
IN
US 20200026716A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0026716 A1

(43) Pub . Date : Jan. 23 , 2020 CHERIAN et al .

Publication Classification (54) SYSTEM AND METHOD FOR OPERATING A
DIGITAL STORAGE SYSTEM

(71) Applicant : Reduxio Systems Ltd. , Petah Tiqwa
(IL)

(51) Int . Ci .
G06F 16/28
G06F 16/22
G06F 9/451

(52) U.S. CI .
CPC

(2006.01)
(2006.01)
(2006.01)

G06F 16/285 (2019.01) ; G06F 9/451
(2018.02) ; G06F 16/22 (2019.01)

(72) Inventors : Jacob CHERIAN , Petah Tiqwa (IL) ;
Nir PELEG , Petah Tiqwa (IL) ; Or
SAGI , Petah Tiqwa (IL)

(73) Assignee : Reduxio Systems Ltd. , Petah Tiqwa
(IL)

(21) Appl . No .: 16 / 412,647
(57) ABSTRACT

(22) Filed : May 15 , 2019
A system and method for managing a storage system may
include generating , for a data block , a set of tags and a
unique name . A set of tags may represent a context . A service
related to the data block may be provided in response to
receiving at least one of : a tag , a set of tags and a unique

Related U.S. Application Data
(60) Provisional application No. 62 / 701,023 , filed on Jul .

20 , 2018 . name .

100

STORAGE
SYSTEM

CONTROL 105
130

TAG SET 131 MEMORY 120

EXECUTABLE
CODE 125

DATA BLOCK NAME 132

DATA BLOCK 133 INPUT OUTPUT (1/0)
COMPONENTS 135

100

Patent Application Publication

STORAGE SYSTEM

CONTROL
I

105

130

TAG SET

131

MEMORY

120

EXECUTABLE CODE

125

Jan. 23 , 2020 Sheet 1 of 7

DATA BLOCK NAME M 132
DATA BLOCK

133

INPUT OUTPUT (1/0) COMPONENTS
135

US 2020/0026716 A1

FIG . 1

Patent Application Publication Jan. 23 , 2020 Sheet 2 of 7 US 2020/0026716 A1

200

20 - A STORAGE CONTROL SYSTEM

COMPUTING
DEVICE DATA APPLICATION 210

CORE MODULE 220
20 - B

COMPUTING
DEVICE MEDIA ACCESS MODULE 230

240 - A 240 - B 240 - C

STORAGE
DEVICE
DRIVER

STORAGE
DEVICE
DRIVER

STORAGE
DEVICE
DRIVER

STORAGE
DEVICE

STORAGE
DEVICE

STORAGE
DEVICE

30 - A 30 - B 30 - C

FIG . 2

Patent Application Publication Jan. 23 , 2020 Sheet 3 of 7 US 2020/0026716 A1

TAG SET 2

BLOCK VOL B OFFSET = 0x130
TAG SET 1

320
BLOCK VOLA OFFSET = Ox100

310
DATA BLOCK

133

PICTURE FILE 33 DATA CHUNK 300 h 330

TAG SET 3
FIG . 3

TAG SET 2

BLOCK VOL B OFFSET = 0x130
TAG SET 1

320
BLOCK VOLAI OFFSET = Ox100

370 310
OxfB092EE5

NAME OF DATA BLOCKA
410

PICTURE FILE 33 DATA CHUNK 300 12330
TAG SET 3

COMPUTE SECURE HASH

DATA BLOCKA 1133 1133
FIG . 4

Patent Application Publication Jan. 23 , 2020 Sheet 4 of 7 US 2020/0026716 A1

ENTRIES FOR
DATA BLOCKA

IN THE TAG
DATABASE

TAG SETS NAME

300 BLOCK VOL A OFFSET = 0x100 OxFB092EE5

301 BLOCK VOL B OFFSET = Ox020 Ox9D9923FO

301 PICTURE FILE 33 DATA CHUNK 300 OxFB092EE5

302 PICTURE FILE 21 DATA CHUNK 250 Ox79586572

302 BLOCK VOL B OFFSET = 0x130 OXFB092EE5

510
FIG . 5

STORE
(NAME , DATA

BLOCK)

DATA BLOCK
= RETRIEVE

(NAME)

MEDIA ACCESS LAYER

NVMe
FLASH
DRIVER

STORAGE
CLASS MEMORY

DRIVER

CLOUD OBJECT
STORAGE
DRIVER

FIG . 6

DATA RECEIVED FROM HOST

710 | _710

810

QUERY THE TAG STORE WITH THE
FOLLOWING TAGS : THE VOLUME (E.G .:

VOL 2) AND THE TIME REQUESTING
NAMES CORRESPONDING TO THE LATEST ENTRIES THAT OLDER THAN OR EQUAL TO THE TIME SPECIFIED

Patent Application Publication

DATA MAY BE BROKEN INTO SMALLER DATA BLOCKS , NAMES GENERATED

N720

FOR THE DATA BLOCKS , AND COMPRESSED

820

THE TAG STORE FOR EXAMPLE
COULD RETURN THE < OFFSET , NAME > INFORMATION FOR EVERY VALID BLOCK OF THE VOLUME

CALL THE TAG STORE FUNCTION TO INSERT < NAME , TAG SET > FOR DATA BLOCK IN THE TAG STORE

730

Jan. 23 , 2020 Sheet 5 of 7

CALL THE MEDIA ACCESS LAYER STORE BLOCKS BY SENDING INSERT < NAME , DATA BLOCK > FOR ALL DATA BLOCKS

740

830

FOR EVERY NAME READ THE DATA FROM THE MEDIA ACCESS LAYER AND WRITE TO RIGHT LOCATION ON THE OTHER STORAGE DEVICE

US 2020/0026716 A1

FIG . 7

FIG . 8

900

WRITE 920

930

940

DATA , UNIQUE NAME , TAG SETS

TAG DATA , DATA

PITCHER

LOCAL CACHE

Patent Application Publication

ACK

APPLICATION

UNIQUE NAME , DATA

UNIQUE NAME , DATA

UNIQUE NAME ,
TAG SETS

12 CATCHER

921

TAG DATA , DATA

FAST KEEPER

FAST KEEPER

APPLICATION

950

s

S

960
960 MD KEEPER

970

970

FIG . 9

Jan. 23 , 2020 Sheet 6 of 7

900

READ 920

930

940

TAG DATA

TAG SET

PITCHER

LOCAL CACHE

KUNCOMPRESSED DATA >

APPLICATION

UNIQUE NAME , DATA

TAG UNIQUE SET NAME CATCHER

UNIQUE DATA

DATA

KEEPER

US 2020/0026716 A1

FIG . 10

950

970

Patent Application Publication Jan. 23 , 2020 Sheet 7 of 7 US 2020/0026716 A1

MULTIPLE GPU DIRECT
FABRIC STORAGE (DFS)

GPU 1155 GPU

10 10

IO 10

GPU 1160
1155

GPU

1150

1100

PRIOR ART
ARCHITECTURE

1120
IO

GPU
1155

CPU 1130

IO

FIG . 11

US 2020/0026716 A1 Jan. 23 , 2020
1

SYSTEM AND METHOD FOR OPERATING A
DIGITAL STORAGE SYSTEM

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi
sional Patent Application No. 62 / 701,023 , entitled “ SYS
TEM AND METHOD FOR OPERATING A DIGITAL
STORAGE SYSTEM ” , filed on Jul . 20 , 2018 , which is
incorporated herein by reference in its entirety .

