
IN
US 20200302273A1

(19) United States
(12) Patent Application Publication

CHUNG et al .
(10) Pub . No .: US 2020/0302273 A1
(43) Pub . Date : Sep. 24 , 2020

(54) SUBSAMPLING TRAINING DATA DURING
ARTIFICIAL NEURAL NETWORK
TRAINING

(52) U.S. CI .
CPC GO6N 3/0472 (2013.01) ; G06K 9/6267

(2013.01) ; G06F 17/16 (2013.01) ; GO6N
3/0481 (2013.01)

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(72) Inventors : Eric S. CHUNG , Redmond , WA (US) ;
Douglas C. BURGER , Redmond , WA
(US) ; Bita DARVISH ROUHANI ,
Bellevue , WA (US)

(21) Appl . No .: 16 / 359,663

(57) ABSTRACT
Perplexity scores are computed for training data samples
during ANN training . Perplexity scores can be computed as
a divergence between data defining a class associated with
a current training data sample and a probability vector
generated by the ANN model . Perplexity scores can alter
nately be computed by learning a probability density func
tion (“ PDF ”) fitting activation maps generated by an ANN
model during training . A perplexity score can then be
computed for a current training data sample by computing a
probability for the current training data sample based on the
PDF . If the perplexity score for a training data sample is
lower than a threshold , the training data sample is removed
from the training data set so that it will not be utilized for
training during subsequent epochs . Training of the ANN
model continues following the removal of training data
samples from the training data set .

(22) Filed : Mar. 20 , 2019

Publication Classification

(51) Int . Ci .
G06N 3/04
GO6F 17/16
GO6K 9/62

(2006.01)
(2006.01)
(2006.01)

SUBSAMPLE TRAINING DATA DURING ANN
TRAINING (SUPERVISED)

200 START

202
PERFORM FORWARD TRAINING PASS FOR

CURRENT TRAINING DATA SAMPLE

204

COMPUTE PROBABILITY VECTOR FOR
CURRENT TRAINING DATA SAMPLE

206 COMPUTE VARIANCE BETWEEN THE
COMPUTED PROBABILITY VECTOR AND A
ONE - HOT VECTOR DEFINING A CLASS
ASSOCIATED WITH THE CURRENT

TRAINING DATA SAMPLE 210

208
YES

VARIANCE < OR > THRESHOLD ?

REMOVE THE CURRENT
TRAINING DATA SAMPLE
FROM THE TRAINING

DATA SET (214
NO

212

?? .
CURRENT

TRAINING DATA
SAMPLE = NEXT
TRAINING DATA

SAMPLE

CURRENT EPOCH COMPLETE ?

YES
216

NO CURRENT
TRAINING DATA
SAMPLE = FIRST
TRAINING DATA

SAMPLE

MORE EPOCHS ?

YES
222 220

NO
ADD PREVIOUSLY

REMOVED
TRAINING DATA
SAMPLES TO

TRAINING DATA
SET

ADD
REMOVED SAMPLES BACK TO

TRAINING DATA SET ?

YES

224 218 € END

102

112

104

PREDICTION (PROBABILITY
VECTOR)

ANN MODEL

THRESHOLD
116A

ANN TRAINING MODULE

Patent Application Publication

CLASS LABEL (ONE - HOT VECTOR)

PERPLEXITY SCORE

THRESHOLD
116B

110B

114

108B

TRAINING DATA SAMPLE
108A 108B

108N

Sep. 24 , 2020 Sheet 1 of 8

TRAINING DATA SAMPLE
TRAINING DATA

TRAINING DATA SAMPLE

SAMPLE

106

110A

CLASS LABEL

CLASS LABEL

CLASS LABEL

TRAINING DATA SET

110B

110N

US 2020/0302273 A1

FIG . 1

Patent Application Publication Sep. 24 , 2020 Sheet 2 of 8 US 2020/0302273 A1

SUBSAMPLE TRAINING DATA DURING ANN
TRAINING (SUPERVISED)

200
START

202

PERFORM FORWARD TRAINING PASS FOR
CURRENT TRAINING DATA SAMPLE

204

COMPUTE PROBABILITY VECTOR FOR
CURRENT TRAINING DATA SAMPLE

206 COMPUTE VARIANCE BETWEEN THE
COMPUTED PROBABILITY VECTOR AND A
ONE - HOT VECTOR DEFINING A CLASS
ASSOCIATED WITH THE CURRENT

TRAINING DATA SAMPLE 210

208
YES

VARIANCE < OR > THRESHOLD ?
REMOVE THE CURRENT
TRAINING DATA SAMPLE
FROM THE TRAINING

DATA SET 214

NO
212

NO
CURRENT

TRAINING DATA
SAMPLE = NEXT
TRAINING DATA

SAMPLE

CURRENT EPOCH COMPLETE ?

YES
216

NO CURRENT
TRAINING DATA
SAMPLE = FIRST
TRAINING DATA

SAMPLE

MORE EPOCHS ?

YES
222 220

NO
ADD PREVIOUSLY

REMOVED
TRAINING DATA
SAMPLES TO

TRAINING DATA
SET

ADD
REMOVED SAMPLES BACK TO

TRAINING DATA SET ?

YES

224 218 END

FIG . 2

306

ACTIVATION MAP (S)

302

102

104

PROBABILITY DISTRIBUTION FUNCTION (PDF)

ANN MODEL

THRESHOLD

Patent Application Publication

116A

ANN TRAINING MODULE

304

THRESHOLD

PERPLEXITY SCORE

PROBABILITY (POPULARITY)

116B

5 114

108B

TRAINING DATA SAMPLE

Sep. 24 , 2020 Sheet 3 of 8

108A 108B

108N

TRAINING
TRAINING DATA SAMPLE

DATA

TRAINING DATA SAMPLE

SAMPLE

106

TRAINING DATA SET

US 2020/0302273 A1

FIG . 3

Patent Application Publication Sep. 24 , 2020 Sheet 4 of 8 US 2020/0302273 A1

SUBSAMPLE TRAINING DATA DURING ANN
TRAINING (SUPERVISED)

400
START So 42

PERFORM FORWARD TRAINING PASS FOR
CURRENT TRAINING DATA SAMPLE

404
LEARN PROBABILITY DENSITY FUNCTION
FOR PREVIOUS TRAINING DATA SAMPLES

406 COMPUTE PERPLEXITY SCORE FOR
CURRENT TRAINING DATA SAMPLE USING
THE PROBABILITY DENSITY FUNCTION

410

408
YES

VARIANCE < OR > THRESHOLD ?
REMOVE THE CURRENT
TRAINING DATA SAMPLE
FROM THE TRAINING

DATA SET 414
NO

412

NO
CURRENT

TRAINING DATA
SAMPLE = NEXT
TRAINING DATA

SAMPLE

CURRENT EPOCH COMPLETE ?

