line with an index
value of the TLB 104 . The TLB index valid bit indicates
whether the associated TLB entry stores the translation for
the cache line . The cache 108 may further include other
information , such as an ASID , PID , and the like , each not
pictured for the sake of clarity .
100271 Because the cache 108 is a VIVT cache , the pro
cessor 102 accesses the cache using virtual memory
addresses . For example , the processor 102 may issue a
request to fetch a cache line from a virtual address (VA)
denoted as “ A ” from the cache 108 . Generally , the data
stored in the cache 108 is accessed by indexing into one of
the M sets using a portion of the virtual address , and
comparing tags of one or more cache lines within that set

with another portion of the virtual address . If there is a match
with one of the tags , there is a cache “ hit ” , otherwise , there
is a “ miss ” . If there is a hit in the cache 108 , then the cache
line at an address whose index corresponds to and tag
matches a portion of the virtual address “ A ” in the cache 108
is returned to the processor 102 . However , if there is a miss
in the cache 108 , the TLB 104 is accessed to obtain a
translation for the virtual address “ A ” to a corresponding
physical address (PA) , before backing storage locations of
the cache 108 are accessed using the physical address .
However , there may be a miss in the TLB 104 . As such , at
event 110 , a translation page table walk is performed to
retrieve the translation for the virtual address A to a corre
sponding physical address . At event 111 , an entry in the TLB
104 for the virtual address A is established , where index 0 of
the TLB 104 is populated with the virtual address A and the
retrieved physical address corresponding to the virtual
address . Additionally , at event 112 , which may take place
simultaneously or in conjunction with event 111 , the invali
date vector 106 is updated to indicate that the TLB entry at
index 0 does not have an invalidate operation pending (e . g . ,
the pending bit is set to “ O ” for index 0 in the invalidate
vector 106) .
[0028] . At event 113 , the cache line is retrieved from a
backing storage location using the physical address corre
sponding to virtual address A . At event 114 , the cache line
is filled in the cache 108 (e . g . , in set 0 in the example
shown) , and the cache line is tagged with the virtual address
A , or a portion of the virtual address A (e . g . , a subset of bits
of the virtual address A) . Additionally , the cache line is
tagged with the TLB index 0 corresponding to the TLB entry
which was allocated at event 111 with the translation of the
virtual to physical address for the cache line . Furthermore ,
the TLB index valid bit for the cache line is set to 1 ,
indicating that the virtual to physical address translation for
the cache line stored in index 0 of the TLB 104 is valid .
10029 . FIG . 1C depicts an example aspect where the entry
for the virtual address A at index 0 of the TLB 104 is evicted
and replaced . Assuming the processor 102 requests to fetch
a cache line from a virtual address denoted as “ B ” from the
cache 108 , there is a miss for the virtual address B in the
cache 108 , and there is a miss for a translation of the virtual
address B in the TLB 104 . As such , at event 115 , a
translation page table walk is performed to retrieve the
translation for the virtual address B to a corresponding
physical address . At event 116 , the entry for virtual address
A is evicted from index 0 of the TLB 104 , and an entry for
virtual address B is established . Again , establishing the entry
for virtual address B includes storing the virtual address B
and the retrieved physical address . At event 117 , which may
take place simultaneously or in conjunction with event 116 ,
the invalidate vector 106 is updated to indicate that the TLB
entry at index 0 does not have an invalidate operation
pending .
[0030] At event 118 , the cache line is retrieved from a
backing storage location using the physical address corre
sponding to virtual address B . At event 119 , the cache line
is filled in the cache 108 (e . g . , in set 1 in the example
shown) , and the cache line is tagged with the virtual address
B , or a portion of the virtual address B (e . g . , a subset of bits
of the virtual address B) . Additionally , the cache line is
tagged with the TLB index 0 corresponding to the TLB entry
which was allocated at event 116 with the translation of the
virtual to physical address for the cache line . Furthermore ,

