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BESS AIDED RENEWABLE ENERGY some of which occupies at least 8 % of the total electricity 
SUPPLY USING DEEP REINFORCEMENT usage [ 10 ] . By installing the PV and wind turbine near the 

LEARNING FOR 5G AND BEYOND BSs , it shows that the maximum power generations from the 
solar and wind generators can reach up to 8.5 kW and 6.0 

TECHNICAL FIELD 5 kW , respectively [ 10 ] , which can remarkably cut down the 
communication energy supply from the traditional power 

The present disclosure relates to the field of cellular gird . 
networking , and more particularly relates to a battery energy Therefore , a heretofore unaddressed need exists in the art 
storage system ( BESS ) for managing energy expenditure in to address the aforementioned deficiencies and inadequa 
networking base stations . 10 cies . 

BACKGROUND SUMMARY 

Some references , which may include patents , patent appli- In the present disclosure , a battery energy storage system 
cations and various publications , are cited and discussed in 15 ( BESS ) aided renewable energy supply solution is described 
the description of this disclosure . The citation and / or dis- Aiming to reduce energy costs for mobile operators , the 
cussion of such references is provided merely to clarify the BESS may maximize the utilization of renewable energy 
description of the present disclosure and is not an admission and thus minimize the utilization of the power grid ( i.e. , 
that any such reference is “ prior art ” to the disclosure fossil energy ) . Specifically , the energy charge can be con 
described herein . All references cited and discussed in this 20 tinuously reduced using generated renewable power , and the 
specification are incorporated herein by reference in their demand charge can be reshaped and flattened through stra 
entireties and to the same extent as if each reference is tegic battery discharging / charging operations . 
individually incorporated by reference . In terms of notation , Due to the adoption of high frequency bands by 5G base 
hereinafter , [ n ] represents the nth reference cited in the station ( BS ) , its signal coverage range is much shorter than 
reference list . 25 that of the 4G / LTE . Consequently , the mobile operators need 
Modern innovations have resulted in an unprecedented to deploy a large number of 5G BSs to counteract poor 

development of 5G networks , along with the widespread signal coverage . This would result in an ultra - dense BS 
deployment of 5G base stations ( BSs ) . Compared to deployment , especially in “ hotspot ” areas , as illustrated in 
4G / LTE , 5G may provide much higher bandwidth , lower FIG . 1 . 
and more reliable latency , and larger number of connections 30 In order to minimize the electricity cost of 5G BSs , the 
many IoT devices . Nevertheless , the enormous energy con- BESS may be a renewable energy supply solution for BSs , 
sumption of BSs and related costs have become significant which can supply clean energy to the BS and store surplus 
concerns for mobile operators . As the price of renewable energy for backup usage . Specifically , a deep reinforcement 
energy has continuously declined , equipping BSs with learning ( DRL ) based storage controlling policy may be 
renewable energy generators may be a promising solution 35 used to better control batter charging / discharging , which can 
for energy cost reduction . adapt to the dynamical renewable energy generations as well 
5G is considered to be a promising technology for sig- as varying power demands . Using real - world data on renew 

nificantly improving the daily life of many individuals [ 1 ] . able energy generations and power demands demonstrate 
Compared to 4G / LTE , 5G can ensure users receive higher that , the proposed solution can result in a monthly saving for 
bandwidth and lower latency , enabling various cutting - edge 40 one BS by up to $ 50.7 ( with a corresponding saving ratio of 
mobile services , such as the Internet of Vehicles [ 2 ] , Virtual 74.8 % ) , compared to when using only a power grid supply . 
Reality [ 3 ] , and Smart Medical Home [ 4 ] . To maximize the utilization of renewable energy , energy 

Building and operating such large - scale BSs requires an storage can be strategically utilized such that the energy can 
enormous investment and may consume many resources be continuously provided , as renewable ( e.g. , solar , wind , 
( e.g. , power consumption ) . According to field surveys in the 45 etc. ) energy is intermittent and unstable . Meanwhile , most 
cities of Guangzhou and Shenzhen , China , the full - load BSs are equipped with backup batteries to safeguard the 
power consumption of a typical 5G BS is about 2-3 times of BS’s normal functioning against power outages , providing 
that of a 46 BS [ 5 ] . Considering the ultra - dense deployment for natural energy storage . With the continuous price decline 
of 5G BSs , a tenfold increase in energy consumption may be in battery storage in recent years [ 11 , 12 ] , combining battery 
realized . As such , reducing energy consumption in 5G BSs 50 storage with renewable energy generators could offer even 
may result in significant resource consumption reduction . greater cost - reduction potential . Specifically , i ) when the 

Renewable energies such as solar energy and wind energy generated renewable power is less than the power demand 
may be environmentally - friendly means for supplying ( e.g. , during the peak hours ) , the battery can be discharged 
power with low CO2 emissions . Due to a continuing price to flatten the peak power demands , and ii ) when the gener 
decline in photovoltaic ( PV ) modules and wind turbines , the 55 ated renewable power is more than the power demand ( e.g. , installation cost of renewable energy has dramatically during the off - peak hours ) , the battery can be charged to 
decreased over the past decade , ( e.g. , there has been a 61 % store the surplus renewable energy . 
reduction of the solar equipment from 2010 to 2017 ) [ 8 ] . When designing the optimal control strategy in battery 
Such cost reductions can lead to a rapid payback period for discharging / charging operations , several challenges must be 
the initial renewable energy investment , from a couple of 60 addressed . First , renewable energy generation and power 
years to several months [ 9 ] . The above observations indicate demands vary highly in both spatial and temporal dimen 
a great potential for renewable energy on the market as fossil sions and thus may be difficult to predict . Second , due to the 
fuel replacement in the reduction of carbon emissions . physical constraints of battery discharging / charging opera 

It thus has inspired the mobile operators to utilize renew- tions ( e.g. , discharge / charge efficiency ) , it may be compli 
able energy as an auxiliary power supply to tackle the huge 65 cated to design an optimal battery controlling policy . Third , 
power demand at 5G BSs . In some developing countries , as the battery's capacity and lifetime are limited and short 
solar power has already been applied to supply the BSs , ened along with the discharge / charge cycles , it is necessary 
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to trade - off between the cost of battery's degradation / re- In another embodiment , the e - greedy policy includes : 
placement and the gain of renewable energy storage . selecting an action with a maximum reward from the main 

