
HUMIHIMILLIMETI 
US 20180011692A1 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2018 / 0011692 A1 

Ross ( 43 ) Pub . Date : Jan . 11 , 2018 

( 54 ) STOCHASTIC PROCESSING 
( 71 ) Applicant : CASSY HOLDINGS LLC , South 

Jordan , UT ( US ) 2 ) 

G06F 21 / 00 ( 2013 . 01 ) 
H04L 9 / 16 ( 2006 . 01 ) 
H04L 9 / 06 ( 2006 . 01 ) 
U . S . Cl . 

G06F 7 / 58 ( 2013 . 01 ) ; H04L 9 / 16 
( 2013 . 01 ) ; H04L 9 / 0662 ( 2013 . 01 ) ; G06F 

7 / 588 ( 2013 . 01 ) ; G06F 21 / 00 ( 2013 . 01 ) ; 
G06F 21 / 62 ( 2013 . 01 ) 

??? . . . . . . . . . . . . . . . . . . 

( 72 ) Inventor : Patrick D . Ross , Sunnyvale , CA ( US ) 

( 73 ) Assignee : CASSY HOLDINGS LLC , South 
Jordan , UT ( US ) 

( 57 ) ( 21 ) Appl . No . : 15 / 689 , 281 
( 22 ) Filed : Aug . 29 , 2017 

Related U . S . Application Data 
( 63 ) Continuation of application No . 13 / 482 , 723 , filed on 

May 29 , 2012 , now Pat . No . 9 , 778 , 912 . 
( 60 ) Provisional application No . 61 / 519 , 679 , filed on May 

27 , 2011 . 

ABSTRACT 
A system , method , and device for stochastically processing 
data . There is an architect module operating on a processor 
configured to manage and control stochastic processing of 
data , a non - deterministic data pool module configured to 
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cally process data as called upon by the architect module , a 
data feed configured to feed a data set desired to be sto 
chastically processed , and a structure memory module 
including a memory storage device and configured to pro 
vide sufficient information for the architect module to dupli 
cate a predefined processing architecture and to record a 
utilized processing architecture . 
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STOCHASTIC PROCESSING 
CROSS - REFERENCE TO RELATED 

APPLICATIONS 
[ 0001 ] This application is a Continuation Application of , 
under 35 U . S . C . $ 120 , and claims priority to , under 35 
U . S . C . $ 120 , U . S . Non - Provisional application Ser . No . 
13 / 482 , 723 , entitled STOCHASTIC PROCESSING OF AN 
INFORMATION STREAM BY A PROCESSING ARCHI 
TECTURE GENERATED BY OPERATION OF NON 
DETERMINISTIC DATA USED TO SELECT DATA PRO 
CESSING MODULES , by Patrick D . Ross , filed on May 29 , 
2012 . This invention claims priority therethrough , under 35 
U . S . C . $ 120 , to the U . S . Provisional Patent Application No . 
61 / 519 , 679 to Patrick D . Ross filed on May 27 , 2011 which 
is incorporated by reference herein . 

BACKGROUND OF THE INVENTION 

Field of the Invention 
[ 0002 ] The present invention relates to methods and sys 
tems for protecting information , specifically to methods and 
systems to produce dynamic applications that provide sto 
chastic processing of information . 

Description of the Related Art 
[ 0003 ] Many applications require random values as part of 
their internal processing . Some of these applications have 
simple requirements like a uniform distribution of values , 
reproducibility from a given seed value , and very long 
cycles before they repeat . To that end , many papers and 
books describe good hardware and software functions that 
provide these classic random value generators . The attri 
butes of classic random value generators remain both useful 
and problematic . Before addressing any shortcomings of 
current random value generators , we generally must first 
review how these generators work . 
[ 0004 ) There exists a number of properties common to all 
classic random value generators , whether they be hardware 
or software based . The cornerstone of classic random value 
generators is the use of static random functions . Each of 
these functions processes the current non - zero data value 
into the next random value in the sequence . The subsequent 
processing of each new value creates the random sequence . 
Assuming that a good function is used , the random sequence 
will pass almost all known statistical tests for randomness . 
100051 Numerous random functions have been tested and 
published . Most of these published functions produce a 
limited sequence of values before repeating the same 
sequence of random values . These brief cycle lengths may 
be too short to be compatible with many applications . In 
hardware , the random functions are most often described as 
Linear Feedback Shift Registers ( LFSR ) . Though fewer 
software functions exist , a number of established functions 
are available for the designer to use in new applications . 
Also , most software random functions share the same short 
cycle attribute . 
[ 0006 ] Whether passing or failing , cycle length proves just 
as important as statistical testing . Combining multiple pub 
lished functions in a non - linear manner is the most common 
way to increase cycle length . The function - based random 
value generators are correctly called pseudorandom genera 
tors and remain easy to " crack ” ( invert ) . Cracking a random 

value generator allows an attacker to anticipate each of the 
values in the sequence . As a rule of thumb , doubling the 
classic random function complexity has the effect of squar 
ing the effort required to crack it . As the speed of hardware 
and therefore computers increases , the battle becomes an 
arms race between the designer of random value generators 
and the cracker wishing to break them . 
[ 0007 ] Embracing this rule of thumb , hardware designers 
adopt evermore complex random value generator functions . 
The struggle between the designer and cracker persists 
because the function driven paradigm is inevitably incom 
plete . The cost to create , test , and deploy new random value 
generators is thereby open - ended , because each new design 
is destined to become obsolete . Subsequently , higher recur 
ring chip costs translate directly into product costs . The 
endpoint along this path is unknown , so a designer cannot 
anticipate how long their newest function will prove safe 
from cracking . 
[ 0008 ] . The costs of increasing function complexity are 
manifested in multiple ways . As noted above , the hardware 
arms race persists as an inevitably incomplete problem . 
Each new jump in hardware technology generally requires a 
new corresponding generator design in order to stay ahead 
of the crackers . This escalating cost forces many application 
designers to forgo the hardware - based solution . To cut 
system cost , many application designers resort to software 
based random value generators . Often the process of tran 
sitioning to a software solution either slows performance 
unacceptably or increases CPU costs . While the recurring 
costs are lower without dedicated silicon , the software 
implementation taxes overall system performance . As the 
software complexity increases , performance inversely 
decreases . 
[ 0009 ] In an effort to resist cracking , many designers 
resort to secret ( non - public ) designs . Development in 
secrecy necessitates limited testing , review , or reuse . Unfor 
tunately , secret development guarantees a limited return on 
investment because low volume of a given design generally 
always carries higher cost per unit . Furthermore , secrecy 
only sustains the integrity of these designs until someone 
obtains a hardware or software example . 
[ 0010 ] The final weakness to these classic functions stems 
from a simple immutable fact : each random function pro 
duces its own random sequence . Stated another way , there is 
a one - to - one correspondence between the random function 
and the unique sequence of values it produces . That 
sequence acts like a “ melody ” with respect to its generating 
function . A random “ melody ” is defined as both the values 
and the order of those values as they are produced . The seed 
value only defines where the “ melody ” starts . 
[ 0011 ] All classic random value generators use a scalar 
value ( starting non - zero seed ) to index the point at which 
their unique “ melody ” begins . Since classic random value 
generators are static function - based constructs , the seed 
value generally must be protected because it acts as the key 
to define the start of the pseudorandom sequence . In most 
cases , the size of the seed value is used to indicate the overall 
cycle length . All hardware and most software based classic 
random value generators require a non - zero seed value to 
start generating random values . In almost all cases , a zero 
value seed will fail to generate any random stream . 
[ 0012 ] In a futile effort to resist cracking , many designers 
resort to secret ( non - public ) designs . Development in 
secrecy necessitates limited testing , review , or reuse . Unfor 
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that solves one or more of the problems described herein 
and / or one or more problems that may come to the attention 
of one skilled in the art upon becoming familiar with this 
specification . 
[ 0016 ] The following and / or accompanying disclosure 
information is provided as non - limiting examples of fea 
tures , functions , structures , associations , connections , meth 
ods , steps , benefits , consequences , and the like that may be 
included independently , in any open combination , and in any 
limited combinational form ( consisting of ) despite any lan 
guage to the contrary , such as but not limited to " must " 
" always " " never " " certainly ” and the like . Any dimensions 
provided are exemplary and functionally equivalent ranges 
that one skilled in the art may recognize after reading this 
disclosure are implied . Disclosure provided may be pro 
phetic , even if asserted as otherwise . 

SUMMARY OF THE INVENTION 

tunately , secret development guarantees a limited return on 
investment because low volume of a given design generally 
always carries higher cost per unit . Furthermore , secrecy 
only sustains the integrity of these designs until someone 
obtains a hardware or software example . What is needed is 
a true random value generator , one that implements a true 
one way function , resulting in a random stream of values 
that is non - deterministic and / or a method or system that 
solves one or more of the problems described herein and / or 
one or more problems that may come to the attention of one 
skilled in the art upon becoming familiar with this specifi 
cation . Some improvements have been made in the field . 
Examples of references related to the present invention are 
described below in their own words , and the supporting 
teachings of each reference are incorporated by reference 
herein : U . S . Patent Application Publication No . : 2011 / 
0029588 , by Ross , discloses a system and method of gen 
erating a one - way function and thereby producing a random 
value stream . Steps include : providing a plurality of memory 
cells addressed according to a domain value wherein any 
given domain value maps to all possible range values ; 
generating a random domain value associated with one of 
the memory cells ; reading a data value associated with the 
generated random domain value ; generating dynamically 
enhanced data by providing an additional quantity of data ; 
removing suspected non - random portions thereby creating 
source data ; validating the source data according to a 
minimum randomness requirement , thereby creating a vali 
dated source data ; and integrating the validated source data 
with the memory cell locations using a random edit process 
that is a masking , a displacement - in - time , a chaos engine , an 
XOR , an overwrite , an expand , a remove , a control plane , or 
an address plane module . The expand module inserts a noise 
chunk . 
[ 0013 ] U . S . Patent Application Publication No . : 2010 / 
0036900 , by Ross , discloses a system and method of gen 
erating a one - way function and thereby producing a random 
value stream . Steps include : providing a plurality of memory 
cells addressed according to a domain value wherein any 
given domain value maps to all possible range values ; 
generating a random domain value associated with one of 
the memory cells ; reading a data value associated with the 
generated random domain value ; generating dynamically 
enhanced data by providing an additional quantity of data ; 
removing suspected non - random portions thereby creating 
source data ; validating the source data according to a 
minimum randomness requirement , thereby creating a vali 
dated source data ; and integrating the validated source data 
with the memory cell locations using a random edit process 
that is a masking , a displacement - in - time , a chaos engine , an 
XOR , an overwrite , an expand , a remove , a control plane , or 
an address plane module . The expand module inserts a noise 
chunk . 
[ 0014 ] The inventions heretofore known suffer from a 
number of disadvantages which include being difficult to 
use , being complex , being expensive , being limited in use , 
being limited in application , being unreliable , being deter 
minable , being certain , requiring ever larger periods of 
processing time for subsequent sets of random data , failing 
to be true “ one - way ” functions , having vulnerabilities and 
weaknesses that make it easier for unauthorized users to 
decrypt information , and the like and combinations thereof . 
[ 0015 ] What is needed is a method , system , apparatus , 
device , computer program , kit , and / or combination thereof 

[ 0017 The present invention has been developed in 
response to the present state of the art , and in particular , in 
response to the problems and needs in the art that have not 
yet been fully solved by currently available static , ( and 
therefore deterministic ) hardware and software solutions . 
Accordingly , the present invention has been developed to 
provide a method and / or a system of generating dynamic , 
nondeterministic solutions in either hardware or software , 
including but not limited to a system , method and / or device 
for stochastic processing of information . 
[ 0018 ] According to one embodiment of the invention , 
there is a system of stochastic processing of information 
using a computing device . The system may include an 
architect module that may have a processor . The architect 
module may be configured to manage and control stochastic 
processing of data . The architect module may include a 
run - time modification module that may be configured to 
randomly alter a stochastic architecture during run - time . The 
run - time modification module may be seeded from the 
non - deterministic data pool module . The architect module 
may be configured to use random values to select between 
the plurality of functionally equivalent data processing mod 
ules during run - time . The architect module may use random 
values to select run - time durations for use of one of the 
plurality of functionally equivalent data processing modules 
during run - time . 
[ 0019 ] The system may include a non - deterministic data 
pool module that may be functionally coupled to the archi 
tect module and may be configured to provide a stream of 
non - deterministic values that are not derived from a func 
tion . The non - deterministic data pool module may include a 
URNG system . The system may include a plurality of 
functionally equivalent data processing modules that may be 
functionally coupled to the architect module , and each may 
be configured to stochastically process data as called upon 
by the architect module . 
[ 0020 The system may include a data feed module that 
may be in functional communication with the architect 
module and may be configured to feed a data set desired to 
be stochastically processed . The system may include a 
structure memory module that may have a memory storage 
device . The structure memory module may be coupled to the 
architect module and may be configured to provide sufficient 
information for the architect module to duplicate a pre 
defined processing architecture and to record a utilized 
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processing architecture . The structure memory module may 
include an index module that indexes structure according to 
a time structure . 
[ 0021 ] The system may include a common data pool 
processing module that may be functionally coupled to the 
non - deterministic data pool module and may be configured 
to stochastically process a common non - deterministic data 
pool thereby generating an application specific non - deter 
ministic data pool for use by the non - deterministic data pool 
module . The system may include a communication protocol 
interface that may be in communication with the data feed 
module and may be configured to feed a communication 
protocol map to the data feed module , receive a stochasti 
cally processed communication protocol map from the 
architect module , and to alter an information stream accord 
ing to the stochastically processed communication protocol 
map . 
[ 0022 ] According to one embodiment of the invention , 
there is a method of stochastically processing information 
using a computing device . The method may include the step 
of providing a non - deterministic data pool that is verified to 
be non - deterministic and is not derived from a function . The 
method includes verifying that the non - deterministic data 
pool passes the NIST test with a predominant 10 / 10 score . 
The method may include the step of providing an informa 
tion stream to be processed . The method may include the 
step of delaying selection of all randomized data processing 
characteristics until run - time . 
[ 0023 ] The method may include randomly selecting a first 
data processing module , using a processor , from a set of 
functionally equivalent data processing modules , each con 
figured to alter data . The method may include the step of 
determining a random duration of use of the first data 
processing module during run - time . The set of functionally 
equivalent data processing modules may be selected from 
the group of data processing modules including : subtraction , 
masking , NAND , NOR , OR , XOR , AND , and addition . The 
method may include seeding a step of randomly selecting a 
data processing module from the non - deterministic data 
pool . 
[ 0024 ] The method of stochastically processing informa 
tion using a computing device may include the step of 
altering the information stream by use of the first data 
processing module . The method may include randomly 
selecting a replacement data processing module , using a 
processor , from the set of functionally equivalent data 
processing modules while processing the information stream 
with the first data processing module . The method may also 
include replacing the first data processing module with the 
replacement data processing module . 
[ 0025 ] The method may include the step of altering the 
information stream by use of the replacement data process 
ing module . The information stream may be configured 
according to a predefined communication protocol and the 
first and replacement data processing modules each may 
sufficiently process the information stream to make the 
information stream fail to satisfy the requirements of the 
predefined communication protocol . The method may 
include randomly layering use of a plurality of data pro 
cessing modules such that the information stream is pro 
cessed through multiple randomized layers of data process 
ing modules . 
[ 0026 ] The method may further include the step of record 
ing structure information sufficient to reproduce use of the 

first and replacement data processing modules . The method 
may include associating operation of the method with a time 
index such that operation of the method by counterparts 
beginning with identical time index positions and an iden 
tical non - deterministic data pool may process the informa 
tion stream identically . The method may include the step of 
stochastically processing the non - deterministic data pool 
before utilization of the non - deterministic data pool . The 
method may also include the step of managing randomiza 
tion such that each call to a source of random values goes to 
a different source than each previous call . 
[ 0027 ] According to one embodiment of the invention , 
there is a stochastic processing device configured to sto 
chastically process information fed therein . The device may 
include a processor and a non - volatile memory device that 
may be functionally coupled to the processor . The non 
volatile memory device may include a pool of non - deter 
ministic data that may be verified to have passed the NIST 
test with a predominant 10 / 10 score . The device may include 
a data input interface module that may be functionally 
coupled to the processor and may be configured to receive 
data . The device may include a data output interface module 
that may be functionally coupled to the processor and may 
be configured to send data . 
[ 0028 ] The device may also include a data processing 
module that may be functionally coupled to the processor 
and may include a plurality of functionally equivalent data 
processing instruction sets . The device may include an 
architect module that may be functionally coupled to the 
processor , the data processing module and to the non 
volatile memory device . The architect module may be 
configured to manage and control stochastic processing of 
data according to seed values from the pool of non - deter 
ministic data by randomly selecting data processing modules 
during run - time , thereby processing data received through 
the data input interface module and providing stochastically 
processed data to the data output interface module . 
[ 0029 ] In one embodiment , a single , formerly static solu 
tion is transformed into many dynamic custom solutions 
within the same implementation . This new genome of solu 
tions is based on a number of new technologies , including 
but not limited to one or more of the following modules : 

