a2 United States Patent

Kumar et al.

US011936518B2

US 11,936,518 B2
*Mar. 19, 2024

(10) Patent No.:
45) Date of Patent:

(54) INTERCONNECTION PLATFORM FOR
REAL-TIME CONFIGURATION AND
MANAGEMENT OF A CLOUD-BASED
SERVICES EXCHANGE

(71)
(72)

Applicant: Equinix, Inc., Redwood City, CA (US)

Inventors: Parveen Kumar, Fremont, CA (US);
Gagan Maheshwari, Sunnyvale, CA
(US); Jaganathan Jeyapaul, Saratoga,
CA (US); Brian J. Lillie, Los Altos,
CA (US)

(73)
")

Assignee: Equinix, Inc., Redwood City, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 18/146,331

Filed: Dec. 23, 2022

(65) Prior Publication Data
US 2023/0208708 Al Jun. 29, 2023
Related U.S. Application Data

Continuation of application No. 17/646,375, filed on
Dec. 29, 2021, now abandoned, which is a

(Continued)

(63)

Int. CL.
GO6F 15/173
GO6F 8/70

(51)
(2006.01)

(2018.01)
(Continued)
(52) US. CL
CPC HO4L 41/0803 (2013.01); GO6F 8/70
(2013.01); GOG6F 9/5072 (2013.01); HO4L

41/00 (2013.01);

(Continued)

(58) Field of Classification Search

CPC ... HOAL 41/0803; HOAL 41/00; HO4AL 41/20;
HOAL 47/70; HO4L 67/10; HOAL 67/1097;
HO4L 67/2838; GOGF 8/70; GOGF 9/5072
USPC i 709/223

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,778,651 Bl 8/2004 Jost et al.
7,526,734 B2 4/2009 Vasilev et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102246474 A 11/2011
CN 103209200 A 7/2013
(Continued)

OTHER PUBLICATIONS

Examination Report No. 1 from counterpart Australian Application
No. 2022201786 dated Mar. 14, 2023, 3 pp.

(Continued)

Primary Examiner — Anthony Mejia
(74) Attorney, Agent, or Firm — Shumaker & Sieffert,
PA.

(57) ABSTRACT

In one example, a cloud-based services exchange comprises
a plurality of interconnection assets configured to connect a
customer of the cloud-based services exchange to one or
more cloud service providers, the plurality of interconnec-
tion assets including a virtual circuit by which the customer
accesses a cloud service from the one or more cloud service
providers; and an orchestration engine configured to modify
the plurality of interconnection assets.

20 Claims, 24 Drawing Sheets

____________ DATA CENTER
- re o T T a jlti]
VLS m
— T 110N
APls -I

CARRIERA L~

SUB-SYSTEMS
120

1104

£7
CLOUD
SERVICE PROVIDER
Vi

——— — — — —

NETWORK
104A

NETWORK

12

CARRIER C
106C

I
I
INFRASTRUCTURE 5
I
I

b

CARRIERB
1088

CUSTOMER
NETWORK
104p

CUSTOMER
107A

CUSTOMER
NETWORK
1ME

CUSTOMER
078

CARRIER C
NETWORK
104B

CARRIER C
NETWORK
104C

US 11,936,518 B2
Page 2

(60)

(1)

(52)

(56)

Related U.S. Application Data

continuation of application No. 17/007,929, filed on
Aug. 31, 2020, now Pat. No. 11,218,363, which is a
continuation of application No. 16/172,501, filed on
Oct. 26, 2018, now Pat. No. 10,764,126, which is a
continuation of application No. 15/887,165, filed on
Feb. 2, 2018, now Pat. No. 10,116,499, which is a
continuation of application No. 15/395,101, filed on
Dec. 30, 2016, now Pat. No. 9,887,876, which is a
continuation of application No. 14/927,451, filed on
Oct. 29, 2015, now Pat. No. 9,886,267.

Provisional application No. 62/233,933, filed on Sep.
28, 2015, provisional application No. 62/072,976,
filed on Oct. 30, 2014.
Int. CL.
GOG6F 9/50 (2006.01)
HO04L 41/00 (2022.01)
HO04L 41/0803 (2022.01)
HO4L 47/70 (2022.01)
HO4L 67/10 (2022.01)
HO4L 67/1097 (2022.01)
HO4L 67/567 (2022.01)
U.S. CL
CPC ..o HO4L 41/20 (2013.01); HO4L 47/70
(2013.01); HO4L 67/10 (2013.01); HO4L
67/1097 (2013.01); HO4L 67/567 (2022.05)
References Cited
U.S. PATENT DOCUMENTS
7,606,868 Bl 10/2009 Le et al.
7,697,558 B2 4/2010 Pilon et al.
7,904,882 B2 3/2011 Hinks
8,046,440 B2 10/2011 Breiter
8,307,368 B2 11/2012 Wolf et al.
8,379,656 B2 2/2013 Waldrop et al.
8,407,190 B2 3/2013 Prahlad et al.
8,468,033 B2 6/2013 Gunn
8,509,249 B2 8/2013 Waldrop et al.
8,537,845 B2 9/2013 Waldrop et al.
8,583,503 B2 11/2013 Waldrop et al.
8,751,323 B2 6/2014 Waldrop et al.
8,752,017 B2* 6/2014 Hossain GO6F 11/362
717/124
8,768,652 Bl 7/2014 Mirtich et al.
8,825,861 B2 9/2014 Rao
8,891,439 B2 11/2014 Casey
8,892,708 B2 11/2014 Merrill et al.
9,009,858 B2 4/2015 Sapp et al.
9,110,976 B2 8/2015 Bolgert et al.
9,137,209 Bl 9/2015 Brandwine et al.
9,203,784 B2 12/2015 Chang et al.
9,239,740 B2 1/2016 Zhao et al.
9,246,840 B2 1/2016 Anderson et al.
9,269,061 B2 2/2016 Jeyapaul et al.
9,300,633 B2 3/2016 Acharya et al.
9,338,214 B2 5/2016 Hinks
9,367,362 B2 6/2016 Kern
9,507,622 B2* 11/2016 Robinson GO6F 9/45558
9,525,564 B2 12/2016 Lee
9,531,814 B2 12/2016 Cardona-Gonzalez et al.
9,606,819 B2 3/2017 Wang et al.
9,736,556 B2 8/2017 Lingampalli
9,875,086 Bl 1/2018 Anderson et al.
9,886,267 B2 2/2018 Maheshwari et al.
9,887,876 B2 2/2018 Kumar et al.
9,900,219 B2 2/2018 Huey et al.
9,948,552 B2 4/2018 Teng et al.
9,983,860 B1* 5/2018 Kotycccocevvervinncns HO04L 67/10
10,116,499 B2 10/2018 Kumar et al.

10,129,078

10,230,571

10,382,266

10,437,575

10,594,801

10,764,126

11,218,363
2004/0205101
2005/0036483
2006/0041641
2006/0069777
2008/0016518
2008/0261191
2009/0164973
2010/0299437
2010/0332454
2011/0058547
2011/0119088
2011/0246627
2011/0246992
2012/0096525
2012/0151063
2012/0180071
2012/0331149
2013/0013442
2013/0019015
2013/0136138
2013/0166504

2013/0263209

2013/0283364
2013/0325928
2013/0346569
2014/0173594
2014/0189692
2014/0196028

2014/0244851
2014/0289791
2014/0324911
2015/0121155

2015/0135160
2015/0161681
2015/0229645
2015/0249701
2016/0021197
2016/0112475
2016/0124742
2016/0127199
2016/0127254
2016/0127454
2016/0308762
2016/0337175
2016/0344590
2017/0155686
2017/0187785
2017/0244593
2018/0262391
2020/0120166
2022/0131744

B2
B2
Bl
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

Al

11/2018
3/2019
* 82019
*10/2019
3/2020
9/2020
1/2022
10/2004
2/2005
2/2006
3/2006
1/2008
10/2008
6/2009
11/2010
12/2010
3/2011
5/2011
10/2011
10/2011
4/2012
6/2012
7/2012
12/2012
1/2013
1/2013
5/2013
*6/2013

*10/2013

10/2013
12/2013
12/2013
6/2014
7/2014
7/2014

*

82014
9/2014
10/2014
4/2015

*

5/2015
6/2015
8/2015
9/2015
1/2016
4/2016
5/2016
5/2016
5/2016
5/2016

* 10/2016
* 112016
11/2016
6/2017
6/2017
82017
9/2018
4/2020
4/2022

Kumar et al.

Rangasmy et al.
Balakrishnan HO04L 67/55
Chen ..o GOGF 8/60

Cardona-Gonzalez et al.
Kumar et al.
Kumar et al.
Radhakrishnan
Tomisaka et al.
Breiter et al.
Kato et al.
Yokoyama et al.
Woolf et al.
Barnett et al.
Moore

Prahlad et al.
Waldrop et al.
Gunn

Kern

Kern

Bolgert et al.
Yang et al.
Lesandro et al.
Rao

Waldrop et al.
Devarakonda et al.
Miller et al.

Varkhedi GO6F 16/275
707/610
Panuganty HO4L 41/5025
709/224
Chang et al.
Milburn et al.
Smith et al.
Ng et al.
Wang et al.
Macpherson GOGF 9/45558
718/1
Lee
Acharya et al.
De Lavarene et al.
Boshev HO04L 41/0893
714/48
Gauvin et al.
Maes et al.
Keith et al.
Anand et al.

Pogrebinsky et al.
Lawson et al.
Rangasamy et al.
Ding et al.
Kumar et al.
Maheshwari et al.

Teng .ocoovvvnnan. HO4L 12/4633
RA0 .o, HO04L 67/51
Huey et al.

Yanacek et al.

Johnson et al.
Rangasamy et al.

Jung et al.
Cardona-Gonzalez et al.
Kumar et al.

FOREIGN PATENT DOCUMENTS

CN
JP
JP
JP
JP
WO

103650456 A
2008022264 A
2012511293 A
2013504269 A
2013504270 A
2012075448 Al

3/2014
1/2008
5/2012
2/2013
2/2013
6/2012

OTHER PUBLICATIONS

Notice of Intent to Grant from counterpart Application No. 11 2016
029210-3 dated Mar. 7, 2023, 1 p.

US 11,936,518 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“8.1.5.3 Generating a REST Controller Using Scaffolding,” Grails,
retrieved from htlp://grails.github.io/grails-doc/2.3.7/ uide/webServices.
html#/generatingRestControllers/, Sep. 7, 2015, 18 pp.

“Bumm,” retrieved from https://www.npmjs.com/package/bumm,
Sep. 2, 2015, 4 pp.

“Developing Front-End Microservices With Polymer Web Compo-
nents and Test-Driven Development (Part 5-5) Using Microservices
Technology Conversations,” retrieved from https://technologyconversa-
tions.com/2015/08/09/developing-front-end-microservices-with-
polymer-web-components-and-test-driven-development-part_5-5_
using_microservices technology conversations/, Aug. 9, 2015, 13
pp-

“Equinix Launches Cloud Exchange to Unlock Full Potential of
Cloud Computing,” Equinix, Apr. 30, 2014, S pp.
“Rack-Scaffold-Master,” GitHub—mattt/rack-scaffold: Automati-
cally generate RESTful CRUD services, retrieved from https://
github.com/mattt/rack-scaffold, Aug. 28, 2014, 2 pp.

“rest—How to Use Scaffolding and RESTfulness Together in Grails
2.3—Stack Overflow,” retrieved from http://stackoverflow.com/
questions/1946542 1 /how-to-use-scaffolding-and-restfulness-
together in Grails 2.3, Oct. 19, 2013, 5 pp.

“Step 3 Use a Generator to Scaffold Out your App,” Yeoman,
retrieved from http://yeoman.io/codelab/scaffold-app.html, Sep. 2,
2015, 6 pp.

Abrams et al., “An Emergent Micro-Services Approach to Digital
Curation Infrastructure,” The International Journal of Digital Cura-
tion, vol. 5, No. 1, Jun. 22, 2010, 15 pp.

Banikazemi et al., “Meridian: an SON platform for cloud network
services”, IEEE Communications Magazine, IEEE Service Center,
vol. 51, No. 2, Piscataway, US, Feb. 1, 2013, pp. 120-127.
Cortis, “REST and Scaffolding,” retrieved from http://www.slideshare.
net/kcortis/rails-girlsgalwayestscaffoldingkeith, Jul. 5, 2014, 7 pp.
Dillon, “How to Write a Ruby and Rails 3 Rest APL” Squarism,
retrieved from squarism.com/2011/04/01/how-to- write-a-ruby-rails-
3-rest-api/, Apr. 1, 2011, 19 pp.

Equinix HD “Episode 6: How to join the Equinix Cloud Exchange,”
Equinix Videos, YouTube, Jul. 14, 2014, 1 pp. Retrieved from the
Internet: https://www.youtube.com/watch?v= FnnTRssh40.
Equinixvideos: “Equinix HD 1 Episode 1: Performance Hub w/
Anirvan Das”, YouTube, Mar. 19, 2014 (Mar. 19, 2014), p. 1 pp.,
XP054980316, Retrieved from the Internet: URL:https://www.
youtube.com/watch?v=110aDEv6M7k [retrieved on Mar. 19, 2020].
Equinixvideos: “Equinix HD 1 Episode 4: Equinix Cloud Exchange
w/ Bill Long”, youtube, Apr. 30, 2014 (Apr. 30, 2014), p. 1 pp.,
XP054978199, Retrieved from the Internet: URL:https://www.
youtube.com/watch?v=iDSuvOiL8LA [retrieved on Mar. 22, 2018].
Examination Report from counterpart Australian Application No.
2015338902, dated Nov. 1, 2017, 2 pp.

Examination Report from counterpart Australian Application No.
2019200821, dated Nov. 21, 2019, 2 pp.

Examination Report from counterpart European Application No.
15794014.9, dated Apr. 15, 2018, 7 pp.

Examination Report from counterpart European Application No.
19205162.1, dated Apr. 6, 2021, 10 pp.

Extended European Search Report of European Application No.
19205162.1 dated Apr. 7, 2020, 14 pp.

First Examination Report from counterpart Australian Patent Appli-
cation No. 2020203877, dated Mar. 16, 2021, 4 pp.

First Office Action and Search Report, and translation thereof, from
counterpart Chinese Application No. 2015800323212, dated Dec.
25, 2018, 11 pp.

Genuitec, “Scaffolding a Spring MVC Application,” retrieved from
https://www.genuitec.com/products/myeclipse/learning-center/spring/
spring-3-0-mve- scaffolding/, Sep. 2, 2015, 16 pp.

International Preliminary Report on Patentability from International
Application No. PCT/US2015/058500, dated Feb. 8, 2017, 7 pp.
International Search Report and Written Opinion from International
Application No. PCT/US2015/058500, dated Feb. 11, 2016, 20 pp.

Invitation to Respond to Written Opinion from Singaporean Appli-
cation No. 10202004184R, dated Jul. 5, 2022, 8 pp.

Jazayeri et al., “Some Trends in Web Application Development,”
Future of Software Engineering (FOSE °07), Jun. 2007, 14 pp.
Kovacevic, “RESTful Admin Namespaced Controller Using Scaf-
folding,” retrieved from http://icebergist.com/posts/ restful-admin-
namespaced-controller-using-scaffolding/, Sep. 17, 2008, 4 pp.
Namiot et al., “On Micro-services Architecture,” International Jour-
nal of Open Information Technologies ISSN: 2307-8162 vol. 2, No.
9, Aug. 20, 2014, 4 pp.

Notice of Acceptance dated Jun. 18, 2018, from counterpart Aus-
tralian Application No. 2015338902, 3 pp.

Notice of Acceptance from counterpart Australian Patent Applica-
tion No. 2018236712, dated Oct. 25, 2018, 3 pp.

Notice of Allowance from counterpart Canadian Application No.
3,146,289, dated Jun. 28, 2022, 1 pp.

Notice of Intent to Grant from counterpart Canadian Application
No. 2,951,939 dated Oct. 12, 2022, 1 pp.

Office Action from counterpart Canadian Application No. 2,951,939
dated Oct. 23, 2017, 4 pp.

Office Action from counterpart Canadian Application No. 2,951,939
dated Sep. 10, 2021, 4 pp.

Office Action from counterpart Canadian Application No. 2,951,939,
dated Oct. 3, 2018, 6 pp.

Office Action from counterpart Canadian Application No. 2,951,939,
dated Sep. 30, 2019, 3 pp.

Office Action from U.S. Appl. No. 17/646,375 dated Sep. 23, 2022,
5 pp.

Okawara, “Equinix, linking multiple cloud services Cloud Exchange,”
Equinix, Jun. 4, 2014, 3 pp.

Prosecution History from U.S. Appl. No. 14/927,306, dated Sep. 5,
2017 through Apr. 12, 2018, 64 pp.

Prosecution History from U.S. Appl. No. 14/927,315, dated Mar. 14,
2018 through Oct. 24, 2018, 44 pp.

Prosecution History from U.S. Appl. No. 14/927,451, dated Jun. 22,
2017 through Nov. 1, 2017, 31 pp.

Prosecution History from U.S. Appl. No. 15/395,101, dated Jan. 27,
2017 through Oct. 23, 2017, 57 pp.

Prosecution History from U.S. Appl. No. 15/887,165, dated Apr. 13,
2018 through Jul. 23, 2018, 33 pp.

Prosecution History from U.S. Appl. No. 16/172,501, dated Feb. 26,
2019 through May 15, 2020, 40 pp.

Prosecution History from U.S. Appl. No. 17/007,929, dated Aug.
17, 2021 through Dec. 1, 2021, 12 pp.

Reply to Written Opinion dated Feb. 11, 2016, filed Aug. 30, 2016
from counterpart International Application No. PCT/US2015/
058500, 21 pgs.

Response to Canadian Office Action dated Oct. 23, 2017, from
counterpart Canadian application No. 2,951,939, filed Apr. 20,
2018, 19 pp.

Response to Communication pursuant to Rules 70(2) and 70a(2)
dated May 27, 2020, from counterpart Furopean Application No.
19205162.1, filed Nov. 20, 2020, 204 pp.

Response to Examination Report dated Apr. 6, 2021, from coun-
terpart European Application No. 19205162.1, filed Oct. 15, 2021,
8 pp.

Response to Examination Report dated Oct. 5, 2018, from coun-
terpart European Application No. 15794014.9, filed Oct. 5, 2018, 20
pp-

Response to Notification of Reasons for Rejection dated Apr. 24,
2018, from counterpart Japanese application No. 2016-573992, filed
Nov. 26, 2018, 17 pp.

Response to Office Action dated Sep. 10, 2021, from counterpart
Canadian Application No. 2,951,939 filed Jan. 20, 2022, 12 pp.
Response to Office Action filed in Canadian Application No. 2,951,939
dated Mar. 13, 2020, 10 pp.

Response to Written Opinion dated Jul. 5, 2022, from counterpart
Singaporean Application No. 10202004184R filed Nov. 29, 2022,
19 pp.

Rosen et al., “BGP/MPLS IP Virtual Private Networks (VPNs),”
RFC 4364, Feb. 2006, Internet Engineering Task Force(IETF)
Network Working Group, 47 pp.

US 11,936,518 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Ruby et al., “Agile Web Development with Rails 5.1,” The Prag-
matic Bookshelf, Nov. 2017, 10 pp.

Scofield, “Rails 3 Generators Scaffolding,” retrieved from https://
www.viget.com/articles/rails-3-generatorscaffolding, Mar. 2, 2010,
3 pp.

Second Written Opinion of International Application No. PCT/
US2015/058500, dated Oct. 10, 2016, 6 pp.

Stafford, “Building a Microservices-based REST API with RestExpress,
Java EE, and MongoDB Part 2, Programmatic Ponderings,” retrieved
from htlp://programmaticponderings.worldpress.com/2015/05/31/
building-amicroservices- based-rest-api-with-restexpress-jhava-ee-
and-mongodb-part-2/, May 31, 2015, 20 pp.

Summons to Attend Oral Proceedings Issued in EP Application No.
15794014.9 dated May 21, 2019, 11 pp.

Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC
from counterpart European Application No. 19205162.1 dated May
27,2022, 13 pp.

The Notification of Reason for Rejection, and translation thereof,
from counterpart Japanese Application No. 2016-573992, dated
Apr. 24, 2018, 9 pp.

Thomas, “REST, Scaffolding, and Data Models Ruby on Rails,”
retrieved from http://jacobjthomas.com/rubyonrails/rest_scaffolding
user_micropost_data_model/, Aug. 22, 2013, 8 pp.

U.S. Appl. No. 61/239,997, by Sukwan Youn, filed Sep. 4, 2009.
U.S. Appl. No. 61/285,371, by Sukwan Youn, filed Dec. 10, 2009.
U.S. Appl. No. 61/323,066, by Sukwan Youn, filed Apr. 12, 2010.
U.S. Appl. No. 62/216,804, by Mohan Rao G. Lingampalli, filed
Sep. 10, 2015.

Wintermeyer, “5.2. Generating a Scaffold,” retrieved from http://
www.xyzpub.com/en/ruby-on-rails/3.21 scaffold anlegen.html, Sep.
2, 2015, 18 pp.

* cited by examiner

US 11,936,518 B2

Sheet 1 of 24

Mar. 19, 2024

U.S. Patent

\AOIE |

ovolL gvol a0t ET]
MHOMLIN MHOMLAN ¥IWOLSND MHOMLIN
0 H3ARVI 0 Y3V H3IWO0LSNO

arol
MHOMLIN
HIWOLSND

vi0l
HINOLSND

g901
ER-ElEA

e
JHNLONYLSVHANI
MHOMLIN

) -]

||||||| 071 M

0901
0 ¥RV

V90l
\R-El-}1-L M)

Vol
NHOMLIN
L R-Elt-}-)je)

SIWILSAS-9NS

T

3T |
IANIONT NOLLVY1SIHOHO

)

_

| "
| m
_ m
_ 0 | m
| m
| m
_ :
_

_

Voil
HAAIAOYd FDIAYAS
anoTio

AVMELVYD IdY
| W
sidv H~

NOLL

101 _ Lo T a0 |
441INd0 V1vda

US 11,936,518 B2

Sheet 2 of 24

Mar. 19, 2024

U.S. Patent

dal 'oOld
TN /
%M.MMS d 50 o /V [vaor
Isns) . IS | ISm y
e N /// o

//

\

Jisuel| pnojy V

/

/

S/
Bt fgedsisgsiqseihg gl 1
m T _.l o1 —w
m \\ — \\ wr /v /4/7_ SWILSAS-8NS m
m INod | [_iNod | [INod | e I
: A JONVHOXT | 3ONVHOXZ | | JONVHOX3 M > glt ;
oot //o:od / _anoto / . anoT1o \\1 ANIONZ NOLLYY1STHONO _
m abueyoxg pnojn N .N.nw _m
AVMILYO IdV
|

SI9pINCId
asiAlag pnoj) d3AIA0Ydd J0IAYdS

ano1o

NOLL

et
SNOILVOIMddY

US 11,936,518 B2

Sheet 3 of 24

Mar. 19, 2024

U.S. Patent

Ol Old
~ 0L} G9l
077 == ynoaIY JInolIY — (%4
A d enul en = 9l¢
o WHOMLAN NN | T [eNJIA [eNMIA BIZ| g WHOMLIAN T56T
SWALSAS [— — —|— — — I~ -F-1l—_————— SW3LSAS
HINWOLSNO §S1 | JINOLSNO
AnouD [EMMIA -
091 _
IN2JID [BNUIA _
|
|
0967 V961
SW3LSAS Allll.lun:.ml — —A) om_\l/ _HIIIHIIIIII SIILSAS
¥aworsno - “_|gT2 (] UN2UID [BNUIA "1 | g0z 90¢ - ¥3awoLrsno
orz | INN3 | _ _ : INN-3 | §0C
MIOMLIN ’ MIJOMLIN
A = N
Y SWALSASENS y
. _) _ |
iy 0 i
__ I| 3nioNz NoILYLsIHONO | __
. _ L _ i
- FA) __
I _avmavey | 1
| vt | |
o SidY N
004 \
JONVHOXT
€04
anowd

US 11,936,518 B2

Sheet 4 of 24

Mar. 19, 2024

U.S. Patent

dl 'old
\\\\\\\\ g LNIaNILNOD
\
g 907 2ez—
,,, Phape YA A e
N \W /f SN
rANA R 1 %4 LNIOd uoljoauu0) —_ /
suoljo8UU0Y) JONVHOX3 o|buIg asol _
Juepunpay anolo JaLen \
1NIOd o8zL—"
dONVHOX3 (414 (Wle]}lo:10]¥]elg)
ano1o o|buIs
_/
aszi 1NIOd 1NIOd
FAYA Y901 dAONVHOX3 |« W, » FONVHOX3
/E.W anolo cee anolo
SUOI}oBUUOY) g8¢ T\ v8Zl ~/
uepunpay

US 11,936,518 B2

Sheet 5 of 24

Mar. 19, 2024

U.S. Patent

¢ '9Old
— _ %3 - o
W 401¢ 301€ Ewpgw 301E g0l¢ volLE W
W wieysAs woyshs JuswiaBeuepy $90IAI0S wayshs waysAs w
m juswabeuepy juswiebeueyy fyoeden YIOMION juswabeuepy juswabeuepy
Jusju0n aosuapiouj pue P OpBAY| 19pio $S920Y pue Q| v
SWALSAS-aNs
1142 -~
asoc 080¢ g80¢ Vv80¢
SOIAIBSOUOI suope.nbyuo) s9|jo.d $9]91j0d W
90t
auibug sany pue MOIOM
.Kﬁ INIONT NOILVHLSTHIHO NOILOINNODHILNI
avoe ovoe avoe vioe
| s|dy Moddng s|dY osn s|dV 1oesuel| ﬁ S|dy Adanoasig |
SidV NOILOINNODYHIALNI
122" :\
JONVHIX3 an010
- 001
d00¢ 400¢ doog
s;RYI0 siadojonaq Aped piyL SIaPIACId 20IAIRS pPNO[D
o008 g00¢ Yv0o0¢
sosydisug SIBPINOI 89IAI8S pabeueyy SIBPINOIH BOIAIS YJOMIaN
ALINNIWINOD ¥3d0T3A3d
00¢ Y

US 11,936,518 B2

Sheet 6 of 24

Mar. 19, 2024

U.S. Patent

1oy
3ANIONT
NOILVY1S3IHOY™O

[
_1 lllllllll 1 AVMALVYO IdV
_ 907 |
| LsNouvanawwoosd |, _ ___ ______
|
— 505 _
" 1507 “ _ vov _
SLIMOIL IDIANIS [S¥3idvav |
_ r—! | WOLSND AVMILYD _
_ 907 “ _ — |
_ SHLAIMANVE _ HyOY _
[r—! || SLNOTIVOdLLH
_ 50 L — !
|| sousiLvisolddvar |1 Srov _
_ —! solLAtvny | |
_ Ho0% L WOoLSND |
_ SOLLATYNY L _
_ 1 50V _
_ 5907 I 1| rs3wuvamds | !
/| ||_s3udodd 3omuas |1 _
< _ — I " _ ET70] “
\ _ | NoiLo3LONd
| L_s30mu3s ano1o " _ LVIHL "
_
907 | pr—
_ Loy avov _
| L_SLINONID TvnL¥IA “ | ONIHOYD “
" a90F p] _
S13SSV P! %07 |
_ —, | [NOLvWdOdSNVAL ||
_ 5907 ;! _
_ SO¥LIN P! arov _
_ —, || Noivouman |,
g907 _ A3 IdV _
“ SL30d " _ |
! _ vvor
— vo0b _ _
5IT " N ! ALRIND3S |
sidV 1 |\ T T T T T

V¢ 'Old

oy
SUFNNSNOD IdV

Jcoy
SUAdOTIAIA
dv

aeor
SNOILYOIMddV
}ITIS

Veor
SNOLLVOITddV
d3aAand

US 11,936,518 B2

Sheet 7 of 24

Mar. 19, 2024

U.S. Patent

S3DIAYIS IdV JONVHIXI ANOT1D

:

