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SUBSAMPLING TRAINING DATA DURING 
ARTIFICIAL NEURAL NETWORK 

TRAINING 

BACKGROUND 

[ 0001 ] Artificial neural networks ( “ ANNs ” or “ NNs ” ) are 
applied to a number of applications in Artificial Intelligence 
( " AI " ) and Machine Learning ( “ ML " ) , including image 
recognition , speech recognition , search engines , and other 
suitable applications . ANNs are typically trained across 
multiple “ epochs . " In each epoch , an ANN trains over all of 
the training data in a training data set in multiple steps . In 
each step , the ANN first makes a prediction for an instance 
of the training data ( which might also be referred to herein 
as a “ sample ” ) . This step is commonly referred to as a 
“ forward pass ” ( which might also be referred to herein as a 
“ forward training pass ” ) . 
[ 0002 ] To make a prediction , a training data sample is fed 
to the first layer of the ANN , which is commonly referred to 
as an “ input layer . " Each layer of the ANN then computes a 
function over its inputs , often using learned parameters , or 
" weights , ” to produce an input for the next layer . The output 
of the last layer , commonly referred to as the “ output layer , " 
is a class prediction , commonly implemented as a vector 
indicating the probabilities that the sample is a member of a 
number of classes . Based on the label predicted by the ANN 
and the actual label of each instance of training data , the 
output layer computes a “ loss , ” or error function . 
[ 0003 ] In a " backward pass ” ( which might also be referred 
to herein as a “ backward training pass ” ) of the ANN , each 
layer of the ANN computes the error for the previous layer 
and the gradients , or updates , to the weights of the layer that 
move the ANN's prediction toward the desired output . The 
result of training a ANN is a set of weights , or “ kernels , ” that 
represent a transform function that can be applied to an input 
with the result being a classification , or semantically labeled 
output . 
[ 0004 ] After an ANN is trained , the trained ANN can be 
used to classify new data . Specifically , a trained ANN model 
can use weights and biases computed during training to 
perform tasks ( e.g. classification and recognition ) on data 
Other than that used to train the ANN . General purpose 
central processing units ( “ CPUs ” ) , special purpose proces 
sors ( e.g. graphics processing units ( “ GPUs ” ) ) , and other 
types of hardware can be used to execute an ANN model . 
[ 0005 ] Training an ANN in the manner described above 
can consume significant computing resources including , 
memory , processor cycles , network bandwidth , and power . 
This is particularly true for training data sets that include 
large numbers of training data samples . 
[ 0006 ] It is with respect to these and other technical 
challenges that the disclosure made herein is presented . 

[ 0008 ] In order to provide the technical benefits mentioned 
above , and potentially others , perplexity scores can be 
computed for training data samples during ANN training . 
The perplexity scores indicate how “ surprised ” the ANN 
model is by a training data sample at a particular point in 
training . A perplexity score can be computed for some or all 
of the training data samples in a training data set following 
a forward training pass during each training epoch . 
[ 0009 ] In one embodiment , the perplexity score is com 
puted as a divergence between data ( e.g. a one - hot vector ) 
defining a class associated with the current training data 
sample and a probability vector ( e.g. a probability vector 
generated by a SoftMax layer of the ANN ) generated by the 
ANN model specifying probabilities that the current training 
data sample belongs to each of a plurality of classes ( i.e. the 
output of the ANN model ) . In one example , the divergence 
is computed as a Kullback - Leibler divergence . Other types 
of divergence metrics can be utilized in other embodiments . 
[ 0010 ] In another embodiment , the perplexity score is 
computed by first learning a probability density function 
( “ PDF ” ) fitting activation maps generated by an ANN model 
during training on training data samples previously used to 
train the ANN . A perplexity score can then be computed for 
a current training data sample by computing a probability for 
the current training data sample based on the PDF . The PDF 
might be a Gaussian PDF , a Gaussian Mixture Model PDF , 
or another type of PDF . 
[ 0011 ] Once the perplexity score has been computed for a 
training data sample using either of the methods described 
above , a determination can be made as to whether the 
perplexity score is lower than a threshold . If the perplexity 
score is lower than the threshold for a training data sample , 
the training data sample is removed from the training data 
set so that it will not be utilized for training during subse 
quent epochs . In some embodiments , a further determination 
can be made as to whether the perplexity score for a training 
data sample is higher than a second threshold . If the per 
plexity score is higher than the second threshold for a 
training data sample , the training data sample is also 
removed from the training data set so that it will not be 
utilized for training during subsequent epochs . Training of 
the ANN model continues following the removal of training 
data samples from the training data set . 
[ 0012 ] In some configurations , training data samples that 
were previously removed from the training data set can be 
periodically added back to the training data set . This might 
occur , for example , at the start of an epoch . This allows the 
perplexity score for training data samples to be re - computed 
following additional training of an ANN model . 
[ 0013 ] It should be appreciated that the above - described 
subject matter can be implemented as a computer - controlled 
apparatus , a computer - implemented method , a computing 
device , or as an article of manufacture such as a computer 
readable medium . These and various other features will be 
apparent from a reading of the following Detailed Descrip 
tion and a review of the associated drawings . 
[ 0014 ] This Summary is provided to introduce a brief 
description of some aspects of the disclosed technologies in 
a simplified form that are further described below in the 
Detailed Description . This Summary is not intended to 
identify key features or essential features of the claimed 
subject matter , nor is it intended that this Summary be used 
to limit the scope of the claimed subject matter . Further 