US 2019 / 0034349 A1 Jan . 31 , 2019

the TLB index valid bit for the cache line is set to 1 ,
indicating that the virtual to physical address translation for
the cache line stored in index 0 of the TLB 104 is valid .
Further still , as shown , the TLB index valid bit for virtual
address A is changed from 1 to 0 , as the TLB index 0 no
longer stores the virtual to physical translation for virtual
address A . Advantageously , however , the cache line for
virtual address A remains in the cache 108 until an invali
dation instruction and a context synchronization operation
are received in the processing system 100 .
[0031] More generally , when an entry in the TLB 104 is
allocated , the processor 102 determines whether the bit in
the invalidate vector 106 associated with the TLB index of
the page being allocated has a value of 1 . If the bit in the
invalidate vector 106 associated with the TLB index of the
page being allocated has a value of 1 , the invalidate vector
106 at index N is set to 1 (if not already set to a value of 1)
to indicate that there is now a pending invalidate for an
invalid TLB index .
[0032] FIG . 1D depicts an example aspect where an
invalidate instruction specifying to invalidate by virtual
address “ A ” is received at block 120 . Generally , an invali
dation instruction may be based on a context change , and
sent by an operating system and / or the processor 102 . The
invalidation operation may be because the virtual address no
longer maps to the previously associated physical address .
In at least one aspect the invalidate instruction is a TLB
invalidate instruction specifying to remove the virtual to
physical mapping for the virtual address A .
[0033] At event 121 , the TLB 104 is searched using the
virtual address A . However , because this entry was evicted
in the example depicted in FIG . 1C , at event 122 , no match
is found in the TLB 104 for virtual address A . As such , the
invalidate vector 106 at index N is marked pending invali
dation at event 123 . Doing so indicates that at least one
invalidate operation may target at least one cache line in the
cache 108 , even though the corresponding translation is no
longer resident in the TLB 104 .
[0034] FIG . 1E reflects an aspect where a context syn
chronization event 123 is received by the processing system
100 . Generally , context synchronization is a point in the
sequence of instructions being executed (e . g . , by processor
102) , which mandates that any change to architectural
resources (e . g . , registers) before this point is to be observed
by all instructions after this point . A context synchronizing
event can be inserted into the sequence of instructions being
executed in one or more ways , including , for example , by
software , through the use of a context synchronizing instruc
tion (e . g . an instruction barrier) ; by hardware , before or after
a hardware - enforced context synchronizing event as defined
by an applicable instruction set architecture (ISA) (e . g .
before an exception or after execution of a hardware
synchronized register access) ; or by hardware for an internal
operation , which may be invisible to software . As such , the
invalidate operations to cache lines of cache 108 need not be
applied (e . g . , due to translation changes) until a context
synchronization event forces the changes by the translation
invalidate to be observed by subsequent instructions after
the context synchronization event .
[0035] Responsive to the context synchronization event
124 , at event 125 , the invalidate vector 106 is searched for
pending invalidates . Because the entry at index N of the
invalidate vector 106 is set to 1 , at least one invalidate of the
cache 108 is pending at event 126 . At event 127 , all cache

lines having a TLB index valid bit set to 0 are invalidated ,
and the bit at index N of the invalidate vector 106 is cleared
(e . g . , updated to 0) . Specifically , as shown , in FIG . 1E , the
cache line for virtual address A is invalidated , while the
cache line for virtual address B is not invalidated . Doing so
allows for selective invalidation of the cache 108 , even if
translations for the cache lines are not stored in the TLB 104 .
While the invalidation of the cache line for virtual address

is depicted using strikethrough notation , in practice , the
invalidation is effected by changing a valid bit associated
with the cache line to indicate that the cache line is invalid .
[0036] Advantageously , the invalidate vector 106 and
cache 108 are configured to selectively invalidate multiple
cache lines when two or more corresponding entries in the
TLB 104 are no longer resident . FIG . 1F depicts an aspect
where the processor 102 issues a request to fetch a cache line
from a virtual address denoted as “ C ” from the cache 108 ,
there is a miss for the virtual address C in the cache 108 , and
there is a miss for a translation of the virtual address C in the
TLB 104 . As such , at event 128 , a translation page table
walk is performed to retrieve the translation for the virtual
address C to a corresponding physical address . At event 129 ,
the entry for virtual address C is established in index 1 of the
TLB 104 (as an entry for virtual address B is resident in the
TLB 104) . Again , establishing the entry for virtual address
C includes storing the virtual address C and the retrieved
physical address . At event 130 , which may take place
simultaneously or in conjunction with event 129 , the invali
date vector 106 is updated to indicate that the TLB entry at
index 1 does not have an invalidate operation pending .
[0037] At event 131 , the cache line is retrieved from a
backing storage location using the physical address corre
sponding to virtual address C . At event 132 , the cache line
is filled in the cache 108 (e . g . , in set 1 in the example shown ,
as the cache line for set 0 includes the tag for virtual address
B) , and the cache line is tagged with the virtual address C ,
or a portion of the virtual address C (e . g . , a subset of bits of
the virtual address C) . Additionally , the cache line is tagged
with the TLB index 1 corresponding to the TLB entry which
was allocated at event 129 with the translation of the virtual
to physical address for the cache line . Furthermore , the TLB
index valid bit for the cache line is set to 1 , indicating that
the virtual to physical address translation for the cache line
stored in index 1 of the TLB 104 is valid .
[0038] FIG . 16 depicts an example aspect where the entry
for virtual address B is evicted and replaced from the TLB
104 . Assuming the processor 102 requests to fetch a cache
line from a virtual address denoted as “ D ” from the cache
108 , there is a miss for the virtual address D in the cache
108 , and there is a miss for a translation of the virtual
address D in the TLB 104 . As such , at event 133 , a
translation page table walk is performed to retrieve the
translation for the virtual address D to a corresponding
physical address . At event 134 , the entry for virtual address
B is evicted from index 0 of the TLB 104 , and an entry for
virtual address D is established . Again , establishing the entry
for virtual address D includes storing the virtual address D
and the retrieved physical address . At event 135 , which may
take place simultaneously or in conjunction with event 134 ,
the invalidate vector 106 is updated to indicate that the TLB
entry at index 0 does not have an invalidate operation
pending
(0039) At event 136 , the cache line is retrieved from a
backing storage location using the physical address corre

