
US 20180018098A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0018098 A1

Burugula et al . (43) Pub . Date : Jan . 18 , 2018

(54) INVALIDATION OF SHARED MEMORY IN A
VIRTUAL ENVIRONMENT

G06F 3 / 0673 (2013 . 01) ; G06F 37064
(2013 . 01) ; GO6F 2212 / 151 (2013 . 01) ; GO6F

2212 / 152 (2013 . 01) ; G06F 2212 / 163
(2013 . 01) ; G06F 2212 / 651 (2013 . 01) ; G06F

2212 / 656 (2013 . 01)
(71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(57) ABSTRACT
(72) Inventors : Ramanjaneya S . Burugula , Yorktown

Heights , NY (US) ; Niteesh K . Dubey ,
Yorktown Heights , NY (US) ; Joefon
Jann , Ossining , NY (US) ; Pratap C .
Pattnaik , Ossining , NY (US) ; Hao Yu ,
Valhalla , NY (US)

(21) Appl . No . : 15 / 210 , 275
(22) Filed : Jul . 14 , 2016

Publication Classification
(51) Int . Ci .

GOOF 3 / 06 (2006 . 01)
(52) U . S . Ci .

CPC G06F 3 / 0605 (2013 . 01) ; G06F 12 / 1009
(2013 . 01) ; G06F 3 / 0644 (2013 . 01) ; G06F
3 / 0664 (2013 . 01) ; G06F 3 / 0665 (2013 . 01) ;

A server logical partition (LPAR) of a virtualized computer
includes shared memory regions (SMRs) . The SMRs
include pages of the server LPAR memory to share with
client LPARs . A hypervisor utilizes an export vector to
associate logical pages of the server LPAR with SMRs . The
hypervisor further utilizes a reference array to associate
SMRs with client LPARs that have mapped at least one
physical memory page of the SMR from a logical page of the
client LPAR memory . In processing an operation to unmap
one or more shared physical pages from one or more LPARs ,
the hypervisor uses the export vector and reference array to
determine which LPARs have had a mapping to the physical
pages .

100
CONSOLE 140

- - 144 ! 142
-

- COMPUTER 102 -

-

- LPAR 150C
-

LPAR 150A
os 104A -

LPAR 150B
Os 104B

PROGRAM PROGRAM
OS 104C

-

- PROGRAM PROGRAM
106 -

-

-

-

-

146
-

- - -

SMR - AWARE HYPERVISOR 108

PROC MODULE 110
CORE 112A CORE 112B

PROC MODULE 120
CORE 122A CORE 122B

T1 T2 T3 T4 T1 T2 T3 T4 T3 T4 T1 T2 T3 T4
MEMORY 130

MODULE 132 MODULE 134

PMB 132A | PMB 132B PMB 134A PMB 134B

P1 P1 P1 P1

P2 P2 P2 P2
- - -

PN PN PN PN

Patent Application Publication Jan . 18 , 2018 Sheet 1 of 6 US 2018 / 0018098 A1

100
CONSOLE 140

- " 144 142
-

- COMPUTER 102
-

-

LPAR 150A -

-
LPAR 150B
OS 104B

LPAR 150C
OS 104C - os 104A

-

- PROGRAM
106

PROGRAM PROGRAM PROGRAM
-

-

-

-

-

- - _ - 146
SMR - AWARE HYPERVISOR 108

PROC MODULE 110 PROC MODULE 120
CORE 112A CORE 112B CORE 122A CORE 122B

T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
MEMORY 130

MODULE 132 MODULE 134

PMB 132B PMB 134A PMB 134B PMB 132A
P1 P1 P1 P1

P2 P2 P2 P2

PN PN PN PN

FIG . 1

Patent Application Publication Jan . 18 , 2018 Sheet 2 of 6 US 2018 / 0018098 A1

COMPUTER 102

LPAR 150A LPAR 150B

232A 232B 232C 232C
L2 - - - L4 - - 18 L1 L2 - - - 07

204A

|
LALA
21 22 de

204B 1 202
NDA - - -

P2 - - - P8 P1 P2 - - - P8 P1 P2 - - - P8
132A 132B 134A

MEMORY 130

FIG . 2A

Patent Application Publication Jan . 18 , 2018 Sheet 3 of 6 US 2018 / 0018098 A1

COMPUTER 102

LPAR 150A LPAR 150B
232A 232B 232C

@ @ - - - ????
204A 204B

????? - -

????144 ?????????41?????????
?????? Q Q - - pg ?? P8

132B 1344

MEMORY 130

FIG . 2B

Patent Application Publication Jan . 18 , 2018 Sheet 4 of 6 US 2018 / 0018098 A1

1 BIT PER SMR

- - - - IIIIIIII LMBO n - 1 \ 300 - 1

LMB1 . . . 01 : - - - 1 - 3 - 2012 300 - 2 1 VECTOR
PER SERVER
LPAR LMB

n - 1

LMBn - 1 . . . LMB . a - - 01 : - - - 123001 300 - N 1

FIG . 3A

1 BIT PER LPAR
MAPPING

SHARED PAGES
310

SMR O . . .

SMR 1 IIIIIII - n - 1
1 VECTOR
PER SMR

SMR n - 1 01 - - - 12
FIG . 3B

Patent Application Publication Jan . 18 , 2018 Sheet 5 of 6 US 2018 / 0018098 A1

400

- 402

RECEIVE SHARED PAGE REQUEST

404
SHARE
OR MAP
PAGE ?

SHARE MAP

406 - 408 en groenten RECORD SMR IN
EXPORT VECTOR

RECORD LPAR IN
REFERENCE ARRAY

410

Comme COMPLETE SHARED PAGE
PROCESSING Pace

FIG . 4

Patent Application Publication Jan . 18 , 2018 Sheet 6 of 6 US 2018 / 0018098 A1

500 500 -

RECEIVE UNMAP REQUEST 502

DETERMINE LMB DETERMME LMB 581 504

506
ANY

SMR IN
LMB ? NO

YES

SELECT SMR 508

510
ANY
LPAR

MAPPED ? NO

YES

ADD LPARS TO LIST 512

514
MORE
SMRS IN
LMB ? YES

NO

COMPLETE PROCESSING 516

FIG . 5

US 2018 / 0018098 A1 Jan . 18 , 2018

INVALIDATION OF SHARED MEMORY IN A
VIRTUAL ENVIRONMENT

BACKGROUND
[0001] The present disclosure relates to virtualized server
environments , and more specifically , to managing memory
pages included in a shared memory region of a server logical
partition or virtual machine .

each bit represents that the corresponding LPAR has estab
lished a mapping to at least one physical page included in the
SMR .
[0008] A computer program product having instructions
executable by a processor to perform methods of the dis
closure can embody the disclosure . A system comprising a
computer , a plurality of LPARs , an SMR , a processor , and a
hypervisor program can embody the disclosure .
[0009] The above summary is not intended to describe
each illustrated embodiment or every implementation of the
present disclosure . SUMMARY

BRIEF DESCRIPTION OF THE DRAWINGS [0002] According to embodiments of the present disclo
sure , a method for managing a shared memory region (SMR)
included in a computer . The method includes receiving a
shared page request associated with a physical page of a
physical memory block included in the computer . The
physical page is included in a shared memory region (SMR)
of a first logical partition (LPAR) among a plurality of
LPARs of the computer . The physical page corresponds to a
logical page included in a logical memory block (LMB) of
the first LPAR .
[0003] In response to the request , the method determines
a shared access state associated with the first LMB . The
determination is based on the correspondence of the physical
page to the first logical page and the first logical page being
included in the first LMB , and the shared access state
indicates that the SMR is associated with the first LMB .
[0004] The method also includes receiving a second
shared page request associated with access to the physical
page by a second LPAR included in the plurality of LPARs .
In response to the second shared page request , the method
determines a mapping state associated with the SMR . The
mapping state indicates that the second LPAR has estab
lished a mapping to the physical page .
[0005] The method further includes receiving a mapping
request associated with the physical page . In response to the
mapping request the method determines that the second
LPAR has established a mapping to the physical page and
invalidating the mapping . The determination is based at least
in part on the shared access state associated with the first
LMB and the mapping state associated with the SMR .
[0006] According to the disclosure , determining that the
second LPAR that has established a mapping to the physical
page can comprise determining that the first logical page is
included in the first LMB and , based on the shared access
state associated with the first LMB that the first LMB is
associated with the SMR . Based on the mapping state
associated with the SMR , the method can further determine
that the second LPAR has established a mapping to the
physical page .
[0007] In some embodiments , the shared access state
comprises an export vector corresponding to the first LMB .
The export vector comprises a bit corresponding to each
SMR in a set of SMRs included in the computer , and a logic
value of each bit in the export vector represents that the
corresponding SMR is associated with the first LMB . Also ,
in some embodiments , the mapping state comprises a ref
erence array . The reference array has an entry representing
each SMR in a set of SMRs included in the computer . Each
SMR entry comprises an LPAR bit vector comprising a set
of bits in which each bit in the LPAR bit vector corresponds
to each LPAR in the plurality of LPARs . A logic value of