SUMMARY 

[ 0007 ] Technologies are disclosed herein for subsampling 
training data during ANN training . Through implementa 
tions of the disclosed technologies , ANN models can be 
trained to a desired level of accuracy using a reduced 
number of training data samples , thereby reducing training 
time . This can conserve computing resources including , but 
not limited to , memory , processor cycles , network band 
width , and power . Other technical benefits can be realized 
through implementations of the disclosed technologies . 
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more , the claimed subject matter is not limited to imple 
mentations that solve any or all disadvantages noted in any 
part of this disclosure . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0015 ] FIG . 1 is a computing architecture diagram that 
shows aspects of the configuration of a computing system 
disclosed herein for subsampling training data during ANN 
training , according to one embodiment disclosed herein ; 
[ 0016 ] FIG . 2 is a flow diagram showing a routine that 
illustrates aspects of an illustrative computer - implemented 
process for subsampling training data during ANN training , 
according to the embodiment shown in FIG . 1 ; 
[ 0017 ] FIG . 3 is a computing architecture diagram that 
shows aspects of the configuration of a computing system 
disclosed herein for subsampling training data during ANN 
training , according to another embodiment disclosed herein ; 
[ 0018 ] FIG . 4 is a flow diagram showing a routine that 
illustrates aspects of an illustrative computer - implemented 
process for subsampling training data during ANN training , 
according to the embodiment shown in FIG . 3 ; 
[ 0019 ] FIGS . 5A and 5B are bar graphs showing example 
results of the application of the technologies disclosed 
herein to a sample training data set ; 
[ 0020 ] FIG . 6 is a computer architecture diagram showing 
an illustrative computer hardware and software architecture 
for a computing device that can implement aspects of the 
technologies presented herein ; and 
[ 0021 ] FIG . 7 is a network diagram illustrating a distrib 
uted computing environment in which aspects of the dis 
closed technologies can be implemented . 

[ 0025 ] To make a prediction , a training data sample is fed 
to the first layer of the ANN , which is commonly referred to 
as an “ input layer . " Each layer of the ANN then computes a 
function verits input , often uingeared parameters , 
" weights , ” to produce an input for the next layer . The output 
of the last layer , commonly referred to as the “ output layer , " 
is a class prediction , com mmonly implemented as a vector 
indicating the probabilities that the sample is a member of a 
number of classes . Based on the label predicted by the ANN 
and the actual label of each instance of training data , the 
output layer computes a “ loss , ” or error function . 
( 0026 " backward pass ” ( which might also be referred 
to herein as a “ backward training pass ” ) of the ANN , each 
layer of the ANN computes the error for the previous layer 
and the gradients , or updates , to the weights of the layer that 
move the ANN's prediction toward the desired output . The 
result of training a ANN is a set of weights , or “ kernels , ” that 
represent a transform function that can be applied to an input 
with the result being a classification , or semantically labeled 
output . 

27After ANNs trained , the trained ANNcan be 
used to classify new data . Specifically , a trained ANN model 
can use weights and biases computed during training to 
perform taske.gcassification and recognition data 
other than that used to train the ANN . General purpose 
CPUs , special purpose processors ( e.g. GPUs ) , and other 
types of hardware can be used to executeANN model . 
[ 0028 ] In some examples , proprietary or open source 
libraries or frameworks are utilized to facilitate ANN cre 
ation , training , and evaluation . Examples of such libraries 
include , but are not limited to , TENSORFLOW , MICRO 
SOFT COGNITIVE TOOLKIT ( “ CNTK ” ) , CAFFE , THE 
ANO , and KERAS . In some examples , programming tools 
such as integrated development environments ( “ IDEs ” ) pro 
vide support for programmers and users to define , compile , 
and evaluate ANNs . 
029 Tools such as the identified above can be used to 
define and use a ANN model . As one example , a modelling 
framework can include pre - defined application program 
ming interfaces ( “ APIs ” ) and / or programming primitives 
that can be used to specify one or more aspects of an ANN 
model . These pre - defined APIs can include both lower - level 
APIs ( e.g. , activation functions , cost or error functions , 
nodes , edges , and tensors ) and higher - level APIs ( e.g. , 
layers , convolutional neural networks , recurrent neural net 
works , linear classifiers , and so forth ) . 
[ 0030 ] “ Source code ” can be used as an input to such a 
modelling framework to define a topology of the graph of a 
given ANN model . In particular , APIs of a modelling 
framework can be instantiated and interconnected using 
source code to specify a complex ANN model . Different 
ANN models can be defined by using different APIs , dif 
ferent numbers of APIs , and interconnecting the APIs in 
different ways . 
[ 0031 ] Training data for training an ANN typically 
includes a set of input data ( a “ training data set ” ) for 
applying to an ANN model and data describing a desired 
output from the ANN model for each respective sample of 
the training data . A modelling framework such as those 
described above can be used to train an ANN model with 
such training data . 
[ 0032 ] As discussed briefly above , the output of ANN 
training is the weights and biases that are associated with 
each node of an ANN model . After the ANN model is 

