US 20200169619A1

a2y Patent Application Publication o) Pub. No.: US 2020/0169619 A1

a9y United States

Bedi et al. 43) Pub. Date: May 28, 2020
(54) CONFIGURATION OF WORKFLOWS FOR (52) US.CL
COORDINATED DEVICE ENVIRONMENTS CPC ... HO4L 67/32 (2013.01); GOGF 8/313
(2013.01); GO6F 9/5072 (2013.01); HO4L
(71) Applicant: Amazon Technologies, Inc., Seattle, 67/125 (2013.01)
WA (US
US) ) ABSTRACT

(72) Inventors: Kawarjit Bedi, Sammamish, WA (US);
Sravan Kumar Nandamuri, Bellevue,
WA (US); Piyush Gupta, Issaquah, WA
(US); Atulya Beheray, Sammamish,
WA (US); James Gosling, Redwood

City, CA (US)

(21)  Appl. No.: 16/200,049

(22) Filed: Nov. 26, 2018
Publication Classification
(51) Int. CL
HO4L 29/08 (2006.01)
GO6F 9/50 (2006.01)
GO6F 8/30 (2006.01)
100 \
) |
]
|
CLIENT | NETWORK
DEVICES 102 | SERVICES
i 118
]
, ‘ '
] COORDINATED
{ \JYETWORK M/<—>‘ DEVICES
| SERVICE
;_ 116
[——— =k ———— |
COORDINATED Ty |
L' enviRONMENT() 120 | Iy 1
| I
COORDINATED iy
| DEVICES 112 | Wi
!
DL b
. by
| : Iy 1
| COORDINATOR l:i :
| o I
’ mmmmmmm
i

A coordinated network service that facilitates the design and
implementation of a coordinated device network of IoT
devices. The coordinated network service defines modules
for individual IoT devices or coordinated devices that
specify the necessary inputs to the device, the outputs from
the device and communication protocols. Via an interface,
user devices can select a set of IoT devices and specify how
they are connected and the decision making logic associated
with communication flow. The coordinated network service
can then automatically generate mapping information that
implements the decision making logic and provides neces-
sary transformations for communications between the speci-
fied devices. The selected modules and mappings form a
workflow for the coordinated device network. The coordi-
nated network service can then generate executable code to
implement the formed workflow in a coordinated device
network.

130 R
CLIENT AND conE
INTERFACE 132 i Dfmz ;;IORE i

- h
SHADOW  DATA STORE.
INTERFACE 142 f 144 i

!

I

!

!

l

!

!

!

!

!

- !
DEVICE e I
: : |
!

!

!

!

|

|

i

!

{

|




May 28, 2020 Sheet 1 of 9 US 2020/0169619 A1

Patent Application Publication

 VIVA SV

8T ANTINO¥T

SLAINIWNOYIANA
NOLLNDIXT 3d0D ANVINAA-NO

\\x\ e

i vﬂ
JY0OLIS VIVd
. MOQVHS

L AOVAAIINI
MOAJVHS
40IAdd

911
ADIAAIAS
SdDIAId

AiLVNIqIOo0O

| iZ9
JAOLS VIVA
| OHNO

AL

0¢1

CEL ADVIIAINI
VIVAd
ANV INII'D

INAMIS INTFWAOTdIA ANV INTFWIOVNVIN

(313
SADIAYIS
AHOMLAIN

CLINANWNOAIANT IAIAOYUd ADINYIS

([P R R =

I | |
R B
| ) FIT |
| :“ VOLVNIAIOOD |
| ) , "
Il | |
i 7
! :. ZII SIDIAIA |
R GALVNIQNO0D |
Ly |
I | OTT(S)INIWNOMVIANT |
1) | QILVNIQI00D
| T —— —_— e — ]
_ P Sa N
[ FOLIOMIAN |
| - « ‘‘‘‘‘
| .
|
! 20T SIDIATA
_ INAITD
|
|
! :
| \

- 0L



US 2020/0169619 A1

May 28, 2020 Sheet 2 of 9

Z ‘81
vic
IDIAIA LNINI
T AVTIdSIA
. 092 YIOVNVIV ! w
_ - R0C IDVAYIINI
77 VIvd 0% NOILYIINNUAWOD INdLNO/INANT
“OENOD SINIWNOIIANT -
NOIINDIX3d 65C
INIOV ONIOOOT
ANV SOIMIAN
p— ___ Z0Z JANIA WNIAIw
06C (SNISV.L AIAINOQOUI-INITTD 8GC INIOV JIIVAVIY Y1LNdINOD
INIWAOTdAA
$9Z MSV.L ADIANAS MOAVHS
957 YA TNATHIS
98¢ (SHISV.L ¥ADVNVIN "WINOD 90z
57 MO VNI FIVIMIINI XHOMIIN
INMOSTA
8T SV ¥ILNOY .
05 SHSVL SNLLYSTIO _
B : F0Z LINN ONISSIDONd
057 AOWIW

|

=
A

Patent Application Publication

JOLVYNIGIOOOD




US 2020/0169619 A1

May 28, 2020 Sheet 3 of 9

V§ 81
¥z Z0¢
~TY sIINOSTY AVIISIa H
IOVINLINI IDIAIA INALINO/LNANI
0ze

0

I INIOV

JARIA WNIAIW 2'1dvavId d1LNdWOD

LE NOLLVOI'IddV ¥ISMOYY

R Y4119 Q

ADVIHILINI HHOMLIN

L€ WALSAS ONILYIIdO

wcmu

CIE IIVMIAOS AIDVIAIINI

LININ ONISSIO0Ud

AYOWHN

1209 (ﬁ

Vell

Patent Application Publication

ore —"

dOIATA ALLVNIAIOO0D




US 2020/0169619 A1

May 28, 2020 Sheet 4 of 9

gs sy
8CE INTOV
\ 9CC TIVMIIOS IDVIMAINI
AJONWAIN
PCe /\
IOVAETINI DIMOMILIN
rA%S u
JLININ ONISSTDO¥Md
0<¢ .m
e IOIATA dALVNIQIO0OD

Patent Application Publication




US 2020/0169619 A1

May 28, 2020 Sheet 5 of 9

9IF NOLLVII'TddV ¥ISMO YL

¥ WALSAS ONILVIIdO

P AIVMIAO0S AIDVIATINI

AYOWHN

p S
264 0%
TN AIDIATA ININT AVIISIA H
TOVAMIINI IDIAIA ININO/LNINI
0
JARIA WNIAIW 319vavIy YAINdWN0D
| 80% L

ADVIHILINI HHOMLIN

@SV

LININ ONISSIO0Ud

0¥

Patent Application Publication

op —

ADIATA INATIO




US 2020/0169619 A1

May 28, 2020 Sheet 6 of 9

SS1
AOVAYALINI IDIATA IN.INO/ILNANI
_ 605~/
8IS INANOJdINOD
NOLLVAITVA MOTDIIOM
JATIA WNIAAW 3T4VAVIY YLLNdNOD
918 ININOJWOD . g0c
NOILINIZZd MOTIDIIOM
IOVAAALNI XIOMLIN
FIS WALSAS ONILVIAO 90>
TIS IIVMII0S LINN ONISSID0Ud
AOVIALINI J
AIONWHN 500
97T 01s —" INANOJWOD SADIATA AILVNIAIO0D

Patent Application Publication




May 28, 2020 Sheet 7 of 9 US 2020/0169619 A1

Patent Application Publication

919

9°31]

¥19

dNd

819

809

19

909

d T1dON

J T1dONW

709
4 TIdOW

019

909

009

209
vV T1dONW




May 28, 2020 Sheet 8 of 9 US 2020/0169619 A1

Patent Application Publication

[ .MN
m * nN NOILLNDIXA
MOTDRIOM (B)
NOLLVINIWNATINI
MOTDIIOM
40 ?o~h§m2mu © NOLLY.INIWT 1IN X
NOLLVALIvA MOTDIIOM (P) 5T
ANV ONISSTDOMd 011
NOLLINIZAd T INTFWNOIIANT
MOTDINOM (7 AALVNIGI00D
.
0L
INTFWNOVIANA
AAAINOA ADIAYIS
01
A2IA3d
NOILLINId3d INIITD
INIWNOMIANT

diLVNIGI00D (1)



Patent Application Publication = May 28, 2020 Sheet 9 of 9 US 2020/0169619 A1

800 _ /START COORDINATED ENVIRONMENT
CONFIGURATION ROUTINE

802 +

N

OBTAIN REQUEST TO IMPLEMENT

> WORKELOW IN COORDINATED
ENVIRONMENT
f 806
804
NO | prROCESS MODEL
DEFINITION
YES

808
N IDENTIFY WORKFLOW ATTRIBUTES <

l

810
IDENTIFYING MAPPINGS BASED ON
IDENTIFIED COMMUNICATION PATH
oy PROCESS DEFINED WORKFLOW
N DEFINITION

4
81{5/\ GENERATE WORKFLOW EXECUTION FOR
COORDINATED ENVIRONMENT

F ig. 8. 818

END



US 2020/0169619 Al

CONFIGURATION OF WORKFLOWS FOR
COORDINATED DEVICE ENVIRONMENTS

BACKGROUND

[0001] Generally described, computing devices utilize a
communication network, or a series of communication net-
works, to exchange data. Companies and organizations
operate computer networks that interconnect a number of
computing devices to support operations or provide services
to third parties. The computing systems can be located in a
single geographic location or located in multiple, distinct
geographic locations (e.g., interconnected via private or
public communication networks). Specifically, data centers
or data processing centers, herein generally referred to as
“data centers,” may include a number of interconnected
computing systems to provide computing resources to users
of the data center. The data centers may be private data
centers operated on behalf of an organization or public data
centers operated on behalf, or for the benefit of, the general
public.

[0002] To facilitate increased utilization of data center
resources, virtualization technologies allow a single physical
computing device to host one or more instances of virtual
machines that appear and operate as independent computing
devices to users of a data center. With virtualization, the
single physical computing device can create, maintain,
delete, or otherwise manage virtual machines in a dynamic
manner. In turn, users can request computer resources from
a data center, including single computing devices or a
configuration of networked computing devices, and be pro-
vided with varying numbers of virtual machine resources.