YES
416

NO CURRENT
TRAINING DATA
SAMPLE = FIRST
TRAINING DATA

SAMPLE

MORE EPOCHS ?

YES
422 420

NO
ADD PREVIOUSLY

REMOVED
TRAINING DATA
SAMPLES TO

TRAINING DATA
SE

ADD
REMOVED SAMPLES BACK TO

TRAINING DATA SET ?

YES

424 418 END

FIG . 4

8 7

Patent Application Publication

6

EPOCH
5 4 3

Sep. 24 , 2020 Sheet 5 of 8

2 1

1

2 3

4 .

5

9

7

8

9

10

11

TRAINING DATA SAMPLE ID

US 2020/0302273 A1

FIG . 5A

8 7

Patent Application Publication

6 5

EPOCH
4 3

Sep. 24 , 2020 Sheet 6 of 8

2 1

8

6

1 2 3 4 5 6 7 8 9 10

11

TRAINING DATA SAMPLE ID

US 2020/0302273 A1

FIG . 5B

606

REMOTE COMPUTER

REMOTE COMPUTER
606 PHYSICAL SENSOR

626

Patent Application Publication

600

NETWORK
620 630

602

616

618

CPU

GPU

NETWORK INTERFACE UNIT

1/0 CONTROLLER
610

Sep. 24 , 2020 Sheet 7 of 8

604

MEMORY

MASS STORAGE DEVICE

612

RAM

606

OPERATING SYSTEM

622

ROM

608

US 2020/0302273 A1

FIG . 6

700

700A

700B

SERVER COMPUTER

TABLET COMPUTER

Patent Application Publication

700G

ARNR DEVICE

700C

COMMUNICATIONS NETWORK

GAMING CONSOLE

700F

Sep. 24 , 2020 Sheet 8 of 8

620

PERSONAL COMPUTER 700E

700D

TELEPHONE

SMART WATCH

US 2020/0302273 A1

FIG . 7

US 2020/0302273 A1 Sep. 24 , 2020
1

SUBSAMPLING TRAINING DATA DURING
ARTIFICIAL NEURAL NETWORK

TRAINING

BACKGROUND

[0001] Artificial neural networks (“ ANNs ” or “ NNs ”) are
applied to a number of applications in Artificial Intelligence
(" AI ") and Machine Learning (“ ML ") , including image
recognition , speech recognition , search engines , and other
suitable applications . ANNs are typically trained across
multiple “ epochs . " In each epoch , an ANN trains over all of
the training data in a training data set in multiple steps . In
each step , the ANN first makes a prediction for an instance
of the training data (which might also be referred to herein
as a “ sample ”) . This step is commonly referred to as a
“ forward pass ” (which might also be referred to herein as a
“ forward training pass ”) .
[0002] To make a prediction , a training data sample is fed
to the first layer of the ANN , which is commonly referred to
as an “ input layer . " Each layer of the ANN then computes a
function over its inputs , often using learned parameters , or
" weights , ” to produce an input for the next layer . The output
of the last layer , commonly referred to as the “ output layer , "
is a class prediction , commonly implemented as a vector
indicating the probabilities that the sample is a member of a
number of classes . Based on the label predicted by the ANN
and the actual label of each instance of training data , the
output layer computes a “ loss , ” or error function .
[0003] In a " backward pass ” (which might also be referred
to herein as a “ backward training pass ”) of the ANN , each
layer of the ANN computes the error for the previous layer
and the gradients , or updates , to the weights of the layer that
move the ANN's prediction toward the desired output . The
result of training a ANN is a set of weights , or “ kernels , ” that
represent a transform function that can be applied to an input
with the result being a classification , or semantically labeled
output .
[0004] After an ANN is trained , the trained ANN can be
used to classify new data . Specifically , a trained ANN model
can use weights and biases computed during training to
perform tasks (e.g. classification and recognition) on data
Other than that used to train the ANN . General purpose
central processing units (“ CPUs ”) , special purpose proces
sors (e.g. graphics processing units (“ GPUs ”)) , and other
types of hardware can be used to execute an ANN model .
[0005] Training an ANN in the manner described above
can consume significant computing resources including ,
memory , processor cycles , network bandwidth , and power .
This is particularly true for training data sets that include
large numbers of training data samples .
[0006] It is with respect to these and other technical
challenges that the disclosure made herein is presented .

[0008] In order to provide the technical benefits mentioned
above , and potentially others , perplexity scores can be
computed for training data samples during ANN training .
The perplexity scores indicate how “ surprised ” the ANN
model is by a training data sample at a particular point in
training . A perplexity score can be computed for some or all
of the training data samples in a training data set following
a forward training pass during each training epoch .
[0009] In one embodiment , the perplexity score is com
puted as a divergence between data (e.g. a one - hot vector)
defining a class associated with the current training data
sample and a probability vector (e.g. a probability vector
generated by a SoftMax layer of the ANN) generated by the
ANN model specifying probabilities that the current training
data sample belongs to each of a plurality of classes (i.e. the
output of the ANN model) . In one example , the divergence
is computed as a Kullback - Leibler divergence . Other types
of divergence metrics can be utilized in other embodiments .
[0010] In another embodiment , the perplexity score is
computed by first learning a probability density function
(“ PDF ”) fitting activation maps generated by an ANN model
during training on training data samples previously used to
train the ANN . A perplexity score can then be computed for
a current training data sample by computing a probability for
the current training data sample based on the PDF . The PDF
might be a Gaussian PDF , a Gaussian Mixture Model PDF ,
or another type of PDF .
[0011] Once the perplexity score has been computed for a
training data sample using either of the methods described
above , a determination can be made as to whether the
perplexity score is lower than a threshold . If the perplexity
score is lower than the threshold for a training data sample ,
the training data sample is removed from the training data
set so that it will not be utilized for training during subse
quent epochs . In some embodiments , a further determination
can be made as to whether the perplexity score for a training
data sample is higher than a second threshold . If the per
plexity score is higher than the second threshold for a
training data sample , the training data sample is also
removed from the training data set so that it will not be
utilized for training during subsequent epochs . Training of
the ANN model continues following the removal of training
data samples from the training data set .
[0012] In some configurations , training data samples that
were previously removed from the training data set can be
periodically added back to the training data set . This might
occur , for example , at the start of an epoch . This allows the
perplexity score for training data samples to be re - computed
following additional training of an ANN model .
[0013] It should be appreciated that the above - described
subject matter can be implemented as a computer - controlled
apparatus , a computer - implemented method , a computing
device , or as an article of manufacture such as a computer
readable medium . These and various other features will be
apparent from a reading of the following Detailed Descrip
tion and a review of the associated drawings .
[0014] This Summary is provided to introduce a brief
description of some aspects of the disclosed technologies in
a simplified form that are further described below in the
Detailed Description . This Summary is not intended to
identify key features or essential features of the claimed
subject matter , nor is it intended that this Summary be used
to limit the scope of the claimed subject matter . Further

SUMMARY

[0007] Technologies are disclosed herein for subsampling
training data during ANN training . Through implementa
tions of the disclosed technologies , ANN models can be
trained to a desired level of accuracy using a reduced
number of training data samples , thereby reducing training
time . This can conserve computing resources including , but
not limited to , memory , processor cycles , network band
width , and power . Other technical benefits can be realized
through implementations of the disclosed technologies .