[0010] The drawings included in the present application
are incorporated into , and form part of , the specification .
They illustrate embodiments of the present disclosure and ,
along with the description , serve to explain the principles of
the disclosure . The drawings are only illustrative of certain
embodiments and do not limit the disclosure .
[0011] FIG . 1 is a block diagram illustrating an example
computer , according to aspects of the disclosure .
[0012] . FIG . 2A is a block diagram illustrating an example
mapping of logical to physical pages , according to aspects of
the disclosure .
10013] FIG . 2B is a block diagram illustrating an example
mapping of logical to shared physical pages , according to
aspects of the disclosure .
[0014] FIG . 3A illustrates an example export vector ,
according to aspects of the disclosure .
[0015] FIG . 3B illustrates an example reference array ,
according to aspects of the disclosure .
[0016] FIG . 4 is a flowchart that illustrates an example
method to associate shared memory regions with logical
pages , and shared memory regions with logical partitions ,
according to aspects of the disclosure .
[0017] FIG . 5 is a flowchart illustrating a method to
determine logical partitions having mapped shared physical
pages , according to aspects of the disclosure .
[0018] While the invention is amenable to various modi
fications and alternative forms , specifics thereof have been
shown by way of example in the drawings and will be
described in detail . It should be understood , however , that
the intention is not to limit the invention to the particular
embodiments described . On the contrary , the intention is to
cover all modifications , equivalents , and alternatives falling
within the spirit and scope of the invention .

DETAILED DESCRIPTION
[0019] Aspects of the present disclosure (hereinafter , “ the
disclosure ”) relate to virtualized computer environments
having a plurality of logical partitions (LPARs) . More
particular aspects relate to applications executing in an
operating system of one logical partition sharing memory
pages of an application executing in an operating system of
another logical partition . While the present disclosure is not
necessarily limited to such uses , aspects of the disclosure
may be appreciated through a discussion of various
examples using this context .
[0020] A computer in a computing system can include
virtualized instances of physical resources of the computer .

computer can virtualize resources such as physical pro
cessors , physical blocks of memory , I / O devices or network
interfaces , and / or storage media or devices , for example . As

US 2018 / 0018098 A1 Jan . 18 , 2018

used herein , “ computer ” refers to any form of computing
device capable of virtualizing physical resources , for
example : server computers , desktop or laptop computers ,
and mobile devices (e . g . , a tablet or mobile phone) .
[0021] Virtualizing physical resources of a computer is
one means by which a computer can “ partition ” the physical
resources of the computer to allocate , or share , portions of
the physical resources among a plurality of “ partitions ” of
the computer . As used herein , a “ partition ” comprises a
self - contained computing environment that contains at least
one processor and , optionally , memory resources sufficient
to enable programs to execute within that environment
independently of programs operating in other partitions of
the same computer . Correspondingly , “ logical partition
(LPAR) " is used herein to refer to a partition of a computer
that includes at least some virtualized resources of the
computer .
[0022] LPARs , and other forms of logical partitions , are
also in some embodiments called “ virtual machines (VMs) ” ,
and it will be understood by one of ordinary skill in the art
that a VM having at least some virtual resources , and an
LPAR , are interchangeable within the scope of the disclo
sure . For purposes of illustrating the disclosure , but not
limiting to embodiments , reference to an “ LPAR ” is further
understood herein to refer inclusively to an OS , or other
program , operating within the LPAR .
100231 An LPAR is not limited to only virtual resources ,
and can include any combination of virtual and / or physical
resources . For example , an LPAR can include only physical
processors , only virtual processors , or a combination of
some physical and some virtual processors . An LPAR can
include only virtual memory (e . g . , one or more virtual
memory pages) , only physical memory (e . g . , one or more
pages within a physical memory) , or a combination of some
physical and some virtual memory resources . An LPAR can
have other forms of virtual resources in addition to virtual
processors and / or memory , including virtual network inter
faces and / or virtual storage (e . g . , virtual hard drives) . A
" virtualized computer ” , as used herein , refers to a computer
in which physical resources of the computer are virtualized ,
or partitioned , and allocated to one or more LPARs (or ,
VMs) operating in the computer .
[0024] In a computer , physical processors can be embod
ied as processor modules , processor modules can contain
one or more processor cores , and processor cores can
include a plurality of processor threads (e . g . , threads of a
multi - threaded processor core) . A processor thread can be an
execution unit within a processor core and can be wholly , or
partially , independent of other threads within that core (or ,
other cores within the same or other processor modules) . A
computer can virtualize a physical processor as , for
example , a time - sliced fraction of a physical processor (e . g . ,
core or thread) , a subset of physical cores of one or more
physical processor modules , and / or a subset of threads of
one or more physical processor cores or modules . As used
herein , " processor ” refers to any of the various forms of
implementing a physical or virtual processor in a computer .
[0025] Processors can execute instructions from and / or
read or write data in a memory of a computer . A computer
can include a single memory , or can include a plurality of
memories and each memory can have a different function , or
role , within the computer . For example , one memory can be
a main memory , and other memories can be cache memories ,
such as L1 , L2 , or L3 caches . Memories can be implemented

using various electronic technologies , including , for
example , semiconductor Dynamic Random Access Memory
(DRAM) or flash memories .
[0026] A physical memory of a computer can be embodied
as one or more physical memory modules , a memory can be
organized as physical memory blocks (PMBs) , and the
PMBs can be comprised of physical memory pages . A PMB
can be a portion of a memory module or , alternatively , can
span a plurality of memory modules , according to the
relative sizes of memory modules and PMB . A memory
module and / or a PMB can each have a size , for example , that
is a power of 2 , such as 4 GB , 256 GB , or 1 TB , and the sizes
of PMBs can be different from each other and from that of
a memory module . In embodiments of the disclosure (here
inafter , " embodiments ”) , pages comprising a PMB can be ,
for example , a power of 2 size , such as 4K , 16K , and / or 64K
bytes .
[0027] A computer can virtualize physical memory by
mapping a " logical ” memory block (LMB) to one or more
PMBs or , alternatively , to a sub - portion of a PMB (e . g . , a
particular set of contiguous pages of a PMB) . It can be
convenient , in an embodiment , to associate an LMB of a
particular size to a corresponding contiguous region of a
PMB having the same size . However , an embodiment can
associate any particular set of pages of one or more PMBS
with any particular LMB , and need not necessarily form an
LMB of contiguous pages of any one PMB , or contiguous
PMBs .
[0028] An LMB can be comprised of logical pages , and an
embodiment can have a size of a logical page , within an
LMB , that is identically the size of a page in a PMB .
Alternatively , an embodiment can have a logical page size
larger than the size of a physical page . For example , an
embodiment can have a logical page size of 64 KB which in
turn can map , for example , to 16 contiguous 4 KB pages
within the portion of the PMB mapped by the LMB . Logical
pages within an LMB can have a logical address (or ,
" Logical Page Number , ” LPN) corresponding , or “ mapped ” ,
to the physical address (or , “ Physical Page Number , ” PPN)
of a page of a PMB .
[0029] FIG . 1 depicts an example computer system , 100 ,
according to embodiments of the disclosure . Computer 102
can be a virtualized computer and includes processor mod
ules 110 and 120 , each of which contains a plurality of
processor cores , such as 112A , 112B , 122A and 122B . Each
of the processor cores in turn have processor threads , such
as threads T1 - T4 in each of processor cores 112A , 112B ,
122 A and 122B . Computer 102 includes memory 130 , which
is comprised of memory modules 132 and 134 , which in turn
are organized as PMBs , such as 132A and 132B . The PMBs
can be further organized as pages (e . g . , P1 through PN) . For
example , PMB 132A can be a 256 GB block of memory
organized as contiguous 4 KB physical pages .
0030] A virtualized computer can include a plurality of
LPARs , and the LPARs can include programs , such as
operating systems (OSes) , that can further include other
programs . To illustrate , computer 102 is virtualized to
include LPARs 150A - 150C , which in turn include OSes
104A - 104C , respectively . The OSes further include pro
grams , such as program 106 of OS 104A .
(0031) While not shown in FIG . 1 , a computer can also
include I / O devices and / or interfaces , such as storage
devices (e . g . , disk or flash drives) , network interfaces , input
devices such as a mouse or keyboard , and / or output devices

