
US 20210026845A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0026845 A1

Balasubrahmanian et al . (43) Pub . Date : Jan. 28 , 2021

(54) METHOD AND SYSTEM FOR DEFINING AN
ADAPTIVE POLYMORPHIC DATA MODEL

(60) Provisional application No. 62 / 519,076 , filed on Jun .
13 , 2017

(71) Applicant : Oracle International Corporation ,
Redwood Shores , CA (US)

(72) Inventors : Kaarthik Balasubrahmanian ,
Belmont , CA (US) ; Donald Creig
Humes , Yorktown , VA (US) ; Hamid
Bahadori , Atherton , CA (US) ; Sridhar
Tadepalli , Bangalore (IN)

Publication Classification

(51) Int . Ci .
G06F 16/23 (2006.01)
G06F 16/25 (2006.01)
GOOF 16/955 (2006.01)

(52) U.S. CI .
CPC G06F 16/2379 (2019.01) ; G06F 16/9566

(2019.01) ; G06F 16/258 (2019.01)
(73) Assignee : Oracle International Corporation ,

Redwood Shores , CA (US)

(21) Appl . No .: 17 / 071,679

(22) Filed : Oct. 15 , 2020

(57) ABSTRACT
Some embodiments process data as defined by a polymor
phic data model . A server may provide the polymorphic data
model to a client application from a datastore . The func
tionality or features of the client application may be con
trolled as a function of the polymorphic data model . The
client application may thus provide different functionalities
when provided with different polymorphic data models .
Updates to the polymorphic data model may be used to
update the client application's functionality without any
updates to the client application's executable code .

Related U.S. Application Data
(63) Continuation of application No. 15 / 950,728 , filed on

Apr. 11 , 2018 , now Pat . No. 10,846,283 .

110 SERVER

DATASTORE

120

130 CLIENT DEVICE

CLIENT APP 135 .

Patent Application Publication Jan. 28 , 2021 Sheet 1 of 5 US 2021/0026845 A1

SERVER

115 DATASTORE

120

130 . CLIENT DEVICE

CLIENT APP 135

FIG . 1

+ + + + + + +

DATA CONTROL MODEL

Patent Application Publication

POLYMORPHIC ENTITY

TYPE DEFINITION

PERSISTENCE ENTITY

230

215

UNIQUE IDENTIFIER
220

Jan. 28 , 2021 Sheet 2 of 5

TYPE DEFINITION
225

DATA VALUES

210

METADATA
235

205

US 2021/0026845 A1

FIG . 2

Patent Application Publication Jan. 28 , 2021 Sheet 3 of 5 US 2021/0026845 A1

300

305 RECEIVE , FROM ADATASTORE , FIRST OBJECT TYPE DEFINITION

310 PROCESS FIRST OBJECT OF FIRST OBJECT TYPE

315 RECEIVE , FROM THE DATASTORE , UPDATE TO FIRST OBJECT
TYPE DEFINITION , THE UPDATE INCLUDING A SECOND OBJECT

TYPE

320 PROCESS SECOND OBJECT OF SECOND OBJECT TYPE

325 TRANSMIT , TO DATASTORE , DATA FIELD VALUE OF SECOND
OBJECT

330 RECEIVE , FROM DATASTORE , METADATA DEFINING SUB - TYPES
OF SECOND OBJECT TYPE

340
NEW OBJECT OF FIRST
OR SECOND SUB - TYPE ? FIRST

SUB - TYPE
SECOND
SUB - TYPE

345 350 FETCH VALUE OF DATA
FIELD CORRESPONDING
TO FIRST SUB - TYPE

FETCH VALUE OF DATA
FIELD CORRESPONDING
TO SECOND SUB - TYPE

355 PROCESS FETCHED VALUE OF DATA FIELD

360 UPDATE VALUE OF DATA FIELD AT DATASTORE

FIG . 3

Patent Application Publication Jan. 28 , 2021 Sheet 4 of 5 US 2021/0026845 A1

400

RECEIVE , FROM A DATASTORE , A FIRST DATABASE SCHEMA
DEFINING A SET OF OBJECT TYPES 405

410
PROCESS FIRST OBJECT OF FIRST OBJECT TYPE ACCORDING

TO FIRST DATABASE SCHEMA

415 RECEIVE , FROM THE DATASTORE , UPDATE TO FIRST DATABASE
SCHEMA , THE UPDATE INCLUDING A SECOND DATABASE

SCHEMA

420 PROCESS SECOND OBJECT OF SECOND OBJECT TYPE
ACCORDING TO SECOND DATABASE SCHEMA

425 TRANSMIT DATA FIELD VALUE OF SECOND OBJECT TO
DATASTORE

430 RECEIVE , FROM DATASTORE , METADATA DEFINING PLURALITY
OF SUB - TYPES OF SECOND OBJECT TYPE

440
NEW OBJECT OF FIRST
OR SECOND SUB - TYPE ? FIRST

SUB - TYPE
SECOND
SUB - TYPE

445 450 FETCH VALUE OF DATA
FIELD CORRESPONDING
TO FIRST SUB - TYPE

FETCH VALUE OF DATA
FIELD CORRESPONDING
TO SECOND SUB - TYPE

455 PROCESS FETCHED VALUE OF DATA FELD

460 UPDATE VALUE OF DATA FIELD AT DATASTORE

FIG . 4

Patent Application Publication Jan. 28 , 2021 Sheet 5 of 5 US 2021/0026845 A1

FIG . 5 DISPLAY
512

INPUT
DEVICE

514

CURSOR
CONTROL

516

ROM MAIN
MEMORY

506

STORAGE
DEVICE

510 508
w

BUS
502

PROCESSOR COMMUNICATION
INTERFACE

518

500

528
NETWORK
-LINK
520

INTERNET
SERVER

530

LOCAL
NETWORK

522

HOST
524

ISP

526

US 2021/0026845 Al Jan. 28 , 2021
1

METHOD AND SYSTEM FOR DEFINING AN
ADAPTIVE POLYMORPHIC DATA MODEL

[0011] FIG . 5 shows a block diagram that illustrates a
computer system in accordance with one or more embodi
ments .

INCORPORATION BY REFERENCE ;
DISCLAIMER

[0001] Each of the following applications are hereby
incorporated by reference : application Ser . No. 15 / 950,728
filed on Apr. 11 , 2018 ; application No. 62 / 519,076 filed on
Jun . 13 , 2017. The Applicant hereby rescinds any disclaimer
of claim scope in the parent application (s) or the prosecution
history thereof and advises the USPTO that the claims in this
application may be broader than any claim in the parent
application (s) .

DETAILED DESCRIPTION
[0012] In the following description , for the purposes of
explanation , numerous specific details are set forth in order
to provide a thorough understanding . One or more embodi
ments may be practiced without these specific details . Fea
tures described in one embodiment may be combined with
features described in a different embodiment . In some
examples , well - known structures and devices are described
with reference to a block diagram form in order to avoid
unnecessarily obscuring the present invention .

TECHNICAL FIELD
1. General Overview [0002] The present disclosure relates to an adaptive poly

morphic data model . In particular , the present disclosure
relates to (a) a server generating or adapting a polymorphic
data model based on user input and (b) a client application
adapting to the polymorphic data model received from the
server .

BACKGROUND

[0013] Some embodiments process data as defined by a
polymorphic data model . A server may provide the poly
morphic data model to a client application from a datastore .
The functionality or features of the client application may be
controlled as a function of the polymorphic data model . The
client application may thus provide different functionalities
when provided with different polymorphic data models .
Updates to the polymorphic data model may be used to
update the client application's functionality without any
updates to the client application's executable code .
[0014] This Specification may include , and the claims may
recite , some embodiments beyond those that are described in
this General Overview section .

2. Architectural Overview

[0003] A client device may receive updates from or submit
updates to a backend server . The updates , received or
submitted by a client device , include updates to data .
[0004] Client devices may be operated in an online mode
and an offline mode . An online mode is a mode in which a
client device may communicate with a backend server via a
network . An offline mode is a mode in which the client
device is unable to communicate with a backend server via
a network . When operating in an online mode , a client
device may receive updates from and submit updates to a
backend sever . When operating in an offline mode , a client
device is unable to receive updates from or submit updates
to a backend server .
[0005] The approaches described in this section are
approaches that could be pursued , but not necessarily
approaches that have been previously conceived or pursued .
Therefore , unless otherwise indicated , it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section .