' 607 60%

; INFWIOVNYIN INILNOD NOILYH93LNI IdV ¥3713S
: B60F HE0v

; NELNL AR oNITIIE

: d60v 5607

; SNOLLVOI4ILON HOLVAITYA ¥O3HD LIAHD
i 080F —

: o0

: SHOSSII0Ud

HoLYE 8 SYETIOEHOS ONINOISIAOY YHOMLIN
. NG0v 3608

m NOLLVANININOITY INIWIOVNYIN ALIDV Y
G07 asor

: SOILSILYLS 39VSN ININIOVNYIN AHOLNIANI
m zo_meéo._ 2609

m INFWIOVNYIN T140¥d B LNNOIIV
. 60V F60F

{ | iNGNEOVNVIN L3oLL 318N0HL ONLLIINY % NOLLYZINOHLAY
1]

m T60% V60%

m NOILY90'] NOILYAIVA LSINDIY

L T T T Y

g€ 'oOld

10v
INIONI NOILVYLSIHIYO

H80Y
AYFA0DSIA NOILVOOT ANV AMOLNIANI

080y
NOILYANZWINOOTY ANV HOYVIS

480v
INJWIOVNVIN 3OVRIFLNI MHOMLIN

380
INJWIOVNVIA LINDHID TVNLHIA

asov
NOLLVYOZLINI IdV ¥3T71138

80y
ONIOIOAN]I ANV ONITId

€30y
NOLLVANOIANOD ANV S31Hd0¥d

V8oy
INIWIOVYNVIN ADITOd

US 11,936,518 B2

Sheet 8 of 24

Mar. 19, 2024

U.S. Patent

€01

sm_wmwm s_mmmwm _zm__.wwm o9y JONVHOX3 m._mwmws s_mkmwm
W3LSAS anono
LNINIDUYNVYIN LNIWIOVNYIN LNIWIOVNVIN WHOMLIN NOILVYOILNI ANIWIOVNYIN
LNILNOD LNIQIONI dIQHO IdV ¥3713S SSAJIV ANV QI
ON—‘ I..\. e e o s - e - e e 2 2 . 2 2 2 2 . 2 S 2 2 2 2 1 2 2 o)
3225 S3IDINYIS 3AVHV NOILVEOILNI TZ2F SA0INYIS ANVINNOD 1dV VZ2F SIDIAYIS ANIND IdY
\ Ei1747 avey avev F7F avey vvey
0zp — NOILYWYO4SNWL | | ¥3Ldvav 3oiauas S30IAY3S STDIANIS HOLYAMTYA saoinas | | s3oianas volvanva
ANV ONISYVd ANV ¥OLYOd3ada HIAAIAOYC AQOg LSANDIY HIAIAOHC HILIANVEVC
3SNOJS3Y 1S3n03y aNVINWOD ANIND 1s3N0ay
Y443 457 HZIP o2 T
ANOLISOdTY E N EERVANEIT INIONT SOILATYNY aNION3 INTWESTNYIN 430
SIINY ANY MOTIMHOM Idv NOILOINNOODNILNI 9 NOILYANIWINODTY NOILVOI4ILON
T any for4 1 1457 iy
SYITIOUINOD SHITIONLNOD MOVHL B NOILVZINOHLNY
ANIONZ NOILISOINOD HIAYIS ANIND IdY ANVINNOD 1Y ‘LIaNY ‘NOILVYNOIINOD ANV NOLLYOILNIHLNY
o
ONILNOY OGNV INFWIOVNVIN MOTINIOM
ANI9NT NOILYYLSTHONO NOILOINNOOHILNI
00—
To0% s m_wﬁ_,w_ L Fo0v 80F Ho0F mmw_m_wm g
SNOILYANIWWOITY 3IoES SHLOIMANYE SLV1S 9144wyl SOILATYNY AIANES
90r —/ 907 3907 asor 5907 907 o7
$30IA¥IS ANO1D SLINDYID TYNLYIA $13sSY SOMLIW S1¥0d NIDOT
SINIOd QN3 IdY NOLLOINNODYILNI

US 11,936,518 B2

Sheet 9 of 24

Mar. 19, 2024

U.S. Patent

:) : : (774
m §Od | m b - ok R
: “ ! (Nosr “TX)
m m | NOLVIYO4SNVYL
“ ! ! vwva |
m e o)
o > ager— | F0INYIS
109% O 3OIAYAS INOY ISNOJSY h IWHO4LYTd IONVHOXI
S0 \m pprYeE—" . | GnOTD WO IsNOdS3
09y & OIMTS ORI FSNOST | w
e e e - — — — — — — 1
09y~ ¥ FOIAYTS WOH ISNOdS >
moov.\nvm 8 39IAN3S IHOANI m
<oo¢.\ﬁ ¥V 30IAM3S IMOANI e ;
" “ S0INYS WHOALYTd | ooy _/ e
© JONVHOX3 GNOTI IHOANI | NOILYQIVA —>
m m m N3)OL 0Z HLNVO
| m ; HYsy—" _ ©
" m ! (Nosr “wx) [
" “ i NOILYIWHOASNVHL (S¥3LINVHV ‘NINOL 0T
m m ; viva — HLNVO) LNIOdAN3 IdY IHOANI
" ; " 1247 € w,
" “ " ! vy
“ “ ! arsy e e e e —
m “ R A Jyep—’ NIHOLOZHLNVO
i i CA
m “ vy T
| m m NOILVAITYA
m m m ohzw,w_www m« (L3403 IdV ‘AN
] “ “ ST 1dV'Q4OMSSYd ‘SNYN ¥3S1) NISOT
" " " arsy i€
m m m | vrsr—
—~ NOILv¥3a34
S30INYIS o . hwu_mmw_ oo NV INFWIDYNYIN AVM3LYO IdY
107 ~1 ogy - ALN3dl g0y 200 |

SUIWASNOD 1dV

US 11,936,518 B2

Sheet 10 of 24

Mar. 19, 2024

U.S. Patent

I
i
i
M

! m m e mmmmm g ———————— - >
" ! H Jrsp— NMOL 0T HLAVO |
! m [wNowdol [
" ! NOIS¥3ANOD
!] NOSF / TX
m m azor— o
] m ONIddVI [
! m 07 HLAYO AYMALYD
! “ OL N3YOL HLAYO
m m aov—" 1
" " arse *
m B e Tt At ittt
" “ N3YOL HLAYO
:]
" ONIddVIN HLAYO
: OL NOILY3SSY VS
m ozr—" 1
m aeoy
.
et Tt
" (A3 “FWVN ¥3sn)
A _ \oﬁv
. yvzoy— (Q4OMSSVd ‘INVN ¥ISN) | € :
m [T (auomssvd ‘awwn u3sn)
: ! NOILYarvA [
m m 13403s Idv
" : NV AZM IdY . _ U3wo3s
" “ apep— T 4 'ADIdv ‘QHOMSSVd ‘YN ¥3N) NIOT
" ; 1€
! ! m P—
0LS N NOILY¥3034 GNY
vivONOISSINNZd | €87 .| INGWIOVNYIN ALUNID S i -~ SHINNSNOD Idv

US 11,936,518 B2

Sheet 11 of 24

Mar. 19, 2024

U.S. Patent

0Ly
HOLY

00.p-

11747

L 'Old

P

OIAYAS AYIND LYOd WOUL ISNOJSIY

iF

__S0/A¥3S R3O L¥0d IO
FOIAYIS NOILVAITVA ¥3L3NvYYd

1SINDIY LYOd WOYL ISNODSIY

t &

FOLY J

(NOSI “TIX)
NOILYIWMO4SNYYL
viva

ADIAN3S
INYOHLVd JONVHOXE
anoT0 INO¥A ASNOdSY

1
1
“.II-I.I.II-I

-{

J0IAYIS NOILVAINVA
HALIWVEV 1S3NDIAY LYOd IXHOANI

.._......_-...._..._....__........__-__......_-...._........_--........_...._....-..__-_-__!.(;

F0IAYAS WNOLLV1d
FONVHOXZ ANOTO IHOANI

30.¥ -~

A0IANAS
S130d IMOANI

~/
aozy

NOILVAITVA
NIMOL 0 HLNYO

-

4

2017

(NOSF “TIX) >

NOILYINYOISNVHL

vivda

m —
a0Lr—"

0Ly

———mm—-—>

AQOg NV S¥3AVIH ISNOdSIY

(S¥313INVYVd ‘NIYOL
0°C HLNYO) INIOdANT 14Od IMOANI

.

NOLLYAITVA
134038 IdY
QaNV A3M IdV

mvmvr\

60¥
10¥ —

SA0IAUIS

JNIONT
NOILVELSIHINO

05y —

NOLLV¥a(34
ANV INJWFOVNVIN
ALLIN3dI

<§K o
—m————=————3

ISy NaMOL1 0¢ HINVO

(134938 IdV ‘AaM
1V ‘GHOMSSYd AWYN ¥38N) NIDOT

P, S L

€0y —1

AVMILVYO |dV

SUIWNSNOD IdV

US 11,936,518 B2

Sheet 12 of 24

Mar. 19, 2024

U.S. Patent

. 8'9ld | _ _ i -
m m m vt STt =
m " m (NOSP “TX) AQOg ONY S¥3AV3H ISNOJSITY
! “ ! NOILVINMOISNY¥L
m : m viva
] F0ANISA¥IND ||.w.|||||..|.w_mu¢|\| ™

gy i = LN IO) -
L | WHO4LV1d 3ONVHOXT

HZLy—1"301A435 AY3ND ONLIN INOAN] - i ONOTO WOY4 ISNOSIY

oﬁv\&m&mm NOILYQIVA ¥3LIWVYYd !
1S3ND3Y OYL3N WOYA FSNOdSIY _
q2y u_ _ ERTMES I_L/ FOINYIS WNO4LYd | mﬁv.\ T
" NOILVAIVA¥3LINVEVd | IONVHOXIANOTdOBfOANI !~ —
! 1S3ND3Y OYL3W IHOANI | " ERINER
m m SOULIN IHOANI
: m ! aww—
“ " " —>
“ " ! NOLLYQITVA
| | m N3)OL 02 HLNVO
m m ! ouy”
m “ m Nosr “w) [
m " i NOILVINMO4SNVYL (S¥3L3WVHYd ‘NIOL 02
! ; : viva —— HLNVO) LNIOAN3 SONLIN INOANI
m m m g € >,]
“ " " " vely -
| " " avsy | e D
m " ﬁ_,f.. Ly Jvsp— NINOL0Z HLAVO
m | < |
m m © over—" H
“ ! " NOLYAIVA [
“ " " 134938 Idv ”
m " m aNV AT 1dV (13493s IdV ‘A3M
“ " " avor— o &Y ‘QYOMSSVd ‘FNVN ¥3SN) NIDOT
N aNION3 NOILY¥3034
SI0IAY3S 807 | NOWLYNLSIHONO ONV LNIJWIDYNYIN AVMALYO 1dV SYINNSNOD IdY
07 oSt — ALLIN3GI 0t —1 0¥ -

US 11,936,518 B2

Sheet 13 of 24

Mar. 19, 2024

U.S. Patent

_ _ _ _ Wiy
m 6 'Old m m T Tt
" i " (NOSP “TX) ™ AQOg ONY S¥30VIH ISNOdSTY
! " | NOILVINMOSNVYL
m m m v1va
m FoN¥IS AN llrllllllllxw:.\.|v+
| - JOIN3S GNOO WOM4 ISNOSR o | Phib _J " ERIINER

Wiy ‘ , | WHO4LY1d JONVHOX3

b~ 3DIES A0 FOIATES ANOTD BHHOMNI | ! anO3 WO 4 ISNOIST

oo el !

OLPH NoILYAITYA ¥3LINVAVd 1S3N0IY m
|- 321A43S ANOTO WOY: 3SNOdS3Y 4 B

4 Em.\ 3OIAY3S NOLLYAITYA ¥3LIWWAYd JOIAYSS WHO4LYTd | m_Ev\ H
: 1S3NDIY DINYIS ANOTO IHOANI | FONVHOX3 ANOTD HOANI | —
" ! " 30IAN3S
" " " ano1o IXOANI
! m m ww— &
| " " >
! ! ! NOLLYQITVA
m m m N3XOL 0T HLOVO
! ! m i~ «
m m m (Nosr) >
" " ! NOILYINHOLSNVAL (SYALINVAYd NIMOL 0Z HLNYO)
m m m viva —y—L | INIOdON3 STOIRES ANOTO HOANI
! " " aviy € — L
: ‘ ' : vviv RN
m " m arsy iaiiaiuiey Aottt o
" " 1 h R, v m.vm.v N3MOL 02 HLNVO
| | : |
! ! 0 over—" i
" m " NOLLYQITVA
| m m oﬁ%wwm n« (13493S IdV ‘A3N
| m | 7 IdV ‘G4OMSSVd ‘FWVN ¥3SN) NIDO1
m " m asr— e -

N INIONT NOLLYY3a34 vrsy
SI0INY3S 807V | ouvuLsaHoNo ANV INJWIDVNVIN AVMILYD IdV SYIWNSNOD IdY
207 —1 pSy — ALLN3al ¢0v — 207 —

US 11,936,518 B2

Sheet 14 of 24

Mar. 19, 2024

U.S. Patent

_ _ _ _ 9Ly N
m oL "©I4 “ m ==k m - == ==
“ n ; (NOSF “TH) M AQOS ONY SY3AY3H 3SNOdSTY
m “ ! NOLLYINYOASNY¥L
! m m viva ||
| J0A¥IS ANIND L _ ||,“.|||||||&m.~.w||v;
1o HNQMID TYNLYIA WOY4 ISNOIST o ro S\ “ 30IAY3S

19.b o i WY04Lv1d JONYHOX3

H9 Ly ~+ 3OINYAS AYIND LINGHID WNLHIA IHOANIL i ONOTDWO¥SSSNOASH

) ol Nollvarva — !

09.p~ ¥ILIWVAY LSANDIY LINOYID :
e TYNLNIA WOY4 ISNOJSTY “), N

Josp” BOINUZS NOLVGTTVA S3L5WVavd L/ FOIAYIS WHO4LYId | F9LY a
! 1S3ND3Y LINJAUID TVNLYIA IMOANT ! JONVHIX3 dNO1J 3MOANI ! g
| " ! LINONID
| m m TVNLAIA IHOANI
| m m aw—’ 1
“ " ! NOILYQITVA
| m m N3YO0L 0Z HLNVO
m ! m sar-"
] m ; Nosr X [
“ i : NOILVINYOASNVAL (S¥3L3NVAVd ‘NINOL 0T HLNVO)
| i m viva —— AINIOJAN3 LINOYIO TYNLYIA IXOANI
“ “ “ g9y € ~ L]
| | “ “ voLp T
" | “ "
m m ﬁJ o hQWmW. o V'F mvm.vn\lzmxo._. 07 HINYO
m m € \g
“ m : ovsy— i
" | “ NOILYQITVA %
“ m i 134038 1V “ ‘
“ ; “ aNV AI 1dY (L3453S 1dV ‘A3
m ! ; vy L1 1dv ‘04OMSSYd ‘AWVN ¥3SN) NIDOT
1] ! €
" _ “ " —J L]

~ NION3 NOILY¥3a34 vrsy
SERIINEN 80V |\ ovaLSIHONO ANV LNIWIOVNYIN AVM3LYS IdV SYINNSNOI IdY
10 —1 0S¥ — ALILN3QI €0V —1 40

US 11,936,518 B2

Sheet 15 of 24

Mar. 19, 2024

U.S. Patent

L1 "Old (NOSF W) (—> | AGOS NV SUIQV3H ISNOdSTY >
| m | NOILVINYOISNVYL
! n ! viva
g—————————— = > _ S8y ™
b PR SR .
oowv(q | yosy ! ERINES
oy _ > “ WNO4LVd JONVHOXT
008p- | GNOTD WOYA ISNOdSY
NOSY L o e e e e e e > ;
Wosy-+/ m
708% -1 - m
7 > “
osy 3 "
rogy - § !
frmy o o o o et e o e e S "
logt :
Hogp d m
o0sr- o oird | 20—~
“_87“ = NOILVAITVA R
“ n ! N3YOL 077 HLAYO
m m ! aNV (NOSF “TIX) (SY3L3WVEVd ‘NIXOL 0T HLNYO)
" n ; NOILVIHOASNVYL AINIOJANT LINDYID TYNLYIA IHOANI
“ i M viva \ €
m ! m gosy" vosy—"
: ! " arsy e e e e m >
! ! D:n:h:unnnlvk Jrsp— NENOL 0T HLVO
m " : opsy—" -
| m “ NOILYQITYA
] " m 134938 IdV “
" “ “ ANV A3 IdY {34038 Idv ‘A3
" “ ! 7L, 1dV ‘GOMSSYd ‘JWYN ¥3SN) NIDOT
! ! | arsy < »,
_ _ NOILVE3aT _ vvar
N
Sop 3INION3 SHAWNSNOD IdY
CERINES 5 | wouvuisHouo fos - anNvy ﬁ%ww_‘z% cop | AVMELVO ldv 2o0v

U.S. Patent

Mar. 19, 2024

Sheet 16 of 24 US 11,936,518 B2

PROCESSOR(S)
502

INPUT DEVICE(S)
504

USER INTERFACE DEVICE(S)
510

COMPUTING DEVICE
500

g

/’-
COMM.
CHANNEL(S)
514

COMMUNICATION UNIT(S)
506

OUTPUT DEVICE(S)
512

y

APPLICATION(S)

522

STORAGE DEVICE(S)

INTERCONNECTION
PLATFORM APPLICATIO
524

.....................
- ~e

» -

-

- »
0 o o o 9

554

....................
-
~

N(S)

0

508

OPERATING SYSTEM
516

FIG. 12

US 11,936,518 B2

Sheet 17 of 24

Mar. 19, 2024

U.S. Patent

Vel 571 0eL €L 'old
SWILSAS SINTLSAS SINTLSAS
ALNVYd QYIHL ¥3HLO ISIdYILNT
oLzl mEL viz.
727 WHOMIANVYYA IDINYIS IV
— 0¢Z — 9¢z
Z3] 8¢l
NOILDO3INNOD ANIONIT
SNOILVOIILON | ONIHOLINOW | ™~ 500 I 1S3y 50d IdV
802~ H 9
ZLL— HIADVYNVIN SSID0Hd
HOLVHLSIHONO
oLL— INIONT A¥INODSIA IDINNIS /8 , _
INIONT voL
,,,,,, | NOILVYILSIHONO
8Tz orZ 51T
AVMILYD v.Ld0d
v a3M SYYS AXOud gaIm
— STZ (%A
. o V.LH0d Tv.L¥0d
00L 139V 3LIHM JONVHOX3
anoid

US 11,936,518 B2

Sheet 18 of 24

Mar. 19, 2024

U.S. Patent

7c8 —rr—— rre—m — e —— M1
3028 qocs 50¢¢ g0z8 v0z8
SYITIOHULNOD NAS Il Jozs
' waLlsAs N3LSAS W3LSAS WILSAS W3ALSAS WALSAS
_ ' yaauo LINOW LD LINOW LADW LINOW
T | $8300V 2 Al ly0d JONIAIONI o144Vl LN3LNOD
__0BSWaLsAs-@NS _ .
“ 8L
jreemememsmemmmemmmememmmememmmmm__ =1
“ ONIMOLINOW SNOILVDI4ILON ONIDDO0T “ SIOIANISONIIN “
" ONLLIANY NOILVHLSININGY MHOMIANVYA HONNT “ [_SoNuLLas 3o1ANas | | SO0 | “
1 IDYNONYT | _ I
| ! Tvizadso |
| “ WHOMLIN 8 s13ssv | | Od.LiN |
I
I (| (suinowiovnryin | | ov1 |
_ AMIN0DSIA || o 1o || ¥ILYAAN || oqnagmos || NOISINONdaa 1| ‘siuod ‘snoiLyo0T _
| NOILY D01 39vsn SNLVYLS N3qYO / NOISINO¥d 1] ‘dSN ‘dS9) HOouvas _ 1¥0d _ i
dso ¥y3qyo IVANYIN | ey !
I i ONILIMOIL ® I
| i|_aoinuzs waworsno | | LinodIo tvniuia |
| 218 SEOr SNONOYHONASY tTTT T T T y
_ !! -t
| |
I | NOILYANIWNoo3y SOILSILYLS NOILVHNOIANOD |
_ | 2 SOILATYNY 2 oNigoLINow || StFHOLL B 1¥0ddNS dso Ivi3AdSN|
| '_ I
| 90— LINo¥Io LIN2¥ID YT !
_ " HO¥v3s YNLYIA 3137130 YALMIA MIIA || LNOW ¥3a¥O0 [vidadso (| joua || 140d 3OVNYIA "
| n HOLVHLSIHOHO “
| o~ —— o —— — — — ————— ——— — — " ——— — —— ——— — ——— —"— — ——— o o— — " —— o — — ——" o— o—
voN.sU AVLHEOd AXONHd g3M
Idv
g18 _ _ azi yasMmoudg vzl yasmous
nin ain ain
\ SHEETORENE D]) 3siudyaING p dsd dsN Ninav
008 ors cve

U.S. Patent Mar. 19, 2024 Sheet 19 of 24 US 11,936,518 B2

ORCHESTRATION ENGINE
RECEIVES CLIENT REQUEST FOR
CLOUD EXCHANGE SERVICES VIA

CLOUD EXCHANGE PORTAL K1500
OR API

'

SEND CLIENT REQUEST FOR 1502
CLOUD EXCHANGE SERVICES TO [~
ORCHESTRATOR

Y

SELECT ASSOCIATED WORKFLOW r1504
CONTAINING SET OF TASKS TO
FULFILL THE REQUEST THROUGH
MICROSERVICE CALLS

!

1506
MICROSERVICES EXECUTE a

'

MICROSERVICES RETURN f1508
RESPONSE TO ORCHESTRATOR

'

ORCHESTRATOR CONSOLIDATES
MICROSERVICE RESPONSES TO f1510
FULFILL CLIENT REQUEST

l

ORCHESTRATION ENGINE [1512
RESPOND TO CLIENT REQUEST
FOR CLOUD EXCHANGE SERVICES

FIG. 15

US 11,936,518 B2

Sheet 20 of 24

Mar. 19, 2024

U.S. Patent

P4 €4M

cdm L4dM

<<< SNLVLS 901 HO4 38140849NnsS 0 —‘ w_u_
P~ AaHSINIA gOr >>>

<<< gOf M3AN HSNd
P m—

GETS L
OIS 90.
FHNLONYLS LNVLIS NO smo1d| dOLVHLSIHOHWO LINOHID TYNLYIN
viva MHOM QVOT >>> zz91—’

P\

clol
¥3a104
SMOTIMUOM

AN3IND WO¥A
S80I MOld >>>

I

o919l
HUINNNY

89191
HIANNNY

Vol9l
AINNNY
ORE)2-[0)

asiol
HINNMY

4 <<< (3HSINI4 sgor

0297 sjiejap pod
NETRER OA @jeald pue 199 1| ysel
sjie}jop oJloll jo H se
3g140s4ans I'e3ap oJjdwi 329 g Msel
-HSIan

vo¢9l
dOINN3S
OuDIN

D0¢91 g0c9l

docol
JOINN3S
O¥DIN

JOINN3S JOINYES
O¥OIN OYOIN

US 11,936,518 B2

Sheet 21 of 24

Mar. 19, 2024

U.S. Patent

F4M cdM

¢d4M LdM

<<< SM1LVLS 80r J0d 381)iosans

Ll 'Old

Q=ZHSINId 80r >>>

<<< g0 MaN HSNd
P —

oist
FHOLS

FUNLONYLS
vivda

T

ciol
¥3a704
SMOTANEOM

J

3N3ND WONA

LYViS NO SMOd
MHOM AvOT >>>

907
HOLVHLSIHOHO A._._oxtqm EEINeRl NET
A4t _‘k

SHOrM MOid >>>

9191
H3INNNY

asisi
YIANNNY

g9191
HANNNY

V9l9l
AANNNY
O1d4M40

e << (QFHSINIA SEOT
029l s|leysp 19sn
sjiejep .
H3INHIS oifed Jasn }o5) 17 yse 199 “ 1Sl
Igarosans I 199 1z Msel
-HSIgn

aos9l
JOINAGES
O¥OIN

V099l
d0INd3S
O¥OJIN

20591 EOEELR

JOINY3S
O¥OIN

A0INIAS
OXDIN

US 11,936,518 B2

Sheet 22 of 24

Mar. 19, 2024

U.S. Patent

0281
Y3AIAOHd JOIAYIS

ano1o

0281

H3IAOYd F0IANES

anoo

vozsi
HAAIAOYd ADIAYES

anoo

V8l ‘Old

o808l
H3IWOLSND

g8081
H3IWOLSND

V808l
H3IWOLSND

_ _ |
| 1MOdsNvyL | AD0T0dOL INOdS-ONV-8NH _ LYOdSNYYL |
| Eaviidl | 4O HSIW TIN4 ¥3IWOLSND _ 13avi/ dl _
— _ <t _ |
acisi _ _ .
34 IN¥O4L1V1d _
_ NOILDANNODNILNI _ mwr
_ _ Mu m _
| azesh — s o8l |
4K T b |
3d 07Z81 _ : f :
] | i hosl b gorer
m oIaY4 STdI / dI : 2d
azrel w ; w
ad : |
: VoSt vZosl 9181 ~
_ azzsl d 3d |
| ¥] |
| 4 Pl vas —
| e RN vorer
zzer) 3d
_ _ Y _
VZisr | T8 | ~
3d | 1NIOd IONVHOX3 aNO12 | |
| 3ivozuoov | sonav4 _ $S300V |
r_ anoo _ /1 SdIN 7 dl OY L3N _ anono _¥
Y
0087
¥3IN3D VIVa

US 11,936,518 B2

Sheet 23 of 24

Mar. 19, 2024

U.S. Patent

g8l "Old

08081
d3IN0LSNd

H8081
HINOLSND

V8081
H3N01ISNO

| | _ _
ST LHOdSNYYL AD0T0dOL INOdS-ANY-ENH LHOdSNVYL
MIAONA FOIANIS _ TEaviidl | HO HSIW T1N4 ¥IWOLSND | TEavi/di _
ano1o | — | _
TR _ sob _ !
2 WN04LY1d —
| NOILOINNODYILNI | r%:
_ | U\ _ 9
_ gruesenesnecnanees //\W!.!.n-u!-!-!.n!. _
| deest S 9181 _
_ avost ,foaﬁ
ad _
a4X]} T 1] _
T ad 44 T \ Z _ L
v dogrdii :
¥3QIN0¥d 30IAYTS | N v ﬁ\w | g0i8)
anom — |3 g8 E 2
[4 8088l P _
_
/0e8L _
| ol¥av4 S1dW / di |
. ST
ze8) |) | 1
vocsy Y
H3AIAO¥d FOINY3S | T8 _ _
ano1o _ INIOd IONVHOX3 an019 _ _
3lvoFyooy | SoMavd _ SS300V _
C anoo _ 1SN/ di O¥LIW _ anoo _)
Y
0087
Y3INID VLVa

US 11,936,518 B2

Sheet 24 of 24

Mar. 19, 2024

U.S. Patent

6l Old

LHOdSNVYL

13aviidi

g0z8l

I

|
- > |-

|

|

_

|

|

|

i

A90710d0L IN0dS-ANV-8NH
40 HSAW T1N4 ¥3IWO01SND

gor
WHO41V1d
NOILOINNOOYILNI

JL

ammmsenmmmcnnanasli._ Femennassssananans

i
_
'_‘
_
_
|
|
|
|
|

LHOdSNVYL
13aviidi

H8081

¥IAINOYd FOIAYIS
anoio [~

Yvogi
d

\momw_.

veosi
3d

[

\.<omw b

HINO0LSND

H9181 *

Y08l
H3AIAOHd FOIAN3S
ano1o

Vea 1/

31VOIOOV
f anoo

o8l
OrIav4 STdi / dI

ﬁouuo;-no-utoononoooansounonnuou-oanloa

-.----.

X
F08T

1NIOd FONVHIX3 aNOTO

SORgvd
/STdN [dl O¥13N

$$400V
ano1 &

Y
q0st

H3IN3O Vivd

US 11,936,518 B2

1
INTERCONNECTION PLATFORM FOR
REAL-TIME CONFIGURATION AND
MANAGEMENT OF A CLOUD-BASED
SERVICES EXCHANGE

This application is a continuation of U.S. application Ser.
No. 17/646,375 filed Dec. 29, 2021, which is a continuation
of U.S. application Ser. No. 17/007,929 filed Aug. 31, 2020,
which is a continuation of U.S. application Ser. No. 16/172,
501 filed Oct. 26, 2018, which is a continuation of U.S.
application Ser. No. 15/887,165 filed Feb. 2, 2018, which is
a continuation of U.S. application Ser. No. 15/395,101 filed
Dec. 30, 2016, which is a continuation of U.S. application
Ser. No. 14/927,451 filed on Oct. 29, 2015, which claims the
benefit of U.S. Provisional Appl. No. 62/072,976, filed Oct.
30, 2014, and of U.S. Provisional Appl. No. 62/233,933,
filed Sep. 28, 2015; the entire contents of each of which are
incorporated by reference herein.

TECHNICAL FIELD

The invention relates to computer networks and, more
specifically, to a platform facilitating interconnectivity
among cloud service customers and cloud service providers.

BACKGROUND

Cloud computing refers to the use of dynamically scalable
computing resources accessible via a network, such as the
Internet. The computing resources, often referred to as a
“cloud,” provide one or more services to users. These
services may be categorized according to service types,
which may include for examples, applications/software,
platforms, infrastructure, virtualization, and servers and data
storage. The names of service types are often prepended to
the phrase “as-a-Service” such that the delivery of applica-
tions/software and infrastructure, as examples, may be
referred to as Software-as-a-Service (SaaS) and Infrastruc-
ture-as-a-Service (laaS), respectively.

The term “cloud-based services” or, more simply, “cloud
services” refers not only to services provided by a cloud, but
also to a form of service provisioning in which cloud
customers contract with cloud service providers for the
online delivery of services provided by the cloud. Cloud
service providers manage a public, private, or hybrid cloud
to facilitate the online delivery of cloud services to one or
more cloud customers.

SUMMARY

In general, this disclosure describes an interconnection
platform for dynamically configuring and managing a cloud-
based services exchange, or “cloud exchange.” to facilitate
virtual connections for cloud services delivery from multiple
cloud service providers to one or more cloud customers. The
cloud exchange may enable cloud customers to bypass the
public Internet to directly connect to cloud services provid-
ers so as to improve performance, reduce costs, increase the
security and privacy of the connections, and leverage cloud
computing for additional applications. In this way, enter-
prises, network carriers, and SaaS customers, for instance,
can integrate cloud services with their internal applications
as if such services are part of or otherwise directly coupled
to their own data center network.