The BESS aided renewable energy supply paradigm for net with a probability of e ; and selecting a random action 
5G BS operations , in which the battery discharging / charging with a probability of 1- € . 
controlling is modelled as an optimization problem is 5 In another embodiment , the DNN is updated by the loss 
described herein . The model takes into account practical function with a mini - batch experience from the replay buffer considerations of dynamic power demand and renewable by means of stochastic gradient descent . energy generation , as well as battery specifications and In another embodiment , the environment state includes : a physical constraints . power demand of the BESS ; an amount of renewable energy To cope with dynamic renewable energy generation and 10 
power demands , while maintaining a reasonable computa generated by the renewable energy generator ; a battery 

storage state ; and a peak power consumption of the BESS . tion complexity for the optimization problem , a deep rein 
forcement learning ( DRL ) based battery discharging / charg In another embodiment , the battery storage state includes : 
ing controlling policy may be used which can improve its a State of Energy ( SOE ) including a current effective capac 
decision - making process by interacting with the environ- 15 ity of the battery storage as a percentage of an initial 
ment . capacity of the battery storage ; a State of Charge ( SOC ) 

Extensive evaluations are conducted using real - world BS including a current energy stored in the battery as per 
deployment scenarios and BS traffic load traces . The results centage of the current effective capacity ; and a Depth of 
show that the proposed DRL - based battery discharging Discharge ( DoD ) including an amount of energy that has 
charging controlling policy can effectively utilize the renew- 20 been released by the battery storage as a percentage of the 
able energy and cut down the energy cost , with the cost current effective capacity . 
saving up to 550.7 . In another embodiment , parameters of the main network 

In one embodiment , A battery energy storage system are updated in real time based on results from the loss 
( BESS ) is described . The BESS includes : a battery storage function . 
configured to store surplus renewable energy ; a controller 25 In another embodiment , the renewable energy generator 
coupled to the battery storage and configured to control comprises a solar photovoltaic ( PV ) module and a wind 
charging operations and discharging operations of the bat- turbine . 
tery storage ; a generation meter coupled to the controller and In another embodiment , the power generated by the solar 
configured to measure renewable energy ; a renewable PV module is calculated based on global horizontal irradi 
energy generator coupled to the generation meter and con- 30 ance , outdoor temperature , and time of day . 
figured to generate renewable energy ; and a standard meter In another embodiment , the power generated by the wind 
coupled to the controller and configured to measure energy turbine is calculated based on wind velocity , a weather 
provided by a power grid ; wherein the controller is config- system , and hub height . 
ured to manage energy expenditure of the BESS according In another embodiment , the action comprises ( i ) a deter 
to the following steps : initializing a replay buffer configured 35 mination of whether or not the battery storage should be 
to store state transition samples ; initializing a main net discharged or charged and ( ii ) a determination of an amount 
configured to generate a current Q - value ; initializing a target of energy to be discharged or charged . 
net configured to generate a target Q - value ; obtaining an 
environment state of the BESS ; selecting an action based on BRIEF DESCRIPTION OF THE DRAWINGS 
an e - greedy policy , wherein the action controls battery 40 
discharging and battery charging operations of the BESS ; The accompanying drawings illustrate one or more 
executing the action resulting in a next environment state embodiments of the present disclosure and , together with the 
and calculating a reward based on the performance of the written description , serve to explain the principles of the 
action ; storing transition samples in the replay buffer , the present disclosure , wherein : 
transition samples comprising the environment state , the 45 FIG . 1 illustrates a system of network base stations 
action , the reward , and the next environment state ; periodi- integrated with power solutions , in accordance with an 
cally updating a Deep Neural Network ( DNN ) by a loss embodiment of the present disclosure ; 
function with a mini - batch experience from the replay FIGS . 2A - 2C illustrates graphs showing power demand 
buffer ; updating the target net based on the reward ; and patterns for BSs , wherein FIG . 2A shows a power demand 
periodically updating parameters of the target net with 50 pattern of BSs in a residential area , FIG . 2B shows a power 
parameters of the main net , wherein the DNN comprises the demand pattern of BSs in an office area , and FIG . 2C shows 
main net and the target net . a power demand pattern of BSs in a comprehensive area , in 

In another embodiment , the reward is calculated based on accordance with an embodiment of the present disclosure ; 
a reward function and the reward function comprises a FIG . 3 illustrates an exemplary BESS , in accordance with 
reward for incremental energy charge , a reward for incre- 55 an embodiment of the present disclosure ; 
mental demand charge , and a reward for an investment cost . FIG . 4 illustrates a learning process of a Deep Q - Network 

In another embodiment , the incremental energy charge ( DON ) , in accordance with an embodiment of the present 
comprises a total consumed electricity amount of the BESS disclosure ; 
in one cycle . FIG . 5 illustrates a graph showing a relationship between 

In another embodiment , the incremental demand charge 60 depth of discharge ( DoD ) levels and battery lifetime for a 
comprises a peak power demand of the BESS in one cycle . lithium - ion ( LI ) battery , in accordance with an embodiment 

In another embodiment , the investment cost comprises a of the present disclosure ; 
cost of using the battery storage and the renewable energy FIGS . 6A - 6B illustrate graphs showing output power 
generator in one cycle . patterns for different weather conditions , wherein FIG . 6A 

In another embodiment , the loss function comprises an 65 shows solar photovoltaic ( PV ) output power patterns and 
expected value of the difference between the target Q value FIG . 6B shows wind turbine output power patterns , in 
and the current Q value . accordance with an embodiment of the present disclosure ; 
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FIG . 7 illustrates a graph showing weather data in differ- billing cycle ( e.g. , one month ) ) , and ii ) demand charge ( i.e. , 
ent cities , in accordance with an embodiment of the present the peak power demand ( in kW ) during the billing cycle 
disclosure ; and period ) . Specifically , the demand charge is regarded as a 
FIGS . 8A - 81 illustrate graphs showing power supply penalty caused by an extra load burden to the power grid . 

patterns of different power supply methods under different 5 For example , for a commercial data center consuming 10 
weather conditions , in accordance with an embodiment of MW on peak and 6 MW on average , the monthly energy 
the present disclosure . charge and demand charge amounts to around $ 24,000 and 

$ 165,500 , respectively [ 14 ] . The demand charge can be up DETAILED DESCRIPTION to 8 times the energy charge . As such , effectively cutting 
The present disclosure will now be described more fully down the demand charge could remarkably reduce the 

hereinafter with reference to the accompanying drawings , in energy cost . However , there seems no practical way to 
which exemplary embodiments of the present disclosure are flatten the peak power demands of 5G BSs , e.g. , shifting 
shown . The present disclosure may , however , be embodied real - time demands from mobile users to the off - peak hours 
in many different forms and should not be construed as could lead to a long delay for some classes of jobs [ 15 ] . 
limited to the embodiments set forth herein . Rather , these System Model 
embodiments are provided so that this disclosure is thorough For clarity , major notations used in the present disclosure 
and complete , and will fully convey the scope of the present are shown in Table I. 
disclosure to those skilled in the art . Like reference numerals 
refer to like elements throughout . TABLE I 

Embodiments of the present disclosure are illustrated in Notation detail hereinafter with reference to accompanying drawings . Description 