US 2019 / 0034349 A1 Jan . 31 , 2019

sponding to virtual address D . At event 137 , the cache line
is filled in the cache 108 (e . g . , in set 2 in the example
shown) , and the cache line is tagged with the virtual address
D , or a portion of the virtual address D (e . g . , a subset of bits
of the virtual address D) . Additionally , the cache line tagged
by virtual address D is tagged with the TLB index 0
corresponding to the TLB entry which was allocated at event
134 with the translation of the virtual to physical address for
the cache line . Furthermore , the TLB index valid bit for the
cache line tagged by virtual address D is set to 1 , indicating
that the virtual to physical address translation for the cache
line stored in index 0 of the TLB 104 is valid . Further still ,
as shown , the TLB index valid bit for virtual address B is
changed from 1 to 0 , as the TLB index 0 no longer stores the
virtual to physical translation for virtual address B .
[0040] FIG . 1H depicts an aspect where a TLB invalidate
instruction to invalidate by virtual address B is received at
event 138 . At event 139 , the TLB 104 is searched using the
virtual address B . However , because this entry was evicted
in the example depicted in FIG . 16 , at event 140 , no match
is found in the TLB 104 for virtual address B . As such , the
invalidate vector 106 at index N is marked pending invali
dation at event 141 . Doing so indicates that at least one
invalidate operation targets at least one cache line in the
cache 108 , even though the corresponding translation is no
longer resident in the TLB 104 .
[0041] FIG . 11 depicts an example aspect where the entry
for virtual address C is evicted and replaced from the TLB
104 . Assuming the processor 102 requests to fetch a cache
line from a virtual address denoted as “ E ” from the cache
108 , there is a miss for the virtual address D in the cache
108 , and there is a miss for a translation of the virtual
address E in the TLB 104 . As such , at event 142 , a
translation page table walk is performed to retrieve the
translation for the virtual address E to a corresponding
physical address . At event 143 , the entry for virtual address
C is evicted from index 1 of the TLB 104 , and an entry for
virtual address E is established . Again , establishing the entry
for virtual address E includes storing the virtual address E
and the retrieved physical address . At event 144 , which may
take place simultaneously or in conjunction with event 143 ,
the invalidate vector 106 is updated to indicate that the TLB
entry at index 1 does not have an invalidate operation
pending .
[0042] At event 145 , the cache line is retrieved from a
backing storage location using the physical address corre
sponding to virtual address E . At event 146 , the cache line
is filled in the cache 108 (e . g . , in set 3 in the example
shown) , and the cache line is tagged with the virtual address
E , or a portion of the virtual address E (e . g . , a subset of bits
of the virtual address E) . Additionally , the cache line tagged
by virtual address E is tagged with the TLB index 1
corresponding to the TLB entry which was allocated at event
143 with the translation of the virtual to physical address for
the cache line . Furthermore , the TLB index valid bit for the
cache line tagged by virtual address E is set to 1 , indicating
that the virtual to physical address translation for the cache
line stored in index 1 of the TLB 104 is valid . Further still ,
as shown , the TLB index valid bit for virtual address C is
changed from 1 to 0 , as the TLB index 0 no longer stores the
virtual to physical translation for virtual address C .
[0043] FIG . 13 depicts an aspect where a TLB invalidate
instruction to invalidate by virtual address C is received at
event 147 . At event 148 , the TLB 104 is searched using the