( 0030 ) Uncertainty Function One Way Function 
[ 0031 ] Uncertainty Random Number Generators 
[ 0032 ] Dynamic Selection of Processing Components 
[ 0033 ] Delayed Binding of Components Until Needed 
[ 0034 ] On Demand Remixing of Components 
10035 ) Data Driven Implementations 

[ 0036 ] Embodiments of this new genome of dynamic 
solutions simplify many preferred solutions . The replace 
ment of static , “ one size fits all ” applications with custom 
solutions resolve many currently unsolved problems . 
[ 0037 ] In another embodiment , all of these new techniques 
come together as an open - ended architectural solution for 
generating random values . This kind of architectural model 
scales from very low cost products to extremely demanding 
applications , based on their random data requirements . 
Thus , we arrive at data morphing data instead of functions 
processing data . 
[ 0038 ] In still another embodiment , there is a method of 
morphing static protocols into evolving protocols . Custom , 
dynamically evolving protocols become impossible to hack . 
[ 0039 ] In still another embodiment , a simple hash value 
can be upgraded to become secure digital signatures . 
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[ 0049 ] FIG . 6 illustrates a stochastic processing device 
configured to stochastically process information fed therein . 

Assuming " service providers ” only support these secure 
digital signatures , then any unauthorized hash values are 
ignored . Thus , these digital signatures become a form of 
revocable access control . This approach to access control 
can extend to any item , phone number , email address , IP 
address , control system , financial transaction , etc . 
[ 0040 ] In still another embodiment , a correctly imple 
mented example of the custom solutions will be harder to 
invert than the same cost static solutions , assuming the 
session data ( to be defined later ) has not been compromised . 
This means that everyone can use the same public hardware / 
software implementation yet still have the same resistance to 
cracking 
0041 ] Reference throughout this specification to features , 
advantages , or similar language does not imply that all of the 
features and advantages that may be realized with the 
present invention should be or are in any single embodiment 
of the invention . Rather , language referring to the features 
and advantages is understood to mean that a specific feature , 
advantage , or characteristic described in connection with an 
embodiment is included in at least one embodiment of the 
present invention . Thus , discussion of the features and 
advantages , and similar language , throughout this specifi 
cation may , but do not necessarily , refer to the same embodi 
ment . 
[ 0042 ] Furthermore , the described features , advantages , 
and characteristics of the invention may be combined in any 
suitable manner in one or more embodiments . One skilled in 
the relevant art will recognize that the invention can be 
practiced without one or more of the specific features or 
advantages of a particular embodiment . In other instances , 
additional features and advantages may be recognized in 
certain embodiments that may not be present in all embodi 
ments of the invention . 
10043 ] These features and advantages of the present inven 
tion will become more fully apparent from the following 
description and appended claims , or may be learned by the 
practice of the invention as set forth hereinafter . 

DETAILED DESCRIPTION OF THE 
INVENTION 

[ 0050 ] For the purposes of promoting an understanding of 
the principles of the invention , reference will now be made 
to the exemplary embodiments illustrated in the drawing ( s ) , 
and specific language will be used to describe the same . It 
will nevertheless be understood that no limitation of the 
scope of the invention is thereby intended . Any alterations 
and further modifications of the inventive features illustrated 
herein , and any additional applications of the principles of 
the invention as illustrated herein , which would occur to one 
skilled in the relevant art and having possession of this 
disclosure , are to be considered within the scope of the 
invention . 
[ 0051 ] Many of the functional units described in this 
specification have been labeled as modules , in order to more 
particularly emphasize their implementation independence . 
For example , a module may be implemented as a hardware 
circuit comprising custom VLSI circuits or gate arrays , 
off - the - shelf semiconductors such as logic chips , transistors , 
or other discrete components . A module may also be imple 
mented in programmable hardware devices such as field 
programmable gate arrays , programmable array logic , pro 
grammable logic devices or the like . 
10052 ] . Any of the functions , features , benefits , structures , 
and etc . described herein may be embodied in one or more 
modules . Many of the functional units described in this 
specification have been labeled as modules , in order to more 
particularly emphasize their implementation independence . 
For example , a module may be implemented as a hardware 
circuit comprising custom VLSI circuits or gate arrays , 
off - the - shelf semiconductors such as logic chips , transistors , 
or other discrete components . A module may also be imple 
mented in programmable hardware devices such as field 
programmable gate arrays , programmable array logic , pro 
grammable logic devices or the like . 
[ 0053 ] Modules may also be implemented in software for 
execution by various types of processors . An identified 
module of programmable or executable code may , for 
instance , comprise one or more physical or logical blocks of 
computer instructions which may , for instance , be organized 
as an object , procedure , or function . Nevertheless , the 
executables of an identified module need not be physically 
located together , but may comprise disparate instructions 
stored in different locations which , when joined logically 
together , comprise the module and achieve the stated pur 
pose for the module . 
[ 0054 ] Indeed , a module and / or a program of executable 
code may be a single instruction , or many instructions , and 
may even be distributed over several different code seg 
ments , among different programs , and across several 
memory devices . Similarly , operational data may be identi 
fied and illustrated herein within modules , and may be 
embodied in any suitable form and organized within any 
suitable type of data structure . The operational data may be 
collected as a single data set , or may be distributed over 
different locations including over different storage devices , 
and may exist , at least partially , merely as electronic signals 
on a system or network . 
[ 0055 ] The various system components and / or modules 
discussed herein may include one or more of the following : 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0044 ] In order for the advantages of the invention to be 
readily understood , a more particular description of the 
invention briefly described above will be rendered by ref 
erence to specific embodiments that are illustrated in the 
appended drawing ( s ) . It is noted that the drawings of the 
invention are not to scale . The drawings are mere schematics 
representations , not intended to portray specific parameters 
of the invention . Understanding that these drawing ( s ) depict 
only typical embodiments of the invention and are not , 
therefore , to be considered to be limiting its scope , the 
invention will be described and explained with additional 
specificity and detail through the use of the accompanying 
drawing ( s ) , in which : 
[ 0045 ] FIG . 1 is a flowchart depicting a selecting process 
of elements for an instance of stochastic module / process , 
according to one embodiment of the invention ; 
[ 0046 ] FIG . 2 is a flowchart depicting a testing of the 
given processing element , according to one embodiment of 
the invention ; 
[ 0047 ] FIG . 3 illustrates a system of stochastic processing 
of information according to one embodiment of the inven 
tion ; 
[ 0048 ] FIGS . 4 - 5 illustrate a method of stochastically 
processing information using a computing device ; and 
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a host server or other computing systems including a pro 
cessor for processing digital data ; a memory coupled to said 
processor for storing digital data ; an input digitizer coupled 
to the processor for inputting digital data ; an application 
program stored in said memory and accessible by said 
processor for directing processing of digital data by said 
processor ; a display device coupled to the processor and 
memory for displaying information derived from digital data 
processed by said processor , and a plurality of databases . As 
those skilled in the art will appreciate , any computers 
discussed herein may include an operating system ( e . g . , 
Windows Vista , NT , 95 / 98 / 2000 , OS2 ; UNIX ; Linux ; 
Solaris ; MacOS ; and etc . ) as well as various conventional 
support software and drivers typically associated with com 
puters . The computers may be in a home or business 
environment with access to a network . In an exemplary 
embodiment , access is through the Internet through a com 
mercially - available web - browser software package . 
[ 0056 ] The present invention may be described herein in 
terms of functional block components , screen shots , user 
interaction , optional selections , various processing steps , 
and the like . Each of such described herein may be one or 
more modules in exemplary embodiments of the invention . 
It should be appreciated that such functional blocks may be 
realized by any number of hardware and / or software com 
ponents configured to perform the specified functions . For 
example , the present invention may employ various inte 
grated circuit components , e . g . , memory elements , process 
ing elements , logic elements , look - up tables , and the like , 
which may carry out a variety of functions under the control 
of one or more microprocessors or other control devices . 
Similarly , the software elements of the present invention 
may be implemented with any programming or scripting 
language such as C , C + + , Java , COBOL , assembler , PERL , 
Visual Basic , SQL Stored Procedures , AJAX , extensible 
markup language ( XML ) , with the various algorithms being 
implemented with any combination of data structures , 
objects , processes , routines or other programming elements . 
Further , it should be noted that the present invention may 
employ any number of conventional techniques for data 
transmission , signaling , data processing , network control , 
and the like . Still further , the invention may detect or prevent 
security issues with a client - side scripting language , such as 
JavaScript , VBScript or the like . 
[ 0057 ] Additionally , many of the functional units and / or 
modules herein are described as being “ in communication ” 
with other functional units and / or modules . Being " in com 
munication ” refers to any manner and / or way in which 
functional units and / or modules , such as , but not limited to , 
computers , laptop computers , PDAs , modules , and other 
types of hardware and / or software , may be in communica 
tion with each other . Some non - limiting examples include 
communicating , sending , and / or receiving data and meta 
data via : a network , a wireless network , software , instruc 
tions , circuitry , phone lines , internet lines , satellite signals , 
electric signals , electrical and magnetic fields and / or pulses , 
and / or so forth . 
10058 ] As used herein , the term “ network ” may include 
any electronic communications means which incorporates 
both hardware and software components of such . 
[ 0059 ] Communication among the parties in accordance 
with the present invention may be accomplished through any 
suitable communication channels , such as , for example , a 
telephone network , an extranet , an intranet , Internet , point of 

interaction device ( point of sale device , personal digital 
assistant , cellular phone , kiosk , etc . ) , online communica 
tions , off - line communications , wireless communications , 
transponder communications , local area network ( LAN ) , 
wide area network ( WAN ) , networked or linked devices 
and / or the like . Moreover , although the invention may be 
implemented with TCP / IP communications protocols , the 
invention may also be implemented using IPX , Appletalk , 
IP - 6 , NetBIOS , OSI or any number of existing or future 
protocols . If the network is in the nature of a public network , 
such as the Internet , it may be advantageous to presume the 
network to be insecure and open to eavesdroppers . Specific 
information related to the protocols , standards , and applica 
tion software utilized in connection with the Internet is 
generally known to those skilled in the art and , as such , need 
not be detailed herein . See , for example , DILIP NAIK , 
INTERNET STANDARDS AND PROTOCOLS ( 1998 ) : 
JAVA 2 COMPLETE , various authors , ( Sybex 1999 ) ; 
DEBORAH RAY AND ERIC RAY , MASTERING HTML 
4 . 0 ( 1997 ) ; and LOSHIN , TCP / IP CLEARLY EXPLAINED 
( 1997 ) , the contents of which are hereby incorporated by 
reference . 
10060 ] Reference throughout this specification to an 
" embodiment , " an " example ” or similar language means 
that a particular feature , structure , characteristic , or combi 
nations thereof described in connection with the embodi 
ment is included in at least one embodiment of the present 
invention . Thus , appearances of the phrases an " embodi 
ment , " an " example , " and similar language throughout this 
specification may , but do not necessarily , all refer to the 
same embodiment , to different embodiments , or to one or 
more of the figures . Additionally , reference to the wording 
" embodiment , " " example ” or the like , for two or more 
features , elements , etc . does not mean that the features are 
necessarily related , dissimilar , the same , etc . 
[ 0061 ] Each statement of an embodiment , or example , is 
to be considered independent of any other statement of an 
embodiment despite any use of similar or identical language 
characterizing each embodiment . Therefore , where one 
embodiment is identified as " another embodiment , " the 
identified embodiment is independent of any other embodi 
ments characterized by the language " another embodiment . " 
The features , functions , and the like described herein are 
considered to be able to be combined in whole or in part one 
with another as the claims and / or art may direct , either 
directly or indirectly , implicitly or explicitly . 
[ 0062 ] As used herein , “ comprising , " " including , " " con 
taining , " " is , " " are , " " characterized by , " and grammatical 
equivalents thereof are inclusive or open - ended terms that 
do not exclude additional unrecited elements or method 
steps . “ Comprising " is to be interpreted as including the 
more restrictive terms “ consisting of ” and “ consisting essen 
tially of . ” 
[ 0063 ] It remains difficult to solve a Calculus problem by 
employing Algebra . These math tools are designed to deal 
with different types of problems : dynamic vs . static . Note , 
whenever we apply the incorrect tool to solve a problem , we 
inevitably settle for suboptimal solutions . Currently , hard 
ware and software development confines solutions within a 
narrow range of functionality , usually within a static , and 
therefore deterministic range . Like Algebra , these imple 
mentations are very good for solving some problems . How 
ever , they remain inadequate when asked to address prob 
lems that are better answered by dynamic solutions . Before 
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we can focus on dynamic solutions , we generally must first 
review the current mathematics confining us to static solu 
tions . 

Uncertainty Function 

[ 0070 ] So , why talk about Algebra , domain vs . range 
relationships , and graphical plots ? Surprisingly , all current 
digital products already use the Uncertainty Function . Yet 
none of these product designers have seen the mathematical 
implications . We know this function by its more common 
use as simple RAM ( Random Access Memory ) . The read of 
a memory cell within a buffer filled with random data 
produces a nondeterministic value . Each valid memory 
address maps to a memory cell that can contain any possible 
range value . The graphical plot of RAM ( the uncertainty 
function ) is black . One cannot predict the memory address 
( domain value ) given a memory ( range ) value . These are 
profound enhancements over the mathematics of certainty . 
10071 ] The memory buffer used within the Uncertainty 
Function is called the " pool of uncertainty . " Each read from 
this pool produces a nondeterministic value called Uncertain 
Data . Uncertain Data remains " uncertain ” if and only if no 
one ever sees its true value . Therefore , releasing values from 
the pool of uncertainty presents us with a paradox — how do 
we read from the data pool without exposing the contents of 
the pool ? This issue defines the Data Paradox . 
10072 ] While the Uncertainty Function is necessary , by 
itself , it is not sufficient to deal with the data paradox . The 
first functionally complete technology after the Uncertainty 
Function is the creation of a nondeterministic Uncertainty 
Random Number Generator ( URNG ) . Two additional data 
paradox technologies are required to protect the integrity of 
the pool of uncertainty . 