US 2018 / 0018098 A1 Jan . 18 , 2018

such as displays or printers , or interfaces to these devices ,
for example . A computer , or a component thereof (e . g . , a
physical processor module , or an Application Specific Inte
grated Circuit , or “ ASIC ”) , can interconnect processors ,
memory , and I / O devices or buses by means of I / O buses or
links , such as , for example , PCI - Express , SATA or SAS ,
Fibre Channel , and Ethernet . For example , while not shown
in FIG . 1 , computer 102 can have a variety of such I / O
devices and the I / O devices can be connected to the pro
cessors and / or memory of computer 102 by means of I / O
buses or links . A virtualized embodiment of computer 102
can include virtualized processors , virtualized memory , and
or virtualized I / O devices and / or virtualized storage .
[0032] Partitioning and virtualizing physical resources can
isolate the physical resources corresponding to virtual
resources allocated to one LPAR from those corresponding
to virtual resources allocated to another LPAR . For example ,
a virtual processor can correspond to particular threads of
core 112A and an LMB can correspond to PMB 134A (or , a
portion thereof) and LPAR 150A can be assigned , or “ allo
cated ” , the virtual processor and the LMB for its exclusive
use . The computer can restrict other LPARs , such as 150B
and 150C , from access to the physical processor threads of
core 112A , and physical memory pages of PMB 134A ,
corresponding to the virtual processor and LMB allocated to
LPAR 150A .
10033] A virtualized computer can include a virtualization
component , which can operate to create the virtual instances
of the resources , and to allocate those virtual resources (e . g . ,
virtual processors and / or virtual memory) to LPARs , or
otherwise manage those virtual resources (e . g . , modify their
size or correspondence to particular physical resources) . In
an embodiment , a “ hypervisor ” can be a component of a
virtualized computer that creates and / or manages the virtual
resources . As illustrated in FIG . 1 , computer 102 includes a
hypervisor , SMR - aware hypervisor 108 , which can virtual
ize resources such as processors in processor modules 110
and 120 , or PMBs in memory modules 132 and 134 . An
“ SMR - aware " hypervisor can embody features and / or
aspects of the present disclosure , such as are described in
reference to FIGS . 3A , 3B , 4 , and 5 . “ Hypervisor ” , as used
hereinafter , refers to any form of a hypervisor that is
SMR - aware so as to embody one or more features and / or
aspects of the disclosure .
[0034] A hypervisor can be a " built - in ” component of a
virtualized computer , such as firmware included in the
computer and operating in modes of the computer having
particular privileges (e . g . , access to privileged processor
instructions) compared to other programs of the computer
(e . g . , programs operating within an LPAR) . In other embodi
ments , a hypervisor can be a program of an LPAR (e . g . , an
operating system) , in which that LPAR has particular privi
leged operating modes (e . g . , access to privileged processor
instructions) compared to other LPARs .
[0035] As used herein , for purposes of illustrating the
disclosure , but not limiting to embodiments , a " hypervisor ”
refers to any embodiment of a virtualization component of
a virtualized computer , or in communication with a virtu
alized computer , that operates to partition , or otherwise
virtualize , the physical resources of the computer , and / or to
manage allocation or use of the virtual and / or physical
resources of the computer by LPARs .
[0036] A hypervisor can virtualize physical processors of
a computer . Hypervisor 108 , for example , can create virtual

processors corresponding to the processor cores , threads , or
fractions thereof , of processor modules 110 and / or 120 , and
allocate particular virtual processors to each of the LPARS
150A - 150C . Hypervisor 108 can restrict the LPARs to use
only the particular physical processors corresponding to the
virtual processors allocated to each LPAR . Similarly , a
hypervisor can partition the physical memory of the com
puter , such as by creating LMBs mapped to particular
portions (or , pages) of PMBs . The hypervisor can allocate
one or more particular LMBs to each LPAR . Hypervisor 108
can restrict the LPARs to use only the particular physical
memory pages corresponding to particular logical pages of
the LMBs allocated to each LPAR . Each of the LPARs can
be unaware of the presence of the other LPARs or the
physical processors and / or memory comprising the com
puter or allocated to other LPARs .
[0037] A hypervisor can interact with a management com
ponent of a virtualized computer to configure the LPARs and
physical or virtual resources of the computer . For example ,
a management component , or “ management console ” , can
provide a graphical user interface (GUI) suitable for a
human to interact with the computer . A management console
can provide a command line interface (CLI) suitable for a
program to interact with the computer . A management
console GUI and / or CLI can include , for example , interfaces
to determine how many LPARs to create , which resources to
partition or virtualize and in what fractions , which virtual
and / or physical resources to allocate to each LPAR , and / or
when to activate (or , “ boot ”) or terminate particular LPARs .
[0038] As used herein , “ management console ” refers to
any component of a computer that participates in determin
ing the configuration and / or management of virtual or physi
cal resources and LPARs of a virtualized computer . A
management console can be a component included in a
virtualized computer ; for example , a management console
can be a component of , or can be , a service element of a
virtualized computer . A management console can be a com
ponent of another computer or in communication with a
virtualized computer (e . g . , by means of a network connec
tion to another computer) .
100391 Computer system 100 includes management con
sole 140 . Computer 102 , or components thereof , can com
municate with management console 140 by means of inter
faces 142 and / or 144 . Management console 140 can be a
source of inputs to computer 102 , and / or can be a consumer
of outputs , or of results of operations of computer 102 , or
components thereof . Management console 140 can be a
utility to manage , or administer , resources and / or operations
of a computer , and / or components thereof . For example , a
human user (e . g . , using a GUI) , or a program (e . g . , using a
CLI) , can use management console 140 to determine the
number of LPARs included in computer 102 and , optionally ,
the type of OSes included in each of the LPARs .
[0040] Management console 140 can be used to assign
particular resources of computer 102 to LPARs included in
computer 102 , and / or to boot or shutdown particular LPAR ,
for example . Management console 140 can interact with
hypervisor 108 as part of administering resources and / or
operations of computer 102 . Management console 140 can
communicate with hypervisor 108 by means of , for example ,
interface 144 . Management console 140 can communicate
(e . g . , by means of interface 142) with one or more of LPARS

US 2018 / 0018098 A1 Jan . 18 , 2018

150A - 150C (referred to herein , collectively , as “ LPARS
150 ”) , and / or OSes 104A - 104C 104C (referred to herein ,
collectively , as “ OSes 104 ”) .
[0041] Interfaces between a console and a computer can
be particular to whether a console is a component of the
computer , or is embodied (e . g . , in another computer) exter
nal to the computer . For example , if management console
140 is embodied external to computer 102 , interfaces 142
and / or 144 can be network interfaces , or I / O device inter
faces . Embodiments can implement interfaces 142 and 144
as different types of interfaces . For example , interface 142
can be an Ethernet interface between management console
140 and OS 104A and / or program 106 , and interface 144 can
be a different type of interface , such as an I / O bus or I / O link .
[0042] Management console 140 can be a component of
computer 102 and interfaces 142 and / or 144 can be inter
faces internal to computer 102 . For example , interface 144
can be a messaging interface using a mailbox in a region of
a memory (e . g . , within memory 130) that can be shared by
management console 140 and hypervisor 108 . Interface 144
can include program function calls from management con
sole 140 to hypervisor 108 , and / or vice versa . Interface 144
can include interrupts signaled to console 140 and / or hyper
visor 108 , and / or can include data structures in a region of
a memory (e . g . , within memory 130) that can be shared by
console 140 and hypervisor 108 .
[0043] LPARs in a virtualized computer can communicate
with a hypervisor by means of a “ hypervisor interface ” , such
as hypervisor interface 146 in computer 102 between LPARS
150 and hypervisor 108 . A hypervisor interface in a virtu
alized computer system can be any of a variety of interfaces
suitable for an LPAR to communicate with a hypervisor . For
example , interface 146 can be a set of program function calls
from the LPARs 150 to hypervisor 108 , messages exchanged
between hypervisor 108 and LPARs 150 , communication
interfaces such as physical or virtual Ethernet connections
between LPARs 150 and hypervisor 108 , interrupts signaled
to hypervisor 108 and / or to LPARs 150 , and / or can include
data structures in a memory (e . g . , within memory 130) that
can be shared by hypervisor 108 and LPARs 150 . A hyper
visor interface , such as 146 , can be a combination of any of
the foregoing .
[0044] FIG . 2A illustrates an example of mapping logical
pages of LMBs to physical pages of PMBs . For purposes of
illustration , but not limiting to embodiments , FIG . 2A is
described using the example virtualized computer 102 of
FIG . 1 . In embodiments , a hypervisor can form LMBs . For
example , hypervisor 108 can form LMBs 232A - 232C com
prised of logical pages (e . g . , logical pages L1 - L4 of LMB
232A) . A hypervisor can allocate particular LMBs to par
ticular LPARs . For example , in FIG . 2A , LMB 232A is
allocated to LPAR 150A and LMBs 232B and 232C are
allocated to LPAR 150B .
[0045] hypervisor can associate LMBs with particular
PMBs in a memory of a computer . For example , hypervisor
108 can associate LMB 232A with PMB 132A , LMB 232B
with PMB 132B , and LMB 232C with PMB 134A . A
hypervisor can use an LMB table , for example , to associate
a particular LMB with a particular PMB (or , pages of the
PMB) . In FIG . 2A hypervisor 108 can use LMB table 202 to
" map " (i . e . , make the association between) the LMBs to the
PMBs . An LMB can have , for example , an LMB ID and a
PMB can have , for example , a PMB ID . An LMB ID can
select an entry in LMB table 202 and the entry can contain