[0003] In some environments, the computing devices that
communicate via the communication network can corre-
spond to devices having a primary function as a computing
device, such as a desktop personal computer. In other
environments, at least some portion of the computing
devices that communication via the communication network
can correspond to embedded devices or thin devices that
have at least one alternative primary function, such as
household appliances having a separate primary purpose
(e.g., a thermostat or refrigerator) while also providing at
least limited computing functionality. In some instances, the
local user interfaces of these embedded devices or thin
devices are limited, and thus remote management may be
required to implement some functions of these devices.

BRIEF DESCRIPTION OF DRAWINGS

[0004] Throughout the drawings, reference numbers may
be re-used to indicate correspondence between referenced
elements. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

[0005] FIG. 1 is a block diagram depicting an illustrative
environment in which a coordinator can operate to locally
manage and coordinate operation of coordinated devices
within a coordinated environment, and wherein the coordi-
nator may communicate with client devices and a service
provider environment to implement workflows;

[0006] FIG. 2 depicts a general architecture of a comput-
ing device providing a coordinator of FIG. 1;

[0007] FIGS. 3A and 3B depict general architectures of
coordinated devices managed by the coordinator of FIG. 1;

May 28, 2020

[0008] FIG. 4 depicts a general architecture of client
device that may be utilized to generate and submit workflow
definitions for a coordinated environment;

[0009] FIG. 5 is a block diagram of the environment of
FIG. 1 illustrating an embodiment for a coordinated devices
component implementing one or more aspects of the present
application;

[0010] FIG. 6 is a block diagram illustrating the formation
of workflow definition;

[0011] FIG. 7 is a block diagram of the illustrative envi-
ronment of FIG. 1 illustrating the specification and imple-
mentation of a workflow in a coordinated environment; and
[0012] FIG. 8 is a flow diagram depicting illustrative
interactions for a coordinate network management routine in
accordance with aspects of the present application.

DETAILED DESCRIPTION

[0013] Generally described, aspects of the present disclo-
sure relate to a coordinator present within a coordinated
environment to control operation and functionality of coor-
dinated devices within the coordinated environment. In
some instances, coordinated devices may correspond to
embedded devices or thin devices that have at least one
alternative primary function, such as household appliances
having a separate primary purpose. Such devices may in
some instances be referred to as “Internet-of-Things”
devices, or “IoT” devices. Coordinated devices may include
access to computing device resources, and may thus benefit
from remote management. For example, a coordinated
device may be configured with a graphical processing unit,
or GPU, that can be accessed as a computing device resource
during the execution of executable code by the coordinated
device. The coordinator disclosed herein enables such
remote management of coordinated devices locally, within
an environment including the coordinator and the coordi-
nated devices (such as a local area network, or “LAN,”
environment).

[0014] Use of a coordinator can thus enable management
of coordinated devices without requiring communications
external to the local environment, thereby allowing a reduc-
tion in privacy risks and an increase in communication speed
over the use of external or public communication networks.
Specifically, aspects of the present disclosure relate to the
utilization of a coordinator as a localized on-demand code
execution system, enabling rapid execution of portable
segments of code to implement functions on the coordinator.
These portable segments of code may be referred to herein
as “tasks.” In some instances, tasks may be utilized to
coordinate functionality of a coordinated device, such as by
changing the state of the device. For example, where a
coordinated device is a network-enabled light, a task may
function to change the state of the light (e.g., to “on” or
“off””) according to an input to the coordinator, such as the
current time, a user input, or the state of another coordinated
device. The coordinator may further enable communication
coordinated devices and tasks according to a number of
different protocols, and in some instances provide transla-
tion functions between such protocols. Still further, the
coordinator may in some instances manage an execution
location of a task, such that the task may be executed on the
coordinator, on a coordinated device, or on a device of a
remote environment (e.g., a remote network computing
environment), according to capabilities of candidate devices
and requirements for execution of the task. These tasks may



US 2020/0169619 Al

in some instances be user-defined, enabling users to imple-
ment a variety of functionalities on the coordinator or
coordinated devices, according to user-submitted code cor-
responding to the task. Thus, a coordinator may provide
rapidly reconfigurable localized management of coordinated
devices.

[0015] Generally described, the typical deployment cycle
for tasks, or other on-demand executable code intended for
a coordinated device, includes the generation of the execut-
able code, transmission of the executable code to the coor-
dinator, processing of the received code by the coordinator,
deployment of the processed code (e.g., tasks) to a selected
coordinated device for execution. During the development
and testing of executable code, the deployment of the task is
further followed by testing of the coordinated device during
the execution of a deployed task. Generally described,
however, the implementation of workflows or applications
for coordinated device networks requires detailed knowl-
edge and experience.

[0016] To address potential inefficiencies associated with
networks with rendering sources, a coordinated network
service that facilitates the design and implementation of a
coordinated device network of IoT devices is provided.
Iustratively, the coordinated network service defines mod-
ules or models for individual IoT devices or coordinated
devices that specify the necessary inputs to the device, the
outputs from the device and communication protocols. Via
an interface, user devices can select a set of IoT devices and
specify how they are connected and the decision making
logic associated with communication flow. The coordinated
network service can then automatically identify mapping
information that implements the decision making logic and
provides necessary data transformations for communica-
tions between the specified devices. The selected modules
and mappings form a workflow for the coordinated device
network. The coordinated network service can then generate
executable code to implement the formed workflow in a
coordinated device environment, such as via a coordinator
or as a standalone executable.

[0017] One or more aspects of the present application will
be described with regard to the implementation of specific
workflows or illustrative examples, such as graphical user
interfaces for collecting user input or generating results.
However, such examples are illustrative in nature and should
not necessarily be construed as limiting.

[0018] As will be appreciated by one of skill in the art in
light of the present disclosure, the embodiments disclosed
herein improves the ability of computing systems, and
particularly computing systems with limited localized user
interfaces, to be coordinated and managed by an external
device. Specifically, the present disclosure provides a highly
configurable coordinator to coordinate and manage devices
within a coordinated environment in a reliable manner,
while reducing or eliminating the need for communications
via external or public communication networks. Thus, the
embodiments disclosed herein provide more responsive con-
trol of coordinated devices (due, for example, to reduced
latency of communications), as well as increased security in
coordinated devices. Thus, the present disclosure represents
an improvement on existing data processing systems and
computing systems in general.

[0019] The foregoing aspects and many of the attendant
advantages of this disclosure will become more readily
appreciated as the same become better understood by ref-

May 28, 2020

erence to the following description, when taken in conjunc-
tion with the accompanying drawings.

[0020] FIG. 1 is a block diagram of an illustrative oper-
ating environment 100, including one or more coordinated
environments 110 in which a coordinator 114 may operate to
control coordinated devices 112, as well client devices 102
that may interact with the coordinated environments 110
(e.g., to request a change in state of a coordinated device
112), and a service provider environment 120 that may assist
in communications with or configuration of the coordinators
114 in various coordinated environments 110.

[0021] The coordinated environments 110, client devices,
and service provider environment 120 may communicate via
a network 104, which may include any wired network,
wireless network, or combination thereof. For example, the
network 104 may be a personal area network, local area
network, wide area network, over-the-air broadcast network
(e.g., for radio or television), cable network, satellite net-
work, cellular telephone network, or combination thereof.
As a further example, the network 104 may be a publicly
accessible network of linked networks, possibly operated by
various distinct parties, such as the Internet. In some
embodiments, the network 104 may be a private or semi-
private network, such as a corporate or university intranet.
The network 104 may include one or more wireless net-
works, such as a Global System for Mobile Communications
(GSM) network, a Code Division Multiple Access (CDMA)
network, a Long Term Evolution (LTE) network, or any
other type of wireless network. The network 104 can use
protocols and components for communicating via the Inter-
net or any of the other aforementioned types of networks.
For example, the protocols used by the network 104 may
include Hypertext Transfer Protocol (HTTP), HTTP Secure
(HTTPS), MQTT, Constrained Application Protocol
(CoAP), and the like. Protocols and components for com-
municating via the Internet or any of the other aforemen-
tioned types of communication networks are well known to
those skilled in the art and, thus, are not described in more
detail herein.

[0022] While some embodiments disclosed herein may
utilize known protocols, such as MQTT, accord to a standard
implementation of such protocols, other embodiments may
vary the implementation of such protocols. For example,
standardized MQTT can utilize a “keep alive” functionality,
whereby a client and broker must exchange either normal
data or a specialized keep-alive message (e.g., an MQTT
ping) within a threshold period of time (a “keep-alive”
threshold), or the connection is assumed to be broken.
However, the overhead created by specialized keep-alive
messages may be undesirable within coordinated environ-
ments 112. Thus, some embodiments of the present appli-
cation may implement a variable keep-alive threshold,
whereby the keep-alive threshold is increased as keep-alive
messages are transmitted, until an error occurs in commu-
nication. Illustratively, where a first keep-alive threshold
expires, results in client transmission of a keep-alive mes-
sage, and the client obtains a keep-alive response from a
broker, the client may increase the keep-alive threshold for
subsequent transmissions by some amount (e.g., 50%, n ms,
etc.), potentially reaching a maximum amount. Where a first
keep-alive threshold expires, results in client transmission of
a keep-alive message, and the client does not obtain a
keep-alive response from a broker, the client may decrease
the keep-alive threshold for subsequent transmissions either



US 2020/0169619 Al

by some amount (e.g., 50%, n ms, etc.) or to a default
minimum value. Thus, as keep-alive messages are transmit-
ted and acknowledged, the keep-alive threshold for subse-
quent transmissions can be increased, reducing bandwidth
used to support such transmissions. These variations to the
MQTT may be particularly beneficial in environments 110
with low-bandwidth or high congestion.

[0023] Each coordinated environment 110 may include a
coordinator 114 and any number of coordinated devices 112,
in communication via a network of the execution environ-
ment 110 (which network is not shown in FIG. 1). Because
of their association within the coordinated environment 110,
the coordinated devices 112 and coordinator 114 within a
given environment 110 may be considered “local” to one
another, in terms of communications network. For example,
the coordinated devices 112 and coordinator 114 within a
given environment 110 may be connected via a LAN or
other localized communication network. The coordinated
devices 112 and coordinator 114 may communicate with one
another over such a localized communication network, in
accordance with the embodiments described herein. In some
instances, communications between a coordinated device
112 and coordinator 114 may be encrypted, such as via
Transport Layer Security cryptographic protocol. Illustra-
tively, a coordinator 114 may be provisioned with a security
certificate that verifies a digital identify of the coordinator.
The security certificate may be signed by a public certificate
authority or a private certificate authority (e.g., established
by the service provider environment 120).