DETAILED DESCRIPTION 

[ 0022 ] The following detailed description is directed to 
technologies for subsampling training data during ANN 
training . In addition to other technical benefits , the disclosed 
technologies can train ANN models to a desired level of 
accuracy using a reduced number of training data samples . 
This can conserve computing resources including , but not 
limited to , memory , processor cycles , network bandwidth , 
and power . Other technical benefits not specifically identi 
fied herein can also be realized through implementations of 
the disclosed technologies . 
[ 0023 ] Prior to describing the disclosed technologies for 
subsampling training data during ANN training , a brief 
overview of ANNs and ANN training will be provided . As 
described briefly above , ANNs are applied to a number of 
applications in AI and ML , including image recognition , 
speech recognition , search engines , and other suitable appli 
cations . An ANN generally consists of a sequence of layers 
of different types ( e.g. convolution , ReLU , fully connected , 
and pooling layers ) . As will be described in greater detail 
below , NNs are typically trained using a labeled data set 
( e.g. a set of images that have been labeled with data 
describing the content in the images ) . 
[ 0024 ] ANNs are typically trained across multiple 
“ epochs . ” In each epoch , an ANN trains over all of the 
training data in a training data set in multiple steps . In each 
step , the ANN first makes a prediction for an instance of the 
training data ( which might also be referred to herein as a 
" sample ” ) . This step is commonly referred to as a “ forward 
pass ” ( which might also be referred to herein as a “ forward 
training pass ” ) . 
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trained , a modelling framework can be used to classify new 
data that is applied to the trained ANN model . Specifically , 
a trained ANN model uses the weights and biases obtained 
from training to perform classification , recognition , or other 
types of tasks on data that was not used to train the ANN 
model . Such a modelling framework can use special purpose 
processors ( e.g. tensor processing units ( “ TPUs ” ) or GPUs ) 
to execute the ANN model with increased performance as 
compared to using only CPUs . 
[ 0033 ] Referring now to the drawings , in which like 
numerals represent like elements throughout the several 
FIGS . , aspects of various technologies for subsampling 
training data during ANN training will be described . In the 
following detailed description , references are made to the 
accompanying drawings that form a part hereof , and which 
are shown by way of illustration specific configurations or 
examples . 
[ 0034 ] FIG . 1 is a computing architecture diagram that 
shows aspects of the configuration of a computing system 
disclosed herein for subsampling training data during ANN 
training , according to one embodiment disclosed herein . As 
shown in FIG . 1 and described briefly above , an ANN 
training module 102 can be configured to train an ANN 
model 104 in the manner described above . The ANN train 
ing module 102 might be provided by a modelling frame 
work , such as those described above . 
[ 0035 ] In the example configuration shown in FIG . 1 , the 
ANN model 104 is being trained using training data samples 
108A - 108N ( which might be referred to herein collectively 
as the “ training data samples 108 ” or individually as “ a 
training data sample 108 ” ) from a training data set 106. The 
training data samples 108 might be images , for example . 
Other types of training data can be utilized in other con 
figurations . 
[ 0036 ] As shown in FIG . 1 , each of the training data 
samples 108A - 108N has an associated class label 110A 
110N ( which might be referred to herein collectively as the 
“ class labels 110 ” or individually as “ a class label 110 ” ) , 
respectively . The class labels 110 are one - hot vectors that 
identify the true class of the associated training data sample 
108. The class labels 110 can be implemented in other ways 
in other configurations . 
[ 0037 ] As also shown in FIG . 1 , the ANN training module 
102 can compute perplexity scores for some or all of the 
training data samples 108 during each epoch such as , for 
example , following each forward training pass . In the 
example shown in FIG . 1 , for instance , the ANN training 
module 102 has computed a perplexity score 114 for the 
training data sample 108B . The perplexity scores indicate 
how “ surprised ” the ANN model 104 is by a training data 
sample 108 at a particular point during training . 
[ 0038 ] In one embodiment , the perplexity score 114 is 
computed as the divergence between data defining a class 
associated with a current training data sample 108 ( e.g. a 
class label 110B ) and a probability vector 112 ( e.g. a 
probability vector generated by a SoftMax layer of the ANN 
model 104 ) generated by the ANN model 104 specifying 
probabilities that the current training data sample 108 
belongs to each of a plurality of classes ( i.e. the output of the 
ANN model 104 ) . In one example , the divergence is com 
puted as a Kullback - Leibler divergence . Other types of 
divergence metrics can be utilized in other embodiments . 
[ 0039 ] Once the perplexity score 114 has been computed 
for a training data sample 108 , the ANN training module 102 