[ 0064 ] The principle of certainty ” dominates the field of 
Mathematics ; by certainty , We mean that traditional math 
ematics provides functions where input values ( domain 
values ) are used to mechanically compute a certain output 
( range value ) . Thus far , due to the mechanical nature of 
computation , this process has generally always resulted in a 
deterministic ( range ) value given any domain value . This 
truth of deterministic functions has held for hundreds of 
years . 
[ 0065 ] The effects of certainty can be recognized as a 
major cryptographical flaw , especially when it comes to 
random number generation . Many people have proposed 
solutions where this certainty is reduced by infusing some 
amount of “ entropy ” ( noise ) to break up the normal certainty 
of function computation . These solutions are major 
improvements , but they still fall short in escaping the trap of 
mathematical certainty . 
0066 ] As students of Algebra , we are all taught , tested , 
graded and promoted by the sacred preservation of the equal 
sign . Each subsequent math class continues to reiterate this 
point . In order to keep both sides equal , we generally must 
manipulate the left side of the equation in the same manner 
that we manipulate the right side of the equation . 
[ 0067 ] After centuries of using functions , we only found 
deterministic functions . Thus we assume that only deter 
ministic functions exist . This long history and our common 
math training prevent us from recognizing the possibility of 
nondeterministic functions . There are three possible rela 
tionship mappings between domain and range : one - to - one 
( domain - to - range mapping for traditional functions ) , many 
to - one ( many different domains mapping to the same range 
as found in Hash Functions ) , and the missing relationship for 
domain - to - range mapping — one - to - many . 
[ 0068 ] So , why would the missing one - to - many domain 
to - range mapping be important ? While a traditional function 
is deterministic and therefore invertible , this new function 
class is nondeterministic and noninvertible . Unlike tradi 
tional functions that can only produce certainty from a 
domain value , this new function class provides us with 
“ uncertain ” range values . Hence , we name each member of 
this new function family as an Uncertainty Function . 
[ 0069 ] Let us demonstrate why no one can invert an 
uncertainty function . We have seen the graphical plot of 
many traditional functions . These traditional plots prove that 
any range value can be mapped back to its domain value . In 
contrast , each uncertainty function domain value maps to all 
uncertainty function range values . The graphical plot of one 
domain value is a vertical line . Therefore , the graphical plot 
of all valid domain values shows that the plot of the 
uncertainty function is completely “ black ” . This black 
graphical plot means that range values are independent of 
domain values . Thus , no one can find the unique domain 
value that produced any given range value . The Uncertainty 
Function is the basis of the mathematics of uncertainty . This 
function class spawns an idea that " uncertainty ” can be 
expanded from data into nondeterministic chaotic actions . 
These chaotic actions define the means to create dynamic 
custom solutions that may be unique . 

The Ironic Solution to the Data Paradox . . . 
[ 0073 ] The attributes of uncertain data create the data 
paradox , but these same attributes facilitate an ironic solu 
tion : Randomly selecting two uncertain data values from the 
pool and adding them together results in a new uncertain 
value . This new value is “ decoupled " from the values of its 
parents , as a plurality of different sets of parents can result 
in that same value . Therefore , the attribute of “ uncertainty ” 
has carried forward to the next generation of values . So , 
while one generally must generally never reveal first gen 
eration uncertain data , one can release subsequent genera 
tions that have been processed from it , and thus , the data 
paradox has been resolved . So long as randomly selected 
uncertain values are processed with most binary or higher 
operators , the results are nondeterministic . In this way , we 
arrive at data morphing data instead of functions processing 
data . We have , in effect . . . escaped from mathematical 
certainty . 
10074 ] The process where we hide or decouple the first 
generation of uncertain data from subsequent generations is 
called the Decoupling Process . Earlier in this document , the 
first instance of the decoupling process has been applied to 
Uncertainty Function range values . To complete the task of 
protecting the integrity of the pool of uncertainty , we gen 
erally must also decouple domain ( memory address values ) 
as well as range values . 
[ 0075 ] While the first generation of uncertain data has a 
fixed size , subsequent generations can be of arbitrary size . 
Metaphorically speaking , this " pool " can be amplified into 
a lake , a bay , or even an ocean of uncertainty depending on 
how much processing one chooses to invest . 
[ 0076 ] Static functions or processes generally always lead 
to deterministic ( predictable ) behavior . To overcome this 
behavior , we reach for the only pure nondeterministic means 
we have uncertain data . We generally must leverage this 
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typedef struct 
{ 

means in order to cleanse deterministic behavior from 
internal ( URNG ) functions , processes , and data . This multi 
leveled cleansing effort results in a nondeterministic random 
number generator that is no longer limited to the size of the 
pool of uncertainty . Specifically , we decouple both addresses 
and data through the use of uncertain data within the context 
of a random edit process . 

uint32 _ t poolsize ; 11 allocation size in r _ values 
uint32 _ t modulo ; / / prime number addressing modulo 
t _ prng prng [ NUM _ STOCHASTIC _ POINTS ) ; / / PRNG 

addressing functions 
r _ value * pool ; / / data pool pointer 
} t _ urng ; 
r _ value urng _ value ( t _ urng * urng ) 

Outline of URNG 
r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic 

values 
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values 
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the 

pool 
/ / Use 3 independent PRNGs to read uncertain mask values from the pool 
maskl = urng - > pool? prng ( 1 ) % urng - > modulo ] ; 
mask2 = urng - > pool? prng ( 2 ) % urng - > modulo ] ; 
mask3 = urng - > pool? prng ( 3 ) % urng - > modulo ] ; 
Il Convert deterministic PRNG values into a paradox safe domain values 
unsafe _ 1 = prng ( 4 ) ; 
unsafe _ 2 = prng ( 5 ) ; 
domain _ 1 = ( - maski & unsafe _ 1 ) | ( maski & unsafe _ 2 ) % 
urng - > modulo ; 
unsafe _ 1 = prng ( 6 ) ; 
unsafe _ 2 = prng ( 7 ) ; 
domain _ 2 = ( ~ mask2 & unsafe _ 1 ) | ( mask2 & unsafe _ 2 ) % 
urng - > modulo ; 
/ / Manufacture a nondeterministic value from the pool while hiding 
domain and range return ( ~ mask3 & urng - pool? domain _ 1 ] ) | 
( mask3 & urng - > pool? domain _ 2 ] ) ; 

[ 0077 ] The outline of each URNG has three steps . When 
the URNG starts , we have only two initial ingredients : a 
pristine , nondeterministic pool of uncertainty and a collec 
tion of obscenely deterministic Pseudo - Random Number 
Generators ( PRNGs ) . From these ingredients , we generally 
must construct intermediate tools for internal use . The first 
tool is the uncertain stream . This stream is created when any 
good PRNG is applied as an address generator to read from 
the pool of uncertainty , thereby giving us a raw , paradox 
unsafe , random stream of uncertain values . 
[ 0078 ] The next intermediate tools utilize the uncertain 
stream . Using other independent PRNGs and the uncertain 
stream as inputs to a random edit process , we obtain 
nondeterministic data pool addresses , which become the 
domain values to the uncertainty function . The act of using 
these relatively “ cleansed ” domain values produces uncer 
tainty function range values that no longer echo evidence of 
a creation history . 
[ 0079 ] The last step resolves the data paradox of the range 
values . Given two range values via " cleansed ” domain 
values , and one raw uncertain value , we can now complete 
the decoupling of the range values . In summary , the repeti 
tious use of uncertain data has washed away some / most / all 
of the deterministic behavior found within the intermediate 
tools . The nondeterministic addresses have become the 
paradox safe domain values to the uncertainty function . By 
decoupling both addresses ( domain values ) and data ( range 
values ) from the uncertainty function , we achieve our essen 
tial goal of a nondeterministic random number generator . 
10080 ] A correctly implemented URNG has major advan 
tages over a classic PRNG . In particular , the overall resis 
tance to cracking is not derived from the complexity of 
functions ; instead , it comes from the simplicity of uncertain 
data . This naturally “ private ” random number generator 
encourages a whole range of new technologies that enables 
many applications . 
[ 0081 ] A " hardware selector ” or “ Mask Generator " takes 
bits from two input values ( data0 , datal ) to create a new 
value . Each “ O ” bit in the " mask " takes the corresponding bit 
from data0 , while each “ 1 ” bit in the " mask " takes the 
corresponding bit from datal . The destructive edit value 
specified by the " mask " value produces the following result : 
result = " mask & data0 ) | ( mask & datal ) ; While data and 
datal can be deterministic , if the mask is nondeterministic 
( raw uncertain data ) , then the result is also nondeterministic 
( a paradox safe value ) so long as the mask is generally never 
visible in the output . 

An Introduction to Chaotic Actions . . . . 
[ 0083 ] Uncertain data plays multiple roles within the 
URNG : random data , seed values , mask values , function 
selectors , and even instructions . Once again , a seemingly 
trivial idea has a profound effect . The philosophy of uncer 
tainty dictates that many programming decisions are 
deferred until execution , at which point they are driven by 
random data . As randomness plays an increasing role in 
program execution , the overall effect upon the application is 
that it becomes less deterministic . 
[ 0084 ] Given a collection of functions that resolve the data 
paradox , random data is used to select which functions will 
be executed . Groups of functions can be selected to fill a list , 
when random data is used as instructions ( i . e . a function 
selector ) ; the result is dynamic switching between different 
functions . Thus , the dynamic creation of possible functions 
to be executed becomes the Chaos Engine . Notice that , at 
any time , functions within the list can be replaced or the 
entire list is dynamically recreated at runtime via random 
data . This reconstruction of the list should routinely occur at 
random intervals . 
[ 0085 ] Like all random edit processes , neither the instruc 
tion nor the edit streams are visible in the output stream 
while both values come from the pool of uncertainty , ( i . e . 
independent uncertain streams ) . Here is an example of a 
simple 16 instruction Chaos Engine ( see below ) : In this 
instance of a Chaos Engine , each “ instruction ” has three 
operands / data0 , datal , and mask values . These values are 
processed into “ Result ” . As you can see , not all instructions 
use the mask value . 
[ 0086 ] Result = DataO – Datal ; / / standard math subtract 
operation 
[ 0087 ] Result = Datal - Data0 ; / / standard math subtract 
operation 

Mask URNG 
[ 0082 ] Examine the 10 line C procedure below to see a 
Mask URNG . This code example ( urng _ value ) is the equiva 
lent of the three - step process described above . The section 
“ C header ” completes any missing details . 
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- continued 
edit _ process operation [ MAX _ REPS ] ; / / table of chaos operations 
( Random Edit Processes ) 
} t _ chaos ; 
typedef struct 

{ 
uint32 _ t poolsize ; / / allocation size in r _ values 
uint32 _ t modulo ; / / prime number addressing modulo 
t _ prng prng [ NUM _ STOCHASTIC _ POINTS ] ; / / PRNG addressing 

functions 
t _ chaos cpuAdr0 ; 1l address chaos engine 
t _ chaos cpuAdrl ; Il address chaos engine 
t _ chaos cpudata ; Il data chaos engine 
r _ value * pool ; / data pool pointer 
} t _ curng ; 
r _ value get _ instruction ( t _ curng * urng , t _ chaos * cpu ) 
r _ value instruction , instr ; 
instruction = cpu - > instruction ; / / local copy of instruction block 
if ( cpu - > PC > = INSTRUCTIONS _ PER _ WORD ) { / / need new block ? 
instruction = urng - pool? prng ( 0 ) % urng - > modulo ] ; / / get next 
instruction block 
cpu - > PC = 0 ; / / reset to start of block 

instr = instruction & INSTRUCTION _ MASK ; / / slice off instruction 
from word 
cpu - > instruction = instruction > > INSTRUCTION _ SHIFT ; / / move to 
next instruction 
cpu - > PC + + ; 
return instr ; 

[ 0088 ] Result = ( " Mask & Data0 ) | ( Mask & Datal ) ; / / nor 
mal mask Generator 
10089 ] Result = ( Mask & Data ( ) ( Mask & Datal ) ; / / the 
other mask Generator 
10090 ] Result = ( " Mask & “ Data ( ) ( Mask & Datal ) ; 
10091 ] Result = ( " Mask & Data0 ) | ( Mask & Datal ) ; 
[ 0092 ] Result = " ( DataO & Datal ) ; / / bitwise NAND 
between two data elements 
[ 0093 ] Result = " Data0 | Datal ) ; / / bitwise NOR between 
two data 
[ 0094 ] Result = Data0 | Datal ; / / bitwise OR between two 
data elements 
[ 0095 ] Result = DataO ̀ Datal ; / / bitwise XOR between two 
data elements 
[ 0096 ] Result = Data & Datal ; / / bitwise AND between 
two data elements 
[ 0097 ] Result = DataO + Datal ; / / standard math add opera 
tion 
[ 0098 ] Result = " Data0 | Datal ; / / Comp Datao , bitwise OR 
two data elements 
[ 0099 ] Result = Data01 Datal ; / / Comp Data1 , bitwise OR 
two data elements 
[ 0100 ] Result = " DataO ̀ Datal ; / / Comp Datao , bitwise 
XOR two data elements 
[ 0101 ] Result = Data0 ̂ - Datal ; / / Comp Datal , bitwise 
XOR two data elements 
[ 0102 ] It is understood that the possible set of instructions 
is much greater than 16 , and uncertain data was used to 
create this list ( both the order in the list and which instruc 
tion to use ) . Full - scale implementations of these nondeter 
ministic chaotic actions have produced millions of unique 
data driven instructions for the URNG . Thus , the nondeter 
ministic nature of uncertain data is translated into nonde 
terministic chaotic actions . This Chaos Software within the 
URNG becomes another example of data morphing data . 
[ 0103 ] As a general philosophy of chaos engines , any 
function can be invoked under any number of common 
parameters . This data driven Chaos Software may be used to 
create any number of reproducible stochastic systems . It is 
possible to customize chaos engines with unique random 
data from the pool of uncertainty , or in other examples , a 
URNG . The general application of Chaos Software is cov 
ered in the section on Stochastic Processing . 
0104 ] Simple simulations should guide the correct selec 

tion of implementation parameters . In this mask URNG , 
only destructive edit via uncertain mask values are used in 
the decoupling process . While functional , this low - cost 
URNG may fail to be useful with small pools of uncertainty . 
A much better solution can be found with a Chaos Engine . 
The chaos URNG gives us massive amounts of random data 
from a reasonably sized pool of uncertainty . 

r _ value urng _ value ( t _ curng * urng ) 

r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic 
values 
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values 
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the 
pool 
r _ value instr ; Il chaos instruction 
/ / Use 3 independent PRNGs to read uncertain mask values from the pool 
mask1 = urng - pool? prng ( 1 ) % urng - > modulo ] ; 
mask2 = urng - > pool? prng ( 2 ) % urng - > modulo ] ; 
mask3 = urng - pool? prng ( 3 ) % urng - > modulo ] ; 

/ / Decouple paradox unsafe ( deterministic ) values with address chaos 
Il engines to create two paradox safe ( nondeterministic ) domain values . 

unsafe _ 1 = prng ( 4 ) ; 
unsafe _ 2 = prng ( 5 ) ; 
instr = get _ instruction ( urng , & urng - > cpuAdro ) ; 
domain _ 1 = ( * urng - > cpuAdro . operation?instr ] ) 
( unsafe _ 1 , unsafe _ 2 . maskl ) % urng - > modulo ; 
unsafe _ 1 = prng ( 6 ) ; 
unsafe _ 2 = prng ( 7 ) ; 