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The embodiments are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings . It should be noted that references
to " an " or " one " embodiment in this disclosure are not
necessarily to the same embodiment , and they mean at least
one . In the drawings :
[0007] FIG . 1 shows a block diagram that illustrates a
client - server computing system that operates over a network
in accordance with one or more embodiments .
[0008] FIG . 2 shows a block diagram that illustrates
components of a data control model in accordance with one
or more embodiments .
[0009] FIG . 3 shows a block diagram that illustrates an
example set of operations for updating an object type
definition in accordance with one or more embodiments ;
[0010] FIG . 4 shows a block diagram that illustrates an
example set of operations for updating an object type
definition in accordance with one or more embodiments ; and

[0015] FIG . 1 shows a block diagram that illustrates a
client - server computing system 100 that operates over a
network 120 in accordance with one or more embodiments .
The client - server computing system 100 may include a
server 110 and a client device 130 communicatively coupled
via the network 120. Each of the server 110 and the client
device 130 may include a computing processor and associ
ated memory and communications circuitry .
[0016] The network 120 may include a local area network
(LAN) , wide area network (WAN) , Ethernet network , Token
Ring network , asynchronous transfer mode (ATM) network ,
Wi - Fi network , the Internet , cellular telephone network ,
Enhanced Data rates for GSM Evolution (EDGE) network ,
long - term evolution (LTE) network , Worldwide Interoper
ability for Microwave Access (WiMAX) network , or other
computing communications networks . The server 110 may
include a datastore 115 that stores data accessible by the
client device 130 via the network 120. The client device 130
may include a client application 135 (e.g. , software appli
cation) that receives data from or accesses data stored in the
datastore 115 .
[0017] In an embodiment , the client device 130 is imple
mented on one or more digital devices . The term “ digital
device ” generally refers to any hardware device that
includes a processor . A digital device may refer to a physical
device executing an application or a virtual machine .
Examples of digital devices include a computer , a tablet , a
laptop , a desktop , a netbook , a server , a web server , a
network policy server , a proxy server , a generic machine , a
function - specific hardware device , a hardware router , a
hardware switch , a hardware firewall , a hardware firewall , a
hardware network address translator (NAT) , a hardware load

US 2021/0026845 A1 Jan. 28 , 2021
2

ponents illustrated in FIG . 1 may be local to or remote from
each other . The components illustrated in FIG . 1 may be
implemented in software and / or hardware . Each component
may be distributed over multiple applications and / or
machines . Multiple components may be combined into one
application and / or machine . Operations described with
respect to one component may instead be performed by
another component .
[0024] Additional embodiments and / or examples relating
to computer networks are described below in Section 5 ,
titled “ Computer Networks and Cloud Networks . ”

balancer , a mainframe , a television , a content receiver , a
set - top box , a printer , a mobile handset , a smartphone , a
personal digital assistant (“ PDA ”) , a wireless receiver and /
or transmitter , a base station , a communication management
device , a router , a switch , a controller , an access point , and
a client device .
[0018] In one or more embodiments , the datastore 115 is
any type of storage unit and / or device (e.g. , a file system ,
database , collection of tables , or any other storage mecha
nism) for storing data . Further , the datastore 115 may
include multiple different storage units and / or devices . The
multiple different storage units and / or devices may or may
not be of the same type or located at the same physical site .
Alternatively or additionally , the datastore 115 may be
implemented or executed on a computing system separate
from the server 110. The datastore 115 may be communi
catively coupled to the server 110 or the client device 130
via a direct connection or via the network 120 .
[0019] The client application 135 may access data objects
stored in the datastore 115 using a set of hypertext transfer
protocol (HTTP) uniform resource identifiers (URIs) , e.g. ,
uniform resource locators (URL) used in conjunction with
an HTTP request . HTTP may be used as a request - response
protocol between the client device 130 and the server 110 to
facilitate the transfer and management of data between the
client application 135 and the datastore 115 .
[0020] The server 110 may provide a representational state
transfer (REST) service for servicing REST requests
received from the client application 135. A REST request is
a type of stateless HTTP request and may be transmitted to
the server 110 by the client device 130. REST requests are
subsets of HTTP requests . The REST request may use a set
of uniform and predefined stateless operations . State may
not be kept from request to request when the REST request
is used . The server 110 may provide a description of the
server 110 to the client application 135 as a REST server
through a well - defined URL . Through this well - defined
URL , the server 110 may provide a mechanism for the client
application 135 to efficiently retrieve data from and upload
data to the datastore 115 .
[0021] In one or more embodiments , a user interface refers
to hardware and / or software configured to facilitate com
munications between a user and the client device 130. The
user interface renders user interface elements and receives
input via user interface elements . Examples of interfaces
include a graphical user interface (GUI) , a command line
interface (CLI) , a haptic interface , and a voice command
interface . Examples of user interface elements include
checkboxes , radio buttons , dropdown lists , list boxes , but
tons , toggles , text fields , date and time selectors , command
lines , sliders , pages , and forms .
[0022] In an embodiment , different components of a user
interface are specified in different languages . The behavior
of user interface elements is specified in a dynamic pro
gramming language , such as JavaScript . The content of user
interface elements is specified in a markup language , such as
hypertext markup language (HTML) or XML User Interface
Language (XUL) . The layout of user interface elements is
specified in a style sheet language , such as Cascading Style
Sheets (CSS) . Alternatively , a user interface is specified in
one or more other languages , such as Java , C , or C ++ .
[0023] In one or more embodiments , the client - server
computing system 100 may include more or fewer compo
nents than the components illustrated in FIG . 1. The com

3. An Adaptive Polymorphic Data Model
[0025] FIG . 2 shows a block diagram that illustrates
components of a data control model 200 in accordance with
one or more embodiments . The data control model 200 may
be an embodiment of an adaptive polymorphic data model .
The data control model 200 may describe a database schema
used by the client application 135. The server 110 may
provide elements of the data control model 200 to the client
application 135 from the datastore 115. The functionality
and / or features of the client application 135 may be con
trolled as a function of the data control model 200. Thus , the
client application 135 may provide different functionalities
when provided with different elements of the data control
model 200. Updates to the data control model 200 may be
used to update the client application 135's functionality
without updating the client application 135's executable
code . Thus , new functionality may be added to the existing
client application 135 by transmitting new elements of the
data control model 200 to the existing client application 135
from the server 110 .
[0026] In an example , a single client application 135 may
be made available to any customer of a software provider via
a central application download portal on a network . Each
customer of the software provider may desire different
functionality for the customer's respective client application
135 than the other customers . Rather than providing a
different executable client application 135 to each different
customer , the software provider may provide a same execut
able client application 135 to all customers . The software
provider may also provide a different data control model 200
to each customer to be downloaded from each customer's
respective server 110 to each respective customer's client
applications 135 .
[0027] For example , Company A may have a dedicated
instance of the server 110 that only employees of Company
A have access to via a set of client devices 130 that are
issued to the employees of Company A by Company A. All
of the client devices 130 used by employees of Company A
may download the client application 135 from a publicly
available application portal . In addition , Company B may
have a dedicated instance of the server 110 that only
employees of Company B have access to . The employees of
Company B may access the server 110 via a set of client
devices 130 that are issued by Company B to the employees
of Company B. All of the client devices 130 used by
employees of Company B may download the client appli
cation 135 from the same publicly available application
portal as the employees of Company A. Company A's
instance of the server 110 may download a data control
model 200 customized for Company A to the client appli
cations 135 on Company A's client devices 130. Company
B's instance of the server 110 may download a data control

US 2021/0026845 A1 Jan. 28 , 2021
3

model 200 customized for Company B to the client appli
cations 135 on Company B’s client devices 130. As a result ,
the client applications 135 for Company A's employees may
provide different functionality than the client applications
135 for Company B's employees , even though the execut
able client application 135 downloaded from the publicly
available application portal is the same for all of Company
A's and all of Company B's client devices 130 .
[0028] The data control model 200 may include one or
more object type definitions 230. Each object type definition
230 may define an object type . The object type definition
230 may specify attributes of the object type . Examples of
attributes may include sales order , delivery date , quantity ,
revenue , etc. The object type definition 230 may also specify
the data format of an attribute , e.g. , text string , length of text
string , character , integer , signed integer , unsigned integer ,
floating point , double precision floating point , character or
integer array , array dimensions , etc. The object type defini
tion 230 may also specify default values for each attribute of
the object type . The object type definition 230 may also
specify which fields are mandatory for inclusion in each
view of the defined object type , and which are mandatory for
inclusion in a full canonical view of the defined object type .
For example , a delivery date may be a mandatory field for
a sales order data object type . The object type definition 230
may also specify which fields may be changed by the client
application 135 and which fields may not be changed . For
example , revenue may be a field for a sales order data object
type that cannot be changed by the client application 135 .
The object type definition 230 may also specify the func
tions that the client application 135 is to use to communicate
with the server 110 with regard to the object type . Examples
of such functions may include fetch , update , delete , etc. The
functions specified in the object type definition 230 include
information to be used by the client application 135 to build
URL's for communicating with the server 110 regarding the
object defined by the respective object type definition 230 .
Such communications may include transmitting values of
data fields of an object to the datastore 115 and updating a
value of a data field of an object at the datastore 115. A URL
may be specified to update the value of a data field of the
object at the datastore 115 .
[0029] The data control model 200 may also include one
or more metadata modules 235. The metadata modules 235
may be embodied as data files or data objects . Each metadata
module 235 may identify fields of an object type defined by
the respective object type definition 230. For example ,
numerous different metadata modules 235 may identify a
different set of fields of a same object type defined by the
respective object type definition 230. Each of the different
metadata modules 235 that correspond to the same object
may define a different view or shape of the object type . The
server 110 may store a complete or full canonical represen
tation of the object type in the datastore 115. The client
application 135 may download different subsets of the full
set of fields of the object type stored in the datastore 115 to
work with according to the metadata modules 235. Down
loading a partial object from the datastore 115 may provide
a savings in communications bandwidth over the network
120 and a savings in memory usage in the client device 130 .
The alternative of downloading the full canonical represen
tation of the object type each time the object type is operated
upon , regardless of what portions of the object type are to be
operated upon , may be inefficient .