can determine whether the perplexity score 108 is lower than 
a threshold 116A . If the perplexity score 114 is lower than 
the threshold 116A for a training data sample 108 , the ANN 
training module 102 removes the training data sample 108 
from the training data set 106 so that it will not be utilized 
for training during subsequent epochs . In the example 
shown in FIG . 1 , for instance , the training data sample 108B 
has been removed from the training data set 106 . 
[ 0040 ] In some embodiments , the ANN training module 
102 can make a further determination as to whether the 
perplexity score 114 for a training data sample 108 is higher 
than a second threshold 116B . If the perplexity score 114 is 
higher than the second threshold 116B for a training data 
sample 108 , the training data sample 108 is removed from 
the training data set 106 so that it will not be utilized for 
training during subsequent epochs . Training of the ANN 
model 102 continues following the removal of training data 
samples 108 from the training data set 106 . 
[ 0041 ] As described briefly above , the ANN training mod 
ule 102 can periodically add training data samples 108 that 
were previously removed from the training data set 106 back 
to the training data 106 set in some configurations . This 
might occur , for example , at the start of an epoch . In the 
example shown in FIG . 1 , for instance , the training data 
sample 108B might be added back to the training data set 
106 following the completion of some number of epochs 
( e.g. 25 ) . This allows the perplexity score 114 for previously 
removed training data samples 108 to be re - computed fol 
lowing additional training of an ANN model 104. Additional 
details regarding this process will be provided below with 
regard to FIG . 5B . 
[ 0042 ] Referring now to FIG . 2 , a flow diagram showing 
a routine 200 will be described that shows aspects of an 
illustrative computer - implemented process for subsampling 
training data during ANN training . It should be appreciated 
that the logical operations described herein with regard to 
FIG . 2 , and the other FIGS . , can be implemented ( 1 ) as a 
sequence of computer implemented acts or program mod 
ules running on a computing device and / or ( 2 ) as intercon 
nected machine logic circuits or circuit modules within a 
computing device . 
[ 0043 ] The particular implementation of the technologies 
disclosed herein is a matter of choice dependent on the 
performance and other requirements of the computing 
device . Accordingly , the logical operations described herein 
are referred to variously as states , operations , structural 
devices , acts , or modules . These states , operations , structural 
devices , acts and modules can be implemented in hardware , 
software , firmware , in special - purpose digital logic , and any 
combination thereof . It should be appreciated that more or 
fewer operations can be performed than shown in the FIGS . 
and described herein . These operations can also be per 
formed in a different order than those described herein . 
[ 0044 ] The routine 200 begins at operation 202 , where the 
ANN training module 102 performs a forward training pass 
for a current training data sample 108 in the manner 
described above . The routine 200 then proceeds from opera 
tion 202 to operation 204 , where the ANN training module 
102 computes a probability vector 112 for the current 
training data sample 108. As discussed above , the probabil 
ity vector 112 is generated by the ANN model 104 and 
specifies probabilities that the current training data sample 
108 belongs to each of a plurality of classes ( i.e. the output 
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of the ANN model ) . The probability vector 112 is generated 
by a SoftMax layer of the ANN model 104 in some con 
figurations . 
[ 0045 ] From operation 204 , the routine 200 proceeds to 
operation 206 , where the ANN training module 102 com 
putes the divergence between data defining a class associ 
ated with the current training data sample 108 ( e.g. a one - hot 
vector identifying the true class of the training data sample 
108 ) and the probability vector 112 for the current training 
data sample 10. In one example , the divergence is computed 
as a Kullback - Leibler divergence . Other types of divergence 
metrics can be utilized in other embodiments . The variance 
computed at operation 206 is the perplexity score 114 for the 
current training data sample 108 in this embodiment . 
[ 0046 ] From operation 206 , the routine 200 proceeds to 
operation 208 , where the ANN training module 102 deter 
mines whether the perplexity score 114 computed at opera 
tion 206 is lower than a threshold 116A . If the perplexity 
score 114 for the current training data sample 108 is lower 
than the threshold 116A , the routine 200 proceeds to opera 
tion 210 , where the ANN training module 102 removes the 
training data sample 108 from the training data set 106 so 
that it will not be utilized for training during subsequent 
epochs . 
[ 0047 ] In some embodiments , the ANN training module 
102 makes a further determination as to whether the per 
plexity score 114 for the current training data sample 108 is 
higher than a second threshold 116B . If the perplexity score 
114 is higher than the second threshold 116B for the current 
training data sample 108 , the routine 200 proceeds to 
operation 210 , where the ANN training module 102 removes 
the current training data sample 108 from the training data 
set 106 so that it will not be utilized for training during subsequent epochs . 
[ 0048 ] From operation 208 , the routine 200 proceeds to 
operation 212 , where the ANN training module 102 deter 
mines if the current the current epoch is complete . If not , the 
routine 200 proceeds from operation 212 to operation 214 , 
where the ANN training module 102 obtains the next 
training data sample 108 and the process described above is 
repeated . 
[ 0049 ] If the current training epoch is complete , the rou 
tine 200 proceeds from operation 212 to operation 216 , 
where the ANN training module 102 determines if training 
is to continue for additional epochs . If not , the routine 200 
proceeds from operation 216 to operation 218 , where it ends . 
[ 0050 ] If additional epochs remain , the routine 200 pro 
ceeds from operation 216 to operation 220 , where the ANN 
training module 102 determines if training data samples 108 
that were previously removed from the training data set 106 
are to be added back to the training data set 105. If so , the 
routine 200 proceeds from operation 220 to operation 224 , 
where training data samples 108 that were previously 
removed from the training data set 106 are returned to the 
training data set 106 for use in further training of the ANN 
model 104. If not , the routine 200 proceeds from operation 
222 , where the next epoch is started . Training then continues 
in the manner described above . 
[ 0051 ] FIG . 3 is a computing architecture diagram that 
shows aspects of the configuration of a computing system 
disclosed herein for subsampling training data during ANN 
training , according to another embodiment disclosed herein . 
In the embodiment illustrated in FIG . 3 , the ANN training 
module 102 computes a perplexity score 114 for a current 

training data sample 108 by first learning a probability 
density function ( “ PDF ” ) 302 fitting activation maps 306 
generated by an ANN model 104 during training on training 
data samples 108 previously used to train the ANN model 
104 . 
[ 0052 ] The ANN training module 102 can then compute a 
perplexity score 114 for a current training data sample 108 
by computing a probability for the current training data 108 
sample based on the PDF 302. The PDF 302 might be a 
Gaussian PDF , a Gaussian Mixture Model PDF , or another 
type of PDF . 
[ 0053 ] In some configurations , the learned PDF 302 can 
be used to identify low - density regions in the activation 
maps 306. The identified low - density regions can be utilized 
to identify and collect new training data samples 108 that 
can help improve the accuracy of the ANN model 104 . 
[ 0054 ] FIG . 4 is a flow diagram showing a routine 400 that 
illustrates aspects of alustrative computer - implemented 
process for subsampling training data during ANN training , 
according to the embodiment shown in FIG . 3. The routine 
400 begins at operation 402 , where the ANN training 
module 102 performs a forward training pass for a current 
training data sample 108 in the manner described above . The 
routine 400 then proceeds from operation 402 to operation 
404 , where the ANN training module 102 learns a PDF 302 
that fits the activation maps306 generated by the ANN 
model 104 while training . The routine 400 then proceeds 
from operation 404 to operation 406 . 
[ 0055 ] At operation 406 , the ANN training module 102 
computes the perplexity score114 for the current training 
data sample 108 by computing a probability 304 of the 
current training data 108 sample based on the PDF 302. As 
discussed above , the PDF might be a Gaussian PDF , a 
Gaussian Mixture Model PDF , or another type of PDF . 
[ 0056 ] From operation 406 , the routine 400 proceeds to 
operation 408 , where the ANN training module 102 deter 
mines whether the perplexity score 114 computed at opera 
tion 406 is lower than a threshold 116A . If the perplexity 
score 114 for the current training data sample 108 is lower 
than the threshold 116A , the routine 400 proceeds to opera 
tion 410 , where the ANN training module 102 removes the 
training data sample 108 from the training data set 106 so 
that it will not be utilized for training during subsequent 
epochs . 
[ 0057 ] In some embodiments , the ANN training module 
102 makes a further determination as to whether the per 
plexity score 114 for the current training data sample 108 is 
higher than a second threshold 116B . If the perplexity score 
114 is higher than the second threshold 116B for the current 
training data sample 108 , the routine 400 proceeds to 
perati41 , wherethANNtrainingmodule 12moves 