= get _ instruction? urng , & urng - > cpuAdr1 ) ; 
domain _ 2 = ( * urng - > cpuAdr1 . operation [ instr ] ) 
( unsafe _ 1 , unsafe _ 2 , mask2 ) % urng - > modulo ; 

/ / Using data chaos engines to decouple range values from uncertainty 
function 
/ / 

Chaos URNG 
instr = get _ instruction ( urng , & urng - > cpudata ) ; 
return ( * urng - > cpudata . operation [ instr ] ) ( urng - > pool [ domain _ 1 ] , 
urng - > pool [ domain _ 2 ] , mask3 ) ; 

[ 0105 ] Check out the short C procedures below to see a 
Chaos URNG . The section “ C header " completes any miss 
ing details . 

typedef struct 

[ 0106 ] Today , there are only a few thousand known func 
tion - driven RNGs . Switching from function - driven to data 
driven RNGs means trillions of unique RNGs that can pass 
the National Institute of Standards and Technology NIST 
( 800 - 22 ) , test suite for randomness . While one can pass the 
NIST tests with scores of 8 / 10 , thus far , each URNG with 
10 / 10 data pools receives almost all 10 / 10 scores . 

r _ value 
r _ value 

instruction ; 
PC ; 

/ / random value holding instructions 
/ / current instruction counter within above 
instruction 
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Comparison of Random Number Generators 
[ 0107 ] 

TABLE 1 
Classic PRNG Entropy PRNG URNG 
Pseudo Random 
Function Driven 

Full Entropy 
Data Driven 

No Cracking Resistance 
Not valid for Crypto 
Single Static Random 
Stream 
No Sub - streams 

Pseudo Random + Entropy 
Function Driven with data 
updates 
Better Cracking Resistance 
Currently used for Crypto 
Multiple random streams / based 
on Entropy 
No Sub - streams 

Static Implementations 
Not used for Crypto 

Generator not normally shared 
Used to create Crypto Keys 

Best Cracking Resistance 
Best for Crypto 
Unlimited random streams ( same 
pool ) * 
Randomly Addressable Sub 
streams * 
Pool shared between users * 
Public seed ( timestamp or pool 
address ) 
Supports Private Keyless 
Encryption 
Unique Data remains ageless 
Unique Date gives Unique 
Implementation 
Dynamic seed from timestamp 

NA Requires Key Exchange 
NA 
Fixed Implementation 

Unknown Crypto life span 
Fixed Implementation 

Seed + entropy starts stream Seed - > start of single 
stream 

* The addressability of the Uncertainty Function means that pool addresses can be manipulated without affecting 
the pool of uncertainty . Therefore , many different addressing models may be applied to the same pool . 

[ 0108 ] A one - time data exchange may now possibly 
replace any or all cryptographic key exchanges with a 
common URNG implementation . The data exchange can 
effectively exchange random number generators . Thus , 
unique on - demand key generation replaces any process that 
formerly required key exchanges . There are an unbounded 
number of ways to exchange data , from physical exchange 
of media to any form of wireless transfers . Whatever the 
means , each party that holds the same data also holds the 
means to create the same random streams . 
[ 0109 ] The use of dispersed , identical random number 
generators , which do not require any active connection , 
infrastructure , or additional authentication , represents a 
major simplification of many protocols . Furthermore , when 
applied to stochastic processing , the effect represents an 
exchange of custom applications / solutions . 
0110 ] Given an URNG implementation with isolated 
nonvolatile storage , a one - time load of random data provides 
an effective hardware encapsulation . This permanently pro 
tected implementation can provide random streams for use 
in any number of applications . 
[ 0111 ] A 128 Kbyte memory buffer holds 21048576 unique 
values , which represents much more than 10300 , 000 values . 
While not all of these values become random enough to pass 
the statistical validation process , a large number of them 
qualify . While technology implementations come and go , 
good random data remains " ageless ” . So long as the pool 
data remains unknown , it is unlikely that any properly 
implemented URNG will be cracked by analyses of the 
random output stream . The random number generator resists 
cracking solely based on data , rather than complex imple 
mentation . 

intervals much smaller or larger than we normally deal with 
remain less meaningful to us , such as microseconds or 
millennia . In spite of our limitations of perception , time 
becomes vital throughout uncertainty technologies . The 
properties of time are tapped in many applications . It is 
helpful to review these time properties so that we can 
understand their role in terms of the principles of uncer 
tainty . A timestamp generally always signifies a scalar value 
relative to some zero point . Analog / hardware clocks present 
a “ beat count " of some kind . In software , the timestamp 
increment may not generally always map into a real world 
“ beat count ” , such as in the case of U . S . Pat . No . 5 , 526 , 515 , 
which is incorporated by reference herein for its supporting 
teachings . While the difference between timestamps can be 
computed to any value , the basic model of time generally 
always moves in a “ monotonically ” increasing manner . 
[ 0113 ] An increasing sequence number ( as found in many 
digital protocols ) exhibits a common , but normally unrec 
ognized form of a timestamp . Although these sequential 
values do not map into a real - world view of time , they can 
legitimately measure time moving forward . This represents 
one of the forms of time utilized throughout uncertainty 
technologies . 
[ 0114 ] Memory addressing can be upgraded by blending 
timestamps into addressing computations , thereby recasting 
the base uncertainty function into one driven as a function of 
time . As time continues to be monotonically increasing with 
discontinuous jumps , the same time - based random stream 
should not appear for any other value of time . 
[ 0115 ] If one combines evolving time and a source file , 
then one obtains a unique random sequence for each 
instance of the URNG . This means that random sequences 
remain completely “ chaotic ” with respect to its continuous 
tapping of the same source file . The continuous creation of 
unique pools of uncertainty blocks / thwarts any formal 
analyses of random sequences . 
[ 0116 ] An uncertain time model is used to reproducibly 
transform any timestamp into a URNG seed value ( s ) . As an 
open - ended architectural concept , there are an unlimited 

It ' s about Time . . . 
101121 Domain values applied to the uncertainty function 
represent fine grain addressing into the pool of uncertainty , 
while timestamps represent larger discontinuous jumps 
between different streams of uncertain values . We tend to 
think about time relative to a human scale of events . Time 
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number of possible time models . The timestamp may or may 
not be mapped into a more familiar measure of time . These 
time models become part of a source file . Each time a source 
file is created , an uncertain time model is also created via 
uncertain random values . An uncertain zero point in time is 
selected . Any input timestamp generally represents an 
" unknowable ” offset ( delta ) from the uncertain zero point in 
time . The difference between the zero point in time and the 
timestamp can be expressed through ( any arbitrary ) units 
like days , hours , minutes , seconds , milliseconds , etc . Within 
the time model , we select uncertain scaling factors for each 
supported unit of time . We then compute required URNG 
seed values by scaling each supported time unit , and sub 
sequently summing them into values that become the seed 
( s ) . In this way , via an uncertain time model , a public 
timestamp can be used to define private seed values . Thus , 
anyone sharing the same time model ( within a source file ) 
can also create the same random stream . These seed values 
represent two starting indexes into the pool of uncertainty , 
which become the values found in the Data Congruential 
Generator ( described below ) . From this first addressing 
function , all other initializations ' values are read from the 
pool of uncertainty . 
[ 0117 ] For example : 
SeedO = delta _ days * dayscale ) + ( delta _ 
milliseconds * millisecondscale ) ; 
Seed1 = ( delta _ hours * hourscale ) + ( delta _ 
minutes * minutescale ) + ( delta _ sec * secondscale ) ; 

of connections are ever made . Stochastic processing makes 
many more connections available at runtime instead of 
design time . 
[ 0122 ] As the name implies , stochastic processing relates 
to random processing . The use of random technology in 
most current applications is limited to a few common tasks , 
such as dice ( a probability function ) , or as a " wild card ” 
value ( any value within a supported range ) . The principles of 
stochastic processing make a wider range of new processing 
options possible . When used properly , these principles will 
solve many previously unresolved technology problems . 
The examples given here are for teaching the concepts , and 
only present a sample of the value of stochastic processing . 
While these ideas are simple to understand , the reader will 
have to think ( or rethink ) about how best to use them in their 
applications . As hardware designers and software develop 
ers come to understand these elements , they will be sur 
prised by the transformative nature of this new technology . 
[ 0123 ] For effective stochastic processing , each decision 
that can migrate from the design phase to the execution 
phase increases the uncertainty . For barely any cost , some 
functional parameters can become data driven , thus increas 
ing the algorithmic complexity of the implementation . 
Within the same data driven cost structure , the selection and 
configuration of processing elements can “ explode ” the 
overall algorithmic complexity . The on - demand remixing of 
processing elements and / or redefining functional parameters 
further increases the uncertainty . The net result of a design 
that was limited to a single solution , now creates dynamic 
custom solutions that are much more likely to be nondeter 
ministic . Stochastic Processing 

[ 0118 ] Dynamic applications simplify many solutions . 
The methodologies of Stochastic Processing give us an 
open - ended architectural means to create dynamic hardware 
or software applications . In many cases , the deployments of 
these dynamic implementations redefine many current ( pre 
ferred ) solutions . There are additional classes of problems 
that can only be effectively solved by dynamic applications . 
The example embodiment for Dynamic Digital Protocols is 
a class of problem requiring a dynamic application . 
[ 0119 ] The current software development process has sta 
bilized into a well - understood model of handcrafted code 
units , somehow joined to create applications . The effective 
use of randomness has not progressed with the rest of 
software development . The current deployment of flawed 
randomness technology fails to exploit its true potential . 
Current applications of randomness remain primarily lim 
ited to reducing repetitious behaviors in gaming ( gambling ) , 
video / computer games , and simulations . 
[ 0120 ] A more robust application of randomness can sup 
port the runtime augmentation of applications by dynami 
cally creating updates . The dynamic execution of updates 
morphs a base application into a custom application , which 
may be unique . This more expansive deployment of ran 
domness is called Stochastic Processing . 

The Principles of Uncertainty 
[ 0124 ] The principles of uncertainty represent an unusual 
convergence of ideas across mathematics , computer science , 
and electrical engineering . . . producing dynamic , custom 
hardware / software implementations . Outside of sampling 
natural “ noise ” , the process of random number generation 
has not had a robust functionally complete solution . Given 
the mechanical nature of computation , traditional “ function 
driven ” solutions cannot create a valid representation of 
randomness . While function - driven solutions remain fatally 
flawed , data - driven solutions can give practical representa 
tions of randomness . The " unknowable ” data transforms a 
common implementation into unique random streams . 
0125 ] Conventional wisdom holds that hardware / soft 
ware solutions are statically defined during development , so 
these traditional solutions inevitably lead to a " one size fits 
all ” mentality . Worse yet , these implementations are limited 
to a single solution for any given problem . The effect of an 
isolated solution means that they often become determinis 
tic . Deterministic behavior is the antithesis of randomness . 
This flawed ( deterministic ) behavior extends across many 
applications that are better solved with dynamic , rather than 
static , solutions . 
[ 0126 ] Currently , software ( and hardware ) applications 
can be defined as a " joined " collection of components . 
Instead of limiting the set of components to be “ just enough " 
to create a single solution , we increase the pool of “ func 
tionally equivalent " components so that one could create 
many solutions . Next , we use random data to select , during 
execution , which set of components will be used to create 
this instance of the application . Thus , from a common 

Design Time Vs . Runtime Binding 

[ 0121 ] In the software object paradigm , the binding ( mak 
ing connections ) between classes is completed before run - 
time execution . The tool set completes this static binding 
task to improve programmer productivity . However , the 
downside of static binding is clear , as only a limited number 
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implementation , driven by random data , we have created an 
uncertain custom solution that may be nondeterministic . 
[ 0127 ) The Uncertainty Random Number Generator 
( URNG ) is a dynamic solution in either hardware or soft 
ware . Within the current URNG implementation , there are 
over one hundred components that become joined ( and 
remixed ) as needed during execution to create a nondeter 
ministic random number generator . Even better , since this is 
a data driven solution , each use of the URNG can be driven 
by a dynamically created pool of uncertainty that may be 
used once and then discarded . With this degree of random 
ness , these URNGs can be the means to drive future 
dynamic applications . 

basic flaws of single stream ” PRNGs , each current call is 
routed to a different PRNG . So , each one of them returns 
values from a different random sequence , which is much 
better than seven sequential values from the same sequence . 
While multi - PRNGs solution is a major improvement , the 
best solution for all other dynamic applications is to use an 
URNG to provide non - correlated , nondeterministic values . 
0133 ] Failure to deploy either of the above solutions 
produces poor results . Applying classic PRNGs to select 
processing elements remains as flawed as the generators , 
only producing deterministic selections . Instead , using the 
Uncertainty Function or the URNG to select processing 
elements produces nondeterministic selections . Any point in 
a hardware or software application that can accept a func 
tionally equivalent processing element is called a stochastic 
“ scaffolding point ” . 

“ Functional Equivalency ” is Solely Based on 
Application Requirements 

[ 0128 ] Within the methodologies of Stochastic Process 
ing , the meaning of “ functionally equivalent ” is much more 
sensitive than the typical case found in the object paradigm . 
Typically , the software paradigm leads developers to ignore 
most implementation side effects in order to raise produc 
tivity . Sometimes , these side effects matter and ignoring 
them undermines the developer ' s goals . 
[ 0129 ] For example , let us note the case of random number 
generators . There are thousands of them and most have the 
same properties . Most of these generators remain relatively 
fast but not cryptographically secure , while a few are secure 
but slow . So , if one sorts between secure and unsecure 
generators , are they roughly equivalent within each cat 
egory ? No . When we acquire multiple random numbers 
from the same unsecure generator , we find that the values are 
highly correlated to the extent that one can predict the next 
value . Hence , it is not " random ” . Though secure generators 
appear less correlated , they remain slower and rarely shar 
able . 
[ 0130 ] Current unsecure random number generators are 
assumed to be functionally equivalent , but each of them are 
ineffective at producing random values because there is a 
single random stream for each generator . The only func 
tional equivalence of these unsecure random number gen 
erators rests with their flaws , yet application requirements 
for randomness still remain . Therefore , we generally must 
be careful when defining functional equivalence . Failure to 
define functional equivalence correctly may result in an 
application design as flawed as existing unsecure random 
number generators . 
[ 0131 ] Some background information on current random 
number generators is required to explain these new meth 
odologies of Stochastic Processing . Any given “ functionally 
equivalent ” processing element may have unusual side 
effects that are useful . Within the first teaching example , 
multiple common ( but flawed ) random number generators 
are used to replace the sole default generator found in 
software libraries . Additional teaching examples show a 
richer illustration of functionally equivalent processing ele 
ments . 