[0030] As an example , the client application 135 may use
a metadata module 235 that represents a small subset of the
fields of a data object type in order to download a list of data
objects from the datastore 115. The client application 135
may use an HTTP request sent from the client device 130 to
the server 110 to access the list of data objects in the
datastore 115 that have a field value for a given field that
matches a search parameter specified by the client applica
tion 135. The client application 135 may specify an object
sub - type defined in the metadata module 235 so that the
desired subsets of the fields of the data objects are down
loaded , and not the complete or full canonical representa
tions of the data objects . Thus , the sub - types defined in the
metadata module 235 facilitate the client application 135
downloading a partial object from the datastore 115 rather
than the full canonical object .
[0031] For example , a data object type may be a sales
order . The client application 135 may download a list of
sales orders for a specified customer , or a specified sales
person , or a specified period of time , etc. The client appli
cation 135 may present the list of sales orders in a user
interface . A user may select one or more of the presented list
of sales orders to see more data regarding the sales orders or
to perform operations upon the sales orders . In response to
the user selection , the client application 135 may use a
different metadata module 235 that represents a larger subset
of the fields of the sales order data object type to download
additional details regarding the selected one or more of the
presented list of sales orders . The sales order data object type
defined in a respective object type definition 230 may have
a number of different associated metadata modules 235 .
Each of the metadata modules 235 may represent a different
level of detail of the sales order data object type . The levels
of detail may range from a minimal list view to a full
canonical view that includes all the data fields of the sales
order data object type .
[0032] In addition to specifying different views of objects
defined in the object type definitions 230 , the metadata
modules 235 may also specify how the objects behave ,
interact with one another , interact with a user interface of the
client application 135 , and interact with the server 110. The
metadata modules 235 may specify a layout of an object and
offsets associated with each field of an object .
[0033] The data control model 200 may include one or
more polymorphic entities 205. Each polymorphic entity
205 may define a different overall functionality for the data
control model 200. When the client application 135 operates
according to one polymorphic entity 205 , the client appli
cation 135 may provide different features or functionality
than when the client application 135 operates according to a
different polymorphic entity 205 .
[0034] Each polymorphic entity 205 may include one or
more persistence entities 210. The persistence entities 210 of
one instance of the polymorphic entity 205 may be different
than the persistence entities 210 of a different instance of the
polymorphic entity 205. Each instance of a persistence
entity 210 may represent an instance of a data object as
defined in a corresponding object type definition 230 .
[0035] The persistence entity 210 may be an abstract
representation of a data object . The persistence entity 210
may include a unique identifier 215 that uniquely identifies
each instance of the persistence entity 210 within a specific
polymorphic entity 205. The persistence entity 210 may also
include an object type definition 220 that defines the object

US 2021/0026845 A1 Jan. 28 , 2021
4

type represented by the persistence entity 210. The object
type definition 220 may be an embodiment of a correspond
ing object type definition 230. The persistence entity 210
may also include a plurality of data values 225 , each of
which may be associated with a data field name as defined
in the object type definition 220 .
[0036] The persistence entity 210 may include functions
defined by the object type definition 220 that operate on the
data values 225 and interact with the datastore 115 with
reference to a data object type as defined by the object type
definition 220. Executable code included in the client appli
cation 135 that implements the persistence entity 210 may
have no built - in information regarding the data objects
represented by the object type definition 220. The executable
code included in the client application 135 may provide
functionality according to data included in the object type
definition 220. In an embodiment , the persistence entity 210
may be implemented by Java code in the client application
135 , and the object type definition 220 may be specified
according to a JavaScript Object Notation (JSON) represen
tation provided by the datastore 115. In various embodi
ments , other programming languages and database formats
may be used to implement the persistence entities 210 in the
client application 135. The Java code for the persistence
entity 210 may be provided with the client application 135
at design time , while the JSON representation of the object
type definition 220 may be provided via the datastore 115 at
run time .
[0037] For example , an instance of a persistence entity
210 may be an object that is an instance of a sales order
datatype that is defined according to a class that includes
methods for operating on the sales order datatype . The class
may be defined by the object type definition 230. According
to the class definition , the persistence entity 210 may be able
to build HTTP requests as appropriate to work with sales
order data objects stored in the datastore 115 , including
fetching the sales order data objects , updating the sales order
data objects , etc. Functions provided by the persistence
entity 210 that operate on data objects stored in the datastore
115 may be defined generally to operate upon any type of
data objects stored in the datastore 115. The functions
provided by the persistence entity 210 may be called by
methods provided in the class by which the persistence
entity 210 is defined according to the object type definition
220. For example , rather than a hardcoded function named
GetRevenue (< object identifier >) that is defined to only
operate on a Revenue object , the executable code of the
client application 135 may include a hardcoded function
named Get () that may be called by a method of the class
corresponding to a sales order data type persistence entity
210 on a field named Revenue as Get (Revenue , < object
identifier >) , where < object identifier > is the unique identifier
215 of the corresponding persistence entity 210 .
[0038] In an example , when the client application 135
fetches a list of sales order data objects from the datastore
115 , each sales order object returned may be represented by
a separately defined instance of the persistence entity 210 .
The sales order data objects returned in the list may be
represented as sub - types of the full canonical sales order
data type stored in the datastore 115 according to a metadata
module 235 corresponding to a list of the sales order data
object type . A user may select one of the sales order data
objects in the list to request the associated Revenue field
value . The Revenue field may not be included in the

sub - type of the sales order data type according to the
metadata module 235 corresponding to the list . A Get
(Revenue , < identifier >) function may be executed by the
persistence entity 210 corresponding to the selected sales
order data object . The Get function may look up the Revenue
field in the persistence entity's object type definition 220 to
determine what kind of data the Revenue field contains and
look up the value for the field in the data values 225. If the
value is not included in the data values 225 , the Get function
may issue an HTTP request to the datastore 115 according
to a metadata module 235 that includes the field Revenue for
the sales order data object type . After receiving the Revenue
data field , and any other data fields defined by the metadata
module 235 used by the Get function , the Get function may
perform processing on the Revenue data value according to
the class definition of the method corresponding to the Get
function as specified by the object type definition 220. The
persistence entity 210 may then present the Revenue data
value returned by the Get function to the user via a user
interface of the client application 135 .
[0039] Each customer of the software provider may desire
different functionality for the customer's respective client
application 135 than the other customers . Rather than pro
viding a different executable client application 135 to each
different customer , the software provider may provide a
same executable client application 135 to all customers . The
software provider may also provide a different data control
model 200 to each customer to be downloaded from each
customer's respective server 110 to each respective custom
er's client applications 135 .
[0040] In an embodiment , a particular customer of a
software provider that provides the client application 135 to
the particular customer may desire to update the function
ality of the client application 135 used by the particular
customer or under the particular customer's control . The
updated functionality may include new data object type
definitions 230 (e.g. , for a new regional warehouse data
object) , new metadata modules 235 , updates to either or both
of existing data object type definitions 230 and metadata
modules 235 , etc. The particular customer may use a soft
ware tool to update the data control model 200 at the
particular customer's server 110. The particular customer
may transmit the updated data control model 200 to the
particular customer's one or more instances of the particular
customer's client application 135 on various client devices
130 under the particular customer's control . The particular
customer's update of the particular customer's client appli
cation 135 on various client devices 130 under the particular
customer's control may not affect instances of the client
application 135 provided by the software provider to other
customers of the software provider . All customers of the
software provider may install and use a same executable
client application 135. The particular customer may update
the data control model 200 used by the particular customer's
instances of the client application 135 without affecting any
other instances of the client application 135 .
[0041] In an embodiment , a salesperson may use the client
application 135 to display a list of sales opportunities . Each
of the sales opportunities may be represented by an object
type Opportunities in the data control model 200 of the client
application 135. In response to a request from the salesper
son , the client application 135 may display a list of values
of data fields from the Opportunities objects that meet the
salesperson's criteria . The client application 135 may deter