the current training data sample 108 from the training data 
set 106 so that it will not be utilized for training during 
subsequent epochs . 
[ 0058 ] If the perplexity score 114 is not lower or higher 
than the thresholds 116A and 116B , respectively , the routine 
400 proceeds to operation 412 , where the ANN training 
module 12determine if the current the current och 
complete . If not , the routine 400 proceeds from operation 
412 to operation 414 , where the ANN training module 102 
obtains the next training data sample 108 and the process 
described above is repeated . 
[ 0059 ] If the current training epoch is complete , the rou 
tine 400 proceeds from operation 412 to operation 416 , 
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where the ANN training module 102 determines if training 
is to continue for additional epochs . If not , the routine 400 
proceeds from operation 416 to operation 418 , where it ends . 
[ 0060 ] If additional epochs remain , the routine 400 pro 
ceeds from operation 416 to operation 420 , where the ANN 
training module 102 determines if training data samples 108 
that were previously removed from the training data set 106 
are to be added back to the training data set 105. If so , the 
routine 400 proceeds from operation 420 to operation 424 , 
where training data samples 108 that were previously 
removed from the training data set 106 are returned to the 
training data set 106 for use in further training of the ANN 
model 104. If not , the routine 400 proceeds from operation 
422 , where the next epoch is started . Training then continues 
in the manner described above . 
[ 0061 ] FIGS . 5A and 5B are bar graphs showing example 
results of the application of the technologies disclosed 
herein to a sample training data set 106. In the example 
illustrated in FIG . 5A , the sample training data set 106 
includes eleven training data samples 108 ( IDs 1-11 ) and 
training occurred over 8 epochs . A diamond in FIG . 5A 
indicates that a particular training data sample 108 was used 
for training during a particular epoch . For example , the 
diamond located at the intersection of the dashed lines 
corresponding to epoch 1 and training data sample ID 1 
indicates that the training data sample 108 with the ID = 1 
was used for training during epoch 1 . 
[ 0062 ] As shown in FIG . 5A , all of the training data 
samples 108 in the illustrative training data set 106 were 
used for training during epoch 1. Following epoch 1 , the 
training data sample 108 with the ID = 7 was excluded from 
the training data set 106 based upon its perplexity score . 
Following epoch 2 , the training data samples 108 with ID = 6 
was removed from the training data set 106. This process 
continues through epoch 8 in the manner described above , 
with various training data samples 108 being removed 
following each epoch . 
[ 0063 ] As discussed above , training data samples 108 that 
were previously removed from the training data set can be 
periodically added back to the training data set 106 in some 
configurations . This might occur , for example , at the start of 
an epoch . This allows the perplexity score for training data 
samples 108 to be re - computed following additional training 
of an ANN model . This process is illustrated in FIG . 5B . 
[ 0064 ] In the example shown in FIG . 5B , training data 
sample 108 with ID = 7 was removed from the training data 
set 106 after epoch 7. However , this training data sample 108 
was added back to the training data set 106 following epoch 
2. Similarly , training data samples 108 having IDs = 3 , 5,6 , 
7,9 , and 10 were removed from the training data set 106 
following epoch 3. These training data samples 108 , how 
ever , were added back to the training data set 106 following 
epoch 4. In this example , previously excluded training data 
samples 108 have been added back to the training data set 
106 prior to odd numbered epochs . However , previously 
excluded training data samples 108 might be added back to 
the training data set 106 at other times ( e.g. after 10 epochs , 
after 50 epochs , etc. ) . 
[ 0065 ] FIG . 6 is a computer architecture diagram showing 
an illustrative computer hardware and software architecture 
for computing device that can implement the various 
technologies presented herein . In particular , the architecture 
illustrated in FIG . 6 can be utilized to implement a server 
computer , mobile phone , an e - reader , a smartphone , a desk 