It should be understood that specific embodiments described d?t ) power demand of 5G BS in time slot t 
herein are merely intended to explain the present disclosure , g ( t ) renewale energy generation in time slot t 

b ( t ) but not intended to limit the present disclosure . battery discharging / charging operations in time slot t 
X ( t ) battery state in time slot t In order to further elaborate the technical means adopted p ( t ) power supplied by the power gird in time slot t 

by the present disclosure and its effect , the technical scheme peak power consumption supplied by power gird 
of the present disclosure is further illustrated in connection initital capacity of the battery 

Cet ) with the drawings and through specific mode of execution , energy charge of 5G BS in time slot t 
demand charge of 5G BS in time slot t but the present disclosure is not limited to the scope of the 30 investment cost in time slot t 

implementation examples . prices of energy charge 
The present disclosure relates to the field of cellular prices of demand charge 

networking , and more particularly relates a battery energy prices of investment cost 
a , ß discharging and charging efficiencies , respectively storage system ( BESS ) for managing energy expenditure in R + , R- max charge and discharge ares of battery , respectively 

networking base stations . s ( t ) environment state in time slot t 
Base Station Power Demand a ( t ) action taken by the agent in time slot t 

r ( t ) reward of the action in time slot t The power demand pattern of a BS is mainly determined mapping policy from environment states to action 
by its location and the behavior of users at the location . R ( a ( t ) , s ( t ) ) reward function of the DQN 
Usually , the demand also shows a periodic pattern ( e.g. , with Q , Q - values of the main net and target net , respectively 
a one - day or one - week period ) . As shown in FIGS . 2A - 2C , 40 parameters of the main net and target net , respectively 
three types of BSs are considered at resident , office , and 
comprehensive areas , which account for nearly ninety per- Scenario Overview 
cent of total demands [ 13 ] . The characteristics of these As illustrated in FIG . 3 , the proposed BESS aided renew power demand patterns are as follows . 
Power Demand of BSs at Resident Area : the power 45 includes : i ) a renewable energy generator , ( e.g. a PV panel 

able energy supply solution deployed at each 5G BS mainly 
demands of this type of BS increases rapidly in the evening , and wind turbine ) , which is deployed near the 5G BS system as most people stay at home after work . Compared with 
weekdays , the power demands are typically at high levels on and generates renewable energy for the system , ii ) a battery 
weekends . storage , which stores the surplus renewable energy and acts 
Power Demand of BSs at Office Area : the power demands 50 as the power source for the BS as needed , and iii ) a 

of this type of BS is at a high - level during the day , while controller , which can obtain the environment state ( i.e. , the 
people are working . However , as fewer people work on measurement data ) so as to control the battery discharging 
weekends , the weekend power demands are much lower charging operations through the control signals . In addition 
than those during the week . to the standard meter , as shown in FIG . 3 , an additional 

Power Demand of BSs at Comprehensive Area : due to the 55 generation meter is installed for the BS power supply system 
diversity of the requests , compared to the above two BSs , the to measure the renewable energy generation . Furthermore , 
power demand patterns of this type of BS is more stable : with commands from the controller , the distribution panel 
constantly keep at a high - level in the day time and evening takes responsibility of switching power between renewable 
and drop in the late night and early morning . energy and grid energy and ensures continuous and stable 

The first two types of power demand patterns change 60 electricity supply for the BS . 
relatively dramatically , leading to a huge energy - saving As the essential component of the BESS aided renewable 
potential , especially for demand charge , to be discussed energy supply solution , the controller determines how effi 
below . cient this paradigm is . Specifically , at each scheduling point , 

Energy Cost of 5G BS the controller needs to decide the amount of power to be 
The energy cost of the mobile operator typically makes up 65 supplied from either the battery or the power grid . The 

of two components : i ) energy charge ( i.e. , the total con- scheduling operations should be made upon the power 
sumed electricity amount ( in kWh ) throughout the entire demands and battery states in real - time , so that the utiliza 

???? ?? ?? 
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tion of renewable energy can be enhanced and the total amount of the power generated by the wind turbine at time 
energy cost can be minimized . slot t can be calculated by the following function : 
BS Power Supply and Demand W ( WV ( t ) , WS ( t ) , HH ( t ) ) The power of each 5G BS is supplied by three parts : 

power grid , generated renewable energy , and storage energy . 5 where FW ) is a known , non - linear function defined in 
In particular , i ) when generated renewable energy is greater [ 18 ] . Accordingly , the wind energy generation during the 
than the power demand ( e.g. , during the off - peak hours ) , entire billing cycle can be represented by a vector : 
each 5G BS is only supplied by renewable energy ( i.e. , g " : = [ g " ( 1 ) , g " ( 2 ) , . " ( 7 ) ] off - grid ) and the surplus renewable energy is stored in 
battery storage , ii ) when generated renewable energy is less 10 Battery Specification 
than the power demand ( e.g. , during the peak hours ) , each At an arbitrary time slot t , the state of the battery is 
5G BS is supplied by all three parts cooperatively . modeled as follows : 
A discrete time model is described , where the entire X ( t ) : = ) SoE ( ) , SoC { 0 ) , DoD ( ) billing cycle ( e.g. , one month ) is equally spilt into T con 

secutive slots with length At of and denoted by T = { 1 , 15 where the notations of State of Energy ( SOE ) , State of 
2 , ... , T } . For an arbitrary 5G BS , the power demand during Charge ( SoC ) , and Depth of Discharge ( DoD ) represent the 
the entire billing cycle can be represented by a power state of effective capacity state of charge , and depth of 
demand vector : discharge of the battery , respectively . Specifically , i ) SoE 

indicates the current effective capacity of the battery , as a 
d : = [ d ( 1 ) , d ( 2 ) , . . . , d ( 7 ) ] 20 percentage of its initial capacity ( denoted as i ) , ii ) SOC 

where d ( t ) is the power demand in time slot t , which can be indicates the current energy stored in the battery , as a 
obtained by power meter readings at each BS . percentage of the current effective capacity , and iii ) DoD 

Renewable Energy Generation indicates how much energy the battery has released , as a 
By harvesting energy from renewable energy resources , percentage of the current effective capacity . 

the BSs could be powered in an environmentally friendly 25 For simplicity , the SoC of a battery may be discretized 
and cost - efficient way . In order to make the model exten into M equal - spaced states ( e.g. , M = 10 , i.e. , 10 % , 
sible , the renewable energy generation vector may be 20 % , ... , 100 % } ) . Accordingly , the DoD is also discretized 
denoted as : ( e.g. , release 10 % from 90 % , i.e. , 90 % to 80 % ) . For an 

arbitrary time slot t , in order to prevent the battery from 
g : = [ g ( 1 ) , g ( 2 ) , ... , 8 ( 7 ) ] over - discharging / charging , SoC and SoCmin may be used 

to indicate the upper and lower bounds of SoCs , respec Two typical renewable energy sources are chosen as tively , which is shown as follows . auxiliary power sources , i.e. , solar energy ( g? ( t ) ) and wind 
energy ( g " ( t ) ) . Accordingly , for an arbitrary time slot t , the SoCminsSoC ( t ) sSoCmax 
renewable energy generation vector can be represented by : BESS Aided Renewable Energy Supply 