a corresponding PMB ID . In some embodiments , an LMB
can be mapped to pages in each of more than one PMB , and
an LMB table can include , for example , a list of PMBs , and
a list of the pages included in each PMB , that maps the LMB
to the PMBs , or pages thereof .
[0046] Logical pages within an LMB can be similarly
mapped to physical pages in a corresponding PMB . In
embodiments , a logical page can be associated with a
physical page by means of , for example , a page table . For
example , in FIG . 2A , page table 204A maps logical pages of
LMB 232A to physical pages of PMB 132A , and page table
204B maps logical pages of LMBs 232B and 232C to
physical pages of PMBs 132B and 134A . In a more specific
example , page table 204A has an entry corresponding to a
LPN of logical page L1 of LMB 232A , and the content of
that entry can be the PPN of physical page P1 of PMB 132A .
Page table 204A can operate similarly for various , or all ,
logical pages of one or more LMBs allocated to LPAR
150A . Page table 204B can operate similarly for various , or
all , logical pages of one or more LMBs allocated to LPAR
150B .
[0047] While the example associations between LMBs
and PMBs , and between corresponding logical and physical
pages , illustrated in FIG . 2A are described as by means of
mapping tables , the description is not intended to be limiting
to embodiments . It would be apparent to one of ordinary
skill in the art that other structures can accomplish such
associations , such as lists or hardware elements (e . g . , reg
isters) within the scope of the disclosure . Further , while the
example of FIG . 2A illustrates a page table associated with
each LPAR , it will be understood by one of ordinary skill in
the art that an embodiment can employ , for example , a single
table that maps the logical addresses of all LMBs , for all
LPARs collectively , or a combination of other tables or
structures that can associate a logical page of an LMB
allocated to one LPAR with a physical page in the memory
of the computer .
[0048] In embodiments , program instructions executed by
a processor can reference data (e . g . , a byte or contiguous
sequence of bytes) in a memory using a logical address (LA)
of the data in a memory of the computer . In some embodi
ments , an LA can be a logical address of that data (e . g . , a
data byte or word) within a logical page of an LMB . In
alternative embodiments , an LA referenced by a program
instruction can be a virtual address (VA) of the data . For
example , an OS can create a virtual address space to allocate
to , or associate with , a program (or , programs) and the OS
can map (e . g . , by means of a mapping table within the OS)
the virtual address space to logical pages within an LMB (or ,
alternatively , to pages within a PMB) . A VA can correspond
to a LA within a logical page of an LMB , for example . In
some embodiments , a VA can differ from a corresponding
logical address in a logical page of an LMB . As used herein ,
“ LA ” refers to any form of virtual or logical address of data
in a memory that can be mapped to a corresponding PA (e . g . ,
by means of a page table) .
[0049] An LA can correspond to a physical address (PA)
of the data as the data is stored in a physical page of a
memory of a computer (e . g . , a physical page in a PMB) . In
some embodiments , mapping tables 204A and 204B can be
a “ hardware page table (HPT) ” and a hardware element of
the computer can use the HPT to determine a PA corre
sponding to an LA of data in a memory . For example , a
processor (or , a memory control or management unit , or

US 2018 / 0018098 A1 Jan . 18 , 2018

other unit designed to translate logical to physical addresses)
can access an HPT to translate a virtual address (VA)
referenced in an instruction to the corresponding physical
address (PA) in the physical memory of the computer . For
purposes of illustrating the disclosure , but not limiting to
embodiments , hereinafter page tables 204A and 204B are
considered to be HPTs used by a processor (or other hard
ware element) of computer 102 to translate an LA of data
referenced by the processor to a PA of a physical page of
computer 102 memory 130 .
[0050] In some embodiments , logical pages and corre
sponding physical pages are of a uniform size , such as (for
example) 4 KB or 16 KB . An LA can correspond to a
location (e . g . , a particular byte or word offset) within a
logical page , and the logical page can have a corresponding
“ logical page number (LPN) ” within a set of logical pages
(e . g . , an LMB , or all LMBs collectively) . For example , LPN
“ O ” can be the lowest ordinal logical page in a set of
contiguous pages , and increasing LPNs can correspond to
successive logical pages within the set . Similarly , a PA can
correspond to a location (e . g . , a particular byte or word
offset) within a physical page , and the physical page can
have a corresponding “ physical page number (PPN) ” within
a set of physical pages (e . g . , a PMB , or all PMBs collec
tively) . For example , PPN “ O ” can be the lowest ordinal
physical page in a set of contiguous physical pages , and
increasing PPNs can correspond to successive physical
pages .
[0051] A page table can have entries corresponding to
LPNs , and the content of each of the entries can be a PPN
to which a corresponding LPN is mapped . For example , an
HPT may contain LPN entries for each logical page of one
or more LMBs allocated to an LPAR (or , all LMBs of a
computer collectively) . An LPN can select an entry in the
table and the corresponding PPN can be extracted from that
entry to translate an LA to a PA , for example .
[0052] In embodiments , a hypervisor can manage tables to
map LMBs to PMBs (e . g . , LMB table 202) , and / or to map
logical pages to physical pages (e . g . , page tables 204A
and / or 204B) . A hypervisor , and / or hardware elements of a
computer , can restrict access to the tables to only the
hypervisor , and other programs (e . g . , programs executing in
an LPAR) can be prevented or prohibited from accessing the
tables (or , other structures that associate logical memory
blocks or pages with physical memory blocks or pages) .
Using the example of computer 102 of FIG . 1 , hypervisor
108 can manage HPTs 204A and 204B .
[0053] A hypervisor can associate LMBs with PMBs , or
portions thereof , at the time an LMB is allocated to an
LPAR , at the time an LPAR is started (e . g . , booted) , and / or
a time a program executing in an LPAR makes reference to
a page (or to the LA of some data) within an LMB . A
hypervisor can enter a PMB ID (for example) , correspond
ing to a particular LMB or LMB ID , into an LMB table at
the time the hypervisor creates the LMB , when allocating an
LMB to an LPAR , or in response to a first reference by an
LPAR to a logical page within an LMB .
[0054] A program , such as an OS , executing in an LPAR
can request a hypervisor to map a logical page to a physical
page , and the program can make the request at a time it
attempts to first reference data within that logical page . For
example , a processor executing in a computer can execute an
instruction that references a particular LA , and the LA may
be within a logical page that is not presently mapped by a