virtual address C . However , because this entry was evicted
in the example depicted in FIG . 11 , at event 149 , no match
is found in the TLB 104 for virtual address C . As such , the
invalidate vector 106 at index N remains marked as pending
invalidation at event 150 . Doing so allows the index N of
invalidate vector 106 to gather invalidates for multiple
virtual addresses that do not have a translation in the TLB ,
without requiring extra storage for each such virtual address .
[0044] FIG . IK depicts an aspect where a context syn
chronization event 151 is received by the processing system
100 . At event 152 , the invalidate vector 106 is searched for
pending invalidates . Because the entry at index N of the
invalidate vector 106 is set to 1 , at least one invalidate of the
cache 108 is determined to be pending at event 153 . At event
154 , all cache lines having a TLB index valid bit with a
value of 0 are invalidated , and the bit at index N of the
invalidate vector 106 is cleared (e . g . , updated to 0) . Spe
cifically , as shown , in FIG . 1K , the cache lines for virtual
addresses B and C are invalidated , while the cache lines for
virtual addresses D and E are not invalidated . Doing so
allows for selective invalidation of the cache 108 , even if
translations for the cache lines are not stored in the TLB 104 .
[0045] Although the context synchronization event is one
example described herein , the invalidate instructions
reflected in invalidate vector 106 may also be applied based
on events other than a context synchronization . For example ,
a software hint may be provided to apply the invalidate
instructions . In another example , a miss in either TLB 104
or in cache 108 may be used as a trigger to apply the
invalidate instructions .
[0046] In some aspects , a count may be maintained of the
number of invalidates gathered in index N of invalidate
vector 106 . If this count exceeds a predefined threshold , then
the invalidates may be applied when the count exceeds the
threshold , rather than upon the occurrence of an event such
as a context synchronization , a software hint , a miss in either
TLB 104 or cache 108 , etc .
10047] Means for searching and modifying data stored in
the TLB 104 , invalidate vector 106 , cache 108 , and memory
110 include logic implemented as hardware and / or software .
Similarly , the logic implemented as hardware and / or soft
ware may serve as means for reading and / or writing values ,
returning indications of hits and / or misses , evicting entries ,
and returning values from the TLB 104 , invalidate vector
106 , cache 108 , and memory 110 . Example of such means
logic includes memory controllers , cache controllers , and
data controllers .
[0048] FIG . 2 is a flow chart illustrating a method 200 to
provide precise invalidation of virtually indexed virtually
tagged caches , according to one aspect . As shown , the
method 200 includes block 210 , which includes setting a
TLB index valid bit (e . g . , to “ 1 ”) in a first line of the VIVT
cache 108 . The first line of the VIVT cache 108 is associated
with a first TLB 104 entry which stores a virtual address to
physical address translation for the first cache line . In one
aspect , the TLB index valid bit is set when the first TLB 104
entry is established when the first cache line is filled . Block
210 is described in greater detail with reference to FIG . 3 .
[0049] At block 220 , the TLB index valid bit in the first
line of the VIVT cache 108 is cleared (e . g . , updated to " O ”)
upon determining that the translation for the first cache line
is no longer stored in the first TLB 104 entry . For example ,
the translation for the first cache line may be evicted and
replaced with a different translation in the first entry of the

US 2019 / 0034349 A1 Jan . 31 , 2019

TLB 104 . Block 220 is described in greater detail with
reference to FIG . 4 . At block 230 , an invalidation instruction
is received for the virtual address of the first cache line , and
an indication of the invalidate instruction is stored in the
invalidate vector 106 (e . g . , setting the corresponding bit to
“ 1 ”) . Block 230 is described in greater detail with reference
to FIG . 5 .
10050] At block 240 , a context synchronization instruction
is received (e . g . , from the processor 102) , and the first cache
line is invalidated in the cache 108 based on the TLB index
valid bit for the first cache line being cleared and the stored
indication of the invalidate instruction in the invalidate
vector 240 . Doing so allows the first cache line to be
selectively invalidated , even though the translation for the
first cache line is no longer resident in the TLB 104 . Block
240 is described in greater detail with reference to FIG . 6 .
[0051] FIG . 3 is a flow chart illustrating a method 300
corresponding to block 210 to set a TLB index valid bit in
a first line of a virtually indexed virtually tagged cache ,
according to one aspect . As shown , the method 300 includes
block 310 , where upon detecting a miss for the first cache
line of the VIVT cache 108 , a translation page table walk is
performed to receive a translation for of the virtual address
to the physical address for the first cache line . At block 320 ,
the first entry of the TLB 104 is created , which stores the
virtual to physical translation received at block 310 . At block
330 , the pending bit for the first TLB entry in the invalidate
vector 106 is cleared (e . g . , updated to “ O ”) . At block 340 , the
data for the first line of the VIVT cache 108 is received . At
block 350 , the data received at block 340 is filled in the first
line of the VIVT cache 108 , the first line of the VIVT cache
108 is associated with the first TLB entry created at block
320 (e . g . , the index value of the first TLB entry is stored in
the first cache line) , and the TLB index valid bit is set (e . g . ,
to “ 1 ”) for the first cache line .
10052] FIG . 4 is a flow chart illustrating a method 400
corresponding to block 220 to clear a TLB index valid bit in
a first line of a virtually indexed virtually tagged cache ,
according to one aspect . As show , the method 400 includes
block 410 , where a miss for a second line of the VIVT cache
108 is detected , and a translation page table walk is per
formed to receive the translation of the virtual address to the
physical address for the second line of the VIVT cache 108 .
At block 420 , the translation for the first cache line in the
first entry of the TLB 104 is evicted and replaced with the
translation for the second cache line received at block 410 .
At block 430 , the invalidate pending bit in the invalidate
vector 106 is cleared for the first TLB entry . At block 440 ,
the data for the second line of the VIVT cache 108 is
received . At block 450 , the data received at block 440 is
filled in the second line of the VIVT cache 108 , the second
line of the VIVT cache is associated with the first TLB entry
(e . g . , the index value of the first TLB entry is stored in the
second cache line) , and the TLB index valid bit for the
second cache line is set . At block 460 , the TLB index valid
bit in the first line of the VIVT cache 108 is cleared , as the
translation for the first line of the VIVT cache 108 is no
longer stored in the corresponding index of the TLB 104 .
10053] FIG . 5 is a flow chart illustrating a method 500
corresponding to block 230 to store an indication of an
invalidate instruction , according to one aspect . As shown ,
the method 500 includes block 510 , where an invalidate
instruction specifying to invalidate the virtual address of the
first line of the VIVT cache 108 is received . In at least one