US 2020/0302273 A1 Sep. 24 , 2020
2

more , the claimed subject matter is not limited to imple
mentations that solve any or all disadvantages noted in any
part of this disclosure .

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG . 1 is a computing architecture diagram that
shows aspects of the configuration of a computing system
disclosed herein for subsampling training data during ANN
training , according to one embodiment disclosed herein ;
[0016] FIG . 2 is a flow diagram showing a routine that
illustrates aspects of an illustrative computer - implemented
process for subsampling training data during ANN training ,
according to the embodiment shown in FIG . 1 ;
[0017] FIG . 3 is a computing architecture diagram that
shows aspects of the configuration of a computing system
disclosed herein for subsampling training data during ANN
training , according to another embodiment disclosed herein ;
[0018] FIG . 4 is a flow diagram showing a routine that
illustrates aspects of an illustrative computer - implemented
process for subsampling training data during ANN training ,
according to the embodiment shown in FIG . 3 ;
[0019] FIGS . 5A and 5B are bar graphs showing example
results of the application of the technologies disclosed
herein to a sample training data set ;
[0020] FIG . 6 is a computer architecture diagram showing
an illustrative computer hardware and software architecture
for a computing device that can implement aspects of the
technologies presented herein ; and
[0021] FIG . 7 is a network diagram illustrating a distrib
uted computing environment in which aspects of the dis
closed technologies can be implemented .

[0025] To make a prediction , a training data sample is fed
to the first layer of the ANN , which is commonly referred to
as an “ input layer . " Each layer of the ANN then computes a
function verits input , often uingeared parameters ,
" weights , ” to produce an input for the next layer . The output
of the last layer , commonly referred to as the “ output layer , "
is a class prediction , com mmonly implemented as a vector
indicating the probabilities that the sample is a member of a
number of classes . Based on the label predicted by the ANN
and the actual label of each instance of training data , the
output layer computes a “ loss , ” or error function .
(0026 " backward pass ” (which might also be referred
to herein as a “ backward training pass ”) of the ANN , each
layer of the ANN computes the error for the previous layer
and the gradients , or updates , to the weights of the layer that
move the ANN's prediction toward the desired output . The
result of training a ANN is a set of weights , or “ kernels , ” that
represent a transform function that can be applied to an input
with the result being a classification , or semantically labeled
output .

27After ANNs trained , the trained ANNcan be
used to classify new data . Specifically , a trained ANN model
can use weights and biases computed during training to
perform taske.gcassification and recognition data
other than that used to train the ANN . General purpose
CPUs , special purpose processors (e.g. GPUs) , and other
types of hardware can be used to executeANN model .
[0028] In some examples , proprietary or open source
libraries or frameworks are utilized to facilitate ANN cre
ation , training , and evaluation . Examples of such libraries
include , but are not limited to , TENSORFLOW , MICRO
SOFT COGNITIVE TOOLKIT (“ CNTK ”) , CAFFE , THE
ANO , and KERAS . In some examples , programming tools
such as integrated development environments (“ IDEs ”) pro
vide support for programmers and users to define , compile ,
and evaluate ANNs .
029 Tools such as the identified above can be used to
define and use a ANN model . As one example , a modelling
framework can include pre - defined application program
ming interfaces (“ APIs ”) and / or programming primitives
that can be used to specify one or more aspects of an ANN
model . These pre - defined APIs can include both lower - level
APIs (e.g. , activation functions , cost or error functions ,
nodes , edges , and tensors) and higher - level APIs (e.g. ,
layers , convolutional neural networks , recurrent neural net
works , linear classifiers , and so forth) .
[0030] “ Source code ” can be used as an input to such a
modelling framework to define a topology of the graph of a
given ANN model . In particular , APIs of a modelling
framework can be instantiated and interconnected using
source code to specify a complex ANN model . Different
ANN models can be defined by using different APIs , dif
ferent numbers of APIs , and interconnecting the APIs in
different ways .
[0031] Training data for training an ANN typically
includes a set of input data (a “ training data set ”) for
applying to an ANN model and data describing a desired
output from the ANN model for each respective sample of
the training data . A modelling framework such as those
described above can be used to train an ANN model with
such training data .
[0032] As discussed briefly above , the output of ANN
training is the weights and biases that are associated with
each node of an ANN model . After the ANN model is

DETAILED DESCRIPTION

[0022] The following detailed description is directed to
technologies for subsampling training data during ANN
training . In addition to other technical benefits , the disclosed
technologies can train ANN models to a desired level of
accuracy using a reduced number of training data samples .
This can conserve computing resources including , but not
limited to , memory , processor cycles , network bandwidth ,
and power . Other technical benefits not specifically identi
fied herein can also be realized through implementations of
the disclosed technologies .
[0023] Prior to describing the disclosed technologies for
subsampling training data during ANN training , a brief
overview of ANNs and ANN training will be provided . As
described briefly above , ANNs are applied to a number of
applications in AI and ML , including image recognition ,
speech recognition , search engines , and other suitable appli
cations . An ANN generally consists of a sequence of layers
of different types (e.g. convolution , ReLU , fully connected ,
and pooling layers) . As will be described in greater detail
below , NNs are typically trained using a labeled data set
(e.g. a set of images that have been labeled with data
describing the content in the images) .
[0024] ANNs are typically trained across multiple
“ epochs . ” In each epoch , an ANN trains over all of the
training data in a training data set in multiple steps . In each
step , the ANN first makes a prediction for an instance of the
training data (which might also be referred to herein as a
" sample ”) . This step is commonly referred to as a “ forward
pass ” (which might also be referred to herein as a “ forward
training pass ”) .