top computer , an alternate reality or virtual reality ( “ AR / 
VR ” ) device , a tablet computer , a laptop computer , or 
another type of computing device . 
[ 0066 ] While the subject matter described herein is pre 
sented in the general context of server computers performing 
training of an ANN , those skilled in the art will recognize 
that other implementations can be performed in combination 
with other types of computing systems and modules . Those 
skilled in the art will also appreciate that the subject matter 
described herein can be practiced with other computer 
system configurations , including hand - held devices , multi 
processor systems , microprocessor - based or programmable 
consumer electronics , computing or processing systems 
embedded in devices ( such as wearable computing devices , 
automobiles , home automation etc. ) , minicomputers , main 
frame computers , and the like . 
[ 0067 ] The computer 600 illustrated in FIG . 6 includes 
one or more central processing units 602 ( “ CPU ” ) , one or 
more GPUs 630 , a system memory 604 , including a random 
access memory 606 ( “ RAM ” ) and a read - only memory 
( “ ROM ” ) 608 , and a system bus 610 that couples the 
memory 604 to the CPU 602. A basic input / output system 
( “ BIOS ” or “ firmware " ) containing the basic routines that 
help to transfer information between elements within the 
computer 600 , such as during startup , can be stored in the 
ROM 608. The computer 600 further includes a mass 
storage device 612 for storing an operating system 622 , 
application programs , and other types of programs . The 
mass storage device 612 can also be configured to store other 
types of programs and data . 
[ 0068 ] The mass storage device 612 is connected to the 
CPU 602 through a mass storage controller ( not shown ) 
connected to the bus 610. The mass storage device 612 and 
its associated computer readable media provide non - volatile 
storage for the computer 600. Although the description of 
computer readable media contained herein refers to a mass 
storage device , such as a hard disk , CD - ROM drive , DVD 
ROM drive , or USB storage key , it should be appreciated by 
those skilled in the art that computer readable media can be 
any available computer storage media or communication 
media that can be accessed by the computer 600 . 
[ 0069 ] Communication media includes computer readable 
instructions , data structures , program modules , or other data 
in a modulated data signal such as a carrier wave or other 
transport mechanism and includes any delivery media . The 
term “ modulated data signal ” means a signal that has one or 
more of its characteristics changed or set in a manner so as 
to encode information in the signal . By way of example , and 
not limitation , communication media includes wired media 
such as a wired network or direct - wired connection , and 
wireless media such as acoustic , radio frequency , infrared 
and other wireless media . Combinations of the any of the 
above should also be included within the scope of computer 
readable media . 
[ 0070 ] By way of example , and not limitation , computer 
storage media can include volatile and non - volatile , remov 
able and non - removable media implemented in any method 
or technology for storage of information such as computer 
readable instructions , data structures , program modules or 
other data . For example , computer storage media includes , 
but is not limited to , RAM , ROM , EPROM , EEPROM , flash 
memory or other solid - state memory technology , CD - ROM , 
digital versatile disks ( “ DVD ' ) , HD - DVD , BLU - RAY , or 
other optical storage , magnetic cassettes , magnetic tape , 
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magnetic disk storage or other magnetic storage devices , or 
any other medium that can be used to store the desired 
information and which can be accessed by the computer 600 . 
For purposes of the claims , the phrase " computer storage 
medium , ” and variations thereof , does not include waves or 
signals per se or communication media . 
[ 0071 ] According to various configurations , the computer 
600 can operate in a networked environment using logical 
connections to remote computers through a network such as 
the network 620. The computer 600 can connect to the 
network 620 through a network interface unit 616 connected 
to the bus 610. It should be appreciated that the network 
interface unit 616 can also be utilized to connect to other 
types of networks and remote computer systems . The com 
puter 600 can also include an input / output controller 618 for 
receiving and processing input from a number of other 
devices , including a keyboard , mouse , touch input , an elec 
tronic stylus ( not shown in FIG . 6 ) , or a physical sensor such 
as a video camera . Similarly , the input / output controller 618 
can provide output to a display screen or other type of output 
device ( also not shown in FIG . 6 ) . 
[ 0072 ] It should be appreciated that the software compo 
nents described herein , when loaded into the CPU 602 and 
executed , can transform the CPU 602 and the overall com 
puter 600 from a general - purpose computing device into a 
special - purpose computing device customized to facilitate 
the functionality presented herein . The CPU 602 can be 
constructed from any number of transistors or other discrete 
circuit elements , which can individually or collectively 
assume any number of states . More specifically , the CPU 
602 can operate as a finite - state machine , in response to 
executable instructions contained within the software mod 
ules disclosed herein . These computer - executable instruc 
tions can transform the CPU 602 by specifying how the CPU 
602 transitions between states , thereby transforming the 
transistors or other discrete hardware elements constituting 
the CPU 602 . 
[ 0073 ] Encoding the software modules presented herein 
can also transform the physical structure of the computer 
readable media presented herein . The specific transforma 
tion of physical structure depends on various factors , in 
different implementations of this description . Examples of 
such factors include , but are not limited to , the technology 
used to implement the computer readable media , whether 
the computer readable media is characterized as primary or 
secondary storage , and the like . For example , if the com 
puter readable media is implemented as semiconductor 
based memory , the software disclosed herein can be encoded 
on the computer readable media by transforming the physi 
cal state of the semiconductor memory . For instance , the 
software can transform the state of transistors , capacitors , or 
other discrete circuit elements constituting the semiconduc 
tor memory . The software can also transform the physical 
state of such components in order to store data thereupon . 
[ 0074 ] As another example , the computer storage media 
disclosed herein can be implemented using magnetic or 
optical technology . In such implementations , the software 
presented herein can transform the physical state of mag 
netic or optical media , when the software is encoded therein . 
These transformations can include altering the magnetic 
characteristics of particular locations within given magnetic 
media . These transformations can also include altering the 
physical features or characteristics of particular locations 
within given optical media , to change the optical character 