Collections of Processing Elements Abstraction 
[ 0134 ] Application - specific collections of processing ele 
ments are created to provide many options . Each time we 
define such a collection of processing elements , we gener 
ally must size the collection and define the required “ qual 
ity ” of each element . Often , though an unbounded number of 
processing elements may exist from which we can select , 
most applications only require the collections to have many 
times what they normally deploy . Clearly , some applications 
will replace common choices with their own custom collec 
tion . 
[ 0135 ] The term " collection of processing elements ” is an 
abstraction that can be implemented in different ways . For 
example , in hardware , an LFSR ( Linear Feedback Shift 
Register classic hardware random bit - value generator ) is 
seeded with a value to create a random bit stream . However , 
if a programmable LFSR is used , it can be reconfigured to 
generate many different random bit streams . In this way , the 
configuration options within the programmable LFSR define 
the possible collection , thereby providing choice . These 
configuration options create a virtual collection . 
[ 0136 ] The same virtual collection idea can be applied 
through options in software . For example , a set of optional 
uncertain parameters can be defined to further process 
operands of the URNG ' s Random Edit Process . In this case , 
the pre - processing of operands can include bitwise rotate 
left / right ( with bit count ) , bitwise NOT , reverse bit order , 
etc . The same sequence of options can be applied to the 
result . The deployment of these uncertain parameters ( op 
tions ) " explodes ” the size of the normal collection to create 
a massive virtual collection . 
[ 0137 ] As for the quality of each processing element , this 
also becomes an application - specific design choice . In the 
case of the URNG itself , the first patent dealt with the use 
of inexpensive , yet deterministic PRNGs . A better quality 
replacement for creating uncertainty function domain values 
can be found in the Data Congruential Generator ( defined 
later ) . However , we can continue with the valid teaching 
examples assuming common PRNGS . 
[ 0138 ] . The creation of the collection of processing ele 
ments was to facilitate runtime selection . We use random 
data to select which element ( s ) to use . FIG . 1 is a flowchart 
depicting the selection process . Note the case where selec 
tion is required . 
[ 0139 ] FIG . 1 is a flowchart depicting an embodiment of 
selecting processing elements for this instance of stochastic 
module / process 100 in which the initial condition is set to 

Stochastic “ Scaffolding Points ” 
[ 0132 ] The first teaching example has seven calls to dif 
ferent " random number generators ” to create memory 
addresses . Any method that provides good random memory 
addresses could therefore replace these classic PRNGs , as 
they would be functionally equivalent . To overcome the 
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not “ Done = 0 ) ” 110 . The loop until “ Done ” 120 continues 
with obtaining an Uncertain Value “ X ” that is used to select 
a possible Processing Element from the PE _ table 130 . This 
possible processing element is tested ( see FIG . 2 ) to see if 
it is already in use 140 . If the Processing Element is already 
“ in use ” , then the loop starts over with the next Uncertain 
Value 120 . However , if the Processing Element is “ not in 
use ” , then a test is made looking for the next " free " 
( available ) entry 150 , where the Processing Element is 
assigned to the free entry 160 , and the loop starts over . If the 
last entry has been filled 170 , then the terminating condition 
“ Done = 1 ” is set 180 and the loop starts over . The embodi 
ment of selecting processing elements terminates when 
“ Done ” is true . 
[ 0140 ] FIG . 2 is a flowchart depicting an embodiment of 
testing if the given Processing Element is “ In Use ” 200 , in 
which the initial condition is set to not “ Found = 0 " 210 . The 
( for ) loop starts with the first index until the entire table is 
indexed 220 and then exits the loop to continue by returning 
the “ Found ” status 250 . The table entry indexed is tested 
against the given element 230 , and if “ found ” then 
“ Found = 1 ” is set 240 , and the ( for ) loop continues . 
[ 0141 ] FIG . 3 illustrates a system of stochastic processing 
of information according to one embodiment of the inven 
tion . There is shown an architect module coupled to each of 
a data pool module , a set of data processing modules , a data 
feed module , and a structure memory module . The illus 
trated data pool module is functionally coupled to each of a 
common data pool processing module and a communication 
protocol interface . The illustrated system is utilized to 
process an information stream ( TCP / IP packets , telephone 
data , wireless communications data , private protocol com 
munications , media files , data files , databases , and etc . ) in a 
manner that transforms the information stream . This is 
generally done to prevent hacking of the information stream . 
Accordingly , the system may be used to enhance privacy , 
validate communications , verify authorship / source of com 
munications , and the like and combinations thereof . 
[ 0142 ] The illustrated architect module is configured to 
manage and control stochastic processing of data and may 
include a processor and / or may be associated with a pro 
cessor , processor module , processing device / system or the 
like . It may also include one or more scripts for accomplish 
ing the same and such scripts may be replaceable and / or 
associated with specific applications of the system . As a 
non - limiting example , there may be a script configured to 
provide optimal function for generation of digital signatures 
and / or certificates . An architect module may include a 
plurality of scaffolding points that may operate to receive 
other modules , especially data processing modules . Such 
scaffolding points may be predetermined and / or may be 
generated during run - time . Such points may interact with 
each other and may be sources of data for each other . 
Accordingly , the complexity of data processing may be 
predetermined and / or may be generated during run - time . An 
architecture module may include instructions on limitations 
of the scaffolding points including but not limited to maxi 
mum / minimum levels , points , connections , sources , redun 
dancy of data processing elements , and the like and com 
binations thereof . The illustrated architect module may use 
random values to select between a plurality of functionally 
equivalent data processing modules during run - time . The 
architect module may use random values to select run - time 
durations for use of one or more of the plurality of func 

tionally equivalent data processing modules during run 
time . Such durations may be in actual time , clock cycles , 
data chunks processed , numbers of times or portions thereof 
of cycles made through repeating cycles of the data pro 
cessing module , and the like and combinations thereof . 
Non - limiting examples of an architect module may be a 
control module as described in U . S . Pat . No . 5 , 430 , 836 , 
issued to Wolf et al . , or a control module described in U . S . 
Pat . No . 6 , 243 , 635 , issued to Swan et al . which are incor 
porated for their supporting teachings herein . An architect 
module may include but is not limited to a processor , a state 
machine , a script , a decision tree , and the like . 
[ 0143 ] The illustrated architect module includes a run 
time modification module configured to randomly alter a 
stochastic architecture during run - time . The run - time modi 
fication module may be seeded from the non - deterministic 
data pool module , thereby enhancing the randomness char 
acteristics of the scaffolding over PRNG sources . The run 
time module includes instructions for making alterations to 
the number of scaffolding points , the interconnections there 
between , the data processing modules used therewith , and / or 
the durations between such changes , and the like . Such a 
module may also track progress through a data processing 
task and as such may receive and act on information 
associated with the context of the data stream being pro 
cessed ( remaining amount / time of data to process , presence 
of repeating strings , number of communication cycles 
between respective parties , and the like and combinations 
thereof ) and may alter operation of the run - time module 
during run - time in response to changes in such information . 
Non - limiting examples of a run - time modification module 
may be a modification system as described in U . S . Pat . No . 
6 , 898 , 788 , issued to Kosaka et al . ; or a modification module 
as described in U . S . Patent Publication No . : 2004 / 0205567 
by Nielsen which are incorporated for their supporting 
teachings herein . 
10144 ] The illustrated non - deterministic data pool module 
is functionally coupled to the architect module so to be 
accessible by the same and / or by associated modules . It is 
configured to provide a stream of non - deterministic values 
that are , ideally not derived from a classical function ( there 
fore non - deterministic ) . In one non - limiting example of such 
a pool , the non - deterministic data pool module includes one 
or more components of a URNG system . Such a pool may 
be sized to fit a particular desired use and / or may be used to 
create larger or smaller pools that may be used in the same 
or a similar manner . Non - limiting examples of a non 
deterministic data pool may be a uncertain random number 
generator as described in U . S . Patent Publication No . : 2010 / 
00036900 and U . S . Patent Publication No . : 2011 / 0029588 
both by Ross which are incorporated for their supporting 
teachings herein . 
[ 0145 ] The illustrated plurality of functionally equivalent 
data processing modules are functionally coupled to the 
architect module . In particular , each is configured to sto 
chastically process data as called upon by the architect 
module . Generally , such data processing modules will 
include a defined operation used in association with a 
random value stream . As a non - limiting example , such a 
module may add , bitwise or in other " chunks , " a random 
value from a random value stream to a value of an infor 
mation / data stream thereby forming a transformed data 
value and may do so over and over when called upon . 
Accordingly , such a module generally requires access to a 
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random value generation tool , such as but not limited to a 
PRNG , URNG , etc . Where maximum decryptable protec 
tion is required , a URNG is generally selected as a source as 
it will operate in a manner than is non - deterministic ( one 
way ) and is reversible for those who have a copy of the pool 
used . Non - limiting examples of data processing modules 
may be a data processing system as described in U . S . Patent 
Publication No . : 2010 / 0318851 by Learmonth ; or a data 
processing module as described in U . S . Patent Publication 
No . : 2009 / 0259862 by Bulusu et al . , which are incorporated 
for their supporting teachings herein . 
[ 0146 ] The illustrated data feed module is in functional 
communication with the architect module and is configured 
to feed a data set desired to be stochastically processed . Such 
a module may include instructions and / or hardware config 
ured to manage , access , control and otherwise provide data 
to the system . Such a system may include interface tools for 
transforming data from its source to a form that is more 
usable by the system , such as through analog to digital or 
from one protocol to another . Such a system may transmit / 
receive data and / or may store the same . Non - limiting 
examples of a data feed module may be an in - feed module 
as described in U . S . Pat . No . 5 , 957 , 714 , issued to Johnson 
et al . ; or a feed module as described in U . S . Patent Publi 
cation No . : 2010 / 0241417 , by Bassett et al . , which are 
incorporated for their supporting teachings herein . 
101471 . The illustrated structure memory module is 
coupled to the architect module and is configured to provide 
sufficient information for an architect module to duplicate a 
predefined processing architecture and / or to record a utilized 
processing architecture such that it may be used later , by the 
same system and / or a similar / companion system . There may 
also be a memory storage device as part of or functionally 
coupled to the structure memory module . The illustrated 
structure memory module includes an index module that 
indexes structure according to a time structure . This is 
particularly advantageous because it permits time stamps of 
various sorts to be used as keys for seeding the URNG . Such 
time stamps are generally readily available , short , inexpen 
sive to produce and / or transmit and permit associate systems 
using the same data pools to easily reverse data transforma 
tion . Such time stamps may be in the form ( s ) of actual time , 
clock cycles , data chunks processed , numbers of times or 
portions thereof of cycles made through repeating cycles of 
the data processing module , and the like and combinations 
thereof . Non - limiting examples of a memory storage device 
may include : a HP Storage Works P2000 G3 Modular Smart 
Array System , manufactured by Hewlett - Packard Company , 
3000 Hanover Street , Palo Alto , Calif . , 94304 , USA ; a Sony 
Pocket Bit USB Flash Drive , manufactured by Sony Cor 
poration of America , 550 Madison Avenue , New York , N . Y . , 
10022 . Data storage modules may be databases or data files , 
and the memory storage device may be hard drives or tapes . 
A non - limiting example of a data base is Filemaker Pro 11 , 
manufactured by Filemaker Inc . , 5261 Patrick Henry Dr . , 
Santa Clara , Calif . , 95054 . 
[ 0148 ] The illustrated common data pool processing mod 
ule is functionally coupled to the non - deterministic data pool 
module and is configured to stochastically process a com 
mon non - deterministic data pool thereby generating an 
application specific non - deterministic data pool for use by 
the non - deterministic data pool module . In this way , a user 
may generate a personal non - deterministic data pool that 
may be used in many different settings and shared ( in its 

transformed form ) with a great variety of others without 
compromising the integrity of the common pool . In a way , 
the system may be used to generate an ( virtually ) unlimited 
number of non - deterministic data pools from a single com 
mon pool , without sharing the common pool and violating 
the integrity of the set . Non - limiting examples of a data pool 
processing module may be a system as described in U . S . Pat . 
No . 5 , 573 , 244 , issued to Mindes ; or a system as described in 
U . S . Pat . No . 5 , 517 , 556 , issued to Pounds et al . 
[ 0149 ] The illustrated communication protocol interface is 
in communication with the data feed module and is config 
ured to feed a communication protocol map to the data feed 
module , receive a stochastically processed communication 
protocol map from the architect module , and / or to alter an 
information stream according to the stochastically processed 
communication protocol map . Such a communication pro 
tocol interface may operate to “ break ” a stream of informa 
tion such that those devices / systems relying on data to meet 
certain minimum standards for a particularly defined data 
protocol will reject , fail to use , fail to " display ” or otherwise 
determine that the information is unusable . As a non 
limiting example , some protocols will reject packets of 
information that fail to meet a parity check . A communica 
tion protocol interface may operate the make certain that 
some or all packets in an information stream are transformed 
sufficiently to fail the parity check so that they are rejected 
by those who are not undoing the transformation . Such 
packets may appear to be simply bad packets by eavesdrop 
pers . Non - limiting examples of a communication protocol 
interface may be a circuit as described in U . S . Patent 
Publication No . : 2010 / 0277104 , by Lin et al . ; or an interface 
as described in U . S . Pat . No . 7 , 058 , 075 , issued to Wong et 
al . ; which are incorporated for their supported teachings 
herein . 
[ 0150 ] According to one embodiment of the invention , 
there is a system of stochastic processing of information 
using a computing device 10 . The system 10 includes an 
architect module 12 that includes a processor 14 . The 
architect module 12 is configured to manage and control 
stochastic processing of data . The architect module 12 
includes a run - time modification module 16 that is config 
ured to randomly alter a stochastic architecture during 
run - time . 
[ 0151 ] The system 10 includes a non - deterministic data 
pool module 18 is functionally coupled to the architect 
module 12 and is configured to provide a stream of non 
deterministic values that are not derived from a function . 
The run - time modification module 16 is seeded from the 
non - deterministic data pool module 18 . The non - determin 
istic data pool module 18 includes a URNG system 20 . The 
system 10 includes a plurality of functionally equivalent 
data processing modules 22 that are functionally coupled to 
the architect module 12 , and each may be configured to 
stochastically process data as called upon by the architect 
module 12 . The architect module 12 is configured to use 
random values to select between the plurality of functionally 
equivalent data processing modules 22 during run - time . The 
architect module 12 is configured to use random values to 
select run - time durations for use of one of the plurality of 
functionally equivalent data processing modules 22 during 
run - time . 
[ 0152 ] The system may 10 includes a data feed module 24 
that is in functional communication with the architect mod 
ule 12 and is configured to feed a data set desired to be 
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stochastically processed . The system 10 includes a structure 
memory module 26 that includes a memory storage device 
28 . The structure memory module 26 is coupled to the 
architect module 12 and is configured to provide sufficient 
information for the architect module 12 to duplicate a 
predefined processing architecture and to record a utilized 
processing architecture . The structure memory module 26 
includes an index module 30 that indexes structure accord 
ing to a time structure . 
[ 0153 ] The system 10 includes a common data pool pro 
cessing module 34 that is functionally coupled to the non 
deterministic data pool module 18 and configured to sto 
chastically process a common non - deterministic data pool 
thereby generating an application specific non - deterministic 
data pool for use by the non - deterministic data pool module . 
The system 10 includes a communication protocol interface 
32 that is in communication with the data feed module and 
is configured to feed a communication protocol map to the 
data feed module , receive a stochastically processed com 
munication protocol map from the architect module , and to 
alter an information stream according to the stochastically 
processed communication protocol map . 
[ 0154 ] FIGS . 4 - 5 illustrate a method of stochastically 
processing information using a computing device . The illus - 
trated steps permit a data / information stream to be processed 
in a manner that causes one - way transformation of the data 
while still permitting others who have sufficient information 
about the process to reverse the transformation and thereby 
have access to the data . Eavesdroppers and others who may 
gain access to the transformed data will not be able to use 
shortcuts to hack the data as the transformation is a one - way 
transformation . Further , because the process permits varia 
tion in the transformation operations , a single pool of 
non - deterministic values may be utilized almost infinitely 
without substantially devaluing the pool . In summary , a 
non - deterministic data pool is used to seed a scaffold of 
randomly selected data transformation processes that oper 
ate on an information stream while sufficient information 
about the process is recorded such that the information may 
be provided to another user of the method to undo the 
transformation , thus enabling extremely powerful and 
operationally inexpensive privacy , security , authentication , 
and other benefits . The illustrated steps are described indi 
vidually below and it is understood that the illustrated order 
of steps is not necessarily the only order that may be utilized 
in operation of the method . Further , not all steps are neces 
sary for various applications of the method . 
[ 0155 ] The step of providing a non - deterministic data pool 
that is verified to be non - deterministic and is not derived 
from a function permits a bedrock of variability to be used 
in the method without subjecting the method to the weak 
nesses and vulnerabilities of deterministic PRNG functions 
but permitting reversibility not offered by environmental 
randomness sources . Such a pool may be formed as a URNG 
as described herein . Such a pool may be provided as a stored 
pool of data , a stream of data , or the like or variations 
thereof . 
[ 0156 ] The step of providing an information stream to be 
processed permits the method to act upon an information 
stream . Such may be provided through communication 
tools / modules of any type that provides the information in a 
usable form to a system / device that may be operating the 
method . The information may be provided as a stream over 
a communications network ( wireless , internet , intranet , bus , 