FIELD OF THE INVENTION

referred to herein may relate to the same thing and may be
used herein interchangeably . An embodiment may include a
core layer adapted to generate and maintain tag sets and
unique names ; a media layer adapted to store and retrieve
data blocks according to unique names ; and an Application
Programming Interface (API) combining interfaces of the
core layer and the media layer . An embodiment may include
a controller adapted to store a data block in a storage system
and associate information usable for retrieving the data
block with the unique name .
[0010] An embodiment may include a controller adapted
to provide a data block based on matching data in a request
with a tag set . An embodiment may include a controller
adapted to dynamically modify a tag set . An embodiment
may include a controller adapted to associate a data block
with a plurality of tag sets . An embodiment may include a
controller adapted to alert a client based on a registration , the
registration including at least one tag . An embodiment may
include a controller adapted to use tag sets and unique names
to automate a procedure related to at least one of : data
backup , data restore , data copy , periodic maintenance opera
tion and data retention . A service may be selected based on
a context rule applied to a set of tag sets . Other aspects
and / or advantages of the present invention are described
herein .

[0002] The present invention relates generally to computer
storage systems . More specifically , the present invention
relates to a data storage operating system (OS) .

BACKGROUND OF THE INVENTION
[0003] Storage of digital content is used by computer
applications , users and computer systems as known in the
art . Digital content is typically stored in data blocks which
may be associated with a user , an application , a file or any
other object . Typically , to store or retrieve data in / from a
storage system , a client needs to specify a reference , e.g. , a
file name or a physical location on disk .
[0004] However , current storage systems and methods do
not enable a client to store , retrieve or manipulate data in a
storage system based on a logical context of the data .

BRIEF DESCRIPTION OF THE DRAWINGS

SUMMARY OF THE INVENTION

[0005] An embodiment for managing a storage system
may include generating , for a data block , a set of tags (e.g.
a tag set or group) and a unique name ; associating the tag set
and unique name in a database ; receiving a request including
at least one tag ; and providing at least one service related to
the data block based on the received tag , tag set and unique
name .

[0006] An embodiment may store a data block in a storage
system and may associate information usable for retrieving
the data block with the unique name . An embodiment may
perform an action related to a data block based on matching
data in a request with a tag set . An embodiment may
dynamically modify a tag set . An embodiment may associate
a data block with a plurality of tag sets . An embodiment may
alert a client based on a registration , the registration includ
ing at least one tag .
[0007] An embodiment may use tag sets and unique names
to automate a procedure related to at least one of : data
backup , data restore , data copy , periodic maintenance opera
tion and data retention . A unique name may be generated
based on the content of a data block . A service provided by
an embodiment may be selected based on a logical context
defined by a tag set . A service may be selected based on a
rule applied to a set of tag sets .
[0008] An embodiment may include a memory and a
controller adapted to generate , for a data block , a set of tags
(tag set) and a unique name ; associate the tag set and unique
name in a database ; receive a request including at least one
tag ; and provide at least one service related to the data block
based on the received tag , tag set and unique name .
[0009] An embodiment may include a unit module (also
referred to herein as layer) adapted to provide an interface
with a media storage system based on a unique name and a
data object . The terms " unit " , " module ” and “ layer " as

[0011] Non - limiting examples of embodiments of the dis
closure are described below with reference to figures
attached hereto that are listed following this paragraph .
Identical features that appear in more than one figure are
generally labeled with a same label in all the figures in which
they appear . A label labeling an icon representing a given
feature of an embodiment of the disclosure in a figure may
be used to reference the given feature . Dimensions of
features shown in the figures are chosen for convenience and
clarity of presentation and are not necessarily shown to
scale . For example , the dimensions of some of the elements
may be exaggerated relative to other elements for clarity , or
several physical components may be included in one func
tional block or element . Further , where considered appro
priate , reference numerals may be repeated among the
figures to indicate corresponding or analogous elements .
[0012] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the con
cluding portion of the specification . The invention , however ,
both as to organization and method of operation , together
with objects , features and advantages thereof , may best be
understood by reference to the following detailed descrip
tion when read with the accompanied drawings . Embodi
ments of the invention are illustrated by way of example and
not limitation in the figures of the accompanying drawings ,
in which like reference numerals indicate corresponding ,
analogous or similar elements , and in which :
[0013] FIG . 1 shows block diagram of a computing device
according to illustrative embodiments of the present inven
tion ;
[0014] FIG . 2 shows a system according to illustrative
embodiments of the present invention ;
[0015] FIG . 3 shows tags associated with a data block
according to illustrative embodiments of the present inven
tion ;

US 2020/0026716 A1 Jan. 23 , 2020
2

[0016] FIG . 4 illustrates association of tag sets with a data
block name according to illustrative embodiments of the
present invention ;
[0017] FIG . 5 illustrates data in a database according to
illustrative embodiments of the present invention ;
[0018] FIG . 6 shows a media access layer according to
illustrative embodiments of the present invention ;
[0019] FIG . 7 shows a write operation according to illus
trative embodiments of the present invention ;
[0020] FIG . 8 shows a flow according to illustrative
embodiments of the present invention ;
[0021] FIG . 9 shows a system and flows according to
illustrative embodiments of the present invention ;
[0022] FIG . 10 shows a system and flows according to
illustrative embodiments of the present invention ; and
[0023] FIG . 11 shows a prior art system and a system and
flows according to illustrative embodiments of the present
invention .

DETAILED DESCRIPTION

[0024] In the following detailed description , numerous
specific details are set forth in order to provide a thorough
understanding of the invention . However , it will be under
stood by those skilled in the art that the present invention
may be practiced without these specific details . In other
instances , well - known methods , procedures , and compo
nents , modules , units and / or circuits have not been described
in detail so as not to obscure the invention . Some features or
elements described with respect to one embodiment may be
combined with features or elements described with respect
to other embodiments . For the sake of clarity , discussion of
same or similar features or elements may not be repeated .
[0025] Although embodiments of the invention are not
limited in this regard , discussions utilizing terms such as , for
example , " processing , " " computing , " " calculating , " " deter
mining , " " establishing " , " analyzing " , " checking " , or the
like , may refer to operation (s) and / or process (es) of a
computer , a computing platform , a computing system , or
other electronic computing device , that manipulates and / or
transforms data represented as physical (e.g. , electronic)
quantities within the computer's registers and / or memories
into other data similarly represented as physical quantities
within the computer's registers and / or memories or other
information non - transitory storage medium that may store
instructions to perform operations and / or processes .
Although embodiments of the invention are not limited in
this regard , the terms “ plurality ” and “ a plurality ” as used
herein may include , for example , “ multiple ” or “ two or
more ” . The terms “ plurality ” or “ a plurality ” may be used
throughout the specification to describe two or more com
ponents , devices , elements , units , parameters , or the like .
The term set when used herein may include one or more
items .
[0026] Unless explicitly stated , the method embodiments
described herein are not constrained to a particular order in
time or to a chronological sequence . Additionally , some of
the described method elements can occur , or be performed ,
simultaneously , at the same point in time , or concurrently .
Some of the described method elements may be skipped , or
they may be repeated , during a sequence of operations of a
method .
[0027] Reference is made to FIG . 1 , showing a non
limiting block diagram of a computing device or system 100
that may be used to operate a storage system according to