US 2020/0302273 A1 Sep. 24 , 2020
3

trained , a modelling framework can be used to classify new
data that is applied to the trained ANN model . Specifically ,
a trained ANN model uses the weights and biases obtained
from training to perform classification , recognition , or other
types of tasks on data that was not used to train the ANN
model . Such a modelling framework can use special purpose
processors (e.g. tensor processing units (“ TPUs ”) or GPUs)
to execute the ANN model with increased performance as
compared to using only CPUs .
[0033] Referring now to the drawings , in which like
numerals represent like elements throughout the several
FIGS . , aspects of various technologies for subsampling
training data during ANN training will be described . In the
following detailed description , references are made to the
accompanying drawings that form a part hereof , and which
are shown by way of illustration specific configurations or
examples .
[0034] FIG . 1 is a computing architecture diagram that
shows aspects of the configuration of a computing system
disclosed herein for subsampling training data during ANN
training , according to one embodiment disclosed herein . As
shown in FIG . 1 and described briefly above , an ANN
training module 102 can be configured to train an ANN
model 104 in the manner described above . The ANN train
ing module 102 might be provided by a modelling frame
work , such as those described above .
[0035] In the example configuration shown in FIG . 1 , the
ANN model 104 is being trained using training data samples
108A - 108N (which might be referred to herein collectively
as the “ training data samples 108 ” or individually as “ a
training data sample 108 ”) from a training data set 106. The
training data samples 108 might be images , for example .
Other types of training data can be utilized in other con
figurations .
[0036] As shown in FIG . 1 , each of the training data
samples 108A - 108N has an associated class label 110A
110N (which might be referred to herein collectively as the
“ class labels 110 ” or individually as “ a class label 110 ”) ,
respectively . The class labels 110 are one - hot vectors that
identify the true class of the associated training data sample
108. The class labels 110 can be implemented in other ways
in other configurations .
[0037] As also shown in FIG . 1 , the ANN training module
102 can compute perplexity scores for some or all of the
training data samples 108 during each epoch such as , for
example , following each forward training pass . In the
example shown in FIG . 1 , for instance , the ANN training
module 102 has computed a perplexity score 114 for the
training data sample 108B . The perplexity scores indicate
how “ surprised ” the ANN model 104 is by a training data
sample 108 at a particular point during training .
[0038] In one embodiment , the perplexity score 114 is
computed as the divergence between data defining a class
associated with a current training data sample 108 (e.g. a
class label 110B) and a probability vector 112 (e.g. a
probability vector generated by a SoftMax layer of the ANN
model 104) generated by the ANN model 104 specifying
probabilities that the current training data sample 108
belongs to each of a plurality of classes (i.e. the output of the
ANN model 104) . In one example , the divergence is com
puted as a Kullback - Leibler divergence . Other types of
divergence metrics can be utilized in other embodiments .
[0039] Once the perplexity score 114 has been computed
for a training data sample 108 , the ANN training module 102

can determine whether the perplexity score 108 is lower than
a threshold 116A . If the perplexity score 114 is lower than
the threshold 116A for a training data sample 108 , the ANN
training module 102 removes the training data sample 108
from the training data set 106 so that it will not be utilized
for training during subsequent epochs . In the example
shown in FIG . 1 , for instance , the training data sample 108B
has been removed from the training data set 106 .
[0040] In some embodiments , the ANN training module
102 can make a further determination as to whether the
perplexity score 114 for a training data sample 108 is higher
than a second threshold 116B . If the perplexity score 114 is
higher than the second threshold 116B for a training data
sample 108 , the training data sample 108 is removed from
the training data set 106 so that it will not be utilized for
training during subsequent epochs . Training of the ANN
model 102 continues following the removal of training data
samples 108 from the training data set 106 .
[0041] As described briefly above , the ANN training mod
ule 102 can periodically add training data samples 108 that
were previously removed from the training data set 106 back
to the training data 106 set in some configurations . This
might occur , for example , at the start of an epoch . In the
example shown in FIG . 1 , for instance , the training data
sample 108B might be added back to the training data set
106 following the completion of some number of epochs
(e.g. 25) . This allows the perplexity score 114 for previously
removed training data samples 108 to be re - computed fol
lowing additional training of an ANN model 104. Additional
details regarding this process will be provided below with
regard to FIG . 5B .
[0042] Referring now to FIG . 2 , a flow diagram showing
a routine 200 will be described that shows aspects of an
illustrative computer - implemented process for subsampling
training data during ANN training . It should be appreciated
that the logical operations described herein with regard to
FIG . 2 , and the other FIGS . , can be implemented (1) as a
sequence of computer implemented acts or program mod
ules running on a computing device and / or (2) as intercon
nected machine logic circuits or circuit modules within a
computing device .
[0043] The particular implementation of the technologies
disclosed herein is a matter of choice dependent on the
performance and other requirements of the computing
device . Accordingly , the logical operations described herein
are referred to variously as states , operations , structural
devices , acts , or modules . These states , operations , structural
devices , acts and modules can be implemented in hardware ,
software , firmware , in special - purpose digital logic , and any
combination thereof . It should be appreciated that more or
fewer operations can be performed than shown in the FIGS .
and described herein . These operations can also be per
formed in a different order than those described herein .
[0044] The routine 200 begins at operation 202 , where the
ANN training module 102 performs a forward training pass
for a current training data sample 108 in the manner
described above . The routine 200 then proceeds from opera
tion 202 to operation 204 , where the ANN training module
102 computes a probability vector 112 for the current
training data sample 108. As discussed above , the probabil
ity vector 112 is generated by the ANN model 104 and
specifies probabilities that the current training data sample
108 belongs to each of a plurality of classes (i.e. the output