page table to a physical page . The processor can generate a
" page fault ” exception , or interrupt , resulting from an
instruction reference to an address that is not mapped to a
physical page . A page fault exception or interrupt can invoke
a " page fault handler ” (e . g . , a page fault handler program or
function of an OS) within an LPAR to establish a translation
from the LA to the PA of a physical page to enable the
processor to resume execution using memory of that physi
cal page .
[0055] In some embodiments , an LPAR (e . g . , an OS
within the LPAR) can establish a translation from an LA to
a PA by invoking the hypervisor (e . g . , by means of a
program function call) . A hypervisor can determine a physi
cal page to map to the logical page , and the hypervisor can
enter the physical page (e . g . , the PPN of the page) into an
HPT (e . g . , an entry corresponding to the LPN of the logical
page) that a processor (for example) accesses to translate
LAs to PAs . For example , an LPAR can call hypervisor 108 ,
by means of a hypervisor function call of interface 146 (e . g . ,
“ hpt _ enter _ page ”) , to enter a logical page address transla
tion into an HPT associated with that LPAR , such as HPT
204 . In another function call of a hypervisor interface (e . g . ,
a different hypervisor call , or different form of an “ hpt _
enter _ page ” function call) , an LPAR can signal to the
hypervisor to invalidate , or remove , a particular LA trans
lation in an HPT .
100561 . In embodiments , an LPAR and / or a hypervisor can
identify an LMB by an LMB ID . An LMB ID can itself be
an address , such as the address of the first byte , or logical
page , of the LMB relative to all LMBs created by a
hypervisor . An LA , or a logical page corresponding to an
LA , can operate to identify an LMB (e . g . , by implication
from its logical address) . In alternative embodiments , an
LMB ID can be some other identifier that uniquely identifies
a particular LMB . In requesting a hypervisor to establish a
translation from an LA to a PA in an HPT , an LPAR can , for
example , provide one or more of the LA , the LPN of a
logical page , or an LMB ID to the hypervisor in a hypervisor
call .
[0057] The hypervisor can use the LA , LPN , and / or LMB
ID to identify the LMB and associate the LMB with a
corresponding PMB , and / or to associate the LPN with a
corresponding PPN . In some embodiments , as part of estab
lishing the translation , the hypervisor may determine that the
LMB is not presently mapped to any PMB and may select
a PMB to map from the LMB . Similarly , as part of estab
lishing the translation , the hypervisor may determine that the
logical page is not presently mapped to any physical page of
a PMB and may select a physical page to map from the
logical page .
[0058] In a virtualized computer , it can be advantageous
for two or more LPARs to share the same physical page of
the computer . For example , one LPAR in the computer can
be a “ server ” LPAR and can make physical pages mapped
from its LMBs accessible to one or more other , “ client ”
LPARs . For purposes of the disclosure , " server LPAR ”
refers herein to an LPAR making physical pages allocated to
it available for sharing with one or more other LPARs , and
“ client LPAR ” refers herein to an LPAR sharing the server
LPAR page (s) .
[0059] FIG . 2B illustrates an example of two LPARS
sharing a common physical page . For purposes of illustra
tion , but not limiting to embodiments , FIG . 2B continues the
example of virtualized computer 102 of FIG . 1 and the LMB

US 2018 / 0018098 A1 Jan . 18 , 2018

and page tables (HPTs) described in reference to FIG . 2A .
FIG . 2B illustrates the mapping of virtual pages to physical
pages shown in FIG . 2A , with the addition of two LPARS
mapping a “ shared ” physical page in computer 102 memory
130 . LMB 232A is allocated to LPAR 150A and contains a
logical page L2 mapped through HPT 204A to physical page
P2 of PMB 132B . For example , the LPN of LMB 232A
logical page L2 can index HPT 204A and the indexed entry
can contain the PPN of PMB 132B physical page P2 .
[0060] The dashed arrow from the HPT 204A LPN entry
(containing the PPN of PMB 132B physical page P2)
indicates that LPAR 150A can be a server LPAR that has
made physical page P2 of PMB 132A shareable by other
LPARs . Accordingly , LPAR 150B can be a client LPAR that
also maps PMB 132B physical page P2 to share the contents
of that page with LPAR 150A (and , any additional LPARS ,
not shown , that may also map PMB 132B physical page P2) .
In FIG . 2A , LMB 232B is allocated to LPAR 150B , and
logical page Ll of LMB 232B is mapped through HPT 204B
to PMB 132B physical page P2 to enable LPAR 150B to
share that physical page with LPAR 150A . Here again , the
dashed arrow from the HPT 204B LPN entry (containing the
PPN of PMB 132B physical page P2) indicates that PMB
132B physical page P2 is a shared physical page .
[0061] While the examples of FIG . 2A and FIG . 2B
illustrate only 2 LPARs mapping virtual to physical
addresses , it would be apparent to one of ordinary skill in the
art that the scope of the disclosure is not limited to only two
LPARs mapping virtual addresses to physical addresses in
this manner , or to sharing the same physical page in a
virtualized computer memory . It would be further apparent
to one of ordinary skill in the art that the scope of the
disclosure is not limited to LPARs sharing only a single
physical page in a virtualized computer memory .
10062] In embodiments , a server LPAR can make a par
ticular physical page (or , set of pages) available to client
LPARs to share the physical page (s) , or the content thereof .
The terms “ server LPAR ” and “ client LPAR ” can have many
connotations , according to the type of service a server LPAR
offers to client LPARs . As used herein , “ server LPAR ” refers
to an LPAR that makes one or more physical pages allocated
to it (e . g . , mapped from a logical page of a server LPAR
LMB) available to other LPARs to share . Correspondingly ,
as used herein , “ client LPAR ” refers to an LPAR that is
authorized (e . g . , by the server LPAR , or by a hypervisor) to
access one or more physical pages of a server LPAR .
[0063] A " shared memory region (SMR) ” , as used herein ,
refers to a particular set of related physical pages that are
made available by a server LPAR to share with client
LPARs . Physical pages comprising an SMR can be related
as part of a particular data structure or file , and can be , for
example , contiguous physical pages within , or spanning ,
particular PMBs . Physical pages comprising an SMR can be
pages that are non - contiguous , and can be within the same
PMB or can be in different PMBs . A hypervisor can interact
with LPARs to create and manage an SMR , and the hyper
visor can use any of a variety of data structures to associate
physical pages with one or more SMRs .
10064) A virtualized computer can limit support for SMRs
to a particular maximum number of SMRs . The maximum
number can be based on , for example , a maximum number
of SMRs that any one server LPAR is permitted to create ,
combined with a maximum number of LPARs that can act
as shared page server LPARs in the computer . For example ,

a design limitation , or policy , of a virtualized computer may
permit a server LPAR to create a maximum of 256 SMRs ,
and another design limitation , or policy , of a virtualized
computer may permit a maximum of 64 LPARs to act as
server LPARs , resulting in a limit of 16K SMRs that can be
defined within the computer .
[0065] To access physical page (s) within an SMR , a client
LPAR can establish a mapping from a logical page of an
LMB , allocated to that client LPAR , to a shared page of an
SMR . In embodiments , an LPAR can use a hypervisor
interface (e . g . , interface 146 of FIG . 1) to request the
hypervisor to allocate a physical page to the LPAR , corre
sponding to the logical page , and / or to enter the PPN of that
physical page into an HPT that maps logical page LPNs to
physical page PPNs . Accordingly , a client LPAR can use a
hypervisor interface to request the hypervisor to create a
mapping from a logical page of a client LPAR LMB to a
shared page of an SMR . For example , a hypervisor interface
can include a function call to request the hypervisor to enter
the PPN of a shared page of an SMR into a page table that
maps LPNs of one or more LMBs allocated to the client
LPAR to PPNs .
10066] . Some operations of a virtualized computer can
require ending sharing of one or more physical pages of an
SMR . Examples of such operations include a server LPAR
making particular shared pages , or the SMR as a whole , no
longer shared (with particular client LPARs , or possibly all
client LPARs) , or termination of a server LPAR while client
LPARs are operating (and , may have active mappings to a
shared page) . In another example , a hypervisor can
" reclaim ” physical pages , or a PMB , such as to allocate
those physical pages to one or more other LPARs . The
reclaimed physical pages , or PMBs , can include shared
pages of an SMR .
[0067] To end sharing of physical pages within an SMR ,
client LPARs or , optionally , a hypervisor , can invalidate
mappings from client LPAR logical pages to the shared
physical pages (possibly re - mapping those logical pages to
other physical pages in the same or other PMBs) . Invalidat
ing a mapping to a shared physical page can insure against
an LPAR successfully referencing , or access data within , a
previously shared physical page . Invalidating a mapping can
be , for example , changing the PPN entry of a page table to
a value indicating that the corresponding logical page LPN
is not mapped to any physical page .
[0068] In embodiments , a hypervisor can initiate the client
LPARs invalidating mappings to shared physical pages . The
hypervisor can initiate the invalidation in response to a
request from a server LPAR , or in response to an operation
(such as the foregoing examples) that requires ending shar
ing of the shared pages . To initiate the client LPARs invali
dating the mappings or , alternatively , for a hypervisor to
perform the invalidating , the hypervisor determines which
LPARs have active mappings to the shared physical pages .
To make that determination , a hypervisor can exhaustively
search each page table to determine if that page table
includes PPNs (for example) of shared physical pages .
However , in a large system having large memories , and / or a
large number of LPARs (particularly , if each LPAR has a
unique or dedicated page table) , such an exhaustive search
can be inefficient and time consuming .
[0069] Accordingly , embodiments of the present disclo
sure can utilize particular structures and / or methods to
determine which LMBs include shared memory regions and