some embodiments of the present invention . Computing
device 100 may include a controller 105 that may a hardware
controller . For example , computer hardware processor or
hardware controller 105 may be , or may include , a central
processing unit processor (CPU) , a chip or any suitable
computing or computational device . Computing system 100
may include a memory 120 , executable code 125 , a storage
system 130 and input / output (1/0) components 135. Con
troller 105 (or one or more controllers or processors , pos
sibly across multiple units or devices) may be configured
(e.g. , by executing software or code) to carry out methods
described herein , and / or to execute or act as the various
modules , units , etc. , for example by executing software or
by using dedicated circuitry . More than one computing
devices 100 may be included in , and one or more computing
devices 100 may be , or act as the components of , a system
according to some embodiments of the invention .
[0028] Memory 120 may be a hardware memory . For
example , memory 120 may be , or may include machine
readable media for storing software e.g. , a Random - Access
Memory (RAM) , a read only memory (ROM) , a memory
chip , a Flash memory , a volatile and / or non - volatile memory
or other suitable memory units or storage units . Memory 120
may be or may include a plurality of , possibly different
memory units . Memory 120 may be a computer or processor
non - transitory readable medium , or a computer non - transi
tory storage medium , e.g. , a RAM . Some embodiments may
include a non - transitory storage medium having stored
thereon instructions which when executed cause the proces
sor to carry out methods disclosed herein .
[0029] Executable code 125 may be an application , a
program , a process , task or script . A program , application or
software as referred to herein may be any type of instruc
tions , e.g. , firmware , middleware , microcode , hardware
description language etc. that , when executed by one or
more hardware processors or controllers 105 , cause pro
cessing system or device (e.g. , system 100) to perform the
various functions described herein .
[0030] Executable code 125 may be executed by controller
105 possibly under control of an operating system . For
example , executable code 125 may be an application that
operates or manages a storage system as further described
herein . Although , for the sake of clarity , a single item of
executable code 125 is shown in FIG . 1 , a system according
to some embodiments of the invention may include a
plurality of executable code segments similar to executable
code 125 that may be loaded into memory 120 and cause
controller 105 to carry out methods described herein . For
example , units or modules described herein , e.g. , each of
data application 210 , core module 220 and media access
module 230 , may be , or may include , controller 105 ,
memory 120 and executable code 125 .
[0031] Storage system 130 may be or may include , for
example , a hard disk drive , a universal serial bus (USB)
device or other suitable removable and / or fixed storage unit .
As shown , storage system 130 may include tag sets or
groups 131 , data block names 132 and data blocks 133
(collectively referred to hereinafter as tag sets 131 , data
blocks 133 and / or data block names 132 or individually as
a tag set 131 , a data block 133 and / or a data block name 132 ,
merely for simplicity purposes) .
[0032] Although shown as separate objects , tag sets 131
and data block names 132 may be included in one or more
objects , e.g. , in a database , such that given a tag set 131 , the

US 2020/0026716 A1 Jan. 23 , 2020
3

-

associated data block name 132 can be quickly identified ,
located and / or retrieved . Likewise , tag sets 131 and data
block names 132 may be stored such that given a data block
name 132 , all a tag sets 131 associated with the data block
can be readily and quickly identified , located and / or
retrieved .
[0033] As referred to herein , associating a tag set 131 (or
a data block name 132) with a data block 133 may include
generating , including or arranging digital information (e.g. ,
in a database in storage system 130) such that given a tag set
131 , an associated data block 133 can be quickly found
and / or retrieved . For example , associating a tag set 131 with
a data block 133 may include adding a pointer or reference
to the tag set 131 or associating a tag set 131 with a data
block 133 may be achieved by including the tag set 131 and
a reference to the data block 133 in the same entry or row
in a table , list or database . It will be understood that the
scope of the invention is not limited by the way tag sets 131
are linked to , or associate with , data blocks 133 .
[0034] Tag sets 131 and data block names 132 as referred
to herein may be any suitable digital data structures , con
structs or computer digital data objects that enable storing ,
retrieving and modifying values . For example , tag sets 131
and data block names 132 may be , or may be included in ,
files , tables or lists in a database in storage system 130 , and
may include a number of fields that can be set , modified ,
cleared and so on . For example , entries may be added to a
table or list to indicate or represent an association of a data
block with a tag as further described herein .
[0035] Data blocks 133 may be any suitable object usable
for storing digital information , for example , a data block
may be a number of contiguous bytes in a hard disk , an
object stored in a block or object storage system or any
chunk of digital data . It will be noted that , in some embodi
ments , tag sets 131 and data block names 132 are stored in
a first storage system or device and data blocks 133 are
stored in a second , different storage system or device . For
example , tag sets 131 and data block names 132 may be
stored in a fast (possibly expensive) storage system and data
blocks 133 may be stored in mass storage device that may
be slower but cheaper . A mass storage device may be , for
example , a device similar to storage system 130 that may be
optimized for storage capacity but not necessarily for speed .
[0036] Content may be loaded from storage system 130
into memory 120 where it may be processed by controller
105. For example , a tag set 131 may be loaded into memory
120 , controller 105 may add a tag to the tag set 131 in
memory 120 to produce an updated tag set 131 and then
store the updated tag set in storage system 130 .
[0037] I / O components 135 may be , may be used for
connecting (e.g. , via included ports) or they may include : a
mouse ; a keyboard ; a touch screen or pad or any suitable
input device . I / O components may include one or more
screens , touchscreens , displays or monitors , speakers and / or
any other suitable output devices . Any applicable I / O com
ponents may be connected to computing device 100 as
shown by I / O components 135 , for example , a wired or
wireless network interface card (NIC) , a universal serial bus
(USB) device or an external hard drive may be included in
I / O components 135 .
[0038] A system according to some embodiments of the
invention may include components such as , but not limited
to , a plurality of central processing units (CPU) or any other
suitable multi - purpose or specific processors , controllers ,

microprocessors , microcontrollers , field programmable gate
arrays (FPGAs) , programmable logic devices (PLDs) or
application - specific integrated circuits (ASIC) . A system
according to some embodiments of the invention may
include a plurality of input units , a plurality of output units ,
a plurality of memory units , and a plurality of storage units .
A system may additionally include other suitable hardware
components and / or software components . A system may
include or may be , for example , a workstation , a server
computer , a network device , or any other suitable computing
device .
[0039] Embodiments of the invention may include a data
storage OS that provides context based interface and opera
tions related to data . As described , sets of tags and unique
names associated with data blocks may be used for provid
ing clients of a system with a context based view and
interface , thus enabling clients of a system to request and
receive services based on any logical context of the data and
further relieving clients from having to deal with details of
an underlying storage system . When used herein , a name
that is “ unique ” is typically within a system or set of names
according to an embodiment of the invention .
[0040] Reference is made to FIG . 2 , an overview of a
storage control system 200 and flows according to some
embodiments of the present invention . As described , system
200 or components of system 200 may be , or may include ,
components such as those shown in FIG . 1 .
[0041] As shown , system 200 may include a data appli
cation module 210 , a core module 220 , a media access
module 230 , a plurality of storage device driver modules
240 - A , 240 - B and 240 - C , and system 200 may include or
may be connected to a plurality of storage devices or
systems 30 - A , 30 - B and 30 - C . Of course , in some embodi
ments , only one , single storage device driver (e.g. , module
240 - A) is included in system 200 and may be used , e.g. , to
operatively connect system 200 to a single storage device
(e.g. , storage device 30 - A) .
[0042] Computing devices 20 - A and 20 - B may be any
suitable computing device (e g , similar to computing device
100) and may be used by clients of system 200. Clients of
system 200 may be , for example , users who store / retrieve
data in / from system 200 and / or applications that store /
retrieve data in / from system 200 and / or devices , e.g. , com
puting devices 20 - A and 20 - B as shown in FIG . 2. For
example , computing device 20 - A may be used by a user or
application to store and / or retrieve data from system 200 as
described herein .
[0043] In some embodiments , core module 220 associates
data blocks 133 with one or more tag sets 131. A tag set 131
may represent , or include , a context of and / or other attri
butes of the data block 133 with which it is associated .
Generally , a context may include , or be determined or
defined based on , any relevant or applicable attribute or
aspect , e.g. , a context may be , may include , or may be
defined based on , one or more of : an indication or identifi
cation of a storage media , e.g. , a name , or a reference to , a
data volume , a hard drive or other applicable media or
storage system or object ; a name or other reference to a
digital content object ; an offset in a data block ; a date and
time or timestamp value ; a source of data block ; a type of the
actual data or content in a data block ; a usage of data in a
data block etc. It is noted that since a context may be
represented by tag sets , and tags to be included in tag sets
may be freely defined , any user - defined context , dynami