US 2020/0302273 A1 Sep. 24 , 2020
4

of the ANN model) . The probability vector 112 is generated
by a SoftMax layer of the ANN model 104 in some con
figurations .
[0045] From operation 204 , the routine 200 proceeds to
operation 206 , where the ANN training module 102 com
putes the divergence between data defining a class associ
ated with the current training data sample 108 (e.g. a one - hot
vector identifying the true class of the training data sample
108) and the probability vector 112 for the current training
data sample 10. In one example , the divergence is computed
as a Kullback - Leibler divergence . Other types of divergence
metrics can be utilized in other embodiments . The variance
computed at operation 206 is the perplexity score 114 for the
current training data sample 108 in this embodiment .
[0046] From operation 206 , the routine 200 proceeds to
operation 208 , where the ANN training module 102 deter
mines whether the perplexity score 114 computed at opera
tion 206 is lower than a threshold 116A . If the perplexity
score 114 for the current training data sample 108 is lower
than the threshold 116A , the routine 200 proceeds to opera
tion 210 , where the ANN training module 102 removes the
training data sample 108 from the training data set 106 so
that it will not be utilized for training during subsequent
epochs .
[0047] In some embodiments , the ANN training module
102 makes a further determination as to whether the per
plexity score 114 for the current training data sample 108 is
higher than a second threshold 116B . If the perplexity score
114 is higher than the second threshold 116B for the current
training data sample 108 , the routine 200 proceeds to
operation 210 , where the ANN training module 102 removes
the current training data sample 108 from the training data
set 106 so that it will not be utilized for training during subsequent epochs .
[0048] From operation 208 , the routine 200 proceeds to
operation 212 , where the ANN training module 102 deter
mines if the current the current epoch is complete . If not , the
routine 200 proceeds from operation 212 to operation 214 ,
where the ANN training module 102 obtains the next
training data sample 108 and the process described above is
repeated .
[0049] If the current training epoch is complete , the rou
tine 200 proceeds from operation 212 to operation 216 ,
where the ANN training module 102 determines if training
is to continue for additional epochs . If not , the routine 200
proceeds from operation 216 to operation 218 , where it ends .
[0050] If additional epochs remain , the routine 200 pro
ceeds from operation 216 to operation 220 , where the ANN
training module 102 determines if training data samples 108
that were previously removed from the training data set 106
are to be added back to the training data set 105. If so , the
routine 200 proceeds from operation 220 to operation 224 ,
where training data samples 108 that were previously
removed from the training data set 106 are returned to the
training data set 106 for use in further training of the ANN
model 104. If not , the routine 200 proceeds from operation
222 , where the next epoch is started . Training then continues
in the manner described above .
[0051] FIG . 3 is a computing architecture diagram that
shows aspects of the configuration of a computing system
disclosed herein for subsampling training data during ANN
training , according to another embodiment disclosed herein .
In the embodiment illustrated in FIG . 3 , the ANN training
module 102 computes a perplexity score 114 for a current

training data sample 108 by first learning a probability
density function (“ PDF ”) 302 fitting activation maps 306
generated by an ANN model 104 during training on training
data samples 108 previously used to train the ANN model
104 .
[0052] The ANN training module 102 can then compute a
perplexity score 114 for a current training data sample 108
by computing a probability for the current training data 108
sample based on the PDF 302. The PDF 302 might be a
Gaussian PDF , a Gaussian Mixture Model PDF , or another
type of PDF .
[0053] In some configurations , the learned PDF 302 can
be used to identify low - density regions in the activation
maps 306. The identified low - density regions can be utilized
to identify and collect new training data samples 108 that
can help improve the accuracy of the ANN model 104 .
[0054] FIG . 4 is a flow diagram showing a routine 400 that
illustrates aspects of alustrative computer - implemented
process for subsampling training data during ANN training ,
according to the embodiment shown in FIG . 3. The routine
400 begins at operation 402 , where the ANN training
module 102 performs a forward training pass for a current
training data sample 108 in the manner described above . The
routine 400 then proceeds from operation 402 to operation
404 , where the ANN training module 102 learns a PDF 302
that fits the activation maps306 generated by the ANN
model 104 while training . The routine 400 then proceeds
from operation 404 to operation 406 .
[0055] At operation 406 , the ANN training module 102
computes the perplexity score114 for the current training
data sample 108 by computing a probability 304 of the
current training data 108 sample based on the PDF 302. As
discussed above , the PDF might be a Gaussian PDF , a
Gaussian Mixture Model PDF , or another type of PDF .
[0056] From operation 406 , the routine 400 proceeds to
operation 408 , where the ANN training module 102 deter
mines whether the perplexity score 114 computed at opera
tion 406 is lower than a threshold 116A . If the perplexity
score 114 for the current training data sample 108 is lower
than the threshold 116A , the routine 400 proceeds to opera
tion 410 , where the ANN training module 102 removes the
training data sample 108 from the training data set 106 so
that it will not be utilized for training during subsequent
epochs .
[0057] In some embodiments , the ANN training module
102 makes a further determination as to whether the per
plexity score 114 for the current training data sample 108 is
higher than a second threshold 116B . If the perplexity score
114 is higher than the second threshold 116B for the current
training data sample 108 , the routine 400 proceeds to
perati41 , wherethANNtrainingmodule 12moves

the current training data sample 108 from the training data
set 106 so that it will not be utilized for training during
subsequent epochs .
[0058] If the perplexity score 114 is not lower or higher
than the thresholds 116A and 116B , respectively , the routine
400 proceeds to operation 412 , where the ANN training
module 12determine if the current the current och
complete . If not , the routine 400 proceeds from operation
412 to operation 414 , where the ANN training module 102
obtains the next training data sample 108 and the process
described above is repeated .
[0059] If the current training epoch is complete , the rou
tine 400 proceeds from operation 412 to operation 416 ,

US 2020/0302273 A1 Sep. 24 , 2020
5

where the ANN training module 102 determines if training
is to continue for additional epochs . If not , the routine 400
proceeds from operation 416 to operation 418 , where it ends .
[0060] If additional epochs remain , the routine 400 pro
ceeds from operation 416 to operation 420 , where the ANN
training module 102 determines if training data samples 108
that were previously removed from the training data set 106
are to be added back to the training data set 105. If so , the
routine 400 proceeds from operation 420 to operation 424 ,
where training data samples 108 that were previously
removed from the training data set 106 are returned to the
training data set 106 for use in further training of the ANN
model 104. If not , the routine 400 proceeds from operation
422 , where the next epoch is started . Training then continues
in the manner described above .
[0061] FIGS . 5A and 5B are bar graphs showing example
results of the application of the technologies disclosed
herein to a sample training data set 106. In the example
illustrated in FIG . 5A , the sample training data set 106
includes eleven training data samples 108 (IDs 1-11) and
training occurred over 8 epochs . A diamond in FIG . 5A
indicates that a particular training data sample 108 was used
for training during a particular epoch . For example , the
diamond located at the intersection of the dashed lines
corresponding to epoch 1 and training data sample ID 1
indicates that the training data sample 108 with the ID = 1
was used for training during epoch 1 .
[0062] As shown in FIG . 5A , all of the training data
samples 108 in the illustrative training data set 106 were
used for training during epoch 1. Following epoch 1 , the
training data sample 108 with the ID = 7 was excluded from
the training data set 106 based upon its perplexity score .
Following epoch 2 , the training data samples 108 with ID = 6
was removed from the training data set 106. This process
continues through epoch 8 in the manner described above ,
with various training data samples 108 being removed
following each epoch .
[0063] As discussed above , training data samples 108 that
were previously removed from the training data set can be
periodically added back to the training data set 106 in some
configurations . This might occur , for example , at the start of
an epoch . This allows the perplexity score for training data
samples 108 to be re - computed following additional training
of an ANN model . This process is illustrated in FIG . 5B .
[0064] In the example shown in FIG . 5B , training data
sample 108 with ID = 7 was removed from the training data
set 106 after epoch 7. However , this training data sample 108
was added back to the training data set 106 following epoch
2. Similarly , training data samples 108 having IDs = 3 , 5,6 ,
7,9 , and 10 were removed from the training data set 106
following epoch 3. These training data samples 108 , how
ever , were added back to the training data set 106 following
epoch 4. In this example , previously excluded training data
samples 108 have been added back to the training data set
106 prior to odd numbered epochs . However , previously
excluded training data samples 108 might be added back to
the training data set 106 at other times (e.g. after 10 epochs ,
after 50 epochs , etc.) .
[0065] FIG . 6 is a computer architecture diagram showing
an illustrative computer hardware and software architecture
for computing device that can implement the various
technologies presented herein . In particular , the architecture
illustrated in FIG . 6 can be utilized to implement a server
computer , mobile phone , an e - reader , a smartphone , a desk