The battery storage is deployed at 5G BSs , and can be g ( t ) = gº ( t ) + g " ( t ) charged using surplus renewable energy ( generated by solar 
It may be assumed that if the total generated renewable PV and wind turbine system ) and discharged to reshape 

energy is beyond the power demand ( i.e. , g ( t ) > d ( t ) ) , the power demand to maximize the utilization of renewable 
power is supplied in proportion to the renewable energy energy ( or minimize the utilization of fossil fuel ) and reduce 
generated . The generation of both sources varies during a electricity expenditure . 
certain period ( e.g. , one day ) and is affected by factors such The battery discharging / charging operations may be 
as weather , temperature , wind speed , etc. defined by a battery operation vector : 

Solar Energy Generation b : = [ b ( 1 ) , b ( 2 ) , ... , b ( 7 ) ] Power generated by the solar PV system mainly depends 
on three factors : global horizontal irradiance ( GHI ( t ) ) , out- where b ( t ) is a real number variable and indicates the 
door temperature ( Temp ( t ) ) , and time of day ( ToD ( t ) ) . amount of discharging charging operations . In detail , i ) a 
Specifically , multiple solar PV cells are connected in series / positive value indicates discharging the power from the 
parallel absorb sunlight and convert the naturally avail- battery storage to the 5G BS during time slot t , ii ) a negative 
able plenty of solar energy into DC to charge the battery value indicates charging from the renewable energy to the 
storage and supply the power demand . The generated power battery storage , and iii ) a zero value indicates no discharg 
by the solar PV at time slot t can be measured by the ing / charging operation performs . 
following function : Meanwhile , the discharging / charging operations are con 

strained by the maximum charging rate and maximum g? ( t ) = F ( GHI ( t ) , Temp ( t ) , ToD ( t ) ) discharging rate , denoted as R * and R , respectively . The 
where F $ ( " ) is a known , non - linear function defined in largest power that the battery can be recharged and supplied 

within a time slot is shown as follows . PVLIB [ 17 ] . Accordingly , the solar energy generation dur 
ing the entire billing cycle can be represented by a vector : -R + sbn ( t ) sR 

g * : = [ gº ( 1 ) , 8 ( 2 ) , . . . 8 ( T ) ] The battery storage needed to meet the following condi 
60 tions in discharging / charging operations may be described Wind Energy Generation 

Power generated by the wind turbine generator fluctuates 
randomly with time and mainly depends on the wind veloc b ( t ) = 0 , if g ( t ) -d ( t ) = 0 
ity ( WV ( t ) ) , weather system ( WS ( t ) ) , and hub height ( HH 
( t ) ) . The energy generated by the wind turbine typically is 65 b ( t ) > 0 , if g ( t ) -d ( t ) < 0 
divided into two stages : first , it converts the wind power into which shows that the battery storage can only be charged 
mechanical energy and then transforms into electricity . The when there exists surplus renewable energy after supplying 
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to the 5G BS , and means that the battery storage cannot be remaining lifetime of the renewable energy generator at time 
simultaneously charged and discharged at any time slot . t - 1 , the remaining lifetime at time t is updated by : 
Due to power loss ( e.g. , AC - DC conversion and battery l ( t ) = 2 ( t - 1 ) -At - u ( t ) 

leakage [ 19 ] ) that occurred during discharge from battery where u ( t ) is defined by : storage to the power grid ( or charge from renewable energy 5 
to the battery storage ) , the actual discharging / charging 
operations from / to the battery by may be defined by : 1 un ) = { 0 , if not using 

10 Õ ( t ) = { = 
Bob ( t ) , if b ( t ) > 0 The usage cost of the renewable energy generator in each 

time slot t is denoted as : 

L 

20 

max = { * 
? 

Given the power demand of the 5G BS ( i.e. , d ( t ) ) , the 
renewable energy generation ( i.e. , g ( t ) ) , and the battery At u ( t ) 
discharging / charging operations ( i.e. , b ( t ) ) , the power con- 15 C " ( t ) = 1 . 
sumption vector supplied by the power grid can be derived 
for an arbitrary time slot t by : where 2 is the investment cost of a new renewable energy 

generator . p : = [ p ( 1 ) , p ( 2 ) , P ( 7 ) ] The model of renewable energy generator may be applied 
where p ( t ) is denoted as : to specific system , i.e. , the solar PV system and wind turbine 

system . In detail , i ) for the solar PV system , the lifetime , the 
investment cost , and investment are denoted as 1s ( t ) , Cus ( t ) , 

ax { 0 , d ( t ) – g ( t ) - ( t ) } , if discharging and às respectively , ii ) for the wind turbine system , the p ( t ) 
max ( 0 , d ( 1 ) - g ( t ) } , if charging lifetime , the using cost , and investment are denoted as 1 " ( t ) , 

25 C " ( t ) , and w , respectively . Accordingly , the usage cost of 
the solar PV system and wind turbine system can be derived Energy Cost by replacing the lifetime , investment cost , and investment 

The billing policy of energy cost for mobile operators symbols in the usage cost formula described above . 
throughout the entire billing cycle typically includes two Battery Storage Degradation Cost 
components , energy charge and demand charge . As 30 Every cycle of the discharge / charge operations inflicts 
described below : some " harm " on the battery ( typically lead - acid ) and reduces Energy Charge is the total consumed electricity amount its capacity and lifetime . In particular , a deep discharging 
( in kWh ) throughout the entire billing cycle ( denoted by ne ) . can severely affect the internal structure of the battery , and 
Demand Charge is the peak power consumption supplied may even result in permanently damage ( e.g. , an over 

by power gird ( in kW ) during the entire billing cycle 35 discharging ) . The battery must be discarded and replaced by 
( denoted by ? . ) . a new one when the effective capacity drops down to an 

Therefore , the incurred cost of energy charge of the whole “ ineffective " level , denoted by SoEine 
system in each time slot t can be represented by : As illustrated in FIG . 5 , each level of DoD has a corre 

sponding number of discharge / charge cycles , thus , the bat Cº ( t ) = ne : p ( t ) .At 40 tery storage degradation cost may be formulated by the 
The incurred cost of demand charge of the whole system relationship between both . Given a state of battery at time 

in each time slot t can be represented by : slot t , i.e. , ) SoE ( t ) , SoC ( t ) , DOD ( t ) ) , the SoE decrease of 
Cd ( t ) = R x max { 0 , p ( t ) -Pmar } the battery during this time slot can be measured by : 

where Pmax records the peak power consumption during 45 
the past t - 1 time slots . For any arbitrary time slot t , if 0 , if b ( t ) so p ( t ) -Pmax > 0 , Pmax will be updated to p ( t ) accordingly . ASoE ( t ) = 1 - SoEinc 