etc . ) and / or may be provided through access to a memory 
device and / or memory feed such as but not limited to hard 
drives , flash memory , ROM , RAM , optical discs , and the 
like and combinations thereof . 
[ 0157 ] The steps of randomly selecting a first data pro 
cessing module , seeding a step of randomly selecting a data 
processing module from the non - deterministic data pool , 
altering the information stream by use of the first data 
processing module , randomly selecting a replacement data 
processing module replacing the first data processing mod 
ule with the replacement data processing module , stochas 
tically processing the non - deterministic data pool before 
utilization of the non - deterministic data pool , randomly 
layering use of a plurality of data processing modules such 
that the information stream is processed through multiple 
randomized layers of data processing modules , managing 
randomization such that each call to a source of random 
values goes to a different source than each previous call and 
altering the information stream by use of the replacement 
data processing module collectively and individually pro 
vide layers of structured variability within the method , 
thereby multiplying the usability of a single data pool and 
obscuring the data pool itself . Such a random selection may 
be seeded by the data pool and / or by another source . Such 
a random selection may be performed using another instance 
of this method . Such a random selection may be performed 
using a processor . The data processing modules selected 
from may be from a set of functionally equivalent data 
processing modules that may each be configured to alter 
data . Non - limiting examples of processes performed by data 
processing modules including : subtraction , masking , 
NAND , NOR , OR , XOR , AND , and addition and the like 
and combinations thereof . 
[ 0158 ] The step of recording structure information suffi 
cient to reproduce use of the first and replacement data 
processing modules permits such a one - way transformation 
to be reversed , thereby providing a useful benefit to receiv 
ers of the transformed data . Such recording may be as simple 
as a time stamp where corresponding systems are suffi 
ciently configured and sufficiently identical to permit a time 
stamp to serve as a key for unlocking the data . Such 
recording may be more complicated and may include one or 
more scripts , data sets , and / or data processing modules that 
may be transmitted / packaged with and / or in association with 
transformed data . 
10159 ] The steps of delaying selection of all randomized 
data processing characteristics until run - time and / or deter 
mining a random duration of use of the first data processing 
module during run - time are very helpful in strengthening the 
resulting transformation against attack . Such a step may 
include having a predefined scaffolding structure but not 
selecting data processing modules to operate therein until 
runtime and / or not selecting seed values to be used in such 
systems until run - time . 
[ 0160 ] The step of configuring an information stream 
according to a predefined communication protocol and the 
first and replacement data processing modules each suffi 
ciently process the information stream to make the infor 
mation stream fail to satisfy the requirements of the pre 
defined communication protocol facilitates very inexpensive 
( processing cost ) data protection because only time changes 
need to be made to the resulting stream in order to make 
eavesdroppers reject the data as corrupted , while recipients 
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may only need to change a smaller percentage of the data in 
order to properly utilize the same . 
[ 0161 ] The step of associating operation of the method 
with a time index such that operation of the method by 
counterparts beginning with identical time index positions 
and an identical non - deterministic data pool will process the 
information stream identically . 
[ 0162 ] The step of verifying that the non - deterministic 
data pool passes the NIST test with a predominant 10 / 10 
score provides a degree of security not otherwise found in 
other methods . Passing with a predominant 10 / 10 score 
means that more than 85 % , 90 % , 95 % , 99 % , and / or 99 . 9 % 
of such testing results in a 10 / 10 score for non - overlapping 
template testing , serial testing , and linear complexity testing , 
while scores of 2 / 2 or 1 / 1 are achieved for all RandomEx 
cursions testing . In particular , the NIST test referenced 
herein is the test for the Uniformity of P - Values and the 
Proportion of Passing Sequences found in the NIST Special 
Publication 800 - 22 , A Statistical Test Suite for Random and 
Pseudorandom Number Generators for Cryptographic 
Applications which may be found at http : / / csrc . nist . gov / 
groups / ST / toolkit / rg / documents / SP800 - 22b . pdf which is 
incorporated by reference herein for its supporting teach 
ings . In one non - limiting embodiment , only a common data 
pool is verified / tested thusly while subsequent pools created 
therefrom using the method ( s ) described herein are not 
tested . This is advantageous because such testing is com 
putationally expensive and because it has been observed that 
pools that pass the NIST test and are then transformed by 
this method will continue to pass the NIST test without 
substantial degradation in the degree to which the test is 
passed . This is generally only possible with functions that 
are exponentially more expensive as further data is pro 
duced , while the presently described method is linearly 
expensive ( time ) . 
[ 0163 ] According to one embodiment of the invention , 
there is a method of stochastically processing information 
using a computing device 40 . The method 40 includes the 
step of providing a non - deterministic data pool that is 
verified to be non - deterministic and is not derived from a 
function 42 . The method 40 includes verifying that the 
non - deterministic data pool passes the NIST test with a 
predominant 10 / 10 score 44 . The method 40 includes the 
step of providing an information stream to be processed 46 . 
The method 40 includes the step of delaying selection of all 
randomized data processing characteristics until run - time 
48 . The method 40 includes randomly selecting a first data 
processing module , using a processor , from a set of func 
tionally equivalent data processing modules , each config 
ured to alter data 50 . 
[ 0164 ] The method 40 includes the step of determining a 
random duration of use of the first data processing module 
during run - time 52 . The set of functionally equivalent data 
processing modules is selected from the group of data 
processing modules including : subtraction , masking , 
NAND , NOR , OR , XOR , AND , and addition . The method 
40 includes seeding a step of randomly selecting a data 
processing module from the non - deterministic data pool 54 . 
[ 0165 ] . The method of stochastically processing informa 
tion using a computing device 40 includes the step of 
altering the information stream by use of the first data 
processing module 56 . The method 40 includes randomly 
selecting a replacement data processing module , using a 
processor , from the set of functionally equivalent data 

processing modules while processing the information stream 
with the first data processing module 58 . The method 40 also 
includes replacing the first data processing module with the 
replacement data processing module 60 . 
[ 0166 ] The method 40 includes the step of altering the 
information stream by use of the replacement data process 
ing module 62 . The information stream is configured accord 
ing to a predefined communication protocol and the first and 
replacement data processing modules each may sufficiently 
process the information stream to make the information 
stream fail to satisfy the requirements of the predefined 
communication protocol . The method 40 includes randomly 
layering use of a plurality of data processing modules such 
that the information stream is processed through multiple 
randomized layers of data processing modules 64 . 
[ 0167 ] The method 40 further includes the step of record 
ing structure information sufficient to reproduce use of the 
first and replacement data processing modules 66 . The 
method 40 includes associating operation of the method with 
a time index such that operation of the method by counter 
parts beginning with identical time index positions and an 
identical non - deterministic data pool may process the infor 
mation stream identically 68 . The method 40 includes the 
step of stochastically processing the non - deterministic data 
pool before utilization of the non - deterministic data pool 70 . 
The method 40 also includes the step of managing random 
ization such that each call to a source of random values goes 
to a different source than each previous call 72 . 
10168 ] FIG . 6 illustrates a stochastic processing device 
configured to stochastically process information fed therein . 
The illustrated device includes a processor respectively 
coupled to a non - volatile memory device , a data input 
interface module , a data output interface module , and an 
architect module . In operation , the device permits a user to 
take a data / information stream to be processed and process 
it ( transform it ) in a manner that causes one - way transfor 
mation of the data while still permitting others who have 
sufficient information about the process to reverse the trans 
formation and thereby have access to the data . Accordingly , 
a single device may be used to provide enhanced privacy , 
security , authentication , validation , verification and the like 
and combinations thereof for users of the same . 
[ 0169 ] The illustrated processor may include one or more 
processing devices such as those found in common elec 
tronic devices ( computers , servers , tablets , smartphones , 
etc . ) . 
[ 0170 ] The illustrated non - volatile memory device may 
include one or more memory devices that does not lose data 
when unpowered . Hard drives and flash drives are non 
limiting examples of such . The memory device is function 
ally coupled to the processor and includes a pool of non 
deterministic data that is verified to have passed the NIST 
test with a predominant 10 / 10 score . 
10171 ] The illustrated data input interface module is func 
tionally coupled to the processor and configured to receive 
data . The data output interface module is functionally 
coupled to the processor and configured to send data . Such 
interface modules may include data ports , USB ports , serial 
ports , network cards , wireless transmitters / receivers and the 
like and combinations thereof . Such will permit the device 
to communicate with other devices and / or systems . 
f0172 ] The illustrated data processing module is function 
ally coupled to the processor and includes a plurality of 
functionally equivalent data processing instruction sets , or a 
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plex as " application specific events ” could be defined to 
trigger an update . These policies become important imple 
mentation details . 

library of such functions and / or data pools . Such may 
include one or more instances of a URNG pool / system . 
[ 0173 ] The illustrated architect module is functionally 
coupled to the processor , the data processing module and / or 
to the non - volatile memory device and is configured to 
manage and / or control stochastic processing of data accord 
ing to seed values from the pool of non - deterministic data . 
Such may be accomplished by randomly selecting data 
processing modules during run - time , thereby processing 
data received through the data input interface module and 
providing stochastically processed data to the data output 
interface module . Such an architect module may include one 
or more features , structures , functions and / or the like as 
described elsewhere herein . 
[ 0174 ] According to one embodiment of the invention , 
there is a stochastic processing device 80 configured to 
stochastically process information fed therein . The device 
80 includes a processor 84 and a non - volatile memory 
device 86 that is functionally coupled to the processor 84 . 
The non - volatile memory device 86 includes a pool of 
non - deterministic data 88 that is verified to have passed the 
NIST test with a predominant 10 / 10 score . The device 80 
includes a data input interface module 82 that is functionally 
coupled to the processor 84 and is configured to receive data . 
The device 80 includes a data output interface module 92 
that is functionally coupled to the processor 84 and is 
configured to send data . 
[ 0175 ] The device 80 also includes a data processing 
module 90 that is functionally coupled to the processor 84 
and includes a plurality of functionally equivalent data 
processing instruction sets 96 . The device 80 includes an 
architect module 94 that is functionally coupled to the 
processor 84 , the data processing module 90 and to the 
non - volatile memory device 86 . The architect module 94 is 
configured to manage and control stochastic processing of 
data according to seed values from the pool of non - deter 
ministic data by randomly selecting data processing modules 
during run - time , thereby processing data received through 
the data input interface module and providing stochastically 
processed data to the data output interface module . 

Stochastic Development 
[ 0179 ] Within the methodologies of stochastic processing , 
random values inhabit many different functional roles , 
including selection of processing elements , programmatic 
control parameters , and simple data . Properly constructed 
stochastic processing scaffolding will also support the use of 
random values as software instructions . The simplest form 
of this type of scaffolding is the URNG ’ s Chaos Engine . The 
Chaos Engine represents a single selection from a list of 
choices . 
10180 ) Within the limitations of our development tools 
and / or imagination , the open - ended application solution 
space remains a challenge to the programmer or hardware 
designer . The use of stochastic development concepts is just 
as open - ended ; any dynamically defined quantities of pro 
cessing elements , steps , passes , loops , and sequences can be 
created . In traditional programming , " control variables ” 
direct the path through the code . Within stochastic devel 
opment , many control variables are defined / or redefined at 
runtime with uncertain values . The unlimited range of 
chaotic actions remains to be defined by the complexity of 
this scaffolding . Once the scaffolding is set , only nondeter 
ministic values are needed to exploit the chaotic actions . 
This newly created , unknowable runtime software com 
pletely transforms the application design space . 

Stochastic “ Scaffolding Points ” Example 
[ 0181 ] Look at the routine below and assume the follow 
ing : design time static poolsize , addressing modulo , and a 
single ( library ) PRNG call . Clearly , the same routine would 
be more deterministic . So , we add methodologies of Sto 
chastic Processing , with a substantial collection of PRNG 
functions from which to choose . Each of the following 
PRNG calls is dynamically selected with a different function 
and seeded via uncertain data . In addition , the " poolsize ” 
and " modulo ” uncertain parameters are defined when the 
source file is created . In this way , some of the known flaws 
of a single PRNG are mitigated while the overall scope of 
uncertainty is widened . The net effect is a nondeterministic , 
uncertain random number generator known as the Mask 
URNG . 

Uncertain Application Parameters 
[ 0176 ] Since static parameters lead to deterministic 
results , many processing elements will require additional 
parameters to function correctly . Whenever possible , all of 
these parameters should be dynamically acquired from the 
uncertainty function or the URNG . In this way , each addi 
tional uncertain parameter continues to expand the scope of 
uncertainty . 

typedef struct 

uint32 _ t poolsize ; / / allocation size in r _ values 
uint32 _ t modulo ; / / prime number addressing modulo 
t _ prng prng [ NUM _ STOCHASTIC _ POINTS ] ; / / PRNG addressing 
functions 
r _ value * pool ; / / data pool pointer 
} t _ urng ; 
r _ value urng _ value ( t _ urng * urng ) 

Control Plane Responsibilities 
[ 0177 ] The concept of the “ control plane ” was first cov 
ered in the original URNG patent . While the idea remains 
the same , the responsibilities have been generalized for 
stochastic processing . The selection / reselection of process 
ing elements , initialization or re - initialization of processing 
elements , and updating of stochastic scaffolding points , are 
all executed with the primary goal of dynamically replacing 
many / most / all of these values / elements at some point during 
runtime execution . 
[ 0178 ] An application designer is responsible for defining 
the policies that update processing elements or dynamic 
values . Simple tools like " countdown counters ” , or as com 

r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic 
values 
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values 
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the 
pool 
/ / Use 3 independent PRNGs to read uncertain mask values from the pool 
mask1 = urng - > pool? prng ( 1 ) % urng - > modulo ] ; 
mask2 = urng - > pool? prng ( 2 ) % urng - > modulo ] ; 
mask3 = urng - > pool? prng ( 3 ) % urng - > modulo ) ; 
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- continued 
/ / Convert deterministic PRNG values into a paradox safe domain values 
unsafe _ 1 = prng ( 4 ) ; 

unsafe _ 2 = prng ( 5 ) ; 
domain _ 1 = ( ~ maskl & unsafe _ 1 ) | ( maski & unsafe _ 2 ) % 
urng - > modulo ; 
unsafe _ 1 = prng ( 6 ) ; 
unsafe _ 2 = prng ( 7 ) ; 
domain _ 2 = ( mask2 & unsafe _ 1 ) | ( mask2 & unsafe _ 2 ) % 
urng - > modulo ; 
/ / Manufacture a nondeterministic value from the pool while 

hiding domain and range 
return ( - mask3 & urng - > pool? domain _ 1 ] ) | 
( mask3 & urng - > pool? domain _ 2 ] ) ; 

[ 0182 ] However , by adding the dynamic unknowable 
replacement of these PRNGs with new seed values , and 
creation of on - demand pools of uncertainty , the same imple 
mentation then becomes a dynamic custom solution each 
time it is invoked . 

