
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0108864 A1

Madampath

US 2014O108864A1

(43) Pub. Date: Apr. 17, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(62)

DECOUPLED APPLICATION
PROGRAM-OPERATING SYSTEM
COMPUTING ARCHITECTURE

Applicant: NETAPP, INC., Sunnyvale, CA (US)

Inventor: Rajiv Madampath, Bangalore (IN)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Appl. No.: 14/132,205

Filed: Dec. 18, 2013

Related U.S. Application Data
Division of application No. 13/079,826, filed on Apr.
5, 2011, now Pat. No. 8,621,496.

CENT
OPERATING SYSTEM

Publication Classification

(51) Int. Cl.
G06F II/4 (2006.01)

(52) U.S. Cl.
CPC G06F 1 1/1446 (2013.01)
USPC .. 714/19

(57) ABSTRACT

A method of application program-operating system decou
pling includes performing, through an application program
configured to execute on a client machine, a system call to a
first operating system executing on a server machine over an
interconnect configured to couple the server machine to the
client machine. The method also includes serving the appli
cation program configured to execute on the client machine
through the first operating system executing on the server
machine in accordance with the system call.

OPERATING SYSTEM
INTERFACE 72

CIENT OPERATING
SYSTEM 102

: PROXY LAYER 106

MACHINE 152

SERVER
OPERATING SYSTEM
COMUNICATION

LAYER 108

SEWER OPERATING
SYSTEM 104

SERVER
MACHINE 154

DEcoupled APPECATION
PROGRAN - OPERATING SYSTEM
COMPUTING ARCHITECTURE 100

US 2014/O108864 A1 Apr. 17, 2014 Sheet 1 of 7 Patent Application Publication

ZZI, HOVHè?ELNI , _ _ _ _ _ _ _ _

WELSAS ?NLIVJEdO !
| | | | |

US 2014/O108864 A1 Apr. 17, 2014 Sheet 2 of 7

ZOZ TTV/O WELLSÅS

Patent Application Publication

Patent Application Publication Apr. 17, 2014 Sheet 3 of 7 US 2014/O108864 A1

CSTARTD

ATTEMPT TO OPENA FLE
CORRESPONDING TO THE READ
REQUEST FROMAN APPLICATION
PROGRAM TO OBTANA FLE
DESCRIPTOR THEREFOR

PACK ORPEN SYSTEM CALL
ARGUMENTS ASSOCATED WITH THE

RECUEST INTO ANETWORK
MESSAGE, TRANSMIT REQUEST TO
SERVER OPERATING SYSTEM

306

OPEN THE FILE, RETURN FILE
DESCRIPTOR TO CLIENT MACHINE IN
AN ACKNOWLEDGMENT MESSAGE

3O8

READ A NUMBER OF BYTES
ASSOCATED WITH THE READ
REOUEST THROUGH SERVER

MACHINE TRANSMIT REQUESTED
DATA TO CLIENT MACHINE

COPY CONTENT ASSOCATED
WITH A NUMBER OF BYTES TO A
BUFFER ON CLIENT MACHINE

312

MORE RECUESTS? NO

SAME FILE
DESCRIPTORT

YES

END

FIGURE 3

Patent Application Publication Apr. 17, 2014 Sheet 5 of 7 US 2014/O108864 A1

REQUEST, THROUGH CLIENT
MACHINE, SERVER OPERATING

SYSTEM TO LOAD ADDRESS SPACE
OF APPLICATION PROGRAM

504

NTIAZE ADDRESS SPACE DAA
STRUCTURE AND PAGE TABLES
THROUGH SERVER OPERATING
SYSTEM, RETURN VIRTUAL

ADDRESS FOR MAIN() BACK TO
CLENT OPERATING SYSTEM

506

ATEMPT TOEXECUTE THE
APPLICATION PROGRAM THROUGH

CLENT OPERATING SYSTEM
508

TRANSMT REQUEST FOR
RESOLUTION OF PAGEFAUL TO
SERVER OPERATING SYSTEM

510

READ PAGE AND TRANSMT
CONTENT(S) THEREOF TO CLIENT

OPERATING SYSTEM
512

ALLOCATE PHYSICAL PAGE
TO CONTENT(S)

514 516

UPDATE PAGE TABLE
CONTENT

TRANSMISSION
COMPLETE

YES

NO

FIGURE 5

Patent Application Publication Apr. 17, 2014 Sheet 6 of 7 US 2014/O108864 A1

PERFORM, THROUGH AN APPLICATION PROGRAM CONFIGURED TOEXECUTE ON A CLIENT
MACHINE, ASYSTEM CALL TO A FIRST OPERATING SYSTEM EXECUTING ON A SERVER MACHINE
OWER AN INTERCONNECT CONFIGURED TO COUPLE THE SERVER MACHINE TO THE CLENT

MACHINE

SERVE THE APPLICATION PROGRAM CONFIGURED TOEXECUTE ON THE CLENT MACHINE
THROUGH THE FIRST OPERATING SYSTEM EXECUTING ON THE SERVER MACHINE N

ACCORDANCE WITH THE SYSTEM CA

FIGURE 6

Patent Application Publication Apr. 17, 2014 Sheet 7 of 7 US 2014/O108864 A1

MARKA SHE ONA CENT MACHINE OR AN APPLICATION PROGRAM CONFIGURED TOEXECUTE
THEREON WITH A LOADER FLAG HROUGH A SECONO OPERATING SYSTEM EXECUTING ON THE

CLIENT MACHINE

PERFORM, THROUGH THE CLIENT MACHINE, A SYSTEM CALL TO A FIRST OPERATING SYSTEM
EXECUTING ON THE SERVER MACHINE INSTEAD OF THE SECONO OPERATING SYSTEM BASED ON

THE MARKING OF THE SHELL OR THEAPPLICATION PROGRAM

FIGURE 7

US 2014/0108864 A1

DECOUPLED APPLICATION
PROGRAM-OPERATING SYSTEM
COMPUTING ARCHITECTURE

FIELD OF TECHNOLOGY

0001. This disclosure relates generally to computing sys
tem(s) and, more particularly, to a method, an apparatus,
and/or a system of a decoupled application program-operat
ing system computing architecture.

BACKGROUND

0002 Reliability of an application program executing on a
computing device is dependent on the reliability of the under
lying operating system, in addition to the robustness thereof.
When critical application programs are hosted on server
machines that are highly utilized, the probability of server
crashes may increase due to the increased load associated
with the application programs. Clients executing the applica
tion programs may experience large outage times and/or
incorrect execution associated therewith.
0003. In a traditional computing model, the operating sys
tem, device drivers and the application program(s) occupy
tiers of a hierarchy, in accordance with which the operating
system and the device drivers are at a “low level in contrast
to the application program(s) at a “high level. Application
programs may communicate to the operating system through
system calls, and the operating system keeps the application
programs apprised of events through signals. Although appli
cation program(s) execute in disjoint address spaces and,
therefore, are insulated from external application program
failures, the failure(s) associated with the operating system
may affect the entire computing system.
0004 Reliability solutions such as check pointing may
enable the restart of application program(s) in the event of an
operating system crash. Checkpointing may involve writing
the state information of a computing system to persistent
storage from time to time. Following an operating system
crash and a Subsequent reboot of the computing system, an
application program executing thereon may be restored to a
previous state thereofprior to the crash. However, the change
in state information from the previous checkpoint may be
lost. Other solutions such as high availability clusters try to
reduce downtime by maintaining partner node(s) that take
over services associated with a primary node following a
crash. The aforementioned solutions have limitations such as
performance in the case of check pointing and homogenous
hardware configuration requirement(s) in the case of cluster
1ng.