In some examples, an interconnection platform for a
cloud exchange exposes a collection of software interfaces,
also referred to herein and described according to applica-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion programming interfaces (APIs), that allow access to
capabilities and assets of the interconnection platform in a
programmable fashion. As such, the software interfaces
provide an extensible framework that allows software devel-
opers associated with customers and partners of the
exchange to build software applications that access the
interconnection platform that automatically manage inter-
connection with multiple cloud service providers participat-
ing in the interconnection platform. In other words, devel-
opers from network services providers, cloud service
providers, managed service providers and other enterprises
may use the software interfaces exposed by the intercon-
nection platform and defined by the APIs to build custom
applications and frameworks for seamless interaction with
the interconnection platform to facilitate the delivery of
cloud services from cloud service providers to cloud service
customers.

These software interfaces defined by the APIs enable
machine-to-machine communication for near real-time
setup and modifications of interconnections, and may also
eliminate or reduce the need for human interaction for the
entire interconnection setup and management process. In
this way, the software interfaces provide an automated and
seamless way to establish, un-install, and manage intercon-
nection with multiple cloud providers participating in an
interconnection platform.

In one example, the interconnection platform includes an
internal orchestration engine that organizes, directs and
integrates underlying software and network sub-systems for
managing various aspects of interconnection for the cloud
exchange. The orchestration engine may, for example, pro-
vide a rule-driven workflow engine that operates between
the APIs and the underlying interconnect platform of the
exchange. In this way, the orchestration engine can be used
by customer-proprietary applications and the APIs for direct
participation within the interconnection platform of the
cloud exchange.

As described herein, the orchestration engine synthesizes
the information and actions to formulate intelligent next
steps and responses to dynamic requests made by the
customer applications. As such, the orchestration engine
abstracts the complexity of the underlying software and
network sub-systems of the cloud exchange by providing a
uniform, simplified, and secured means to access the inter-
connection platform.

In some examples, a cloud-based services exchange com-
prises a network data center that includes respective ports by
which a plurality of networks connect to the network data
center, each of the networks having a different network
address space and associated with a different one of a
plurality of customers or cloud service providers; a plurality
of interconnection assets within the network data center and
configured to connect, through a switching fabric of the
network data center, each of the networks associated with
the plurality of customers of the cloud-based services
exchange to one or more of the networks associated with the
cloud service providers, the plurality of interconnection
assets including a respective set of one or more virtual
circuits for each of the networks associated with the plurality
of customers and providing network connectivity within the
network data center between the networks associated with
the plurality of customers and cloud services executing from
within the networks associated with the plurality of cloud
service providers; and an interconnection platform execut-
ing on one or more management devices within the network
data center and presenting a software interface reachable by
the networks associated with the plurality of customers and

US 11,936,518 B2

3

configured to, in response to receiving a request issued by an
application executing within any of the networks associated
with the customer, access the plurality of interconnection
assets to satisfy the request.

In some examples, cloud-based services exchange com-
prises a plurality of interconnection assets configured to
connect a customer of the cloud-based services exchange to
one or more cloud service providers, the plurality of inter-
connection assets including a virtual circuit by which the
customer accesses a cloud service from the one or more
cloud service providers; and an orchestration engine con-
figured to modify the plurality of interconnection assets.

In some examples, a method comprises executing, by a
cloud-based services exchange on one or more management
devices within a network data center, an interconnection
platform to present a software interface reachable by net-
works associated with a plurality of customers; and in
response to receiving a request issued by an application
executing within any of the networks associated with the
customer, access a plurality of interconnection assets of the
network data center to satisfy the request, wherein the
network data center includes respective ports by which a
plurality of networks connect to the network data center,
each of the networks having a different network address
space and associated with a different one of a plurality of
customers or cloud service providers, and wherein a plural-
ity of interconnection assets within the network data center
connect, through a switching fabric of the network data
center, each of the networks associated with the plurality of
customers of the cloud-based services exchange to one or
more of the networks associated with the cloud service
providers, the plurality of interconnection assets including a
respective set of one or more virtual circuits for each of the
networks associated with the plurality of customers and
providing network connectivity within the network data
center between the networks associated with the plurality of
customers and cloud services executing from within the
networks associated with the plurality of cloud service
providers.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages of the techniques will be
apparent from the description and drawings, and from the
claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is a block diagram that illustrates a high-level
view of a data center that provides an operating environment
for a cloud-based services exchange.

FIG. 1B is a block diagram that illustrates cloud-based
services exchange, in accordance with some example imple-
mentations described here.

FIG. 1C illustrates another example implementation of a
cloud-based services exchange.

FIG. 1D is a block diagram illustrating an example in
which a plurality of cloud exchanges points of a cloud
exchange managed by an interconnection platform, accord-
ingly to techniques of this disclosure, provide cross-connect
availability between geographically distributed carriers.

FIG. 2 is a block diagram that illustrates details of an
example architecture for a cloud exchange according to
techniques described herein.

FIGS. 3A-3B depict a flow diagram for interconnection
software interfaces according to techniques described
herein.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 is a block diagram showing an alternative repre-
sentation of an interconnection platform 103 for a cloud
exchange according to techniques described in this disclo-
sure.

FIGS. 5-11 are flow diagrams each illustrating a call flow
and operations performed by example components of an
interconnection platform for a cloud exchange, as described
in this disclosure.

FIG. 12 is a block diagram illustrating further details of
one example of a computing device that operates in accor-
dance with one or more techniques of the present disclosure.

FIG. 13 is a block diagram illustrating an example system
showing a logical architecture of an orchestration engine, in
further detail, according to techniques described herein.

FIG. 14 is a block diagram illustrating an example system
showing reference architecture of an orchestration engine, in
further detail, according to techniques described herein.

FIG. 15 is a flowchart illustrating an example workflow
performed by an orchestration engine in accordance with
example aspects of this disclosure.

FIG. 16 is an example logical diagram illustrating an
example orchestration engine workflow relating to creating
a virtual circuit in accordance with example aspects of this
disclosure.

FIG. 17 is an example logical diagram illustrating an
example orchestration engine workflow relating to obtaining
employee payroll information in accordance with example
aspects of this disclosure.

FIGS. 18A-18B are block diagrams illustrating example
network infrastructure and service provisioning by a pro-
grammable network platform for a cloud exchange that
aggregates the cloud services of multiple cloud service
providers for provisioning to customers of the cloud
exchange provider and aggregates access for multiple cus-
tomers to one or more cloud service providers, in accordance
with techniques described in this disclosure.

FIG. 19 is a block diagram illustrating an example of a
data center-based cloud exchange point in which routers of
the cloud exchange point are configured by an interconnec-
tion platform with virtual private network routing and for-
warding instances for routing and forwarding aggregated
service traffic from multiple cloud service provider networks
to a customer network, according to techniques described
herein.

Like reference characters denote like elements throughout
the figures and text.

DETAILED DESCRIPTION

In general, this disclosure describes an interconnection
platform for real-time configuration and management of a
cloud-based services exchange (“cloud exchange”). As
described herein, the interconnection platform provides cus-
tomers of the exchange, e.g., enterprises, network carriers,
and SaaS customers, with secure, private, virtual connec-
tions to multiple cloud service providers (CSPs) globally.
The multiple CSPs participate in the cloud exchange by
virtue of their having at least one accessible port in the cloud
exchange by which a customer can connect to the one or
more cloud services offered by the CSPs, respectively.

According to various examples described herein, a cloud
exchange is described that allows private networks of any
customer to be directly cross-connected to any other cus-
tomer at a common point, thereby allowing direct exchange
of network traffic between the networks of the customers.
Customers may include network carriers (or network service

US 11,936,518 B2

5

providers), enterprises, and other users of cloud services
offered by one or more cloud service providers.

FIG. 1A is a block diagram that illustrates a high-level
view of a data center 101 that provides an operating envi-
ronment for a cloud-based services exchange 100. Cloud-
based services exchange 100 (“cloud exchange 100”) allows
a corresponding one of customer networks 104D, 104E and
carrier networks 104A-104C (collectively, “private net-
works 104”) of any carriers 106 A-106C (collectively, “car-
riers 106”) or other cloud customers including customers
107A, 107B to be directly cross-connected, via a virtual
layer 2 (L.2) or layer 3 (L.3) connection to any other customer
network and/or to any of cloud service providers 110A-110N
(collectively, “CSPs 110”), thereby allowing direct
exchange of network traffic among the customer networks
and CSPs 110.

Carriers 106 may each represent a network service pro-
vider that is associated with a transit network by which
network subscribers of the carrier 106 may access cloud
services offered by CSPs 110 via the cloud exchange 100. In
general, customers of CSPs 110 may include network car-
riers, large enterprises, managed service providers (MSPS),
as well as Software-as-a-Service (SaaS), Platform-aaS
(PaaS), Infrastructure-aaS (IaaS), Virtualization-aaS (VaaS),
and data Storage-aaS (dSaaS) customers for such cloud-
based services as are offered by the CSPs 110 via the cloud
exchange 100.

In this way, cloud exchange 100 streamlines and simpli-
fies the process of partnering CSPs 110 and customers (via
carriers 106 or directly) in a transparent and neutral manner.
One example application of cloud exchange 100 is a co-
location and interconnecting data center in which CSPs 110
and carriers 106 and/or customers 107 may already have
network presence, such as by having one or more accessible
ports available for interconnection within the data center.
This allows the participating carriers, customers, and CSPs
to have a wide range of interconnectivity options in the same
facility. Cloud exchange 100 of data center 101 includes
network infrastructure 122 that provides a L2/1.3 switching
fabric by which CSPs 110 and customers/carriers intercon-
nect. This enables a carrier/customer to have options to
create many-to-many interconnections with only a one-time
hook up to the switch fabric and underlying interconnection
platform 103 of cloud exchange 100. In other words, instead
of having to establish separate connections across transit
networks to access different cloud service providers or
different cloud services of one or more cloud service pro-
viders, cloud exchange 100 allows customers to interconnect
to multiple CSPs and cloud services using network infra-
structure 122 within data center 101.

By being connected to and utilizing cloud exchange 100,
customers can purchase services and reach out to many end
users in many different geographical areas without incurring
the same expenses typically associated with installing and
maintaining multiple virtual connections with multiple CSPs
110. By connecting to cloud exchange 100, a carrier 106
may be able to generate additional revenue by offering to sell
its network services to the other carriers.

In some example implementations described herein, cloud
exchange 100 includes an interconnection platform 103 that
exposes a collection of software interfaces, also referred to
herein as application programming interfaces (APIs) 114 in
that the APIs 114 define the methods, fields, and/or other
software primitives by which applications may invoke the
interconnection platform 103. The software interfaces allow
carriers 106 and customers 107 programmable access to
capabilities and assets of the cloud exchange 100.

10

15

20

25

30

35

40

45

50

55

60

65

6

On the buyer side, the software interfaces presented by the
underlying interconnect platform provide an extensible
framework that allows software developers associated with
the customers of cloud exchange 100 to create software
applications that allow and leverage access to the intercon-
nect platform by which the applications may request that the
cloud exchange establish connectivity to cloud services
offered by any of the CSPs 110. For example, these buyer-
side software interfaces (or “buyer APIs” of APIs 114) may
allow customer applications for NSPs and enterprise cus-
tomers, e.g., to obtain authorization to access the cloud
exchange, obtain information regarding available cloud ser-
vices, obtain active ports and metro area details for the
customer, create virtual circuits of varying bandwidth to
access cloud services (including dynamic selection of band-
width based on a purchased cloud service to create on-
demand and need based virtual circuits to cloud service
providers), delete virtual circuits, obtain active virtual circuit
information, obtain details surrounding CSPs partnered with
the cloud exchange provider, obtain customized analytics
data, and validate partner access to interconnection assets.

On the cloud provider (seller) side, the software interfaces
may allow software developers associated with cloud pro-
viders to manage their cloud services and to enable custom-
ers to connect to their cloud services. For example, these
seller-side software interfaces (or “seller APIs” of APIs 114)
may allow cloud provider applications to obtain authoriza-
tion to access the cloud exchange, obtain information
regarding available cloud services, obtain active ports and
metro area details for the provider, obtain active port details
in a given data center for the provider, approve or reject
virtual circuits of varying bandwidth to access cloud ser-
vices created by customers, obtain virtual circuits pending
addition and confirm addition of virtual circuits, obtain
virtual circuits pending deletion and confirm deletion of
virtual circuits, obtain customized analytics data, and vali-
date partner access to interconnection assets.

As further described herein, the APIs 114 facilitate
machine-to-machine communication to enable dynamic pro-
visioning of virtual circuits in the cloud exchange for
interconnecting customer and provider networks. In this
way, the interconnection platform 103 enables the automa-
tion of aspects of cloud services provisioning. For example,
the software interfaces may provide an automated and
seamless way for customers to establish, de-install and
manage interconnection with multiple, different cloud pro-
viders participating in the cloud exchange.

In some examples, cloud exchange 100 includes an API
gateway 112 having one or more processors that executes
one or more applications that expose software interfaces
defined according to APIs 114. The applications may invoke
services that correspond to endpoints of the APIs 114, and
the services may themselves invoke the cloud exchange
platform service of orchestration engine 118. API gateway
112 may execute on a management device such as one or
virtual machines and/or real servers of data center 101.
Although shown as a single element in FIG. 1A, API
gateway 112 may comprise a cluster of one or more physical
and/or virtual computing machines executing on one or
more physical processors.

In some examples, cloud exchange includes an orches-
tration engine 118 that organizes, directs and integrates
underlying software sub-systems 120 for managing various
aspects of interconnection within the network infrastructure
122 as well as cloud services management. The orchestra-
tion engine 118 may, for example, provide a rule-drive
workflow engine that operates between the APIs 114 and the

US 11,936,518 B2

7

underlying interconnect platform of cloud exchange 100 that
includes sub-systems 120 and network infrastructure 122. In
this way, the orchestration engine 118 can be used by
customer-proprietary applications and the APIs 114 for
direct participation with the interconnection platform 103 of
the cloud exchange 100. In other words, the orchestration
engine 118 offers a “cloud exchange platform service”
having various application engines or workflows to handle
the API gateway 112 service requests.

Sub-systems 120 and orchestration engine 118 may each
be centralized or distributed applications and may execute
on a management device such as one or virtual machines
and/or real servers of data center 101.

Network infrastructure 122 represents the cloud exchange
switching fabric and includes multiple ports that may be
dynamically interconnected with virtual circuits using by
invoking APIs 114 according to techniques described herein.
Each of the ports is associated with one of carriers 106,
customers 107, and CSPs 110. A virtual circuit may refer to,
e.g., an Ethernet connection such as a Layer 2 VPN or virtual
private LAN (e.g., E-LINE, E-LAN, E-TREE, or E-Access),
an Internet exchange-based interconnection in which respec-
tive routers of interconnected customers directly peer and
exchange layer 3 routes for service traffic exchanged via the
exchange 100, and a cloud exchange in which customer
routers peer with exchange 100 (or “provider”) routers
rather than directly with other customers. Example details of
a cloud exchange are provided below with respect to FIGS.
18A, 18B, and 19.

For interconnections at layer-3 or above, customers 107
and carriers 106 may receive services directly via a layer 3
peering and physical connection to exchange 100 or indi-
rectly via one of carriers 106. Carriers 106 provide “transit”
by maintaining a physical presence within one or more of
exchanges and aggregating layer 3 access from one or
customers 107. Carriers 106 may peer, at layer 3, directly
with one or more exchanges and in so doing offer indirect
layer 3 connectivity and peering to one or more customers
107 by which customers 107 may obtain services from the
exchange 100.

FIG. 1B is a block diagram that illustrates cloud-based
services exchange 100, in accordance with some example
implementations described here. In this example architec-
ture, cloud exchange 100 includes multiple cloud exchange
points 128A-128C (also described as “cloud exchange
points” and collectively referred to as “cloud exchange
points 128”), which may represent geographically distrib-
uted data centers within a metropolitan area and in which
cloud exchange 100 may directly or indirectly (via NSPs
106) interconnect cloud services providers 110 with cloud
customers 108 accessing cloud services.

Applications 130 developed and deployed by CSPs 110,
NSPs 106, and customers 108 invoke APIs 114 of intercon-
nection platform 103 to, for example, automatically control
provisioning and manage aspects of cloud exchange 100 for
aspects of interconnection with one or more cloud providers/
customers, including: (1) provisioning of interconnects, (2)
identification and authorization of carriers, (3) management
and fulfillment of orders, (4) delivery of network services,
(5) managing inventory and capacity, (6) managing and
reporting/alerting incidents, and (7) content management.

In this example, APIs 114 includes endpoints 116 A-116K
(collectively, “endpoints 116”) that each represents a
resource exposed by interconnection platform 103.
Examples of endpoints are described below in further detail
with respect to FIG. 3A. Applications 130 may interact with
API gateway 112 according to client/server model. Appli-

30

35

40

45

55

8

cations 130 may send a request directed to any of endpoints
116 of APIs 114. API gateway 112, in response to requests,
invokes the cloud exchange platform service of orchestra-
tion engine 118, which may orchestrate a workflow of
service tasks for the underlying sub-systems 120 to satisty
the request. In response to the request, e.g., upon completion
of the workflow, API gateway 112 may send a response to
the requesting application 130 from the endpoint 116
invoked.

In some examples, APIs 114 may conform to a Repre-
sentational State Transfer model, i.e., be a RESTful inter-
face, with endpoints 116 representing different methods of
the RESTHul interface. Applications 130 may invoke any of
endpoints 116 using a communication protocol for transter-
ring application data (e.g. HTTP) that specifies the method,
a resource Uniform Resource Identifier (URI), and option-
ally parameters for the method. API gateway 112 translates
the resource URI and the optional parameters to cloud
exchange platform-related constructs and invokes the cloud
exchange platform of orchestration engine 118 according to
one of a create, read, update, and delete (CRUD) or confir-
mation action corresponding to the endpoint 116 specified
by the application data. In HTTP parlance, the create action
corresponds to the POST method, read to the GET method,
and confirmation to the PATCH method, for example.

Sub-systems 120 may apply the service tasks orchestrated
by orchestration engine 118, which may include modifying
any of cloud exchange points 128 to perform the on-demand
setup of virtual circuits between CSPs 110 and customers
108, for example, or otherwise manage cloud exchange
points 128 interconnection assets such as ports, metros, data
centers, virtual circuits and virtual circuit bandwidth, pro-
files, and configuration.

Cloud exchange 100 of FIG. 1B illustrates a metro-based
cloud exchange that provides multiple cloud exchange
points according to techniques described herein. Each of
cloud-based services exchange points 128 A-128C of cloud-
based services exchange 100 may represent a different data
center geographically located within the same metropolitan
area (“metro-based,” e.g., in New York City, New York;
Silicon Valley, California; Seattle-Tacoma, Washington;
Minneapolis-St. Paul, Minnesota; London, UK; etc.) to
provide resilient and independent cloud-based services
exchange by which cloud-based services customers (“cloud
customers”) and cloud-based service providers (“cloud pro-
viders™) connect to receive and provide, respectively, cloud
services. In various examples, cloud exchange 100 may
include more or fewer cloud exchange points 128. In some
instances, a cloud exchange 100 includes just one cloud
exchange point 128. As used herein, reference to a “cloud
exchange” or “cloud-based services exchange” may refer to
a cloud exchange point. A cloud exchange provider may
deploy instances of cloud exchanges 100 in multiple differ-
ent metropolitan areas, each instance of cloud exchange 100
having one or more cloud exchange points 128.

Each of cloud exchange points 128 includes network
infrastructure and an operating environment by which cloud
customers 108A-108D (collectively, “cloud customers
108) receive cloud services from multiple cloud service
providers 110A-110N (collectively, “cloud service providers
110”). Cloud customers 108 may receive cloud services
directly via a layer 3 peering and physical connection to one
of cloud exchange points 128 or indirectly via one of
network service providers 106 A-106B (collectively, “NSPs
106,” or alternatively, “carriers 106”). NSPs 106 provide
“cloud transit” by maintaining a physical presence within
one or more of cloud exchange points 128 and aggregating

US 11,936,518 B2

9

layer 3 access from one or customers 108. NSPs 106 may
peer, at layer 3, directly with one or more cloud exchange
points 128 and in so doing offer indirect layer 3 connectivity
and peering to one or more customers 108 by which cus-
tomers 108 may obtain cloud services from the cloud
exchange 100. Each of cloud exchange points 128, in the
example of FIG. 1B, may be assigned a different autono-
mous system number (ASN). For example, cloud exchange
point 128A may be assigned ASN 1, cloud exchange point
128B may be assigned ASN 2, and so forth. Fach cloud
exchange point 128 is thus a next hop in a path vector
routing protocol (e.g., BGP) path from cloud service pro-
viders 110 to customers 108. As a result, each cloud
exchange point 128 may, despite not being a transit network
having one or more wide area network links and concomi-
tant Internet access and transit policies, peer with multiple
different autonomous systems via external BGP (eBGP) or
other exterior gateway routing protocol in order to
exchange, aggregate, and route service traffic from one or
more cloud service providers 110 to customers. In other
words, cloud exchange points 128 may internalize the eBGP
peering relationships that cloud service providers 110 and
customers 108 would maintain on a pair-wise basis. Instead,
a customer 108 may configure a single eBGP peering
relationship with a cloud exchange point 128 and receive,
via the cloud exchange, multiple cloud services from one or
more cloud service providers 110. While described herein
primarily with respect to eBGP or other layer 3 routing
protocol peering between cloud exchange points and cus-
tomer, NSP, or cloud service provider networks, the cloud
exchange points may learn routes from these networks in
other way, such as by static configuration, or via Routing
Information Protocol (RIP), Open Shortest Path First
(OSPF), Intermediate System-to-Intermediate System (IS-
IS), or other route distribution protocol.

As examples of the above, customer 108D is illustrated as
having contracted with a cloud exchange provider for cloud
exchange 100 to directly access layer 3 cloud services via
cloud exchange points 128C, 128D. In this way, customer
108D receives redundant layer 3 connectivity to cloud
service provider 110A, for instance. Customer 108C, in
contrast, is illustrated as having contracted with the cloud
exchange provider for cloud exchange 100 to directly access
layer 3 cloud services via cloud exchange point 128C and
also to have contracted with NSP 106B to access layer 3
cloud services via a transit network of the NSP 106B.
Customer 108B is illustrated as having contracted with
multiple NSPs 106A, 106B to have redundant cloud access
to cloud exchange points 128 A, 128B via respective transit
networks of the NSPs 106A, 106B. The contracts described
above are instantiated in network infrastructure of the cloud
exchange points 128 by L3 peering configurations within
switching devices of NSPs 106 and cloud exchange points
128 and L3 connections, e.g., layer 3 virtual circuits, estab-
lished within cloud exchange points 128 to interconnect
cloud service provider 110 networks to NSPs 106 networks
and customer 108 networks, all having at least one port
offering connectivity within one or more of the cloud
exchange points 128.

For layer 3 cloud services, a virtual circuit may represent
a layer 3 path through an IP/MPLS fabric of one or more of
cloud exchange points 128, between an attachment circuit
connecting a customer network to the cloud exchange point
and an attachment circuit connecting a cloud service pro-
vider network to the cloud exchange point. Each virtual
circuit may include at least one tunnel (e.g., an LSP and/or

10

15

20

25

30

40

45

60

10

Generic Route Encapsulation (GRE) tunnel) having end-
points at the provider edge/autonomous system boundary of
the cloud exchange point.

Cloud exchange points 128 may be configured to imple-
ment multiple layer 3 virtual circuits to interconnect cus-
tomer/NSP networks and cloud service provider networks
with end-to-end IP paths. Each of cloud service providers
and customers/NSPs may be an endpoint for multiple virtual
circuits, with multiple virtual circuits traversing one or more
cloud exchange points 128 to connect the endpoints. An
example implementation of a cloud exchange point is
described in further detail below with respect to FIGS.
18A-18B and 19.

FIG. 1C illustrates another example implementation of a
cloud-based services exchange. In this example, cloud
exchange 100 provides high-speed attachment circuits 208,
213, 218 and 223 and routing and switching infrastructure
for provisioning direct, virtual circuits 150, 155, 160, 165,
170, collectively referred to as an interconnect-platform, for
cross-connecting carrier networks 205, 210, 215 and 220
over External Network-to-Network Interface (E-NNIs) 206,
211, 216, and 221.

As shown in the example of FIG. 1B, cloud exchange 100
exposes a collection of software interfaces 114, also referred
to herein as application programming interfaces (APIs), that
allow customer systems 196 programmatic access to capa-
bilities and assets of the interconnection platform 103 of
cloud exchange 100. That is, software interfaces 114 provide
an extensible framework that allows software developers
associated with the customers of cloud exchange 100 to
create software applications executable on customer systems
196 that allow and leverage access subsystems 120 of
exchange 100. Underlying subsystems 120 of exchange 100
may, for example, control provisioning and managing of all
aspects of exchange 100, including: (1) provisioning inter-
connects between customer system 196, (2) identification
and authorization of carriers, (3) management and fulfill-
ment of orders, (4) delivery of network services, (5) man-
aging inventory and capacity, (6) managing and reporting/
alerting incidence and (7) content management.

As such, carriers 106 and other customers of cloud
exchange 100, such as network services providers, cloud
services providers, managed service providers and other
enterprises may make use the software interfaces exposed by
the interconnect platform to manage their direct cross-
connects with other carriers. That is, software interfaces 114
enable machine-to-machine communication, shown as dot-
ted arrows in FIG. 1C, between network infrastructure and
provisioning/billing/accounting/AAA systems positioned
within different carrier networks 205, 210, 215 and 220 for
carriers 106 establishing and managing direct cross-con-
nects. As such, software interfaces 114 enable near real-time
setup and modifications of interconnections, e.g., virtual
circuits of FIG. 1C, and may also eliminate or reduce the
need for human interaction for the entire interconnection
set-up and management process. In this way, the software
interfaces provide an automated and seamless way for
carriers 106 to establish, de-install and manage interconnec-
tion with multiple, different customers participating in an
interconnection platform 103.

Moreover, as further shown in the example of FIG. 1B,
cloud exchange 100 includes an internal orchestration
engine 118 that organizes, directs and integrates underlying
software and network sub-systems 120 for managing various
aspects of the interconnection services provided by cloud
exchange 100. Orchestration engine 118 may, for example,
provide a rule-drive workflow engine that operates between

US 11,936,518 B2

11

APIs 114 and the underlying interconnect platform provided
by subsystems 120 of cloud exchange 100. In this way,
orchestration engine 118 can be invoked by customer-
proprietary applications executing on customer systems 196
by way of APIs 190 for direct participation within the
interconnection platform of the cloud exchange.

As described herein, orchestration engine 118 synthesizes
the information and actions from underlying sub-systems
120 of'the interconnect platform to formulate intelligent next
steps and responses to the customer applications. As such,
orchestration engine 118 abstracts the complexity of the
underlying software and network sub-systems 120 of the
cloud exchange 100 by providing a uniform, simplified and
secured means to access the interconnection platform.

FIG. 1D is a block diagram illustrating an example in
which a plurality of cloud exchanges points of a cloud
exchange 100 managed by an interconnection platform,
accordingly to techniques of this disclosure, provide cross-
connect availability between geographically distributed car-
riers. Although not shown, each of cloud exchange points
may implement the example techniques described with
respect to the cloud exchanges 100 of FIGS. 1A-1C includ-
ing cloud exchange points 128 of FIG. 1B.

FIG. 2 is a block diagram that illustrates details of an
example architecture for a cloud exchange according to
techniques described herein. As shown in this example,
example cloud exchange 100 illustrates APIs 114, internal
orchestration engine 118, and sub-systems 120 in further
detail.

Developer community 300 illustrates entities that may
develop applications that use APIs 114 to access the inter-
connection platform of the cloud exchange 100. These
entities include network service providers 300A, managed
service providers 300B, enterprises 300C, cloud service
providers 300D, third-party developers 300E, and others
300F. Applications developed by these entities utilize cloud
exchange 100 as an interconnection platform for intercon-
necting customers to cloud services offered by cloud ser-
vices providers according to the policies and profiles of the
various entities.

In this example, APIs 114 includes bundles of the various
API methods or endpoints according to function. Discovery
APIs 304 A may be usable to perform availability of location
discovery, asset discovery, and cloud service discovery.
Discoverable information may include available metropoli-
tan areas, data centers, ports, services, virtual circuits, and
other interconnection assets by which a customer may obtain
or manage cloud services. Transact APIs 304B may be
usable to dynamically provision end-to-end virtual circuits
of varying bandwidths through machine-to-machine inter-
action, validate virtual circuits requested by a customer, and
confirm deletion of virtual circuits, for example. Use APIs
304C may be usable to allow providers and customers to
dynamically obtain recommendation information as per-
formed by a recommendation engine of cloud exchange 100,
obtain customized analytics regarding competitor presence,
cloud service presence/availability, and customer presence/
availability, obtain usage statistics, and to manage content,
for example. Support APIs 304D may be usable by custom-
ers or providers to manage accounts, perform automated
billing/invoicing, validate credit, and configure profile and
configuration information for the entity, for example.