US 2021/0026845 A1 Jan. 28 , 2021
5

mine , based on the configuration of the client application
135 , that only the customer name and the customer phone
number are displayed in a list view of opportunities . The
client application 135 may analyze a metadata module 235
corresponding to the object type Opportunity . The client
application 135 may determine that the metadata module
235 corresponding to the object type Opportunity includes
the to - be - displayed fields , customer name and customer
phone number . The client application 135 may retrieve
values for fields identified in the corresponding metadata
module 235 from the datastore 115. As the fields to - be
displayed are included in the corresponding metadata mod
ule 235 , the client application 135 may retrieve values for
the customer name and the customer phone number from
objects of type Opportunity stored in the datastore 115. The
client application 135 may display , in a list view , the
retrieved information for different opportunities .
[0042] In addition to storing the values for customer name
and customer number , the datastore 115 may also store
values for a field customer budget in the object type Oppor
tunity . However , the client application 135 may not obtain a
copy of the values corresponding to customer budget as
customer budget is not identified in corresponding metadata
module 235 used by the client application 135 .
[0043] In an embodiment , the client application 135 may
receive a user request for a value of a field of an object that
is not included in the corresponding metadata module 235 .
The client application 135 may search the metadata modules
235 for another corresponding metadata module 235 that
does include the requested field for the specified object type .
The client application 135 may then download the object
from the datastore 115 according to the other corresponding
metadata module 235 that does include the requested field .
The client application 135 may modify the locally stored
partial copy of the object , previously retrieved from the
server , to include the fields and values obtained from the
datastore 115 corresponding to the other corresponding
metadata module 235 that does include the requested field
for the specified object type .
[0044] Continuing the above example , the client applica
tion 135 may receive a selection of a particular opportunity
from the salesman when the client application 135 is dis
playing opportunities in the list view . The client application
135 may be configured to show a detailed view of an
opportunity in response to receiving a selection of that
opportunity . The client application 135 may determine that
the detailed view of an opportunity includes a customer
name , a customer phone number , and a customer budget .
The client application 135 , based on an analysis of the
corresponding metadata module 235 , may determine that the
corresponding metadata module 235 identifies the fields
customer name and customer phone number . The client
application 135 may further determine that the correspond
ing metadata module 235 does not identify the field cus
tomer budget . Since the corresponding metadata module 235
does not identify the field customer budget , any version of
an object , corresponding to the particular opportunity , which
is stored by the client application according to the corre
sponding metadata module 235 may be determined to not
include values for the field customer budget . The client
application 135 may identify a different metadata module
235 in the data control model 200 corresponding to the
object type Opportunity that does include the desired field
customer budget . The client application 135 may then

request , from the datastore 115 on the server 110 , values
corresponding to the fields identified in the different meta
data module 235 that does include the field customer budget .
Specifically , the client application 135 may request the
object of type Opportunity which corresponds to the par
ticular opportunity selected by the salesman . In response to
transmitting the request , the client application 135 may
receive an object of type Opportunity and corresponding to
the particular opportunity selected by the salesman . The
object may include values for customer name , customer
number , and customer budget which are all now identified in
the different metadata module 235 maintained by the client
application 135 that is now selected to define the view of the
particular object . Alternatively , the object received from the
datastore 115 may not include values for the customer name
and customer number if no change has been made to the
values since the last time the values were received by the
client application 135. The client application 135 may
replace or overwrite any stored prior version of the object
corresponding to the particular opportunity . The client appli
cation 135 may store a new version of the object , corre
sponding to the particular opportunity , and including cus
tomer name , customer phone number , and customer budget .
The client application 135 may display a detailed view of the
particular opportunity selected by the salesman . The detailed
view , displayed by the client application 135 , may include
the customer name , the customer number , and the customer
budget .
[0045] In an embodiment , an application on the server 110
may receive a request to create a new integer field of type
Commission for an object of the type Opportunity stored in
the datastore 115. The field type Commission may not
currently be identified as a field in any object type definition
230 or metadata module 235 maintained by the client
application 135 or maintained by the server 110. The server
110 may update the object type definition 230 corresponding
to the object type Opportunity and one or more correspond
ing metadata modules 235 maintained by the client appli
cation 135. Specifically , the updates to the object type
Opportunity and one or more corresponding metadata mod
ules 235 include a new integer field of type Commission .
The datastore 115 and the client application 135 may store
values for the field of type Commission to reflect the
addition of the new field of type Commission . The client
application 135 may also retrieve and display values corre
sponding to the field Commission on a user interface .
[0046] In an embodiment , the server 110 may receive a
request to generate a new type of an object that is different
than the types of any objects stored in the datastore 115
and / or the client application 135. Responsive to the request
to generate an object of a new type , the server 110 may (a)
generate a new object type definition 230 and (b) generate
one or more new metadata modules 235 corresponding to
the new object type . The object type definition 230 may
include one or more data fields to be included in the new
type of object , and the one or more metadata modules 235
may specify different subsets of the one or more data fields
to be included in the new type of object . The server 110 may
synchronize the new object type definition 230 and the new
one or more metadata modules 235 with the client applica
tion 135 by updating the data control model of the client
application 135. Accordingly , the server 110 and the client
application 135 may use the object type definitions 230 and
the metadata modules 235 to define new object types . The

US 2021/0026845 A1 Jan. 28 , 2021
6

server 110 may add a new object type to a collection of
object types defined by the server 110 and used by the client
application 135 .
[0047] Continuing the above example , the server 110 may
receive a request to create a new object of type Network
ingEvent . The request may further specify three fields Date ,
Time , and Location as fields of the object of the type
NetworkingEvent . Neither the client application 135 nor the
server 110 may include an object type definition 230 or
metadata module 235 defining any object of type Network
ingEvent . Responsive to receiving the request , the server
110 may generate an object type definition 230 and one or
more metadata modules 235 corresponding to the object
type NetworkingEvent . The object type definition 230 and
one or more metadata modules 235 corresponding to the
object type NetworkingEvent may identify at least three
fields Date , Time , and Location . The server 110 may trans
mit the object type definition 230 and one or more metadata
modules 235 to the client application 135 to provide a
definition the object type NetworkingEvent . The client
application 135 may also generate objects of type Network
ingEvent and transmit the objects to the server 110 for
synchronization .

4. Example Embodiment
[0048] A detailed example is described below for purposes
of clarity . Components and / or operations described below
should be understood as one specific example which may
not be applicable to certain embodiments . Accordingly ,
components and / or operations described below should not
be construed as limiting the scope of any of the claims .
[0049] FIG . 3 shows a block diagram that illustrates an
example set of operations 300 for updating an object type
definition in accordance with one or more embodiments .
One or more operations illustrated in FIG . 3 may be modi
fied , rearranged , or omitted all together . Accordingly , the
particular sequence of operations illustrated in FIG . 3 should
not be construed as limiting the scope of one or more
embodiments .
[0050] In an operation 305 , a client application 135 may
receive a first object type definition 230 from a datastore
115. The first object type definition 230 may be received by
a client device 130 on which the client application 135
executes over a network 120 from a server 110 that hosts the
datastore 115. The first object type definition 230 may define
a first object type to be used in a data control model 200 that
controls the functionality of the client application 135. The
first object type definition 230 may define one or more data
fields of the first object type . Each defined data field may
include a data field name and a data field value . As an
example , the object type may be an Opportunity , for
example , a sales opportunity . The object type Opportunity
may be defined by the first object type definition 230 to
include numerous data fields , for example , a Customer
Name field and a Customer Phone Number field .
[0051] In an operation 310 , a first object of the first object
type may be processed according to the received first object
type definition 230. For example , the client application 135
may generate a persistence entity 210 to represent an
instance of the first object according to the first object type
definition 230. The generated persistence entity 210 may
include a unique identifier 215 that uniquely identifies the
first object within the polymorphic entity 205 that represents
the schema used by the client application 135. The generated

persistence entity 210 may also include an object type
definition 220 based on a copy of the first object type
definition 230 upon which the generated persistence entity
210 is based . The persistence entity 210 may also include
one or more data fields having associated data values 225
according to the object type definition 220. As another
example , a user interface of the client application 135 may
display one or more data field values of the first object . The
persistence entity 210 may also perform one or more meth
ods associated with a class defined by the object type
definition 220 to operate upon the first object represented by
the persistence entity 210 .
[0052] In an operation 315 , the client application 135 may
receive an update to the first object type definition 230 from
the datastore 115. The update may include a second object
type definition 230. The second object type definition 230
may define a second object type to be used in the data control
model 200 that controls the functionality of the client
application 135. The second object type definition 230 may
define one or more data fields of the second object type .
Each defined data field may include a data field name and a
data field value . As an example , the object type may be a
Warehouse . The object type Warehouse may be defined by
the second object type definition 230 to include numerous
data fields , for example , a Warehouse Address field and a
Warehouse Phone Number field . As another example , the
second object type definition 230 may be an updated version
of the first object type definition 230 and replace the first
object type definition 230 in the data control model 200 of
the client application 135. The second object type definition
230 may be an Opportunity , for example , a sales opportu
nity . The updated second object type Opportunity may be
defined by the second object type definition 230 to include
numerous data fields , for example , a Customer Name field ,
a Customer Phone Number field , and Customer Budget field .
In this example , the second object type definition 230
includes an additional data field and value that are not
included in the first object type definition 230 .
[0053] In an operation 320 , a second object of the second
object type may be processed according to the received
second object type definition 230. For example , the client
application 135 may generate a persistence entity 210 to
represent an instance of the second object according to the
second object type definition 230. The generated persistence
entity 210 may include a unique identifier 215 that uniquely
identifies the second object within the polymorphic entity
205 that represents the schema used by the client application
135. The generated persistence entity 210 may also include
an object type definition 220 based on a copy of the second
object type definition 230 upon which the generated persis
tence entity 210 is based . The persistence entity 210 may
also include one or more data fields having associated data
values 225 according to the object type definition 220. As
another example , a user interface of the client application
135 may display one or more data field values of the second
object . The persistence entity 210 may also perform one or
more methods associated with a class defined by the object
type definition 220 to operate upon the second object
represented by the persistence entity 210. As another
example , when the second object type definition 230 is an
updated version of the first object type definition 230 and
replaces the first object type definition 230 in the data
control model 200 of the client application 135 , the persis
tence entity 210 representing the first object of the first