aspect , the processor 102 and / or an operating system gen
erates the invalidate instruction . At block 520 , the TLB 104
is referenced using the virtual address specified in the
invalidate instruction . At block 530 , it is determined that no
entry in the TLB 104 matches the virtual address , as the
translation for the virtual address was evicted and replaced .
At block 540 , an indication of a received invalidate instruc
tion is stored in the invalidate vector 106 , e . g . , in the entry
of the invalidate vector 106 that is associated with transla
tions that are no longer resident in the TLB 104 after being
evicted . Doing so allows the first cache line to remain
resident in the VIVT cache 108 until a context synchroni
zation instruction is received , and the VIVT cache 108 to be
selectively invalidated .
[0054] FIG . 6 is a flow chart illustrating a method 600
corresponding to block 240 to selectively invalidate a first
cache line , according to one aspect . As shown , the method
600 includes block 610 , where the invalidate vector 106 is
referenced to determine if the entry for evicted TLB entries
indicates at least one pending invalidation for evicted TLB
entries (e . g . , the corresponding bit has a value of “ 1 ”) . At
block 620 , a loop including blocks 630 - 650 is executed for
each line of the VIVT cache 108 . At block 630 , a determi
nation is made as to whether the TLB index valid bit for the
current cache line has been cleared . If the TLB index valid
bit has not been cleared (e . g . , has a value of “ 1 ”) , the current
cache line is not invalidated and the method proceeds to
block 650 . However , if the TLB index valid bit has been
cleared (e . g . , has a value of “ 0 ”) , the TLB 104 no longer
includes a translation for the current cache line , and the
method proceeds to block 640 , where the current cache line
is invalidated . In one aspect , doing so includes clearing a
valid bit for the current cache line . At block 650 , a deter
mination is made as to whether more lines of the VIVT
cache 108 remain . If more lines remain , the method returns
to block 620 , otherwise , the method proceeds to block 660 .
At block 660 , the entry for replaced TLB entries in the
invalidate vector 106 is cleared (e . g . , set to “ O ”) .
[0055] An example apparatus in which exemplary aspects
of this disclosure may be utilized is discussed in relation to
FIG . 7 . FIG . 7 shows a block diagram of computing device
700 . Computing device 700 may correspond to an exem
plary implementation of a processing system configured to
perform the methods depicted in FIGS . 2 - 6 . In the depiction
of FIG . 7 , computing device 700 includes processor 102 ,
TLB 104 , invalidate vector 106 , cache 108 , and memory
110 . More generally as discussed with reference to FIGS .
1A - 1K , but other memory configurations may also be sup
ported by computing device 700 .
[0056] FIG . 7 also shows display controller 726 that is
coupled to processor 102 and to display 728 . In some cases ,
computing device 700 may be used for wireless communi
cation and FIG . 7 also shows optional blocks in dashed lines ,
such as coder / decoder (CODEC) 734 (e . g . , an audio and / or
voice CODEC) coupled to processor 102 and speaker 736
and microphone 738 can be coupled to CODEC 734 ; and
wireless antenna 742 coupled to wireless controller 740
which is coupled to processor 102 . Where one or more of
these optional blocks are present , in a particular aspect ,
processor 102 , display controller 726 , memory 110 , and
wireless controller 740 are included in a system - in - package
or system - on - chip device 722 .
[0057] Accordingly , in a particular aspect , input device
730 and power supply 744 are coupled to the system - on - chip