In this example, orchestration engine 118 (illustrated as
“interconnection orchestration engine 118”) organizes,
directs, and integrates underlying software and network
sub-systems 120 for managing various aspects of intercon-
nection. For example, orchestration engine 118 may handle

10

15

20

25

30

35

40

45

50

55

60

65

12

the entire quote-to-cash cycle for provisioning of intercon-
nection assets by communicating with myriad interconnec-
tion enablement sub-systems 120, such as Customer
Account and Profile Management Systems, Customer Asset
Management Systems, Inventory Management Systems,
Capacity Management Systems, Network Systems, Credit
Management Systems, Content Management Systems, and
Trouble Ticket Management System (not all shown in FIG.
2). To that end, orchestration engine 118 includes a work-
flow and rules engine 306 that responsively operates accord-
ing to configured exchange policies 308A, profiles 308B,
and configurations 308C to synthesize information and
actions from sub-systems 120 to formulate intelligent next
steps and responses to requests received via APIs 114.
Microservices component 308D componentizes many, and
in some cases all, of the interconnection services to improve
horizontal scalability, performance efficiency, and low-to-
zero down-time feature upgrades and enhancements. In this
way, orchestration engine 118 may abstract the complexity
of underlying software and sub-systems 120 by providing a
uniform, simplified and secured means to access the inter-
connection platform for accessing and managing intercon-
nection assets.

Sub-systems 120 orchestrated by orchestration engine 118
in the example of FIG. 2 include identification (ID) and
access management system 310A. In some examples, ID and
access management system 310A includes a Permission
Data Store (PDS) to house the customer, asset and permis-
sion hierarchy. ID and access management system 310A
may accomplish federation using a third party system which
generates Security Assertion Markup Language (SAML)
assertions and is also capable of providing Single Sign-On
(SSO) capability.

Orchestration engine 118 may orchestrate multiple order
management systems 310B (e.g., for different regions such
as Asia Pacific, Europe, Middle East and Africa and North
America). Orchestration engine 118 passes relevant virtual
circuit order creation information to these order manage-
ment systems 310B so that the partners can be billed.
Orchestration engine 118 may abstract the complexity of the
underlying network systems by seamlessly integrating with
the network services system 310C to interact with the
underlying network systems. Orchestration engine 118 may
leverage an asset inventory and capacity management sys-
tem 310D in conjunction with the Permission Data Store to
obtain information about customer ports inventory. Orches-
tration engine 118 may leverage this information to place
virtual circuit requests against the appropriate ports. Asset
inventory and capacity management system 310D may be
used to evaluate the available bandwidth on each port before
provisioning of the virtual circuits.

Orchestration engine 118 accepts incident requests from
partners and customers and communicates with the under-
lying incident management system 310E to raise service
tickets. Orchestration engine 118 communicates with the
content management system 310F to, e.g., render interna-
tionalized and localized content for a customer based on the
language preference of the customer. Content management
system 310F aids in transparent translation of all labels,
error messages, success messages and responses displayed
on the web portal, mobile devices or in machine-to-machine
communication via APIs 114.

FIGS. 3A-3B depict a flow diagram for interconnection
software interfaces according to techniques described
herein. In this example, API gateway 403 exposes an API
114 having multiple endpoints 406A-406L. (collectively,
“endpoints 406”) by which API consumers 402 may manage

US 11,936,518 B2

13

cloud exchange interconnections. API gateway 403, in turn,
invokes the cloud service platform of orchestration engine
407, which orchestrates a workflow of service tasks repre-
sented in FIGS. 3A-3B by cloud exchange API services 409.
API gateway 403 may represent an example instance of API
gateway 112 of FIGS. 1A-1D, orchestration engine 407 may
represent an example instance of orchestration gateway 118
of FIGS. 1A-1D, and sub-systems 120 of FIGS. 1-2 may
offer cloud exchange API services 409.

API consumers 402 may include buyer applications 402A
and seller applications 402B, as well as API developers
402C that may develop such applications. API gateway 403
includes a number of customer adaptors 404 that facilitate
the operations of API gateway 403. Custom adaptors 404
include security 404 A, API key verification 404B, transfor-
mation 404C, caching 404D, threat protection 404E, spike
arrest 404F, custom analytics 404G, and HTTP callouts
404H.

Endpoints 406 represent available logical and/or physical
resources accessible to API consumers 402. That is, API
consumers 406 may access endpoints 406 to access the
interconnection platform of a cloud exchange to get infor-
mation regarding, create, modify, delete, and/or confirm
requests for corresponding resources of the cloud exchange.
Endpoints 406 may represent example instances of end-
points 116 of FIGS. 1B-1C.

In this example, endpoints 406 include login 406 A, ports
4068, metros 406C, assets 406D, virtual circuits 406E,
cloud services 406F, service profiles 406G, analytics 406H,
traffic statistics 4061, bandwidths 406], service tickets
406K, and recommendations 406L. In general, API consum-
ers 406 may invoke any of endpoints 406 using a corre-
sponding method and, in some cases, parameters that deter-
mine how the interconnection platform executes the method.

Endpoints 406 may represent different methods of a
REST(ul interface. API consumers 402 may invoke any of
endpoints 406 using a communication protocol for transfer-
ring application data (e.g. HT'TP) that specifies the method,
a resource URI, and optionally parameters for the method.
API gateway 403 translates the resource URI and the
optional parameters for the endpoint 406 to cloud exchange
platform-related constructs and invokes the cloud exchange

25

30

35

40

14

platform of orchestration engine 407 according to one of a
create, read, update, delete, or confirmation action corre-
sponding to the endpoint 406 specified by the application
data.

APIS—EXAMPLES

The following sections contain example details for
selected endpoints 406 of APIs 114 for a cloud exchange
100. The API 114 provides functionality for allowing devel-
opers to access the interconnect platform for ordering and
viewing virtual circuits. This API functionality includes
getting information about and performing operations on
Login 406A, Ports 406B, Virtual Circuits 406E, Metros
406C, and Cloud Services 406F.

In one example, endpoints 406 of APIs 114 may be
categorized into three major categories:

Foundational APIs—these APIs are common to both the

buyer and the seller.

Buyer APIs—These are the APIs that are used by the
Enterprises, Network Service

Providers (NSP) and Managed Service Providers (MSP)
to establish connectivity to cloud services offered by
the different Cloud Service Providers (CSPs).

Seller APIs—These APIs are used by the CSPs to manage
their cloud services at cloud exchange 100 and to
enable buyers to connect to their services.

The APIs are broadly categorized into operations that can
be performed on different resources. This section also details
the common request headers that are required to be included
as part of every request and also the response headers that
are returned back with each API response. In addition, this
section describes the HTTP status and custom error codes
used as part of the API response in the event of any error
condition.

The tables below show an overview of the API resources,
their respective URIs, and supported operations on each
resource. The APIs are divides in three major sections:
Buyer, Seller, and Foundational APIs. Reference herein to
XML refers to eXtensible Markup Language, while JSON
refers to JavaScript Object Notation.

Foundational API Overview

Resource HTTP Operations URI
Access POST POST /oauth2/v1/token
Token
Metros GET GET /ecx/vl/metros
Cloud GET GET /ecx/vl/cloudservices
Services GET /ecx/vl/cloudservices/{cloudﬁservicefname}
Refresh POST POST / cauth2/v1/ refreshaccesstoken
token
Buyer API Overview
Resource HTTP Operations URI
Ports GET GET /ecx/vl/ports
GET /ecx/vl/ports/{port_name}
Virtual GET, POST, GET /ecx/vl/virtualcircuits
Circuits DELETE, PATCH POST /ecx/vl/virtualcircuits
GET /ecx/vl/virtualcircuits/{ virtual_circuit_id }
DELETE /ecx/v1/virtualcircuits/{ virtual_circuit_id }
PATCH/ecx/v1/virtualcircuits/{ virtual_circuit_id }
User GET GET//ecx/v1/assets

Assets

US 11,936,518 B2
15

-continued

Resource HTTP Operations

URI

Seller GET
Services

Seller GET
Service

Profiles

GET ecx/vl/sellerservices,
GET ecx/vl/sellerservices/{sellerﬁservicefname}
GET /ecx/vl/sellerserviceprofiles/{profile_name}/metadata

Seller API Overview

10

Resource HTTP Operations

URI

Ports GET

Virtual GET, PATCH
Circuits

User GET
Assets
Seller POST

Service PUT, DELETE
Profile

GET /ecx/vl/ports

GET /ecx/vl/ports/{port_name}

GET /ecx/vl/virtualcircuits

PATCH /ecx/v1/virtualcircuits/{ virtual_circuit_id }
GET /ecx/vl/virtualcircuits/{ virtual_circuit_id }
GET /ecx/vl/virtualcircuits

PATCH /ecx/v1/virtualcircuits/{ virtual_circuit_id }
GET /ecx/vl/virtualcircuits/{ virtual_circuit_id }
POST /ecx/vl/sellerserviceprofiles

POST /ecx/v1/sellerserviceprofiles/{profile_name}/ports
PUT/ecx/v1/sellerserviceprofiles/{profile_name}
DELETE/ecx/v1/sellerserviceprofiles/{profile_name}

HTTP Status Codes

The table below lists example HTTP status codes that can

16

-continued

Allowed Values Required

Description

be utilized by APIs 114. There are specific error codes and EZ?& .
messages which are returned back in error scenarios which
are defined along with the appropriate API specification. Accept

application/json Yes
application/xml

The media types accept-
able for the response

Common Response Headers
The following header is included as part of all API

Allowed Values Required

Description

application/json Yes
application/xml

The content type passed
in the response body

HTTP Code Description 15
200 OK
201 Created responses
204 No Content
400 Bad Request
403 Forbidden Header
401 Unauthorized 40 Attribute
404 Not Found
405 Method not Allowed Content-Type
406 Not Acceptable
409 Conflict
415 Unsupported Media Type
500 Internal Server Error
503 Service Unavailable
504 Gateway Timeout
Common Request Headers 50

45 BError Response Syntax
The error responses from all APIs follow the common
syntax shown below.

The following headers are required in requests to all APIs.

Header
Attribute Allowed Values Required Description 55
Content-Type application/json Yes The media type of the

{

“errors”: [

“status”: “string”,

2, s,

“code”: “string”,
“property”: “string”,
“message”: “string”,
“more_info™: “string”

P13y

application/xml request body

Error Response Message Fields

errors
Description A list of errors

Type List

Required Yes

Default None

Example None

US 11,936,518 B2

18

17
-continued

status
Description HTTP Status Code
Type String
Required Yes
Default None
Example 409

code
Description Internal ECX Error Code
Type string
Required Yes
Default None
Example 40902

property
Description Attribute Name that has errors
Type string
Required No
Default None
Example vlan_id
message

Description Description of the error
Type string
Default None
Example Duplicate VLAN id: A

VLAN with the same value
already exists for this port

Required No
more_info

Description More information about the error on the developer portal.
Type string
Default None
Example https://api.developer.cloudexchange.com/docs/api/errors/40902
Required No

Sample Error Response: 35 tion an access_token is returned as part of the response. An

Content-Type: application/json

{

“errors”: [
40
“code”: 40007,
“message”: “Invalid Field Value”,
“more_info”: “The field value port_name already exists for the
specified profile name”,
“property”: “port_name”,
“status™: 400 45
}
]
¥

In some examples, developers may be expected to generate 5,
API consumer Key and Consumer Secret using a developer
platform before invoking the APIs.

Authentication

Developer acquires an access token through a valid login
before invoking any APIs 114. Refer to the section describ-

ing login 406A for details. 33
Foundational APIs
Resource: Access Token or Login 406A.
Description: OAuth2.0 token for accessing APIs 114.
60
HTTP Method Request URI
POST /oauth2/v1/token
POST Access Token 65

Description: This API handles authentication and autho-
rization of the API developer. Upon successful authentica-

error message is returned on unsuccessful attempts.

Request

Request URI: POST http://<HostName>/ecx/v1/oauth/to-
ken

Filter Parameters:

None

Request Headers:

None

Request Fields:

grant_type
Description OAuth grant operation. Acceptable value: password
Type String
Required Yes
Default None
Example client_credentials
user_name
Description User name for login
Type string
Required Yes
Default None
Example tempuserl
user_password
Description Password for login
Type string
Required Yes
Default None
Example XXKKKKX

client_id

Description API Consumer Key
Type string

19

US 11,936,518 B2
20

-continued -continued
Required Yes “client_secret™: “tstCLNT123scrf”,
Default None « g G »
password_encoding”: “md5-b64
Example QWERTY1234567afgaaaa 5 }
password_encoding
Description Password encoding used.
; i)) Response:
If this field is not present the password is considered 10
to be in plain text format.
Password Encryption: Following encryption modes are access_token
supported:
Nome Description The access token that must be passed in the HTTP header to
access all API’s
Password sent as plaintext. 15 Type string
md5-b64d Required Yes
. . . Default None
The password is encoded using MD35/Base64 encoding. Example HihiOtaY2JAT0QaTFa Y YyzHOqqmb
MD35 digest has to be generated in byte format (not token_timeout
MD5 hex digest) and then encoded into base64
R ded) 20 Description Timeout for the access token in seconds
ecommende: :
Type string
b64 Required Yes
The password is encoded using Base64 Default None
Example 3599
Type string user_name
Default None 25
. Description User Name
Required No Type siring
Example md5-b64 Required Yes
Default None
Example username
token_type
Sample Requests 30 P
POST http://<HostName>/ecx/v2/oauth/token ?escrif’tion Type of access token
. ype string
Password as plain text: Required Yes
Default Bearer
Example Bearer
{ 35 refresh_token
“grant_type™:“client_credentials”,
“user_name”: “tempuserl”, Description ~ Refresh token that can be used for obtaining a new
“user_password”: “XXXXXxx", access token
“client_id”: “QWERTY1234567abcdefg”, Type string
“client_secret”: “tstCLNT123scrf” Required No
} 40 Default None
Example QvIdZg7nMSTNYBfeDLgECpe5b9FvgW gdpZRwv4u0OnZ
refresh_token_timeout
Password encoded with md5 and then b64:
Description Timeout for the refresh token in seconds
Type string
{ 45 Required No
Default None

“grant_type”:“password”,

“user_name”: “tempuserl”,
“user_password”: “XXXXXXXXXXXX,
“client_id”: “QWERTY1234567abcdefg”

Example 86376

Sample Response:

HTTP/1.1 200 OK
API-Version: vl
Content-Type: application/json

Accept: application/json

“access_token”: “HihiOtaY2JAT0QaTFaYYyzHOqqmb”,

“token_timeout™: “3599”,

“user_name”: “tempuserl”,

“token_type”: “Bearer”,

“refresh_token”: “QvJdZg7nMSTNYBfeDLgECpe5b9FvgWgdpZRwv4uOnZ”,
“refresh_token_timeout”: “86376”

US 11,936,518 B2

21

Error Code in Response:

HTTP Code Error Code Error Description

400 40010 Invalid value for grant_type. The acceptable
value is “password”

401 40101 Authentication failed. Invalid username or
password

401 40103 Invalid API Key

406 Not Acceptable

415 Unsupported Media Type

500 Internal Server Error

POST Refresh Token: Description: This API allows
developer to refresh existing OAuth Token issued which will
expire otherwise within 60 minutes. A valid refresh token is
needed to retrieve a new successful authentication access
token that will be returned as part of the response.
Request
Request URL: POST http://<HostName>/oauth2/v1/refre-
shaccesstoken
Filter Parameters:

None
Request Headers:

None
Request Fields:

grant_type
Description OAuth grant operation. Acceptable values: refresh_token.
Type String
Required Yes
Default None
Example Password
client_id
Description ~ API Consumer Key
Type String
Required Yes
Default None
Example QWERTY1234567afgaaaa
refresh_token
Description Refresh token that can be used for obtaining a new
access token
Type string
Required YES
Default None
Example 5f752714hsdf07a3e41c2a3311f514el

Sample Requests

POST http://<HostName>/oauth2/v1/refreshaccesstoken
Refresh Token
{
“grant_type”:“refresh_token”,
“client_id”: “QWERTY1234567abcdefg”,
“client_secret™: “tstCLNT123scrt”,
“refresh_token”: “5f752714hsdf07a3e41c2a33111514el1>

Response:
Response Fields:

access_token

Description The access token that must be passed in the HTTP header to
access all API’s

Type string

Required Yes

22

-continued
Default None
Example HihiOtaY2JAT0QaTFaYYyzHOqqmb
token_timeout
Description Timeout for the access token in seconds
Type string
Required Yes
Default None
10 Example 3599 (1 hr)
user_name
Description User Name
Type string
Required Yes
15 Default None
Example Username “adrew”
token_type
Description Type of access token
Type string
Required Yes
Default Bearer
Example Bearer
refresh_token
Description Refresh token that can be used for obtaining a new
25 access token
Type string
Required No
Default None
Example QvIdZg7nMSTNYBfeDLgECpe5b9FvgW gdpZRwv4u0OnZ
refresh_token_timeout
30
Description Timeout for the refresh token in seconds
Type string
Required No
Default None
Example 86376
35
Resource: Metros
Description: Metros in which Cloud Exchange services are
40 offered.
HTTP Method Request URI
GET fecx/v1/metros
45
GET Metros:

Description: This implementation of the GET operation
returns a list of all metros where either the user has ports or

30 cloud exchange is enabled.
Request
Request URI: GET http://<HostName>/ecx/v1/metros
Filter Parameters:
55
cloud_exchange_enabled
Description Filter the results to get metros where Cloud
60 Exchange is enabled. If this parameter is not
included the result contains all the metros
where user has port or Cloud Exchange is enabled
Acceptable value: true
Type Boolean
Required No
Default None
65 Example True

US 11,936,518 B2

23

Request Headers:

Header Attribute Description

Authorization Required. Specify the Oauth Bearer token

Sample Request

GET http://<HostName>/ecx/v1/metros?cloud exchange

enable=true
Response:
Response Fields:

metros
Description List of metros
Type List
Required Yes
Default None
Example None

name
Description Metro Name
Type string
Required Yes
Default None
Example Singapore

code
Description Metro Code
Type string
Required Yes
Default None
Example SG

Sample Response:

Content-Type: application/json

{
“metros™: [
“code™ “SV,
“name”: “Silicon Valley”,
b
{
“code™ “SG”,
“name”: “Singapore”
Po1y

Error Code in Response:

HTTP Status
Code Error Code Error Description
400 40001 Invalid Parameter Value
401 40102 Token Expired. Login again
401 40104 Invalid Access Token
401 40105 User doesn’t have sufficient
privilege to perform the operation
406 Not Acceptable
415 Unsupported Media Type
500 Internal Server Error

Resource: Cloud Services
Description: Cloud Services at cloud exchange 100

HTTP Method Request URI

GET fecx/vl/cloudservices
Jecx/vl/cloudservices/{cloud_service_name}

10

15

20

25

30

35

40

45

50

55

60

65

24
GET Cloud Services

Description: This implementation of the GET operation
returns a list of all Cloud Services at cloud service exchange
100.

Request

RequestURI: GET http://<HostName>/ecx/v1/cloudser-
vices,

GET http://<HostName>/ecx/v1/cloudservices/{cloud_ser-
vice_name}

Filter Parameters:
None

Request Headers:

Header Attribute Description

Authorization Required. Specify the Oauth Bearer token

Sample Request
GET http://<HostName>/ecx/v1/cloudservices
Response:

Response Fields:

cloud_services

Description A list of a Cloud Services
Type List
Required Yes
Default None
Example None

name
Description Cloud Service Name
Type string
Required Yes
Default None
Example None

metros
Description A list of Metros served by the cloud service
Type List
Required Yes
Default None
Example None

name
Description Metro Name
Type string
Required Yes
Default None
Example Singapore

code
Description Metro Code
Type string
Required Yes
Default None
Example SG

ibxs

Description A list of IBX names in the metro. In Internet Business

Exchange or “IBX” is a network-neutral data center and
may represent an example of a cloud exchange or cloud
exchange point, as described herein.

Type List
Required Yes
Default None
Example None

US 11,936,518 B2

Sample Response: —continued
bandwidth
HTTP/1.1 200 OK
Content-Type: application/json Description The bandwidth of the port. If no bandwidth is provided
5 then ports with any bandwidth capacity are returned.
“cloud_services”: [Type String
{ Default None
“name™ “CSP1”, Example 1G
“metros™: [Required No
encapsulation
“code™: “SG”, 10
“name”: “Singapore”, Description The encapsulation of the port.
“ibxs™: [Type String
“SV1~, Default None
“gy2” Example DotlQ or Qing (case insensitive)
11} 1} Required No
15 is_buyout
Error Code in Response: Description The type of port, standard or buyout.
Type String
Default None
Example Y or N (case insensitive)
HTTP Status 20 Required No
Code Error Code Error Description
401 40102 Tokelll Expired. Login again Request Headers:
401 40104 Invalid Access Token
401 40105 User doesn’t have sufficient
privilege to perform the operation
406 Not Acceptable 25 Header Attribute Description
415 Unsupported Media Type
500 Internal Server Error Authorization Required. Specify the Oauth Bearer token
Buyer APIs Sample Request
In this section, we describe the APIs that are relevant to 30 GET http://<HostName>/ecx/v1/ports?metro_code=SV&
a buyer. ibx=SV1
Resource: Ports GET http://<HostName>/ecx/v1/ports?bandwidth=100
Description: Ports on the Cloud Exchange Switch Fabric GET http://<HostName>/ecx/v1/ports?encapsulation=
Dot1Q
3 GET http://<HostName>/ecx/v1/ports?is_buyout=Y
HTTP Method Request URI Response
GET Jecx/v1/ports Response Fields:
Jecx/v1/ports/{port_name}
40
orts
GET Ports: 2
Description: This implementation of the GET operation Description List of Ports
returns a list of all ports owned by the authenticated sender ;ype, J ?St
equire es
of the request. The ports can be I.ilte.red by metro and IBX Default Noze
Name. If no ports matching the criteria are found then a 204 45 Example None
HTTP code response is returned without a payload. name
RequeSt Description Name of Port
Request URI: Type String
GET http://<HostName>/ecx/v1/ports?metro_code=SV& Required Yes
ibx name=SV1 50 Default None
Filter Parameters: Example GSE_QA-R-FE-02
metro_code
Description Code of the metro in which the port is located
metro_code Type String
55 Required yes
Description The code of a Metro. If no Metro Code is provided ports Default None
in all metros are returned as part of the response Example N
Type String metro_name
Default None
Example N Description Name of the metro in which the port is located
Required No Type String
. 60 .
ibx_name Required yes
Default None
Description Equinix IBX location name. If no IBX name is provided Example Silicon Valley
then ports in all IBXs are returned ibx_name
Type String
Default None Description Name of the IBX in which the port is located
Example SvV1 65 Type String
Required No Required yes

US 11,936,518 B2

-continued Error Code in Response:
Default None
Example SV1 HTTP Status
bandwidths 5 Code Error Code Error Description
e . 400 40001 Invalid Parameter Value
Description The bandwidths of the port (Array of values for Lagged 201 20102 Token Expired. Login again
Ports) 401 40104 Invalid Access Token

Type Array 406 Not Acceptable

Default None 415 Unsupported Media Type

Example 10 G, 10 G 10 500 Internal Server Error

Required No

encapsulation .
Resource: Seller Services

Description Port encapsulation Description: Seller Services at the Cloud Exchange

Type string 15

Default None

Example dotlq or qing HTTP Method ~ Request URI

Required Yes

is_buyout GET Jecx/vl/sellerservices
Jecx/vl/sellerservices/{seller_service_name}
Description Buyout Port or Standard Port 20
Type strin, .
Pe & GET Seller Services

Required yes o o . .

Default None Description: This implementation of the GET operation

Example Yor N returns a list of all Seller Services at the Cloud Exchange.

cross_connect_ids 25 Request
o] Request URI: GET http://<HostName>/ecx/v1/sellerser-

Description Cross connect Serial numbers :

Type Aray vices,

Required Ves GET http://<HostName>/ecx/v1/sellerservices/{seller_ser-

Default None Vlce—name}

Example 11111111, 23222 30 Filter Parameters: Filter the results by metro. If this
parameter is not included, the response contains all the seller
services at the Cloud Exchange

Sample Response 1: Sample Request
GET http://<HostName>/ecx/v1/sellerservices/{seller_
35 1 i< >,
HTTP/L1 200 OK seerce_ngme;http.// HostE\Iame /ecx/v1/
Content-Type: application/json sellerservices?metro_code=SV
Response:
ports™: [Response Fields:
“name”: “GSE_QA-R-EE-02”, 40
“metro_code” : “SV”,
“metro_name” : “Silicon Valley”, seller_services
“ibx_name” : “SV1”
1 Description A list of a Seller
Type List
“name”: “GSE_QA-R-EE-01”, Required Yes
“metro_code”: “SG”, 45 Default None
“metro_name”: “Singapore”, Example None
“ibx_name” : “SG1” allow_custom_speed
P
Description The buyer can see all the seller services in a given metro
that allow custom speeds if the buyer has a buyout port.
Sample Response 2: 50 :fh:: Va{ue’s that the response will include can be either
Y’ or *N’.
Type String
Required Yes
HTTP/1.1 200 OK Default
Content-Type: application/json Example YorN
{ “ports™:[55
{ “bandwidth:“10 G”,
“E?gdg’{dﬂlls;:é” availability_status: The availability status of the Service
" ’ .]’,,_ Profile as ‘In Trial Testing’ or Available for orders.
cross_connect_ids™:[
“123456”
“1000007, 1,
« ey 60 :
encapsulation”:*Qing”, encapsulation
“ibx_name”:“SV3”,
“is_buyout™:*“N”, Description Port encapsulation
“metro_code”:“SV”, Type String
“metro_name”:“BAYM”, Default None
“name”:*“QinqVirtualPort” Example dotlq or qinq
} 65 Required Yes

US 11,936,518 B2
29 30

require_redudancy Request
Request URI: GET http://<HostName>/ecx/v1/assets
Filter Parameters:

require_redundancy

Description This will define if a secondary virtual circuit creation is 3 metro code
required when buyer requests a virtual circuit from this —
seuer service provider. If yes, buyer will have to provide Description Filter the results by metro,
primary and secondary both secondary port and VLAN T -
ype String
ID§. Acceptable values are Y and N. Required Yes
Type . string 10 Default None
Required Yes Example SV
Default None asset_type
Example TRUE —
Description Filter the results by the types of assets.
. Buyer: For getting assets that the user has as a
standard_speeds: The allowed standard speeds associated buyer
with the service profile when custom speed is not allowed by 13 Type String
the seller. Required Yes
1 . Default None
seller service name Example buyer

metros: A list of Metros served by the seller. Metro name.
Metro code. A list of IBX names in the metro.
Sample Response:

20 Request Headers:

HTTP/1.1200 OK Header Attribute Description

Content-Type: application/json 25 Authorization Required. Specify the Oauth Bearer token
“seller_services™: [
. s Request
‘Ezﬂé):;;fllll;tﬁ)?fﬁgil‘q”}] ’ GET http:/<HostName>/ecx/v1/
“mefros™ [assets?metro_code=SV&asset_type=buyer
30 Response:
“code”: “DC”, Response Fields:
“ibxs™: [
“DC5”,
DC6 buyer_assets
1 name”: “Ashburn 35 Description Buyer related assets of the user in the metro
{’ Type Object
“ 5. Q@ Required Yes
‘bedi_. SV Default None
LSX\S“',,[Example None
seller_assets
o N » 40
name”; “SiliconValley Description Seller related detail of the user in the metro
Type Object
“ 5. e 5 Required Yes
“nan?e ¥y .testl - . - Default None
availability_status™: “in_trial_testing”, Fxample None
“require_redundancy”: “N”, P orts
“standard_speed 45 P
s [o .
- .\ Description List of Ports.
Uptol0G™, Tyoe P Lot
“gpiggggﬁg,,’ Required Yes
“Up 0lG” ’ Default None
P Example None
] 50 name
¥
1] Description Name of the Port
Type String
Required Yes
Default None
Resou.rce.:. User Asset§ . 55 Example GSE_QA-R-EE-
Description: Get details of assets owned by a buyer in a cross_connect_ids
given metro location. o]
Description Cross connect Serial
Type Array
Required Yes
HTTP Method Request URI 60 Default None
Example 1111111100
GET Jecx/v1/assets metro_code
Description Code of the metro in which the port is
GET Assets Type String
Description: This implementation of the GET operation ¢5 Required Yes
. Default None
for buyers returns a list of all buyer assets Example sv

including ports and virtual circuits in a given metro.