istics of those locations . Other transformations of physical 
media are possible without departing from the scope and 
spirit of the present description , with the foregoing examples 
provided only to facilitate this discussion . 
[ 0075 ] In light of the above , it should be appreciated that 
many types of physical transformations take place in the 
computer 600 in order to store and execute the software 
components presented herein . It also should be appreciated 
that the architecture shown in FIG . 6 for the computer 600 , 
or a similar architecture , can be utilized to implement other 
types of computing devices , including hand - held computers , 
video game devices , embedded computer systems , mobile 
devices such as smartphones , tablets , and AR / VR devices , 
and other types of computing devices known to those skilled 
in the art . It is also contemplated that the computer 600 
might not include all of the components shown in FIG . 6 , 
can include other components that are not explicitly shown 
in FIG . 6 , or can utilize an architecture completely different 
than that shown in FIG . 6 . 
[ 0076 ] FIG . 7 is a network diagram illustrating a distrib 
uted network computing environment 700 in which aspects 
of the disclosed technologies can be implemented , according 
to various configurations presented herein . As shown in FIG . 
7 , one or more server computers 700A can be interconnected 
via a communications network 620 ( which may be either of , 
or a combination of , a fixed - wire or wireless LAN , WAN , 
intranet , extranet , peer - to - peer network , virtual private net 
work , the Internet , Bluetooth communications network , pro 
prietary low voltage communications network , or other 
communications network ) with a number of client comput 
ing devices such as , but not limited to , a tablet computer 
700B , a gaming console 700C , a smart watch 700D , a 
telephone 700E , such as a smartphone , a personal computer 
700F , and an AR / VR device 700G . 
[ 0077 ] In a network environment in which the communi 
cations network 620 is the Internet , for example , the server 
computer 700A can be a dedicated server computer operable 
to process and communicate data to and from the client 
computing devices 700B - 700G via any of a number of 
known protocols , such as , hypertext transfer protocol 
( “ HTTP " ) , file transfer protocol ( “ FTP ” ) , or simple object 
access protocol ( “ SOAP ” ) . Additionally , the networked 
computing environment 700 can utilize various data security 
protocols such as secured socket layer ( “ SSL ” ) or pretty 
good privacy ( “ PGP ” ) . Each of the client computing devices 
700B - 700G can be equipped with an operating system 
operable to support one or more computing applications or 
terminal sessions such as a web browser ( not shown in FIG . 
7 ) , other graphical user interface ( not shown in FIG . 7 ) , or 
a mobile desktop environment ( not shown in FIG . 7 ) to gain 
access to the server computer 700A . 
[ 0078 ] The server computer 700A can be communica 
tively coupled to other computing environments ( not shown 
in FIG . 7 ) and receive data regarding a participating user's 
interactions / resource network . In an illustrative operation , a 
user ( not shown in FIG . 7 ) may interact with a computing 
application running on a client computing device 700B 
700G to obtain desired data and / or perform other computing 
applications . 
[ 0079 ] The data and / or computing applications may be 
stored on the server 700A , or servers 700A , and communi 
cated to cooperating users through the client computing 
devices 700B - 700G over an exemplary communications 
network 620. A participating user ( not shown in FIG . 7 ) may 
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request access to specific data and applications housed in 
whole or in part on the server computer 700A . This data may 
be communicated between the client computing devices 
700B - 700G and the server computer 700A for processing 
and storage . 
[ 0080 ] The server computer 700A can host computing 
applications , processes and applets for the generation , 
authentication , encryption , and communication of data and 
applications , and may cooperate with other server comput 
ing environments ( not shown in FIG . 7 ) , third party service 
providers ( not shown in FIG . 7 ) , network attached storage 
( “ NAS ” ) and storage area networks ( “ SAN ” ) to realize 
application / data transactions . 
[ 0081 ] It should be appreciated that the computing archi 
tecture shown in FIG . 7 and the distributed network com 
puting environment shown in FIG . 7 have been simplified 
for ease of discussion . It should also be appreciated that the 
computing architecture and the distributed computing net 
work can include and utilize many more computing com 
ponents , devices , software programs , networking devices , 
and other components not specifically described herein . 
[ 0082 ] The disclosure presented herein also encompasses 
the subject matter set forth in the following examples : 
[ 0083 ] Example 1 : A computer - implemented method , 
comprising : following a forward training pass for an artifi 
cial neural network ( ANN ) model , computing a perplexity 
score for a current training data sample in a training data set , 
the perplexity score comprising a divergence between data 
defining a class associated with the current training data 
sample and a probability vector generated by the ANN 
model specifying probabilities that the current training data 
sample belongs to each of a plurality of classes , determining 
if the perplexity score is lower than a first threshold , 
removing the current training data sample from the training 
data set if the perplexity score is lower than the first 
threshold , and continuing training of the ANN model fol 
lowing the removal of the current training data sample from 
the training data set . 
[ 0084 ] Example 2 : The computer - implemented method of 
Example 1 , further comprising : determining if the perplexity 
score is higher than a second threshold ; and removing the 
current training data sample from the training data set if the 
perplexity score is higher than the second threshold . 
[ 0085 ] Example 3 : The computer - implemented method of 
Examples 1 and 2 , further comprising prior to a start of an 
epoch for training the ANN model , adding training data 
samples previously removed from the training data set back 
to the training data set . 
[ 0086 ] Example 4 : The computer - implemented method of 
Examples 1-3 , wherein the divergence comprises a Kull 
back - Leibler divergence . 
[ 0087 ] Example 5 : The computer - implemented method of 
Examples 1-4 , wherein a SoftMax layer of the ANN gen 
erates the probability vector . 
[ 0088 ] Example 6 : The computer - implemented method of 
Examples 1-5 , wherein the data defining the class associated 
with the current training data sample comprises a one - hot 
vector . 
[ 0089 ] Example 7 : The computer - implemented method of 
Examples 1-6 , wherein the training data samples comprise 
images or text . 
[ 0090 ] Example 8 : A computer - implemented method , 
comprising : following a forward training pass for an artifi 
cial neural network ( ANN ) model , learning a probability 

density function ( PDF ) fitting activation maps generated by 
the ANN model during training on training data samples 
previously used to train the ANN , computing a perplexity 
score for a current training data sample in a training data set 
by computing a probability of a current training data sample 
based on the PDF , determining if the perplexity score is 
lower than a first threshold , removing the current training 
data sample from the training data set if the perplexity score 
is lower than the first threshold , and continuing training of 
the ANN model following the removal of the current train 
ing data sample from the training data set . 
[ 0091 ] Example 9 : The computer - implemented method of 
Example 8 , further comprising : determining if the perplexity 
score is higher than a second threshold ; and removing the 
current training data sample from the training data set if the 
perplexity score is higher than the second threshold . 
[ 0092 ] Example 10 : The computer - implemented method 
of Examples 8 and 9 , further comprising prior to a start of 
an epoch for training the ANN , adding training data samples 
previously removed from the training data set back to the 
training data set . 
[ 0093 ] Example 11 : The computer - implemented method 
of Examples 8-10 , wherein the training data samples com 
prise images or text . 
[ 0094 ] Example 12 : The computer - implemented method 
of Examples 8-11 , wherein the PDF comprises a Gaussian 
Mixture Model PDF . 
[ 0095 ] Example 13 : The computer - implemented method 
of Examples 8-12 , further comprising : identifying one or 
more low - density regions in the activation maps based on 
the PDF ; and collecting additional training data samples for 
training the ANN model , the additional training data 
samples selected based upon the identified one or more 
low - density regions . 
[ 0096 ] Example 14 : A computing device , comprising : one 
or more processors ; and at least one computer storage media 
having computer - executable instructions stored thereupon 
which , when executed by the one or more processors , will 
cause the computing device to : compute a perplexity score 
for a current training data sample in a training data set for 
training an artificial neural network ( ANN ) model , the 
perplexity score comprising a divergence between data 
defining a class associated with the current training data 
sample and data generated by the ANN model specifying 
probabilities that the current training data sample belongs to 
each of a plurality of classes , determine if the perplexity 
score is lower than a first threshold , remove the current 
training data sample from the training data set if the per 
plexity score is lower than the first threshold , and continue 
training the ANN model following the removal of the 
current training data sample from the training data set . 
[ 0097 ] Example 15 : The computing device of Example 14 , 
wherein the at least one computer storage medium has 
further computer - executable instructions stored thereupon 
to : determine if the perplexity score is higher than a second 
threshold ; and remove the current training data sample from 
the training data set if the perplexity score is higher than the 
second threshold . 
[ 0098 ] Example 16 : The computing device of Examples 
14 and 15 , wherein the at least one computer storage 
medium has further computer - executable instructions stored 
thereupon to add training data samples previously removed 
from the training data set back to the training data set prior 
to a start of an epoch for training the ANN model . 
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[ 0099 ] Example 17 : The computing device of Examples 
14-16 , wherein the divergence comprises a Kullback - Leibler 
divergence . 
[ 0100 ] Example 18 : The computing device of Examples 
14-17 , wherein a SoftMax layer of the ANN generates the 
probability vector . 
[ 0101 ] Example 19 : The computing device of Examples 
14-18 , wherein the data defining the class associated with 
the current training data sample comprises a one - hot vector . 
[ 0102 ] Example 20 : The computing device of Examples 
14-19 , wherein the training data samples comprise text or 
images . 
[ 0103 ] Based on the foregoing , it should be appreciated 
that technologies for subsampling training data during ANN 
training have been disclosed herein . Although the subject 
matter presented herein has been described in language 
specific to computer structural features , methodological and 
transformative acts , specific computing machinery , and 
computer readable media , it is to be understood that the 
subject matter set forth in the appended Examples is not 
necessarily limited to the specific features , acts , or media 
described herein . Rather , the specific features , acts and 
mediums are disclosed as example forms of implementing 
the Example subject matter . 
[ 0104 ] The subject matter described above is provided by 
way of illustration only and should not be construed as 
limiting . Various modifications and changes can be made to 
the subject matter described herein without following the 
example configurations and applications illustrated and 
described , and without departing from the scope of the 
present disclosure , which is set forth in the following 
Examples . 
What is claimed is : 
1. A computer - implemented method , comprising : 
following a forward training pass for an artificial neural 