Investment Cost if b ( t ) > 0 h ( DoD ( t - 1 ) + ADOD ( t ) ) ' Every usage of the aforementioned equipment ( solar PV , 
wind turbine , and battery storage ) incurs a certain reduction 50 
of its lifetime . For an investor , this presents a considerable where h ( • ) maps from an input DoD level to the total 
quandary associated with financial risk . Therefore , it is number of discharge / charge cycles ( exemplified in FIG . 5 ) . 
important to understand , detail and quantify the various ADOD ( t ) shows an increase in DoD , and can be calculated 
factors influencing performance loss curves . For accuracy , by : 
the investment cost in every time slot will be further 55 
described below . 

b ( t ) At Renewable Energy Generator Cost ADOD ( t ) = 
As modules of a renewable energy generated system age , 

they gradually lose some performance . In this paper , it may 
be assumed that the decline of the system is linear and 60 Using the ASoE ( t ) function described above , the degra 
positively related to usage time . The lifetime of the renew- dation cost of battery storage at each time slot t may be 
able energy generator is denoted as L , which indicates the formulated as : 
total time the renewable energy generator can be used . For where ay is a coefficient converting the battery degrada 
an arbitrary time slot t , the remaining lifetime of the renew- tion to a monetary cost , with the unit of ASoE ( t ) . 
able energy generator is denoted as l ( t ) , which is constrained 65 In summary , the total investment cost for each time slot t 
by 0 < l ( t ) SL . The renewable energy generator must be dis- can be calculated as : 
carded and replaced by a new one if l ( t ) < 0 . Given the Cº ( t ) = C *** ( ) + C " 4 " ( t ) + C ++ b ( t ) 

2 

d 

? 



= 

= 

15 

T 

? ( c_0 + C40 20 + min 
b ( t ) c 0 t = 1 
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Optimization Formulation and Difficulty Analysis effective experience - driven control , which exploits past 
The battery discharging / charging operations is controlled experience ( e.g. , historical battery discharging / charging 

by the controller . Given the state ( i.e. , X ( t ) ) of the battery operations ) for better decision - making by adapting to the 
storage in time slot t - 1 , the state in time slot t can be updated current state of the environment . DRL is particularly suitable 
by : 5 for online discharging / charging operation controlling 

because : i ) , it is capable of handling a high - dimensional state 
space ( such as AlphaGo [ 25 ] ) , which is more advantageous 

SoE ( t ) SoE ( t - 1 ) - ASOE ( t ) over traditional Reinforcement Learning ( RL ) [ 26 ] , and ii ) it 
X ( t ) + SoC ( 1 ) SoC { t - 1 ) – b ( t ) At / is able to deal with highly dynamic time - variant environ 

DoD ( t ) = DOD ( t - 1 ) + ADOD ( t ) 10 ments such as time - varying power demand and renewable 
energy generation . The basic components and concepts of 

For the entire billing cycle T , the optimal battery dis DRL and the proposed DRL - based battery discharging / 
charging / charging controlling policy to solve the optimiza charging controlling policy are described in detail below . 
tion problem must be found , so as to minimize the total Components & Concepts 

A typical DRL framework consists of five key compo electricity bill during the entire billing cycle , which is nents : agent , state , action , policy , and reward . The concept defined as follows . and design of each component in the DRL - based battery 
discharging / charging controlling policy of the present dis 
closure is explained as follows . 

€ ( 1 ) + C4 ( 1 ) + C " ( t ) ) Agent : The role of the agent is to make decisions in every 
episode by interacting with the environment . Specifically , at 
the beginning of each time slot , it determines the discharg s.t. ( 9 ) , ( 11 ) , ( 12 ) , and ( 25 ) , VIET ing / charging operations ( i.e. , b ( t ) ) according the current 
state ( e.g. , d ( t ) , g ( t ) , and X ( t ) ) of the environment . The 

When solving the above optimization problems , however , 25 objective is to find an optimal battery discharging / charging controlling policy to minimize the total electricity bill during the following challenges must be addressed . the entire billing cycle . Uncertainty of Renewable Energy State : At each episode , the agent first observes the state of Renewable energy generation is affected by multiple the current environment to take action . In order to take the 
factors such as outdoor temperature and wind velocity . It is 30 optimal action at each episode , the current state should cover 
difficult to accurately forecast renewable energy generation as much information as possible . The state vector of the 
( i.e. , g ( t ) ) and make the optimal discharging / charging opera- current environment as may be defined as s ( t ) = [ d ( t ) , g ( t ) , 
tions ( i.e. , b ( t ) ) of the battery storage without accurate X ( t ) , Pmax ] , including current information on power demand 
information in advance , due to the unpredictable and inter- renewable energy generation , battery storage and peak 
mittent nature of these factors . 35 power consumption . 
Dynamic of Power Demand Action : After observing the state of the environment , the 
In the aforementioned modeled problem , the power agent will take an action accordingly . In the present embodi 

demand ( i.e. p ( t ) ) is assumed to be known in advance and ment , the action is to control the battery discharging / charg 
thus can essentially be optimized in an offline way . How- ing operations in each time slot . Specifically , i ) whether the 
ever , such assumptions are unrealistic in practice . In fact , 40 battery should be discharged or charged , and ii ) how much 
traditional offline optimization methods ( e.g. , dynamic pro energy should be discharged or charged . The action taken at 
gramming [ 22,23 ] ) typically do not represent the global time t is denoted by a ( t ) , which is equivalent to b ( t ) . 
optimal solution , as the power demand can be obtained only Policy : The battery discharging / charging controlling 
when the workload arrives at the 5G BS . Thus , an online policy y ( s ( t ) : SA defines the mapping relationship from 
method to deal with the dynamic power demands ( i.e. , d ( t ) ) 45 the state space to the action space , where S and A represent 
and make optimal discharging / charging operations ( i.e. , the state space and the action space , respectively . Specifi 

cally , the controlling policy can be represented by set of b ( t ) ) is in great need . a ( t ) = y ( s ( t ) , which maps the state of the environment to the High Computation Complexity action at time slot t . The optimization problem described above has embedded Reward : After interacting with the environment , the agent NP - hard subproblems . Firstly , in every time slot t , the will receive a reward r ( t ) ( calculated by the reward function controller needs to search the action space ( mainly deter R ( s ( t ) , a ( t ) ) ) , which indicates the effect of the action in this mined by M ) , so as to find the optimal discharging / charging episode , so as to update the controlling policy . The objective 
operation ( i.e. , b ( t ) ) . For simplicity , in solving the optimi- of the agent is to find a policy y to maximize the total reward 
zation problem , the SoC of battery may be discretized in to 55 through continuous interaction with the environment . The 
M equal - spaced states . However , in a real - world scenario , design of the reward function significantly affects the per 
the state of the battery is continuous , which leads to an formance of the DRL - based algorithm , and will be further 
enormous searching space . Secondly , during the entire bill- described below . 
ing cycle ( i.e. , T ) , it is challenging for the controller to At each episode , the agent observes the state s ( t ) , takes an 
continuously make the optimal discharging / charging opera- 60 action a ( t ) generated by the policy iv , and receives a reward 
tion . r ( t ) calculated by the reward function R ( s ( t ) , a ( t ) ) . The 