US 2020/0026716 A1 Jan. 23 , 2020
4

cally or automatically defined context , or other contexts may
be defined and used by a system as described .
[0044] For example , a first tag set 131 may be created for
a context of a first application (e.g. a program , a software
module , an instance of a program , etc.) or user and may be
associated with a data block 133 and a second tag set 131
may be created for a second application or user and may be
associated with the same data block 133. Accordingly , a
plurality of tag sets 131 may be associated with a single data
block 133 thus enabling different views , makings or usages
of a single data block .
[0045] In some embodiments , a tag set 131 includes a set
of tags that together represent a logical context or other
attribute of data , with respect to a user , application or owner
of at least a portion of a data block 133. For example , a first
tag set 131 may be created for a first application and may be
associated with a first offset in a data block 133 (e.g. , the first
offset is where the data of interest for the first application is
stored within the data block 133) and a second tag set 131
may be created for a second application and may be asso
ciated with a second offset in the same data block 133 , e.g. ,
since that is where data of interest for the second application
is stored . Accordingly , tag sets as described provide a
virtualization layer on top of data blocks providing each
client of a storage system with its own view of the storage
system .
[004] Reference is made to FIG . 3 , which shows tag sets
associated with a data block . As further described herein ,
associating a tag set 131 and / or a data block name 132 with
a data block 133 may include creating and arranging digital
information such that a tag set 131 and / or a data block name
132 is / are linked to data block 133. As described , an
association of a tag sets with a data blocks enable finding ,
retrieving or obtaining a data block given , or based on , a tag
set , an association as described may enable finding , retriev
ing or obtaining a tag set based on a data block .
[0047] As shown , a plurality of tag sets 310 , 320 and 330
may be associated with a single data block 133 and each tag
set represents a different context of the data block . As further
shown , each of the tag sets include a set of tags . For
example , and as shown in FIG . 3 , tag set 310 includes a
block volume name or reference (first tag in the tag set) and
an offset in the data block 133 (second tag in the tag set) and
tag set 330 also includes two tags , an indication or type of
a file and a reference to a data chunk in data block 133 .
Although block or data volume is mainly referred to herein ,
for simplicity , it will be understood that any media and / or
object may be used where applicable , e.g. , a file , a hard disk
segment or any application specific entity .
(0048] It will be understood that any number of tag sets
131 can be associated with a single or same data block 133 .
For example , when a new application or user starts using
system 200 , a new tag set 131 may be created for the new
user or application and the new tag set 131 may be associ
ated with data blocks provided by the new user or applica
tion and / or the new tag set 131 may be associated with data
blocks that may have been stored in the system long before
the new user or application started using the system .
[0049] Although only two tags are shown in each of tag
sets 310 , 320 and 330 , it will be understood that any number
of tags may be included in a tag set 131. For example , tags
related to time , user or application name , location in storage ,
type of content and the like may be included in a tag set .
Accordingly , any relevant aspect of , or context related to

data in a data block may be reflected , represented or
included in a tag set 131 as described herein , and , a given
block of data can have multiple logical contexts associated
with it (using tag sets as described) where each context
represents a different aspect , e.g. , different application or
different regions in the data associated with a given appli
cation .
[0050] In some embodiments , tag sets 131 are associated
with names of , or other references to , data blocks 133. For
example , tag sets 131 may be associated with globally , or
system unique names that are generated for data blocks 133 .
A unique name as referred to herein may be unique within
a specific instantiation of the invention , but not be unique
when compared with the universe of names of data blocks
stored on all existing computer systems . For example , a
secure hash generated based on the content of a data block
133 may be , or may provide , a globally unique name for the
specific data block 133 in a storage system . A unique name
or reference for a data block may be defined and generated
based on the actual content of a data block 133 .
[0051] Reference is made to FIG . 4 , showing association
of tag sets with a data block name . As shown , a name 410
for data block 133 may be generated , e.g. , by core module
220 , by calculating a secure hash value that may be unique
for the content in data block 133. Accordingly , if the content
in a first and second data blocks 133 is different than the
names calculated for the first and second blocks will be
different , similarly , the same names may be generated for
two different data blocks 133 if the data blocks include
identical content . Any method for generating unique names
or references for data blocks may be used . It will be
understood that a unique name as referred to herein may be
unique within a specific instantiation of the invention , but
not be unique when compared with the universe of names of
data stored on all existing computer systems .
[0052] In some embodiments , names of data blocks 133
and their associated tag sets are stored in a tag database , e.g. ,
included in or operatively connected to , data core module
220. Using a database that includes (and associates) unique
names of data blocks 133 and associated tag sets 131 , core
module 220 (or a database therein) may support various
operations or interfaces . For example , core module 220 may
receive a request that includes a tag or tag set and respond
with an associated name or a combination of a name and tag
set . In another example , core module 220 may , in response
to a request , add a new name / tag set combination and / or add
a tag to an existing tag set . In yet other cases , core module
may receive a request (or registration) to be notified when a
specific event related to any one of : a name , tag or tag set
occurs . For example , a user may request to be notified each
time a data block 133 associated with a specific tag set is
accessed or retrieved .
[0053] Reference is made to FIG . 5 , showing a conceptual
representation of a database according to illustrative
embodiments of the present invention . As shown by table
510 , each entry may include a tag set 131 and name of the
data block 133 associated with the tag set . It will be
understood that any number of additional columns may be
added to table 510 to enable any size or number of tags in
a tag set . Entries in table 510 may include metadata , e.g. ,
metadata included , per entry , in database 510 , may be a
sequence number that may represent order of entries in time ,
a timestamp and so on . An arrangement of data as illustrated
in FIG . 5 enables various operations and services , e.g. ,

US 2020/0026716 A1 Jan. 23 , 2020
5

be pro

search for , retrieve and / or provide all data blocks 133
associated with a specific tag set 131 , search for , retrieve
and / or provide all tag sets 131 associated with a specific data
block 133 and so on . Other operations or services performed
or provided by embodiments using a database as illustrated
by table 510 may be providing data block names in response
to a tag (e.g. , all data blocks associated with a tag) , adding
new < name , tag set > entries and add tags , adding new tags
to existing tag sets , alert users or applications when an event
occurs based on a registration , e.g. , a registration for a
specific tag set , data block name and / or a specific event .
[0054] Storage of the actual data (the data or content in / of
data blocks 133) may be performed by media access module
230 and one of drivers 240 - A , 240 - B and / or 240 - C . Gener
ally , media access module or layer 230 provides a mecha
nism to store and access data from different types of media
with a single common interface that is independent of the
details of the underlying media . The individual media driv
ers (e.g. , drivers 240 - A , 240 - B and / or 240 - C) deal with the
details of the supported media types .
[0055] In some embodiments , media access layer 230
provides (or exports) functions that allow the storage and
retrieval of arbitrary sized data blocks . For example , media
access layer 230 may , based on a request that includes data
and a name , store a data block with a name , or , provided with
a name , media access layer 230 may retrieve a data block
associated with the name . Any other operations related to
data blocks , names and tag sets may be performed .
[0056] In some embodiments , media access layer 230
handles the storage of the actual data blocks using media
drivers (e.g. , drivers 240 - A , 240 - B and / or 240 - C) . In some
embodiments , media access layer 230 provides a mechanism
to store and access data , on / from any type of media , with a
single common interface that is independent of the details of
the underlying media . The individual media drivers (e.g. ,
drivers 240 - A , 240 - B and / or 240 - C) deal with the details of
the supported media types . In some embodiments , media
access layer 230 exports , supports or provides functions that
allow the storage and retrieval of arbitrary sized data blocks .
[0057] Reference is made to FIG . 6 , showing a conceptual
representation of a media access layer according to illustra
tive embodiments of the present invention . As shown , the
underlying media may be flash storage handled by a flash
drive , a cloud based storage handled by a suitable driver etc.
As further illustrated in FIG . 6 , media access layer 230 may
provide a storage service (or storage operation , function or
process) that receives a name and a data block , records the
name and stores the actual data (content of the data block)
in one or more of the underlying mediums . For example , a
name received by media access layer 230 may be as shown
in the " Name " column in the table shown in FIG . 5 and a
data block received may be the digital content of a data
block 133 as described . As further shown , media access
layer 230 may provide a retrieve function that receives a
name and , in response , provides the data block (or the
content of the data block 133) associated with the name .
More than one data block may be provided in response to a
request that includes more than one names . For example ,
computing device 20 - A may be an external device that sends
a request to system 200 , e.g. , a request to retrieve data from ,
or a request to store data in , system 200 and system 200 may ,
in response to a request from computing device 20 - A ,
provide a number of data blocks , e.g. , from storage devices