network ( ANN ) model , 
computing a perplexity score for a current training data 

sample in a training data set , the perplexity score 
comprising a divergence between 
data defining a class associated with the current 

training data sample and 
a probability vector generated by the ANN model 

specifying probabilities that the current training 
data sample belongs to each of a plurality of 
classes , 

determining if the perplexity score is lower than a first 
threshold , 

removing the current training data sample from the 
training data set if the perplexity score is lower than 
the first threshold , and 

continuing training of the ANN model following the 
removal of the current training data sample from the 
training data set . 

2. The computer - implemented method of claim 1 , further 
comprising : 

determining if the perplexity score is higher than a second 
threshold ; and 

removing the current training data sample from the train 
ing data set if the perplexity score is higher than the 
second threshold . 

3. The computer - implemented method of claim 1 , further 
comprising prior to a start of an epoch for training the ANN 
model , adding training data samples previously removed 
from the training data set back to the training data set . 

4. The computer - implemented method of claim 1 , 
wherein the divergence comprises a Kullback - Leibler diver 
gence . 

5. The computer - implemented method of claim 1 , 
wherein a SoftMax layer of the ANN generates the prob 
ability vector . 

6. The computer - implemented method of claim 1 , 
wherein the data defining the class associated with the 
current training data sample comprises a one - hot vector . 

7. The computer - implemented method of claim 1 , 
wherein the training data samples comprise images or text . 

8. A computer - implemented method , comprising : 
following a forward training pass for an artificial neural 

network ( ANN ) model , 
learning a probability density function ( PDF ) fitting 

activation maps generated by the ANN model during 
training on training data samples previously used to 
train the ANN , 

computing a perplexity score for a current training data 
sample in a training data set by computing a prob 
ability of a current training data sample based on the 
PDF , 

determining if the perplexity score is lower than a first 
threshold , 

removing the current training data sample from the 
training data set if the perplexity score is lower than 
the first threshold , and 

continuing training of the ANN model following the 
removal of the current training data sample from the 
training data set . 

9. The computer - implemented method of claim 8 , further 
comprising : 

determining if the perplexity score is higher than a second 
threshold ; and 

removing the current training data sample from the train 
ing data set if the perplexity score is higher than the 
second threshold . 

10. The computer - implemented method of claim 8 , fur 
ther comprising prior to a start of an epoch for training the 
ANN , adding training data samples previously removed 
from the training data set back to the training data set . 

11. The computer - implemented method of claim 8 , 
wherein the training data samples comprise images or text . 

12. The computer - implemented method of claim 8 , 
wherein the PDF comprises a Gaussian Mixture Model PDF . 

13. The computer - implemented method of claim 8 , fur 
ther comprising : 

identifying one or more low - density regions in the acti 
vation maps based on the PDF ; and 

collecting additional training data samples for training the 
ANN model , the additional training data samples 
selected based upon the identified one or more low 
density regions . 

14. A computing device , comprising : 
one or more processors ; and 
at least one computer storage media having computer 

executable instructions stored thereupon which , when 
executed by the one or more processors , will cause the 
computing device to : 
compute a perplexity score for a current training data 

sample in a training data set for training an artificial 
neural network ( ANN ) model , the perplexity score 
comprising a divergence between 
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data defining a class associated with the current 
training data sample and 

data generated by the ANN model specifying prob 
abilities that the current training data sample 
belongs to each of a plurality of classes , determine 
if the perplexity score is lower than a first thresh 
old , 

remove the current training data sample from the 
training data set if the perplexity score is lower than 
the first threshold , and 

continue training the ANN model following the 
removal of the current training data sample from the 
training data set . 

15. The computing device of claim 14 , wherein the at least 
one computer storage medium has further computer - execut 
able instructions stored thereupon to : 

determine if the perplexity score is higher than a second 
threshold ; and 

remove the current training data sample from the training 
data set if the perplexity score is higher than the second 
threshold . 

16. The computing device of claim 14 , wherein the at least 
one computer storage medium has further computer - execut 
able instructions stored thereupon to add training data 
samples previously removed from the training data set back 
to the training data set prior to a start of an epoch for training 
the ANN model . 

17. The computing device of claim 14 , wherein the 
divergence comprises a Kullback - Leibler divergence . 

18. The computing device of claim 14 , wherein a SoftMax 
layer of the ANN generates the probability vector . 

19. The computing device of claim 14 , wherein the data 
defining the class associated with the current training data 
sample comprises a one - hot vector . 

20. The computing device of claim 14 , wherein the 
training data samples comprise text or images . 