SUMMARY

0005 Disclosed are a method, an apparatus, and/or a sys
tem of a decoupled application program-operating system
computing architecture.
0006. In one aspect, a method of application program
operating system decoupling includes performing, through
an application program configured to execute on a client
machine, a system call to a first operating system executing on
a server machine over an interconnect configured to couple
the server machine to the client machine. The method also
includes serving the application program configured to
execute on the client machine through the first operating
system executing on the server machine in accordance with
the system call.

Apr. 17, 2014

0007. In another aspect, a method of requesting service
from a first operating system executing on a server machine
through an application program configured to execute on a
client machine includes marking a shell on the client machine
or the application program configured to execute thereon with
a loader flag through a second operating system executing on
the client machine. The method also includes performing,
through the client machine, a system call to the first operating
system executing on the server machine instead of the second
operating system based on the marking of the shell or the
application program.
0008. In yet another aspect, a decoupled application pro
gram-operating system computing architecture includes a
server machine executing a first operating system thereon, a
client machine executing a second operating system thereon
and an interconnect configured to couple the server machine
to the client machine. An application program configured to
execute on the client machine is configured to perform a
system call to the first operating system executing on the
server machine over the interconnect. The first operating sys
tem is configured to serve the application program configured
to execute on the client machine in accordance with the sys
tem call.
0009. The methods and systems disclosed herein may be
implemented in any means for achieving various aspects, and
may be executed in a form of a machine-readable medium
embodying a set of instructions that, when executed by a
machine, cause the machine to performany of the operations
disclosed herein. Other features will be apparent from the
accompanying drawings and from the detailed description
that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The embodiments of this invention are illustrated by
way of example and not limitation in the figures of the accom
panying drawings, in which like references indicate similar
elements and in which:
0011 FIG. 1 is a schematic view of a decoupled applica
tion-operating system computing architecture, according to
one or more embodiments.
0012 FIG. 2 is a schematic view of servicing a system call
transmitted from the client operating system proxy layer
through the server operating system communication layer of
FIG. 1, according to one or more embodiments.
0013 FIG. 3 is a flowchart detailing the operations
involved in the processing of read request(s) through the
server operating system of FIG. 1, according to one or more
embodiments.
0014 FIG. 4 is a schematic view of the virtual memory
implementation associated with the decoupled computing
architecture of FIG. 1, according to one or more embodi
mentS.

0015 FIG. 5 is a flowchart detailing the operations
involved in process creation associated with the decoupled
computing architecture of FIG. 1, according to one or more
embodiments.
0016 FIG. 6 is a process flow diagram detailing the opera
tions involved in a method of application program-operating
system decoupling, according to one or more embodiments.
0017 FIG. 7 is a process flow diagram detailing the opera
tions involved in a method of requesting service from the
server operating system through the application program of
FIG. 1, according to one or more embodiments.

US 2014/0108864 A1

0018. Other features of the present embodiments will be
apparent from the accompanying drawings and from the
detailed description that follows.

DETAILED DESCRIPTION

0019. Example embodiments, as described below, may be
used to realize a decoupled application program-operating
system computing architecture. Although the present
embodiments have been described with reference to specific
example embodiments, it will be evident that various modi
fications and changes may be made to these embodiments
without departing from the broader spirit and scope of the
various embodiments.
0020 FIG. 1 shows a decoupled application-operating
system computing architecture 100, according to one or more
embodiments. In one or more embodiments, in accordance
with decoupled application-operating system computing
architecture 100, one or more application programs (e.g.,
application 112 and application 114) may be configured to
execute on a client machine (e.g., client machine 152)
coupled to a server machine (e.g., server machine 154) con
figured to execute the operating system associated therewith.
In one or more embodiments, the word “machine' as used
herein may refer to a standalone computing device configured
to execute an operating system or a virtual machine (VM)
running an instance of an operating system. Thus, as shown in
FIG. 1, the operating system associated with the client
machine may be client operating system 102 and the operat
ing system associated with the server machine may be server
operating system 104.
0021. In one example embodiment, two instances of an
operating system may be running on two VMs on the same
physical hardware as client operating system 102 and server
operating system 104. Here, client operating system 102 may
communicate with server operating system 104 over a dedi
cated fast interconnect (e.g., interconnect 122). "Intercon
nect” (e.g., interconnect 122), as used herein, may refer to a
means for coupling client operating system 102 and server
operating system 104. In one or more embodiments, intercon
nect 122 may be associated with wired coupling or wireless
coupling (e.g., a wireless computer network). In another
example embodiment, the client machine may be a worksta
tion with one or more disks (not shown; e.g., hard disks),
which is configured to boot a local operating system thereof
over a computer network (an example of interconnect 122)
using a bootstrap protocol. In one or more embodiments, as
VMS may share the same underlying physical hardware (e.g.,
processor), client operating system 102 and server operating
system 104, distinct from one another, may be executing on
two VMs on the same underlying physical hardware. Here, in
one or more embodiments, interconnect 122 may refer to a
hardware “connection' between the two VMs. In one or more
embodiments, dedicated hardware may also be utilized for
both client operating system 102 and server operating system
104, with the physical hardware being coupled through the
fast interconnect.
0022. The speed of interconnects (e.g., Gigabit EthernetTM
(GbE)) may match processor bus speeds, thereby rendering
the use of interconnects viable. In some cases, the intercon
nects (e.g., Memory ChannelTM) may perform better than
GbE. Thus, in one or more embodiments, performance may
not be affected through the coupling of the client machine to
the server machine over the fast interconnect. In one or more
embodiments, there may not be a performance penalty asso