US 2021/0026845 A1 Jan. 28 , 2021
7

object type may be updated to include the object type
definition 220 based on a copy of the second object type
definition 230 and represent an instance of the second object
of the second object type accordingly . The persistence entity
210 may also be updated to include one or more additional
data fields having associated data values 225 according to
the updated object type definition 220 .
[0054] In an operation 325 , the client application 135 may
transmit a data field value of the second object to the
datastore 115. For example , the client application 135 may
transmit a value of the Warehouse Phone Number when the
second object type is a Warehouse , and thereby update the
Warehouse Phone Number stored for the Warehouse object
in the datastore 115. As another example , the client appli
cation 135 may update the value of the Customer Budget
stored in the Opportunity object in the datastore 115. The
client application 135 may transmit a value of the Customer
Budget when the second object type is an opportunity with
an updated list of data fields compared to the first object
type .
[0055] In an operation 330 , the client application 135 may
receive one or more metadata modules 235 from the data
store 115. The metadata modules 235 may define sub - types
of the second object type defined by the second object type
definition 230. For example , a first metadata module 235
may define a full canonical sub - type of the Opportunity
object type that includes the Customer Name field , the
Customer Phone Number field , and the Customer Budget
field . A second metadata module 235 may define a subset
sub - type of the Opportunity object type that includes the
Customer Name field and the Customer Phone Number
field . A third metadata module 235 may define a list sub - type
of the Opportunity object type that includes the Customer
Name field only . A method for the Opportunity object type
may download a list of Opportunity objects according to the
list sub - type metadata module 235 to minimize data trans
mission overhead and data storage overhead in the client
device 130. When only the Customer Name field is needed
to be presented in the user interface of the client application
135 , the full canonical representation of the Opportunity
objects may not be needed , and the list sub - type may be
more efficient . Another method for the Opportunity object
type may download the full canonical representation of a
selected Opportunity object according to the full canonical
sub - type metadata module 235. When one Opportunity
object in the list of Opportunity objects is selected for
viewing and / or editing all the data fields of the selected
Opportunity object , the full canonical representation of the
Opportunity objects may be needed , and the list sub - type
may be insufficient .
[0056] In an operation 340 , the client application 135 may
make a determination regarding whether a new object that is
created according to the second object type definition 230 is
a first sub - type , e.g. , created according to the list sub - type of
the Opportunity object type , or a second sub - type , e.g. ,
created according to the full canonical sub - type of the
Opportunity object type .
[0057] In an operation 345 , if the new object is determined
to correspond to the first sub - type of the second object type
definition 230 in operation 340 , the client application 135
may fetch a value of a data field corresponding to the first
sub - type from the datastore 115. For example , when the first
sub - type of the Opportunity object type is the list sub - type ,

the client application 135 may fetch a value of the Customer
Name data field from the datastore 115 .
[0058] In an operation 350 , if the new object is determined
to correspond to the second sub - type of the second object
type definition 230 in operation 340 , the client application
135 may fetch a value of a data field corresponding to the
second sub - type from the datastore 115. For example , when
the second sub - type of the Opportunity object type is the full
canonical sub - type , the client application 135 may fetch a
value of the Customer Budget data field from the datastore
115 .
[0059] In an operation 355 , the client application 135 may
process the value of the data field fetched in either of
operations 345 or 350. For example , the client application
135 may display the value of the fetched data field in the user
interface of the client application 135. The client application
135 may perform a mathematical computation on the value
of the fetched data field and display the results of the
mathematical computation in the user interface of the client
application 135 .
[0060] In an operation 360 , the client application 135 may
cause a value of the data field processed in operation 355 to
be updated at the datastore 115. The client application 135
may perform a method defined by the second object type
definition 230 represented in the object type definition 220
of the persistence entity 210. The method performed may
include transmitting an HTTP request to the datastore 115 to
update the value of the data field fetched in one of operations
345 and 350 according to the results of the processing of the
fetched value of the data field in operation 355 .
[0061] FIG . 4 shows a block diagram that illustrates an
example set of operations 400 for updating an object type
definition in accordance with one or more embodiments .
One or more operations illustrated in FIG . 4 may be modi
fied , rearranged , or omitted all together . Accordingly , the
particular sequence of operations illustrated in FIG . 4 should
not be construed as limiting the scope of one or more
embodiments .
[0062] In an operation 405 , a client application 135 may
receive a first database schema , e.g. , a data control model
200 that controls the functionality of the client application
135 , from a datastore 115. The first database schema may be
received by a client device 130 on which the client appli
cation 135 executes over a network 120 from a server 110
that hosts the datastore 115. The first database schema may
include a first object type definition 230 that defines a first
object type . The first object type definition 230 may define
one or more data fields of the first object type . Each defined
data field may include a data field name and a data field
value . As an example , the object type may be an Opportu
nity , for example , a sales opportunity . The object type
Opportunity may be defined by the first object type defini
tion 230 to include numerous data fields , for example , a
Customer Name field and a Customer Phone Number field .
The first database schema may also include one or more
metadata modules 235 that each define a view of the first
object type defined by the first object type definition 230 .
Each of the one or more metadata modules 235 may specify
a different subset of data fields included in the full canonical
representation of the first object type to be included in the
respective view . As an example , one view defined by one of
the metadata modules 235 may specify only the Customer
Name field be included from the various fields specified by
the full canonical Opportunity object type . Another view

US 2021/0026845 A1 Jan. 28 , 2021
8

defined by another of the metadata modules 235 may specify
that both the Customer Name field and a Customer Phone
Number field be included from the various fields specified
by the full canonical Opportunity object type .
[0063] In an operation 410 , a first object of the first object
type may be processed according to the received first
database schema . For example , the client application 135
may generate a persistence entity 210 to represent an
instance of the first object according to the first object type
definition 230. The generated persistence entity 210 may
include a unique identifier 215 that uniquely identifies the
first object within the polymorphic entity 205 that represents
the first database schema used by the client application 135 .
The generated persistence entity 210 may also include an
object type definition 220 based on a copy of the first object
type definition 230 upon which the generated persistence
entity 210 is based . The persistence entity 210 may also
include one or more data fields having associated data values
225 according to the object type definition 220. As another
example , a user interface of the client application 135 may
display one or more data field values of the first object . The
persistence entity 210 may also perform one or more meth
ods associated with a class defined by the object type
definition 220 to operate upon the first object represented by
the persistence entity 210 .
[0064] In an operation 415 , the client application 135 may
receive an update to the first database schema from the
datastore 115. The update to the first database schema may
include a second database schema different from the first
database schema . The update may include a second object
type definition 230. The second object type definition 230
may define a second object type to be used in the data control
model 200 that controls the functionality of the client
application 135. The second object type definition 230 may
define one or more data fields of the second object type .
Each defined data field may include a data field name and a
data field value . As an example , the object type may be a
Warehouse . The object type Warehouse may be defined by
the second object type definition 230 to include numerous
data fields , for example , a Warehouse Address field and a
Warehouse Phone Number field . As another example , the
second object type definition 230 may be an updated version
of the first object type definition 230 and replace the first
object type definition 230 in the data control model 200 of
the client application 135. The second object type definition
230 may be an Opportunity , for example , a sales opportu
nity . The updated second object type Opportunity may be
defined by the second object type definition 230 to include
numerous data fields , for example , a Customer Name field ,
a Customer Phone Number field , and Customer Budget field .
In this example , the second object type definition 230
includes an additional data field and value that are not
included in the first object type definition 230 .
[0065] In an operation 420 , a second object of the second
object type may be processed according to the received
second database schema . For example , the client application
135 may generate a persistence entity 210 to represent an
instance of the second object according to the second object
type definition 230. The generated persistence entity 210
may include a unique identifier 215 that uniquely identifies
the second object within the polymorphic entity 205 that
represents the schema used by the client application 135 .
The generated persistence entity 210 may also include an
object type definition 220 based on a copy of the second

object type definition 230 upon which the generated persis
tence entity 210 is based . The persistence entity 210 may
also include one or more data fields having associated data
values 225 according to the object type definition 220. As
another example , a user interface of the client application
135 may display one or more data field values of the second
object . The persistence entity 210 may also perform one or
more methods associated with a class defined by the object
type definition 220 to operate upon the second object
represented by the persistence entity 210. As another
example , when the second object type definition 230 is an
updated version of the first object type definition 230 and
replaces the first object type definition 230 in the data
control model 200 of the client application 135 , the persis
tence entity 210 representing the first object of the first
object type may be updated to include the object type
definition 220 based on a copy of the second object type
definition 230 and represent an instance of the second object
of the second object type accordingly . The persistence entity
210 may also be updated to include one or more additional
data fields having associated data values 225 according to
the updated object type definition 220 .
[0066] In an operation 425 , the client application 135 may
transmit a data field value of the second object to the
datastore 115. For example , the client application 135 may
transmit a value of the Warehouse Phone Number when the
second object type is a Warehouse , and thereby update the
Warehouse Phone Number stored for the Warehouse object
in the datastore 115. As another example , the client appli
cation 135 may transmit a value of the Customer Budget
when the second object type is an opportunity with an
updated list of data fields compared to the first object type ,
and thereby update the value of the Customer Budget stored
in the Opportunity object in the datastore 115 .
[0067] In an operation 430 , the client application 135 may
receive one or more metadata modules 235 from the data
store 115. The metadata modules 235 may define sub - types
of the second object type defined by the second object type
definition 230. For example , a first metadata module 235
may define a full canonical sub - type of the Opportunity
object type that includes the Customer Name field , the
Customer Phone Number field , and the Customer Budget
field . A second metadata module 235 may define a subset
sub - type of the Opportunity object type that includes the
Customer Name field and the Customer Phone Number
field . A third metadata module 235 may define a list sub - type
of the Opportunity object type that includes the Customer
Name field only . A method for the Opportunity object type
may download a list of Opportunity objects according to the
list sub - type metadata module 235 to minimize data trans
mission overhead and data storage overhead in the client
device 130 when only the Customer Name field is needed to
be presented in the user interface of the client application
135. Another method for the Opportunity object type may
download the full canonical representation of a selected
Opportunity object according to the full canonical sub - type
metadata module 235 when one Opportunity object in the
list of Opportunity objects is selected for viewing and / or
editing all the data fields of the selected Opportunity object .
[0068] In an operation 440 , the client application 135 may
make a determination regarding whether a new object that is
created according to the second object type definition 230 is
a first sub - type , e.g. , created according to the list sub - type of