[0024] Each coordinated device 112 can correspond to a
computing device configured to communicate with the coor-
dinator 114 to manage functionality of the coordinated
device 112. In some instances, coordinated devices 112 can
correspond to fully featured computing devices, such as
laptops, desktops, standalone media players, etc., with
robust localized user interface capabilities. In other
instances, coordinated devices 112 can correspond to thin
devices or embedded devices associated with another pri-
mary function, such as a device embedded within or attached
as an accessory to a household appliance or device (such as
a refrigerator, washing machine, hot water heater, furnace,
door lock, light bulb, electrical outlet, electrical switch, etc.).
Such appliances or devices are in some contexts referred to
as “smart” devices, IoT devices, or “connected” devices. As
such, the coordinated devices 112 may include limited local
user interfaces, and be configured for remote management.
In some instances, coordinated devices 112 may be stateful,
and operate to alter their state in response to instructions
(e.g., by turning from “off”” to “on,” etc.).

[0025] As described in more detail below (e.g., with
respect to FIG. 2), the coordinator 114 can correspond to a
computing device executing instructions to coordinate, man-
age, or control operation of the coordinated devices 112,
without requiring that instructions transmitted to the coor-
dinated devices 112 travel outside the coordinated environ-
ments 110 (thus increase the security of such instructions
and increasing the speed of their transmission). Specifically,
the coordinator 114 can include a processor and memory
collectively configured to manage communications between
any combination of coordinated devices 112, client devices
102, and devices of the service provider network 120. The
coordinator can further be configured to enable executions
of tasks, in a manner similar to an on-demand code execu-
tion environment 120 of the service provider environment

May 28, 2020

120. These tasks may implement a variety of user-defined or
non-user-defined functionalities, including communicating
with coordinated devices 112, client devices 102, and
devices of the service provider network 120. As such, the
coordinator 114 can be configured to allow for manual,
automatic, or semi-automatic control of coordinated devices
112. For example, the coordinator 114 may enable a client
device 102 to transmit a request to change the state of a
coordinated device 112, and cause such a change in state to
occur. As a further example, the coordinator 114 may enable
a user to specify a criterion under which a state of a
coordinated device 112 should be changed, and then auto-
matically operate to change the state of the coordinated
device 112 when the criterion is satisfied.

[0026] As will be discussed below, many functions of the
coordinator 114 may be established via tasks, enabling rapid
alteration of these functions as desired by a user. In some
instances, such tasks (or dependencies of such tasks, such as
libraries, drivers, etc.) may be provided by a user of the
coordinator. In other instances, such tasks may be provided
to the coordinator 114 by a service provide environment 120.
For example, the service provider environment 150 may
maintain a library of tasks available to coordinators 114, as
well as types of coordinated devices 112 to which such tasks
can apply (e.g., all devices, a specific device model, devices
of a specific manufacturer, type, or function, etc.). The
service provider environment 150 may then provide all or
some tasks to a coordinator 114 appropriate for the coordi-
nated devices 112 in a coordinated environment 110 of the
coordinator 114, or notify a user of the availability of such
tasks. In one embodiment, a user may notify the service
provider environment 150 or the coordinator 114 as to the
coordinated devices 112 in the coordinated environment
110. In another embodiment, the coordinator 114 may be
configured to determine characteristics of coordinated
devices 112 within a coordinated environment 110 based on
transmissions of those devices. [llustratively, on receiving a
communication from a coordinated device 112 (e.g., in
response to a user-initiated pairing, based on automated
transmissions, etc.), a coordinator 114 may compare a con-
tent or format of the transmission to information mapping
formats or contents to different device times. Such a map-
ping may be maintained by the service provider environment
150, and updated based on data collected from various
coordinators 114. In some instances, rather than mapping
transmission to device types, a coordinator 114 may function
to map transmissions to tasks appropriate for a device 112,
regardless of whether the type of the device 112 is known.
For example, the service provider environment 150 may
collect, for an established environment 110 with one or more
coordinated devices 112, data identifying a content or format
of transmission of such devices 112 and the tasks utilized to
manage operation of such devices 112. Thereafter, newly
created coordinated environments 110 may be monitored for
identical or similar transmissions, and the tasks utilize in the
established environment 110 may be presented for potential
use in the newly create environment 110. In still other
embodiments, a coordinator 114 may utilize standardized
discovery protocols, such as the Universal Plug and Play
(UPnP) set of protocols, to discover devices 112 within a
coordinated environment 110.

[0027] Client devices 102 may include a variety of com-
puting devices enabling a user to communicate with the
coordinated environments 110, the service provider envi-



US 2020/0169619 Al

ronment 120, or both. In general, the client devices 102 can
be any computing device such as a desktop, laptop or tablet
computer, personal computer, wearable computer, server,
personal digital assistant (PDA), hybrid PDA/mobile phone,
mobile phone, electronic book reader, set-top box, voice
command device, camera, digital media player, and the like.
The service provider environment 120 may provide the
client devices 102 with one or more user interfaces, com-
mand-line interfaces (CLI), application programing inter-
faces (API), and/or other programmatic interfaces for inter-
acting with the service provider environment 120, such as to
submit a configuration for a coordinator 114, and control
deployment of that configuration, to submit code corre-
sponding to a task to be executed on the coordinator 114 or
an on-demand code execution environment 150 of the
service provider environment 120, to view logging or moni-
toring information related to coordinators 114, etc. Simi-
larly, the coordinator 114 may provide the client devices 102
with one or more user interfaces, command-line interfaces
(CLI), application programing interfaces (API), or other
programmatic interfaces for interacting with the coordinator
114, such as to read a state of a coordinated device 112,
request a change in state of a coordinated device 112, request
that the coordinator 114 cause execution of a task, etc.
Although one or more embodiments may be described
herein as using a user interface, it should be appreciated that
such embodiments may, additionally or alternatively, use
any CLIs, APIs, or other programmatic interfaces.

[0028] The service provider environment 120 can include
a number of elements to enable configuration of, manage-
ment of, and communications with coordinators 114. Spe-
cifically, the service provider environment 120 includes a
management and deployment service 130 to enable regis-
tration of coordinators 114 with the service provider envi-
ronment 120 and configuration of such coordinators 114, a
device shadow service 140 to enable robust changes to state
of coordinators 114 and coordinated devices 112, and an
on-demand code execution environment 150 providing on-
demand, dynamic execution of tasks, as well as deployment
and provisioning of tasks on coordinators 114.

[0029] As shown in FIG. 1, the management and deploy-
ment service 130 includes a client and data interface 132 and
a configuration data store 134 that may operate collectively
to enable registration of a coordinator 114 with the man-
agement and deployment service 130, generation of con-
figurations for the coordinator 114, and transmission of
configuration data to the coordinator 114. [llustratively, the
client and data interface 132 may provide one or more user
interfaces (e.g., APIs, CLIs, GUIs, etc.) through which a
user, via a client device 102, may generate or submit a
configuration of a coordinator 114 for storage in the con-
figuration data store 134. The client and data interface 132
may further provide one or more interfaces through which a
coordinator 114 may obtain the configuration, such that the
coordinator 114 is reconfigured according to the obtained
configuration. The configuration data store 134 can corre-
spond to any persistent or substantially persistent data store,
such as a hard drive (HDD), a solid state drive (SDD),
network attached storage (NAS), a tape drive, or any com-
bination thereof.

[0030] The device shadow service 140 can include ele-
ments enabling a “shadow state” of a device, such as a
coordinator 114 or a coordinated device 112, to be created,
maintained, read, altered, or deleted. As discussed above, a

May 28, 2020

shadow state may correspond to data representing a desired
state of a correspond device, which may or may not mirror
a current state of the device. For example, with respect to a
coordinator 114, a shadow state may include a desired
configuration version for the coordinator 114. With respect
to a coordinated device 112, a shadow state may include a
desired state of the coordinated device 112 (e.g., on or off for
a switch or bulb, locked or unlocked for a lock, a desired
temperature for a thermostat, etc.). The device shadow
service 140 may enable users, via client devices 102, or
other entities to read from or modify a shadow state for a
device, and may further interact with that device to syn-
chronize the device to the shadow state. Illustratively, the
device shadow service 140 may include an interface 142
(which may include, e.g., APIs, CLIs, GUIs, etc.) through
which requests to read from, write to, create or delete a
shadow state may be received, as well as a shadow data store
144 configured to store the shadow states. The shadow data
store 134 can correspond to any persistent or substantially
persistent data store, such as a hard drive (HDD), a solid
state drive (SDD), network attached storage (NAS), a tape
drive, or any combination thereof. Further details regarding
the device shadow service 140 can be found within the *700
application, incorporated by reference above. The device
shadow service 140 may be optional and omitted from the
service provider environment 120.

[0031] The on-demand code execution environment 150
can include a number of devices providing on-demand
execution of tasks (e.g., portable code segments). Specifi-
cally, the on-demand code execution environment 150 can
include a frontend 152, through which users, via client
device 102, may submit tasks to the on-demand code execu-
tion environment 150 and call for execution of tasks on the
on-demand code execution environment 150. Such tasks
may be stored, for example, in a task data store 154, which
can correspond to any persistent or substantially persistent
data store, such as a hard drive (HDD), a solid state drive
(SDD), network attached storage (NAS), a tape drive, or any
combination thereof. While not shown in FIG. 1, the on-
demand code execution system 150 can include a variety of
additional components to enable execution of tasks, such as
a number of execution environments (e.g., containers or
virtual machines executing on physical host devices of the
on-demand code execution environment 150), a worker
manager to manage such execution environments, and a
warming pool manager to assist in making execution envi-
ronments available to the worker manager on a rapid basis
(e.g., under 10 ms). Further details regarding the on-demand
code execution environment can be found within the *556
patent, incorporated by reference above.