Apr. 17, 2014

ciated with an application program (e.g., application 112)
performing system call(s) to server operating system 104 over
the interconnect. A system call may be a means for the appli
cation program to request for service from the operating
system (or, the kernel of the operating system).
0023. In one or more embodiments, in the client-server
model of FIG. 1, the one or more application program(s) may
serve as “client(s) and the “operating system” may become
a “server.” Thus, in one or more embodiments, the application
program(s) and the operating system may execute on differ
ent machines, as discussed above. Here, in one or more
embodiments, client operating system 102 may act as a
“proxy” for server operating system 104, analogous to an
Remote Procedure Call (RPC) model where application pro
grams primarily execute on one machine and occasionally
perform RPC calls to an operating system (or, application
program(s)) executing on another machine. In one or more
embodiments, the one or more application program(s) may
always perform the analogous RPC call(s) during system
calls. FIG. 1 shows a demarcation between the application
program-level (or, user level) and the operating system-level
as operating system interface 172.
0024. In one or more embodiments, to aid the restart of the
one or more application program(s) after a failure of server
operating system 104, argument(s) associated with system
call(s) and return values may be logged at client machine 152
and subsequently replayed upon the failure to reestablish the
kernel state associated with the one or more application pro
gram(s). In one or more embodiments, the aforementioned
logging of the system call argument(s) and the return values
may invalidate the necessity for writing large amounts of state
information to non-volatile storage (e.g., disk). In one or more
embodiments, this is in contrast to the performance-taxing
checkpointing (or, application check pointing), which
involves writing the state information of the system to persis
tent storage from time to time. During checkpointing, state
information may be written to disk and/or a Non-Volatile
Random-Access Memory (NVRAM) associated with the
computing system. In the case of the state information being
written to disk, it is obvious that the content(s) of NVRAM
have to be written to disk following a threshold usage of the
NVRAM being exceeded.
0025. In one or more embodiments, the probability of
client operating system 102 crashing in the window of time
that server operating system 104 reboots may below as client
operating system 102 does not perform the bulk of the pro
cessing. In one or more embodiments, client operating system
102 may be more reliable than server operating system 104,
which may service several application requests at the same
time. In checkpointing, the change in state information from
the previous checkpoint may be lost. In the exemplary
embodiments discussed herein (e.g., with reference to FIG.
1), the one or more application program(s) may restart at a
system call granularity. In other words, in one or more
embodiments, if an application program is not in a system call
at the time the server machine crashed, the application pro
gram may reach the next system call point and hang there
until the server machine restarts and services the system call.
Thus, in one or more embodiments, no state information may
be lost. In one or more embodiments, the client machine may
monitor the server machine (e.g., through a heartbeat mecha
nism) to know when the server machine crashes and reboots
in order to retry a system call.

US 2014/0108864 A1

0026. In one or more embodiments, if the client machine
determines that the server machine is unreachable through the
heartbeat mechanism (e.g., meaning that the connectivity
thereto is lost), the client machine may choose to connect to a
different server machine and replay the system call log to
reestablish the kernel state. In one or more embodiments,
thereby, through the decoupling of the application program
and the operating system, the client application program may
not be tied to a particular server machine.
0027. A “process” may be an instance of a computer pro
gram being executed. A "process' may be instantiated on, for
example, a UNIX system via a call to fork() followed by a call
to exec() which performs a major portion of the work asso
ciated therewith. In a multithreading environment, the func
tion fork() may enable duplication of a thread of execution,
thereby creating a child process from a parent process. In
other words, fork() may create a separate address space for
the child process. The function exec() may be utilized to
enable the new process associated with the child to run a new
program. The function exec() sets up the virtual address
space of the new program by initializing the page tables. A
page table may be a data structure utilized by a virtual
memory system in an operating system to store the mapping
between virtual addresses and physical addresses. Virtual
addresses may be unique to a “process.”
0028. Following the initialization of the page tables, the
operating system may schedule the “process to run on a
central processor (e.g., Central Processing Unit (CPU)). The
“process” may compete with other processes to execute on
the central processor. The “process” may be in an “execut
able” state while in the “execute' queue, and may transition to
the “executing state when scheduled. After the time quantum
associated therewith expires, the “process' may transition
back to the “executable” state and be placed back in the
“execute' queue. If the “process” is blocked for synchroni
zation, the “process” may be added to a “sleep' queue, and
may be in a “blocked' state. The operating system may then
schedule another “process” to execute on the central proces
SO

0029 While the “process” is executing, the “process” may
request for services from the operating system by performing
system calls. When the service request occurs, the central
processor may switch from a user mode (or, application pro
gram mode) to a kernel mode (or, operating system mode),
and may continue execution inside the kernel. Inside the
kernel, the “process” may proceed to a “blocked' state when
Input/Output (I/O) is performed or when blocking for specific
resources (e.g., synchronization variables) to become avail
able occurs. Once the condition associated with the blocking
clears, the “process may continue execution, and may even
tually transition back to the user mode when in the system call
return path. From then on, the “process' may continue execu
tion until a time slice thereof expires. When the “process”
completes the task(s) associated therewith, the “process” may
exit, and the operating system may cleanup the address space
associated therewith.
0030 The operating system may also asynchronously
notify the “process of events through signals. Signal han
dlers may be called by the “process” to handle signals, which
may also be sent to terminate the “process” and/or initiate a
cleanup operation associated therewith.
0031. As will be discussed below, in one or more embodi
ments, once the assumption of the one or more application
program(s) executing on the same machine as the operating

Apr. 17, 2014

system is dispensed with, changes may need to be made in the
implementation of the operating system, whose functional
ities have been discussed above. However, in one or more
embodiments, most of the aforementioned changes may be in
the interface (e.g., at operating system interface 172) between
user-space processes and the operating system, thereby
enabling the retention of a lot of elements (e.g., with minor
alteration) existing in the implementations of the operating
system discussed above.
0032. In one or more embodiments, as shown in FIG. 1, at
the client side, a client operating system proxy layer 106
configured to route requests to server operating system 104
and to interpret responses there from may be implemented. In
one or more embodiments, as communication may occur
between the kernels of client operating system 102 and server
operating system 104, a communication protocol for han
dling various transactions there between may be defined. In
one or more embodiments, the aforementioned transactions
may be handled through client operating system proxy layer
106 and a server operating system communication layer 108
as shown in FIG. 1. Again, in one or more embodiments,
server operating system communication layer 108 may serve
to interpret requests from client operating system proxy layer
106.
0033. In an example implementation, data communication
endpoints (e.g., sockets) maybe used on both the client side
and the server side to “listen' to messages from the corre
sponding server side and the client side. Another example
implementation may include implementation at a higher level
through RPC(s). It is obvious that other example implemen
tations are within the scope of the exemplary embodiments.
0034) Modification(s) that may need to be made to the
kernel Subsystem of each of client operating system 102 and
server operating system 104 will be discussed below, along
with relevant communication protocol operation(s). A socket
model may be assumed, wherein, for example, Transmission
Control Protocol (TCP) sockets may be utilized to enable
retransmission and retry in the case of server operating sys
tem 104 going down. The Socket model may be mapped to an
RPC model. In one or more embodiments, as client operating
system 102 may not be loaded with application program(s),
client operating system 102 may be reliable.
0035. In one or more embodiments, a special shell may be
created on the client machine such that the one or more
application program(s) configured to execute thereon may
utilize server operating system 104 instead of client operating
system 102. However, in one or more embodiments, the spe
cial shell may exercise only client operating system 102, and
only application programs started from the special shell may
utilize server operating system 104 for system call servicing.
For the aforementioned behavior of the shell, in one or more
embodiments, the shell may be marked executable using spe
cial loader flag(s).
0036. The term "shell used above may indicate software
that provides a user interface to an operating system that
provides access to the services associated with the kernel.
0037. In one or more embodiments where the operating
system is analogous to UNIX, upon the loading of the shell,
the Vinode associated with the shell executable may be marked
with the special loader flag. In one or more embodiments, the
aforementioned special loader flag may be copied to a child
process through a fork() system call, which may cause client
operating system 102 to execute fault-tolerant code paths
involving interaction with the kernel associated with server