30 - A and 30 - C or store a number of data blocks , e.g. , in
storage devices 30 - A and 30 - B .
[0058] Likewise , a plurality of data blocks may
vided in a single store request . Accordingly , access layer 230
may support or provide a set or plurality of store and / or
retrieve operations for multiple data blocks and / or names
based on a single request .
[0059] In some embodiments , core module 220 and media
access module 230 , along with the drives such as drivers
240 - A , 240 - B and / or 240 - C form a data OS . The set of
functions exposed , provided and described herein , by the tag
or tag set database and media access module 230 forms the
application programming interface (API) of the data OS .
Higher level APIs that , for example , automatically generate
names for data when a storage request is made , chunk data
into smaller blocks , compress data , and then invoke requests
to both core module 220 and / or media access module 230
may all be provided by the data OS . Data applications can
use the interfaces provided by the data OS to store and
retrieve data managed by the data OS , and to provide
management functions for data stored in a data storage
infrastructure based on the data OS .
[0060] An example of a data application may be a block
storage target that supports a specific block protocol , e.g. ,
Internet Small Computer System Interface (iSCSI) . In this
example , the iSCSI target data application terminates the
iSCSI connection and all further data operations are done
using the data OS API .
[0061] Reference is made to FIG . 7 , which shows a write
operation to an iSCSI block storage target according to
illustrative embodiments of the present invention . As shown
by block 710 , data to be stored may be received , e.g. , system
200 receives data from computing device 20 - A . As shown
by block 720 , data received may be divided (e.g. broken or
chunked) into smaller portions or blocks and names may be
generated for the portions , chunks or blocks , e.g. , using a
function that generates a unique name or code based on the
actual content of a data block as described . As further
shown , data blocks may be compressed either before or after
unique names are generated .
[0062] As shown by block 730 , sets of tag sets and names
may for the portions , chunks or blocks may be added to a
database , e.g. , new entries may be added to table 510 as
described herein . As shown by block 740 , the data portions ,
chunks or blocks may be stored in association with their
names , e.g. , by calling or invoking media access module 230
to perform the actual storage and providing media access
module 230 with names and data blocks .
[0063] For example , a data block to be stored may be
received by system 200 (e.g. , from an application 921
described herein with reference to FIG . 9) , system 200 may
create a set of tags (tag set) based on information included
in the request for storing the data block and may associate
the tag set with a unique name . For example , a request to
store a data block may include a file name , a volume / offset
combination , a size and the like and any part of the infor
mation in a request may be used for creating a tag set as
described . A system may further generate a unique name for
the data block and associate the unique name with the tag
set , e.g. , by including the unique name in an entry that
includes the tag set as described . It is noted that associating
a unique name with one or more tag sets may be done using
any technique , e.g. , pointers may be used . When a request
for retrieving the data block is received , system 200 may

US 2020/0026716 A1 Jan. 23 , 2020
6

identify the tag set based on information in the request . For
example , a file name in a request may be used to find the
relevant tag set since , as described , a tag may include a file
name , or it may be created such that it can be matched with
file name , e.g. , to save storage space and / or increase per
formance , a tag may include a hash value generated based on
a file name . Having identified the correct tag or tag set , a
unique name of the data block may be readily obtained
since , as described , the unique name may be associated with
the tag , the unique name may be used for locating and / or
retrieving the data block or provide any other service related
to the request , e.g. , copy the data block , delete the data block
and so on .
[0064] Another example of a data application may be an
application that copies data according to a point in time ,
from a block volume (or any other storage system , device or
media) to another storage device , system or media . For
example , a time tag or timestamp , for each data block 133 ,
may be included in a database , e.g. , as illustrated by table
510. Accordingly , an embodiment can find or identify data
blocks according to time , e.g. , find data blocks that were
modified in the last 24 hours , stored in the last week and so
on .

[0065] Reference is made to FIG . 8 , showing a flow of
copying data stored in a first (source) storage device , system
or media to a second (destination device , system or media .
As shown by block 810 , a data volume (or any other storage
system , device or media) identifier and a time stamp or
indication may be used to query a database (e.g. , a database
including data as shown by table 510) . As shown , an
embodiment (e.g. , core module 220) may respond to the
query with a list of blocks (and their associated names) that
were stored or modified on or before the time indicated in
the query . For example , using information in table 510 that
may include a timestamp as described and a tag that iden
tifies a data volume (or any other storage system , device or
media) , core module 220 can find all relevant data blocks as
described . As shown by block 830 , an embodiment may , for
each name included in the response , provide the name to
media access module 230 and command media access
module 230 to copy the associated data block from the
source device or system to the target device or system .
[0066] As described , embodiments for managing a storage
system may include generating , for a data block , a set of tags
(e.g. tag set) and a unique name ; associating the tag set and
unique name in a database ; receiving a request including at
least one tag ; and providing at least one service related to the
data block based on the received tag , tag set and unique
name . For example , and as described , core module 220 may
generate a unique name for a data block based on the content
in the data block , generate or receive a set of tags and store
the unique name and set of tags in a database such that the
unique name and set of tags are associated or linked . Using
services provided by media access module 230 , core module
220 may provide services or interfaces based on tag sets
and / or unique names .
[0067] An embodiment may store a data block in a storage
system and may associate information usable for retrieving
the data block with the unique name . For example , media
access module 230 may receive a data block to be stored and
a unique name of the data block , store the data block in a
storage system or media and record an association of the
location of the data block in the storage system with the
unique name . Accordingly , given a unique name , media

access module 230 may retrieve the data block from the
storage system . Media access layer 230 may perform dedu
plication of data based on names generated and associated
with data blocks as described , for example , by storing a
given data block only once if / when multiple store operations
are received with the same name .
[0068] An embodiment may perform an action related to
a data block based on matching (e.g. comparing and deter
mining whether or not the data is identical) data in a request
with data in a tag set . For example , specific fields or values
in a request from computing device 20 - B may be extracted
and compared to data in a tag set , if a match is found , that
is , the extracted values are same as those in a tag set , the
associated data block may be retrieved as described , if a
match is not found then an embodiment may perform one or
more actions , e.g. , a new tag set may be created or the
request may be responded with an error message or an error
may be logged .
[0069] For example , a request may include a set of tags
and core module 220 may search for all tag sets that match
or are the same as the set of tags in the request and perform
an action related to one or more data blocks associated with
the matching tag sets .
[0070] An embodiment may automatically and / or dynami
cally modify a tag set . For example , tags may be added ,
removed or modified to / in tag sets already stored as
described such that tag sets are not fixed but are dynamic ,
e.g. , change or evolve as data in storage system 200 changes .
For example , when a context is changed , e.g. , an owner of
data has changed , permissions to access data changed and so
on , then core module 220 may modify tag sets associated
with the data such that the new context is reflected by the
modified tag sets .
[0071] An embodiment may associate a data block with a
plurality of tag sets , for example , as shown by FIG . 5 and
described herein . For example , an association of a data block
133 with a tag set 131 may be , or may include , including the
tag set 131 (or at least some of the data in a tag set) and a
reference to the data block 133 in the same row of a table or
same ent in a list as illustrated in FIG . 5. As further
illustrated in FIG . 5 , a single or same data block 133 may be
associated with any number of tag sets , e.g. , using a set of
entries in a list or table that associate a data block 133 with
a respective set of tag sets . For example , and as shown in
FIG . 5 , the data block 133 referenced by “ OxFB092EE5 ”
may be associated with three different tag sets . Accordingly ,
a data block may be searched for , selected , used , viewed or
manipulated according to a number of different contexts
represented by a respective set of tag sets .
[0072] An embodiment may alert or notify a client based
on a registration , the registration including at least one tag .
For example , a client , e.g. , an operator of , or an application
on , computing device 20 - B may register to be alerted if data
that is associated with a specific tag or tag set is modified ,
deleted or accessed and system 200 may , if any data block
associated with the tag or tag set indicated in the registration
request , is modified , deleted or accessed , alert the operator
or application . A client may be considered to be a person
operating an application , program or computer , that makes
a request , and / or the application , program or computer
making the request .
[0073] An embodiment may use tag sets or groups and
unique names to automate a procedure related to at least one
of : data backup , data restore , data copy , periodic mainte

US 2020/0026716 A1 Jan. 23 , 2020
7

nance operation and data retention . For example , data appli
cation 210 may backup all data blocks associated with a
specific tag , perform a retention operation based on tags and
SO on .