Stochastic Scaffolding Chaos Example 
[ 0183 ] We now start with two collections , one for PRNG 
functions and another one for URNG Random Edit Pro 
cesses ( REP ) functions . Using the same data driven pro 
cesses for selecting PRNGs , we also select and create a REP 
list . Each random edit process is a decoupling process . 
While the Mask Generator represents only one decoupling 
process , the Chaos URNG ( see above code ) uses uncertain 
values to choose among many decoupling processes . The 
overall result is substantially more uncertain random values 
created from the same pool of uncertainty . 

inappropriate as a canon is to kill a housefly as each appears 
to represent massive overkill . 
[ 0187 ] Given this understanding about sensitivity to dis 
ruption , we should look closer at the internal data structures 
of these protocols . Today , all digital protocols are defined to 
be static with respect to data structures . Instead of encryp 
tion to gain protection from hacking , we should apply 
" dynamic evolution ” to transform these static protocol data 
structures into unknowable “ moving targets ” . The ongoing , 
lightweight random evolution allows people to still read 
( with effort ) the data structures , but prevents programmers 
from predicting the next evolutionary change . Thus , we gain 
the hacking protection of encryption for barely any cost . 
[ 0188 ] To demonstrate how this works , we start with a 
common example of a digital protocol - computer instruc 
tions . Changing just a few bits can easily break the under 
lying software defined by these instructions . In nearly every 
case , the change of just one bit per instruction results in the 
destruction of the software program . Therefore , the breaking 
and the restoration of software can be an inexpensive 
lightweight process . 
[ 0189 ] Any given CPU processor defines public data 
structures for its instruction . A custom , inexpensive , and 
dynamic means to break and then restore software instruc 
tions can transform these public protocols into private 
protocols . This transformation would make a useful tool to 
implement a Digital Rights Management ( DRM ) system for 
software , books , media , etc . 
[ 0190 ] Basic economics drives the demand for custom 
solutions . When people share a common DRM system , they 
also share the same risks of hacking . The cracking of the first 
DVD copy protection exposed the risks of using common 
protection . Once the first DVD copy protection was cracked , 
then all protected DVDs were at risk . Thus , the sharing of 
common protection effectively invites large economic pay 
offs to defeat them . In contrast , if all media were guarded by 
custom protection , then the successful cracking of one piece 
of protected media would not risk any other protected media . 
This poor return on effort would foil most cracking for 
profit . 
[ 0191 ] Since shared data protection invites larger eco 
nomic payoffs , it also generally requires stronger protection 
( Blu - ray for example ) . However , custom protection justifies 
simpler implementations . The deployment of dynamic digi 
tal protocols resets these basic rules of economics . After 
illustrating why the fragility of protocols is helpful , as well 
as the economics , we now discuss the details of implemen 
tation . 

Effects of Stochastic Processing 
[ 0184 ] The uncertainty of stochastic processing demon 
strates why this is a much more useful application of 
randomness . Without the exact pool data , no one can predict , 
( from knowledge of the implementation ) , which version of 
a custom solution will be invoked . Current ( static ) imple 
mentations in hardware and software conform to mathemati 
cal certainty . These static solutions will give way to dynamic 
solutions . These technologies of uncertainty will free appli 
cations to become chaotic , less expensive and much better 
solutions . 

Common Custom Environment 

Dynamic Digital Protocols 
10185 ) Data structures and actions define current digital 
protocols . Developers apply painstaking efforts to perfect 
implementations of these protocols . This near perfection of 
implementation means that most current digital protocols are 
extremely fragile . How do we protect fragile data structures 
within digital protocols ? Only by deliberately breaking them 
do we gain the means to protect them . . . this irony defines 
the Data Structure Protection Paradox . 
[ 0186 ] To utilize this paradox , with the aid of stochastic 
processing , we use data structure fragility as a tool — we 
create a dynamic means to uniquely “ break ” the perfection , 
and then uniquely “ restore ” the perfection of the same data 
structure . We can see the value of this fragility with a simple 
contrast . While a canon can kill a housefly , so can a fly 
swatter . Both complete the task , yet one of them remains 
completely inappropriate for the scale of the problem . 
Encryption can protect a digital protocol , yet it remains as 

[ 0192 ] There are two parties in most digital protocols — the 
producer ( source or initiator ) and the consumer who pro 
cesses the protocol . To be successful with dynamic digital 
protocols , these two parties generally must start with the 
same custom environment , which include a common source 
file , timestamp , URNG implementation , and stochastic pro 
cessing application ( s ) . In this way , both parties know that 
they have the same random data stream ( s ) and application ( s ) 
to process them into compatible dynamic digital protocols . 
So long as the dynamic digital protocol “ producer " and 
" consumer ” are synchronized , they can continue to 
exchange data structures without concern that they may be 
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hacked . Without exactly the same environment , no one else 
can create the expected data structure that will be accepted 
by the protocol consumer . 

URNG Value Primitive 
[ 0203 ] The “ URNG _ value ” is the standard URNG inter 
face primitive for obtaining random values . 
[ 0204 ] r _ value urng _ value ( t _ urng * urng ) Innovations Around the Data , Address , and Control 

Planes of Randomness 

[ 0193 ] Each of these “ planes ” represents an independent 
opportunity for innovation . One can change the addressing 
into the data pool without affecting the data . Likewise , fixing 
( freezing the state ) on one plane still allows developers to 
innovate in the other planes . These opportunities for inno 
vation flow from the properties of the Uncertainty Function . 
Therefore , these same opportunities are available within 
stochastic processing ( data / address / control planes ) . 
[ 0194 ] Stochastic processing generally requires the ability 
to reproducibly create the same random streams . This 
requirement can be met via an open - ended number of 
solutions , from pre - generating data , resetting implementa 
tions , or building URNG primitives to support this require 
ment . These primitives lay the groundwork for building 
dynamic digital protocols . 
[ 0195 ] Any given source file contains a pool of uncer 
tainty , and a time model . The timestamp determines the seed 
values within the pool of uncertainty , defining which 
instance of a URNG will be created . Therefore , any time 
stamp represents an addressing function into all possible 
URNG instances . While each URNG instance is limited to 
producing one random stream , many different streams can 
be produced from the same pool of uncertainty . The follow 
ing are supporting primitives : 

Random Sub - Streams Indexed URNG Primitive 
[ 0205 ] The " indexed URNG ” is the interface primitive for 
obtaining the next random value in the “ indexed ” stream . 
Each time that the index changes , the index stream resets . 
This “ resetting ” allows the indexed URNG to be reused and 
thus reproduce any indexed stream . An example would 
entail setting the index to a temp value , and then restoring 
back to the previous index , so that the same index stream 
would start reproducing the same random stream . The use of 
the clone URNG interface primitive , in conjunction with the 
indexed URNG interface primitive , allows any number of 
( different ) simultaneous random streams to be supported 
from the same pool of uncertainty . 
[ 0206 ] r _ value indexed _ urng ( t _ urng * urng , int32 _ t _ in 
dex ) ; 

The Virtual Cut - Memory Address + Offset 
[ 0207 ] For example , adding an offset of the memory 
address used to read the data pool ( s ) has the same effect as 
moving the origin of the memory range . This is similar to 
“ cutting ” the deck in a card game . 

Static URNG Primitive 

The Virtual Shuffle Memory Address XOR 
Shuffle Value 

[ 0208 ] The act of a bit - wise XOR of a Shuffle Value with 
a memory address is comparable to the effect of a quick 
shuffle in place the memory range has been reordered by 
the XOR operation . One can shuffle then cut , or one can cut 
then shuffle . These virtual card tricks can be performed as 
many times as one wishes . 

[ 0196 ] The “ Static UNRG ” creates an URNG instance 
based on the pool of uncertainty found in the source file . 
Each unique timestamp creates a different instance of the 
URNG while sharing the same data . 
[ 0197 ] t _ urng * static _ urng ( char * source _ name , t _ time 
stamp timestamp ) ; 

Random Sub - Streams — Using the Memory Address 
Offset 

Dynamic URNG Primitive 
[ 0198 ] The “ Dynamic URNG ” takes the given source file 
and timestamp to create a new pool of uncertainty . This new 
pool of uncertainty and timestamp defines this dynamic 
instance of the URNG . Therefore , each unique timestamp 
creates a unique random number generator , which in turn 
creates a unique random stream . 
[ 0199 ] t _ urng * dynamic _ urng ( char * source _ name , t _ time - 
stamp timestamp ) ; 
[ 0200 ] The same source file , timestamp , and above primi 
tives create the same instance of the URNG , and subse 
quently produces the same random stream . Once a given 
URNG instance is defined , then the data plane has been 
assigned 

[ 0209 ] Manipulating the memory address can have some 
very useful side effects . Normally , the uncertainty random 
value generator would only produce one random stream . If 
each memory address used within the uncertainty random 
value generator had an offset added to it , then a different 
random sub - stream would be produced for each different 
offset . Any number of arbitrary random sub - streams can be 
produced via selective addition of memory - offset values . 
This gives us a randomly addressable sub - stream whenever 
it is needed . This tool is very useful in many applications . 

The Identification of Source Files and URNG 
Instance 

Clone URNG Primitive 

[ 0210 ] In most cases , the naming of a “ file ” generally 
requires first identifying where it can be found ( path name ) 
within some form of “ name space ” . Typically , only the last 
part of the location is used to name the file . While the path 
name specifies the external source file identification , addi 
tional internal identification exists : a creation timestamp and 
a non - unique identifier . Between the external and internal 
identification , any source file should be located within 
known systems . Once the correct source file has been found , 
a dynamic identifier ( open file ID ) can be defined . 

[ 0201 ] The “ Clone URNG ” creates a copy of the given 
URNG instance . Each clone will produce the same random 
stream from the point of cloning . 
[ 0202 ] t _ urng * clone _ urng ( t _ urng * urng ) ; 
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[ 0211 ] As source files and timestamps are employed to 
create URNG instances , they are given dynamic URNG 
instance identifiers . As clone instances are created , they are 
also given additional identifiers . Clearly , stochastic process 
ing applications will have to manage and track these URNG 
instance identifiers . 
[ 0212 ] In hardware applications , the loading of the pool of 
uncertainty , and initialization of address generators com 
pletes the identification of a URNG instance . Each addi 
tional addressing generator that supports " cut ” ( with or 
without “ shuffle " ) provides the means for indexed URNGs . 

The Synchronization of Producers and Consumers 
[ 0213 ] . So long as the producer and consumer of data 
structures start with the same source file and timestamp , they 
have reached the first level of synchronization by creating 
the same instances of the URNG . The stochastic processing 
application ( s ) generally must define values ( sub - stream 
identifiers ) that represent distinct random sequences . These 
sub - stream identifiers become the " index " values of the 
indexed URNG primitive . Each time the stochastic process 
ing application generally requires a new random sub - stream , 
it can just create a new index ( stream ) value . This index 
value may or may not be in the data structure . For example , 
some Internet protocols have “ sequence numbers " embed 
ded in the protocol definition : these sequence numbers can 
be mapped into index values . These index values become a 
fine grain addressing ( time ) function for randomness . 
Clearly , while most protocol sequence numbers are ordered 
for a reason , these index values do not need to be contigu 
ous . So long as the algorithm for creating and managing 
these indexes is correct , the indexed URNG primitive will 
give the same random sub - stream for any given ( valid ) 
index . 
[ 0214 ] Starting index values can be explicitly or implicitly 
defined by the application . A transaction accounting number 
could be an example of an explicitly defined index , while the 
third attachment in an email could be an implicit example . 
However , any application specific algorithm can create any 
( valid ) index values . 

[ 0217 ] The reversible morphing of a static data structure 
can be inserted between many existing hardware and / or 
software solutions . This protection upgrade can be accom 
plished for relatively low cost to or disruption of existing 
systems . 
[ 0218 ] Another means to protect fragile data structures is 
to directly move towards dynamic data structures . For 
example , many different data structures can be overlapped 
( formatted ) via a " variant record ” means . In this way , the 
same overall data can be stored in roughly the same amount 
of space . Within each variant record , the only significant 
difference is that the same fields are stored in a different 
order . Both producer and consumer would have to synchro 
nize whichever variant is to be used this time . The ideal 
synchronization would be selection of a variant record ( or 
selection of a routine to construct a variant record ) based on 
uncertain data . In this way , over time , the same fields within 
the data structure would appear to be constantly moving . 
This variant record solution does not require the “ breaking 
and restoring ” collection , but does require reworking the 
hardware / software accesses to the fields within the data 
structures . 
[ 0219 ] The incorporation of breaking the certainty of 
existing static data structures should be so low cost that it 
can become almost ubiquitous . In this way , we gain security 
of digital protocols without any substantial overhead . The 
second collection ( hash function or CRC ) gives an option 
that may carry even lower overhead . 

Upgrading the CRC Metaphor to Become the Ross 
Integrity Check ( RIC ) 

Application Specific Collections — Hash Functions , 
Breaking and Restoring Processes 

[ 0215 ] The task of protecting the fragile ( static ) data 
structures within digital protocols may require up to two 
different application - specific collections of processing ele 
ments . The first collection is some form of hash " or Cyclic 
Redundancy Check ( CRC ) function that reduces a data 
structure into a single value . If needed , the second collection 
is used to invoke the data structure protection paradox . 
[ 0216 ] The possibilities of breaking and restoring ” static 
data structures are infinite , so it will remain an open - ended 
solution space . Any reversible means to mangle the static 
data structure . . . and then restore it is equally effective . This 
list of examples to process static data structures represents 
just a hint of possible solutions . Once the static data struc 
ture is created , then any combination of the following can be 
employed : bit flipping of any size , bit swapping of any size , 
data of any size injected and then removed , rotating any 
number of bits left or right ( within any size unit ) , reversing 
bit order of ( byte , 16 - bit , word ) , etc . As an open - ended 
solution space , many more solutions can be created . 

[ 0220 ] Many Internet protocols employ a CRC function to 
detect damaged ( invalid ) packets . If the CRC check fails , 
then the packet is discarded . These protocols naturally 
replace the missing packet and the only result is a temporary 
glitch . There are many different CRC functions currently 
deployed throughout the network . However , in order to 
function as intended , each invocation of a current CRC 
generally must use the correct function . This defines the 
current CRC metaphor . 
[ 0221 ] So , we can change the metaphor with a simple 
question — what happens if the wrong CRC function was 
invoked ? In this case , the protocol is broken and each 
request is discarded . If this consistent failure of a CRC check 
is the correct intent , then the CRC value has become a failed 
" digital signature ” . Unfortunately , if the CRC function 
becomes known , then the CRC value could be hacked to an 
extent that it passes the CRC check . To complete the solution 
and prevent hacking , we generally must incorporate uncer 
tain data into the CRC computation . This required uncertain 
data ( of uncertain size ) could only be produced by the 
correct instance of an URNG . Thus , the collection of hash / 
CRC functions plus additional uncertain data actually 
upgrades the simple CRC metaphor to become a secure 
digital signature for each packet . Therefore , any unauthor 
ized packets are ignored . This RIC replacement of the CRC 
metaphor remains low cost enough to become ubiquitous . 
[ 0222 ] Given an uncertain selection of a hash / CRC func 
tion from the collection and an uncertain data addendum of 
uncertain size , we compute the data structure plus addendum 
hash / CRC RIC value . The service provider selects the same 
hash / CRC function , creates the same uncertain addendum , 
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and then computes the RIC value . The service is only 
provided if the authentication matches the value found in the 
data structure . 