To address the aforementioned challenges , an online objective of the proposed DRL - based battery discharging / 
discharging / charging operation controlling method based on charging controlling policy is to take the optimal action in 
deep reinforcement learning ( DRL ) is described . every episode so as to maximize the total reward . 
A DRL - Based Battery Operation Approach 65 Reward Function Design 
The recent breakthrough of deep reinforcement learning At the end of each time slot , the agent evaluates the 

( DRL ) [ 24 ] provides a promising technique for enabling performance of the action using a reward function , which 
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transforms the performance statistics to a numerical utility target Q - value will remain unchanged for a period time , 
value . For an arbitrary time t , the agent observes the state which reduces the correlation between the current Q - value 
s ( t ) , takes the action a ( t ) and adopts the following reward and the target Q - value and improves the stability of the 
function to access the performance of the controlling action : algorithm 

R ( s ( t ) , a ( t ) ) = exp ( Ve ( t ) + Vd ( 0 ) + Vu ( t ) ) Accordingly , the DQN can be trained by the loss function : 
In which : Loss ( 0 ) 4E [ ( @ -Q ( s ( t ) , a ( t ) ; o ) ) ? ] Vº ( t ) = - Cº ( t ) measures the reward of the incremental 

energy charge caused by the action in time slot t ; where 0 is the network parameters of the main net , and 
Vd ( t ) = - Cd ( t ) measures the reward of the incremental 10 is the target Q - value and calculated by : 

demand charge caused by the action in time slot t ; and 
V " ( t ) = - Cº ( t ) measures the reward of the investment cost ÕGr ( 1 ) + ymax ace + 1 ) Q [ s ( + 1 ) , a ( t + 1 ) ; 7 ) 

caused by the action in time slot t . 
At the end of each time slot , the agent evaluates the where ? is the network parameters of the target net and it 

performance of the action by the reward r ( t ) calculated by 15 updates every t time slots by coping from the main net . 
the reward function R ( s ( t ) , a ( t ) ) . In the DRL - based frame 
work , the objective is to maximize the expected cumulative 
discounted reward : Algorithm 1 

Algorithm 1 : Battery Controlling Algorithm with DRL 
Input : Power demand of BS dét ) and renewable 

r ( t ) = Eyk R ( s ( t ) , a [ ) energy generation g ( t ) , 1 st ST ??? Output : Discharging / charging actions a ( t ) , 1 st ST 1 

Initialize replay buffer ( RB ) to capacity N ; 
Initialize main net Q with random weights 8 ; 
Initialize target net © with weights ? = ; where ye ( 0,1 ] is a factor discounting future rewards . for episode = 1 : MaxLoop do 

Learning Process Design for t = 1 : T do 
| The learning process of the algorithm adopts a deep | Get environment state s ( t ) ; 

neural network ( DNN ) called Deep Q - Network ( DQN ) to 7 argmax , Q ( s ( t ) , a ( t ) ; 0 ) , prob . e derive the correlation between each state - action pair ( s ( t ) , a ( t ) = random action , prob . 1- € a ( t ) ) and its value function Q ( s ( t ) , a ( t ) ) , which is the 
expected discounted cumulative reward . If the environment | Execute action a ( t ) and receive r ( t ) and is in state s ( t ) and follows action a ( t ) , the value function of | s ( t + 1 ) ; 
the state - action ( s ( t ) , a ( t ) ) can be represented as : | Store < ( s ( t ) , a ( t ) , r ( t ) , s ( t + 1 ) > into RB ; 

| Randomly sample a mini - batch of experience 
| < s ( i ) , a ( i ) , r ( i ) , s ( i + 1 ) > from RB by every K 

After obtaining the value of each state - action ( s ( t ) , a ( t ) ) , 
the agent selects the action a ( t ) with the e - greedy policy y . 
In other words , the agent randomly selects the action with r ( t ) , terminates at step t + 1 
the probability of e , and chooses the action with the maxi r ( t ) + ymaxa ( + 1 ) { Q ( s , ( t + 1 ) , aft + 1 ) ; 7 ) } , else 
mum of Q ( s ( t ) , a ( t ) ) with the probability of l - e , i.e. , 
argmaxaro Q ( s ( t ) , a ( t ) ) . | Perform SGD on ( Ö - Q ( s , a ; 2 ) ) 2 w.r.t. 0 ; 
As illustrated in FIG . 4 , two effective techniques were | Set Q = Q by every t steps ; 

14 
introduced to improve stability : replay buffer and target end 
network . Specifically , 

Replay Buffer : Unlike traditional reinforcement learning , 
DQN applies a replay buffer to store state transition samples In summary , the learning process is depicted by the 
in the form of ( s ( t ) , alt ) , r ( t ) , s ( t + 1 ) ) collected during pseudo - code in Alg.1 . The controller first initializes the 

replay buffer and the parameters ( i.e. , 6 and 7 ) of the main learning . Every k time steps , the DRL - based agent updates net and target net , respectively . After obtaining the value of the DNN with mini - batch experiences from the replay buffer 
by means of stochastic gradient descent ( SGD ) : 0 ; + 1 = 0 ; + 50 with the e - greedy policy y , and then performs the action a ( t ) each state - action ( s ( t ) , a ( t ) ) , the agent selects the action a ( t ) 
04 Loss ( O ) , where o is the learning rate . Compared with and interacts with the environment . Next , the agent will Q - learning ( only using immediately collected samples ) , receive the reward r ( t ) and observe the next state s ( t + 1 ) of randomly sampling from the replay buffer allows the DRL 
based agent to break the correlation between sequentially the environment , meanwhile store the state ( s ( t ) , a ( t ) , r ( t ) , 
generated samples and learn from a more independently and 55 s ( t + 1 ) ) into the RB . Every k time steps , the agent updates identically distributed past experiences . Thus , the replay the DNN by the loss function with a mini - batch experience buffer can smooth out learning and avoid oscillations or from the replay buffer by means of stochastic gradient divergence . descent ( SGD ) . The target net will copy the parameters of Target Network : There are two neural networks with the 
same structure but different parameters in DQN , the main 60 process , the learning rate o is set as 0.001 , the e in e - greedy the main net by every t time steps . During the learning 
net and the target net . Q ( s , a ; 0 ) and ( ( s , a ; ð ) represent the method is 0.9 , the discount accumulative factor y is 0.9 , and current Q - value and target Q - value generated by the main the step parameters t and K are both 2000 . net and the target net , respectively . The DRL - based agent 
uses the target net to estimate the target Q - value ? for Performance Evaluation 
training the DQN . Every t time steps , the target net copies 65 The performance of the proposed DRL - based battery 
the parameters from the main net , whose parameters are discharging / charging controlling policy is evaluated through 
updated in real - time . After introducing the target net , the extensive numerical analysis . 