US 2021/0026845 A1 Jan. 28 , 2021
9

the Opportunity object type , or a second sub - type , e.g. ,
created according to the full canonical sub - type of the
Opportunity object type .
[0069] In an operation 445 , if the new object is determined
to correspond to the first sub - type of the second object type
definition 230 in operation 440 , the client application 135
may fetch a value of a data field corresponding to the first
sub - type from the datastore 115. For example , when the first
sub - type of the Opportunity object type is the list sub - type ,
the client application 135 may fetch a value of the Customer
Name data field from the datastore 115 .
[0070] In an operation 450 , if the new object is determined
to correspond to the second sub - type of the second object
type definition 230 in operation 440 , the client application
135 may fetch a value of a data field corresponding to the
second sub - type from the datastore 115. For example , when
the second sub - type of the Opportunity object type is the full
canonical sub - type , the client application 135 may fetch a
value of the Customer Budget data field from the datastore
115 .
[0071] In an operation 455 , the client application 135 may
process the value of the data field fetched in either of
operations 445 or 450. For example , the client application
135 may display the value of the fetched data field in the user
interface of the client application 135 , or the client appli
cation 135 may perform a mathematical computation on the
value of the fetched data field and display the results of the
mathematical computation in the user interface of the client
application 135 .
[0072] In an operation 460 , the client application 135 may
cause a value of the data field processed in operation 455 to
be updated at the datastore 115. The client application 135
may perform a method defined by the second object type
definition 230 represented in the object type definition 220
of the persistence entity 210. The method performed may
include transmitting an HTTP request to the datastore 115 to
update the value of the data field fetched in one of operations
445 and 450 according to the results of the processing of the
fetched value of the data field in operation 455 .

various virtual machines and / or applications performing
respective functions . A physical link is a physical medium
connecting two or more physical nodes . Examples of links
include a coaxial cable , an unshielded twisted cable , a
copper cable , and an optical fiber .
[0076] A computer network may be an overlay network .
An overlay network is a logical network implemented on top
of another network (such as , a physical network) . Each node
in an overlay network corresponds to a respective node in
the underlying network . Hence , each node in an overlay
network is associated with both an overlay address (to
address to the overlay node) and an underlay address (to
address the underlay node that implements the overlay
node) . An overlay node may be a digital device and / or a
software process (such as , a virtual machine , an application
instance , or a thread) A link that connects overlay nodes is
implemented as a tunnel through the underlying network .
The overlay nodes at either end of the tunnel treat the
underlying multi - hop path between the overlay nodes as a
single logical link . Tunneling is performed through encap
sulation and decapsulation .
[0077] In an embodiment , a client may be local to and / or
remote from a computer network . The client may access the
computer network over other computer networks , such as a
private network or the Internet . The client may communicate
requests to the computer network using a communications
protocol , such as HTTP . The requests are communicated
through an interface , such as a client interface (such as a web
browser) , a program interface , or an application program
ming interface (API) .
[0078] In an embodiment , a computer network provides
connectivity between clients and network resources . Net
work resources include hardware and / or software configured
to execute server processes . Examples of network resources
include a processor , a data storage , a virtual machine , a
container , and / or a software application . Network resources
are shared amongst multiple clients . Clients request com
puting services from a computer network independently of
each other . Network resources are dynamically assigned to
the requests and / or clients on an on - demand basis . Network
resources assigned to each request and / or client may be
scaled up or down based on , for example , (a) the computing
services requested by a particular client , (b) the aggregated
computing services requested by a particular tenant , and / or
(c) the aggregated computing services requested of the
computer network . Such a computer network may be
referred to as a “ cloud network . ”

[0079] In an embodiment , a service provider provides a
cloud network to one or more end users . Various service
models may be implemented by the cloud network , includ
ing but not limited to Software - as - a - Service (SaaS) , Plat
form - as - a - Service (PaaS) , and Infrastructure - as - a - Service
(IaaS) . In SaaS , a service provider provides end users the
capability to use the service provider's applications , which
are executing on the network resources . In PaaS , the service
provider provides end users the capability to deploy custom
applications onto the network resources . The custom appli
cations may be created using programming languages ,
libraries , services , and tools supported by the service pro
vider . In IaaS , the service provider provides end users the
capability to provision processing , storage , networks , and
other fundamental computing resources provided by the

5. Computer Networks and Cloud Networks
[0073] In one or more embodiments , a computer network
provides connectivity among a set of nodes . The nodes may
be local to and / or remote from each other . The nodes are
connected by a set of links . Examples of links include a
coaxial cable , an unshielded twisted cable , a copper cable ,
an optical fiber , and a virtual link .
[0074] A subset of nodes implements the computer net
work . Examples of such nodes include a switch , a router , a
firewall , and a network address translator (NAT) . Another
subset of nodes uses the computer network . Such nodes (also
referred to as “ hosts ”) may execute a client process and / or
a server process . A client process makes a request for a
computing service (such as , execution of a particular appli
cation , and / or storage of a particular amount of data) . A
server process responds by executing the requested service
and / or returning corresponding data .
[0075] A computer network may be a physical network ,
including physical nodes connected by physical links . A
physical node is any digital device . A physical node may be
a function - specific hardware device , such as a hardware
switch , a hardware router , a hardware firewall , and a hard
ware NAT . Additionally or alternatively , a physical node
may be a generic machine that is configured to execute

US 2021/0026845 A1 Jan. 28 , 2021
10

network resources . Any arbitrary applications , including an
operating system , may be deployed on the network
resources .

[0080] In an embodiment , various deployment models
may be implemented by a computer network , including but
not limited to a private cloud , a public cloud , and a hybrid
cloud . In a private cloud , network resources are provisioned
for exclusive use by a particular group of one or more
entities (the term “ entity ” as used herein refers to a corpo
ration , organization , person , or other entity) . The network
resources may be local to and / or remote from the premises
of the particular group of entities . In a public cloud , cloud
resources are provisioned for multiple entities that are
independent from each other (also referred to as “ tenants ” or
“ customers ”) . The computer network and the network
resources thereof are accessed by clients corresponding to
different tenants . Such a computer network may be referred
to as a “ multi - tenant computer network . ” Several tenants
may use a same particular network resource at different
times and / or at the same time . The network resources may
be local to and / or remote from the premises of the tenants .
In a hybrid cloud , a computer network comprises a private
cloud and a public cloud . An interface between the private
cloud and the public cloud allows for data and application
portability . Data stored at the private cloud and data stored
at the public cloud may be exchanged through the interface .
Applications implemented at the private cloud and applica
tions implemented at the public cloud may have dependen
cies on each other . A call from an application at the private
cloud to an application at the public cloud (and vice versa)
may be executed through the interface .
[0081] In an embodiment , tenants of a multi - tenant com
puter network are independent of each other . For example ,
a business or operation of one tenant may be separate from
a business or operation of another tenant . Different tenants
may demand different network requirements for the com
puter network . Examples of network requirements include
processing speed , amount of data storage , security require
ments , performance requirements , throughput requirements ,
latency requirements , resiliency requirements , Quality of
Service (QoS) requirements , tenant isolation , and / or consis
tency . The same computer network may need to implement
different network requirements demanded by different ten
ants .
[0082] In one or more embodiments , in a multi - tenant
computer network , tenant isolation is implemented to ensure
that the applications and / or data of different tenants are not
shared with each other . Various tenant isolation approaches
may be used .
[0083] In an embodiment , each tenant is associated with a
tenant ID . Each network resource of the multi - tenant com
puter network is tagged with a tenant ID . A tenant is
permitted access to a particular network resource only if the
tenant and the particular network resources are associated
with a same tenant ID .
[0084] In an embodiment , each tenant is associated with a
tenant ID . Each application , implemented by the computer
network , is tagged with a tenant ID . Additionally or alter
natively , each data structure and / or dataset , stored by the
computer network , is tagged with a tenant ID . A tenant is
permitted access to a particular application , data structure ,
and / or dataset only if the tenant and the particular applica
tion , data structure , and / or dataset are associated with a same
tenant ID .