[0032] As noted above, tasks may be utilized both at the
on-demand code execution environment 150 and at coordi-
nators 114. As noted above, tasks correspond to individual
collections of user code (e.g., to achieve a specific function).
References to user code as used herein may refer to any
program code (e.g., a program, routine, subroutine, thread,
etc.) written in a specific program language. In the present
disclosure, the terms “code,” “user code,” and “program
code,” may be used interchangeably. Such user code may be
executed to achieve a specific function, for example, in
connection with a particular web application or mobile
application developed by the user. Specific executions of
that code are referred to herein as “task executions” or
simply “executions.” Tasks may be written, by way of



US 2020/0169619 Al

non-limiting example, in JavaScript (e.g., nodejs), Java,
Python, and/or Ruby (and/or another programming lan-
guage). Tasks may be “triggered” for execution on the
on-demand code execution system 150 or a coordinator 114
in a variety of manners. In one embodiment, a client device
102 or other computing device may transmit a request to
execute a task may, which can generally be referred to as
“call” to execute of the task. Such calls may include the user
code (or the location thereof) to be executed and one or more
arguments to be used for executing the user code. For
example, a call may provide the user code of a task along
with the request to execute the task. In another example, a
call may identify a previously uploaded task by its name or
an identifier. In yet another example, code corresponding to
a task may be included in a call for the task, as well as being
uploaded in a separate location (e.g., storage of a coordinator
114, a network-accessible storage service, or the task data
store 154) prior to the request being received by the coor-
dinator 114 or the on-demand code execution system 150. A
request interface of the coordinator 114 or the on-demand
code execution system 150 may receive calls to execute
tasks as Hypertext Transfer Protocol Secure (HTTPS)
requests from a user. Also, any information (e.g., headers
and parameters) included in the HTTPS request may also be
processed and utilized when executing a task. As discussed
above, any other protocols, including, for example, HTTP,
MQTT, and CoAP, may be used to transfer the message
containing a task call to the request interface 122.

[0033] A call to execute a task may specify one or more
third-party libraries (including native libraries) to be used
along with the user code corresponding to the task. In one
embodiment, the call may provide to a coordinator 114 or
the on-demand code execution system 150 a ZIP file con-
taining the user code and any libraries (and/or identifications
of storage locations thereof) corresponding to the task
requested for execution. In some embodiments, the call
includes metadata that indicates the program code of the task
to be executed, the language in which the program code is
written, the user associated with the call, or the computing
resources (e.g., memory, etc.) to be reserved for executing
the program code. For example, the program code of a task
may be provided with the call, previously uploaded by the
user, provided by the coordinator 114 or the on-demand code
execution system 150 (e.g., standard routines), and/or pro-
vided by third parties. In some embodiments, such resource-
level constraints (e.g., how much memory is to be allocated
for executing a particular user code) are specified for the
particular task, and may not vary over each execution of the
task. In such cases, the coordinator 140 or the on-demand
code execution system 150 may have access to such
resource-level constraints before each individual call is
received, and the individual call may not specify such
resource-level constraints. In some embodiments, the call
may specify other constraints such as permission data that
indicates what kind of permissions or authorities that the call
invokes to execute the task. Such permission data may be
used by the on-demand code execution system 110 to access
private resources (e.g., on a private network).

[0034] In some embodiments, a call may specify the
behavior that should be adopted for handling the call. In
such embodiments, the call may include an indicator for
enabling one or more execution modes in which to execute
the task referenced in the call. For example, the call may
include a flag or a header for indicating whether the task

May 28, 2020

should be executed in a debug mode in which the debugging
and/or logging output that may be generated in connection
with the execution of the task is provided back to the user
(e.g., via a console user interface). In such an example, the
coordinator 114 or the on-demand code execution system
150 may inspect the call and look for the flag or the header,
and if it is present, the coordinator 114 or the on-demand
code execution system 150 may modify the behavior (e.g.,
logging facilities) of the execution environment in which the
task is executed, and cause the output data to be provided
back to the user. In some embodiments, the behavior/mode
indicators are added to the call by the user interface provided
to the user by the coordinator 114 or the on-demand code
execution system 150. Other features such as source code
profiling, remote debugging, etc. may also be enabled or
disabled based on the indication provided in a call. Still
further as discussed above, in certain embodiments, the call
may specify a file location and expected inputs/outputs from
the file location that correspond to access of resources local
to specific coordinated devices 112 that will execute the task.

[0035] The service provider environment 120 is depicted
in FIG. 1 as operating in a distributed computing environ-
ment including several computer systems that are intercon-
nected using one or more computer networks (not shown in
FIG. 1). The service provider environment 120 could also
operate within a computing environment having a fewer or
greater number of devices than are illustrated in FIG. 1.
Thus, the depiction of the service provider environment 120
in FIG. 1 should be taken as illustrative and not limiting to
the present disclosure. For example, the service provider
environment 120 or various constituents thereof could
implement various Web services components, hosted or
“cloud” computing environments, and/or peer to peer net-
work configurations to implement at least a portion of the
processes described herein.

[0036] Further, the service provider environment 120 may
be implemented directly in hardware or software executed
by hardware devices and may, for instance, include one or
more physical or virtual servers implemented on physical
computer hardware configured to execute computer execut-
able instructions for performing various features that will be
described herein. The one or more servers may be geo-
graphically dispersed or geographically co-located, for
instance, in one or more data centers. In some instances, the
one or more servers may operate as part of a system of
rapidly provisioned and released computing resources, often
referred to as a “cloud computing environment.”

[0037] FIG. 2 depicts a general architecture of a comput-
ing system (referenced as coordinator 114) that manages
coordinated devices 112 within a given coordinated envi-
ronment 110. The general architecture of the worker man-
ager 140 depicted in FIG. 2 includes an arrangement of
computer hardware and software modules that may be used
to implement aspects of the present disclosure. The hard-
ware modules may be implemented with physical electronic
devices, as discussed in greater detail below. The coordina-
tor 114 may include many more (or fewer) elements than
those shown in FIG. 2. It is not necessary, however, that all
of these generally conventional elements be shown in order
to provide an enabling disclosure. Additionally, the general
architecture illustrated in FIG. 2 may be used to implement
one or more of the other components illustrated in FIG. 1. As
illustrated, the coordinator 114 includes a processing unit
204, a network interface 206, a computer readable medium



US 2020/0169619 Al

drive 207, and an input/output device interface 208, all of
which may communicate with one another by way of a
communication bus. The network interface 206 may provide
connectivity to one or more networks or computing systems.
The processing unit 204 may thus receive information and
instructions from other computing systems or services via
the network 104. The processing unit 204 may also com-
municate to and from memory 250 and further provide
output information for additional resources via the input/
output device interface 208. The input/output device inter-
face 208 may also accept input from the additional
resources.

[0038] The memory 250 may contain computer program
instructions (grouped as modules in some embodiments) that
the processing unit 204 executes in order to implement one
or more aspects of the present disclosure. The memory 250
generally includes random access memory (RAM), read
only memory (ROM) and/or other persistent, auxiliary or
non-transitory computer readable media. The memory 250
may store an operating system 252 that provides computer
program instructions for use by the processing unit 204 in
the general administration and operation of the coordinator
114. The memory 250 may further include computer pro-
gram instructions and other information for implementing
aspects of the present disclosure. For example, in one
embodiment, the memory 250 includes a process manager
254, a scheduler 256, a deployment agent 258, and a
communication manager 260.

[0039] The scheduler 256 and deployment agent 258 may
be executed by the processing unit 204 to select tasks for
execution by the processing unit 204, and to manage such
task executions. Specifically, the scheduler 256 may include
instructions to select a tasks for execution at given points in
time and to suspend execution of tasks (e.g., under instances
of constrained resources at the coordinator 114). The deploy-
ment agent 258 may include instructions to select an appro-
priate execution environment 270 in which to execute a task,
to provision that execution environment 270 with appropri-
ate access to resources needed during the task execution, and
to cause execution of the task within the execution environ-
ment 270. An execution environment 270, as used herein,
refers to a logical portion of memory 250 in which to
execute a task. In one embodiment, execution environments
270 are programmatically separated, such that execution of
code in a first execution environment 270 is prohibited from
modifying memory associated with another execution envi-
ronment 270. Ilustratively, an execution environment 270
may correspond to a “container,” operating-system-level
virtualization environment, or “sand box” environment,
such as a “chroot jail” or a Python virtual environment
“virtualenv.” In other instances, an execution environment
270 may correspond to a virtual machine environment (e.g.,
a JAVA virtual machine, a virtualized hardware device with
distinct operating system, etc.). In still other instances, an
execution environment 270 may be a memory space allo-
cated to an execution of a task, without necessarily utilizing
virtualization.

[0040] Communications between tasks executing on the
coordinator, as well as between the coordinator 114 and
other devices (e.g., client devices 102 and coordinated
devices 112) may be facilitated by the communication
manager 260. Specifically, the communication manager 260
may be configured to obtain messages directed to the
coordinator 114 and forward the message to the appropriate

May 28, 2020

destination. For example, the communication manager 260
may route messages between any combination of tasks,
coordinated devices 112, client devices 102, and devices of
the service provider execution environment 120.

[0041] To enable gathering of information regarding
operation of the coordinator 114, the memory 250 further
includes a metrics and logging agent 259, corresponding to
code executable by the coordinator 114 to monitor operation
of the coordinator 114, such as how tasks are executed at the
coordinator 114, and to report information regarding such
operation. The information may include, for example,
execution times of tasks on the coordinator 114, as well as
information regarding such executions (e.g., compute
resources used, whether the execution resulted in an error,
etc.). In some instances, the metrics and logging agent 259
may store this information locally, such as in the memory
250, to enable a user to obtain the information. In other
instances, the metrics and logging agent 259 agent may store
the information remotely, such as at the service provider
environment 150. The metrics and logging agent 259 may
also implement additional functionality with respect to
monitoring operation of the coordinator 114, such as trans-
mitting health check data from the coordinator 114 to the
service provider environment 150.

[0042] Tasks executed by the coordinator 114 are shown
as logically grouped within the tasks memory space 280,
which may correspond to a logical unit of memory 250
configured to store the code corresponding to each task. As
shown in FIG. 2, the tasks memory space 280 can include a
number of tasks executable by the processing unit 204 to
implement functionalities of the coordinator 114, including
arouter task 282, one or more communication manager tasks
286, a shadow service task 288, and one or more client-
provided tasks 290.