top computer , an alternate reality or virtual reality (“ AR /
VR ”) device , a tablet computer , a laptop computer , or
another type of computing device .
[0066] While the subject matter described herein is pre
sented in the general context of server computers performing
training of an ANN , those skilled in the art will recognize
that other implementations can be performed in combination
with other types of computing systems and modules . Those
skilled in the art will also appreciate that the subject matter
described herein can be practiced with other computer
system configurations , including hand - held devices , multi
processor systems , microprocessor - based or programmable
consumer electronics , computing or processing systems
embedded in devices (such as wearable computing devices ,
automobiles , home automation etc.) , minicomputers , main
frame computers , and the like .
[0067] The computer 600 illustrated in FIG . 6 includes
one or more central processing units 602 (“ CPU ”) , one or
more GPUs 630 , a system memory 604 , including a random
access memory 606 (“ RAM ”) and a read - only memory
(“ ROM ”) 608 , and a system bus 610 that couples the
memory 604 to the CPU 602. A basic input / output system
(“ BIOS ” or “ firmware ") containing the basic routines that
help to transfer information between elements within the
computer 600 , such as during startup , can be stored in the
ROM 608. The computer 600 further includes a mass
storage device 612 for storing an operating system 622 ,
application programs , and other types of programs . The
mass storage device 612 can also be configured to store other
types of programs and data .
[0068] The mass storage device 612 is connected to the
CPU 602 through a mass storage controller (not shown)
connected to the bus 610. The mass storage device 612 and
its associated computer readable media provide non - volatile
storage for the computer 600. Although the description of
computer readable media contained herein refers to a mass
storage device , such as a hard disk , CD - ROM drive , DVD
ROM drive , or USB storage key , it should be appreciated by
those skilled in the art that computer readable media can be
any available computer storage media or communication
media that can be accessed by the computer 600 .
[0069] Communication media includes computer readable
instructions , data structures , program modules , or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media . The
term “ modulated data signal ” means a signal that has one or
more of its characteristics changed or set in a manner so as
to encode information in the signal . By way of example , and
not limitation , communication media includes wired media
such as a wired network or direct - wired connection , and
wireless media such as acoustic , radio frequency , infrared
and other wireless media . Combinations of the any of the
above should also be included within the scope of computer
readable media .
[0070] By way of example , and not limitation , computer
storage media can include volatile and non - volatile , remov
able and non - removable media implemented in any method
or technology for storage of information such as computer
readable instructions , data structures , program modules or
other data . For example , computer storage media includes ,
but is not limited to , RAM , ROM , EPROM , EEPROM , flash
memory or other solid - state memory technology , CD - ROM ,
digital versatile disks (“ DVD ') , HD - DVD , BLU - RAY , or
other optical storage , magnetic cassettes , magnetic tape ,

US 2020/0302273 A1 Sep. 24 , 2020
6

magnetic disk storage or other magnetic storage devices , or
any other medium that can be used to store the desired
information and which can be accessed by the computer 600 .
For purposes of the claims , the phrase " computer storage
medium , ” and variations thereof , does not include waves or
signals per se or communication media .
[0071] According to various configurations , the computer
600 can operate in a networked environment using logical
connections to remote computers through a network such as
the network 620. The computer 600 can connect to the
network 620 through a network interface unit 616 connected
to the bus 610. It should be appreciated that the network
interface unit 616 can also be utilized to connect to other
types of networks and remote computer systems . The com
puter 600 can also include an input / output controller 618 for
receiving and processing input from a number of other
devices , including a keyboard , mouse , touch input , an elec
tronic stylus (not shown in FIG . 6) , or a physical sensor such
as a video camera . Similarly , the input / output controller 618
can provide output to a display screen or other type of output
device (also not shown in FIG . 6) .
[0072] It should be appreciated that the software compo
nents described herein , when loaded into the CPU 602 and
executed , can transform the CPU 602 and the overall com
puter 600 from a general - purpose computing device into a
special - purpose computing device customized to facilitate
the functionality presented herein . The CPU 602 can be
constructed from any number of transistors or other discrete
circuit elements , which can individually or collectively
assume any number of states . More specifically , the CPU
602 can operate as a finite - state machine , in response to
executable instructions contained within the software mod
ules disclosed herein . These computer - executable instruc
tions can transform the CPU 602 by specifying how the CPU
602 transitions between states , thereby transforming the
transistors or other discrete hardware elements constituting
the CPU 602 .
[0073] Encoding the software modules presented herein
can also transform the physical structure of the computer
readable media presented herein . The specific transforma
tion of physical structure depends on various factors , in
different implementations of this description . Examples of
such factors include , but are not limited to , the technology
used to implement the computer readable media , whether
the computer readable media is characterized as primary or
secondary storage , and the like . For example , if the com
puter readable media is implemented as semiconductor
based memory , the software disclosed herein can be encoded
on the computer readable media by transforming the physi
cal state of the semiconductor memory . For instance , the
software can transform the state of transistors , capacitors , or
other discrete circuit elements constituting the semiconduc
tor memory . The software can also transform the physical
state of such components in order to store data thereupon .
[0074] As another example , the computer storage media
disclosed herein can be implemented using magnetic or
optical technology . In such implementations , the software
presented herein can transform the physical state of mag
netic or optical media , when the software is encoded therein .
These transformations can include altering the magnetic
characteristics of particular locations within given magnetic
media . These transformations can also include altering the
physical features or characteristics of particular locations
within given optical media , to change the optical character