[0085] As an example , each database implemented by a
multi - tenant computer network may be tagged with a tenant
ID . Only a tenant associated with the corresponding tenant
ID may access data of a particular database . As another
example , each entry in a database implemented by a multi
tenant computer network may be tagged with a tenant ID .
Only a tenant associated with the corresponding tenant ID
may access data of a particular entry . However , the database
may be shared by multiple tenants .
[0086] In an embodiment , a subscription list indicates
which tenants have authorization to access which applica
tions . For each application , a list of tenant IDs of tenants
authorized to access the application is stored . A tenant is
permitted access to a particular application only if the tenant
ID of the tenant is included in the subscription list corre
sponding to the particular application .
[0087] In an embodiment , network resources (such as
digital devices , virtual machines , application instances , and
threads) corresponding to different tenants are isolated to
tenant - specific overlay networks maintained by the multi
tenant computer network . As an example , packets from any
source device in a tenant overlay network may only be
transmitted to other devices within the same tenant overlay
network . Encapsulation tunnels are used to prohibit any
transmissions from a source device on a tenant overlay
network to devices in other tenant overlay networks . Spe
cifically , the packets , received from the source device , are
encapsulated within an outer packet . The outer packet is
transmitted from a first encapsulation tunnel endpoint (in
communication with the source device in the tenant overlay
network) to a second encapsulation tunnel endpoint in
communication with the destination device in the tenant
overlay network) . The second encapsulation tunnel endpoint
decapsulates the outer packet to obtain the original packet
transmitted by the source device . The original packet is
transmitted from the second encapsulation tunnel endpoint
to the destination device in the same particular overlay
network .

6. Miscellaneous ; Extensions

[0088] Embodiments are directed to a system with one or
more devices that include a hardware processor and that are
configured to perform any of the operations described herein
and / or recited in any of the claims below .
[0089] In an embodiment , a non - transitory computer read
able storage medium comprises instructions which , when
executed by one or more hardware processors , causes per
formance of any of the operations described herein and / or
recited in any of the claims .
[0090] Any combination of the features and functionalities
described herein may be used in accordance with one or
more embodiments . In the foregoing specification , embodi
ments have been described with reference to numerous
specific details that may vary from implementation to imple
mentation . The specification and drawings are , accordingly ,
to be regarded in an illustrative rather than a restrictive
sense . The sole and exclusive indicator of the scope of the
invention , and what is intended by the applicants to be the
scope of the invention , is the literal and equivalent scope of
the set of claims that issue from this application , in the
specific form in which such claims issue , including any
subsequent correction .

US 2021/0026845 A1 Jan. 28 , 2021
11

7. Hardware Overview

[0091] According to one embodiment , the techniques
described herein are implemented by one or more special
purpose computing devices . The special - purpose computing
devices may be hard - wired to perform the techniques , or
may include digital electronic devices such as one or more
application - specific integrated circuits (ASICs) , field pro
grammable gate arrays (FPGAs) , or network processing
units (NPUs) that are persistently programmed to perform
the techniques , or may include one or more general purpose
hardware processors programmed to perform the techniques
pursuant to program instructions in firmware , memory , other
storage , or a combination . Such special - purpose computing
devices may also combine custom hard - wired logic , ASICS ,
FPGAs , or NPUs with custom programming to accomplish
the techniques . The special - purpose computing devices may
be desktop computer systems , portable computer systems ,
handheld devices , networking devices or any other device
that incorporates hard - wired and / or program logic to imple
ment the techniques .
[0092] For example , FIG . 5 is a block diagram that illus
trates a computer system 500 upon which an embodiment of
the invention may be implemented . Computer system 500
includes a bus 502 or other communication mechanism for
communicating information , and a hardware processor 504
coupled with bus 502 for processing information . Hardware
processor 504 may be , for example , a general purpose
microprocessor .
[0093] Computer system 500 also includes a main
memory 506 , such as a random access memory (RAM) or
other dynamic storage device , coupled to bus 502 for storing
information and instructions to be executed by processor
504. Main memory 506 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions to be executed by processor
504. Such instructions , when stored in non - transitory storage
media accessible to processor 504 , render computer system
500 into a special - purpose machine that is customized to
perform the operations specified in the instructions .
[0094] Computer system 500 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 504. A storage device 510 , such as a magnetic disk
or optical disk , is provided and coupled to bus 502 for
storing information and instructions .
[0095) Computer system 500 may be coupled via bus 502
to a display 512 , such as a cathode ray tube (CRT) , for
displaying information to a computer user . An input device
514 , including alphanumeric and other keys , is coupled to
bus 502 for communicating information and command
selections to processor 504. Another type of user input
device is cursor control 516 , such as a mouse , a trackball , or
cursor direction keys for communicating direction informa
tion and command selections to processor 504 and for
controlling cursor movement on display 512. This input
device typically has two degrees of freedom in two axes , a
first axis (e.g. , X) and a second axis (e.g. , y) , that allows the
device to specify positions in a plane .
[009] Computer system 500 may implement the tech
niques described herein using customized hard - wired logic ,
one or more ASICs or FPGAs , firmware and / or program
logic which in combination with the computer system causes
or programs computer system 500 to be a special - purpose
machine . According to one embodiment , the techniques

herein are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more instructions contained in main memory 506. Such
instructions may be read into main memory 506 from
another storage medium , such as storage device 510. Execu
tion of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process
steps described herein . In alternative embodiments , hard
wired circuitry may be used in place of or in combination
with software instructions .
[0097] The term " storage media ” as used herein refers to
any non - transitory media that store data and / or instructions
that cause a machine to operate in a specific fashion . Such
storage media may comprise non - volatile media and / or
volatile media . Non - volatile media includes , for example ,
optical or magnetic disks , such as storage device 510 .
Volatile media includes dynamic memory , such as main
memory 506. Common forms of storage media include , for
example , a floppy disk , a flexible disk , hard disk , solid state
drive , magnetic tape , or any other magnetic data storage
medium , a CD - ROM , any other optical data storage
medium , any physical medium with patterns of holes , a
RAM , a PROM , and EPROM , a FLASH - EPROM ,
NVRAM , any other memory chip or cartridge , content
addressable memory (CAM) , and ternary content - address
able memory (TCAM) .
[0098] Storage media is distinct from but may be used in
conjunction with transmission media . Transmission media
participates in transferring information between storage
media . For example , transmission media includes coaxial
cables , copper wire and fiber optics , including the wires that
comprise bus 502. Transmission media can also take the
form of acoustic or light waves , such as those generated
during radio - wave and infra - red data communications .
[0099] Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor 504 for execution . For example , the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer . The remote computer can load
the instructions into the remote computer's dynamic
memory and send the instructions over a telephone line
using a modem . A modem local to computer system 500 can
receive the data on the telephone line and use an infra - red
transmitter to convert the data to an infra - red signal . An
infra - red detector can receive the data carried in the infra - red
signal and appropriate circuitry can place the data on bus
502. Bus 502 carries the data to main memory 506 , from
which processor 504 retrieves and executes the instructions .
The instructions received by main memory 506 may option
ally be stored on storage device 510 either before or after
execution by processor 504 .
[0100] Computer system 500 also includes a communica
tion interface 518 coupled to bus 502. Communication
interface 518 provides a two - way data communication cou
pling to a network link 520 that is connected to a local
network 522. For example , communication interface 518
may be an integrated services digital network (ISDN) card ,
cable modem , satellite modem , or a modem to provide a data
communication connection to a corresponding type of tele
phone line . As another example , communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN . Wire
less links may also be implemented . In any such implemen
tation , communication interface 518 sends and receives

US 2021/0026845 A1 Jan. 28 , 2021
12

now comi

electrical , electromagnetic or optical signals that carry digi
tal data streams representing various types of information .
[0101] Network link 520 typically provides data commu
nication through one or more networks to other data devices .
For example , network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the world wide packet data communication network

mmonly referred to as the “ Internet ” 528. Local
network 522 and Internet 528 both use electrical , electro
magnetic or optical signals that carry digital data streams .
The signals through the various networks and the signals on
network link 520 and through communication interface 518 ,
which carry the digital data to and from computer system
500 , are example forms of transmission media .
[0102] Computer system 500 can send messages and
receive data , including program code , through the network
(s) , network link 520 and communication interface 518. In
the Internet example , a server 530 might transmit a
requested code for an application program through Internet
528 , ISP 526 , local network 522 and communication inter
face 518 .
[0103] The received code may be executed by processor
504 as the code is received , and / or stored in storage device
510 , or other non - volatile storage for later execution .
[0104] In the foregoing specification , embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation . The specification and drawings are , accordingly ,
to be regarded in an illustrative rather than a restrictive
sense . The sole and exclusive indicator of the scope of the
invention , and what is intended by the applicants to be the
scope of the invention , is the literal and equivalent scope of
the set of claims that issue from this application , in the
specific form in which such claims issue , including any
subsequent correction .
What is claimed is :
1. A non - transitory computer readable medium compris

ing instructions which , when executed by one or more
hardware processors , causes performance of operations
comprising :

receiving a first plurality of object type definitions , each
of the first plurality of object type definitions compris
ing a corresponding plurality of data fields ;

wherein the first plurality of object type definitions com
prises a first object type definition ;

generating a first database schema comprising at least the
first object type definition ;

transmitting , to a client application , the first database
schema ;

wherein the client application processes a first object of a
first object type according to the first object type
definition comprised in the first database schema ;

receiving a second object type definition comprising a
corresponding plurality of data fields ;

wherein the second object type definition is not comprised
in the first database schema ;

generating a second database schema comprising at least
the first object type definition and the second object
type definition ;

transmitting , to the client application , the second database
schema ;

wherein the client application processes a second object
of a second object type according to the second object
type definition comprised in the second database
schema .