10 
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6000 W 
US $ 4500 

lifetime L w 20 years 
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Experiment Setup TABLE II - continued 
BS and Power Consumption Data Setting 
In order to show the performance of the proposed method , power rating g " 

the 5G BS deployed at the three areas are considered , i.e. , 5 price how 
resident area , office area , and comprehensive area , whose 
power consumption within one - week period are illustrated 

Scenario Settings in FIG . 2 , and the power consumption of the same type BSs 
in different cities ( e.g. , Beijing , Shanghai and Guangzhou ) is 10 affected by the weather conditions , three representative As the generation of renewable energy is significantly 
assumed to be the same . For simplicity , the BS deployed at cities in China are selected , i.e. , Beijing , Shanghai , and the areas of resident , office , and comprehensive as are Guangzhou , which have different weather pattern during the denoted as type I , type II , and type III , respectively . The billing cycle window ( i.e. , from 1 Jun . 2020 to 30 Jun . 
BESS aided renewable energy supply solution shall be 15 2020 ) . the overall energy cost ( including energy charge , 
applied to different types of BSs in different cities under demand charge and investment cost ) , detailed controlling 
different weather conditions and evaluate its performance results and return of investment ( ROI ) for three types of BSs 
through massive simulation experiment . ( i.e. , type I , type II , and type III BSs ) are compared and 

Renewable Energy Generation Data analyzed in these cities , and the specific day of the weather 
The factors that impact the generation of renewable conditions in these cities during the billing cycle window are 

energy are introduced herein . For simplicity , the weather shown in FIG . 7 [ 16 ] . Specifically , i ) for Beijing , it has more 
conditions into three types are divided into three types . The clear days during the billing cycle window , ii ) for Shanghai , 
output power pattern of the solar PV and wind turbine could it is in the plum rain season during the billing cycle window , 
also be divided into three types . Specifically , for the solar 25 thus it has more high - wind days but less clear days , and iii ) PV , the weather conditions are divided into clear day , partial for Guangzhou , the cloudy days and the low - wind days are cloudy day , and cloudy day ; for the wind turbine , the 
weather conditions are divided into high wind velocity , relatively more than other two cities . 
middle wind velocity , and low wind velocity . The output Performance Under Different Weather Conditions 
power patterns of the solar PV and wind turbine under 30 As is shown in FIGS . 6A - 6B , the output power patterns of 
different weather conditions are illustrated in FIGS . 6A - 6B . the solar PV and wind turbine are both divided into three 

types under different weather conditions . Accordingly , the Equipment Parameter Settings weather pattern can be divided into nine types : clear & 
A quantity of 15 Panasonic Sc330 solar modules each high - wind day , clear & middle - wind day , clear & low - wind 

with a power rating of 330W and JFNH - 5 kW wind turbine day , partial cloudy & high - wind day , partial cloudy & 
of Qingdao Jinfan Energy Science and Technology Co. , Ltd. middle - wind day , partial cloudy & low - wind day , cloudy & 
Are utilized . For battery storage , the mainstream lithium - ion high - wind day , cloudy & middle - wind day , and cloudy & 
( LI ) battery on the current market is considered . it can be low - wind day . 
referred to [ 15 , 27 , 6 ] for parameter settings of electricity The power supply patterns under different weather con 
billing policy and battery configurations and the main ditions in one day period of 56 BS are illustrated in FIGS . 

40 8A - 81 . As it can be seen , the BESS aided renewable energy parameter settings are summarized in Table II . supply solution could significantly reduce the power from 
the grid ( i.e. , energy charge and demand charge ) . Specifi TABLE II cally , with the increase of radiation and wind velocity , 

Setting renewable energy generation increased accordingly . It could 
45 cover most of the power demand and reduce the power 

Billing billing cycle window W one month ( 30 days ) supplied from the power grid . Especially , under high - wind 
Policy tenergy charge price he US $ 0.049 / kWh days , the power demand could be totally supplied by the Idemand charge price hd US $ 16.08 / kW renewable energy and battery storage and need no power 2battery cost hoz 
Battery discharge efficiency a from the grid . 
Config . charge efficiency B After the power supply paradigm under different weather 

max charge rate R + patterns is calculated , the electricity bill of these three types max discharge rate R of BSs during the billing cycle in different cities ( i.e. , power rating gr 
price is US $ 3950 different weather patterns , which is illustrated in FIG . 7 ) can 
lifetime LS be driven and the results from all the set scenarios are 

summarized in Table III . 
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Parameter 

US $ 271 / kWh 
85 % 

99.9 % 
16 MW 
8 MW 

4950 W 

50 

Solar 
PV 

25 years 

TABLE III 

Energy 
Charge ( $ ) BS Type Scenerio 

Demand 
Charge ( $ ) 

Investment 
Cost ( $ ) 

Cost 
Saving ( $ ) Saving Ratio ( $ ) 

Type I 
50.4 
50.7 
49.5 

74.4 
74.8 
73.2 

No deployment 
Deployment in Bejing 
Deployment in Shanghai 
Deployment in Guangzhou 
No deployment 
Deployment in Bejing 
Deployment in Shanghai 
Deployment in Guangzhou 

44.6 
5.0 
4.7 
5.9 

40.1 
4.8 
3.8 
5.3 

23.1 
12.0 
12.0 
12.0 
30.2 
9.1 
9.1 
9.1 

0 
0.4 
0.4 
0.3 
0 
0.3 
0.4 
0.3 

Type II 
46.1 
47.0 
45.6 

76.4 
77.9 
75.6 
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TABLE III - continued 

Energy 
Charge ( $ ) 

Demand 
Charge ( $ ) 

Investment 
Cost ( $ ) 

Cost 
Saving ( $ ) Saving Ratio ( $ ) BS Type Scenerio 

Type III No deployment 
Deployment in Bejing 
Deployment in Shanghai 
Deployment in Guangzhou 