[0074] A service provided , executed or performed ; or
denied , by an embodiment based on a logical context defined
by a tag set . For example , although a request to delete data
is received , an embodiment may refuse deletion of the data
because it is associated with a specific tag . In other cases , an
embodiment may change all data blocks associated with one
or more tags to read - only thus protecting data based on tags
or context .
[0075] A service or operation may be executed , performed
or selected ; or an operation may be refused or denied , based
on a context rule applied to a set of tag sets . For example ,
a context rule may indicate that data including images ,
stored before Jul . 19 , 2017 and used by a specific application
must not be deleted . As described , using tag sets , applying
(possibly very complex) rules , may be readily performed by
embodiments of the invention .
[0076] An embodiment may include a layer adapted to
provide an interface with a media storage system based on
the unique name and the data . For example , a layer in system
200 may provide an interface for storage devices 30 - A and
30 - B where the interface uses unique names , e.g. , a data
block stored in storage device 30 - C is provided , by the
interface layer , in response to a unique name .
[0077] An embodiment may include a core unit , module or
layer adapted to generate and maintain tag sets and unique
names , e.g. , core module 220 and a media layer adapted to
store and retrieve data blocks according to the unique names ,
e.g. , media access module 230. Generally , a unit , module or
layer as referred to herein may be , or may include , a set of
instructions or a logic executed by controller 105. An
embodiment may further include an Application Program
ming Interface (API) combining interfaces of the core layer
and the media layer . For example , in response to a request
from a client , APIs of system 200 may send commands or
requests to core module 220 and media access module 230
and generate and provide a response to the client based on
responses received from core module 220 and media access
module 230. Accordingly , an embodiment may provide a
unified interface for a core module and a media module .
[0078] A system comprising core module 220 , media
access module 230 , device drivers 240 and storage devices
30 was described herein , other embodiments and / or con
figurations may be contemplated . Reference is made to FIG .
9 showing a system 900 and flows according to illustrative
embodiments of the present invention . As shown , system
900 may interact with applications 920 and 921 that may be
executed on computing device 20 - A and computing device
20 - B shown in FIG . 2. As further shown , system 900 may
include a pitcher unit 930 , a local cache 940 , a catcher unit
950 , a metadata (MD) keeper unit 960 , and a plurality of fast
keeper units 970. Although only two fast keepers 970 are
shown it will be understood that any number of fast keepers
970 may be included in or connected to a system according
to embodiments of the invention . One of fast keepers 970
may be individually referred to herein as a fast keeper 970 ,
merely for simplicity purposes .
[0079] In some embodiments , operations , logic and com
ponents included in core module 220 may be performed or
included in pitcher 930. For example , pitcher 930 may be the
front end of system 900. For example , to perform a write

operation , application 920 may send tag data (e.g. metadata)
and data (e.g. payload) to pitcher 930 as shown , e.g. , as part
of a request to store or write the payload data . Tag data may
be any metadata usable for generating tags and tag sets as
described herein . Tag data provided by application 920 may
be any metadata related to the data provided for write or
store . Tag data provided by application 920 may be accord
ing to , or based on a protocol and / or an application . Gen
erally , tag data provided by application 920 may be struc
tured according to a native language or protocol of
application 920. Accordingly , system 900 may provide a first
native interface for a first application (e.g. , application 920)
and system 900 may further provide a second native inter
face for a second application (e.g. , application 921) .
[0080] For example , application 920 may be an applica
tion that uses keys to access objects in a database , that is , the
native language or interface of application 920 includes , or
is based on keys as known in the art , and , application 921
may be an application that uses objects ' identifiers for
retrieving objects , e.g. , from an object - based storage , that is ,
the native language or interface of application 921 includes ,
or is based on unique object identifiers (IDs) , yet another
application that can readily interface with system 900 may
use , as its native language or interface , combinations of
volume IDs and offsets , and , an additional application
interfacing with system 900 may use file names . Accord
ingly , using a set of tags (e.g. tag group or set) that are
associated with data chunks , blocks or other objects , system
900 can interface with any application or system , allowing
the applications that interface with system 900 to maintain
their native or natural language or protocol .
[0081] Providing a storage system (e.g. , system 900) that
can interact or interface with a set of different applications
that use a respective set of different protocols or interface
schemes , without requiring the applications to be modified ,
configured or adjusted is an improvement of the technologi
cal field of computer data storage . Using tag sets as
described may enable system 900 to be easily adapted or
configured to provide data storage service to any application
or system , e.g. , provided with details of a protocol or scheme
used by an application , tag sets may be created , set and used
as described such that requests coming from the application
are serviced without any change to the application . A
practical application of an embodiment of the invention may
be , for example , system 900 that may , as described , gener
ate , for a data block , a set of tags (e.g. tag set) and a unique
name , for example , a data block received from application
920 may cause pitcher 930 to create a set of tags and
associate the data block with the set of tags . A practical
application of an embodiment of the invention may further
associate the data block and / or the set of tags with a unique
name , identification code , string or value . A practical appli
cation of an embodiment may receive a request including at
least one tag , e.g. , system 900 may receive a request related
to a data block stored in system 900 from application 920
where the request includes information that can be translated
or related to one or more tag sets as described , and the
application may provide at least one service related to the
data block based on the received tag information , and based
on the unique name , identification code , string or value .
[0082] As further described herein , by separating the
actual storage of data from the interface with applications ,

US 2020/0026716 A1 Jan. 23 , 2020
8

an embodiment of the invention can provide native inter
faces to a plurality of application types while using the same
efficient storage layer .
[0083] As shown , based on the data (e.g. payload) and the
tag data , pitcher 930 may calculate or determine a unique
name for the payload and a tag set . The tag set calculate or
determine may be , for example , tag set 310 as described
herein and the unique name may be as shown by block 410
and described herein or the unique name and tag set may be
as shown in FIG . 5 and described herein .
[0084] As shown , the data (e.g. payload) , unique name and
tag set may be written to a local cache 940. As further
shown , pitcher 930 select one of fast keepers 970 and may
provide the data (payload) received from application 920
and the unique name to the selected fast keeper . In some
embodiments , operations , logic and components included in
storage device drivers 240 - A , 240 - B and 240 - C and opera
tions , logic and components included in storage devices
30 - A , 30 - B and 30 - C may be performed by , connected to , or
included in , fast keepers 970. For example , fast keepers 970
may be very fast and efficient since they operate based on an
association of a unique name with a data block , that is , fast
keepers 970 are unaffected by , or are indifferent to , aspects
such as context , application that is the source of the data and
SO on .