[0043] The router task 282 may correspond to a portion of
code executable to assist in the routing of messages within,
to, and from the coordinator 114. In one embodiment, the
router task 282 implements an “event flow table” to deter-
mine appropriate destinations for a message or other indi-
cations of events received at the coordinator 114. For
example, the communication manager 260 may forward
messages obtained at the coordinator 114 (e.g., due to
generation by a task execution or reception at the input/
output interface 208) to the router task 282, which may
utilize the event flow table to determine that messages
addressed to a certain identifier should be routed to a given
task, a given client device 102, or a given coordinated device
102. In some instances, the event flow table may further be
utilized to specify a manner of handling messages of a give
type. For example, the event flow table may specify that
messages or event data originating at a certain task or
coordinated device 112 should be transmitted to another task
or coordinated device 112, logged at the coordinator 114,
disallowed, result in a new execution of a task, etc. The
event flow table may further indicate that a message meeting
specified criteria (e.g., addressed to a given identifier,
including a specific flag, etc.) should be transmitted to the
service provider environment 120 (e.g., to the device
shadow service 140 or the on-demand code execution sys-
tem 150). In one embodiment, the event flow table may
utilize “topics™ as identifiers, such that messages associated
with a particular topic are transmitted according to a routing
specified for that topic. The event flow table may further
include information for how to route messages based on a



US 2020/0169619 Al

source of those messages. For example, a message addressed
to a given topic may be routed differently, based on whether
the message is received from a first task, a second task, a first
coordinated device 112, etc. By utilization of an event flow
table, router task 282 can enable messages to be handled in
different manners, without a change in the operation of a
sender of such a message (e.g., without rewriting code for a
task that generated the message, without modifying the
software of a coordinated device 112 that generated the
message, etc.).

[0044] The communication manager tasks 286 may enable
communications between the coordinator 114 and a number
of different external devices (e.g., coordinated devices 102)
according to a protocol of such communications. For
example, a first communication manager task 286 may be
configured to manage communications using a BLU-
ETOOTH™ protocol, a second communication manager
may be configured to manage communications using an
HTTP protocol, etc. In some instances, multiple communi-
cation manager tasks 286 may work collectively to imple-
ment communications. For example, a first communication
manager task 286 may enable communications via the TCP
protocol, while a second communication manager task 286
may enable communications via the MQTT protocol (which
utilizes the TCP protocol and thus may utilize a first com-
munication manager task 286). Because different commu-
nication manager tasks 286 can vary the ability of the
coordinator 114 to communicate via different protocols, and
because the tasks of the coordinator 114 may be altered via
reconfiguration of the coordinator 114, the coordinator 114
can be rapidly reconfigured to utilize a variety of different
communication protocols.

[0045] The shadow service task 288 can facilitate man-
agement and interaction with device shadows maintained at
the coordinator 114. Illustratively, the shadow service task
288 can implement functionality similar to that provided by
the device shadow service 140 locally to the coordinator
114. Accordingly, the shadow service task 288 can maintain
a shadow state (data representing a desired state) of a
coordinated device 112, and allow for reading to or writing
to such data. The shadow service task 288 can further enable
synchronization of a coordinated device 112 with the device
shadow for that device. Accordingly, by modifying a device
shadow for a coordinated device 112, the state of the
coordinated device 112 can be altered. By reading the device
shadow for the coordinated device 112, the state of the
coordinated device 112 can be determined. In some
instances, the shadow service task 288 may further coordi-
nate with another device shadow for a given device, such as
a device shadow maintained by the device shadow service
140. For example, the shadow service task 288 may syn-
chronize a local device shadow with a device shadow stored
at the device shadow service 140, resolve conflicts between
the local device shadow and the device shadow stored at the
device shadow service 140, etc.

[0046] In addition to the tasks described above (each of
which may illustratively be provided by an entity associated
with the service provider environment 120), the tasks
memory space 280 may include any number of client-
provided tasks 290, which may correspond to executable
code generated by a client device 102 and submitted to the
service provider environment 120 for deployment to a
coordinator 114. As such, functionalities provided by the
client-provided tasks 290 may vary according to the desires

May 28, 2020

of a submitting user. In some instances, the client-provided
tasks 290 may be written in a coding language for which the
memory 250 includes a language runtime. For example,
where the coordinator 114 supports language such as node.
js,s Go, JAVA, and Python, the client-provided tasks 290 may
include executable code written in any of those languages.
[0047] In addition, the memory 250 includes a configura-
tion data portion 272, representing a logical portion of the
memory 250 in which configuration data of the coordinator
114 is stored. The configuration data may include, for
example, a current deployment version of the coordinator
114, data stored by the tasks of the task memory space 280,
or other data used in the operation of the coordinator 114.
[0048] To enable configuration (and reconfiguration) of
the coordinator 114, the memory 250 further includes a
deployment agent 258. The deployment agent 258 can
correspond to code executable to register a coordinator with
the service provider environment 120, to determine a desired
configuration of the coordinator 114, and in instances where
a current configuration of the coordinator 114 does not
match a desired configuration, to obtain configuration data
for the coordinator 114 and modify the memory 250 to
implement the desired configuration.

[0049] FIG. 3A depicts one embodiment of an architecture
of an illustrative coordinated device 112A in accordance
with the present application. The general architecture of the
coordinated device 112A depicted in FIG. 3A includes an
arrangement of computer hardware and software compo-
nents that may be used to implement aspects of the present
disclosure. As illustrated, the coordinated device 112A
includes a processing unit 304, a network interface 306, a
computer readable medium drive 307, an input/output
device interface 320, an optional display 302, and an input
device 324, all of which may communicate with one another
by way of a communication bus. Illustratively, the coordi-
nated device 112A may have more limited functionality and
components, such as inputs or outputs, as embedded
devices. Still further, in some embodiments, a computing
device may implement the functionality associated with the
coordinator 114 and coordinated device 112.

[0050] The network interface 306 may provide connectiv-
ity to one or more networks or computing systems, such as
the network 104 of FIG. 1. The processing unit 304 may thus
receive information and instructions from other computing
systems or services via a network. As will be described in
greater detail below, individual coordinated devices 112 may
be configured to receive a set of inputs, such as specific types
of data required to implement one or more functions. For
example, a coordinated device 112 corresponding to a badge
reader, would be configured to receive a badge number
encoded as a bar code. Similarly, individual coordinated
devices 112 may be configured to generate a set of outputs,
such as specific types of data resulting from the implemen-
tation of one or more function. For example, a coordinated
device corresponding to a temperature sensor could be
configured to generate data indicative of a measured tem-
perature or a binary indication of whether a temperature
threshold had been exceeded. Still further, individual coor-
dinated devices may be configured with a set of interfaces or
communication protocols that establish formats and specific
protocols receiving or transmitting communications. For
example, a coordinated device 112 may be configured to
receive communications in accordance with any of the
protocols identified previously, such as MQTT, as well with



US 2020/0169619 Al

specific APIs that identify the order and format for data.
Additionally, coordinated devices 112 can also be config-
ured with regard to additional security protocols, such as
encryption, compression protocols, or other protocols
related to the exchange of information between coordinated
devices 112 (or other components).

[0051] The processing unit 304 may also communicate to
and from memory 310 and further provide output informa-
tion for an optional display 302 via the input/output device
interface 320. The input/output device interface 320 may
also accept input from local resources 324, such as a
specialized processor (e.g., graphics processing units),
memory, optimized chipsets, etc. In some embodiments, the
coordinated device 112A may include more (or fewer)
components than those shown in FIG. 3A. For example,
some embodiments of the coordinated device 112 may omit
the display 302 and input device 324, while providing
input/output capabilities through one or more alternative
communication channel (e.g., via the network interface
306).

[0052] The memory 310 may include computer program
instructions that the processing unit 204 executes in order to
implement one or more embodiments. The memory 310
generally includes RAM, ROM or other persistent or non-
transitory memory. The memory 310 may store an operating
system 314 that provides computer program instructions for
use by the processing unit 304 in the general administration
and operation of the coordinated device 112A. The memory
310 may further include computer program instructions and
other information for implementing aspects of the present
disclosure. For example, in one embodiment, the memory
310 includes a browser application 316 for accessing con-
tent. [llustratively, the browser application 316 may encom-
pass a full software browser application, portions of a
browser application or simply be an interface software
application (or executable instructions) that provide for data
connectivity. In some embodiments, the memory 310 can
further include an agent software application 318 for estab-
lishing a communication channel with the service provider
environment 310 to facilitate interaction with the local
resources 324. The agent software application 318 may be
implemented in combination with the browser software
application 316, in lieu of the browser software application
316 or separately. In some testing environments, as dis-
cussed above, the agent software application 318 may be
omitted.

[0053] FIG. 3B depicts one embodiment of an alternative
architecture of an illustrative coordinated device 112B in
accordance with the present application. The general archi-
tecture of the coordinated device 112B depicted in FIG. 3B
includes an arrangement of computer hardware and software
components that may be used to implement aspects of the
present disclosure. However, coordinated device 112B may
be associated with a reduced of components that may limit
the computing functionality and operation of the coordinated
device 112B. As illustrated, the coordinated device 112B
includes a processing unit 350 and a network interface 352
that communicate with a communication bus. Unlike coor-
dinated device 112B of FIG. 3A, the coordinated device
112B may not have a computer readable medium drive, an
optional display, or an input device. However, for purposes
of the present application, the coordinated device 112B will
likely have some local resource that can be accessed during
the execution of a task.

May 28, 2020

[0054] The network interface 352 may provide connectiv-
ity to one or more networks or computing systems, such as
the network 104 of FIG. 1. The processing unit 350 may thus
receive information and instructions from other computing
systems or services via a network. As will be described in
greater detail below, individual coordinated devices 112 may
be configured to receive a set of inputs, such as specific types
of data required to implement one or more functions. For
example, a coordinated device 112 corresponding to a ther-
mostat, may be configured to receive temperature settings or
time settings for adjusting environmental controls. Simi-
larly, individual coordinated devices 112 may be configured
to generate a set of outputs, such as specific types of data
resulting from the implementation of one or more function.
For example, a coordinated device corresponding to a
motion sensor could be configured to generate data indica-
tive of a binary indication of whether a threshold amount of
motion had been detected. Still further, individual coordi-
nated devices may be configured with a set of interfaces or
communication protocols that establish formats and specific
protocols receiving or transmitting communications. For
example, a coordinated device 112 may be configured to
receive communications in accordance with any of the
protocols identified previously, such as TCP, as well with
specific APIs that identify the order and format for data.
Additionally, coordinated devices 112 can also be config-
ured with regard to additional security protocols, such as
encryption, compression protocols, or other protocols
related to the exchange of information between coordinated
devices 112 (or other components).

[0055] The memory 354 may include computer program
instructions that the processing unit 350 executes in order to
implement one or more embodiments. The memory 354
generally includes RAM, ROM or other persistent or non-
transitory memory. In this embodiment, the memory 354
may store necessarily store a full operating system that
provides computer program instructions for use by the
processing unit 350 in the general administration and opera-
tion of the coordinated device 112B. Rather, in one embodi-
ment, the memory 354 includes an interface software com-
ponent 356 for accessing receiving and processing
instructions. In some embodiments, the memory 310 can
further include an agent software application 358 for estab-
lishing a communication channel with the service provider
environment 310 to facilitate interaction with the local
resources 324. The agent software application 358 may be
implemented in combination with the interface software
application 356, in lieu of the browser software application
316 or separately. In some testing environments, as dis-
cussed above, the agent software application 318 may be
omitted.