31

-continued

US 11,936,518 B2

32

metro _name

Description Name of the metro, in which the port is
Type String 5
Required Yes
Default None
Example Silicon Valley
ibx_name
Description Name of the IBX in which the port is 10
Type String
Required Yes
Default None
Example SvV1
bandwidths
15
Description The bandwidths of the port (Array of values for
Lagged Ports)
Type Array
Default None
Example 1G,1G
Required No 20
encapsulation
Description Port encapsulation
Type String
Default None
Example dotlq or qinq
Required Yes 25
is_buyout
Description Buyout Port or Standard Port
Type String
Required Yes
Default None 30
Example YorN
virtual_circuits
Description List of virtual circuits for each
Type List
Required Yes 35
Default None
Example None
id Id of the virtual circuit. This id is required to perform
operations on the virtual circuit APIs like DELETE or 4,
GET Virtual Circuit
redundant_id
Description Virtual circuit ID associated with the redundant virtual 45
circuit
Type string
Required Yes
Default None
Example 4D34239266A3952695956B
cross_connect_id [Deprecated, instead refer to field 50
‘Ports’.‘cross_connect_ids’]
Description Id of the physical port
Type String
Required Yes
Default None 55
Example 1111111100
port_speed [Deprecated, instead refer to field
‘Ports’.‘port_speeds’]
Description The capacity of the port, e.g., 1
Type String 60
Required Yes
Default None
Example 1000000000
name
Description Virtual circuit name
Type String 65
Required Yes

-continued
Default None
Example API Test VC1
created_by
Description Name of the user who has been created the virtual
Type String
Required Yes
Default None
Example First Name Last Name
email

Description email of the user who has been created the virtual

circuit
Type String
Required Yes
Default None
Example X@y.com

created_date

Description Date and time when the virtual circuit has been

created
Type String
Required Yes
Default None
Example 02-15-2014 21:58:20

seller _service_name

Description Name of the seller service profile for the virtual

circuit
Type String
Required No
Default None
Example Direct Connect

availability_status—The availability status of the Service
Profile as ‘In Trial Testing’

service_key
Description Service Key or Digital Authorization Key
obtained from the Seller
Type String
Required Yes
Default None
Example XXXXKKXX-XKXKX-KXKK-KXKXX-XKXXXKKXXXXKX
state
Description State of the virtual circuit
Type String
Required No
Default None
Example PROVISIONED
status
Description Status of the virtual circuit
Type String
Required No
Default None
Example BILLED
Sample Response:
HTTP/1.1 200 OK
Content-Type: application/json

[

“buyer_asset™: {

“ports™: [

“bandwidth™: “1 G,
“bandwidths™: [
“1G,1G”

L

US 11,936,518 B2

33

-continued

“cross_connect_ids™: [

Response

34

Response Fields

“123456”,
“123457”
, 5 id
“encapsulation”: “Qinqg”,
“ibx_name”: “SV3”, Description Virtual Circuit ID
“is_buyout”: “N”, “metro_code” Type string
“SV”, “metro_name”: “BAYM”, Required Yes
“name”: “QingVirtualPort”, Default Nomne
“virtualcireuits™: [10" Example 4D34239266A3952695956A
redundant_id
“bandwidth”: “Up to 200MB”, “cloud_service_name”:
“CSI.)l”’. ‘.ﬁ sellerfservwfsfna{ne”: “(.:SPl”’ Description Virtual circuit ID associated with the redundant virtual
“availability_status”: “in_trial_testing”, “created_by’: ..
“reliance user”, “created_date”: “12-12-2014 22:08:06”, mrlcult
“cross_connect_id”: “123456”, 15 Type. string
“email”: “relianceuser@reliance.com®, Required Yes
“id”: “5566417575566047323754”, Default None
“redundant_id”: “6939666E3693916437C576”, Example 4D34239266A3952695956B
“name”: “TestCSP1ve2”, name
“port_speed”: 100000000,
“service_key”: “87f4f12¢-420a-4b3¢-9087-c4f820711d7e”, 20 Description Name of the virtual circuit
“state”: “Provisioned”, Type string
“status”: “Enabled” Required Yes
} Default None
] Example Steve CSP_A Test VC-7
} buyer_port
}] 25 o .
Description Buyer side port name
I8 Type string
{ Required Yes
“seller_asset”™: <~ Default None
¥ Example "GSE_QA-R-EE-01
] 30 cross_connect_id
Description Id of the physical port
Resource: Virtual Circuits Type string
Rt . . Required yes
Description: Virtual Circuits Defanlt None
35 Example 11111111
port_speed
HTTP Method Request URI
Description The capacity of the port, e.g., 1 G
GET /ecx/vl/v%rrualc%rcu%ts . o Type string
/ecx/vl/vg‘tualc%rcu}ts/ {virtual_circuit_id} Required yes
POST fecx/vl/virtualeircuits 40 Default None
Example 1G
cloud_service_name
GET Virtual Circuits:
Description: This implementation of the GET operation Description Cloud Service Name
returns a list of all virtual circuits owned by the authenti- 45 ;};piire d iz ;ng
cated sender of the request. If the sender has no virtual D;ault Nome
circuits, a response with HTTP Code 204 is returned with no Example CSP A1
payload. service_key
RequeSt 50 Description Service Key obtained from the Cloud Service
Request Headers: Type string
Required yes
Default None
Header Attribute Description Example XXXKXKXXX-XKXXK-KKKX-KXXX-KXXKKXXXXKXX
buyer_vlan
Authorization Required. Specify the Qauth Bearer token 55
Description Buyer side VLAN Id
Type string
Request URI: /ecx/v1/virtualcircuits Required yes
Filter Parameters Default None
60 Example 2004.*
None bandwidth
RequeSt Fields Description Bandwidth
None Type string
Required Yes
Sample Request 65 Default None
GET http://<HostName>/ecx/v1/virtualcircuits/{virtual _ Example 200 MB

circuit_id}

US 11,936,518 B2

35

36

-continued -continued
state Default None
e . o . Example None
Description State of the virtual circuit. Example possible “key-value”
values are “Being Provisioned”, “Ordering”, 5 oyvaue
“Pending”, “Available”, “Not Provisioned”,
“Provisioned”, “Pending Add”, “Deleted” Description The key and associated value that the API user can pass
and “Pending Delete. in the metadata object.
Type string Type string
Default None Required No
Example PROVISIONED 10
Required No Default None
status Example None
Description Status of the virtual circuit
Type string .
Required No s Sample Response:
Default None
Example BILLED
created_date HTTP/1.1 200 OK
Content-Type: application/json
Description Date the virtual circuit is created
Type string 20 “virtualcircuits™: [
Required Yes
Default None “id” 1 “4D34239266A3952695956A”,
Example 05/23/2014 01:21:54 “name”: “Sample Test VC-77,
created_by “buyer_port”: “GSE_QA-R-EE-01 *,
“cross_connect_id”: “14395166”,
Description The user who created the virtual circuit “port_speed”: “1G”,
Type string 25 “cloud_service_name”: “CSP_A_17,
Required yes “service_key”: “XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
Default None “buyer_vlan™: “2004.*,
Example tempuserl “bandwidth”: “Up to 200MB”,
email “state’: “PROVISIONED”,
“status”: “BILLED”,
Description Email of the user 30 “created_date™: “05/23/2014 01:21:54”,
Type string “created_by”: “testuserl”,
Required Yes “email”: “test@cloudexchange.com”,
Default None “seller_port”: “GSE_QA-SJC-06GMR-CIS-2-SEC-A”,
Example test@cloudexchange.com “metro_code” : “SV”,
seller_port “ibx_name” : “SV1”
35 “seller_service_name”: “cspcreatetest”,
Description Seller side port "metadata: {
Type string "keyl1": "valuel"”,
Required yes "key2": "value2",
Default None "key3": "value3",
Example GSE_QA-SIC-port-CIS-2-SEC-A "key4": "value4",
metro_code 40 "keyS": "valueS"
b
Description Code of the metro in which this Virtual Circuit is located {
Type string “id” @ <14327,
Required Yes “name”: “Steve CSP_A Test VC-57,
Default None “buyer_port”: “GSE_QA-R-EE-017,
Example N “cross_connect_id”: “143951667,
ibx_name 45 “port_speed”: “1G”,
“cloud_service_name”: “CSP_A_17,
Description Name of the metro in which this Virtual Circuit is located “service_key”: “XXXXXKKXX-XXXX-XXXX-XXKX-XXXXXXXXXKXX",
Type string “buyer_vlan™: “2004.*,
Required Yes “bandwidth”: “Up to 200MB”,
Default None “state’: “PROVISIONED”,
Example SvV1 50 “status”: “BILLED”,
seller_service_name “created_date™: “05/23/2014 01:21:54”,
“created_by”: “testuserl”,
Description Name of the seller service profile for the virtual circuit “email”: “test@cloudexchange.com”,
Type string “seller_port”: “GSE_QA-SJC-1234-CIS-2-SEC-A”,
Required No “metro_code” : “SV”,
Default None 55 “ibx_name” : “SV1”
Example Direct Connect }
metadata]
¥
Description This object can be used by users to enter metadata
information about their VCs. This is not a mandatory
object of fields. If the buyer passed metadata 60 Error Code in Response:
information during VC creation, the buyer can
retrieve this metadata information during GET
Virtual Circuitloper.ation. Only 5 lliey—value pailrs HTTP Status
can be passed in this mf:tadata object. For particular Code Error Code Error Description
sellers, the metadata object shall be null.
Type object 65 401 40102 Token Expired, Login again
Required No 401 40104 Invalid Access Token

US 11,936,518 B2

37

38

-continued -continued
HTTP Status secondary_vc_name
Code Error Code Error Description
201 40105 User doesn’t have sufficient 5 Description Secondary virtual circuit name
privilege to perform the operation Type String
406 Not Acceptable Required No
415 Unsupported Media Type Default None
500 Internal Server Error Example twtcadd
10 secondary_port_name
POST Virtual Circuits: Description Secondary buyer port name
Description: Create Virtual Circuit. Type string
Request Required No
Default None
Request Headers: 13 Example GSE_QA-SIC-06GMR-CIS-2-SEC-A
secondary_vlan_id
Header Attribute Description Description Secondary buyer VLAN I1d
Authorization Required. Specify the Oauth Bearer token Type. string
20 Required No
Default None
Request URI: POST hittp://<hostname>/ecx/v1/virtualcir- Example 188
cuits service_key
Filter Parameters 25 Description Service Key obtained from the Cloud Service
None Type string
Request Fields Required Yes
Default None
Example XXXKXKXXX-XKXXK-KKKX-KXXX-KXXKKXXXXKXX
metro name 30 virtual_circuit_speed
Description Name of the metro in which this Virtual Circuit is located Description Speed of the virtual circuit
Type . string Type string
Required Yes Required Yes
Default None
. Default None
Example Silicon Valley 35
metro_code Example 200 MB
email
Description Code of the metro in which this Virtual Circuit is located
Type string Description Email of the user
Required Yes T -
Default None ype string
Example SV 40 Required No
cloud_service_name Default None
o . . Example test@cloudexchange.com
Description Name of the Cloud Service Profile. Depending on the
cloud service selected the fields required in the
payload will differ. . . .
Type string 45 Other example fields may include seller service provider
%e‘}ufted Ees account number, digital authorization key obtained from the
efaul one . .
Example CSP A 1 seller service, border gateway protocol configuration num-
seller_service_name ber, the id of the virtual private gateway to a VPC, buyer
o i : peer ip (IP address assigned to buyer/client interface), IP
Description Name of the Seller Service Profile. Depending on the 50 dd. . dt 1 . ider interf: ilof
seller service selected the fields required in the address assigned to seller serylce provider inte ace.’ €mai 0
payload will differ. the user, metadata (as described above), key (This key, its
Type string associated value that the API user had passed in the metadata
%Zi};fd Ezsne object during VC creation), and speed of the virtual circuit.
Example Name provided by seller service provider 55
primary_vc_name
o)) o Seller Service Standard Port
Description Primary virtual circuit name Providers (Buyer) Buyout Port (Buyer)
Type string
Required Yes Seller A 200 MB, 500 MB 50 MB, 100 MB, 200 MB, 300
Default None 60 MB, 400 MB, 500 MB
Example twtca93 Seller B 200 MB, 500 MB, 200 MB, 500 MB,1 G & 10 G
primary_port_name 1G (only when the buyer has a
10 G buyout port)
Description Primary buyer Port name Other Seller 200 MB, 500 MB, 200 MB, 500 MB, 1 G or
Type string Service Profiles 1 G integer number, no
Required Yes (Allowing custom decimals, between 1 and <=
Default None 65 speed) buyer physical port speed

Example

GSE_QA-SJC-06GMR-CIS-2-SEC-A

US 11,936,518 B2

Sample Request
POST http://<HostName>/ecx/v1/virtualcircuits
Authorization: Bearer <accessToken>
Accept: application/xml or application/json
“metro_name”/”Silicon Valley”,
“metro_code”:’SV”,
“cloud_service_name™:” CSP_A_17,
“primary_vc_name”:"twtca93”,
“primary_port_name”:” GSE_QA-SJC-06GMR-CIS-2-SEC-A”,
“primary_vlan_id”:”188”,
“secondary_vc_name”:"twtcp94”,
“secondary_port_name”:”GSE_QA-SJC-06GMR-CIS-2-SEC-B”,
“secondary_vlan_id”:”188”,
“service_key”:” XXXXXXXKX-XXXX-XXXX-XXXX-XXXXXXXXXXXX ", “virtual_circuit_speed”:”Up
to 200MB”,
“email”:test@cloudexchange.com
“metadata”
¥
20 .
Response) -continued
Response Fields:
HTTP
Status Code Error Code Error Description
result . .
25 401 40105 User doesn’t have sufficient privilege
Description Result of the operation indicating whether it was to perform zhe o;()fratlon
successful. Valid values are SUCCESS and ERROR 415 Unsupported Media Type
Type string 500 Internal Server Error
Required Yes
Default None
Example SUCCESS 30 In some examples, APIs may be provided for deleting
[message virtual circuits. The DELETE operation will remove the
Description Success Message virtual cir.cuit prov.ided3 a response with HTTP. Code 2.00 i.s
Type string returned if operation is successful. If the virtual circuit
Required Yes belongs to certain seller service providers, those seller
Default None . id i h " f the deleti £ th
Example Your Virtual Circuit request was successful 35 service provider wi ave 1o conlirm the aelelion o €

Other example fields may include “more info,” primary

virtual circuit id, secondary virtual circuit id.
Sample Response:

virtual circuit.
Sample Request

DELETE http://<HostName>/ecx/v1/virtualcircuits/{ virtu-
al_circuit_id}

HTTP/1.1 201 CREATED
Location: 4D34239266A3952695956A

“result”: “SUCCESS”
“message’: “Your Virtual Circuit request was successful.”
“more_info™: “https://api.developer.cloudexchange.com/docs/api/messages/xx”

¥
Error Code in Response: 50 Sample Response:
HTTP HTTP/1.1 200 DELETED
Status Code Error Code Error Description {
55
400 40002 The value of VLAN should be between “result”: “SUCCESS”
1 and 4095 “message”: “Your Virtual Circuit has been deleted successfully.”
400 40003 Cannot select the same port for Primary . infor: <
and Secondary Virtual Circuit fiore _tnio™
400 40004 Enter a value for all required fields }
400 40005 The number of characters exceeded 60
400 40006 Cannot select the same name for Primary
and Secondary Virtual Circuit I 1 API b ided for PATCH
400 40007 Invalid Field Value O some examples, Alls may be provided for
400 40009 Application specific error. Ex., duplicate enable connection. This implementation of the PATCH
VLAN1d]] operation lets the users to enable virtual circuit if the seller
401 40102 Token Expired. Login again 65 . . o R
401 40104 Tnvalid Access Token requires additional step of authentication before enabling the

buyer connection request.

US 11,936,518 B2

41

Sample Response:

HTTP/1.1 201 CREATED

{ 5
“result”: “SUCCESS”,

“message’: “Connection enabling request successful”

2. <o

“more_info”:

In some examples, APIs are provided for Seller Service
Profiles to be created by sellers in Cloud Exchange. Cloud 10
Exchange sellers are required to define and set up their

42

service profiles for connectivity to their seller services.
Sellers can create a profile for each discrete service that they
offer.

In some examples, a “GET virtual circuit payload meta-
data” implementation of the GET operation returns the
payload metadata required to create virtual circuits for a
given seller service profile.

Sample Request

GET http://<HostName>/ecx/v1/sellerserviceprofiles/
CloudSigma Profile/metadata

Sample Response:

HTTP/1.1 200 OK
Content-Type: application/json

“description”: “Code of the metro in which this virtual circuit will be created”,

‘metro_code”,

{

“fields™: [

{

“name”: *
“type”: “string”
I

{

“description”: “Seller Service Name”,

2, s,

“name”:

seller_service_name”,

“type”: “string”

b
{

“description”: “Primary virtual circuit name”,

., s

“name”:

primary_vc_name”,

“type”: “string”

b
{

“description”: “Buyers primary port name”,

., s

“name”:

primary_port_name”,

“type”: “string”

b
{

“description”: “Buyers primary VLAN Id”,

., s

“name”:

primary_vlan_id”,

“type”: “string”

b
{

“description”: “Secondary virtual circuit name”,

2, s,

“name”:

secondary_vc_name”,

“type”: “string”

b
{

“description”: “Buyers secondary port name”,

2, s,

“name”:

secondary_buyer_port_name”,

“type”: “string”

b
{

“description”: “Buyers secondary VLAN Id”,

2, s,

“name”:

2, s,

“type”™:
I3
{

secondary_buyer_vlan_id”,
string”

“description”: “Service Key or Digital Authorization Key obtained from CSP”,

2, s,

“name”:

service_key”,

“type”: “string”

b
{

“description”: “Speed of the virtual circuit”,

2, s,

“name”:

virtual_circuit_speed”,

“type”: “string”

b
{

“description”: “Email of the user”,

., s

“name”:

email”,

“type”: “string”

¥
]

US 11,936,518 B2

43
Seller APIs
Resource: Ports
Description: Ports on the Cloud Exchange Switch Fabric

HTTP Method Request URI

GET fecx/v1/ports

Jecx/v1/ports/{port_name}

10
GET Ports:

Description: This implementation of the GET operation
returns a list of all ports owned by the authenticated sender
of the request. The ports can be filtered by metro, and IBX
Name. If no ports matching the criteria are found then a 204
HTTP response is returned without a payload.

Request

Request URI:

GET http://<HostName>/ecx/v1/ports?metro_code=SV&
ibx_name=SV1

Filter Parameters:

15

20

metro_code
Description Code of a Metro. If no Metro Code is provided ports
in all metros are returned as part of the response
Type string
Required No
Default None
Example N
ibx_name 30
Description Equinix IBX location name (IBX). If no IBX is
provided, the method returns ports in all IBXs
Type string
Required No
Default None 35
Example SvV1
bandwidth
The bandwidth of the port. If no bandwidth is provided 2
then ports with any bandwidth capacity are returned.
Request Headers:
Header Attribute Description 45
Authorization Required. Specify the OAuth Bearer token
Sample Request:
GET http://<HostName>/ecx/v1/ports?metro_code=SV& 0
ibx=SV1
Response
Response Fields:
55
ports
Description List of Ports.
Type List
Required Yes
Default None
60
Example
name
Description Name of the Port
Type string
Required Yes
Default None 65

Example GSE_QA-R-EE-02

44

-continued

metro_code
Description Code of the metro in which the port is located
Type string
Required yes
Default None
Example N

metro_name
Description Name of the metro, in which the port is located
Type string
Required yes
Default None
Example Silicon Valley

ibx_name

Description Name of the IBX in which the port is located
Type string
Required yes
Default None
Example SvV1

Other example response fields: bandwidths, encapsula-
tion, is buyout, cross_connect_ids (cross connect serial
numbers).

Sample Response:

HTTP/1.1 200 OK
Content-Type: application/json

“ports™: [
{
“name”: “GSE_QA-R-EE-02”,
“metro_code” : “SV”,
“metro_name” : “Silicon Valley”,
“ibx_name” : “SV1”

b
{

“name”: “GSE_QA-R-EE-017,
“metro_code”: “SG”,
“metro_name”: “Singapore”,
“ibx_name” : “SG1”

1}

Error Code in Response:

HTTP Status

Code Error Code Error Description

400 40001 Invalid Parameter Value

401 40102 Token Expired, Need to login again.

401 40104 Invalid Access Token

401 40105 User doesn’t have sufficient privilege
to perform the operation

406 Not Acceptable

415 Unsupported Media Type

500 Internal Server Error

Resource: seller service profiles

Description: Seller Service Profiles created by sellers in
Equinix Cloud Exchange. Equinix Cloud Exchange sellers
are required to define and set up their service profiles for
connectivity to their seller services. Sellers can create a
profile for each discrete service that they offer.

HTTP Method Request URI

GET fecx/v1/sellerserviceprofiles

GET Jecx/v1/sellerserviceprofiles/{profile_name}

GET Jecx/v1/sellerserviceprofiles /{profile_name}/metadata

US 11,936,518 B2

-continued
HTTP Method Request URI
POST fecx/v1/sellerserviceprofiles
Jecx/v1/sellerserviceprofiles /{profile_name}/ports
PUT Jecx/v1/sellerserviceprofiles /{profile_name}
DELETE Jecx/v1/sellerserviceprofiles /{profile_name}/ports

POST seller service profiles. This implementation of the
POST operation creates a new seller service profile for the
logged in user. Example request fields include: name, avail-
ability status (The availability status of the Service Profile as
‘In Trial Testing’ or ‘Available for Orders’), virtual circuit
label, service type, api available (Indicates whether API
integration is available for this service. The API integration
allows completing the virtual service provisioning. Accept-
able values are TRUE and FALSE.), The authorization key
label (This is what the seller organization calls the authori-
zation key), The port encapsulation method used for seller
side, Type of seller services this connection can reach,
Require redundancy—This will define it a secondary virtual
circuit creation is required when buyer requests a virtual
circuit from this seller service provider. If yes, buyer will
have to provide both primary and secondary port and VLAN
1Ds. Acceptable values are TRUE and FALSE; secondary_v-
lan_same—If'this field has a value of “TRUE” the buyer will
be forced to provide the same vlan id for both primary and
secondary virtual circuits; capture_buyerpeer_ip—Indicates
whether to capture buyer peer IP address. Acceptable values
are TRUE and FALSE; Capture Buyer BGP ASN; Capture
Virtual Private Gateway; capture_sellerpeer_ip—Indicates
whether to capture buyer peer IP address. Acceptable values
are TRUE and FALSE.

Other example request fields include: The Bandwidth
Threshold Alert Contacts. Multiple email address can be
separated by comma. notification contacts: Contacts that
will be notified of virtual circuit requests and deletions. alert
percentage: Bandwidth threshold per port; The ports the
seller service provider will enable for buyers to establish
virtual circuit connection; The virtual circuit speeds offered;
allow_custom_speed: The seller can choose to allow buyers
to select custom speeds if the buyer has a buyout port.

Sample Request

10

15

20

25

30

35

40

Response Fields:
result
Description Result of the operation indicating whether it was
successful. Valid values are SUCCESS and ERROR
Type String
Require Yes
Default None
Exampl SUCCESS
message
Descript Success Message
Type string
Require Yes
Default None
Exampl The Seller Service Profile has been Created
more_info

Descript Additional
Type string
Require No
Default None
Example

Sample Response:

HTTP/1.1 200 Created

“result”™ “SUCCESS”,
“message’™: “The Seller Service Profile has been Created successfully”,

5. s

“more_info”:

POST Ports to Seller Service Profiles

Description: This implementation of the POST operation
enables given ports (owned by the user) for seller exchange
service offering. In particular, the operation adds ports to an
existing seller service profile.

Note: A Seller Service Profile will have to be Approved
for this operation to be possible. Rejected or Pending Seller
Service Profiles will not be allowed to be edited and ports
can’t be added until it is in Approved status.

POST http://<HostName>/ecx/vl/sellerserviceprofiles

“name”: “TestServicel123”, “availability_status™: “In_Trial_Testing”,

“virtual_circuit_label”: “Virtual Connection Name”, “service_type”:

“Seller Service Connectivity”, “api_available”: “TRUE”,
“auth_key_label”: “Authorization Key”,

“port_encapsulation”: “QNQ”, “connection_service_type”:

“Hybrid”, “require_redundancy”: “TRUE”,

“secondary_vlan_same”: “TRUE”, “capture_buyer_bgp_asn™:

“FALSE”, “capture_buyer_peer_ip”: “TRUE”,

“capture_seller_peer_ip”: “TRUE”,

“capture_virtual_private_gateway”: “TRUE”,

“threshold_alert_contacts™: “userl @equinix.com,user@equinix.com”,

“notification_contacts™: “user2@equinix.com”, “allow_custom_speed”: “TRUE”,

“ports™: [
“GSE_Test-027,
“GSE_Test-03”
1,
“vlan_speeds™: [
“Up to 200MB”,
“Up to 500MB”,
“Up to 1G”

1

“alert_percentage’: “90”

}

US 11,936,518 B2

47
Request URIs:
POST
http://<HostName>/ecx/v1/sellerserviceprofiles/{profile_
name}/ports

As another example, a DELETE operation will remove 5

the port from the Seller Service Profile, a response with
HTTP Code 200 is returned if operation is successful. There
cannot be an active VC associated to the port which is being
deleted, if a virtual circuit already exists on the port, an error

48

message is displayed indicating that there is an existing
virtual circuit on the port.

At least one port must be present in a service profile.

As another example, a PUT operation will be used to edit
the existing Seller Service Profile, a response with HTTP
Code 200 is returned if operation is successful. The profile
state (Approved or Pending Approval) will not change
during the Edit operation.

The fields that can be updated in the put operation are:

Attribute

Req

Comments

Name

availability_status

virtual_circuit_label
service_type

api_available

auth_key_label

connection_service_type

require_redundancy

secondary_vlan_same

capture_buyer_bgp_asn

capture_buyer_peer_ip

capture_seller_peer_ip

capture_virtual_private_gateway

alert_percentage

threshold_alert_contacts

notification_contacts

ports

vlan_speeds

allow_custom_speed

Required

Required

Required
Required

Required

Required

Required

Required

Required

Required

Required

Required

Required

Optional

Optional

Required

Required

Required

Required

If the input matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the input matches the existing value in

DB then no change. If does not match then
the input value will be updated in DB.

If the input matches the existing value in DB
then no change.

If the input matches the existing value in DB
then no change.

If the input matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the input matches the existing value in

DB then no change. If does not match then
the input value will be updated in DB.

If the input matches the existing value in

DB then no change. If does not match then
the input value will be updated in DB.

If the input matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the input matches the existing value in DB
then no change.

If the input matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the input matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the value matches the existing value in DB
then no change. If does not match then the
input value will be updated in DB.

If the value matches the existing value in DB
then no change. If does not match then the input
value will be updated in DB. Valid values are
‘TRUE’ or ‘FALSE’.

The range is from 0 to 99. If not provided then
threshold_alert_contacts must also be
NULL/EMPTY.

If alert_percentage is provided then
threshold_alert_contacts must also be NOT-
NULL and provided with valid array of alert
contacts.

Update all the threshold_alert _contacts from
input into the DB. Existing contacts will be
removed and overridden with the new input
array.

Update all the ports from input into the DB.
Existing ports will be removed and overridden
with the new input array.

Update all the vlan_speed values from input into
the DB.

Existing speeds will be removed and overridden
with the new input array.

If the value matches the existing value in DB
then no change. If does not match then the input
value will be updated in DB. Valid values are
‘TRUE’ or ‘FALSE’.

US 11,936,518 B2

49

As another example, “GET My Seller Service Profiles”
can be used by sellers to get a list of all seller service profiles
they have created. This implementation of the GET opera-
tion returns a seller service profile passed as part of the
profile_name path parameter. Filtering by seller service
status is also available by setting a parameter.

Sample Request:

GET http:/<HostName>/ecx/v1/sellerserviceprofiles (get
all my seller service profiles)

GET hittp://<HostName>/ecx/v1/sellerserviceprofiles/{pro-
file_name} (get seller service profile by name)

GET http://<HostName>/ecx/v1/sellerserviceprofiles/
{profile_name}?status={valid status} (get seller service pro-
file by name and status)

GET http://<HostName>/ecx/v1/sellerserviceprofiles?
status={valid status} (get seller service profile by status)

As another example, GET assets can be used by sellers to
get details of assets owned by a Seller in a given metro
location. This implementation of the GET operation for
sellers returns a list of all assets including ports and virtual
circuits in a given metro. A seller can also be a Buyer and
hence the ‘asset type’ for a seller can be both ‘buyer’ and
“seller’.

Resource: Virtual Circuits

Description: Virtual Circuits

HTTP Method Request URI

GET fecx/vl/virtualeircuits
Jecx/vl/virtualeircuits/{virtual_circuit_id}

POST fecx/vl/virtualeircuits

GET Virtual Circuits:

Description: This implementation of the GET operation
returns a list of virtual circuits owned by the user. The virtual
circuits can be filtered based on their status. If no virtual
circuits are found matching the criteria, a response with
HTTP Code 204 is returned with no payload.

Request

Request URI(s):
GET http://<HostName>/ecx/v1/virtualcircuits?pending=
add
Filter Parameters:

pending

Description: Status of the virtual circuits. Possible values are
add

To get all the virtual circuits that are created by a buyer but
not yet accepted by the seller

delete

To get all the virtual circuits that are deleted by a buyer

but not yet accepted by the seller

Type string
Required No
Default None
Example add

Request Headers:

Header Attribute Description

Authorization Required. Specify the Oauth Bearer token

10

15

20

25

30

35

40

45

50

55

60

65

50
Request Fields:
None
Sample Request:

GET http:/<HostName>/ecx/v1/virtualcircuits ?pending=
add

Response
Response Fields

id
Description Virtual circuit ID
Type string
Required Yes
Default None
Example 4D34239266A3952695956A
name

Description Name of the virtual circuit
Type string
Required Yes
Default None
Example Steve CSP_A Test VC-7

buyer_port
Description buyer side port id
Type string
Required Yes
Default None
Example “GSE_QA-R-EE-01

cross_connect_id

Description Id of the physical port
Type string
Required Yes
Default None
Example 11111111

port_speed
Description The capacity of the port eg: 1 G or 10 G
Type string
Required Yes
Default None
Example 1G

cloud_service_name

Description Cloud Service Name
Type string
Required Yes
Default None
Example CSP_A_1

service_key
Description Service Key obtained from the Cloud Service
Type string
Required Yes
Default None
Example XXXXXXKXX-XXXX-KXXX-XXXX-XXXXXXKXXXXXX

buyer_vlan
Description Buyer side VLAN Id
Type string
Required Yes
Default None
Example 2004.*

bandwidth
Description Bandwidth
Type string
Required Yes
Default None
Example 200 MB

status

Description Status of the virtual circuit
Type string
Required No
Default None
Example BILLED

US 11,936,518 B2

51

-continued

created_date

Description Date the virtual circuit is created
Type string
Required Yes
Default None
Example 05/23/2014 01:21:54

created_by
Description The user who created the virtual circuit
Type string
Required Yes
Default None
Example tempuserl

email

Description Email of the user
Type string
Required Yes
Default None
Example test@cloudexchange.com

seller_port
Description Seller Port
Type string
Required No
Default None
Example GSE_QA-SJC-06GMR-CIS-2-SEC-A

metro_code
Description Code of the metro in which this Virtual Circuit is located.
Type string
Required Yes
Default None
Example N

ibx_name
Description Name of the IBX in which this Virtual Circuit is located
Type string
Required Yes
Default None
Example SvV1

Other example fields such as those included above in other

examples may be used.