US 2019 / 0034349 A1 Jan . 31 , 2019

device 722 . Moreover , in a particular aspect , as illustrated in
FIG . 7 , where one or more optional blocks are present ,
display 728 , input device 730 , speaker 736 , microphone 738 ,
wireless antenna 742 , and power supply 744 are external to
the system - on - chip device 722 . However , each of display
728 , input device 730 , speaker 736 , microphone 738 , wire
less antenna 742 , and power supply 744 can be coupled to
a component of the system - on - chip device 722 , such as an
interface or a controller .
[0058] Although FIG . 7 generally depicts a computing
device , processor 102 and memory 110 , may also be inte
grated into a set top box , a music player , a video player , an
entertainment unit , a navigation device , a personal digital
assistant (PDA) , a fixed location data unit , a server , a
computer , a laptop , a tablet , a communications device , a
mobile phone , or other similar devices .
10059] A number of aspects have been described . How
ever , various modifications to these aspects are possible , and
the principles presented herein may be applied to other
aspects as well . The various tasks of such methods may be
implemented as sets of instructions executable by one or
more arrays of logic elements , such as microprocessors ,
embedded controllers , or IP cores .
[0060] The various operations of methods described above
may be performed by any suitable means capable of per
forming the operations , such as a processor , firmware ,
application specific integrated circuit (ASIC) , gate logic !
registers , memory controller , or a cache controller . Gener
ally , any operations illustrated in the Figures may be per
formed by corresponding functional means capable of
performing the operations .
[0061] The foregoing disclosed devices and functionalities
may be designed and configured into computer files (e . g .
RTL , GDSII , GERBER , etc .) stored on computer readable
media . Some or all such files may be provided to fabrication
handlers who fabricate devices based on such files . Result
ing products include semiconductor wafers that are then cut
into semiconductor die and packaged into a semiconductor
chip . Some or all such files may be provided to fabrication
handlers who configure fabrication equipment using the
design data to fabricate the devices described herein . Result
ing products formed from the computer files include semi
conductor wafers that are then cut into semiconductor die
(e . g . , the processor 102) and packaged , and may be further
integrated into products including , but not limited to , mobile
phones , smart phones , laptops , netbooks , tablets , ultrabooks ,
desktop computers , digital video recorders , set - top boxes
and any other devices where integrated circuits are used .
[0062] In one aspect , the computer files form a design
structure including the circuits described above and shown
in the Figures in the form of physical design layouts ,
schematics , a hardware - description language (e . g . , Verilog ,
VHDL , etc .) . For example , design structure may be a text
file or a graphical representation of a circuit as described
above and shown in the Figures . Design process preferably
synthesizes (or translates) the circuits described below into
a netlist , where the netlist is , for example , a list of wires ,
transistors , logic gates , control circuits , I / O , models , etc . that
describes the connections to other elements and circuits in
an integrated circuit design and recorded on at least one of
machine readable medium . For example , the medium may
be a storage medium such as a CD , a compact flash , other
flash memory , or a hard - disk drive . In another aspect , the
hardware , circuitry , and method described herein may be

configured into computer files that simulate the function of
the circuits described above and shown in the Figures when
executed by a processor . These computer files may be used
in circuitry simulation tools , schematic editors , or other
software applications .
10063] The implementations of aspects disclosed herein
may also be tangibly embodied (for example , in tangible ,
computer - readable features of one or more computer - read
able storage media as listed herein) as one or more sets of
instructions executable by a machine including an array of
logic elements (e . g . , a processor , microprocessor , microcon
troller , or other finite state machine) . The term " computer
readable medium ” may include any medium that can store or
transfer information , including volatile , nonvolatile , remov
able , and non - removable storage media . Examples of a
computer - readable medium include an electronic circuit , a
semiconductor memory device , a ROM , a flash memory , an
erasable ROM (EROM) , a floppy diskette or other magnetic
storage , a CD - ROM / DVD or other optical storage , a hard
disk or any other medium which can be used to store the
desired information , a fiber optic medium , a radio frequency
(RF) link , or any other medium which can be used to carry
the desired information and can be accessed . The computer
data signal may include any signal that can propagate over
a transmission medium such as electronic network channels ,
optical fibers , air , electromagnetic , RF links , etc . The code
segments may be downloaded via computer networks such
as the Internet or an intranet . In any case , the scope of the
present disclosure should not be construed as limited by
such aspects .
[0064] The previous description of the disclosed aspects is
provided to enable a person skilled in the art to make or use
the disclosed aspects . Various modifications to these aspects
will be readily apparent to those skilled in the art , and the
principles defined herein may be applied to other aspects
without departing from the scope of the disclosure . Thus , the
present disclosure is not intended to be limited to the aspects
shown herein but is to be accorded the widest scope possible
consistent with the principles and novel features as defined
by the following claims .
What is claimed is :
1 . A method , comprising :
setting a translation lookaside buffer (TLB) index valid bit

in a first line of a virtually indexed virtually tagged
(VIVT) cache , wherein the first line of the VIVT cache
is associated with a first TLB entry which comprises a
virtual address to physical address translation for the
first cache line ;

upon determining that the translation for the first cache
line is no longer in the first TLB entry , clearing the TLB
index valid bit in the first line of the VIVT cache ;

responsive to receiving a translation invalidate instruction
for the virtual address , storing an indication of the
invalidate instruction ; and

responsive to receiving a context synchronization instruc
tion , invalidating the first line of the VIVT cache based
on the TLB index valid bit being cleared and the stored
indication of the invalidate instruction .

2 . The method of claim 1 , wherein the indication is stored
in a first entry of an invalidate vector , wherein the first entry
is of a plurality of entries in the invalidate vector and
corresponds to TLB entries that have been evicted and
replaced , wherein the indication stored in the first entry
specifies that an invalidate instruction is pending .