US 2018 / 0018098 A1 Jan . 18 , 2018

which LPARs may have an active mapping to those shared
pages . FIG . 3A illustrates example export vectors 300 - 1 . .
• 300 - N (referred to generically as export vectors 300) ,
which can each comprise a shared access state associating
respective LMBs of a server LPAR with SMRs that the
server LPAR can map to shared physical pages through
logical pages of those LMBs . FIG . 3B further illustrates an
example reference array 310 , which can comprise a refer
ence state associating an SMR with LPARs that have
mapped a shared page of that SMR .
[0070] As illustrated in FIG . 3A , export vectors 300 each
comprise a sequence of bits in which each bit can correspond
to an SMR (e . g . , a bit number within an export vector can
correlate to an ordinal ID of an SMR) that can be mapped
from logical pages of a corresponding LMB . A server LPAR
can create an SMR and associate with that SMR logical
pages of one or more LMBs allocated to the server LPAR .
The server LPAR can map those logical pages (e . g . , by
means of a page table) to physical pages of an SMR for
sharing . A logic value of a bit in an export vector can
represent a shared access state of an LMB in association
with a particular SMR . For example , bit 0 of export vector
300 - 1 for LMB , set to logical ‘ 1 ' , can indicate that SMR
includes at least one logical page of LMB .
10071] In some embodiments , export vectors 300 can
comprise a bit for each SMR that can be defined within the
entirety of a virtualized computer (e . g . , computer 102 of
FIG . 1) . In other embodiments , export vectors 300 can
comprise a bit for each SMR that can be defined within a
server LPAR . An export vector for an LMB can be bounded
to a maximum number of SMR entries (e . g . , a maximum
number of bits) corresponding to , for example , a maximum
number of SMRs the virtual computer permits , or a maxi
mum number of SMRs that a server LPAR itself permits .
[0072] In some embodiments , a virtualized computer can
create an export vector for each LMB that can be defined
within the entirety of the virtualized computer . In other
embodiments , a virtualized computer can create a set of
export vectors for each server LPAR . The set of export
vectors can comprise an export vector for each LMB allo
cated to that server LPAR that has one or more logical pages
included in an SMR .
10073] In another embodiment (not illustrated) , export
vectors 300 can be a table , for example , and can have entries
that each comprise the identity of an SMR that includes one
or more logical pages of that LMB . A valid SMR identity in
an entry for a particular LMB can represent a shared access
state of that LMB having one or more logical pages included
in the identified SMR . It would be apparent to one of
ordinary skill in the art that a variety of data structures can
serve to associate an LMB with one or more SMRs that
include logical pages of that LMB , to represent a shared
access state of that LMB .
[0074] FIG . 3B illustrates an example reference array to
associate LPARs mapping pages of an SMR with the cor
responding SMR (S) . Reference array 310 comprises an array
of LPAR vectors , having one LPAR vector corresponding to
each SMR . An LPAR vector comprises a sequence of bits in
which each bit can correspond to an LPAR (e . g . , a bit
number within an LPAR vector can correlate to an ordinal
ID of an LPAR) . A logic value of a bit in an LPAR vector can
represent a mapping state of the SMR , indicating that the
corresponding LPAR has mapped at least one shared page of
the corresponding SMR . For example , in reference array 310

bit 0 of the LPAR vector corresponding to SMR . , when set
to 1 ' , can be a mapping state of SMR , indicating that at
least one physical page of SMR , has been mapped from a
logical page of an LMB allocated to LPAR . .
[0075] In another embodiment (not illustrated) , reference
array 310 can be a table , for example , and can have entries
that each comprise the identity of an SMR and the identities
of LPARs that have mapped shared pages within that SMR .
An entry having a valid SMR identity can indicate that one
or more pages of that SMR has been mapped by at least one
client LPAR . A valid identity of an LPAR included in an
SMR entry can represent a mapped state of the SMR
indicating that that LPAR has mapped at least one logical
page to a physical page of that SMR . It would be apparent
to one of ordinary skill in the art that a variety of data
structures can serve to associate SMRs with one or more
LPARs that have mapped shared physical pages from logical
pages included in LMBs allocated to those LPARs , and to
represent a mapped state of an SMR with respect to par
ticular LPARs .
[0076] A virtualized computer can create a single refer
ence array representing all SMRs that can be defined within
the entire virtualized computer . Alternatively , a virtualized
computer can create a reference array for each server LPAR ,
representing all SMRs that can be defined within the server
LPAR . A reference array can be bounded to a maximum
number of LPAR vector entries . The number of bits , for
example , in an LPAR vector of a reference array can be
bounded to a maximum number of LPARs that are permitted
to map an SMR , and the number of LPAR vectors in a
reference array can be bounded to , for example , a maximum
number of SMRs the virtual computer permits , or a maxi
mum number of SMRs that a server LPAR itself permits .
[0077] In embodiments , a hypervisor can create and man
age export vectors and / or reference arrays to determine
shared access states of particular LMBs and / or mapping
states of particular SMRs (e . g . , the identities of LPARs that
have mapped at least one physical page of an SMR) . When
it is necessary to invalidate client LPAR mappings to shared
physical pages of an SMR , a hypervisor can utilize the
export vector and reference array structures to identify
LPARs that have mapped logical pages to shared physical
pages of various SMRs .
[0078] FIG . 4 illustrates an example method , 400 , to
record a shared access state in an export vector and a
mapping state in a reference array . For purposes of illus
trating the method , but not limiting to embodiments , the
method is described as performed by a hypervisor .
[0079] At 402 , the hypervisor receives a shared page
request to perform a page sharing operation . The request can
be , for example , included in a hypervisor interface such as
interface 146 of FIG . 1 . The request can be included in a
function call to a hypervisor (which can be included in a
hypervisor interface) , or can be associated with , for
example , an interrupt or exception event requested from a
processor or other programs .
10080] A shared page request can comprise a server LPAR
creating a shared memory region and / or associating particu
lar LMBs with an SMR , for example . A request can com
prise a server LPAR making particular physical pages of an
SMR available for sharing . In another example , a request
can comprise a client LPAR operation mapping a client
LPAR logical page to a physical page of an SMR . A shared
page request can be , for example , in response to a program

US 2018 / 0018098 A1 Jan . 18 , 2018

of an LPAR encountering a page fault referencing a logical
page included in an SMR , and the LPAR communicating a
logical page identity to the hypervisor to associate with the
SMR .
[0081] At 404 the hypervisor determines which shared
page operation to perform . For purposes of illustrating the
method , at 404 the hypervisor determines whether the
request indicates a server LPAR operation to share pages or
indicates a client LPAR operation to map a physical page of
an SMR . If the operation is a server LPAR operation to
create an SMR , or to share pages of an SMR , the operation
can include the identity of an LMB through which shared
pages of the SMR are mapped by the server LPAR . Corre
spondingly , at 406 the hypervisor records the identity of the
SMR in association with the server LPAR LMB . Using the
example of FIG . 3A , the hypervisor can make the associa
tion , for example , using an export vector .
[0082] In embodiments , at 404 if operation includes cre
ating , or registering with the hypervisor , an SMR , the
hypervisor can assign an SMR identifier for the SMR . For
example , the hypervisor can choose an existing SMR iden
tifier that is not presently in use (e . g . , from among a range
of pre - defined SMR identifiers) or can generate a new SMR
identifier . As part of operation 406 , the hypervisor can
communicate the SMR identifier to the originator of the
request (e . g . , a server LPAR) .
10083) Alternatively , at 404 , the hypervisor can determine
that the request indicates a client LPAR operation to map a
client LPAR logical page to a physical page within an SMR .
The operation can include the identity of the SMR , the
identity of the server LMB or server LPAR logical page
mapping the shared physical page , and / or the identity of the
shared physical page . A hypervisor can use such information
to determine which SMR contains the physical page the
client LPAR is mapping , and can record the identity of that
LPAR in association with the SMR , at block 408 . Using the
example of FIG . 3B , the hypervisor can record that the client
LPAR has mapped at least one page of the server LPAR
SMR using a reference array .
[0084] At 410 , the hypervisor completes processing the
shared page operation . In the case that the operation is a
server LPAR shared page operation , completing the opera
tion can include , for example , forming an SMR and the
hypervisor recording parameters or properties of the SMR ,
such as the identity of the server LPAR creating the SMR ,
the server LPAR LMBs that can map the SMR , the physical
pages comprising the SMR , and / or particular client LPARS
that the server LPAR authorizes to share physical pages of
the SMR . In the case that the operation is a client LPAR
mapping operation , the operation can include the identity of
a client LPAR logical page to map to the shared physical
page , and completing the operation can include , for
example , entering the shared page PPN into an HPT that
maps client LPAR LPNs .
[0085] While the example of FIG . 4 is described in regard
to server and client LPAR shared page operations , one of
ordinary skill in the art will appreciate that a variety of page
sharing operations can initiate associating an SMR with a
server LPAR LMB , or associating a client LPAR mapping a
shared page with an SMR including that page (e . g . , a client
LPAR requesting the identity of an SMR) . One of ordinary
skill in the art will further appreciate that there are a variety
of structures other than an export vector and / or a reference
array to record the associations , and that programs or