US 2014/0108864 A1

operating system 104 early on in any system call. In one or
more embodiments, client operating system proxy layer 106
may perform the aforementioned function by intercepting
system call(s) early.
0038 “vnode' discussed above may refer to the virtual file
system layer associated with the kernel. The virtual file sys
tem layer may be an abstraction layer on top of a file system
implementing the operating system associated with the ker
nel. The virtual file system layer may be utilized to enable
access of the file system through a client application program.
0039. In one or more embodiments, client operating sys
tem proxy layer 106 may be configured to detect that the
operating system serving the application program(s) is not the
underlying client operating system 102 but is server operating
system 104. It is known to one skilled in the art that whenever
an application program starts from a shell, the application
program inherits the attributes thereof. As discussed above, in
one or more embodiments, the shell may be specially marked
with a loader flag indicating that the application programs
that execute on top thereof are always served from server
operating system 104. In accordance with the aforementioned
process, in one or more embodiments, client operating system
proxy layer 106 may always intercept the system call from the
application program. In one or more embodiments, whenever
client operating system proxy layer 106 notes that the appli
cation program is started from the special shell, the loader flag
may be set through client operating system 102.
0040. In one or more embodiments, as discussed above,
the application program may also inherit the attributes from
the shell. Thus, in one or more embodiments, any application
program that starts on client machine 152 on any shell (e.g.,
an ordinary shell) other than the special shell may necessarily
utilize only client operating system 102. Therefore, in one
alternate embodiment, once the application program is com
piled and the executable built, client operating system 102
may utilize another tool to specially mark the header associ
ated with the application program executable with the loader
flag. In one or more embodiments, the aforementioned tech
nique may substitute marking the shell with the loader flag.
However, marking the shell with the loader flag may be pref
erable to marking each and every application program with a
loader flag.
0041. The lifecycle of an application program (e.g., appli
cation 112) performing file I/O, as interpreted through
decoupled operating system-application computing architec
ture 100 shown in FIG. 1 will be discussed below.
0042. In one or more embodiments, when an application
program opens a file, the file system layer on client operating
system 102 may attempt to open the file through querying
server operating system 104 to obtain a file descriptor there
for. In one or more embodiments, the file system layer on
client operating system 102 may package the open system
call arguments into a network message and may transmit a
request associated with opening the file to server operating
system 104 through interconnect 122. In an example imple
mentation, the aforementioned request may take the form:

0043. CLIENT FOPEN REQ<args->,
where args refers to the arguments associated with the
request.
0044. In one or more embodiments, the server machine
may open the file and return the file descriptor to the client
machine in an acknowledgement message. In one or more
embodiments, when the application program performs a sys
tem call associated with a read() function or a write() func

Apr. 17, 2014

tion using the same file descriptor, client operating system
102 may be aware of the need to forward the request to server
operating system 104 due to the special loader flag present in
the Vinode of the application program executable. In one or
more embodiments, client operating system 102 may trans
mit a read request message to server operating system 104. In
an example implementation, the read request may take the
form:

0.045 CLIENT READ REQ<args),
where args, again, refers to the arguments associated with the
request.
0046. In one or more embodiments, the server machine
may read a number of bytes from the file, in accordance with
the read request, and may transmit the requested data in a
reply to the client machine. In one or more embodiments,
client operating system 102 may then copy the contents asso
ciated with the number of bytes to a buffer on the client
machine, and may return back to the application program.
0047. In one or more embodiments, in accordance with a
write() system call, client operating system 102 may transmit
a write request to server operating system 104 that contains
the data to be written. In an example implementation, the
write request may take the form:

0.048 CLIENT WRITE REQ<argsd,
where args refers to the arguments associated with the write
request.
0049. In one or more embodiments, server operating sys
tem 104 may copy the data to be written to a buffer at the
server machine, and may transmit an acknowledgment to
client operating system 102. In one or more embodiments,
client operating system 102 may then unblock the “process'
to resume execution. In one or more embodiments, the afore
mentioned file open, read and write accesses may be summa
rized as data accesses through the application program, and
the file descriptor as merely a descriptor for generalization
purposes.
0050. In one or more embodiments, following the success
ful writing of “dirty' buffer (or, buffer cache) pages to non
Volatile storage (e.g., disk) on server operating system 104.
server operating system 104 may indicate the aforementioned
Success to client operating system 102 through a message. In
one or more embodiments, client operating system 102 may
then retain the “dirty buffer pages in a memory thereof till
the time the message is received. In one or more embodi
ments, if server operating system 104 crashes and reboots, the
'dirty buffer pages pending on client operating system 102
may be transmitted once again over interconnect 122 to be
written to non-volatile storage (e.g., disk) on the server
machine. In one or more embodiments, thus, consistency of
the file system may be maintained in case of a crash of server
operating system 104.
0051. The phrase “dirty' buffer pages may be associated
with new data that is not yet flushed to non-volatile storage
(e.g., disk). It is obvious that the flushing to non-volatile
storage (e.g., disk) may be done periodically in a computing
system.
0.052 FIG.2 clearly shows service request 202 transmitted
from client operating system proxy layer 106 being serviced
(e.g., through service message 204) by server operating sys
tem 104 through server operating system cot unication layer
108.

0053 FIG. 3 shows a flowchart summarizing the opera
tions involved in the abovementioned example processing of
read request(s) through server operating system 104, accord

US 2014/0108864 A1

ing to one or more embodiments. In one or more embodi
ments, operation 302 may involve the file system layer on
client operating system 102 attempting to open a file corre
sponding to the open request from an application program
(e.g., application 112) on the client machine to obtain a file
descriptor therefor. In one or more embodiments, operation
304 may then involve the file system layer on client operating
system 102 packing the open system call argument(s) asso
ciated with the request into a network (e.g., computer network
associated with communication between client operating sys
tem 102 and server operating system 104) message, and trans
mitting the request associated with opening the file to server
operating system 104 through interconnect 122.
0054. In one or more embodiments, operation 306 may
then involve the server machine opening the file and returning
the file descriptor to the client machine in an acknowledgment
message. In one or more embodiments, operation 308 may
involve reading a number of bytes associated with the read
request through the server machine and transmitting the
requested data to the client machine. In one or more embodi
ments, operation 310 may then involve client operating sys
tem 102 copying the contents associated with the number of
bytes to a buffer on the client machine.
0055. In one or more embodiments, operation 312 may
involve checking for more requests. In one or more embodi
ments, if yes, operation 314 may involve checking through
client operating system 102 as to whether a Subsequent sys
tem call associated with the Subsequent read request from an
application program uses the same file descriptor obtained
above. In one or more embodiments, if yes, control may be
transferred to operation 308. If no, in one or more embodi
ments, control may be transferred to operation 304. In one or
more embodiments, if there are no Subsequent requests, the
process may terminate. Thus, in one or more embodiments,
when the application program performs a system call associ
ated with a read() function (or, even a write() function) using
the same file descriptor, client operating system 102 may be
aware of the need to forward the request to server operating
system 104, as discussed above.
0056. To summarize, in one or more embodiments, when
ever an application program associated with client machine
152 issues an open system call, client operating system proxy
layer 106 may be configured to intercept the system call and
package a network request with arguments (e.g., file name,
read-only flag) to be transmitted over interconnect 122 to
server machine 154. In one or more embodiments, server
operating system communication layer 108 may be config
ured to unpack the network request and reconstruct the origi
nal open call (i.e., reverse engineer).
0057. In one or more embodiments, in decoupled applica
tion-operating system computer architecture 100 proposed
herein, the application program-level (or, user level) state
information and the operating system level state information
may be split. In one or more embodiments, application pro
gram-level page tables (e.g., for pages that an application
program accesses inauser-mode) associated with client oper
ating system 102 may be maintained at the client machine and
operating system-level page tables (e.g., for pages accessed in
a kernel mode), along with a copy of the application-level
program tables, may be maintained at the server machine. In
other words, in one or more embodiments, a page table for
pages associated with the application program may be main
tained at the client machine and complete address space data
structures for the application program executing on the client