istics of those locations . Other transformations of physical
media are possible without departing from the scope and
spirit of the present description , with the foregoing examples
provided only to facilitate this discussion .
[0075] In light of the above , it should be appreciated that
many types of physical transformations take place in the
computer 600 in order to store and execute the software
components presented herein . It also should be appreciated
that the architecture shown in FIG . 6 for the computer 600 ,
or a similar architecture , can be utilized to implement other
types of computing devices , including hand - held computers ,
video game devices , embedded computer systems , mobile
devices such as smartphones , tablets , and AR / VR devices ,
and other types of computing devices known to those skilled
in the art . It is also contemplated that the computer 600
might not include all of the components shown in FIG . 6 ,
can include other components that are not explicitly shown
in FIG . 6 , or can utilize an architecture completely different
than that shown in FIG . 6 .
[0076] FIG . 7 is a network diagram illustrating a distrib
uted network computing environment 700 in which aspects
of the disclosed technologies can be implemented , according
to various configurations presented herein . As shown in FIG .
7 , one or more server computers 700A can be interconnected
via a communications network 620 (which may be either of ,
or a combination of , a fixed - wire or wireless LAN , WAN ,
intranet , extranet , peer - to - peer network , virtual private net
work , the Internet , Bluetooth communications network , pro
prietary low voltage communications network , or other
communications network) with a number of client comput
ing devices such as , but not limited to , a tablet computer
700B , a gaming console 700C , a smart watch 700D , a
telephone 700E , such as a smartphone , a personal computer
700F , and an AR / VR device 700G .
[0077] In a network environment in which the communi
cations network 620 is the Internet , for example , the server
computer 700A can be a dedicated server computer operable
to process and communicate data to and from the client
computing devices 700B - 700G via any of a number of
known protocols , such as , hypertext transfer protocol
(“ HTTP ") , file transfer protocol (“ FTP ”) , or simple object
access protocol (“ SOAP ”) . Additionally , the networked
computing environment 700 can utilize various data security
protocols such as secured socket layer (“ SSL ”) or pretty
good privacy (“ PGP ”) . Each of the client computing devices
700B - 700G can be equipped with an operating system
operable to support one or more computing applications or
terminal sessions such as a web browser (not shown in FIG .
7) , other graphical user interface (not shown in FIG . 7) , or
a mobile desktop environment (not shown in FIG . 7) to gain
access to the server computer 700A .
[0078] The server computer 700A can be communica
tively coupled to other computing environments (not shown
in FIG . 7) and receive data regarding a participating user's
interactions / resource network . In an illustrative operation , a
user (not shown in FIG . 7) may interact with a computing
application running on a client computing device 700B
700G to obtain desired data and / or perform other computing
applications .
[0079] The data and / or computing applications may be
stored on the server 700A , or servers 700A , and communi
cated to cooperating users through the client computing
devices 700B - 700G over an exemplary communications
network 620. A participating user (not shown in FIG . 7) may

US 2020/0302273 A1 Sep. 24 , 2020
7

request access to specific data and applications housed in
whole or in part on the server computer 700A . This data may
be communicated between the client computing devices
700B - 700G and the server computer 700A for processing
and storage .
[0080] The server computer 700A can host computing
applications , processes and applets for the generation ,
authentication , encryption , and communication of data and
applications , and may cooperate with other server comput
ing environments (not shown in FIG . 7) , third party service
providers (not shown in FIG . 7) , network attached storage
(“ NAS ”) and storage area networks (“ SAN ”) to realize
application / data transactions .
[0081] It should be appreciated that the computing archi
tecture shown in FIG . 7 and the distributed network com
puting environment shown in FIG . 7 have been simplified
for ease of discussion . It should also be appreciated that the
computing architecture and the distributed computing net
work can include and utilize many more computing com
ponents , devices , software programs , networking devices ,
and other components not specifically described herein .
[0082] The disclosure presented herein also encompasses
the subject matter set forth in the following examples :
[0083] Example 1 : A computer - implemented method ,
comprising : following a forward training pass for an artifi
cial neural network (ANN) model , computing a perplexity
score for a current training data sample in a training data set ,
the perplexity score comprising a divergence between data
defining a class associated with the current training data
sample and a probability vector generated by the ANN
model specifying probabilities that the current training data
sample belongs to each of a plurality of classes , determining
if the perplexity score is lower than a first threshold ,
removing the current training data sample from the training
data set if the perplexity score is lower than the first
threshold , and continuing training of the ANN model fol
lowing the removal of the current training data sample from
the training data set .
[0084] Example 2 : The computer - implemented method of
Example 1 , further comprising : determining if the perplexity
score is higher than a second threshold ; and removing the
current training data sample from the training data set if the
perplexity score is higher than the second threshold .
[0085] Example 3 : The computer - implemented method of
Examples 1 and 2 , further comprising prior to a start of an
epoch for training the ANN model , adding training data
samples previously removed from the training data set back
to the training data set .
[0086] Example 4 : The computer - implemented method of
Examples 1-3 , wherein the divergence comprises a Kull
back - Leibler divergence .
[0087] Example 5 : The computer - implemented method of
Examples 1-4 , wherein a SoftMax layer of the ANN gen
erates the probability vector .
[0088] Example 6 : The computer - implemented method of
Examples 1-5 , wherein the data defining the class associated
with the current training data sample comprises a one - hot
vector .
[0089] Example 7 : The computer - implemented method of
Examples 1-6 , wherein the training data samples comprise
images or text .
[0090] Example 8 : A computer - implemented method ,
comprising : following a forward training pass for an artifi
cial neural network (ANN) model , learning a probability

density function (PDF) fitting activation maps generated by
the ANN model during training on training data samples
previously used to train the ANN , computing a perplexity
score for a current training data sample in a training data set
by computing a probability of a current training data sample
based on the PDF , determining if the perplexity score is
lower than a first threshold , removing the current training
data sample from the training data set if the perplexity score
is lower than the first threshold , and continuing training of
the ANN model following the removal of the current train
ing data sample from the training data set .
[0091] Example 9 : The computer - implemented method of
Example 8 , further comprising : determining if the perplexity
score is higher than a second threshold ; and removing the
current training data sample from the training data set if the
perplexity score is higher than the second threshold .
[0092] Example 10 : The computer - implemented method
of Examples 8 and 9 , further comprising prior to a start of
an epoch for training the ANN , adding training data samples
previously removed from the training data set back to the
training data set .
[0093] Example 11 : The computer - implemented method
of Examples 8-10 , wherein the training data samples com
prise images or text .
[0094] Example 12 : The computer - implemented method
of Examples 8-11 , wherein the PDF comprises a Gaussian
Mixture Model PDF .
[0095] Example 13 : The computer - implemented method
of Examples 8-12 , further comprising : identifying one or
more low - density regions in the activation maps based on
the PDF ; and collecting additional training data samples for
training the ANN model , the additional training data
samples selected based upon the identified one or more
low - density regions .
[0096] Example 14 : A computing device , comprising : one
or more processors ; and at least one computer storage media
having computer - executable instructions stored thereupon
which , when executed by the one or more processors , will
cause the computing device to : compute a perplexity score
for a current training data sample in a training data set for
training an artificial neural network (ANN) model , the
perplexity score comprising a divergence between data
defining a class associated with the current training data
sample and data generated by the ANN model specifying
probabilities that the current training data sample belongs to
each of a plurality of classes , determine if the perplexity
score is lower than a first threshold , remove the current
training data sample from the training data set if the per
plexity score is lower than the first threshold , and continue
training the ANN model following the removal of the
current training data sample from the training data set .
[0097] Example 15 : The computing device of Example 14 ,
wherein the at least one computer storage medium has
further computer - executable instructions stored thereupon
to : determine if the perplexity score is higher than a second
threshold ; and remove the current training data sample from
the training data set if the perplexity score is higher than the
second threshold .
[0098] Example 16 : The computing device of Examples
14 and 15 , wherein the at least one computer storage
medium has further computer - executable instructions stored
thereupon to add training data samples previously removed
from the training data set back to the training data set prior
to a start of an epoch for training the ANN model .