Sample Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

“virtualcircuits™: [

“id” 1 “4D34239266A3952695956A”,
“name”: “Test Virtual Circuit”,
“buyer_port”: “GSE_QA-R-EE-017,
“cross_connect_id”: 111111117,
“portspeed”: “1G”,
“cloud_service_name”: “CSP_A_17,

», .

“service key”: “XXXXXXXX-KXXX-XXXX-XXXX-XXXXXKXKXXXXX”,
“buyer_vlan”: “2004.*”,

“bandwidth”: “Up to 200MB”,

“status”: “BILLED”,

“created_date™: “05/23/2014 01:21:54”,

“created_by™: “temp user”,

“email”: “test@cloudexchange.com”,

“seller_port™: “sellerport”,

“metro_code” : “SV”,
ibx_name” : “SV1”
Pl

10

20

25

30

35

40

45

50

55

60

65

52

Error Code in Response:

HTTP Status
Code Error Code Error Description
400 40001 Invalid Parameter Value
401 40102 Token Expired, need to login again
401 40104 Invalid Access Token
401 40105 User doesn’t have sufficient
privilege to perform the operation
406 Not Acceptable
415 Unsupported Media Type
500 Internal Server Error

PATCH Virtual Circuit:

Description: The PATCH operation can be used to per-
form the following three types of operations on a virtual
circuit by the seller:

Accept a Virtual Circuit created by a buyer

Reject a Virtual Circuit created by a buyer

Confirm the deletion of the Virtual Circuit by a buyer
Request

Request URI(s):

PATCH http:/<HostName>/ecx/v1/virtualcircuits/{vir-
tual circuit id}

Request Headers:

Header Attribute Description

Authorization Required. Specify the Oauth Bearer token

Request Fields:

action

Description Action on the resource. Valid values are
approve
Approve a virtual circuit created by a buyer
reject
Create a virtual circuit created by a buyer
confirm_delete
Confirm the deletion of the Virtual Circuit by a buyer
available
Update the status of Virtual Circuit is available after
approval
not_available
Update the status of Virtual Circuit to not available.

Type string
Required Yes
Default None
Example approve
port_name
Description Seller side Port Name
Type string
Required Yes
Default None
Example GSE_QA-SJC-06GMR-CIS-2-SEC-A
vlan_id

Description Seller side VLAN Id

Type string
Required Yes

Default None
Example XXXX-XKKXXX

redundant_vlan_id

reject_comment—seller side comment to explain the rejec-
tion of the virtual circuit

US 11,936,518 B2

Sample Request
PATCH http://<hostname>/ecx/vc2/virtualcircuit/4D34239266 A3952695956A
“action” : “approve”,
“port_name” : “GSE_QA-SJC-06GMR-CIS-2-SEC-A”,
“vlan_id” : “188”
¥
10
Response:] -continued
Response Fields:
result HTTP
Status Code Error Code Error Description
15 400 40008 Virtual Circuit cannot be deleted by seller
result as it is not deleted by the buyer
. . K 400 40009 Application specific error. Ex., duplicate
Description Result of the Operation indication whether it VLAN Id
. Wtra.s successful. Valid values are SUCCESS and ERROR 400 40010 Invalid value for grant_type. The acceptable
R}‘;piire d ;elsng value is “password”.
De%ault None 20 401 40101 Authentication Failed. Invalid Username or
Example SUCCESS Password. o
401 40102 Token Expired. Login again.
401 40103 Invalid API Key
Sample Response:
HTTP/1.1 200 OK
"result": "SUCCESS",
"message": "The requested virtual circuit has been rejected and the buyer has been
notified.”,
"more_info": "https://api.developer.cloudexchange.com/docs/api/messages/vcs/2”
¥
Error Code in Response: —continued
35
HTTP
HTTP Status Code Error Code Error Description
Status Code ~ Error Code Error Description -
401 40104 Invalid Access Token
400 40002 The value of VLAN should be between 401 40105 User doesn’t have sufficient privilege
1 and 4095 40 to perform the operation
400 40004 Enter a value for all required fields 404 Not Found
400 40007 Invalid Field Value 405 Method not Allowed
400 40008 Virtual Circuit cannot be deleted by seller 406 Not Acceptable
as it is not deleted by the buyer 415 Unsupported Media Type
400 40009 Application specific error. Ex., duplicate 500 Internal Server Error
VLAN ID 45 503 Service Unavailable
401 40101 Authentication failed 504 Gateway Timeout
401 40102 Token Expired, Login again
401 40104 Invalid Access Token .
401 40105 User doesn’t have sufficient privilege Other endpoints 406 may have request/response schemes
106 ;‘; Pe[iform ﬂg operation similar to those provided above for Login 406 A, Ports 4063,
ot Acceptable 50 Metros 406C, Virtual Circuits 406E, and Cloud Services
415 Unsupported Media Type
500 Internal Server Error 406F.

All Error Codes

HTTP

Status Code Error Code Error Description

400 40001 Invalid Parameter Value

400 40002 The value of VLAN should be between
1 and 4095

400 40003 Cannot select the same port for Primary
and Secondary Service

400 40004 Enter a value for all required fields

400 40005 The number of characters exceeded

400 40006 Cannot select the same name for Primary
and Secondary Virtual Circuit

400 40007 Invalid Field Value

55

60

65

Login 406 A enables a secure channel for access to inter-
connection assets by authenticated and authorized partners
and customers. Moreover, the interconnection platform pro-
vides out-of-the-box capability to address security issues
(threat protection, SQL Injection protection, DDoS attack
prevention, JSON bomb protection, etc.). In some examples,
an entity uses its credentials (e.g., username, password, API
key, and/or API secret) to obtain a security token (e.g., an
OAuth 2.0 token) using Login 406A, the security token
thereafter ensuring that requests issued by the now-autho-
rized entity to other endpoints 406 are from an authorized
customer or partner.

API gateway 403, in some examples, transforms applica-
tion data formatted according to a request to any of end-
points 406 and uses the transformed application data to
make calls to orchestration engine 407. Orchestration engine

US 11,936,518 B2

55

407 may represent one or more real servers and/or virtual
machines configured to implement the cloud exchange plat-
form services 408A-408H (collectively, “platform services
408”) in this example. In response to invocation by API
gateway 403 A workflow and rules engine (not shown in
FIG. 3B) of orchestration engine 407 may apply defined
rules and policies to generate a workflow of cloud exchange
API services 409 that, in general, fit within an overall
function associated with one of platform services 408. As
illustrated, the platform services 408 include policy man-
agement 408A, profiles and configuration 408B, billing and
invoicing 408C, seller API integration 408D, virtual circuit
management 408E, network interface management 408F,
search and recommendation 408G, and inventory and loca-
tion discovery 408H. Each of platform services may repre-
sent a workflow and rules engine for a different aspect of
cloud service provisioning.

Cloud exchange API services 409A-409R (collectively,
“cloud exchange services 409”) represent services offered
by the interconnection platform to modify the cloud
exchange network infrastructure, manage content, manage
incidents, manage inventory and capacity, ensure secured
access, and manage orders/billing for providers and custom-
ers, as examples. Any of cloud exchange services 409 may
itself represent a bundle of microservices for request/re-
sponse transactions invokable by orchestration engine 407
managing a workflow.

Cloud exchange services 409 includes request validation
409A, authorization and auditing 409B, account and profile
management 409C, inventory management 409D, capacity
management 409E, network provisioning 409F, credit check
validator 409G, billing 409H, seller API integration 4091,
location 409], trouble ticket management 409K, localization
409L, usage statistics 409M, recommendation 409N, sched-
ulers and batch processors 4090, notifications 409P, error
parser 409Q, and content management 409R. Seller API
integration 4091 may enable orchestration engine 407 to
invoke software interfaces of seller applications of CSPs to,
e.g., request that the seller application confirm addition or
deletion of virtual circuits (as requested by the NSP/cus-
tomer) on behalf of the seller.

FIG. 4 is a block diagram showing an alternative repre-
sentation of an interconnection platform 103 for a cloud
exchange according to techniques described in this disclo-
sure. In this diagram, the technical architecture for intercon-
nection platform 103 includes an API services layer 420 for
validating and satisfying API queries, validating and satis-
fying API commands, and integrating subsystems 120 with
the interconnection orchestration engine 407. One or more
real servers and/or virtual machines of a data center may
execute each of interconnection orchestration engine 407,
services of API services layer 420, and sub-systems 120.
Interconnection API endpoints 406 are example API end-
points by which API consumers 402 (FIG. 3A) may manage
cloud exchange interconnections.

Workflow management and routing component 410 man-
ages workflows and routes API calls to endpoints 406 to
engines 412A-412] (collectively, “engines 412”") that per-
form consolidated functionality by invoking various micro-
services of API services layer 420. Engines 412 include
authentication and authorization engine 412A; configura-
tion, audit, and tracking engine 412B; API command con-
trollers 412C; API query controllers 412D; service compo-
sition engine 412E; order management engine 412F;
notification engine 412G; recommendation and analytics
engine 412H; interconnection interface engine 412I; and
API workflow and rules repository 412].

30

40

45

50

55

56

Examples API services of API services layer, as illus-
trated, include API query services 422A having request
parameter validator services 424 A and query provider ser-
vices 424B; API command services 422B having request
body validator services 424C and command provider ser-
vices 424D; and integration fagade services 422C having
request delegator and service adapter 424E and response
parsing and transformation 424F.

Examples of sub-systems 120 are illustrated in FIG. 4.
Identification and access management system 426A per-
forms authentication and authorization to valid access to the
interconnection platform services. Seller API integration
module 426B facilitates integration of the interconnection
platform 103 with cloud service provider APIs for creating
and validating interconnections with cloud service provider
networks, as described elsewhere herein. Cloud exchange
database 428 represents a configuration database describing
the configuration of the cloud exchange managed by inter-
connection platform 103. Network system 426C provisions,
configures, queries, and otherwise controls the network
infrastructure of the cloud exchange managed by intercon-
nection platform 103. Order management system 426D
performs end-to-end management of customer orders for,
e.g., virtual circuits. Incident management system 426E
facilitates handling errors in the cloud exchange managed by
interconnection platform, such as by alerting the cloud
exchange provider, notifying customers, etc. Content man-
agement system 426F manages content for the interconnec-
tion platform 103.

FIGS. 5-11 are flow diagrams each illustrating a call flow
and operations performed by example components of an
interconnection platform for a cloud exchange, as described
in this disclosure.

In the example of FIG. 5, API consumers 402 (e.g., a
buyer/seller/third party) can make use of services 409 to
manage cloud exchange interconnections. FIG. 5 illustrates
a process which can be used for virtual circuit creation
applicable to all Cloud Service Providers (CSPs). For
example, one of API consumers 402 can pass login infor-
mation, such as one or more of a user name, password, API
key, and API secret, to API gateway 403 (454A). API
gateway 403 performs API key and API secret validation
(454B), interacts with identity management and federation
450 (454C, 454D), and provides an OAuth 2.0 token back to
the API developer 402 (454E). API developer 402 receives
the OAuth 2.0 token and can invoke an API endpoint (e.g.,
one of API endpoints 406) by providing the OAuth 2.0 token
and one or more parameters to API gateway 403 (454F). API
gateway 403 may perform a data format transformation
(e.g., XML, JSON) (454G) and OAuth 2.0 token validation
(454H). API gateway 403 then contacts orchestration engine
407 to invoke the cloud exchange platform service (456A).

Orchestration engine 407 orchestrates an APl workflow
based on defined rules and responses. For example, work-
flow and rules engine 306 of orchestration engine 407 can
orchestrate the API workflow based on one or more of
policies 308A, profiles 308B, configurations 308C, and
micro services 308D (FIG. 2). Generally speaking, orches-
tration engine 407 can invoke one or more services 409 in
parallel or in a defined order based on configured rules
and/or policies. In the example of FIG. 5, orchestration
engine 407 invokes service A (460A) and service B (460B)
of services 409, then receives a response from service A
(460C) and receives a response from service B (460D).
Orchestration engine 407 then invokes service C (460F) and
receives a response from service C (460F). Orchestration
engine 407 sends to API gateway 403 a response from the

US 11,936,518 B2

57

cloud exchange platform service (456B). API gateway 403
receives the response from the cloud exchange platform
service, and may perform a data format transformation (e.g.,
XML, JSON) on the information received in the response
(4541). API gateway 403 sends one or more response
headers and body to API developer 402 that invoked the API
endpoint (4547).

In this manner, orchestration engine 407 provides an
interconnection platform for a cloud exchange, making
interconnection asset information available to API consum-
ers 402 through machine-to-machine interaction. The pro-
cess outlined in FIG. 5 may be applied to different use cases,
such as for allowing API consumers to obtain information
about one or more virtual circuits, allowing API consumers
to obtain information about one or more interconnection
assets (e.g., metro-based cloud exchanges, cloud exchange
points, ports of cloud exchanges), allowing sellers to define
parameters for connectivity, allowing API consumers to
obtain information about cloud service profile and attributes
expected for creation of a virtual circuit, or near real-time
deletion of virtual circuits by buyers.

FIG. 6 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in making inter-
connection asset information available to API consumers
402 through machine-to-machine interaction. FIG. 6
includes some operations similar to those described above
respect to FIG. 5. In response to receiving a request from
API gateway 403 invoking the cloud exchange platform
service, orchestration engine 407 can orchestrate an API
workflow based on defined rules and responses. For
example, FIG. 6 allows API consumers 402 to obtain
information such as an OAuth 2.0 token from permission
data store 452 through machine-to-machine interaction. Spe-
cifically, API gateway 403 can send a user name and
password received from API developer 402 (454A), after
validation (454B), to identity management and federation
450 (454C), which in turn provides this information to
permission data store 452 (462A), which returns a user name
and user key to identity management and federation 450
(462B). Identity management and federation 450 may per-
form SAML to OAuth mapping (462C), and provides an
OAuth token to API gateway 403 (454D). API gateway 403
can perform an OAuth Token to Gateway OAuth 2.0 map-
ping (462D), and may optionally perform an XML/JSON
conversion (462E). API gateway 403 then provides the
OAuth 2.0 token to API developer 402 (454E).

FIG. 7 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in making inter-
connection asset information available to API consumers
402 through machine-to-machine interaction. FIG. 7
includes some operations similar to those described above
respect to FIG. 5. In response to receiving a request from
API gateway 403 invoking the cloud exchange platform
service (470E), orchestration engine 407 can orchestrate an
API workflow based on defined rules and responses. For
example, FIG. 7 shows how orchestration engine 407 can
invoke a port request parameter validation service of ser-
vices 409 specifying port parameters that were included in
the initial request from API developer 402 invoking the ports
endpoint (470F). Orchestration engine 407 receives a
response from the port request parameter validation service
indicating whether the port request parameter(s) are valid
(470G). Orchestration engine 407 can then invoke a port
query service (470H) and receive a response from port query
service (4701), e.g., specifying specific port information

10

15

20

25

30

35

40

45

50

55

60

65

58

based on the port request parameters. Orchestration engine
407 can include the port information in the response from
the cloud exchange platform service to APl gateway 403
(470]), and API gateway 403 in turn after data transforma-
tion (470K) can provide the port information to API con-
sumers 402 (470L).

FIG. 8 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in making inter-
connection asset information available to API consumers
402 through machine-to-machine interaction. FIG. 8
includes some operations similar to those described above
respect to FIG. 5. In response to receiving a request from
API gateway 403 invoking the cloud exchange platform
service (472E), orchestration engine 407 can orchestrate an
API workflow based on defined rules and responses. For
example, FIG. 8 shows how orchestration engine 407 can
invoke a metro request parameter validation service of
services 409 specifying metro parameters that were included
in the initial request from API developer 402 invoking the
metros endpoint (472F). Orchestration engine 407 receives
a response from the metro request parameter validation
service, e.g., indicating whether the metro request
parameter(s) are valid (472G). Orchestration engine 407 can
then invoke a metro query service (472H) and receive a
response from metro query service, e.g., specifying specific
metro information based on the metro request parameters
(4721). Orchestration engine 407 can include the metro
information in the response from the cloud exchange plat-
form service to API gateway 403 (472J), and API gateway
403 in turn after data transformation (472K) can provide the
metro information to API consumers 402 (472L).

FIG. 9 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in making inter-
connection asset information available to API consumers
402 through machine-to-machine interaction. FIG. 9
includes some operations similar to those described above
respect to FIG. 5. In response to receiving a request from
API gateway 403 invoking the cloud exchange platform
service (474E), orchestration engine 407 can orchestrate an
API workflow based on defined rules and responses. For
example, FIG. 9 shows how orchestration engine 407 can
invoke a cloud service request parameter validation service
of services 409 specifying cloud service parameters that
were included in the initial request from API developer 402
invoking the cloud services endpoint (474F). Orchestration
engine 407 receives a response from the cloud service
request parameter validation service, e.g., indicating
whether the cloud service request parameter(s) are valid
(474G). Orchestration engine 407 can then invoke a cloud
service query service (474H) and receive a response from
cloud service query service, e.g., specifying specific cloud
service information based on the cloud service request
parameters (4741). Orchestration engine 407 can include the
cloud service information in the response from the cloud
exchange platform service to API gateway 403 (474]), and
API gateway 403 in turn after data transformation (474K)
can provide the cloud service information to API consumers
402 (474L).

FIG. 10 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in making inter-
connection asset information available to API consumers
402 through machine-to-machine interaction. FIG. 10
includes some operations similar to those described above
respect to FIG. 5. In response to receiving a request from

US 11,936,518 B2

59

API gateway 403 to view a virtual circuit and invoking the
cloud exchange platform service (476F), orchestration
engine 407 can orchestrate an APl workflow based on
defined rules and responses. For example, FIG. 10 shows
how orchestration engine 407 can invoke a virtual circuit
request parameter validation service of services 409 (476F)
specifying virtual circuit parameters that were included in
the initial request (476A) from API developer 402 invoking
the virtual circuit endpoint. Orchestration engine 407
receives a response from the virtual circuit request param-
eter validation service, e.g., indicating whether the virtual
circuit request parameter(s) are valid (476G). Orchestration
engine 407 can then invoke a virtual circuit query service
(476H) and receive a response from virtual circuit query
service, e.g., specifying specific cloud service information
based on the virtual circuit request parameters (4761).
Orchestration engine 407 can include the virtual circuit
information in the response (476J) from the cloud exchange
platform service to API gateway 403, and API gateway 403
in turn after data transformation (476K) can provide the
virtual circuit information to API consumers 402 (476L.).

FIG. 11 is a flow diagram illustrating a call flow and
operations performed by example components of an inter-
connection platform for a cloud exchange in dynamically
managing interconnection assets for API consumers 402
through machine-to-machine interaction. FIG. 11 includes
some operations similar to those described above respect to
FIG. 5. In response to receiving a request from API gateway
403 invoking the cloud exchange platform service (480E),
orchestration engine 407 can orchestrate an API workflow
based on defined rules and responses. For example, FIG. 11
shows how orchestration engine 407 can invoke a metro
service (480F) to validate a metro code included in the initial
request from API developer 402 invoking the virtual circuit
endpoint (480A). Orchestration engine 407 receives a
response from the metro service (480G).

Orchestration engine 407 can then validate a cloud service
provider name with a cloud service (480H), and receive a
response from cloud service (4801). Orchestration engine
407 can then invoke a port service to validate the seller and
buyer ports (480J), and receive a response from the port
service specifying whether the ports are valid for the
requested virtual circuit (480K). Orchestration engine 407
can then invoke a network service provisioning service (e.g.,
network provisioning service 409F, FIG. 3B) to automati-
cally configure the virtual circuit within the cloud exchange
(480L), and receive a response from the network service
provisioning service (480M). Orchestration engine 407 can
then invoke a billing service (e.g., billing service 409H, F1G.
3B) (480N) and receive a response from the billing service
(4800). Orchestration engine 407 can then invoke a CSP API
to complete virtual circuit creation (480P), and receive a
response from the CSP API (480Q)). Orchestration engine
407 can include the virtual circuit information describing,
e.g., whether the virtual circuit creation was successful,
confirmation parameters, and connectivity parameters, in the
response from the cloud exchange platform service to API
gateway 403 (480R), and API gateway 403 in turn after data
transformation (480S) can provide the virtual circuit infor-
mation to the requesting API consumers 402 (4807T).

In this manner, the techniques of this disclosure can be
used to make Interconnection Asset Information such as
Virtual Circuits and Ports information available to develop-
ers through machine-to-machine interaction. In some
examples, the techniques of this disclosure can allow access
to an Interconnection platform to enable creation or modi-
fication of Virtual Circuits of varying bandwidths through

10

15

20

25

30

35

40

45

50

55

60

65

60

machine-to-machine interaction. In some examples, the
techniques of this disclosure can allow Sellers (e.g., CSPs,
NSPs and managed SP (MSPs)) the access to the Intercon-
nection platform to obtain customized analytics about com-
petitor presence in different metros and data centers through
machine-to-machine interaction.

In some examples, the techniques of this disclosure can
allow Buyers (e.g., NSPs, Enterprises) the access to the
Interconnection Platform to obtain customized analytics
about cloud service presence in areas where they already
have port presence through machine-to-machine interaction.
In some examples, the techniques of this disclosure can
allow Sellers (CSPs, NSPs, and MSPs) the access to Inter-
connection platform to obtain customized analytics about
buyer port density across different metros and data centers
through machine-to-machine interaction. In some examples,
the techniques of this disclosure can allow automated API
request interception to validate partner access to intercon-
nection assets, thus ensuring security of partner assets
through machine-to-machine interaction. In some examples,
the techniques of this disclosure can allow on demand access
to dynamically set up and tear down virtual circuits through
machine-to-machine interaction and direct access to inter-
connection platform resources. In some examples, the tech-
niques of this disclosure can allow on demand access to
schedule setup and tear down of virtual circuits at pre-
defined intervals through machine-to-machine interaction
and direct access to interconnection platform resources. In
some examples, the techniques of this disclosure can accept
and Allow request for virtual circuit speed bursting at certain
pre-scheduled times to buyers (NSPs and enterprises) to
capitalize on lower bandwidth usage and enable faster
completion of batch processing tasks such as data backup or
restore through machine-to-machine interaction (speed
bursting).

In some examples, the techniques of this disclosure can
allow detailed and customized analytics on virtual circuit
traffic usage across data centers, metros and regions through
machine-to-machine interaction. In some examples, the
techniques of this disclosure can provide detailed and cus-
tomized recommendations through APIs to partner devel-
opers and business teams on setting up their ports and virtual
circuits for optimal performance, low latency and better
interconnectivity through machine-to-machine interaction.
In some examples, the techniques of this disclosure can
allow machine based access to interconnection assets
through the use of APIs. In some examples, the techniques
of this disclosure can allow on demand setup of virtual
circuits between buyers and sellers through the use of API
ecosystem. In some cases, APIs may enable a much better
connectivity between buyers and sellers through the avail-
ability of location discovery, asset discovery, cloud service
discovery, customized traffic analytics, customized usage
analytics, superior recommendation engine and an end-to-
end automated virtual circuit provisioning system, for
example, while abstracting the complexity of the entire
interconnection platform. APIs can also enable a secure
channel for access to interconnection assets outside of the
cloud exchange domain by authenticated and authorized
partners and customers. The API platform provides out of
the box capability to address security issues (e.g., threat
protection, SQL Injection protection, DDoS attack preven-
tion, JSON bomb protection, etc.).

Example details of a cloud-based service exchange are
found in U.S. Provisional Patent Application No. 62/149,

US 11,936,518 B2

61
374, entitled “Cloud-based Services Exchange” and filed on
Apr. 17, 2015, which is incorporated herein by reference in
its entirety.

Further example details of services exchanges for Ether-
net and L3/Internet with direct L3/BGP peering are found in
U.S. Pat. No. 8,537,845 entitled “REAL TIME CONFIGU-
RATION AND PROVISIONING FOR A CARRIER ETH-
ERNET EXCHANGE?”, filed Sep. 13, 2012; U.S. Utility
application titled “REAL TIME CONFIGURATION AND
PROVISIONING FOR A CARRIER ETHERNET
EXCHANGE” filed on Sep. 2, 2010 having application Ser.
No. 12/875,054, which claims the benefit of and priority to
all three: 1) U.S. Provisional application titled “ETHERNET
EXCHANGE” filed on Dec. 10, 2009 having application
Ser. No. 61/285,371 and is incorporated herein by reference
in its entirety; 2) U.S. Provisional application titled “PRI-
VATE NETWORK CONNECTIVITY PLATFORM” filed
on Sep. 4, 2009 having application Ser. No. 61/239,997 and
is incorporated herein by reference in its entirety; and 3)
U.S. Provisional application titled “ETHERNET
EXCHANGE” filed on Apr. 12, 2010 having application Ser.
No. 61/323,066 and is incorporated herein by reference in its
entirety, and U.S. patent application titled “REAL TIME
CONFIGURATION AND PROVISIONING FOR A CAR-
RIER ETHERNET EXCHANGE” filed on Sep. 2, 2010
having application Ser. No. 12/875,054. Each of the above
patents and patent applications are incorporated herein by
reference in their respective entireties.

FIG. 12 is a block diagram illustrating further details of
one example of a computing device that operates in accor-
dance with one or more techniques of the present disclosure.
FIG. 12 may illustrate a particular example of a server or
other computing device 500 that includes one or more
processor(s) 502 for executing any one or more of API
gateway 112/403, orchestration engine 118/407, sub-sys-
tems 120, or any other computing device described herein.
Other examples of computing device 500 may be used in
other instances. Although shown in FIG. 12 as a stand-alone
computing device 500 for purposes of example, a computing
device may be any component or system that includes one
or more processors or other suitable computing environment
for executing software instructions and, for example, need
not necessarily include one or more elements shown in FIG.
12 (e.g., communication units 506; and in some examples
components such as storage device(s) 508 may not be
co-located or in the same chassis as other components).
Computing device 500 may be located and execute, for
example, within any of cloud exchange points 128, another
interconnection facility, or at a branch office or cloud
computing environment employed or used by a cloud
exchange provider.

As shown in the specific example of FIG. 12, computing
device 500 includes one or more processors 502, one or
more input devices 504, one or more communication units
506, one or more output devices 512, one or more storage
devices 508, and user interface (UI) device 510, and com-
munication unit 506. Computing device 500, in one
example, further includes one or more applications 522,
virtual concept-building application 524, and operating sys-
tem 516 that are executable by computing device 500. Each
of components 502, 504, 506, 508, 510, and 512 are coupled
(physically, communicatively, and/or operatively) for inter-
component communications. In some examples, communi-
cation channels 514 may include a system bus, a network
connection, an inter-process communication data structure,
or any other method for communicating data. As one
example, components 502, 504, 506, 508, 510, and 512 may

10

15

20

25

30

35

40

45

50

55

60

65

62

be coupled by one or more communication channels 514.
Computing device 500 may be located and execute, for
example, within any of cloud exchange points 128, another
interconnection facility, or at a branch office or cloud
computing environment employed or used by a cloud
exchange provider.

Processors 502, in one example, are configured to imple-
ment functionality and/or process instructions for execution
within computing device 500. For example, processors 502
may be capable of processing instructions stored in storage
device 508. Examples of processors 502 may include, any
one or more of a microprocessor, a controller, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), or equiva-
lent discrete or integrated logic circuitry.

One or more storage devices 508 may be configured to
store information within computing device 500 during
operation. Storage device 508, in some examples, is
described as a computer-readable storage medium. In some
examples, storage device 508 is a temporary memory, mean-
ing that a primary purpose of storage device 508 is not
long-term storage. Storage device 508, in some examples, is
described as a volatile memory, meaning that storage device
508 does not maintain stored contents when the computer is
turned off. Examples of volatile memories include random
access memories (RAM), dynamic random access memories
(DRAM), static random access memories (SRAM), and
other forms of volatile memories known in the art. In some
examples, storage device 508 is used to store program
instructions for execution by processors 502. Storage device
508, in one example, is used by software or applications
running on computing device 500 to temporarily store
information during program execution.

Storage devices 508, in some examples, also include one
or more computer-readable storage media. Storage devices
508 may be configured to store larger amounts of informa-
tion than volatile memory. Storage devices 508 may further
be configured for long-term storage of information. In some
examples, storage devices 508 include non-volatile storage
elements. Examples of such non-volatile storage elements
include magnetic hard discs, optical discs, floppy discs, flash
memories, or forms of electrically programmable memories
(EPROM) or electrically erasable and programmable (EE-
PROM) memories.