Apr. 17, 2014

machine may be maintained at the server machine. Complete
address space data structures include the page table.
0058. In traditional architectures where the application
programs and the operating system are resident on the same
machine, the entire address space of a “process, including
the page(s) referenced by the application program and the
page(s) referenced by the operating system, resides on the
same machine. Thus, application program accesses to pages
that lie in the kernel address space may be “trapped leading
to the termination of the application program when the privi
lege level is not set to a kernel-level.
0059. In the traditional architecture discussed above, the
virtual memory space may be divided into two parts: one
associated with the kernel of the operating system and the
other for the application programs (i.e., at the user level). A
Translation Look-aside Buffer (TLB) may be utilized to
cache and hold page table entries. FIG. 4 shows the virtual
memory implementation associated with the decoupled
architecture of FIG. 1, according to one or more embodi
ments. Specifically, FIG. 4 shows address translation mecha
nisms at both the client machine (e.g., client machine 152)
and the server machine (e.g., server machine 154), according
to one or more embodiments.

0060. In one or more embodiments, as discussed above,
application program-level page tables may be maintained at
client machine 152 and operating system-level page tables
may be maintained at server machine 154, along with a copy
of the application program-level page tables. Although FIG.3
merely shows page table 402 as being associated with client
machine 152 and page table 404 as being associated with
server machine 154, it is obvious to infer the association(s)
thereof with the abovementioned application program-level
page table(s) and the operating system-level page table(s).
0061. In one or more embodiments, TLB 406, at client
machine 152, may manage address translation hits (e.g., TLB
hit 412) in the same away as in the traditional architecture
discussed above. Address translation hit may refer to an event
where a requested address is present in the TLB. In one or
more embodiments, TLB misses (e.g., TLB miss 414) for the
set of instructions associated with the application program
may be serviced by the local kernel on the client machine by
looking up page table 402 for the mapping TLB miss may
refer to an event where the requested address is not present in
the TLB. In one or more embodiments, data pages may be
serviced over interconnect 122 through sending an appropri
ate request during a page fault. In an example implementa
tion, the aforementioned request may take the form:

0062 CLIENT DATA PAGE REQ<args),
where args refers to the arguments associated with the
request.
0063 Thus, in one or more embodiments, the page fault
handler associated with the client-side and the server-side
implementation(s) may have to be appropriately modified. In
one or more embodiments, server machine 154 may respond
to the request by looking up the address space data structures
and page tables (e.g., page table 404) maintained thereon. In
one or more embodiments, if the page is found, the physical
page content(s) may transferred over interconnect 122 to
client machine 152. In one or more embodiments, once the
data page is transferred to client operating system 102, the
page table mapping may be updated and further accesses to
the aforementioned page may be resolved from the memory
associated with client operating system 102.

US 2014/01 08864 A1

0064. In one or more embodiments, if no address transla
tion is found on server operating system 104, the process may
be terminated as in the traditional architecture, i.e., through
the transmission of an appropriate signal from the kernel of
server operating system 104 to the kernel of client operating
system 102. In one or more embodiments, the kernel of client
operating system 102 may transmit the signal to the process
by acting as a “proxy” for the kernel associated with server
operating system 104. In one or more embodiments, the ker
nel associated with client operating system 102 may then
clean up address space associated with the appropriate appli
cation program and transmits an acknowledgment back to the
kernel associated with server operating system 104 to allow
for further cleanup on server machine 154.
0065 FIG. 3 also shows central processor 432 of client
machine 152 and central processor 434 of server machine
154, in accordance with one or more embodiments. Further,
FIG. 3 shows elements such as logical address 442, physical
address 452 and physical memory 462 as being associated
with client machine 152 and logical address 444, physical
address 454, TLB 408, TLB hit 422, TLB miss 424 and
physical memory 464 as being associated with server
machine 154. As descriptions and functionalities associated
with the aforementioned elements within the context of
address translation are well known to one skilled in the art,
discussion associated therewith has been skipped for the sake
of convenience and/or brevity.
0066. In one or more embodiments, in the case of client
operating system 102 and server operating system 104
executing on VMs having the same underlying physical hard
ware (or, having different underlying physical hardware), the
central processor(s) (e.g., central processor 432, central pro
cessor 434) may be associated with the underlying hardware.
However, in one or more embodiments, as the application
program uses virtual addressing, mapping between the virtual
address and the physical address (e.g., actual physical page on
a RAM) may be done. Therefore, in one or more embodi
ments, if the application program and server operating system
104 are associated with the same physical hardware, server
operating system 104 may maintain a page table on behalf of
the application program such that when the application pro
gram requests for a virtual address, server operating system
104 may look up the page table for the application program to
obtain the physical page where the virtual address is found.
0067. In one or more embodiments, in case the physical
page is not loaded into memory (e.g., in the RAM), server
operating system 104 may initiate a fetch from non-volatile
storage (e.g., disk) in order for the physical page to be read. In
one or more embodiments, when the read is completed, an
interrupt may be sent to server operating system 104. In one
or more embodiments, till that time, the application program
may be transitioned into a "sleep' state through client oper
ating system 102. In one or more embodiments, when server
operating system 104 gets serviced with the particular page
request, and the information is transmitted to the client
machine, the application program is “woken up to restart the
same instructions associated therewith prior to the 'sleep”
State.

0068. In one or more embodiments, all application pro
grams executed on the special shell (discussed above) on
client operating system 102 may execute over server operat
ing system 104. In one or more embodiments, the initial
address space of the application program may be set up
through a system call analogous to the fork() system call,

Apr. 17, 2014

which duplicates the address space of the shell. Thus, in one
or more embodiments, no modification associated with the
fork() (or, analogous to fork() implementation may be
required other than what is mentioned in the discussion asso
ciated therewith above.
0069. In one or more embodiments, when the program
loader attempts to setup the address space during the exec()
system call (or, an analogous system call), the program loader
detects the special loader flag discussed above, and appropri
ately interprets the need to request server operating system
104 to load the address space thereof. In an example imple
mentation, the aforementioned request takes the form:

0070 CLIENTEXEC REQ<args>,
where args refers to the arguments associated with the
request.
(0071. In one or more embodiments, server operating sys
tem 104 then initializes the address space data structures and
page tables thereof and then returns the virtual address for the
symbol main() (or, an analogous function signifying begin
ning of execution of the application program, depending on
the implementation) back to client operating system 102. In
one or more embodiments, client operating system 102 may
then attempt to execute the program by calling the address
associated with main(). In one or more embodiments, as the
client page table (e.g., page table 402) is not yet populated, the
aforementioned attempt to execute the program may result in
a page fault. In one or more embodiments, the page fault
handler associated therewith may be aware of the need to
query server operating system 104 for a resolution. Thus, in
one or more embodiments, the page fault handler associated
with client machine 152 may transmit an appropriate request
to server operating system 104. In an example implementa
tion, the aforementioned request may take the form:

0072 CLIENT DATA PAGE REQ<args.>
where args refers to the arguments associated with the
request.
0073. In one or more embodiments, the page may now be
read in and content(s) thereof may be transmitted over inter
connect 122 to client operating system 102, which then allo
cates a physical page thereto and updates page table 402. In
one or more embodiments, every subsequent page fault by the
application program may be handled similarly.
0074 FIG. 5 shows a flowchart summarizing the opera
tions involved in the abovementioned process creation,
according to one or more embodiments. In one or more
embodiments, operation502 may involve requesting, through
client machine 152, server operating system 104 to load the
address space of an application program (e.g., application
112). In one or more embodiments, operation 504 may then
involve server operating system 104 initializing the address
space data structures and page tables thereof and returning the
virtual address for the symbol main() (or, an analogous
function, depending on the implementation) back to client
operating system 102. In one or more embodiments, opera
tion 506 may then involve client operating system 102
attempting to execute the program by calling the address
associated with main()
0075. In one or more embodiments, operation 508 may
involve the page fault handler associated with client machine
152 transmitting an appropriate request for resolution of the
page fault to server operating system 104. In one or more
embodiments, operation 510 may then involve the appropri
ate page being read in and content(s) thereof being transmit
ted over interconnect 122 to client operating system 102. In

US 2014/0108864 A1

one or more embodiments, operation 512 may involve client
operating system 102 allocating a physical page to the content
(s) transmitted to client machine 152. In one or more embodi
ments, operation 514 may then involve checking as to
whether the complete transmission of the content(s) to client
operating system 102 is accomplished. If yes, in one or more
embodiments, operation 516 may then involve client operat
ing system 102 updating page table 402. If no, in one or more
embodiments, control may pass to operation 510.
0076. In one or more embodiments, at the application
program-level, the lifetime of a “process' may merely be
spent with pages in an address space thereof. However, in one
or more embodiments, whenever the process” makes a sys
tem call, new system call stubs in client operating system
proxy layer 106 may redirect the call to server operating
system 104 through an appropriate message. In an example
implementation, the aforementioned message may take the
form:

0.077 CLIENT SYSTEM CALL<args),
whereinargs refers to the arguments associated with the mes
Sage.
0078. In one or more embodiments, server operating sys
tem 104 may then call a standard system call entry point
function with the abovementioned arguments just as if the
request were initiated from an application program thereon.
In one or more embodiments, in the return path, server oper
ating system 104 may package the return value and modifi
cations to the arguments passed by reference in an acknowl
edgment message back to client operating system 102. In one
or more embodiments, client operating system 102 may then
copy over the return value(s) to placeholder(s) associated
with the application program, log the system call arguments
and return value(s) locally. In one or more embodiments,
client operating system 102 may then return control back to
the application program.
0079. In one or more embodiments, when a “process'
exits via an exit() system call (or, an analogous implementa
tion), client operating system 102 may clean up the State
associated with the “process on client machine 152 (e.g.,
frees up page tables associated with the process and allocated
tables). In one or more embodiments, client operating system
102 may then transmit an appropriate exit message to server
operating system 104. In an example implementation, the
aforementioned exit message may take the form:

0080 CLIENT EXIT<args),
where <args refers to the arguments associated with the exit
message.
0081. In one or more embodiments, server operating sys
tem 104 may then similarly clean up the state associated with
the “process on server machine 154. In one or more embodi
ments, server operating system 104 may then transmit an
acknowledgment back to client operating system 102.
0082 In one or more embodiments, when server operating
system 104 crashes and reboots, the application program
executing immediately prior to the crash may need to be
resumed. In one or more embodiments, although the address
space associated with the application program is intact at
client operating system 102, data structure(s) associated with
server operating system 104 that capture the state of the
operating system associated with the application program
(e.g., client operating system 102) may have been lost during
the course of the crash.

0083. In one or more embodiments, to facilitate recon
struction of the server-side operating system state of the

Apr. 17, 2014

application program, system call(s), arguments and return
value(s) made by the application program may be logged in at
client machine 152 and replayed when server operating sys
tem 104 reboots after the crash. In one or more embodiments,
when the “process' acquires the same process identifier (PID)
(e.g., a number utilized by the kernel of the operating system
to uniquely identify the “process'), same shared memory
segment identifier, same file descriptor(s) etc., safety may be
ensured. In one or more embodiments, in order to address
safety, the arguments passed by reference and system call
return values may be saved.
0084. In one or more embodiments, when server machine
154 reboots after the crash, a special replay process may be
initiated on server machine 154 (e.g., through client machine
152) that performs system call replay. In one or more embodi
ments, the replay process may involve walking through sys
tem calls from the log to enable sequential replay thereof. For
the sequential replay, in one or more embodiments, server
operating system 104 may be configured to call equivalent
Application Programming Interface(s) (API(s)) in a dynami
cally loadable kernel module therein that receives as argu
ments the 'old' values of logged arguments that were passed
by reference and “old” system call return codes. In one or
more embodiments, these additional arguments may provide
hints to server operating system 104 for the new set of output
and return values.
I0085 For example, the open system call may return the
file descriptor. When calling a restart-friendly API, the kernel
module may receive an additional parameter "oldfd' (read as
old file descriptor (fd)) as arguments of an example function
open restart(args) (args, again, refer to arguments). Server
operating system 104 may then attempt to allot the same fa
value specified through oldfd, thereby enabling recreation of
the kernel state associated with the application program at the
server side. If a pointer in the address space associated with
the application program is passed to the system call, the
content(s) of memory that the pointer points to may also be
logged after the system call returns. The aforementioned con
tent(s) may then be passed to the restart-friendly API for the
reconstruction of the operating system state of the application
program at the server side.
I0086. The aforementioned restart information may even
be written to the NVRAM on client machine 152 during a
presence therein due to “persistence' in the event of a crash
associated with client operating system 102. Obviously, the
NVRAM content(s) may be periodically flushed to the log file
on non-volatile storage (e.g., disk) as a background activity.
I0087. In one or more embodiments, the signaling mecha
nism discussed above with regard to I/O completion on the
side of server operating system 104 may be utilized to per
form an optimization process during the system call replay.
For example, all write() calls associated with the file system
that have been flushed to non-volatile storage (e.g., disk) may
not be required to be replayed. Only the write() calls that have
not received acknowledgment(s) from server machine 154
may need to be replayed. In one or more embodiments, the
aforementioned optimization may significantly reduce replay
time as I/O operation(s) involve higher latencies when com
pared to computation. In one or more embodiments, efficient
log management may need to be performed to ensure that the
log files do not unmanageably expand size-wise. In one or
more embodiments, the aforementioned optimization may
also be utilized to delete unwanted write() records in the log
at the client machine (e.g., client machine 152).