components of a virtualized computer other than a hyper
visor can perform the example method , or make the asso
ciations .
[0086] As previously disclosed , certain operations of a
virtualized computer , a hypervisor , or server LPARs can
require invaliding (i . e . , unmapping) one or more client
LPAR mappings to all , or to particular , physical pages of an
SMR . Accordingly , FIG . 5 illustrates an example method ,
500 , to determine LPARs that may have active mappings to
shared pages of one or more SMRs and which can be used
in combination with invalidating such mappings . For pur
poses of illustrating the method , but not limiting to embodi
ments , the method is described as performed by a hypervi
sor .
[0087] At 502 , the hypervisor receives a mapping request
to unmap a physical page and determines that the page is
included in an SMR . The request can be , for example , a
request included in a hypervisor interface such as interface
146 of FIG . 1 . The request can be associated with a variety
of events or operations occurring within a virtualized com
puter , for example : a hypervisor reclaiming a PMB (or ,
pages thereof) ; a server LPAR removing authorization of
one or more client LPARs to access an SMR , or a shared
page thereof ; and / or termination of a server LPAR , or a
client LPAR . The request can include the identity of a logical
page of a server LPAR LMB mapped to a particular physical
page of an SMR , the identity of an SMR , and / or the identity
of one or more physical pages of an SMR , for example .
[0088] At 504 the hypervisor determines the identity of a
server LPAR LMB associated with the SMR indicated with
the request . The hypervisor can use , for example , the iden
tity of a server LPAR LMB or an SMR , or a PPN , received
with the request to determine the identity of a server LPAR
LMB . At 506 the hypervisor determines if there are any
server LPAR SMRs associated with the server LPAR LMB .
The hypervisor can use , for example , an export vector to
determine if any SMRs include logical pages of the server
LMB . Using the example export vector 300 of FIG . 3A , if
any bits of the export vector are logical ‘ l ' (e . g . , the vector
treated as an integer is not integer “ zero ”) than at least one
SMR includes one or more logical pages of the associated
LMB .
[0089] Some embodiments may not include LMBs , or
may not include LMBs as described in the examples herein ,
and a virtualized computer can associate an SMR with one
or more server logical pages that are related by a manner
other than an LMB . Correspondingly , a hypervisor , at 504 ,
can determine logical pages to associate with an SMR by
another means (e . g . , a list of logical pages included in an
SMR) or identifier (e . g . , an identity of a set of related logical
pages) . At 506 , the hypervisor can use such alternative
means to identify SMRs associated with particular logical
pages (or , vice versa) .

[0090] If , at 506 , the hypervisor determines that the LMB
is included in at least one SMR , at 508 the hypervisor selects
a first SMR that includes one or more logical pages of the
associated LMB (or , other identity of the set of logical
pages) . At 508 , the hypervisor can use , for example , an
export vector to select an SMR . Using the example export
vector 300 of FIG . 3A , if any bits of the export vector are
logical ‘ 1 ' (e . g . , the vector treated as an integer is not integer
" zero ") than at least one SMR includes one or more logical
pages of the associated LMB . The hypervisor can , for

US 2018 / 0018098 A1 Jan . 18 , 2018

example , scan from the lowest to the highest ordinal bit to
determine an SMR that is mapped from a logical page of the
LMB .
[0091] At 510 , the hypervisor determines if any client
(and , optionally , the server) LPAR may have an active
mapping to a physical page included in the SMR selected at
508 . A hypervisor can use , for example , a reference array ,
such as the example reference array 310 of FIG . 3B . Using
the example reference array 310 , if any bits of the LPAR
vector , associated with the selected SMR , are logical “ l '
(e . g . , the vector treated as an integer is not integer “ zero ”)
than at least one LPAR has mapped , at least at some prior
time , one or more of the physical pages included in the
associated SMR .
[0092] If , at 510 , the hypervisor determines that one or
more LPARs have mapped a physical page (or , pages) of the
selected SMR , at 512 the hypervisor adds the LPARs to a list
of LPARs that may have mappings that can require invali
dation . A hypervisor , at 512 , can use a variety of structures
to list , or enumerate , the LPARs . Using the example refer
ence array 310 , the hypervisor can , for example , scan from
the lowest to the highest ordinal bit (for example) of the
LPAR vector associated with the SMR to determine the
identities of LPARs that have mapped pages of the SMR ,
and can add the LPARs , for example , to a list structure (e . g . ,
a linked list) , a table structure , or a bit mask . Using the
example LPAR vector of reference array 310 , a hypervisor
can use the LPAR vector itself to enumerate , or otherwise
identify , LPARs that have mapped pages of the SMR .
[0093] At 514 , the hypervisor determines if there are
additional SMRs associated with the LMB associated with
the request received at 502 . If so , at 508 the hypervisor
selects a next SMR to process at 510 . A hypervisor can select
the next SMR in the same manner as used to select the first
SMR at 508 .
10094] . At 516 , the hypervisor completes processing the
operation indicated by the request received at 502 in
response to determining that there are no additional SMRs
associated with the LMB associated with the request
received at 502 . Completing the operation can include
processing the LPARs added , at 512 , to the list of LPAR that
have mapped pages of the SMRs associated with the LMB
(or , other related server LPAR logical pages) . Processing the
list of LPARs can include initiating , or performing , invali
dating the mappings , for some or all of the listed LPARs ,
from the LPAR logical pages to physical pages of the SMR .
[0095] In some embodiments , a hypervisor can initiate the
process of invalidating the mappings , and can signal the
LPARs to perform the invalidation (which , can in turn result
in a request to the hypervisor to remove , or invalidate , the
mappings in a page table , or HPT) . In other embodiments ,
a hypervisor can both initiate and perform the process of
invalidating the mappings . For example , a hypervisor can
scan the list of LPARs (e . g . , scan an LPAR vector of a
reference array) and , for each LPAR (or , for particular
LPARs) can inspect (for example) the page table of map
pings from the LPAR logical pages to physical pages to
determine if the page table includes physical pages of a PMB
(or , of an SMR) associated with an operation to unmap
pages . A hypervisor can modify a page table entry to
remove , or invalidate , the PPN associated with an LPN of an
LPAR logical page , for example .
10096] FIG . 5 illustrates an example sequence of opera -
tions of method 500 . However , operations of method 500

can be performed in differing sequences , or in parallel or
concurrently . For example , at 510 , an embodiment could ,
optionally , omit adding (at 512) one or more LPARs to the
list and , alternatively , perform operation 518 to complete
processing with respect to that or those LPARs . An embodi
ment can , in another example , perform 514 to process
additional SMRs in an LMB while concurrently performing
518 . It would be apparent to one of ordinary skill in the art
that an embodiment can perform the operations of method
500 in a variety of sequences and / or concurrent operations .
[0097) The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
10098) . The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0099] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0100] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more

US 2018 / 0018098 A1 Jan . 18 , 2018

programming languages , including an object oriented pro -
gramming language such as Smalltalk , C + + , or the like , and
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user ' s computer , partly on the user ' s com
puter , as a stand - alone software package , partly on the user ' s
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user ' s computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0101] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0102] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0103] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0104] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified

logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0105] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
What is claimed is :
1 . A method for managing a shared memory mapping in

a computer , the method comprising :
receiving a first shared page request , wherein the first

shared page request is associated with a first logical
page included in a first logical memory block (LMB) of
a first logical partition (LPAR) , wherein the first logical
page corresponds to a physical page included in a
shared memory region (SMR) associated with the first
LPAR , wherein the physical page is included in a
physical memory block of the computer , and wherein
the first LPAR is included in a plurality of LPARS
included in the computer ;

determining , in response to the first shared page request ,
based at least in part on the first logical page corre
sponding to the physical page and the physical page
included in the SMR , a shared access state associated
with the first LMB , wherein the shared access state
indicates that the SMR is associated with first LMB ;

receiving a second shared page request , wherein the
second shared page request is associated with access to
the physical page by a second LPAR included in the
plurality of LPARs ;

determining , in response to the second shared page
request , a mapping state associated with the SMR ,
wherein the mapping state indicates that the second
LPAR has established a mapping to the physical page ;

receiving a mapping request associated with the physical
page ;

determining , in response to the mapping request , based at
least in part on the shared access state associated with
the first LMB and the mapping state associated with the
SMR , that the second LPAR has established a mapping
to the physical page ; and

invalidating the second LPAR mapping to the physical
page .