Computing device 500, in some examples, also includes
one or more communication units 506. Computing device
500, in one example, utilizes communication units 506 to
communicate with external devices via one or more net-
works, such as one or more wired/wireless/mobile networks.
Communication units 506 may include a network interface
card, such as an Ethernet card, an optical transceiver, a radio
frequency transceiver, or any other type of device that can
send and receive information. Other examples of such
network interfaces may include 3G and WiFi radios. In some
examples, computing device 500 uses communication unit
506 to communicate with an external device.

Computing device 500, in one example, also includes one
or more user interface devices 510. User interface devices
510, in some examples, are configured to receive input from
a user through tactile, audio, or video feedback. Examples of
user interface devices(s) 510 include a presence-sensitive
display, a mouse, a keyboard, a voice responsive system,
video camera, microphone or any other type of device for
detecting a command from a user. In some examples, a
presence-sensitive display includes a touch-sensitive screen.

One or more output devices 512 may also be included in
computing device 500. Output device 512, in some

US 11,936,518 B2

63

examples, is configured to provide output to a user using
tactile, audio, or video stimuli. Output device 512, in one
example, includes a presence-sensitive display, a sound
card, a video graphics adapter card, or any other type of
device for converting a signal into an appropriate form
understandable to humans or machines. Additional examples
of output device 512 include a speaker, a cathode ray tube
(CRT) monitor, a liquid crystal display (LCD), or any other
type of device that can generate intelligible output to a user.

Computing device 500 may include operating system 516.
Operating system 516, in some examples, controls the
operation of components of computing device 500. For
example, operating system 516, in one example, facilitates
the communication of one or more applications 522 and
interconnection platform application(s) 524 with processors
502, communication unit 506, storage device 508, input
device 504, user interface devices 510, and output device
512.

Application 522 and interconnection platform
application(s) 524 may also include program instructions
and/or data that are executable by computing device 500.
Example interconnection platform application(s) 524
executable by computing device 500 may include any one or
more of orchestration engine module 550, APl gateway
module 552, and sub-systems 554, each illustrated with
dashed lines to indicate that these may or may not be
executable by any given example of computing device 500.

Orchestration engine module 550 may include instruc-
tions for causing computing device to perform one or more
of the operations and actions described in the present
disclosure with respect to orchestration engine 118 and
orchestration engine 407. As one example, orchestration
engine module 550 may include instructions that cause
computing device 500 to organize, direct and integrate
underlying software sub-systems of the interconnection plat-
form for a cloud exchange for managing various aspects of
interconnection within the network infrastructure as well as
cloud services management. The orchestration engine mod-
ule 550 may, for example, provide a rule-drive workflow
engine that operates between the APIs and the underlying
interconnect platform of a cloud exchange that includes
sub-systems and network infrastructure.

API gateway module 552 may include instructions for
causing computing device to perform one or more of the
operations and actions described in the present disclosure
with respect to API gateway 112 and API gateway 403. As
one example, API gateway module 403 may include instruc-
tions that cause computing device 500 to expose a collection
of software interfaces, e.g., APIs 114, that define the meth-
ods, fields, and/or other software primitives by which appli-
cations may invoke the interconnection platform. These
software interfaces allow carriers and customers program-
mable access to capabilities and assets of a cloud exchange.

Sub-systems 554 may include instructions for causing
computing device to perform one or more of the operations
and actions described in the present disclosure with respect
to sub-systems 120.

FIG. 13 is a block diagram illustrating an example cloud
exchange system 700 showing an example logical architec-
ture of an orchestration engine 704 in further detail. Orches-
tration engine 704 may represent, for example, any of
orchestration engine 118 (FIGS. 1A-1C and FIG. 2), orches-
tration engine 407 (FIGS. 3A-3B, 4-5, 7-11), and orches-
tration engine module 550 of computing device 500 (FIG.
12).

The orchestration engine 704 operates as part of an
overall interconnection platform (e.g., interconnection plat-

5

10

15

20

25

30

35

40

45

50

55

60

65

64

form 103 of FIGS. 1B, 1C) to seamlessly set up intercon-
nection assets including virtual connections (e.g., virtual
circuits) between buyers and sellers, such as between an
enterprise and a cloud service provider. In the example of
FIG. 13, orchestration engine 704 includes two major com-
ponents: orchestrator 706 and microservices 708 provided
by the cloud exchange system 700. Orchestration engine 704
also includes service discovery engine 710 and process
manager 712. Orchestration engine 704 may represent a
centralized or distributed application and may execute on a
management device such as one or virtual machines and/or
real servers of data center 101 (FIG. 1A).

Microservices 708 each implements a set of focused and
distinct features or functions, and a microservice conforms
to (or is usable in) an architectural pattern in which many
dozens or even hundreds of microservices can be indepen-
dently developed and deployed. Microservice 708 may be
organized around a business capability (e.g., API dock
engine 726, REST interfaces 728, socket connection 730,
monitoring 732, and notifications 734) and may implement
a “broad-stack” of software for the business capability,
including persistent storage and any external collaboration.
The various microservices 708 expose interfaces that enable
the microservices 708 to invoke one another to exchange
data and perform the respective sets of functions in order to
create an overall application. In some examples, microser-
vices 708 may represent or include other microservice
examples described in this disclosure, e.g., microservices for
implementing cloud exchange services 409, API query ser-
vices 422A, API command services 422B, integration fagade
services 422C, any microservices provided by sub-systems
120, and microservices 308D.

Each of microservices 708 may adhere to a well-defined
Application Programming Interface (API) and may be
orchestrated, by invoking the API of the microservice 708,
according to a workflow performed by the orchestrator 706.
The orchestrator 706 component “orchestrates” the micro-
services 706 based on rules or workflow defined for various
APIs exposed by the orchestrator 706 (e.g., via an API
server/gateway such as API gateways 112, 403, and 718) and
invokable by API requests that conform to the respective
API contracts. The orchestrator 706 may handle API
requests generically by following an established set of rules,
or workflows, that allow a fully-customizable API contract
for each external channel to API consumers, whether a
portal, mobile application, or developer API, for instance.
The workflow may be implemented in some examples as a
state machine. Because of variability in the request/response
contract for each channel, the orchestrator 706 described in
this disclosure may embrace and provide equal support for
the differences across different channels.

Orchestration engine 704 organizes, directs and integrates
underlying software and network sub-systems for managing
various aspects of interconnection for the cloud exchange.
Orchestrator 706 of orchestration engine 704 may, for
example, execute a rule-driven workflow engine that oper-
ates between the APIs and the underlying interconnect
platform of the exchange. For example, orchestrator 706
may correspond to workflow and rules engine 306 of FIG.
2 that operates in accordance with policies 308A. In this
way, orchestration engine 704 can be used by customer-
proprietary applications and the APIs for direct participation
within the interconnection platform of the cloud exchange.

As described herein, orchestration engine 704 synthesizes
the information and actions from underlying sub-systems of
the interconnection platform to formulate intelligent next
steps and responses to dynamic requests made by the

US 11,936,518 B2

65

customer applications. As such, orchestration engine 704
abstracts the complexity of the underlying software and
network sub-systems of the cloud exchange by providing a
uniform, simplified, and secured means to access the inter-
connection platform.

In the example of FIG. 13, cloud exchange system 700
provides multiple platforms allowing access to the cloud
exchange functionality provided by cloud exchange system
700, including web proxy 714, SaaS web portal 716, and
API gateway 718. Orchestration engine 704 services all
requests coming in from these platforms, regardless of
whether the requests were made via cloud exchange portal
713, white label portal 715 developed by the cloud exchange
provider but labeled for the customer, and APIs 717. For
example, web proxy 714, SaaS web portal 716, and Web
proxy 714, SaaS web portal 716, and API gateway 718
represent different channels for requests to access the
orchestrator 706. For example, a customer may use a web
application to log in to the portal 713 and access services of
the interconnection platform. As another example, a cus-
tomer or developer may use APIs to access cloud exchange
data. Orchestration engine 704 can receive requests entered
using a cloud exchange portal 713 via web proxy 714.
Orchestration engine 704 can receive requests entered using
a white label portal 715 via a SaaS web portal 716. Orches-
tration engine 704 may communicate with SaaS web portal
716 (e.g., a CSP portal) using a network protocol such as
Hyper Text Transfer Protocol (HTTP), for example, or other
network protocol. Orchestration engine 704 can receive
requests entered using APIs 717 via an API gateway 718.
API gateway 718 may represent any of the API gateways
described herein and uses service discovery engine 710 to
identify service instances to which to route requests received
via APIs 717.

As described briefly above, microservices 708 represent
cloud exchange functions that are broken down into smaller
services (microservices) organized around business capabil-
ity. The microservices 708 may execute a broad-stack soft-
ware implementation for that business area, including per-
sistent storage, and any external collaboration, such as with
third party systems 724.

Orchestrator 706 receives a request from the web proxy
714, portal 716, or API gateway 718, and seamlessly coor-
dinates multiple microservices of microservices 708 to ser-
vice the request. For example, based on the received request,
orchestrator 706 may determine a workflow that automati-
cally calls the microservices needed to service the request.
For example, API gateway 718 passes an input, orchestra-
tion engine 704 processes the input, calls multiple micros-
ervices 708 and obtains data needed to satisfy the contracts
needed by the API and sends a response to the API including
the data needed by the API. For example, to create a virtual
circuit, orchestrator 706 needs multiple microservice end-
points. For example, orchestrator 706 needs a metro, a port,
and billing information. These are all individual internal
APIs which are seamlessly orchestrated through orchestrator
706, as described herein. With a request/response operation,
the API (for instance) may invoke the metro microservice,
and the orchestration engine invokes a managed metro
routine (workflow) and performs required services to fulfill
the request with regard to that metro routine, via the micro-
service, and then sends back any data relevant to the
operation. Orchestration engine 704 may invoke cloud ser-
vice provider connectors from one of the microservices. In
this manner, orchestration engine 704 provides the service or
data requested by the customer in a seamless manner such
that the customer is not made aware of the underlying details

20

30

35

40

45

50

55

66

of the individual microservices being invoked according to
the workflow selected by the orchestrator 706 for servicing
the customer request.

In some examples, the microservices 708 may represent
microservices developed and provided by cloud service
providers. That is, orchestrator 706 may invoke a cloud
service provider interface accessible via one of the micro-
services. For example, Azure (provided by Microsoft Cor-
poration) may provide cloud services and expose an inter-
face accessible by one of the microservices 708 developed
for the purpose of managing the cloud services. The orches-
trator 706 can call a RESTful interface (an example of a
“CSP API” described elsewhere herein) to the microservice
provided by Azure to fulfill some of the functionality. For
example, to create a virtual connection from the cloud-
exchange application to a cloud service provider, the orches-
tration engine 704 may invoke an Azure-provided micros-
ervice to perform certain of the functions, such as enabling
a port. After invoking the Azure-provided microservice, the
orchestrator may invoke other microservices to implement
the overall workflow. For example, the orchestrator may
then invoke ordering, validation, and/or authentication
microservices. RESTful API endpoints/channels may pro-
vide accessibility to microservices.

In the example of FIG. 13, microservices 708 include an
internal API document engine API 726 (“API Doc Engine”),
REST interface microservice 728, socket connection micro-
service 730, monitoring microservice 732, notifications
microservice 734, and API service framework 722. Orches-
tration engine 704 also uses internal API service framework
722 to interact with various internal or third party systems
via APIs, when invoking one or more of microservices 708.
Microservices 708 may present API interfaces to orchestra-
tor 706 and execute in the API service framework 722. APIs
721A-721C (“APIs 721”) may be called by components of
a microservices layer of orchestration engine 704, and may
be considered microservice endpoints. APIs 721 are not
customer-facing APIs.

In the example of FIG. 13, orchestration engine 704 uses
API service framework 722 to interact with enterprise
systems 720 via private API 721A. Orchestration engine 704
uses API service framework 722 to interact with other
systems 723 via private API 721B. Orchestration engine 704
uses API service framework 722 to interact with third party
systems via a public API 721C, and to integrate cloud-based
services platforms into the cloud exchange.

FIG. 14 is a block diagram illustrating an example system
800 showing a reference architecture for an orchestration
engine 704 in further detail. Orchestration engine 704 may
represent, for example, any of orchestration engine 118
(FIGS. 1A-1C and FIG. 2), orchestration engine 407 (FIGS.
3A-3B, 4-5, 7-11), orchestration engine module 550 of
computing device 500 (FIG. 12), and orchestration engine
704 of FIG. 13. As one example, system 800 may represent
a different logical view of cloud exchange system 700 of
FIG. 13.

Orchestration engine 704 operates as part of an overall
interconnection platform (e.g., interconnection platform 103
of FIGS. 1B, 1C) to seamlessly set up interconnection assets
including virtual connections (e.g., virtual circuits) between
buyers and sellers, such as between an enterprise 840 and a
cloud service provider 842. For example, orchestration
engine 704 may seamlessly set up virtual circuits 150, 155,
160, 165, 170 between customer systems 196 of FIG. 1C.

Orchestration engine 704 may represented centralized or
distributed applications and may execute on a management
device such as one or virtual machines and/or real servers of

US 11,936,518 B2

67

data center 101 (FIG. 1A). Orchestration engine 704 may
receive requests for interconnection assets from various
customer systems. For example, orchestration engine 704
may receive requests from internal administrators (i.e.,
administrators belonging to the same entity as orchestration
engine 704) (“admin”), network service providers (NSP),
cloud service providers (CSP) 842, enterprises 840 and
developers. Orchestration engine 804 may receive the
requests at web proxy 810 via browser 812 A, at white label
SaaS 814 via browser 812B, or at API gateway 816 via API
818.

Orchestrator 806 can manage workflows for performing
such functions as manage port, manage metro, CSP detail,
order management, view virtual circuit, delete virtual cir-
cuit, search, support and tickets, monitoring and statistics,
analytics and recommendation, for example. Orchestrator
806 can also perform additional functions not shown,
including those described above with respect to orchestra-
tion engine 407. In some examples, orchestrator 806 may
maintain a library of workflows, from which orchestrator
can select and load a suitable workflow in response to
receiving a request via any of the channels mentioned above.

In some examples, orchestration engine 704 may run as a
set of virtual machines executing on a server network
device. Orchestration engine 704 may be built and run on a
software application platform such as Node.js. Microser-
vices may be enabled using a web application framework.
Microservices and workflows may be built and run as
distributed applications in software containers. Orchestra-
tion engine 704 may use in-memory grid caching using an
in-memory and persistent disk database.

Aspects of the orchestration engine 704 may be built on
Node.js or other similar platform that, e.g., provides an
event-driven architecture and a non-blocking /O API
designed to optimize an application’s throughput and scal-
ability for real-time web applications. Node.js is a light-
weight, open-source platform having that facilitates loosely-
coupled and scalable systems that communicate using, e.g.,
HTTP and JSON, which are built into Node.js. This may
facilitate microservice design principles for creating and
deploying microservices 708.

The orchestrator 706 may use state machines to imple-
ment workflows that invoke multiple microservices 706 in a
defined ordering to satisfy an API contract. Microservices
706 (and multiple instances of each of microservices 706)
may be deployed in separate containers for isolation and
modularity, while also providing enhanced quality and reli-
ability with integrated testing, logging, monitoring, and
diagnostic strategies. Container technology is a mechanism
for deploying units of work across a vast pool of compute
resources and has become a strategic deployment strategy
for scalability. Microservices and containers provide a con-
vergence of technical approaches to building scalable sys-
tems. Node.js is an open source platform that is optimized
for building highly scalable lightweight, asynchronous com-
municating processes and exposing APIs to any Web con-
sumer. Orchestration engine 704 may leverage Nodejs,
microservices, and containers, for implementation and
deployment as a microservices-based interconnection plat-
form for a cloud-based services exchange.

Orchestration engine 704 also includes functionality for
calling utility functions 819 including error framework,
logging, administration, notifications, auditing, and moni-
toring, for example. Utility functions 819 may include a
process manager to keep applications alive with zero down-
time, and which performs process monitoring, process log
watching, memory management, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

68

FIG. 14 also illustrates a plurality of internal microser-
vices 708 of orchestration engine 704 including, for
example, virtual circuit, port, link aggregation group (LAG),
metro, CSP detail, Quality of Service (QoS), customer
service and ticketing, search (e.g., CSP, NSP, locations,
ports, virtual circuits), assets and network inventory, lan-
guage, and service settings. Microservices 708 present indi-
vidual internal APIs (that is, internal to orchestration engine
706 and not exposed via API 818, e.g.) or microservice
endpoints. In some examples, microservices 708 may cor-
respond to microservices 308D of FIG. 2. For example, the
“metro” internal API of microservices 708 corresponds to a
microservice interface for a metro operation that is internal
to orchestration engine 704. An API consumer such as one
of API consumers 402 (FIG. 3A) may request a metro via
customer-facing metros API 406C of APIS 114 (FIG. 3A),
and orchestrator 706 will translate from the customer-facing
metros API 406C to the internal metro microservice 806.
Orchestrator 706 can select a workflow that ties together the
individual microservices that are needed to satisfy the cus-
tomer-facing metro API operation.

Orchestration engine 704 also includes functionality for
calling asynchronous jobs 817 including manual provision-
ing/de-provisioning, order scheduler, order status updater,
usage statistics, cloud service provider location discovery,
for example. The orchestrator 706 may call these jobs
asynchronously.

Orchestration engine 704 can interface with various sub-
systems 820A-820F (“sub-systems 820”), such as content
management system 820A, traffic management systems
820B, incidence management system 820C, port manage-
ment system 820D, ID and access management system
820E, and order management system 820F, for example.
Sub-systems 820 may correspond to sub-systems 120 of
FIGS. 1B, 1C, 2, and 4, for example. For example, content
management system 820A includes data associated with
content that may be distributed via a web application portal,
such as SaaS web portal 716. For example, traffic manage-
ment systems 820B provides traffic-related data for internal
cloud exchange platform traffic, such as at the port level or
virtual circuit level. In one example, when orchestrator 706
selects a workflow to provide a function relating to support
and tickets, orchestrator 706 uses one of microservices 708
(e.g., customer service and ticketing microservice) to inter-
face with one of sub-systems 820, such as incidence man-
agement system 820C, according to the selected workflow.
The microservice may connect to a database, connect using
a REST API, connect using a JSON call, or other mecha-
nism, to interface with the sub-systems 820.

In some examples, sub-systems 820 may apply the service
tasks orchestrated by orchestration engine 118, which may
include modifying any of cloud exchange points 128 to
perform the on-demand setup of virtual circuits between
CSPs 842 and enterprises 840, for example, or otherwise
manage cloud exchange interconnection assets such as ports,
metros, data centers, virtual circuits and virtual circuit
bandwidth, profiles, and configuration.

Orchestration engine 704 can interface with one or more
SDN controllers 832 for the network infrastructure of the
cloud-based services exchange. SDN controllers 832 may
reside within the cloud exchange platform data center, such
as data center 101 of FIG. 1. SDN controllers 832 may be
used to connect switches between point A to point B within
a cloud exchange network infrastructure. Techniques for
orchestrating SDN controllers in the context of a cloud-
based services exchange are described in further detail in
U.S. Provisional Patent Appln. No. 62/164,965, filed May

US 11,936,518 B2

69
21, 2015 and entitled “Active Panel Demarcation”; and in
U.S. Provisional Patent Appln. No. 62/216,804, filed Sep.
10, 2015 and entitled “Automated Fiber Cross-connect
Service within a Multi-tenant Interconnection Facility;”
each of which is incorporated by reference herein in its
entirety.

FIG. 15 is a flowchart illustrating an example workflow
performed by an orchestration engine in accordance with
example aspects of this disclosure. For purposes of example,
FIG. 15 is described with respect to orchestration engine 704
of FIGS. 13 and 14, but may likewise apply to other
examples of an orchestration engine described herein.

Orchestration engine 704 receives client requests for
cloud exchange platform services, such as via the cloud
exchange portal 814 or API gateway 816 (1500). Orches-
tration engine 704 sends the client request for cloud
exchange platform services to orchestrator 706 (1502).
Based on the client request, orchestrator 706 selects a
workflow from a workflow library or folder (e.g., worktflows
folder 1612 of FIG. 16 including workflows WF1, WF2,
WF3, and WF4), where the selected workflow contains the
set of tasks needed to fulfill the request through microservice
calls (1504). For example, orchestrator 706 may select the
workflow based on configured rules or policies (e.g., poli-
cies 308A of FIG. 2), and/or based on a profile associated
with the client (e.g., profiles 308B of FIG. 2). Orchestrator
706 will automatically load the selected workflow, and the
microservices execute according to the workflow (e.g.,
sequentially and/or in parallel) (1506). The workflows folder
1612 contains workflows that have been previously defined
(e.g., by cloud exchange developers) for each customer
endpoint. For example, there may be a first worktflow
defined for a metro customer endpoint and a second work-
flow defined for a port customer endpoint. Workflows pro-
vide a set of logic that uses one or more state machines as
a guide to indicate how to transfer from one state to another
to fulfill the request. A workflow defines a task orchestration.
Workflows provide a way to decompose a series of complex
operations down to a sequence of discrete tasks within a
state machine and executed by microservices to satisty
requests received via different request channels like portals
and API. Each request can have different associated domain
contracts. For a given request, orchestrator 706 selects a
workflow that uses a sequence of discrete tasks within a state
machine to satisfy the domain contract associated with the
request.

The microservices then return respective responses to
orchestrator 706 (1508). The responses may include data
provided by the microservice. Orchestrator 706 consolidates
the data received in the responses from each of the work-
flows, as necessary to fulfill the client request (1510).
Orchestration engine 704 then responds to the client request
for cloud exchange services (1512).

In this context, microservices are endpoints, and a task is
an action currently executing to fulfill a request. One
example task could be to call a set of microservices (end-
points), collectively. When you call a particular endpoint,
some data is returned, which may be data to be used by the
next endpoint, in a chain. In this manner, the workflow may
define a chain of tasks to be completed, where data obtained
in one task may be used in and/or may determine the next
task.

As one example, a cloud exchange customer may want to
connect to multiple different cloud service providers via the
cloud exchange platform. In this situation, orchestrator 706
has to call multiple APIs. In another example, a cloud
service provider can create a template for onboarding new

10

15

20

25

30

35

40

45

50

55

60

65

70

customers and provide the template to orchestrator, and the
orchestrator can easily use the template for onboarding new
customers who want to connect with the cloud service
provider. Orchestrator 706 can orchestrate any type of
workflows, and more than one customer can use the work-
flows. The same workflow can be used by different custom-
ers for executing the functionality they need (e.g., creating
a virtual circuit). Various example workflows are illustrated
and described with respect to FIGS. 5-11 and 16-17.

FIG. 16 is an example logical diagram illustrating an
example orchestration engine workflow relating to creating
a virtual circuit. In this example, orchestrator 706 receives a
client request 1622 that invokes a “/virtual circuit” API
endpoint, exposed by orchestrator 706, to provision a virtual
circuit in the cloud-based services exchange between the
client and a cloud service provider. Orchestrator 706 selects
a workflow for provisioning a virtual circuit from workflows
folder 1612, loads the selected workflow, and pushes a new
job to data structure store 1610. Orchestrator 706 also
subscribes to publish-subscribe server 1620 for job status.

The workflow specifies a set of task. For example, the
workflow for provisioning the virtual circuit specifies a set
of tasks comprising: (i) obtaining port details, (ii) obtaining
metro details, and (iii) creating the virtual circuit based on
the port details and the metro details. Orchestrator 706 can
distribute tasks of the set of tasks across a plurality of
workflow runners 1616 A-1616D, which access one or more
of microservices 1630A-1630D (endpoints) to perform the
tasks. The workflow runners 1616 may pick jobs from a
queue maintained by data structure store 1610. In some
examples, each task in a selected workflow may be executed
on a different thread. Tasks may be executed in parallel or
sequentially. As each task finishes, publish-subscribe server
1620 is updated, and publish-subscribe server 1620 notifies
orchestrator 706. For example, “Job Finished” is a method
that is called once the execution of the workflow finishes.
When orchestrator 706 determines that the virtual circuit has
been established, orchestrator 706 may notify the client that
made the request, e.g., by returning an HTTP response.

In some cases, the sequence of tasks in a workflow may
be more complex than just tasks performed in a series. Tasks
can fail, and so orchestrator 706 may at times need to deal
with timeouts, retries, “stuck” flows, and so forth. One way
to define a workflow and its tasks is using an arbitrarily-
complex language. Another way may involve making some
assumptions, such as: (1) Code is the definition language; (2)
Tasks are independent, and can be used into different work-
flows; (3) The only way to communicate between tasks is the
workflow. Tasks can add, remove or modify properties of the
workflow. (4) If a task requires a specific property of the
workflow to be present, the task can fail, or re-schedule itself
within the workflow. The system must be designed with
failures in mind. Tasks can fail and, as a consequence,
workflows may fail. Orchestrator 706 may need to recover
from a task failure, or from a whole workflow failure. In
some examples, orchestrator 706 uses a service discovery
engine 710 (FIG. 13) to discover an alternate microservice
to use when a first task fails due to the microservice not
responding properly or returning an error message.

For example, if there are five microservice tasks that
orchestrator 706 has to execute for providing a cloud
exchange service, process manager 712 of orchestration
engine 704 can decide to execute the tasks in parallel, or
sequentially. If orchestrator 706 determines that a particular
microservice is not responding properly, or the microservice
returns an error message, orchestrator 706 determines
whether to execute the microservice again or whether there

US 11,936,518 B2

71

is any other fallback microservice that orchestrator 706 can
use instead. Orchestrator 708 uses service discovery engine
710 (FIG. 13) to discover an alternate microservice (e.g.,
having a different uniform resource locator (URL)).

Orchestrator 706 may call a first URL for a microservice,
but that microservice returns an error code. Orchestrator 706
uses service discovery engine 710 to determine whether
orchestrator 706 should discover an alternate microservice
(e.g., having a different uniform resource locator (URL)).
For example, orchestrator 706 may invoke a port microser-
vice, which includes multiple different URLSs that are inter-
faces to different port applications that perform the port
microservice.

FIG. 17 is an example logical diagram illustrating an
example orchestration engine workflow relating to obtaining
employee payroll information. In this example, orchestrator
706 receives a client request 1642 that invokes an “/em-
ployee payroll” API endpoint, exposed by orchestrator 706,
to obtain employee payroll information. Orchestrator 706
selects a workflow for obtaining employee payroll informa-
tion from workflows folder 1612, loads the selected work-
flow, and pushes a new job to data structure store 1610.
Orchestrator 706 also subscribes to publish-subscribe server
1620 for job status.

The workflow specifies a set of task. For example, the
workflow for obtaining employee payroll information speci-
fies a set of tasks comprising: (i) obtaining user details, (ii)
obtaining user payroll details based on the user details.
Orchestrator 706 can distribute tasks of the set of tasks
across a plurality of workflow runners 1616A-1616D, which
access one or more of microservices 1650A-1650D (end-
points) to perform the tasks. The microservices 1650A-
1650D accessed by workflow runners 1616 A-1616D in the
example of FIG. 17 may be different microservices than
microservices 1630A-1630D in the example of FIG. 16. The
workflow runners 1616 may pick jobs from a queue main-
tained by data structure store 1610. In some examples, each
task in a selected workflow may be executed on a different
thread. Tasks may be executed in parallel or sequentially. As
each task finishes, publish-subscribe server 1620 is updated,
and publish-subscribe server 1620 notifies orchestrator 706.
For example, “Job Finished” is a method that is called once
the execution of the workflow finishes. When orchestrator
706 determines that the employee payroll information has
been obtained, orchestrator 706 may notify the client that
made the request, e.g., by returning an HTTP response.

FIGS. 18A-18B are block diagrams illustrating example
network infrastructure and service provisioning by an inter-
connection platform for a cloud exchange that aggregates
the cloud services of multiple cloud service providers for
provisioning to customers of the cloud exchange provider
and aggregates access for multiple customers to one or more
cloud service providers, in accordance with techniques
described in this disclosure. In this example, customer
networks 1808A-1808C (collectively, “customer networks
1808”), each associated with a different customer, access a
cloud exchange point within a data center 1800 in order
receive aggregated cloud services from one or more cloud
service provider networks 1820, each associated with a
different cloud service provider 110. Customer networks
1808 each include endpoint devices that consume cloud
services provided by cloud service provider network 1820.
Example endpoint devices include servers, smart phones,
television set-top boxes, workstations, laptop/tablet comput-
ers, video gaming systems, teleconferencing systems, media
players, and so forth.

10

15

20

25

30

40

45

50

55

60

65

72

Customer networks 1808 A-1808B include respective pro-
vider edge/autonomous system border routers (PE/ASBRs)
1810A-1810B. Each of PE/ASBRs 1810A, 1810B may
execute exterior gateway routing protocols to peer with one
of PE routers 1802A-1802B (“PE routers 1802” or more
simply “PEs 1802”) over one of access links 1816A-1816B
(collectively, “access links 1816”). In the illustrated
examples, each of access links 1816 represents a transit link
between an edge router of a customer network 1808 and an
edge router (or autonomous system border router) of cloud
exchange point 1803. For example, PE 1810A and PE
1802A may directly peer via an exterior gateway protocol,
e.g., exterior BGP, to exchange [.3 routes over access link
1816A and to exchange [.3 data traffic between customer
network 1808A and cloud service provider networks 1820.
Access links 1816 may in some cases represent and alter-
natively be referred to as attachment circuits for IP-VPNs
configured in IP/MPLS fabric 1801, as described in further
detail below. Access links 1816 may each include a direct
physical connection between at least one port of a customer
network 1808 and at least one port of cloud exchange point
1803, with no intervening transit network. Access links 1816
may operate over a VLAN or a stacked VLAN (e.g., QinQ),
a VXLAN, an LSP, a GRE tunnel, or other type of tunnel.