Applications of the RIC 
[ 0223 ] Clearly , the RIC could be added to any digital 
protocol to provide a low cost means for authentication . 
Many services are provided without authentication , while 
others have very complex infrastructures to support authen 
tication ( Secure Socket Level SSL for instance ) . If the one 
time data exchange has been completed , then we have also 
exchanged random number generators . Therefore , we have 
also set up the minimal required infrastructure to support 
authentication . Assuming shared stochastic processing 
application ( s ) are used via this data exchange , then dynamic 
custom applications in either hardware or software have also 
been exchanged . 

[ 0229 ] Clearly , the framework will have to deal with 
restoring whatever breaking was accomplished . Assuming 
that any new breaking process element may affect the results 
of previous breaking process elements , then the restoration 
sequence will have to back out each break by restoring them 
in reverse order . The processing of a “ last in first out 
( LIFO ) ” stack is a classic , well - understood , algorithmic 
metaphor . 
[ 0230 ] Assuming that both the BR process and RIC are 
employed , then the RIC value is computed and saved within 
the data structure before any changes are made . Once the 
data structure is restored , then the RIC is recomputed to 
validate the data structure and confirm authorization . 

Converting Public Addresses into Private Addresses 
( Fine Grain Access Control ) ( 

[ 0224 ] Let us assume that many service providers have 
known “ public addresses ” . Assuming these service provid 
ers are upgraded to support RIC authentication , then only 
authorized services will be provided , while all other requests 
are ignored . Thus , the RIC becomes a form of revocable 
access control for the service . This access control has an 
open - ended number of possible applications . 
[ 0225 ] Here is a simple example of this effect : if my phone 
optionally supports RIC authentication , then I could “ open " 
my phone number during the day , while limiting ( closing ) 
access at night to only those that I gave permission to call 
me . Another way to view the effect of the RIC is to think of 
this as converting the public ( known ) address into a private 
( authorized only ) address . Now , any email , phone number , 
control system , IP address , financial or Internet transaction , 
etc . can have fine - grain access control . 
02261 . The lack of fine - grain revocable access control 
plagues many applications . For example , the typical access 
given to databases covers all records . Instead , many orga 
nizations would benefit from dynamically limiting access to 
only those records where a need - to - know has been autho 
rized , while denying access to the rest of the database . 
Clearly , this fine - grain access control would be useful in 
healthcare and IRS organizations . This type of access con 
trol is another wide - open application space . 

Optional Use of Breaking / Restoration or RIC 
10231 ] The above section covers the case where both the 
BR process and RIC are employed at the same time . 
However , there are many valid applications in which only 
one of them would be used . The RIC will stand alone in 
many digital protocols as a low cost solution for access 
control . The standalone use of the BR process will be used 
in cases of software DRMs . If only the RIC is employed in 
this software DRM case , then that single point of attack 
would be a tempting target to hack , thus overriding the effect 
of the RIC . However , the standalone use of the BR process 
is strong enough to protect the software . After all , any 
improperly restored software remains nonfunctional . There 
are an open - ended number of applications that will only use 
either the BR process or the RIC . 
[ 0232 ] Data Congruential Generator " Linear Congruential 
Generators ” produce deterministic values that generally 
must be transformed into paradox safe values within the 
URNG implementation . While the requirements for produc 
ing paradox safe domain values for the Uncertainty Function 
remain the same , the removal of the flawed PRNG simplifies 
the process with better randomness quality : 
[ 0233 ] mask = urng - > pool [ prng ( 1 ) % urng - > modulo ) ; 
[ 0234 ] unsafe _ 1 = prng ( 4 ) ; 
[ 0235 ] unsafe _ 2 = prng ( 5 ) ; 
[ 0236 ] domain = ( - mask & unsafe _ 1 ) | ( mask & unsafe _ 2 ) 
% urng - > modulo ; 
[ 0237 ] Starting with one ( or more ) nondeterministic value 
( s ) from the pool of uncertainty , we can generate a domain 
value from a prime modulo operation . Instead of a “ Linear 
Congruential Generator ” , we replace a “ linear ” equation 
with paradox safe data to produce the Data Congruential 
Generator ( DCG ) . Given two random indexes ( seedo , seedl ) 
into the pool of uncertainty , here is the replacement C code 
example . 

uint64 _ t 
uint32 _ t 
hi 

Stochastic Scaffolding — the Same Distinct 
Breaking / Restoration Algorithm 

[ 0227 ] The Breaking and Restoring ( BR ) process contin 
ues with the stochastic scaffolding framework . Each devel 
oper of BR applications will be creating a framework for the 
multi - step selection and invocation of BR processing ele 
ments . The limitations set upon programmatic control vari 
ables ( number of steps , order of steps , selection of BR 
elements , etc . ) are all defined by the data produced by the 
URNG . 
( 0228 ] While the synchronization is established with the 
correct URNG instance , each part of the stochastic scaffold 
ing starts with the same distinct uncertain data . Each sub 
step within the framework may require additional data 
parameters . Any parameter , data item , selection value , chaos 
instruction , etc . can be provided with the indexed URNG in 
a consistent ( and reproducible ) manner . 

low 
y 
domain 

y ; 
hi , low , domain ; 

= urng - > pool [ seed0 + + % urng - > modulo ] ; 
= urng - > pool [ seedl - - % urng - > modulo ] ; 
= ( ( uint64 _ t ) hi < < 32 ) | ( low ) ; 
= ( y % prime ) % urng - > modulo ; 

[ 0238 ] Note : this embodiment uses the concatenation of 
two 32 - bit values to create a 64 - bit value . In lieu of 
concatenation , nearly any binary operation will function as 
well . While a single pool value is functional , it tends to 
repeat the same addressing sequence far too quickly . By 
replacing the above “ prime ” number , one can create a 
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different domain value generator . The DCG embodiment can 
be created in either hardware of software . 

C Header 
[ 0239 ] This C header fills in some details missing in the 
above code snippets 

# define MAX _ REPS 16 
# define INSTRUCTIONS _ PER _ WORD 8 
# define INSTRUCTION _ MASK OxF 
# define INSTRUCTION _ SHIFT 
# defineNUM _ STOCHASTIC _ POINTS 7 
# define prng ( num ) 
( ( * urng - > prng [ num ] . PRNG ) ( & urng - > prng [ num ] . state ) ) 
typedef uint32 _ t r _ value ; / / base type of uncertainty 
value 
Il generic PRNG function 
typedef r _ value ( * PRNG _ function ) ( r _ value * seed ) ; 
/ / generic Random Edit Process 
typedef r _ value ( * edit _ process ) ( r _ value , r _ value , r _ value ) ; 
typedef struct 

PRNG _ function PRNG ; 
r _ value state ; 

} t _ prng ; 
/ / STRUCTURE : t _ chaos 

/ / Chaos CPU 
instruction ( block ) currently 4 bits each 

Il PC Program Counter within instruction block 
/ 16 CPU operations indexed via 4 bit instruction 
Il each operation is a generic Random Edit Process 

each operation is randomly selected via uncertainty value from 
REP table 

/ / Since each instruction block is randomly fished from pool of uncertainty 
/ / and then used to perform random operations against other random 
1 / streams , the Chaos Engine is an appropriate name . 
typedef struct 

by the appended claims rather than by the foregoing descrip 
tion . All changes which come within the meaning and range 
of equivalency of the claims are to be embraced within their 
scope . 
[ 0241 ] For example , although the above discussion 
describes particular uses for such systems , methods and etc . , 
it is understood that the applications are plethoric and in 
some cases unknowable at this point . 
[ 0242 ] . Additionally , although the figures illustrate specific 
connections , relationships , and sequences , it is understood 
that the plethoric connections , relationships and sequences 
not described by but also not contraindicated by the claims 
are envisioned and may be implemented in one or more 
non - limiting embodiments of the invention . 
[ 0243 ] Thus , while the present invention has been fully 
described above with particularity and detail in connection 
with what is presently deemed to be the most practical and 
preferred embodiment of the invention , it will be apparent to 
those of ordinary skill in the art that numerous modifica 
tions , including , but not limited to , variations in size , mate 
rials , shape , form , function and manner of operation , assem 
bly and use may be made , without departing from the 
principles and concepts of the invention as set forth in the 
claims . Further , it is contemplated that an embodiment may 
be limited to consist of or to consist essentially of one or 
more of the features , functions , structures , methods 
described herein . 
What is claimed is : 
1 . A method of generating seed values for use in a random 

number generator , comprising the steps of : 
a . receiving a timestamp ; 
b . determining a difference between the timestamp and an 

uncertain zero point in time , using a processor , thereby 
determining an offset ; 

c . expressing the offset through a plurality of time units , 
using a processor , each time unit having a correspond 
ing uncertain scale value , thereby generating a set of 
delta values ; 

d . multiplying each delta value in the set of delta values 
by the corresponding uncertain scale value , using a 
processor , associated with the time unit , thereby gen 
erating a set of addends ; and 

e . summing the addends using a processor , thereby gen 
erating a seed value . 

2 . The method of claim 1 , wherein the timestamp is a 
public timestamp . 

3 . The method of claim 1 , wherein the timestamp is 
derived from a set of sequentially increasing values . 

4 . The method of claim 1 , wherein the timestamp is 
mapped into a familiar unit of time . 

5 . The method of claim 1 , wherein the offset is expressed 
through two or more of days , hours , minutes , second , and 
milliseconds . 

6 . The method of claim 1 , wherein the timestamp is in the 
form of clock cycles . 

7 . A method of generating a second source file from a first 
source file , comprising the steps of : 

a . determining a difference between a timestamp and an 
uncertain zero point in time , using a processor , thereby 
determining an offset ; 

b . expressing the offset through a plurality of time units , 
each time unit having a corresponding uncertain scale 
value , thereby generating a set of delta values ; 

r _ value instruction ; / / random value holding 
instructions 
r _ value PC ; / / current instruction counter within above 
instruction 
edit _ process operation [ MAX _ REPS ] ; / / table of chaos operations 
( Random Edit Processes ) 
} t _ chaos ; 
typedef struct 

{ 
uint32 _ t poolsize ; / / allocation size in r _ values 
uint32 _ t modulo ; Il prime number addressing modulo 
t _ prng prng [ NUM _ STOCHASTIC _ POINTS ] ; / / PRNG addressing 
functions 
t _ chaos cpuAdr0 ; / / address chaos engine 
t _ chaos cpuAdr1 ; / / address chaos engine 
t _ chaos cpudata ; Il data chaos engine 
r _ value * pool ; 1 / data pool pointer 
} t _ curng ; 
typedef struct 

uint32 _ t poolsize ; / / allocation size in r _ values 
uint32 _ t modulo ; Il prime number addressing modulo 
t _ prng prng [ NUM _ STOCHASTIC _ POINTS ) ; / / PRNG addressing 
functions 
r _ value * pool ; / data pool pointer 
} t _ urng ; 

[ 0240 ] It is understood that the above - described embodi 
ments are only illustrative of the application of the principles 
of the present invention . The present invention may be 
embodied in other specific forms without departing from its 
spirit or essential characteristics . The described embodiment 
is to be considered in all respects only as illustrative and not 
restrictive . The scope of the invention is , therefore , indicated 
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c . multiplying each delta value in the set of delta values 
by the corresponding uncertain scale value , using a 
processor , associated with the time unit , thereby gen 
erating a set of addends ; 

d . summing the addends using a processor , thereby gen 
erating a seed value ; 

e . seeding an uncertainty random number generator 
including the first source file with the seed value and 
operating the same through a processor , thereby gen 
erating a random stream ; 

f . loading the random stream , thereby generating a pool of 
uncertain data ; and 

g . associating a time model , including : the time stamp , the 
uncertain zero point in time , and the uncertain scale 
values with the pool of uncertain data , thereby gener 
ating a second source file . 

8 . The method of claim 7 , wherein the second source file 
includes a name . 

9 . The method of claim 8 , wherein the name of the second 
source file includes path information . 

10 . The method of claim 7 , further comprising receiving 
the timestamp . 

11 . The method of claim 7 , further comprising selecting 
the timestamp . 

12 . The method of claim 7 , wherein the timestamp is 
derived from a set of sequentially increasing values . 

13 . The method of claim 7 , wherein a time unit of the 
plurality of time units is selected from the group of time 
units consisting of days , hours , seconds , and milliseconds . 

14 . The method of claim 7 , wherein the timestamp is a 
public timestamp . 

15 . The method of claim 7 , further comprising the step of 
seeding the second source file and operating the same , 
thereby generating a second random stream . 

16 . A computing device for generating seed values , com 
prising a processor and instructions for operating the pro 
cessor in functional communication with the processors , the 
instructions including the steps of : 

a . determining a difference between s timestamp and an 
uncertain zero point in time , using the processor , 
thereby determining an offset ; 

b . expressing the offset through a plurality of time units , 
using the processor , each time unit having a corre 
sponding uncertain scale value , thereby generating a set 
of delta values ; 

c . multiplying each delta value in the set of delta values 
by the corresponding uncertain scale value , using the 
processor , associated with the time unit , thereby gen 
erating a set of addends ; and 

d . summing the addends using the processor , thereby 
generating a seed value . 

17 . The device of claim 16 , wherein the timestamp is a 
public timestamp . 

18 . The method of claim 16 , wherein the timestamp is 
derived from a set of sequentially increasing values . 

19 . The method of claim 16 , wherein the timestamp is 
mapped into a familiar unit of time . 

20 . The method of claim 16 , wherein the offset is 
expressed through two or more of days , hours , minutes , 
second , and milliseconds . 

21 . The method of claim 16 , wherein the timestamp is in 
the form of clock cycles . 

22 . A computing device for generating a pool of uncertain 
data , comprising a processor and instructions for operating 
the processor in functional communication with the proces 
sor , the instructions including the steps of : 

a . determining a difference between a timestamp and an 
uncertain zero point in time , using a processor , thereby 
determining an offset ; 

b . expressing the offset through a plurality of time units , 
each time unit having a corresponding uncertain scale 
value , thereby generating a set of delta values ; 

c . multiplying each delta value in the set of delta values 
by the corresponding uncertain scale value , using a 
processor , associated with the time unit , thereby gen 
erating a set of addends ; 

d . summing the addends using a processor , thereby gen 
erating a seed value ; 

e . seeding an uncertainty random number generator 
including the first source file with the seed value and 
operating the same through a processor , thereby gen 
erating a random stream ; 

f . loading the random stream , thereby generating a pool of 
uncertain data ; and 

g . associating a time model , including : the time stamp , the 
uncertain zero point in time , and the uncertain scale 
values with the pool of uncertain data , thereby gener 
ating a second source file . 

23 . The method of claim 22 , wherein the second source 
file includes a name . 
24 . The method of claim 23 , wherein the name of the 

second source file includes path information . 
25 . The method of claim 22 , further comprising receiving 

the timestamp . 
26 . The method of claim 22 , further comprising selecting 

the timestamp . 
27 . The method of claim 22 , wherein the timestamp is 

derived from a set of sequentially increasing values . 
28 . The method of claim 22 , wherein a time unit of the 

plurality of time units is selected from the group of time 
units consisting of days , hours , seconds , and milliseconds . 

29 . The method of claim 22 , wherein the timestamp is a 
public timestamp . 

30 . The method of claim 22 , further comprising the step 
of seeding the second source file and operating the same , 
mere thereby generating a second random stream . 

* * * * * 