[0085] As shown , pitcher 930 may provide the unique
name and tag set to catcher unit 950 that may use a metadata
keeper 960 to store the unique name and tag set . For
example , data shown in table 510 may be stored by metadata
keeper 960 .
[0086] Reference is made to FIG . 10 showing a system
900 and flows according to illustrative embodiments of the
present invention . As shown , to read data from system 900 ,
application 920 may send tag data to pitcher 930. For
example , tag data may be a combination of a table name ,
row and column identifying a data element that application
920 wants to read . Pitcher 930 may use the tag data to
calculate a tag set and then use the tag set to check whether
or not the requested data is in cache 940 as shown by the
arrow extending from pitcher 930 to local cache 940. Cache
940 may store the actual data (payload) and / or it may store
a mapping of tag sets to unique names . Accordingly , as
shown by the arrow extending from cache 940 to pitcher
930 , cache 940 may return the requested data and / or cache
940 may return the unique name of the requested data . In
cases where the actual requested data (payload) is stored in
cache 940 and is returned from cache 940 to pitcher 930 then
pitcher 930 may send the requested data to application 920
thus completing the read cycle .
[0087] In cases where the unique name is not found in
cache 940 , pitcher 930 may send the tag set to catcher 950 .
Generally , catcher 950 is a metadata management unit that
stores an association of tag sets and unique names (e.g. , data
as shown in table 510) . Accordingly , provided with a tag set ,
catcher 950 may return a unique name to pitcher 930 as
shown by the arrow extending from catcher 950 to pitcher
930. Provided with a unique name , pitcher 930 can now send
the unique name to keeper 950 as shown and receive , from
keeper 970 , the actual (requested) . A read cycle may be
completed by sending the requested data to application 920 .
[0088] System 900 may perform and / or maintain dedupli
cation of data based on unique names generated and asso
ciated with data blocks as described . For example , system
900 may store one , and only one , data block per unique

name even if multiple store operations are received with the
same name . Since a unique name of a data block may be
calculated based on the content of the data block (e.g. , the
unique name may be a hash value calculated based on the
actual content (payload) of a data block) , if two or more data
blocks have (or are associated with) the same unique name
that means that the contents (payload) of the two or more
data blocks are identical , that is , the two or more data blocks
are duplicates . Accordingly , by identifying data blocks with
the same unique names system 900 may identify duplicates ,
by keeping one , and only one , data block associated with a
given unique name system 900 may ascertain that no dupli
cations exist in the system .
[0089] For example , pitcher 930 may receive data from
application 920 , break the data into data blocks and then
calculate a unique name for each data block . Pitcher 930
may then select , based on the unique names , keepers 970 for
storing each of the data blocks . For example , unique names
may be , or may include , a value , thus , a first keeper 970 may
be selected if the value included in a unique name is in the
range of 0-99 , a second , different keeper 970 may be
selected if the value included in a unique name is in the
range of 100-199 and so on . Selecting a keeper 970 based on
a mapping or unique name ranges as described enables
scalability that cannot be achieved by systems and methods
known in the art . For example , to add keepers 970 to system
900 , the above mapping example of ranges can be changed ,
e.g. , instead of two keepers 970 for the range of 0-199 in the
above example , three keepers 970 can be used for ranges
0-75 , 76-140 and 141-199 .
[0090] Keepers 970 may discard any duplicates by iden
tifying two or more data blocks with the same unique name
and removing data blocks such that one and only one data
block associated with the unique name is kept by system
900. It is noted that performing deduplication based on
unique names as described is very fast and efficient com
pared to system and methods that need to compare payloads
in order to deduplicate a storage system . Otherwise
described , system 900 may remove redundant data blocks
(deduplicate) without comparing content of data block . The
advantage of deduplication based on unique names as
described over systems and methods that need to compare
the actual payload of data blocks will be appreciated by a
person with ordinary skill in the art .
[0091] A mapping of unique name ranges to keepers 970
as described enables fast retrieval if data . For example ,
equipped with a unique name , pitcher 930 can readily send
a retrieve command to the relevant keeper 970 which , as
described , can perform a retrieve or read operation
extremely fast . Accordingly , a read cycle of system 900
includes a minimal set of simple operations e.g. , determin
ing unique name , read data of unique name . In some
embodiments , local cache 940 may store data blocks in
association with their respective unique names , e.g. , in a
way similar to the way keepers 970 store data . Accordingly ,
a read cycle based on a unique name may be completed
without having to interact with keepers 970 .
[0092] It is noted that cache 940 may be used for retrieving
the actual (e.g. cached) data as described and / or may be used
for caching an association of unique names and tag sets . For
example , a copy of table 510 may be stored in cache 940
thus enabling cache 940 to provide pitcher 930 with a unique
name based on a tag set received from pitcher 930 .

US 2020/0026716 A1 Jan. 23 , 2020
9

[0093] Either pitcher 930 or keeper 970 may compress
and / or encrypt a data block prior to storing the data block .
Either pitcher 930 or keeper 970 may decompress and / or
decrypt a data block prior to providing the data block to
application 920. Pitcher 930 , local cache 940 , catcher 950
and keepers 970 may be executed on a single , same device
100 or they may each be executed on its own device 100. A
single catcher 950 may serve a number of pitchers 930 , e.g. ,
store tag sets associations with unique names for two or
more pitchers 930. A single metadata keeper 960 may serve
any number of pitchers 930. In the capacity of metadata
storage , catcher 950 may store any metadata , e.g. , a history
of reads , writes , transactions or any other logs .
[0094] Some known storage systems and methods support
a specific protocol or language , e.g. , an object - based storage
system supports object IDs but does not support volume /
offset referencing , accordingly , such storage systems and
methods force applications to adhere to a specific protocol or
language , e.g. , to use the storage system , an application must
be modified to support the specific protocol or language .
Other known storage systems and methods support an
application - specific protocol or language , e.g. , a proprietary
storage system is specifically tailored to support a protocol
that is supported by , or is native to , an application .
[0095] In contrast , embodiments of the invention , e.g. ,
systems 200 and 900 can serve , or be readily connected to
a plurality of applications or systems that require storage
services and that support a plurality of different protocols ,
languages , schemes or conventions . By adding tag sets and
associating them with unique names as described , systems
200 and 900 can be easily adapted to support any protocol
or interface specifications . Tat sets can be viewed as dic
tionaries that translate any language , protocol or convention
to an internal representation , e.g. , one that includes the
unique names .
[0096] Accordingly , embodiments of the invention can
easily be adapted or configured to serve , or communicate
with , any application or system using a protocol and / or
language that is native to the application or system . For
example data block containing an image of a person may
be associated with a unique name and stored as described .
The data block may further be associated with one or more
tag sets as described . For example , a first tag set that
includes an object identification (object ID) associated with
the data block containing the image may be used when
serving requests from an application that natively uses
object IDs , e.g. , an object - based storage application as
known in the art . A second tag set that includes a volume ID
and offset may be used when serving requests from an
application that natively uses volume - offset combinations .
Using tag sets association with unique names to provide
translation or adaptation layer as described , embodiments of
the invention provide storage services to any application or
system while using , for all different applications , protocols
or languages , the same efficient storage layer (e.g. , fast
keepers 970 , storage device drivers 240 and storage devices
30) .
[0097] The above protocol examples of object ID and
volume and offset addressing are simple ones , it will be
understood that far more complex protocols , conventions or
languages are enabled by the invention , e.g. , tag sets that
translate any protocol or interface scheme may be readily
defined , set (e.g. , in table 510 as described) and used to
translate requests from any application using any protocol ,