US 2020/0302273 A1 Sep. 24 , 2020
8

[0099] Example 17 : The computing device of Examples
14-16 , wherein the divergence comprises a Kullback - Leibler
divergence .
[0100] Example 18 : The computing device of Examples
14-17 , wherein a SoftMax layer of the ANN generates the
probability vector .
[0101] Example 19 : The computing device of Examples
14-18 , wherein the data defining the class associated with
the current training data sample comprises a one - hot vector .
[0102] Example 20 : The computing device of Examples
14-19 , wherein the training data samples comprise text or
images .
[0103] Based on the foregoing , it should be appreciated
that technologies for subsampling training data during ANN
training have been disclosed herein . Although the subject
matter presented herein has been described in language
specific to computer structural features , methodological and
transformative acts , specific computing machinery , and
computer readable media , it is to be understood that the
subject matter set forth in the appended Examples is not
necessarily limited to the specific features , acts , or media
described herein . Rather , the specific features , acts and
mediums are disclosed as example forms of implementing
the Example subject matter .
[0104] The subject matter described above is provided by
way of illustration only and should not be construed as
limiting . Various modifications and changes can be made to
the subject matter described herein without following the
example configurations and applications illustrated and
described , and without departing from the scope of the
present disclosure , which is set forth in the following
Examples .
What is claimed is :
1. A computer - implemented method , comprising :
following a forward training pass for an artificial neural

network (ANN) model ,
computing a perplexity score for a current training data

sample in a training data set , the perplexity score
comprising a divergence between
data defining a class associated with the current

training data sample and
a probability vector generated by the ANN model

specifying probabilities that the current training
data sample belongs to each of a plurality of
classes ,

determining if the perplexity score is lower than a first
threshold ,

removing the current training data sample from the
training data set if the perplexity score is lower than
the first threshold , and

continuing training of the ANN model following the
removal of the current training data sample from the
training data set .

2. The computer - implemented method of claim 1 , further
comprising :

determining if the perplexity score is higher than a second
threshold ; and

removing the current training data sample from the train
ing data set if the perplexity score is higher than the
second threshold .

3. The computer - implemented method of claim 1 , further
comprising prior to a start of an epoch for training the ANN
model , adding training data samples previously removed
from the training data set back to the training data set .

4. The computer - implemented method of claim 1 ,
wherein the divergence comprises a Kullback - Leibler diver
gence .

5. The computer - implemented method of claim 1 ,
wherein a SoftMax layer of the ANN generates the prob
ability vector .

6. The computer - implemented method of claim 1 ,
wherein the data defining the class associated with the
current training data sample comprises a one - hot vector .

7. The computer - implemented method of claim 1 ,
wherein the training data samples comprise images or text .

8. A computer - implemented method , comprising :
following a forward training pass for an artificial neural

network (ANN) model ,
learning a probability density function (PDF) fitting

activation maps generated by the ANN model during
training on training data samples previously used to
train the ANN ,

computing a perplexity score for a current training data
sample in a training data set by computing a prob
ability of a current training data sample based on the
PDF ,

determining if the perplexity score is lower than a first
threshold ,

removing the current training data sample from the
training data set if the perplexity score is lower than
the first threshold , and

continuing training of the ANN model following the
removal of the current training data sample from the
training data set .

9. The computer - implemented method of claim 8 , further
comprising :

determining if the perplexity score is higher than a second
threshold ; and

removing the current training data sample from the train
ing data set if the perplexity score is higher than the
second threshold .

10. The computer - implemented method of claim 8 , fur
ther comprising prior to a start of an epoch for training the
ANN , adding training data samples previously removed
from the training data set back to the training data set .

11. The computer - implemented method of claim 8 ,
wherein the training data samples comprise images or text .

12. The computer - implemented method of claim 8 ,
wherein the PDF comprises a Gaussian Mixture Model PDF .

13. The computer - implemented method of claim 8 , fur
ther comprising :

identifying one or more low - density regions in the acti
vation maps based on the PDF ; and

collecting additional training data samples for training the
ANN model , the additional training data samples
selected based upon the identified one or more low
density regions .

14. A computing device , comprising :
one or more processors ; and
at least one computer storage media having computer

executable instructions stored thereupon which , when
executed by the one or more processors , will cause the
computing device to :
compute a perplexity score for a current training data

sample in a training data set for training an artificial
neural network (ANN) model , the perplexity score
comprising a divergence between

US 2020/0302273 A1 Sep. 24 , 2020
9

data defining a class associated with the current
training data sample and

data generated by the ANN model specifying prob
abilities that the current training data sample
belongs to each of a plurality of classes , determine
if the perplexity score is lower than a first thresh
old ,

remove the current training data sample from the
training data set if the perplexity score is lower than
the first threshold , and

continue training the ANN model following the
removal of the current training data sample from the
training data set .

15. The computing device of claim 14 , wherein the at least
one computer storage medium has further computer - execut
able instructions stored thereupon to :

determine if the perplexity score is higher than a second
threshold ; and

remove the current training data sample from the training
data set if the perplexity score is higher than the second
threshold .

16. The computing device of claim 14 , wherein the at least
one computer storage medium has further computer - execut
able instructions stored thereupon to add training data
samples previously removed from the training data set back
to the training data set prior to a start of an epoch for training
the ANN model .

17. The computing device of claim 14 , wherein the
divergence comprises a Kullback - Leibler divergence .

18. The computing device of claim 14 , wherein a SoftMax
layer of the ANN generates the probability vector .

19. The computing device of claim 14 , wherein the data
defining the class associated with the current training data
sample comprises a one - hot vector .

20. The computing device of claim 14 , wherein the
training data samples comprise text or images .