45.6 
6.8 
5.7 

22.8 
13.9 
13.9 
13.9 

0 
0.3 
0.4 
0.2 

47.4 
48.4 
46.4 

69.3 
70.8 
67.8 7.9 

10 

15 

25 

Specifically , for a single 5G BS without the proposed scenarios and beyond . Additionally , the city with more clear 
power supply paradigm , the energy charge and the demand and high - wind days will obtain a bigger ROI value , thus the 
charge are $ 45.6 and $ 22.8 , respectively . However , after proposed solution is more suitable for those cities with more 
utilizing the BESS aided renewable energy supply solution sunny and windy days . 
on the 5G BSs , the electricity bill is significantly reduced . It is worth noting that , the deployed renewable energy 
Especially in Shanghai , which has relatively more clear and generator and the battery storage are assumed to supply high - wind days , the energy charge and the demand charge power to a single 5G BS , and thus the surplus renewable can be reduced to $ 3.8 and $ 9.1 , respectively . Although there energy ( when the battery is full ) will be discarded . This can exists equipment degradation during the discharge / charge 
cycles , the investment cost is maintained at an acceptable 20 renewable energy could supply to multiple BSs [ 7 ] , so that lead to a relatively low utilization . In practice , the generated 
level . The highest cost saving for the BS which utilized the the ROI and utilization of the renewable energy could be proposed power supply paradigm in Beijing , Shanghai , and 
Guangzhou in one billing cycle is $ 50.4 , $ 50.7 , and $ 49.5 , further improved . 
respectively . Accordingly , the saving ratio can be up to To cope with the ever - increasing electricity bill for mobile 
74.4 % , 74.8 % , and 73.2 % , respectively . operators in 5G era , a BESS aided renewable energy supply 

Performance Under Different Types of BSs solution for the 5G BS system is disclosed herein , which 
As the different types of BSs have diverse power models the battery discharging charging controlling as an 

demands , resulting in different energy charges and demand optimization problem . With the proposed solution , a BS can 
charges , the performance of the BESS aided renewable be powered by renewable energy and the battery storage 
energy supply solution may be different . 30 alongside the power grid to reduce total energy costs . To 

Specifically , as is shown in Table III , the type I BS has the solve the problem under the dynamic power demands and 
highest cost savings compared to other two types of BSs , renewable energy generation , developed a DRL - based 
i.e. , $ 50.4 in Beijing , $ 50.7 , and $ 49.5 . The type I BS has the approach is utilized with the BESS operation that accom 
biggest power demand and peak value ( near 1450 watt ) , and modates for many factors in the modeling phase and makes 
as such has greater potential in energy - saving and peak 35 decisions in real - time . To evaluate the performance of the 
power shaving . As type II BS's power demands are rela present solution , three cities with different weather patterns 
tively small , the generated and stored renewable energy can were chosen for experiments . The experimental results show effectively reduce the power grid supply . Therefore , it has that the solution of the present disclosure can significantly the highest saving ratio , i.e. , 76.4 % in Beijing , 77.9 % in reduce the electricity bill and improve the renewable energy Shanghai , and 75.6 % in Guangzhou . 40 utilization . ROIs of Different City and Type Deployment The foregoing description of the present disclosure , along 

The return of investment ( ROI ) is a financial metric with its associated embodiments , has been presented for defined by the benefit ( cost saving in the case of the present purposes of illustration only . It is not exhaustive and does 
disclosure ) divided by the total investment . It indicates the not limit the present disclosure to the precise form disclosed . 
probability of gaining a return from an investment and has 45 Those skilled in the art will appreciate from the foregoing 
been widely used to evaluate the efficiency of an investment description that modifications and variations are possible [ 20 ] . Typically , a bigger ROI value indicates a higher considering the said teachings or may be acquired from 
investment efficiency . With the costs of renewable energy practicing the disclosed embodiments . generator and battery storage ( given in Table II ) , the total Likewise , the steps described need not be performed in 
investments can be calculated . Accordingly , the Rols can 50 the same sequence discussed or with the same degree of 
thus be derived with the results in Table . III . separation . Various steps may be omitted , repeated , com 

The ROIs of different types of BSs deployed in different bined , or divided , as necessary to achieve the same or similar cities are shown in Table IV . Specifically , type I BSs have the objectives or enhancements . Accordingly , the present dis highest ROI , reaching 5.43 % in Beijing , 5.46 % in Shanghai , closure is not limited to the said described embodiments , but and 5.33 % in Guangzhou , respectively , indicating a rela- 55 instead is defined by the appended claims considering their 
tively high investment efficiency for the operators . This is full scope of equivalents . 
because that type I BS has the biggest cost saving potential . 
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wherein the investment cost comprises a cost of using the a battery storage state ; and 
battery storage and the renewable energy generator in a peak power consumption of the BESS . 
one cycle . 9. The system of claim 8 , wherein the battery storage state 

2. The system of claim 1 , wherein the incremental energy comprises : 
charge comprises a total consumed electricity amount of the 5 a State of Energy ( SOE ) comprising a current effective BESS in one cycle . capacity of the battery storage as a percentage of an 3. The system of claim 1 , wherein the incremental demand initial capacity of the battery storage ; charge comprises a peak power demand of the BESS in one a State of Charge ( SOC ) comprising a current energy cycle . stored in the battery as a percentage of the current 4. The system of claim 1 , wherein the loss function 10 effective capacity ; and comprises an expected value of the difference between the 
target Q value and the current Q value . a Depth of Discharge ( DoD ) comprising an amount of 

5. The system of claim 4 , wherein parameters of the main energy that has been released by the battery storage as 
network are updated in real time based on results from the a percentage of the current effective capacity . 
loss function . 10. The system of claim 1 , wherein the renewable energy 

6. The system of claim 1 , wherein the e - greedy policy generator comprises a solar photovoltaic ( PV ) module and a 
wind turbine . comprises : 

selecting an action with a maximum reward from the main 11. The system of claim 10 , wherein the power generated 
net with a probability of e ; and by the solar PV module is calculated based on global 

horizontal irradiance , outdoor temperature , and time of day . selecting a random action with a probability of 1- € . 12. The system of claim 11 , wherein the power generated 7. The system of claim 1 , wherein the DNN is updated by 
the loss function with a mini - batch experience from the by the wind turbine is calculated based on wind velocity , a 
replay buffer by means of stochastic gradient descent . weather system , and hub height . 

8. The system of claim 1 , wherein the environment state 13. The system of claim 1 , wherein the action comprises 
comprises : ( i ) a determination of whether or not the battery storage 

should be discharged or charged and ( ii ) a determination of a power demand of the BESS ; 
an amount of renewable energy generated by the renew an amount of energy to be discharged or charged . 

able energy generator ; 
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