US 2019 / 0034349 A1 Jan . 31 , 2019

3 . The method of claim 2 , further comprising :
responsive to receiving the context synchronization

instruction , determining that the first entry of the invali
date vector indicates that an invalidate instruction is
pending

4 . The method of claim 3 , further comprising :
invalidating each line of the VIVT cache having a TLB

index valid bit that has been cleared .
5 . The method of claim 4 , further comprising :
responsive to receiving the invalidate instruction for the

virtual address , translating the virtual address to the
physical address ;

referencing the TLB with the translated physical address ;
determining that the TLB does not include an entry
matching the translated physical address ; and

storing the indication in the first entry of the invalidate
vector .

6 . The method of claim 1 , further comprising prior to
setting the TLB index valid bit of the first line of the VIVT
cache :

detecting a miss for the first line of VIVT cache in the
VIVT cache ;

performing a translation page table walk to receive the
translation for the first cache line ;

storing , in the first TLB entry , the translation for the first
cache line ;

receiving the data for the first line of the VIVT cache ; and
filling the first line of the VIVT cache with the received

data , wherein the TLB index valid bit of the first line of
the VIVT cache is set while filling the first line of the
VIVT cache with the received data , and wherein the
first line of the VIVT cache is associated with the first
TLB entry while filling the first line of the VIVT cache
with the received data .

7 . The method of claim 1 , wherein the determining that
the translation for the first cache line is no longer in the first
TLB entry is based on determining that the translation for
the first cache line in the first TLB entry was evicted and
replaced with a different translation .

8 . The method of claim 1 , wherein the VIVT cache is an
instruction cache that is visible to software as a physically
indexed physically tagged (PIPT) cache .

9 . A non - transitory computer - readable medium storing
instructions that , when executed by a processor , cause the
processor to perform an operation comprising :

setting a translation lookaside buffer (TLB) index valid bit
in a first line of a virtually indexed virtually tagged
(VIVT) cache , wherein the first line of the VIVT cache
is associated with a first TLB entry which comprises a
virtual address to physical address translation for the
first cache line ;

upon determining that the translation for the first cache
line is no longer in the first TLB entry , clearing the TLB
index valid bit in the first line of the VIVT cache ;

responsive to receiving a translation invalidate instruction
for the virtual address , storing an indication of the
invalidate instruction ; and

responsive to receiving a context synchronization instruc
tion , invalidating the first line of the VIVT cache based
on the TLB index valid bit being cleared and the stored
indication of the invalidate instruction .

10 . The non - transitory computer - readable medium of
claim 9 , wherein the indication is stored in a first entry of an
invalidate vector , wherein the first entry is of a plurality of

entries in the invalidate vector and corresponds to TLB
entries that have been evicted and replaced , wherein the
indication stored in the first entry specifies that an invalidate
instruction is pending .

11 . The non - transitory computer - readable medium of
claim 10 , the operation further comprising :

responsive to receiving the context synchronization
instruction , determining that the first entry of the invali
date vector indicates that an invalidate instruction is
pending .

12 . The non - transitory computer - readable medium of
claim 11 , the operation further comprising :

invalidating each line of the VIVT cache having a TLB
index valid bit that has been cleared .

13 . The non - transitory computer - readable medium of
claim 12 , the operation further comprising :

responsive to receiving the invalidate instruction for the
virtual address , translating the virtual address to the
physical address ;

referencing the TLB with the translated physical address ;
determining that the TLB does not include an entry

matching the translated physical address ; and
storing the indication in the first entry of the invalidate

vector .
14 . The non - transitory computer - readable medium of

claim 9 , the operation further comprising prior to setting the
TLB index valid bit of the first line of the VIVT cache :
detecting a miss for the first line of VIVT cache in the

VIVT cache ;
performing a translation page table walk to receive the

translation for the first cache line ;
storing , in the first TLB entry , the translation for the first

cache line ;
receiving the data for the first line of the VIVT cache ; and
filling the first line of the VIVT cache with the received

data , wherein the TLB index valid bit of the first line of
the VIVT cache is set while filling the first line of the
VIVT cache with the received data , and wherein the
first line of the VIVT cache is associated with the first
TLB entry while filling the first line of the VIVT cache
with the received data .

15 . The non - transitory computer - readable medium of
claim 9 , wherein the determining that the translation for the
first cache line is no longer in the first TLB entry is based on
determining that the translation for the first cache line in the
first TLB entry was evicted and replaced with a different
translation .

16 . The non - transitory computer - readable medium of
claim 9 , wherein the VIVT cache is an instruction cache that
is visible to software as a physically indexed physically
tagged (PIPT) cache .

17 . An apparatus , comprising :
a translation lookaside buffer (TLB) ;
a virtually indexed virtually tagged (VIVT) cache ; and
logic configured to perform an operation comprising :

setting an index valid bit in a first line of the VIVT
cache , wherein the first line of the VIVT cache is
associated with a first TLB entry which comprises a
virtual address to physical address translation for the
first cache line ;

upon determining that the translation for the first cache
line is no longer in the first TLB entry , clearing the
TLB index valid bit in the first line of the VIVT
cache ;

US 2019 / 0034349 A1 Jan . 31 , 2019

responsive to receiving a translation invalidate instruc
tion for the virtual address , storing an indication of
the invalidate instruction ; and

responsive to receiving a context synchronization
instruction , invalidating the first line of the VIVT
cache based on the TLB index valid bit being cleared
and the stored indication of the invalidate instruc
tion .