[0056] FIG. 4 depicts one embodiment of an architecture
of an illustrative client device 102 in accordance with the
present application. The general architecture of the client
device 102 depicted in FIG. 4 includes an arrangement of
computer hardware and software components that may be
used to implement aspects of the present disclosure. As
illustrated, the client device 102 includes a processing unit
404, a network interface 406, a computer readable medium
drive 407, an input/output device interface 420, an optional
display 402, and an input device 424, all of which may
communicate with one another by way of a communication
bus.



US 2020/0169619 Al

[0057] The network interface 406 may provide connectiv-
ity to one or more networks or computing systems, such as
the network 104 of FIG. 1. The processing unit 404 may thus
receive information and instructions from other computing
systems or services via a network. The processing unit 404
may also communicate to and from memory 410 and further
provide output information for an optional display 402 via
the input/output device interface 420. The input/output
device interface 420 may also accept input from the optional
input device 424, such as a keyboard, mouse, digital pen,
etc. In some embodiments, the client device 102 may
include more (or fewer) components than those shown in
FIG. 4. For example, some embodiments of the coordinated
device 112 may omit the display 402 and input device 424,
while providing input/output capabilities through one or
more alternative communication channel (e.g., via the net-
work interface 406). Additionally, the client device 102 may
omit the input and output interface 420 altogether as well.
[0058] The memory 410 may include computer program
instructions that the processing unit 204 executes in order to
implement one or more embodiments. The memory 410
generally includes RAM, ROM or other persistent or non-
transitory memory. The memory 410 may store an operating
system 414 that provides computer program instructions for
use by the processing unit 404 in the general administration
and operation of the client device 102. The memory 410 may
further include computer program instructions and other
information for implementing aspects of the present disclo-
sure. For example, in one embodiment, the memory 410
includes a browser application 416 for accessing content.
Iustratively, the browser application 416 may encompass a
full software browser application, portions of a browser
application or simply be a software application (or execut-
able instructions) that provide for data connectivity.

[0059] FIG. 5 depicts one embodiment of an architecture
of an illustrative computing device for implementing various
aspects of the rendering resources management component
108 in accordance with aspects of the present application.
The rendering resources management component 108 can be
a part of the instantiation of virtual machine instances
associated with the rendering resources 106 (e.g., the pool of
rendering resources). Alternatively, the computing device
may a stand-alone device independent of the rendering
resources 106.

[0060] The general architecture of the computing device
108 depicted in FIG. 5 includes an arrangement of computer
hardware and software components that may be used to
implement aspects of the present disclosure. As illustrated,
the computing device 500 includes a processing unit 504, a
network interface 506, a computer readable medium drive
508, an input/output device interface 509, all of which may
communicate with one another by way of a communication
bus. The components of the computing device 500 may be
physical hardware components or implemented in a virtu-
alized environment.

[0061] The network interface 506 may provide connectiv-
ity to one or more networks or computing systems, such as
the network of FIG. 1. The processing unit 504 may thus
receive information and instructions from other computing
systems or services via a network. The processing unit 504
may also communicate to and from memory 510 and further
provide output information. In some embodiments, the com-
puting device 500 may include more (or fewer) components
than those shown in FIG. 5.

May 28, 2020

[0062] The memory 510 may include computer program
instructions that the processing unit 504 executes in order to
implement one or more embodiments. The memory 510
generally includes RAM, ROM, or other persistent or non-
transitory memory. The memory 510 may store an operating
system 514 that provides computer program instructions for
use by the processing unit 504 in the general administration
and operation of the computing device 108. The memory
510 may further include computer program instructions and
other information for implementing aspects of the present
disclosure. For example, in one embodiment, the memory
510 includes interface software 512 for receiving and pro-
cessing requests from user devices 102 or transmitting
processed results. Memory 510 includes a workflow defini-
tion component 516 for processing workflow definition
information and generating mapping based on the worktlow
definitions as described herein. The memory 510 further
includes a workflow validation component 518 for the
testing of the generated workflow, such as via simulation, as
described herein.

[0063] As specified above, in one embodiment, the com-
puting device 116 illustrated in FIG. 5 can be implemented
as physical computing devices or virtualized computing
devices in a computing network. In another embodiment, the
computing device 116 may be implemented as logical com-
ponents in a virtual computing network in which the func-
tionality of the computing device 116 is implemented by an
underlying substrate network of physical computing
devices. Thus, aspects of the present application should not
be limited to interpretation requiring a physical, virtual or
logical embodiment unless specifically indicated as such.

[0064] With reference now to FIG. 6, an illustrative work-
flow definition 600 will be described. Illustratively, the user
devices 102 can generate one or more user interfaces, such
as graphical user interfaces, that allow for the specification
of'a workflow definition by user. For example, the graphical
user interface can allow a user to selection a plurality of
coordinated devices, such as via a drop down menu or
library. The graphical user interface can then allow the user
to select a communication path between the coordinated
devices, such as via drawing of communication lines/paths
via an input device. Still further, the graphical user interface
can then allow the user to select or specify communication
decision making logic. The communication decision making
logic can include criteria for determining when communi-
cations should occur, such as threshold values. The com-
munication making logic can further include branching
information and associated criteria for specifying two or
more branches for a communication path. Illustratively, the
communication making logic can be specified as binary
logic (e.g., yes or no), branching logic based on thresholds
or ranges, and can include additional or supplemental cri-
teria for use in the evaluation process. The actual imple-
mentation of the graphical interface can be customized
according to preferences/requirements provided by the user
device 102 or a system administrator. The resulting speci-
fication can be sent to the coordinated devices management
service 116 via an interface. Accordingly, the block dia-
grams of FIG. 6 can be used to illustrate how a graphical
interface may depict a workflow definition.

[0065] For purposes of illustration, the workflow defini-
tion 600 includes a specification for four coordinated
devices 112 in a coordinated device network 112. Each
coordinated device 112 is represented by a module or model



US 2020/0169619 Al

that represents the implementation of the coordinated device
in the workflow, namely Model A 602, Model B 604, Model
C 606, and Model D 608. Illustratively, the coordinated
devices management service 116 can maintain a library of
models or modules that define for individual coordinated
devices a set of inputs for the coordinated device, a set of
outputs for the coordinated device and a corresponding set
of interfaces or set of protocols utilized in the communica-
tion. [lustratively, the set of inputs can correspond to a
variety of data types, value ranges, mandatory data fields,
optional data fields, and can vary by the function to be
implemented by the coordinated device 112, including set-
ting the function to be performed. The set of outputs can
correspond to a variety of data types and value ranges and
can further vary based on the function implemented by the
individual coordinated device. The set of interfaces or
communication protocols that establish formats and specific
protocols receiving or transmitting communications and the
APIs or other formats for which the inputs/outputs will be
specified. The module may be specific individual coordi-
nated devices 112 or alternatively a grouping of coordinated
devices 112. The previously stored modules may be obtained
based on a manual definition by a system administrator,
previous implementations of coordinated device workflows
or via third party providers, such as the manufacturer or a
module marketplace provider. If a module is not available
for a specified coordinated device, the coordinated devices
management service 116 obtains a manual definition of a
module. For example, the coordinated devices management
service 116 can cause the user device 102 to generate one or
more menus or graphical menus that allow users or system
administrators to specify the set of inputs, set of outputs or
communication protocols/interfaces. The user menus can
also allow for suggestions or default settings based on
manufacturer, type of device, type of interaction, or generic
settings.

[0066] The workflow definition also includes a specifica-
tion of communication paths between the selected models/
modules. The communication path can specify a one to one
or one to many communication flow and communication
decision logic that identifies criteria for allowing commu-
nications to be generated from a coordinated device, to allow
generated communications to pass between coordinated
devices 112 or whether additional or supplemental informa-
tion will be included in the communications (e.g., security
keys, personal identifiers, etc.). As illustrated in FIG. 6, there
are five communication paths 606, 610, 612 and 618.
Communication paths 610 and 614 represent branching
paths and the coordinated devices management service 116
would obtain the communication decision logic to determine
which path to route communications. The workflow defini-
tion 600 also includes a stop or termination indicator 616.

[0067] Illustratively, the coordinated devices management
service 116 automatically identifies mappings based on the
specified communication path. Illustratively, the mappings
represent individual transformations of communications
between each communication connection between two (or
more) coordinated devices. Each individual mapping is
based on the specified outputs from a first coordinated
device to the inputs of a second coordinated device and
further in accordance with the specified communication
protocol for the first and second coordinated device. As
described above, the mapping can include a specification of
additional information required to allow for the communi-

May 28, 2020

cation between the two coordinated devices or based on the
communication decision making logic (e.g., a specific of a
priority field or importance field based on evaluation of
criteria independent of the coordinated devices). The com-
bination of mappings and communication decision making
logic illustratively form the workflow definition that will
result in the generation of executable code as described
herein. For example, the workflow illustrated in FIG. 6 could
correspond to a security workflow in which the coordinated
devices 112 are configured to facilitate access control in a
physical structure. In another example, the workflow illus-
trated in FIG. 6 could correspond to a climate control
workflow in which the coordinated devices 112 are config-
ured to facilitate management of climate in one or more
regions of a physical structure. In yet another example, the
workflow illustrated in FIG. 6 could correspond to a data
flow workflow in which coordinated devices 112 are con-
figured to collect, process and transmit different types of
data. One skilled in the relevant art will appreciate, however,
that these examples are illustrative in nature and does not
correspond to an identification of all the possible workflows
or variations thereof.

[0068] Turning now to FIG. 7, illustrative embodiments
for the processing of the specification of a workflow for a
coordinated device environment 110 will be described. At
(1), the coordinated devices management service 116
receives a request to implement a workflow in a coordinated
device environment 119 from a user device 102. As
described above, the user devices 102 can generate one or
more user interfaces, such as graphical user interfaces, that
allow for the specification of a workflow definition by user.
For example, the graphical user interface can allow a user to
selection a plurality of coordinated devices, such as via a
drop down menu or library. The graphical user interface can
then allow the user to select a communication path between
the coordinated devices, such as via drawing of communi-
cation lines/paths via an input device. Still further, the
graphical user interface can then allow the user to select or
specify communication decision making logic. The commu-
nication decision making logic can include criteria for
determining when communications should occur, such as
threshold values. The communication making logic can
further include branching information and associated criteria
for specifying two or more branches for a communication
path. The actual implementation of the graphical interface
can be customized according to preferences/requirements
provided by the user device 102 or a system administrator.
The resulting specification can be sent to the coordinated
devices management service 116 via an interface.