While illustrated and primarily described with respect to
L3 connectivity, PE routers 1802 may additionally offer, via
access links 1816, 1.2 connectivity between customer net-
works 1808 and cloud service provider networks 1820. For
example, a port of PE router 1802A may be configured with
an L2 sub-interface that provides, to customer network
1808A, L2 connectivity to cloud service provider 1820A via
access link 1816A. The port of PE router 1802A may be
additionally configured with an L3 interface that provides, to
customer network 1808A, L3 connectivity to cloud service
provider 1820B via access links 1816A.

Each of access links 1816 and aggregation links 1822 may
include a network interface device (NID) that connects
customer network 1808 or cloud service provider 1828 to a
network link between the NID and one of PE routers 1802,
1804. Each of access links 1816 and aggregation links 1822
may represent or include any of a number of different types
of links that provide [.3/network connectivity.

In this example, customer network 1808C is not an
autonomous system having an autonomous system number.
Customer network 1808C may represent an enterprise, net-
work service provider, or other customer network that is
within the routing footprint of the cloud exchange point.
Customer network includes a customer edge (CE) device
1811 that may execute exterior gateway routing protocols to
peer with PE router 1802B over access link 1816C. In
various examples, any of PEs 1810A-1810B may alterna-
tively be or otherwise represent CE devices.

Access links 1816 include physical links. PE/ASBRs
1810A-1810B, CE device 1811, and PE routers 1802A-
1802B exchange [.2/1.3 packets via access links 1816. In this
respect, access links 1816 constitute transport links for cloud
access via cloud exchange point 1803. Cloud exchange point
1803 may represent an example of any of cloud exchange
points 128. Data center 1800 may represent an example of
data center 201.

Cloud exchange point 1803, in some examples, aggre-
gates customers 1808 access to the cloud exchange point
1803 and thence to any one or more cloud service providers
1820. FIGS. 18A-18B, e.g., illustrate access links 1816A-
1816B connecting respective customer networks 1808A-
1808B to PE router 1802 A of cloud exchange point 1803 and
access link 1816C connecting customer network 1808C to

US 11,936,518 B2

73

PE router 1802B. Any one or more of PE routers 1802, 1804
may comprise ASBRs. PE routers 1802, 1804 and IP/MPLS
fabric 1801 may be configured according to techniques
described herein to interconnect any of access links 1816 to
any of cloud aggregation links 1822. As a result, cloud
service provider network 1820A, e.g., needs only to have
configured a single cloud aggregate link (here, access link
1822A) in order to provide services to multiple customer
networks 1808. That is, the cloud service provider operating
cloud service provider network 1802A does not need to
provision and configure separate service links from cloud
service provider network 1802 A to each of PE routers 1810,
1811, for instance, in order to provide services to each of
customer network 1808. Cloud exchange point 1803 may
instead cross-connect cloud aggregation link 1822A and PE
1812A of cloud service provider network 1820A to multiple
cloud access links 1816 to provide layer 3 peering and
network reachability for the cloud services delivery.

In addition, a single customer network, e.g., customer
network 1808A, need only to have configured a single cloud
access link (here, access link 1816A) to the cloud exchange
point 1803 within data center 1800 in order to obtain
services from multiple cloud service provider networks 1820
offering cloud services via the cloud exchange point 1803.
That is, the customer or network service provider operating
customer network 1808A does not need to provision and
configure separate service links connecting customer net-
work 1808A to different PE routers 1812, for instance, in
order to obtain services from multiple cloud service provider
networks 1820. Cloud exchange point 1803 may instead
cross-connect cloud access link 1816A (again, as one
example) to multiple cloud aggregate links 1822 to provide
layer 3 peering and network reachability for the cloud
services delivery to customer network 1808A.

Cloud service provider networks 1820 each includes
servers configured to provide one or more cloud services to
users. These services may be categorized according to
service types, which may include for examples, applications/
software, platforms, infrastructure, virtualization, and serv-
ers and data storage. Example cloud services may include
content/media delivery, cloud-based storage, cloud comput-
ing, online gaming, IT services, etc.

Cloud service provider networks 1820 include PE routers
1812A-1812D that each executes an exterior gateway rout-
ing protocol, e.g., eBGP, to exchange routes with PE routers
1804A-1804B (collectively, “PE routers 1804”) of cloud
exchange point 1803. Each of cloud service provider net-
works 1820 may represent a public, private, or hybrid cloud.
Each of cloud service provider networks 1820 may have an
assigned autonomous system number or be part of the
autonomous system footprint of cloud exchange point 1803.

In the illustrated example, an Internet Protocol/Multipro-
tocol label switching (IP/MPLS) fabric 1801 interconnects
PEs 1802 and PEs 1804. IP/MPLS fabric 1801 include one
or more switching and routing devices, including PEs 1802,
1804, that provide IP/MPLS switching and routing of 1P
packets to form an IP backbone. In some example, IP’MPLS
fabric 1801 may implement one or more different tunneling
protocols (i.e., other than MPLS) to route traffic among PE
routers and/or associate the traffic with different IP-VPNs. In
accordance with techniques described herein, IP/MPLS fab-
ric 1801 implement IP virtual private networks (IP-VPNs) to
connect any of customers 1808 with multiple cloud service
provider networks 1820 to provide a data center-based
‘transport” and layer 3 cross-connect. Whereas service pro-
vider-based IP backbone networks require wide-area net-
work (WAN) connections with limited bandwidth to trans-

40

45

74

port service traffic from layer 3 services providers to
customers, the cloud exchange point 1803 as described
herein ‘transports’ service traffic and cross-connects cloud
service providers 1820 to customers 1808 within the high-
bandwidth local environment of data center 1800 provided
by a data center-based IP/MPLS fabric 1801. In some
examples, IP/MPLS fabric 1801 implements IP-VPNs using
techniques described in Rosen & Rekhter, “BGP/MPLS IP
Virtual Private Networks (VPNs),” Request for Comments
4364, February 2006, Internet Engineering Task Force
(IETF) Network Working Group, the entire contents of
which is incorporated by reference herein. In some example
configurations, a customer network 1808 and cloud service
provider network 1820 may connect via respective links to
the same PE router of IP/MPLS fabric 1801.

Access links 1816 and aggregation links 1822 may
include attachment circuits that associate traffic, exchanged
with the connected customer network 1808 or cloud service
provider network 1820, with virtual routing and forwarding
instances (VRFs) configured in PEs 1802, 1804 and corre-
sponding to IP-VPNs operating over IP’MPLS fabric 1801.
For example, PE 1802A may exchange IP packets with PE
1810A on a bidirectional label-switched path (LLSP) operat-
ing over access link 1816A, the LSP being an attachment
circuit for a VRF configured in PE 1802A. As another
example, PE 1804A may exchange IP packets with PE
1812A on a bidirectional label-switched path (LLSP) operat-
ing over access link 1822A, the LSP being an attachment
circuit for a VRF configured in PE 1804A. Each VRF may
include or represent a different routing and forwarding table
with distinct routes.

PE routers 1802, 1804 of IP/MPLS fabric 1801 may be
configured in respective hub-and-spoke arrangements for
cloud services, with PEs 1804 implementing cloud service
hubs and PEs 1802 being configured as spokes of the hubs
(for various hub-and-spoke instances/arrangements). A hub-
and-spoke arrangement ensures that service traffic is enabled
to flow between a hub PE and any of the spoke PEs, but not
directly between different spoke PEs. As described further
below, in a hub-and-spoke arrangement for data center-
based IP/MPLS fabric 1801 and for southbound service
traffic (i.e., from a CSP to a customer) PEs 1802 advertise
routes, received from PEs 1810, to PEs 1804, which adver-
tise the routes to PEs 1812. For northbound service traffic
(i.e., from a customer to a CSP), PEs 1804 advertise routes,
received from PEs 1812, to PEs 1802, which advertise the
routes to PEs 1810.

For some customers of cloud exchange point 1803, the
cloud exchange point 1803 provider may configure a full
mesh arrangement whereby a set of PEs 1802, 1804 each
couple to a different customer site network for the customer.
In such cases, the IP’MPLS fabric 1801 implements a layer
3 VPN (L3VPN) for cage-to-cage or redundancy traffic (also
known as east-west or horizontal traffic). The L3VPN may
effectuate a closed user group whereby each customer site
network can send traffic to one another but cannot send or
receive traffic outside of the L3VPN.

PE routers may couple to one another according to a peer
model without use of overlay networks. That is, PEs 1810
and PEs 1812 may not peer directly with one another to
exchange routes, but rather indirectly exchange routes via
IP/MPLS fabric 1801. In the example of FIG. 18B, cloud
exchange point 1803 is configured to implement multiple
layer 3 virtual circuits 1830A-1830C (collectively, “virtual
circuits 1830”) to interconnect customer network 1808 and
cloud service provider networks 1822 with end-to-end IP
paths. Each of cloud service providers 1820 and customers

US 11,936,518 B2

75

1808 may be an endpoint for multiple virtual circuits 1830,
with multiple virtual circuits 1830 traversing one or more
attachment circuits between a PE/PE or PE/CE pair for the
IP/MPLS fabric 1801 and the CSP/customer. A virtual
circuit 1830 represents a layer 3 path through IP/MPLS
fabric 1801 between an attachment circuit connecting a
customer network to the fabric 1801 and an attachment
circuit connecting a cloud service provider network to the
fabric 1801. Each virtual circuit 1830 may include at least
one tunnel (e.g., an LSP and/or Generic Route Encapsulation
(GRE) tunnel) having endpoints at PEs 1802, 1804. PEs
1802, 1804 may establish a full mesh of tunnels intercon-
necting one another.

Each virtual circuit 1830 may include a different hub-
and-spoke network configured in IP/MPLS network 1801
having PE routers 1802, 1804 exchanging routes using a full
or partial mesh of border gateway protocol peering sessions,
in this example a full mesh of Multiprotocol Interior Border
Gateway Protocol (MP-iBGP) peering sessions. MP-iBGP
or simply MP-BGP is an example of a protocol by which
routers exchange labeled routes to implement MPLS-based
VPNs. However, PEs 1802, 1804 may exchange routes to
implement IP-VPNs using other techniques and/or proto-
cols.

In the example of virtual circuit 1830A, PE router 1812A
of cloud service provider network 1820A may send a route
for cloud service provider network 1820A to PE 1804A via
a routing protocol (e.g., eBGP) peering connection with PE
1804 A. PE 1804A associates the route with a hub-and-spoke
network, which may have an associated VRF, that includes
spoke PE router 1802A. PE 1804 A then exports the route to
PE router 1802A; PE router 1804A may export the route
specifying PE router 1804 A as the next hop router, along
with a label identifying the hub-and-spoke network. PE
router 1802A sends the route to PE router 1810B via a
routing protocol connection with PE 1810B. PE router
1802A may send the route after adding an autonomous
system number of the cloud exchange point 1803 (e.g., to a
BGP autonomous system path (AS_PATH) attribute) and
specifying PE router 1802A as the next hop router. Cloud
exchange point 1803 is thus an autonomous system “hop” in
the path of the autonomous systems from customers 1808 to
cloud service providers 1820 (and vice-versa), even though
the cloud exchange point 1803 may be based within a data
center. PE router 1810B installs the route to a routing
database, such as a BGP routing information base (RIB) to
provide layer 3 reachability to cloud service provider net-
work 1820A. In this way, cloud exchange point 1803 “leaks”
routes from cloud service provider networks 1820 to cus-
tomer networks 1808, without cloud service provider net-
works 1820 to customer networks 1808 requiring a direct
layer peering connection.

PE routers 18108, 1802A, 1804 A, and 1812A may per-
form a similar operation in the reverse direction to forward
routes originated by customer network 1808B to PE 1812A
and thus provide connectivity from cloud service provider
network 1820A to customer network 1808B. In the example
of virtual circuit 1830B, PE routers 1812B, 1804 A, 1802A,
and 1810B exchange routes for customer network 1808B
and cloud service provider 1820B in a manner similar to that
described above for establishing virtual circuit 1830B. As a
result, cloud exchange point 1803 within data center 1800
internalizes the peering connections that would otherwise be
established between PE 1810B and each of PEs 1812A,
1812B so as to perform cloud aggregation for multiple layer
3 cloud services provided by different cloud service provider
networks 1820A, 1820B and deliver the multiple, aggre-

10

15

20

25

30

35

40

45

50

55

60

76

gated layer 3 cloud services to a customer network 1808B
having a single access link 1816B to the cloud exchange
point 1803. Absent the techniques described herein, fully
interconnecting customer networks 1808 and cloud service
provider networks 1820 would require 3x3 peering connec-
tions between each of PEs 1810 and at least one of PEs 1812
for each of cloud service provider networks 1820. For
instance, PE 1810A would require a layer 3 peering con-
nection with each of PEs 1812. With the techniques
described herein, cloud exchange point 1803 may fully
interconnect customer networks 1808 and cloud service
provider networks 1820 with one peering connection per site
PE (i.e., for each of PEs 1810 and PEs 1812) by internalizing
the layer 3 peering and providing data center-based ‘trans-
port’ between cloud access and cloud aggregate interfaces.

In examples in which IP/MPLS fabric 1801 implements
BGP/MPLS IP VPNs or other IP-VPNss that use route targets
to control route distribution within the IP backbone, PEs
1804 may be configured to import routes from PEs 1802 and
to export routes received from PHs 1812, using different
asymmetric route targets. Likewise, PEs 1802 may be con-
figured to import routes from PEs 1804 and to export routes
received from PEs 1810 using the asymmetric route targets.
Thus, PEs 1802, 1804 may configured to implement
advanced L3VPNs that each includes a basic backbone
L3VPN of IP/MPLS fabric 1801 together with extranets of
any of customer networks 1808 and any of cloud service
provider networks 1820 attached to the basic backbone
L3VPN. Each advanced L3VPN constitutes a cloud service
delivery network from a cloud service provider network
1820 to one or more customer networks 1808, and vice-
versa. In this way, cloud exchange point 1803 enables any
cloud service provider network 1820 to exchange cloud
service traffic with any customer network 1808 while inter-
nalizing the layer 3 routing protocol peering connections
that would otherwise be established between pairs of cus-
tomer networks 1808 and cloud service provider networks
1820 for any cloud service connection between a given pair.
In other words, the cloud exchange point 1803 allows each
of customer networks 1808 and cloud service provider
networks 1820 to establish a single (or more for redundancy
or other reasons) layer 3 routing protocol peering connection
to the data center-based layer 3 cross-connect. By filtering
routes from cloud service provider networks 1820 to cus-
tomer networks 1808, and vice-versa, PEs 1802, 1804
thereby control the establishment of virtual circuits 1830 and
the flow of associated cloud service traffic between customer
networks 1808 and cloud service provider networks 1820
within a data center 1800. Routes distributed into MP-iBGP
mesh 183 may be VPN-IPv4 routes and be associated with
route distinguishers to distinguish routes from different sites
having overlapping address spaces.

Interconnection platform 103 may receive service
requests for creating, reading, updating, and/or deleting
end-to-end services of the cloud exchange point 1803. In
response, interconnection platform 103 may configure PEs
1802, 1804 and/or other network infrastructure of IP/MPLS
fabric 1801 to provision or obtain performance or other
operations information regarding the service. Operations for
provisioning a service and performed by interconnection
platform 103 may include configuring or updating VRFs,
installing SDN forwarding information, configuring [.SPs or
other tunnels, configuring BGP, configuring access links
1816 and aggregation links 1822, or otherwise modifying
the configuration of the IP/MPLS fabric 1801. Other opera-
tions may include making service requests to an orchestra-

US 11,936,518 B2

77

tion system for cloud service provider networks 1820, as
described in further detail below.

FIG. 19 is a block diagram illustrating an example of a
data center-based cloud exchange point in which routers of
the cloud exchange point are configured by interconnection
platform 103 with VPN routing and forwarding instances for
routing and forwarding aggregated service traffic from mul-
tiple cloud service provider networks to a customer network,
according to techniques described herein. In this example, to
establish virtual circuits 1830A-1830B, PE routers 1802A
and 1804A of IP/MPLS fabric 1801 are configured with
VRFs. PE 1802A is configured with VRFs 1902A and
1904 A, while PE 1804 A is configured with VRFs 1902B and
1904B. VRF 1902A is configured to import routes exported
by VRF 1902B, and VRF 1902B is configured to import
routes exported by VRF 1902A. The configuration may
include asymmetric route targets for import/export between
VRFs 1902A, 1902B. VRF 1904A is configured to import
routes exported by VRF 1902B, and VRF 1902B is config-
ured to import routes exported by VRF 1902A. The con-
figuration may include asymmetric route targets for import/
export between VRFs 19024, 1902B.

In this example, PE 1804A operates BGP or other route
distribution protocol peering connections 19068, 1908B
with respective PEs 1812A, 1812B to exchange routes with
respective cloud service provider networks 1820A, 1820B.
PE 1802A operates a BGP or other route distribution pro-
tocol peering connection 1910 with PE 1810B to exchange
routes with customer network 1808B. In some examples,
PEs 1802A, 1804A may be statically configured with routes
for the site networks.

An administrator or an interconnection platform
described herein for cloud exchange point 1803 may con-
figure PEs 1802A, 1804A with the VRF 1902A-1902B,
1904 A-1904B in order to leak routes between PEs 1812 and
PE 1810B and facilitate layer 3 connectivity for end-to-end
IP paths illustrated here by virtual circuits 1830, while
potentially optimizing the end-to-end IP paths by fostering
data center-based or at least metro-based connectivity. Cloud
exchange point 1803 may thus provide dedicated cloud
service provider access to customer network 1808B by way
of private and/or public routes for the cloud service provider
networks 1820. In the northbound direction, cloud exchange
point 1803 may provide dedicated cloud service provider
distribution to multiple customer networks 1808 by way of
private and/or public routes for the customer networks 1808.
Neither PE 1810B nor any of PHEs 1802A, 1804A need
access to the full Internet BGP routing table in order to reach
cloud service provider networks 1820 or customer networks
1808. Moreover, PEs 1802A, 1804A may be configured to
aggregate customer/CSP routes and/or service traffic based
on any one or more of physical, IP, service, and VRFs.

The techniques described herein may be implemented in
hardware, software, firmware, or any combination thereof.
Various features described as modules, units or components
may be implemented together in an integrated logic device
or separately as discrete but interoperable logic devices or
other hardware devices. In some cases, various features of
electronic circuitry may be implemented as one or more
integrated circuit devices, such as an integrated circuit chip
or chipset.

If implemented in hardware, this disclosure may be
directed to an apparatus such as a processor or an integrated
circuit device, such as an integrated circuit chip or chipset.
Alternatively or additionally, if implemented in software or
firmware, the techniques may be realized at least in part by
a computer-readable data storage medium comprising

25

40

45

55

78

instructions that, when executed, cause a processor to per-
form one or more of the methods described above. For
example, the computer-readable data storage medium may
store such instructions for execution by a processor.

A computer-readable medium may form part of a com-
puter program product, which may include packaging mate-
rials. A computer-readable medium may comprise a com-
puter data storage medium such as random access memory
(RAM), read-only memory (ROM), non-volatile random
access memory (NVRAM), electrically erasable program-
mable read-only memory (EEPROM), Flash memory, mag-
netic or optical data storage media, and the like. In some
examples, an article of manufacture may comprise one or
more computer-readable storage media.

In some examples, the computer-readable storage media
may comprise non-transitory media. The term “non-transi-
tory” may indicate that the storage medium is not embodied
in a carrier wave or a propagated signal. In certain examples,
a non-transitory storage medium may store data that can,
over time, change (e.g., in RAM or cache).

The code or instructions may be software and/or firmware
executed by processing circuitry including one or more
processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application-spe-
cific integrated circuits (ASICs), field-programmable gate
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described herein. In addition, in some aspects, functionality
described in this disclosure may be provided within software
modules or hardware modules.

What is claimed is:

1. A system comprising:

one or more cloud exchanges, wherein each cloud

exchange of the one or more cloud exchanges includes
interconnection assets for connecting networks of cus-
tomers of a cloud exchange provider; and

an interconnection platform configured for execution by

one or more computing devices, wherein the intercon-

nection platform comprises:

one or more application programming interfaces (APIs)
that include endpoints representing different
resources of the one or more cloud exchanges to
provide, to the customers, programmable access to
interconnection assets of the one or more cloud
exchanges;

one or more cloud exchange API services for accessing
services of the interconnection platform to modify
network infrastructures of any of the one or more
cloud exchanges,

wherein the interconnection platform is configured to

receive, from a customer device associated with a first
customer of the customers, a first request invoking a
first endpoint of the endpoints, the first request request-
ing a virtual circuit be configured in the one or more
cloud exchanges to enable communications between a
port of the one or more cloud exchanges for the first
customer and a first cloud service,

wherein the interconnection platform is configured to

receive, from a provider device associated with a cloud
service provider for the first cloud service, a second
request invoking the first endpoint of the endpoints, and
wherein the interconnection platform is configured to, in
response to determining the second request indicates
the cloud service provider accepts the virtual circuit,
orchestrate the cloud exchange API services to modify

US 11,936,518 B2

79

the corresponding network infrastructures of the one or
more cloud exchanges to create the virtual circuit to
enable communications between the port of the one or
more cloud exchanges for the first customer and the
first cloud service.

2. The system of claim 1,

wherein the interconnection platform is configured to, in
response to determining the second request indicates
the cloud service provider rejects the virtual circuit,
output a notification message to the customer device
that the virtual circuit has been rejected.

3. The system of claim 1,

wherein, to orchestrate the cloud exchange API services,
the interconnection platform is configured to use a first
API service of the cloud exchange API services to
invoke a microservice, provided by the cloud service
provider, to enable a port for the first cloud service.

4. The system of claim 1,

wherein a cloud service provider network of the cloud
service provider is connected to one or more ports of
the one or more cloud exchanges first cloud exchange,

wherein the second request, received from the provider
device, specifies a first port of the one or more ports of
the one or more cloud exchanges first cloud exchange,
and

wherein, to orchestrate the cloud exchange API services,
the interconnection platform is configured to create the
virtual circuit to enable communications between the
port for the first customer to the first port specified in
the second request.

5. The system of claim 1,

wherein the first request, received from the first customer,
specifies a metropolitan area,

wherein the interconnection platform is configured to,
based on the metropolitan area is located, orchestrate
the cloud exchange API services to modify the network
infrastructure of a cloud exchange of the one or more
cloud exchanges that is located in the metropolitan area
to create the virtual circuit.

6. The system of claim 5,

wherein, to orchestrate the cloud exchange API services,
the interconnection platform is configured to invoke a
metro service to validate the metropolitan area and to
modify, in response to receiving an indication from the
metro service that the metropolitan area is valid, the
network infrastructure of the cloud exchange of the one
or more cloud exchanges that is located in the metro-
politan area to create the virtual circuit.

7. The system of claim 1,

wherein the interconnection platform is configured to
receive, from the customer device, a third request
invoking a metro endpoint of the endpoints, and

wherein the interconnection platform is configured to, in
response to the third request, output a list of metro-
politan areas in which a cloud exchange is located or in
which the first customer has purchased a port of the
cloud exchange provider.

8. The system of claim 1,

wherein the interconnection platform is configured to
receive, from the customer device, a third request
invoking a metro endpoint of the endpoints and includ-
ing a cloud_exchange_enabled flag, and

wherein the interconnection platform is configured to, in
response to the third request, filter a list of metropolitan
areas to generate and output a list of metropolitan areas
in which a cloud exchange is located.

40

45

50

55

80

9. The system of claim 1,

wherein the interconnection platform is configured to
receive, from the customer device, a third request
invoking a port endpoint of the endpoints,

wherein the interconnection platform is configured to, in
response to the third request, output a list of port
structures for ports purchased by the first customer
from the cloud exchange provider, and

wherein each port structure includes a port identifier for
an owned port, a metropolitan area in which the owned
port is located, and a data center identifier for a data
center in which the owned port is located.

10. The system of claim 9,

wherein the third request specifies a metropolitan area,
and

wherein the interconnection platform is configured to, in
response to the third request, filter ports that are pur-
chased by the first customer to generate the list of port
structures to include only port structures for owned
ports located in a data center in the specified metro-
politan area.

11. The system of claim 9,

wherein the third request specifies a metropolitan area and
a data center within the metropolitan area, and

wherein the interconnection platform is configured to, in
response to the third request, filter ports that are pur-
chased by the first customer to generate the list of port
structures to include only port structures for owned
ports located in the specified metropolitan area and the
specified data center.

12. The system of claim 1,

wherein the interconnection platform is configured to
receive, from the customer device, a third request
invoking a cloud services endpoint of the endpoints,
and

wherein the interconnection platform is configured to, in
response to the third request, output a list of cloud
services data structures specifying cloud services avail-
able at the one or more cloud exchanges.

13. The system of claim 12,

wherein each of the cloud services data structures indi-
cates a cloud service name of a cloud service, a
metropolitan area in which the cloud service is avail-
able, and a list of data centers in the metropolitan area
in which the cloud service is available.

14. An interconnection platform for a plurality of one or

more cloud exchanges, comprising:

one or more processors coupled to memory;

one or more application programming interfaces (APIs)
that include endpoints representing different resources
of the one or more cloud exchanges to provide, to
customers of a cloud exchange provider of the one or
more cloud exchanges, programmable access to inter-
connection assets of the one or more cloud exchanges;
and

one or more cloud exchange API services for accessing
services of the interconnection platform to modify
network infrastructures of any of the one or more cloud
exchanges,

wherein the one or more processors are configured to
receive, from a customer device associated with a first
customer of the customers, a first request invoking a
first endpoint of the endpoints, the first request request-
ing a virtual circuit be configured in the one or more
cloud exchanges to enable communications between a
port for the first customer and a first cloud service,

wherein the one or more processors are configured to
receive, from a provider device associated with a cloud

US 11,936,518 B2

81

service provider for the first cloud service, a second
request invoking the first endpoint of the endpoints, and

wherein the one or more processors are configured to, in
response to determining the second request indicates
the cloud service provider accepts the virtual circuit,
orchestrate the cloud exchange API services to modify
the corresponding network infrastructures of the one or
more cloud exchanges to create the virtual circuit to
enable communications between the port for the first
customer and the first cloud service.

15. A method comprising:

receiving, by an interconnection platform for one or more
cloud exchanges located in respective metropolitan
areas, from a customer device associated with a first
customer of a cloud exchange provider of the one or
more cloud exchanges, a first request invoking a first
endpoint of endpoints, the first request requesting a
virtual circuit be configured in the one or more cloud
exchanges to enable communications between a port
for the first customer and a first cloud service,

wherein the interconnection platform includes one or
more application programming interfaces (APIs) that
include the endpoints, the endpoints representing dif-
ferent resources of the one or more cloud exchanges to
provide, to customers of a cloud exchange provider of
the one or more cloud exchanges, programmable access
to interconnection assets of the one or more cloud
exchanges,

wherein the interconnection platform includes one or
more cloud exchange API services for accessing ser-
vices of the interconnection platform to modify net-
work infrastructures of any of the one or more cloud
exchanges;

receiving, by the interconnection platform from a pro-
vider device associated with a cloud service provider
for the first cloud service, a second request invoking the
first endpoint of the endpoints; and

orchestrating, by the interconnection platform, in
response to determining the second request indicates
the cloud service provider accepts the virtual circuit,
the cloud exchange API services to modify the corre-
sponding network infrastructures of the one or more
cloud exchanges to create the virtual circuit to enable
communications between the port for the first customer
and the first cloud service.

10

15

20

30

35

40

82

16. The method of claim 15,

wherein a cloud service provider network of the cloud
service provider is connected to one or more ports of
the one or more cloud exchanges,

wherein the second request, received from the provider
device, specifies a first port of the one or more ports of
the one or more cloud exchanges, and

wherein orchestrating the cloud exchange API services
comprises creating the virtual circuit to enable com-
munications between the port for the first customer to
the first port specified in the second request.

17. The method of claim 15, further comprising:

receiving, from the customer device, a third request
invoking a metro endpoint of the endpoints; and

outputting, in response to the third request, a list of
metropolitan areas in which a cloud exchange is located
or in which the first customer has purchased a port of
the cloud exchange provider.

18. The method of claim 15, further comprising:

receiving, from the customer device, a third request
invoking a metro endpoint of the endpoints and includ-
ing a cloud exchange enabled flag;

filtering, in response to the third request, a list of metro-
politan areas to generate a list of metropolitan areas in
which a cloud exchange is located; and

outputting the list of all metropolitan areas in which a
cloud exchange is located.

19. The method of claim 15, further comprising:

receiving, from the customer device, a third request
invoking a port endpoint of the endpoints; and

outputting, in response to the third request, a list of port
structures for ports purchased by the first customer
from the cloud exchange provider,

wherein each port structure includes a port identifier for
an owned port, a metropolitan area in which the owned
port is located, and a data center identifier for a data
center in which the owned port is located.

20. The method of claim 19,

wherein the third request specifies a metropolitan area, the
method further comprising:

filtering, in response to the third request, all ports that are
purchased by the first customer to generate the list of
port structures to include only port structures for owned
ports located in a data center in the specified metro-
politan area.