2. The medium of claim 1 , wherein the second object type
definition further defines a first function for transmitting the
one or more values of the second plurality of data fields of
the second object to the datastore .

3. The medium of claim 1 , wherein the second object type
definition further defines a second function for updating a
value of one of the second plurality of data fields corre
sponding to the second object type at the datastore .

4. The medium of claim 3 , wherein the second function
for updating the value specifies a uniform resource locator
(URL) to update the value of the one of the second plurality
of data fields corresponding to the second object type at the
datastore .

5. The medium of claim 4 , the operations further com
prising :

receiving , in the datastore , metadata that defines a plu
rality of sub - types of the second object type , each of the
plurality of sub - types including a different subset of the
second plurality of data fields corresponding to the
second object type ;

transmitting , to the client , the metadata that defines the
plurality of sub - types of the second object type ;

wherein the client executes a third function for fetching a
value of one of the second plurality of data fields
corresponding to a first sub - type of the second object
type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the first sub - type of the second object type ; and

wherein the client executes a fourth function for updating
a value of the one of the second plurality of data fields
corresponding to the first sub - type of the second object
type at the datastore .

6. The medium of claim 5 , wherein the client executes a
fifth function for fetching a value of one of the second
plurality of data fields corresponding to a second sub - type of
the second object type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the second sub - type of the second object type ;

wherein the client executes a sixth function for updating
a value of the one of the second plurality of data fields
corresponding to the second sub - type of the second
object type at the datastore ; and

wherein :
the fetched value of the one of the second plurality of data

fields corresponding to the first sub - type of the second
object type is of one of a list of fetched values corre
sponding to a plurality of object instances of the second
object type ,

the fetched value of the one of the second plurality of data
fields corresponding to the second sub - type of the
second object type corresponds to a unique object
instance of the second object type , and

a quantity of data fields corresponding to the first sub - type
of the second object type is less than a quantity of data
fields corresponding to the second sub - type of the
second object type .

7. The medium of claim 1 , wherein the client creates a first
persistence entity to represent the first object , the first

US 2021/0026845 A1 Jan. 28 , 2021
13

persistence entity comprising the first object type definition
and a representation of values of the first plurality of data
fields ; and

wherein the client creates a second persistence entity to
represent the second object , the second persistence
entity comprising the second object type definition and
a representation of values of the second plurality of
data fields ; and

wherein :
the processing of the first object is performed according to

the first persistence entity ; and
the processing of the second object is performed accord

ing to the second persistence entity .
8. A method comprising :
receiving a first plurality of object type definitions , each

of the first plurality of object type definitions compris
ing a corresponding plurality of data fields ;

wherein the first plurality of object type definitions com
prises a first object type definition ;

generating a first database schema comprising at least the
first object type definition ;

transmitting , to a client application , the first database
schema ;

wherein the client application processes a first object of a
first object type according to the first object type
definition comprised in the first database schema ;

receiving a second object type definition comprising a
corresponding plurality of data fields ;

wherein the second object type definition is not comprised
in the first database schema ;

generating a second database schema comprising at least
the first object type definition and the second object
type definition ;

transmitting , to the client application , the second database
schema ;

wherein the client application processes a second object
of a second object type according to the second object
type definition comprised in the second database
schema .

9. The method of claim 8 , wherein the second object type
definition further defines a first function for transmitting the
one or more values of the second plurality of data fields of
the second object to the datastore .

10. The method of claim 8 , wherein the second object type
definition further defines a second function for updating a
value of one of the second plurality of data fields corre
sponding to the second object type at the datastore .

11. The method of claim 10 , wherein the second function
for updating the value specifies a uniform resource locator
(URL) to update the value of the one of the second plurality
of data fields corresponding to the second object type at the
datastore .

12. The method of claim 11 , further comprising :
receiving , in the datastore , metadata that defines a plu

rality of sub - types of the second object type , each of the
plurality of sub - types including a different subset of the
second plurality of data fields corresponding to the
second object type ;

transmitting , to the client , the metadata that defines the
plurality of sub - types of the second object type ;

wherein the client executes a third function for fetching a
value of one of the second plurality of data fields
corresponding to a first sub - type of the second object
type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the first sub - type of the second object type ; and

wherein the client executes a fourth function for updating
a value of the one of the second plurality of data fields
corresponding to the first sub - type of the second object
type at the datastore .

13. The method of claim 12 , wherein the client executes
a fifth function for fetching a value of one of the second
plurality of data fields corresponding to a second sub - type of
the second object type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the second sub - type of the second object type ;

wherein the client executes a sixth function for updating
a value of the one of the second plurality of data fields
corresponding to the second sub - type of the second
object type at the datastore ; and

wherein :
the fetched value of the one of the second plurality of data

fields corresponding to the first sub - type of the second
object type is of one of a list of fetched values corre
sponding to a plurality of object instances of the second
object type ,

the fetched value of the one of the second plurality of data
fields corresponding to the second sub - type of the
second object type corresponds to a unique object
instance of the second object type , and

a quantity of data fields corresponding to the first sub - type
of the second object type is less than a quantity of data
fields corresponding to the second sub - type of the
second object type .

14. The method of claim 8 , wherein the client creates a
first persistence entity to represent the first object , the first
persistence entity comprising the first object type definition
and a representation of values of the first plurality of data
fields ; and

wherein the client creates a second persistence entity to
represent the second object , the second persistence
entity comprising the second object type definition and
a representation of values of the second plurality of
data fields ; and

wherein :
the processing of the first object is performed according to

the first persistence entity ; and
the processing of the second object is performed accord

ing to the second persistence entity .
15. A system comprising :
one or more hardware processors ;
a memory storing instructions which , when executed by

the one or more hardware processors , cause :
receiving a first plurality of object type definitions , each

of the first plurality of object type definitions compris
ing a corresponding plurality of data fields ;

wherein the first plurality of object type definitions com
prises a first object type definition ;

generating a first database schema comprising at least the
first object type definition ;

transmitting , to a client application , the first database
schema ;

wherein the client application processes a first object of a
first object type according to the first object type
definition comprised in the first database schema ;

US 2021/0026845 A1 Jan. 28 , 2021
14

receiving a second object type definition comprising a
corresponding plurality of data fields ;

wherein the second object type definition is not comprised
in the first database schema ;

generating a second database schema comprising at least
the first object type definition and the second object
type definition ;

transmitting , to the client application , the second database
schema ;

wherein the client application processes a second object
of a second object type according to the second object
type definition comprised in the second database
schema .

16. The system of claim 15 , wherein the second object
type definition further defines a first function for transmit
ting the one or more values of the second plurality of data
fields of the second object to the datastore .

17. The system of claim 15 , wherein the second object
type definition further defines a second function for updating
a value of one of the second plurality of data fields corre
sponding to the second object type at the datastore .

18. The system of claim 17 , wherein the second function
for updating the value specifies a uniform resource locator
(URL) to update the value of the one of the second plurality
of data fields corresponding to the second object type at the
datastore .

19. The system of claim 18 , the instructions further
causing :

receiving , in the datastore , metadata that defines a plu
rality of sub - types of the second object type , each of the
plurality of sub - types including a different subset of the
second plurality of data fields corresponding to the
second object type ;

transmitting , to the client , the metadata that defines the
plurality of sub - types of the second object type ;

wherein the client executes a third function for fetching a
value of one of the second plurality of data fields
corresponding to a first sub - type of the second object
type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the first sub - type of the second object type ; and

wherein the client executes a fourth function for updating
a value of the one of the second plurality of data fields
corresponding to the first sub - type of the second object
type at the datastore .

20. The system of claim 19 , wherein the client executes a
fifth function for fetching a value of one of the second
plurality of data fields corresponding to a second sub - type of
the second object type from the datastore ;

wherein the client processes the fetched value of the one
of the second plurality of data fields corresponding to
the second sub - type of the second object type ;

wherein the client executes a sixth function for updating
a value of the one of the second plurality of data fields
corresponding to the second sub - type of the second
object type at the datastore ; and

wherein :
the fetched value of the one of the second plurality of data

fields corresponding to the first sub - type of the second
object type is of one of a list of fetched values corre
sponding to a plurality of object instances of the second
object type ,

the fetched value of the one of the second plurality of data
fields corresponding to the second sub - type of the
second object type corresponds to a unique object
instance of the second object type , and

a quantity of data fields corresponding to the first sub - type
of the second object type is less than a quantity of data
fields corresponding to the second sub - type of the
second object type .

21. The system of claim 15 , wherein the client creates a
first persistence entity to represent the first object , the first
persistence entity comprising the first object type definition
and a representation of values of the first plurality of data
fields ; and

wherein the client creates a second persistence entity to
represent the second object , the second persistence
entity comprising the second object type definition and
a representation of values of the second plurality of
data fields ; and

wherein :
the processing of the first object is performed according to

the first persistence entity ; and
the processing of the second object is performed accord

ing to the second persistence entity .