18 . The apparatus of claim 17 , further comprising an
invalidate vector , wherein the indication is stored in a first
entry of the invalidate vector , wherein the first entry is of a
plurality of entries in the invalidate vector and corresponds
to TLB entries that have been evicted and replaced , wherein
the indication stored in the first entry specifies that an
invalidate instruction is pending .

19 . The apparatus of claim 18 , the operation further
comprising :

responsive to receiving the context synchronization
instruction , determining that the first entry of the invali
date vector indicates that an invalidate instruction is
pending .

20 . The apparatus of claim 19 , the operation further
comprising :

invalidating each line of the VIVT cache having a TLB
index valid bit that has been cleared .

21 . The apparatus of claim 20 , the operation further
comprising :

responsive to receiving the invalidate instruction for the
virtual address , translating the virtual address to the
physical address ;

referencing the TLB with the translated physical address ;
determining that the TLB does not include an entry
matching the translated physical address ; and

storing the indication in the first entry of the invalidate
vector .

22 . The apparatus of claim 17 , the operation further
comprising prior to setting the TLB index valid bit of the
first line of the VIVT cache :

detecting a miss for the first line of VIVT cache in the
VIVT cache ;

performing a translation page table walk to receive the
translation for the first cache line ;

storing , in the first TLB entry , the translation for the first
cache line ;

receiving the data for the first line of the VIVT cache ; and
filling the first line of the VIVT cache with the received data ,
wherein the TLB index valid bit of the first line of the VIVT
cache is set while filling the first line of the VIVT cache with
the received data , and wherein the first line of the VIVT
cache is associated with the first TLB entry while filling the
first line of the VIVT cache with the received data .

23 . The apparatus of claim 17 , wherein the determining
that the translation for the first cache line is no longer in the
first TLB entry is based on determining that the translation
for the first cache line in the first TLB entry was evicted and
replaced with a different translation .

24 . The apparatus of claim 17 , wherein the VIVT cache is
an instruction cache that is visible to software as a physically
indexed physically tagged (PIPT) cache .

25 . An apparatus , comprising :
a translation lookaside buffer (TLB) ;
a virtually indexed virtually tagged (VIVT) cache ;

means for setting an index valid bit in a first line of the
VIVT cache , wherein the first line of the VIVT cache
is associated with a first TLB entry which comprises a
virtual address to physical address translation for the
first cache line ;

upon determining that the translation for the first cache
line is no longer in the first TLB entry , means for
clearing the TLB index valid bit in the first line of the
VIVT cache ;

responsive to receiving a translation invalidate instruction
for the virtual address , means for storing an indication
of the invalidate instruction ; and

responsive to receiving a context synchronization instruc
tion , means for invalidating the first line of the VIVT
cache based on the TLB index valid bit being cleared
and the stored indication of the invalidate instruction .

26 . The apparatus of claim 25 , further comprising an
invalidate vector , wherein the indication is stored in a first
entry of the invalidate vector , wherein the first entry is of a
plurality of entries in the invalidate vector and corresponds
to TLB entries that have been evicted and replaced , wherein
the indication stored in the first entry specifies that an
invalidate instruction is pending .
27 . The apparatus of claim 26 , wherein the VIVT cache is

an instruction cache that is visible to software as a physically
indexed physically tagged (PIPT) cache , the apparatus fur
ther comprising :

responsive to receiving the context synchronization
instruction , means for determining that the first entry of
the invalidate vector indicates that an invalidate
instruction is pending .

28 . The apparatus of claim 27 , further comprising :
means for invalidating each line of the VIVT cache

having a TLB index valid bit that has been cleared .
29 . The apparatus of claim 28 , further comprising :
responsive to receiving the invalidate instruction for the

virtual address , means for translating the virtual
address to the physical address ;

means for referencing the TLB with the translated physi
cal address ;

means for determining that the TLB does not include an
entry matching the translated physical address ; and

means for storing the indication in the first entry of the
invalidate vector .

30 . The apparatus of claim 25 , further comprising prior to
setting the TLB index valid bit of the first line of the VIVT
cache :
means for detecting a miss for the first line of VIVT cache

in the VIVT cache ;
means for performing a translation page table walk to

receive the translation for the first cache line ;
means for storing , in the first TLB entry , the translation

for the first cache line ;
means for receiving the data for the first line of the VIVT

cache ; and
means for filling the first line of the VIVT cache with the

received data , wherein the TLB index valid bit of the
first line of the VIVT cache is set while filling the first
line of the VIVT cache with the received data , and
wherein the first line of the VIVT cache is associated
with the first TLB entry while filling the first line of the
VIVT cache with the received data .