US 2014/0108864 A1

0088. In one or more embodiments, another optimization
process associated with regard to read() system calls may be
performed during replay. In one or more embodiments, for
each open file descriptor, the replay process utilizes the last
read() or write() call on the aforementioned file descriptor, as
discussed above, and seeks the file offset indicated by the
aforementioned call to ensure that the file offset(s) are appro
priate on the restart of the application program. In one or more
embodiments, further, the read() system call may be ignored
otherwise totally from replay as the file system buffers asso
ciated with the application program may already be populated
correctly from previous read calls that have returned prior to
a crash. In one or more embodiments, additionally, the con
tent(s) of the buffers associated with the application program
that are passed to the read() system call may not be required
to be logged because of not being part of the kernel-state
(except for the file offset).
0089. To summarize, in one or more embodiments, the
"log as used above may be associated with the operating
system. In one or more embodiments, the "log may be saved
through the file system implementing the operating system
(e.g., at client machine 152). In one or more embodiments,
whenever the application program performs a system call,
client operating system 102 may be configured to create log of
the system call. Thus, in one or more embodiments, the log at
the client side may include all system calls performed through
the application program. In one or more embodiments, as
only the arguments and return values are logged, the afore
mentioned log may be written out into a file. Therefore, in one
or more embodiments, even if server machine 154 crashes
and reboots, the log is still in the memory of client machine
152.

0090. In one or more embodiments, client operating sys
tem proxy layer 106 may initiate the replay discussed above.
In one or more embodiments, following the initiation of the
replay, the requests may be transmitted over interconnect 122
to server machine 154. In one or more embodiments, as the
log includes elements that initially constructed the server
side state of the application program, when the log is
replayed, the original server-side state of the application pro
gram may be completely reconstructed sequentially.
0091. In one or more embodiments, high availability of the
one or more application programs of FIG. 1 may be ensured
even in the presence of operating system failures. Also, as
discussed above, in one or more embodiments, the applica
tion program may continue from a state of execution thereof
at the time of a crash after the crash. This is in direct contrast
to checkpointing, which restores the application program to a
previous state thereof prior to the crash. As exemplary
embodiments discussed above enable logging of minimal
information at System call points, performance overhead(s)
may be significantly reduced when compared to architectures
involving checkpointing.
0092. In one or more embodiments, client machine 152
and server machine 154 may also utilize heterogeneous hard
ware (instead of utilizing homogeneous hardware, which is
also supported by the exemplary embodiments), in contrast to
an active/active high availability cluster Solution. Exemplary
embodiments discussed above may also enable the use of
“thin' client machine(s) 152 (e.g., Personal Digital Assistant
(s) (PDAs), mobile phones) and “fat servers, thereby allow
ing application program(s) to execute on low-end computing
devices. In one or more embodiments, in the case of execution
on a low-end computing device, a high-speed wireless net

Apr. 17, 2014

work may be utilized to serve as a high-speed interconnect
(e.g., interconnect 122) between client machine 152 and
server machine 154. In one or more embodiments, client
operating system 102 and server operating system 104 may
also be different operating systems as long as client machine
152 and server machine 154 are configured to communicate
through a common protocol. It is obvious that homogeneous
operating systems (e.g., client operating system 102 and
server operating system 104 being similar) are Supported
through the exemplary embodiments discussed herein.
0093. In one or more embodiments, server machine 154
may also be utilized as a “pure' file-server or a web-server,
thereby enabling the offloading of a lot of computation asso
ciated with the user-space application program(s) to client
machine 152. Thus, exemplary embodiments may also pro
vide benefit(s) associated with server load-balancing and reli
ability. In one or more embodiments, server machine 154 may
be available to receive more load, thereby being capable of
being the “main server” for other application program(s)
executing on other client machine(s) 152 having a similar
computational model.
0094. In one or more embodiments, organizations/compa
nies hosting critical application program(s) on a server cluster
may utilize the concepts discussed herein to improve the
reliability of the aforementioned application program(s). In
one or more embodiments, large-scale simulation(s)/scien
tific computation(s) may benefit from the concepts discussed
herein as server crashes may not compromise work. In one or
more embodiments, the concept of splitting user-level and
kernel-level page tables between client machine 152 and
server machine 154 may also ease recovery of data thereon.
0.095 FIG. 6 shows a process flow diagram detailing the
operations involved in a method of application program (e.g.,
application 112)-operating system (e.g., server operating sys
tem 104) decoupling, according to one or more embodiments.
In one or more embodiments, operation 602 may involve
performing, through an application program (e.g., application
112) configured to execute on client machine 152, a system
call to a first operating system (e.g., server operating system
104) executing on server machine 154 over an interconnect
122 configured to couple server machine 154 to client
machine 152. In one or more embodiments, operation 604
may then involve serving the application program configured
to execute on client machine 152 through the first operating
system executing on server machine 154 in accordance with
the system call.
0096 FIG. 7 shows a process flow diagram detailing the
operations involved in a method of requesting service from a
first operating system (e.g., server operating system 104)
executing on a server machine (e.g., server machine 154)
through an application program (e.g., application 112) con
figured to execute on a client machine (e.g., client machine
152), according to one or more embodiments. In one or more
embodiments, operation 702 may involve marking a shell on
the client machine or the application program configured to
execute thereon with a loader flag through a second operating
system (e.g., client operating system 102) executing on the
client machine. In one or more embodiments, operation 704
may then involve performing, through the client machine, a
system call to the first operating system executing on the
server machine instead of the second operating system based
on the marking of the shell or the application program.
0097. It is obvious that the separate messages (e.g., CLI
ENT FOPEN REQ, CLIENT READ REQ, CLIENT

US 2014/0108864 A1

WRITE REQ) for the open(), read() and write() system
calls mentioned above may be packaged instead, for example,
aS

0.098 CLIENT SYSTEM CALL
FOPEN REQ, args>,

0099 CLIENT SYSTEM CALL <CLIENT READ
REQ, args, and

01.00 CLIENT SYSTEM CALL
WRITE REQ, args>,

where args is the arguments associated with the respective
messages.
0101. In one or more embodiments, any other system calls
may be similarly implemented. It is obvious that the above
mentioned system calls merely serve as examples, and other
implementations thereof are within the scope of the exem
plary embodiments. In one or more embodiments, the execu
tion of the set of system calls may involve execution of the
stub code in client operating system proxy layer 108, pack
aging of arguments into a CLIENT SYSTEM CALL mes
sage, transmission over interconnect 122, server-side execu
tion, return to client machine 152 and post-processing at
client machine 152.
0102 Although the present embodiments have been
described with reference to specific example embodiments, it
will be evident that various modifications and changes may be
made to these embodiments without departing from the
broader spirit and scope of the various embodiments. Also,
for example, the various devices and modules described
herein may be enabled and operated using hardware circuitry
(e.g., CMOS based logic circuitry), firmware, software or any
combination of hardware, firmware, and Software (e.g.,
embodied in a machine readable medium). For example, the
various electrical structure and methods may be embodied
using transistors, logic gates, and electrical circuits (e.g.,
application specific integrated (ASIC) circuitry and/or in
Digital Signal Processor (DSP) circuitry).
0103) In addition, it will be appreciated that the various
operations, processes, and methods disclosed herein may be
embodied in a machine-readable medium and/or a machine
accessible medium compatible with a data processing system
(e.g., a computer devices), and may be performed in any order
(e.g., including using means for achieving the various opera
tions). Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. A method of requesting service from a first operating

system executing on a server machine through an application
program configured to execute on a client machine compris
ing:

marking one of a shell on the client machine and the appli
cation program configured to execute thereon with a
loader flag through a second operating system executing
on the client machine;

<CLIENT

<CLIENT

Apr. 17, 2014

performing, through the client machine, a system call to the
first operating system executing on the server machine
instead of the second operating system based on the
marking of the one of the shell and the application pro
gram; and

resuming the application program executing immediately
prior to a crash of the first operating system based on
reconstructing a server-side operating system state of
the application program prior to the crash.