2 . The method of claim 1 , wherein the determining that
the second LPAR that has established a mapping to the
physical page comprises :

US 2018 / 0018098 A1 Jan . 18 , 2018

determining that the physical page is associated with the
first logical page ;

determining that the first logical page is included in the
first LMB ;

determining , based on the shared access state associated
with the first LMB , that the first LMB is associated with
the SMR ; and

determining , based on the mapping state associated with
the SMR , that the second LPAR has established a
mapping to the physical page .

3 . The method of claim 1 , wherein the shared access state
comprises an export vector corresponding to the first LMB ,
wherein the export vector comprises a bit corresponding to
each SMR in a set of SMRs included in the computer , and
wherein a logic value of each bit in the export vector
represents that the corresponding SMR is associated with the
first LMB .

4 . The method of claim 1 , wherein the mapping state
comprises a reference array having an entry representing
each SMR in a set of SMRs included in the computer ,
wherein the entry representing each SMR comprises an
LPAR bit vector , wherein each LPAR bit vector in the
reference array comprises a set of bits , each bit in the LPAR
bit vector corresponding to each LPAR in the plurality of
LPARs , and wherein a logic value of each bit of the LPAR
bit vector represents that the corresponding LPAR has
established a mapping to at least one physical page included
in the SMR

5 . The method of claim 1 , wherein the invalidating the
second LPAR mapping to the physical page comprises
invalidating the mapping to the physical page in a hardware
page table .

6 . The method of claim 1 , wherein at least one of the first
shared page request and the second shared page request are
included in a hypervisor interface .

7 . The method of claim 1 , wherein the mapping request is
included in a hypervisor interface .

8 . A computer program product for managing a shared
memory mapping in a computer , wherein the computer
program product comprises a computer readable storage
medium having program instructions embodied thereon , and
wherein the program instructions are executable by a pro
cessor to perform a method comprising :

receiving , by the processor , a first shared page request ,
wherein the first shared page request is associated with
a first logical page included in a first logical memory
block (LMB) of a first logical partition (LPAR) ,
wherein the first logical page corresponds to a physical
page included in a shared memory region (SMR)
associated with the first LPAR , wherein the physical
page is included in a physical memory block of the
computer , and wherein the first LPAR is included in a
plurality of LPARs included in the computer ;

determining , by the processor , in response to the first
shared page request , based at least in part on the first
logical page corresponding to the physical page and the
physical page included in the SMR , a shared access
state associated with the first LMB , wherein the shared
access state indicates that the SMR is associated with
first LMB ;

receiving , by the processor , a second shared page request ,
wherein the second shared page request is associated
with access to the physical page by a second LPAR
included in the plurality of LPARs ;

determining , by the processor , in response to the second
shared page request , a mapping state associated with
the SMR , wherein the mapping state indicates that the
second LPAR has established a mapping to the physical
page ;

receiving , by the processor , a mapping request associated
with the physical page ;

determining , by the processor , in response to the mapping
request , based at least in part on the shared access state
associated with the first LMB and the mapping state
associated with the SMR , that the second LPAR has
established a mapping to the physical page ; and

invalidating , by the processor , the second LPAR mapping
to the physical page .

9 . The computer program product of claim 8 , wherein the
processor determining that the second LPAR that has estab
lished a mapping to the physical page comprises :

determining , by the processor , that the physical page is
associated with the first logical page ;

determining , by the processor , that the first logical page is
included in the first LMB ;

determining , by the processor , based on the shared access
state associated with the first LMB , that the first LMB
is associated with the SMR ; and

determining , by the processor , based on the mapping state
associated with the SMR , that the second LPAR has
established a mapping to the physical page .

10 . The computer program product of claim 8 , wherein
the shared access state comprises an export vector corre
sponding to the first LMB , wherein the export vector com
prises a bit corresponding to each SMR in a set of SMRs
included in the computer , and wherein a logic value of each
bit in the export vector represents that the corresponding
SMR is associated with the first LMB .

11 . The computer program product of claim 8 , wherein the
mapping state comprises a reference array having an entry
representing each SMR in a set of SMRs included in the
computer , wherein the entry representing each SMR com
prises an LPAR bit vector , wherein each LPAR bit vector in
the reference array comprises a set of bits , each bit in the
LPAR bit vector corresponding to each LPAR in the plurality
of LPARs , and wherein a logic value of each bit of the LPAR
bit vector represents that the corresponding LPAR has
established a mapping to at least one physical page included
in the SMR .

12 . The computer program product of claim 8 , wherein
the processor invalidating the second LPAR mapping to the
physical page comprises invalidating , by the processor , the
second LPAR mapping to the physical page in a hardware
page table .

13 . The computer program product of claim 8 , wherein at
least one of the first shared page request and the second
shared page request are included in a hypervisor interface .

14 . The computer program product of claim 8 , wherein
the mapping request is included in a hypervisor interface .

15 . A system for managing a shared memory mapping in
a computer having a plurality of logical partitions (LPARs) ,
the system comprising :

a first LPAR included in the plurality of LPARs ;
a shared memory region (SMR) associated with the first
LPAR ;

a processor , wherein the processor is configured to
execute a hypervisor program , and wherein the hyper
visor program is configured to :

US 2018 / 0018098 A1 Jan . 18 , 2018

receive a first shared page request , wherein the first shared
page request is associated with a first logical page
included in a first logical memory block (LMB) of the
first LPAR , wherein the first logical page corresponds
to a physical page included in a shared memory region
(SMR) associated with the first LPAR , and wherein the
physical page is included in a physical memory block
of the computer ;

determine , in response to the first shared page request ,
based at least in part on the first logical page corre
sponding to the physical page and the physical page
included in the SMR , a shared access state associated
with the first LMB , wherein the shared access state
indicates that the SMR is associated with first LMB ;

receive a second shared page request , wherein the second
shared page request is associated with access to the
physical page by a second LPAR included in the
plurality of LPARs ;

determine , in response to the second shared page request ,
a mapping state associated with the SMR , wherein the
mapping state indicates that the second LPAR has
established a mapping to the physical page ;

receive a mapping request associated with the physical
memory block ;

determine , in response to the mapping request , based at
least in part on the shared access state associated with
the first LMB and the mapping state associated with the
SMR , that the second LPAR has established a mapping
to the physical page ; and

invalidate the second LPAR mapping to the physical page .
16 . The system of claim 15 , wherein the hypervisor

program configured to determine that the second LPAR has
established a mapping to the physical page comprises the
hypervisor program further configured to :

determine that the physical page is associated with the
first logical page ;

determine that the first logical page is included in the first
LMB ;

determine , based on the shared access state associated
with the first LMB , that the first LMB is associated with
the SMR ; and

determine , based on the mapping state associated with the
SMR , that the second LPAR has established a mapping
to the physical page .

17 . The system of claim 15 , wherein the shared access
state comprises an export vector corresponding to the first
LMB , wherein the export vector comprises a bit correspond
ing to each SMR in a set of SMRs included in the computer ,
and wherein a logic value of each bit in the export vector
represents that the corresponding SMR is associated with the
first LMB .

18 . The system of claim 15 , wherein the mapping state
comprises a reference array having an entry representing
each SMR in a set of SMRs included in the computer ,
wherein the entry representing each SMR comprises an
LPAR bit vector , wherein each LPAR bit vector in the
reference array comprises a set of bits , each bit in the LPAR
bit vector corresponding to each LPAR in the plurality of
LPARs , and wherein a logic value of each bit of the LPAR
bit vector represents that the corresponding LPAR has
established a mapping to at least one physical page included
in the SMR .

19 . The system of claim 15 , wherein the hypervisor
program configured to invalidate the second LPAR mapping
to the physical page comprises the hypervisor program
further configured to invalidate the second LPAR mapping
to the physical page in a hardware page table .

20 . The system of claim 15 , wherein at least one of the
first shared page request , the second shared page request ,
and the mapping request are included in a programming
interface of the hypervisor program .

* * * * *