interface scheme or convention to an internal representation
of data blocks such that an embodiment , e.g. , system 900 can
readily be adapted to interface with , or provide services to ,
any application using any communication or interface . Gen
erally , the combination of tag sets and unique names as
described may be viewed and uses as a conversion or
translation unit , logic or scheme that can translate requests
and responses from / to any application thus enabling an
embodiment (e.g. , system 900) to provide data storage and
data retrieval services to any application or system while
allowing the application or system to maintain its native
language or interface convention , protocol or scheme .
[0098] Yet another advantage and improvement provided
by embodiments of the invention is the separation between
the protocol , scheme or convention used by an application
(e.g. , applications 920 and 921) and the internal or under
lying storage protocol , scheme or convention . For example ,
natively using files , application 920 may send a file to be
stored by system 900 , system 900 may include the file name
and other information in the request in a tag set and associate
the tag set with a unique name that references a volume /
offset combination , accordingly , while application 920 users
file names as its native language , system 900 may store data
for application 920 using a volume / offset paradigm , simi
larly , using tag sets and unique names to map between
requests and responses from / to as application 921 , system
900 may use an object - based storage system to store and
retrieve data for application 921 even though application
921 uses volume / offsets as its native language . Accordingly
and as described , system 900 may provide an application
with services according (or that comply or conform) to the
native language , paradigm or protocol of the application
while the actual , or underlying storage may be according to
a different paradigm or protocol .
[0099] As described , embodiments of the invention may
be , or may include , a controller 105 that may be , for
example , a CPU . For example and as described , pitcher 930 ,
catcher 950 and / or keepers 970 may be , or may be software
units executed by , controller 105. However , other embodi
ments , configurations or implementations may be contem
plated . For example , one or more graphics processing units
(GPUs) may be used , e.g. , one or more GPUs may include ,
or perform functions of , pitcher 930 and / or catcher 950 .
[0100] Reference is made to FIG . 11 which shows a prior
art system 1100 and a system 1150 and flows according to
illustrative embodiments of the present invention . As shown
by prior art system 1100 , to access storage 1130 , GPUs 1120
need to go through CPU 1115. For example , and as shown
by the TO arrows connecting GPUs 1120 and CPU 1115 , if
one of GPUs 1120 needs to write data to storage 1130 , the
GPU sends or passes the data to CPU 1115 who in turn
writes the data to storage 1130 , similarly , to read data from
storage 1130 , GPUs 1120 must use , or go through , CPU
1115 .
[0101] The abstraction of a storage system enabled by
embodiments of the invention enables GPUs to function as
pitcher 930 and / or as catcher 950 and thus natively use
keepers 970. The separation of the actual storage operations
(read data from a storage device , write data to a storage
device , delete or modify data) from the interface provided to
clients enabled by embodiments of the invention as
described enables eliminating storage performance bottle
necks and thus improve a storage system .

US 2020/0026716 A1 Jan. 23 , 2020
10

1. A computer - implemented method of managing a stor
age system , the method comprising :

generating , for a data block , a set of tags and a unique
name ;

associating the set of tags and unique name in a database ;
receiving a request including at least one tag ; and
providing at least one service related to the data block

based on the received tag , the set of tags and unique
name .

(0102] Some embodiments of the invention enable mul
tiple GPU direct fabric storage (DFS) . For example , in
system 1150 , GPUs 1155 may be configured to perform
operations and logic of pitcher 930 and / or of catcher 950 and
storage 1160 may be , or may include , one or more keepers
970. For example , to write data to storage 1160 , instead of
going through a CPU as required in prior art system 1100 ,
a GPU 1155 may compute a unique name and send the data
and unique name to a keeper 970 included in storage system
1160. A GPU 1155 may further generate tag sets for a data
block and associate the tag sets with unique name , e.g. , as
described herein with respect to pitcher 930. To read data , a
GPU 1155 may send a unique name to a keeper 970 in
storage system 1160. Accordingly , embodiments of the
invention enable a GPU to directly access a storage system
(DFS) , without requiring an intermediate CPU . Advantages
of direct access to storage (or DFS) for GPUs may be readily
appreciated , for example , bypassing a CPU as described
increases speed of operations as well as decreases CPU load .
[0103] Storage system 1160 may include any number of
keepers 970 and a GPU 1155 may interact with any number
of keepers 970 , e.g. , based on a first unique name of a first
data block , a GPU 1155 may select a first keeper 970 in
storage system 1160 and the GPU 1155 may select a second ,
different keeper 970 based on a second , different unique
name calculated , by the GPU 1155 , for a second data block .
[0104] In the description and claims of the present appli
cation , each of the verbs , " comprise ” " include ” and “ have ” ,
and conjugates thereof , are used to indicate that the object or
objects of the verb are not necessarily a complete listing of
components , elements or parts of the subject or subjects of
the verb . Unless otherwise stated , adjectives such as “ sub
stantially ” and “ about ” modifying a condition or relationship
characteristic of a feature or features of an embodiment of
the disclosure , are understood to mean that the condition or
characteristic is defined to within tolerances that are accept
able for operation of an embodiment as described . In addi
tion , the word “ or ” is considered to be the inclusive “ or ”
rather than the exclusive or , and indicates at least one of , or
any combination of items it conjoins .
[0105] Descriptions of embodiments of the invention in
the present application are provided by way of example and
are not intended to limit the scope of the invention . The
described embodiments comprise different features , not all
of which are required in all embodiments . Some embodi
ments utilize only some of the features or possible combi
nations of the features . Variations of embodiments of the
invention that are described , and embodiments comprising
different combinations of features noted in the described
embodiments , will occur to a person having ordinary skill in
the art . The scope of the invention is limited only by the
claims .

[0106] While certain features of the invention have been
illustrated and described herein , many modifications , sub
stitutions , changes , and equivalents may occur to those
skilled in the art . It is , therefore , to be understood that the
appended claims are intended to cover all such modifications
and changes as fall within the true spirit of the invention .
Various embodiments have been presented . Each of these
embodiments may of course include features from other
embodiments presented , and embodiments not specifically
described may include various features described herein .

2. The method of claim 1 , comprising storing the data
block in a storage system and associating information usable
for retrieving the data block with the unique name .

3. The method of claim 1 , comprising performing an
action related to the data block based on matching data in a
request with data in the set of tags .

4. The method of claim 1 , comprising dynamically modi
fying the set of tags .
5. The method of claim 1 , comprising associating a data

block with a plurality of sets of tags .
6. The method of claim 1 , comprising alerting a client

based on a registration , the registration including at least one
tag .

7. The method of claim 1 , comprising using sets of tags
and unique names to automate a procedure related to at least
one of : data backup , data restore , data copy , periodic main
tenance operation and data retention .
8. The method of claim 1 , wherein the unique name is

generated based on the content of the data block .
9. The method of claim 1 , wherein the at least one service

is selected based on a logical context defined by the set of
tags .

10. The method of claim 1 , wherein the at least one
service is selected based on a rule applied to a number of sets
of tags .

11. A computer - implemented method of providing storage
service , the method comprising :

receiving a data block be stored ;
creating a set of tags and associating the set with a unique
name ;

identifying the set of tags based on information in a
request ; and

providing at least one service related to the request based
on the unique name .

12. A system comprising :
a memory ; and
a controller adapted to :

generate , for a data block , a set of tags and a unique
name ;

associate the set of tags and unique name in a database ;
receive a request including at least one tag ; and
provide at least one service related to the data block

based on the received tag , set of tags and unique
name .

13. The system of claim 12 , comprising a layer adapted to
provide an interface with a media storage system based on
the unique name and the data .

14. The system of claim 12 , comprising :
a core layer adapted to generate and maintain sets of tags

and unique names ;
a media layer adapted to store and retrieve data blocks

according to the unique names ; and
an Application Programming Interface (API) combining

interfaces of the core layer and the media layer .

US 2020/0026716 A1 Jan. 23 , 2020
11

15. The system of claim 12 , wherein the controller is
adapted to store the data block in a storage system and
associate information usable for retrieving the data block
with the unique name .

16. The system of claim 12 , wherein the controller is
adapted to provide the data block based on matching data in
a request with the set of tags .

17. The system of claim 12 , wherein the controller is
adapted to dynamically modify the set of tags .

18. The system of claim 12 , wherein the controller is
adapted to associate a data block with a plurality of sets of
tags .

19. The system of claim 12 , wherein the controller is
adapted to alert a client based on a registration , the regis
tration including at least one tag .

20. The system of claim 12 , wherein the controller is
adapted to use sets of tags and unique names to automate a
procedure related to at least one of : data backup , data
restore , data copy , periodic maintenance operation and data
retention .

21. The system of claim 12 , wherein the unique name is
generated based on the content of the data block .

22. The system of claim 12 , wherein the at least one
service is selected based on a logical context defined by the
set of tags .

23. The system of claim 12 , wherein the at least one
service is selected based on a context rule applied to a set of
sets of tags .