13. The method of claim 12, wherein the client machine
and the server machine are one of Standalone computing
devices executing the second operating system and the first
operating system respectively thereon and VMS executing
instances of the second operating system and the first operat
ing system respectively thereon.

14. The method of claim 12, further comprising: imple
menting a second operating system proxy layer at the client
machine through the second operating system to route a
request associated with the system call to the first operating
system; implementing a first operating system communica
tion layer at the server machine through the first operating
system to interpret the request associated with the system call
from the client machine; and communicating between the
second operating system proxy layer and the first operating
system communication layer in accordance with the request
and the interpretation thereof.

15. The method of claim 12, comprising accessing data
through the application program, the accessing of the data
further comprising: querying the first operating system
through the second operating system to obtain a descriptor
associated with the data; packaging at least one argument
associated with the system call into a message through the
second operating system; and transmitting a request associ
ated with accessing the data from the second operating sys
tem to the first operating system through the interconnect.

16. The method of claim 12, further comprising splitting
state information at a level of the application program and the
operating system through: maintaining a page table for pages
associated with the application program at the client machine;
and maintaining complete address space data structures at the
server machine for the application program executing on the
client machine.

17. (canceled)
18. The method of claim 16, further comprising: transmit

ting an appropriate request from the client machine to the
server machine through the interconnect during a page fault;
transferring content associated with the page associated with
the page fault to the client machine over the interconnect
when the page is found at the server machine; and updating
mapping associated with the page table maintained at the
client machine upon transfer of the content to the client
machine.

19. The method of claim 12, wherein reconstructing the
server-side operating system state of the application program
prior to the crash includes: logging in the system call, argu
ments and return values associated therewith made through
the application program at the client machine; and replaying
the log during rebooting of the first operating system follow
ing the crash, wherein the log is configured to be stored at the
client machine.

20. The method of claim 15, further comprising: indicating
a Successful writing of a dirty page associated with a buffer at
the client machine to non-volatile storage at the server
machine to the second operating system through an appropri

US 2014/0108864 A1

ate message; retaining the dirty page in a memory of the client
machine till the appropriate message is received from the
server machine; and transmitting the dirty page over the inter
connect to be written to the non-volatile storage at the server
machine following a crash and reboot thereof, wherein the
dirty page is associated with new data that is not yet flushed to
non-volatile storage.

21. The method of claim 19, further comprising: creating a
log of the system call whenever the application program
performs the system call through the second operating sys
tem; initiating the replay through the second operating system
proxy layer at the client machine; and replaying the log to
sequentially reconstruct the server-side state of the applica
tion program prior to the crash.

22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. A non-transitory, machine readable storage medium

storing executable instructions, which when executed by a
machine, causes the machine to perform a method for
requesting Service from a first operating System executing on
a server machine through an application program configured
to execute on a client machine, the method comprising:

marking one of a shell on the client machine and the appli
cation program configured to execute thereon with a
loader flag through a second operating system executing
on the client machine;

performing, through the client machine, a system call to the
first operating system executing on the server machine
instead of the second operating system based on the
marking of the one of the shell and the application pro
gram; and

resuming the application program executing immediately
prior to a crash of the first operating system based on
reconstructing a server-side operating system state of
the application program prior to the crash.

34. The storage medium of claim 33, wherein the client
machine and the server machine are one of standalone com
puting devices executing the second operating system and the
first operating system respectively thereon and VMS execut
ing instances of the second operating system and the first
operating system respectively thereon.

35. The storage medium of claim 33, the method further
comprising: implementing a second operating system proxy
layer at the client machine through the second operating
system to route a request associated with the system call to the
first operating system; implementing a first operating system
communication layer at the server machine through the first
operating system to interpret the request associated with the
system call from the client machine; and communicating
between the second operating system proxy layer and the first
operating system communication layer in accordance with
the request and the interpretation thereof.

36. The storage medium of 33, comprising accessing data
through the application program, the accessing of the data
further comprising: querying the first operating system

Apr. 17, 2014

through the second operating system to obtain a descriptor
associated with the data; packaging at least one argument
associated with the system call into a message through the
second operating system; and transmitting a request associ
ated with accessing the data from the second operating sys
tem to the first operating system through the interconnect.

37. The storage medium of 33, further comprising splitting
state information at a level of the application program and the
operating system through: maintaining a page table for pages
associated with the application program at the client machine;
and maintaining complete address space data structures at the
server machine for the application program executing on the
client machine.

38. The storage medium of 33, wherein reconstructing the
server-side operating system state of the application program
prior to the crash includes: logging in the system call, argu
ments and return values associated therewith made through
the application program at the client machine; and replaying
the log during rebooting of the first operating system follow
ing the crash, wherein the log is configured to be stored at the
client machine.

39. The storage medium of 33, the method further com
prising: creating a log of the system call whenever the appli
cation program performs the system call through the second
operating system; initiating the replay through the second
operating system proxy layer at the client machine; and
replaying the log to sequentially reconstruct the server-side
state of the application program prior to the crash.

40. A system, comprising:
a server machine executing a first operating system; and
a client machine executing an application configured to

request service from the first operating system
wherein one of a shell on the client machine is marked and

the application program is configured to execute thereon
with a loader flag through a second operating system
executing on the client machine;

wherein the client machine performs a system call to the
first operating system executing on the server machine
instead of the second operating system based on the
marking of the one of the shell and the application pro
gram; and

wherein the application program execution is resumed
immediately prior to a crash of the first operating system
based on reconstructing a server-side operating system
state of the application program prior to the crash.

41. The system of claim 40, wherein the client machine and
the server machine are one of standalone computing devices
executing the second operating system and the first operating
system respectively thereon and VMS executing instances of
the second operating system and the first operating system
respectively thereon.

42. The system of claim 40, wherein the client machine
implements a second operating system proxy layer at the
client machine through the second operating system to route
a request associated with the system call to the first operating
system; and the server machine implements a first operating
system communication layer through the first operating sys
tem to interpret the request associated with the system call
from the client machine; and wherein the second operating
system proxy layer and the first operating system communi
cation layer communicate in accordance with the request and
the interpretation thereof.

43. The system of 40, wherein reconstructing the server
side operating system state of the application program prior to

US 2014/0108864 A1 Apr. 17, 2014
11

the crash includes: logging in the system call, arguments and
return values associated therewith made through the applica
tion program at the client machine; and replaying the log
during rebooting of the first operating system following the
crash, wherein the log is configured to be stored at the client
machine.

44. The system of 40, wherein a log of the system call is
created whenever the application program performs the sys
tem call through the second operating system; the replay
through the second operating system proxy layer at the client
machine is initiated; and the log is replayed to sequentially
reconstruct the server-side State of the application program
prior to the crash.