[0069] At (2), the coordinated devices management ser-
vice 116 processes the workflow definition and validates the
workflow definition. In one aspect, the coordinated devices
management service 116 determines whether a model defi-
nition for the specified set of coordinated devices is avail-
able. As described above, the coordinated devices manage-
ment service 116 can maintain a library of models that define
for individual coordinated devices a set of inputs for the
coordinated device, a set of outputs for the coordinated
device and a corresponding set of protocols or interfaces,
generally referred to as set of protocols, utilized in the
communication. The module may be specific individual
devices or alternatively a grouping of coordinated devices.
The previously stored modules may be obtained based on a
manual definition by a system administrator, previous imple-



US 2020/0169619 Al

mentations of coordinated device networks or via third party
providers, such as the manufacturer or a module marketplace
provider. If a module is not available for a specified coor-
dinated device, the coordinated devices management service
116 obtains a manual definition of a module. For example,
the coordinated devices management service 116 can cause
the user device 102 to generate one or more menus or
graphical menus that allow users or system administrators to
specify the set of inputs, set of outputs or communication
protocols. The user menus can also allow for suggestions or
default settings based on manufacturer, type of device, type
of interaction, or generic settings.

[0070] Inanother aspect, the coordinated devices manage-
ment service 116 identifies the workflow attributes, namely
the communication path of the coordinated devices 112, the
communication decision making logic and any additional
information required for implementing the workflow. In
some embodiments, the coordinated devices management
service 116 can determine that specified set of coordinated
devices are the same or similar devices, or otherwise share
common modules. Accordingly, the coordinated devices
management service 116 can reuse at least portions of the
identified information. The coordinated devices manage-
ment service 116 automatically identifies or collects the
mappings based on the specified communication path for the
workflow. As described above, the mappings represent indi-
vidual transformations of communications between each
communication connection between two (or more) coordi-
nated devices. Hach individual mapping is based on the
specified outputs from a first coordinated device to the
inputs of a second coordinated device and further in accor-
dance with the specified communication protocol for the first
and second coordinated device. The mapping can include a
specification of additional information required to allow for
the communication between the two coordinated devices or
based on the communication decision making logic (e.g., a
specific of a priority field or importance field based on
evaluation of criteria independent of the coordinated
devices). The combination of mappings and communication
decision making logic illustratively form the workflow defi-
nition.

[0071] In still a further aspect, the coordinated devices
management service 116 can run a simulation of the speci-
fied workflow. For example, the coordinated devices man-
agement service 116 can cause a graphical simulation of
communication flow or specify values for one or more
coordinated devices (e.g., temperature settings, security
badge readings, etc.) to determine whether the specified
communication decision making logic is correct or needs
additional input/modification. The coordinated devices man-
agement service 116 can generate outputs indicative of the
results of the processing, such as color definitions indicative
of characteristic of success. Additionally, the coordinated
devices management service 116 can generate additional
information outputs, such as log files or data files that allow
for additional trouble shooting.

[0072] At (3), the coordinated devices management ser-
vice 116 generates (or causes the generation) of executable
code for the deployment to a coordinated device network
110. The executable code can by illustrative be implemented
as executable code or commands interpreted by the coordi-
nator 114 or as a separate component in the coordinated
device network 110, such as a runtime executable by one or
more coordinated devices 112 or the coordinator 114. The

May 28, 2020

executable code facilitates the communication flow and
communication transformation. In one embodiment, the
executable code may not necessarily implement all the
evaluation of the communication decision making logic or
transformation, but may coordinate calls, such as tasks, that
can be executed by an external service, such as an on-
demand code execution service on the coordinated environ-
ment 110 or service provider environment 120. In another
embodiment, the coordinated devices management service
116 can include executable code that at least in part imple-
ments the evaluation of the communication decision making
logic and transformations without need to make additional
calls (or limiting the need to make additional calls). The
executable code can be deployed manually or automatically
for implementation on one or more coordinated device
environments 110.

[0073] With reference now to FIG. 8, a coordinated envi-
ronment configuration routine 800 for the workflow defini-
tions by the coordinated devices management services 116
will be described. At block 802, the coordinated devices
management service 116 receives a request to implement a
workflow in a coordinated environment. As described above,
the user devices 102 can generate one or more user inter-
faces, such as graphical user interfaces, that allow for the
specification of a workflow definition by user. For example,
the graphical user interface can allow a user to selection a
plurality of coordinated devices, such as via a drop down
menu or library. The graphical user interface can then allow
the user to select a communication path between the coor-
dinated devices, such as via drawing of communication
lines/paths via an input device. Still further, the graphical
user interface can then allow the user to select or specify
communication decision making logic. The communication
decision making logic can include criteria for determining
when communications should occur, such as threshold val-
ues. The communication making logic can further include
branching information and associated criteria for specitying
two or more branches for a communication path. The actual
implementation of the graphical interface can be customized
according to preferences/requirements provided by the user
device 102 or a system administrator. The resulting speci-
fication can be sent to the coordinated devices management
service 116 via an interface.

[0074] At block 804, the coordinated devices management
service 116 first determines whether a model definition for
the specified set of coordinated devices is available. As
described above, the coordinated devices management ser-
vice 116 can maintain a library of models or modules that
define for individual coordinated devices a set of inputs for
the coordinated device, a set of outputs for the coordinated
device and a set of protocols/interfaces utilized in the
communication. The module may be specific individual
devices or alternatively a grouping of coordinated devices.
The previously stored modules may be obtained based on a
manual definition by a system administrator, previous imple-
mentations of routine 800 or via third party providers, such
as the manufacturer or a module marketplace provider. If a
module is not available for a specified coordinated device, at
block 804, the coordinated devices management service 116
obtains a manual definition of a module. For example, the
coordinated devices management service 116 can cause the
user device 102 to generate one or more menus or graphical
menus that allow users or system administrators to specify
the set of inputs, set of outputs or communication protocols.



US 2020/0169619 Al

The user menus can also allow for suggestions or default
settings based on manufacturer, type of device, type of
interaction, or generic settings. Illustratively decision block
804 may be implemented for each specified coordinated
device that was specified (e.g., a first module for a first
coordinated device, a second module for a second coordi-
nated device, a third module for a third coordinated device,
etc.).

[0075] At block 806, the coordinated devices management
service 116 identifies the workflow attributes, namely the
communication path of the coordinated devices 112, the
communication decision making logic and any additional
information required for implementing the workflow. In
some embodiments, the coordinated devices management
service 116 can determine that specified set of coordinated
devices are the same or similar devices, or otherwise share
common modules. Accordingly, the coordinated devices
management service 116 can reuse at least portions of the
identified information. At block 808, the coordinated devices
management service 116 automatically identifies, collects or
generates mappings based on the specified communication
path. Illustratively, the mappings represent individual trans-
formations of communications between each communica-
tion connection between two (or more) coordinated devices.
Each individual mapping is based on the specified outputs
from a first coordinated device to the inputs of a second
coordinated device and further in accordance with the speci-
fied communication protocol for the first and second coor-
dinated device. The mapping can include a specification of
additional information required to allow for the communi-
cation between the two coordinated devices or based on the
communication decision making logic (e.g., a specific of a
priority field or importance field based on evaluation of
criteria independent of the coordinated devices). The com-
bination of mappings and communication decision making
logic illustratively form the workflow definition.

[0076] At decision block 812, a test is conducted to
determine whether additional inputs are to be entered. Illus-
tratively, the interaction with a user via a graphical user
interface may be iterative in nature, such that the user can
provide multiple inputs to the coordinated devices manage-
ment service 116. If additional inputs/edits are indicated, the
routine 800 returns to block 802 to receive additional inputs.
Alternatively, once all the inputs have been processed, at
block 814, the coordinated devices management service 116
processes the workflow definition. In one aspect, the coor-
dinated devices management service 116 can run a simula-
tion of the specified workflow. For example, the coordinated
devices management service 116 can cause a graphical
simulation of communication flow or specify values for one
or more coordinated devices (e.g., temperature settings,
security badge readings, etc.) to determine whether the
specified communication decision making logic is correct or
needs additional input/modification. The coordinated
devices management service 116 can generate outputs
indicative of the results of the processing, such as color
definitions indicative of characteristic of success. Addition-
ally, the coordinated devices management service 116 can
generate additional information outputs, such as log files or
data files that allow for additional trouble shooting.

[0077] At decision block 816, the coordinated devices
management service 116 generates (or causes the genera-
tion) of executable code for the deployment to a coordinated
device network 110. The executable code can by illustrative

May 28, 2020

be implemented by the coordinator 114 or as a separate
component in the coordinated device network 110. The
executable code facilitates the communication flow and
communication transformation. In one embodiment, the
executable code may not necessarily implement all the
evaluation of the communication decision making logic or
transformation, but may coordinate calls, such as tasks, that
can be executed by an external service, such as an on-
demand code execution service on the coordinated environ-
ment 110 or service provider environment 120. In another
embodiment, the coordinated devices management service
116 can include executable code that at least in part imple-
ments the evaluation of the communication decision making
logic and transformations without need to make additional
calls (or limiting the need to make additional calls). The
executable code can be deployed manually or automatically
for implementation on one or more coordinated device
environments 110. At block 818, the routine 800 terminates.

[0078] All of the methods and tasks described herein may
be performed and fully automated by a computer system.
The computer system may, in some cases, include multiple
distinct computers or computing devices (e.g., physical
servers, workstations, storage arrays, cloud computing
resources, etc.) that communicate and interoperate over a
network to perform the described functions. Each such
computing device typically includes a processor (or multiple
processors) that executes program instructions or modules
stored in a memory or other non-transitory computer-read-
able storage medium or device (e.g., solid state storage
devices, disk drives, etc.). The various functions disclosed
herein may be embodied in such program instructions, or
may be implemented in application-specific circuitry (e.g.,
ASICs or FPGAs) of the computer system. Where the
computer system includes multiple computing devices, these
devices may, but need not, be co-located. The results of the
disclosed methods and tasks may be persistently stored by
transforming physical storage devices, such as solid state
memory chips or magnetic disks, into a different state. In
some embodiments, the computer system may be a cloud-
based computing system whose processing resources are
shared by multiple distinct business entities or other users.

[0079] Depending on the embodiment, certain acts,
events, or functions of any of the processes or algorithms
described herein can be performed in a different sequence,
can be added, merged, or left out altogether (e.g., not all
described operations or events are necessary for the practice
of the algorithm). Moreover, in certain embodiments, opera-
tions or events can be performed concurrently, e.g., through
multi-threaded processing, interrupt processing, or multiple
processors or processor cores or on other parallel architec-
tures, rather than sequentially.

[0080] The various illustrative logical blocks, modules,
routines, and algorithm steps described in connection with
the embodiments disclosed herein can be implemented as
electronic hardware (e.g., ASICs or FPGA devices), com-
puter software that runs on computer hardware, or combi-
nations of both. Moreover, the various illustrative logical
blocks and modules described in connection with the
embodiments disclosed herein can be implemented or per-
formed by a machine, such as a processor device, a digital
signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination



US 2020/0169619 Al

thereof designed to perform the functions described herein.
A processor device can be a microprocessor, but in the
alternative, the processor device can be a controller, micro-
controller, or state machine, combinations of the same, or the
like. A processor device can include electrical circuitry
configured to process computer-executable instructions. In
another embodiment, a processor device includes an FPGA
or other programmable device that performs logic operations
without processing computer-executable instructions. A pro-
cessor device can also be implemented as a combination of
computing devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any
other such configuration. Although described herein primar-
ily with respect to digital technology, a processor device
may also include primarily analog components. For
example, some or all of the rendering techniques described
herein may be implemented in analog circuitry or mixed
analog and digital circuitry. A computing environment can
include any type of computer system, including, but not
limited to, a computer system based on a microprocessor, a
mainframe computer, a digital signal processor, a portable
computing device, a device controller, or a computational
engine within an appliance, to name a few.

[0081] The elements of a method, process, routine, or
algorithm described in connection with the embodiments
disclosed herein can be embodied directly in hardware, in a
software module executed by a processor device, or in a
combination of the two. A software module can reside in
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a remov-
able disk, a CD-ROM, or any other form of a non-transitory
computer-readable storage medium. An exemplary storage
medium can be coupled to the processor device such that the
processor device can read information from, and write
information to, the storage medium. In the alternative, the
storage medium can be integral to the processor device. The
processor device and the storage medium can reside in an
ASIC. The ASIC can reside in a user terminal. In the
alternative, the processor device and the storage medium can
reside as discrete components in a user terminal.

[0082] Conditional language used herein, such as, among
others, “can,” “could,” “might,” “may,” “e.g.,” and the like,
unless specifically stated otherwise, or otherwise understood
within the context as used, is generally intended to convey
that certain embodiments include, while other embodiments
do not include, certain features, elements or steps. Thus,
such conditional language is not generally intended to imply
that features, elements or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without other
input or prompting, whether these features, elements or steps
are included or are to be performed in any particular
embodiment. The terms “comprising,” “including,” “hav-
ing,” and the like are synonymous and are used inclusively,
in an open-ended fashion, and do not exclude additional
elements, features, acts, operations, and so forth. Also, the
term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connect
a list of elements, the term “or” means one, some, or all of
the elements in the list.

[0083] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
otherwise understood with the context as used in general to

May 28, 2020

present that an item, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, or Z). Thus, such
disjunctive language is not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y, and at least one of Z to each be present.
[0084] While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, it can be understood that various
omissions, substitutions, and changes in the form and details
of the devices or algorithms illustrated can be made without
departing from the spirit of the disclosure. As can be
recognized, certain embodiments described herein can be
embodied within a form that does not provide all of the
features and benefits set forth herein, as some features can
be used or practiced separately from others. The scope of
certain embodiments disclosed herein is indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope.

[0085] Any routine descriptions, elements or blocks in the
flow diagrams described herein and/or depicted in the
attached figures should be understood as potentially repre-
senting modules, segments, or portions of code which
include one or more executable instructions for implement-
ing specific logical functions or elements in the routine.
Alternate implementations are included within the scope of
the embodiments described herein in which elements or
functions may be deleted, or executed out of order from that
shown or discussed, including substantially synchronously
or in reverse order, depending on the functionality involved
as would be understood by those skilled in the art.

[0086] It should be emphasized that many variations and
modifications may be made to the above-described embodi-
ments, the elements of which are to be understood as being
among other acceptable examples. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

What is claimed is:

1. A system for deployment of coordinated device net-

work applications, the system comprising:
a plurality of computing devices corresponding to user
devices and configured to provide one or more inputs
regarding the specification of attributes of a coordi-
nated device network; and
one or more computing devices associated with a coor-
dinated device management service, wherein the coor-
dinated device management service is configured to:
receive a selection of a first coordinated device from a
user device;

determine a first module associated with the selected
first coordinated device and identifying a set of
inputs, a set of outputs and a set of communication
protocols for the selected first coordinated device;

receive a selection of a second coordinated device from
a user device and a workflow definition between the
first and second coordinated device, wherein the
workflow definition includes at least a communica-
tion path between the first and second coordinated
device and communication decision making logic;

determining a second module associated with the
selected second coordinated device and defining a set



US 2020/0169619 Al

of inputs, a set of outputs and a set of interfaces for
the selected second coordinated device;
automatically generate a mapping between the first and
second coordinated device based on the communi-
cation path, wherein the mapping defines a transfor-
mation of communications based on the first and
second modules, wherein the communication deci-
sion making logic and the mapping form a workflow;
and
cause the generation of executable code corresponding
to the formed workflow.
2. The system of claim 1, wherein the coordinated device
management services is further operable to:
receive a selection of a third coordinated device from a
user device and a workflow definition between the third
coordinated device and at least the first or second
coordinated device, wherein the updated workflow
definition includes at least a communication path
between the first, second and third coordinated device
and communication decision making logic;

determining a third module associated with the selected
third coordinated device and defining a set of inputs, a
set of outputs and a set of interfaces for the selected
third coordinated device;

automatically generate an updated mapping between the

first, second and third coordinated device based on the
communication path, wherein the mapping defines a
transformation of communications based on the first,
second and third modules, wherein the communication
decision making logic and the mapping form an
updated workflow.

3. The system of claim 1, wherein the coordinated device
management service is further operable to test a simulation
of the formed workflow.

4. The system of claim 1, wherein the user device is
further configured to generate one or more user interfaces
for selecting the first and second coordinated devices and the
workflow definition.

5. The system of claim 1, wherein the coordinated device
management service determines the module for at least the
first or second coordinated device based on previously
defined modules for a set of coordinated devices.

6. The system of claim 1, wherein the coordinated device
management service is further operable to:

determine that the first module has not been previously

defined for the first coordinated device; and

obtain a manual definition of the first module associated

with the first coordinated device from the user device.

7. A computer-implemented method to manage deploy-
ment of a coordinated device network, the method compris-
ing:

obtaining a selection of a plurality of coordinated devices

from a user device and a workflow definition between
the plurality of coordinated devices;
determining a set of modules associated with the selected
plurality of coordinated devices, wherein individual
modules define a set of inputs, a set of outputs and a set
of communication protocols for a coordinated device;

automatically identifying a mapping between the plurality
of coordinated devices, wherein the mapping defines a
transformation of communications based on the set of
modules, wherein the workflow definition and the
mapping form a workflow; and

May 28, 2020

causing the generation of executable code corresponding

to the formed workflow.

8. The computer-implemented method of claim 7,
wherein the workflow definition includes at least a commu-
nication path between the plurality of coordinated devices.

9. The computer-implemented method of claim 7,
wherein the workflow definition includes communication
decision making logic further comprising receiving render-
ing resource configuration information.

10. The computer-implemented method of claim 9,
wherein the communication decision logic includes a speci-
fication of criteria for allowing communications between
two coordinated devices.

11. The computer-implemented method of claim 9,
wherein the communication decision logic includes a speci-
fication of criteria for selecting a communication path
between multiple coordinated devices.

12. The computer-implemented method of claim 7,
wherein obtaining a selection of a plurality of coordinated
devices from a user device and a workflow definition
between the plurality of coordinated devices includes
obtaining a selection from one or more user interfaces for
selecting the plurality of coordinated devices and the work-
flow definition.

13. The computer-implemented method of claim 7,
wherein determining the set of modules associated with the
selected plurality of coordinated devices includes identify-
ing one or more modules based on previously defined
modules for a set of coordinated devices.

14. The computer-implemented method of claim 7,
wherein determining the set of modules associated with the
selected plurality of coordinated devices includes obtaining
a manual definition for one or more modules not previously
defined for a set of coordinated devices.

15. The computer-implemented method of claim 7 further
comprising testing a simulation of the formed workflow
prior to generating the executable code.

16. A computer-implemented method to manage deploy-
ment of a coordinated device network, the method compris-
ing:

obtaining a selection of a plurality of coordinated devices

from a user device and a workflow definition between
the plurality of coordinated devices;

determining a set of modules associated with a specified

plurality of coordinated devices, wherein individual
modules define a set of inputs, a set of outputs and a set
of interfaces for a coordinated device;

automatically generating a mapping associated with the

determined set of modules, wherein the mapping
defines a transformation of communications based on
the set of modules according to a defined workflow
definition, wherein the workflow definition and the
mapping form a workflow; and

causing the generation of executable code corresponding

to the formed workflow.

17. The computer-implemented method of claim 16,
wherein the workflow definition includes at least a commu-
nication path between the plurality of coordinated devices.

18. The computer-implemented method of claim 16,
wherein the workflow definition includes communication
decision making logic further comprising receiving render-
ing resource configuration information.

19. The computer-implemented method of claim 16,
wherein obtaining a selection of a plurality of coordinated



US 2020/0169619 Al May 28, 2020
15

devices from a user device and a workflow definition
between the plurality of coordinated devices includes
obtaining a selection from one or more user interfaces for
selecting the plurality of coordinated devices and the work-
flow definition.

20. The computer-implemented method of claim 16,
wherein determining the set of modules associated with the
selected plurality of coordinated devices includes identify-
ing one or more modules based on previously defined
modules for a set of coordinated devices.

21. The computer-implemented method of claim 16,
wherein determining the set of modules associated with the
selected plurality of coordinated devices includes obtaining
a manual definition for one or more modules not previously
defined modules for a set of coordinated devices.

#* #* #* #* #*



