
HUMIHIMILLIMETI
US 20180011692A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0011692 A1

Ross (43) Pub . Date : Jan . 11 , 2018

(54) STOCHASTIC PROCESSING
(71) Applicant : CASSY HOLDINGS LLC , South

Jordan , UT (US) 2)

G06F 21 / 00 (2013 . 01)
H04L 9 / 16 (2006 . 01)
H04L 9 / 06 (2006 . 01)
U . S . Cl .

G06F 7 / 58 (2013 . 01) ; H04L 9 / 16
(2013 . 01) ; H04L 9 / 0662 (2013 . 01) ; G06F

7 / 588 (2013 . 01) ; G06F 21 / 00 (2013 . 01) ;
G06F 21 / 62 (2013 . 01)

???

(72) Inventor : Patrick D . Ross , Sunnyvale , CA (US)

(73) Assignee : CASSY HOLDINGS LLC , South
Jordan , UT (US)

(57) (21) Appl . No . : 15 / 689 , 281
(22) Filed : Aug . 29 , 2017

Related U . S . Application Data
(63) Continuation of application No . 13 / 482 , 723 , filed on

May 29 , 2012 , now Pat . No . 9 , 778 , 912 .
(60) Provisional application No . 61 / 519 , 679 , filed on May

27 , 2011 .

ABSTRACT
A system , method , and device for stochastically processing
data . There is an architect module operating on a processor
configured to manage and control stochastic processing of
data , a non - deterministic data pool module configured to
provide a stream of non - deterministic values that are not
derived from a function , a plurality of functionally equiva
lent data processing modules each configured to stochasti
cally process data as called upon by the architect module , a
data feed configured to feed a data set desired to be sto
chastically processed , and a structure memory module
including a memory storage device and configured to pro
vide sufficient information for the architect module to dupli
cate a predefined processing architecture and to record a
utilized processing architecture .

(51)
Publication Classification

Int . Cl .
G06F 7 / 58 (2006 . 01)
G06F 21 / 62 (2013 . 01)

??
00000 sonnessiowywoosoomimation s mamadowmoordenamosioc chewwwwww

240

000000 Memory
Device

K evin 10000bogoosh N
0 Raw

mmmmmmmmmmmmmmmmmmmimeogeningen
DATA ProceOSONG

Mopove 90
IS . 1 . . E . S .
969696

growwwwwwwwwwwwwwwwwcowongo ossos 0 00
ooo al 0000000000 tivit Oooowwwwwwwwwwwwwwwww Pool DF

DATA 3 WWWWWpiano wwwwwww tutishwa
o

w

oo
d isewakawaooooo

iwowwwwwwwwwwwwwwwww ninigingsmin i ning
Scooppo w

i . ???C?
Mopu LE

qu
wwwwww 9900W doanI 77940w loding wwwwwwwww wwwwwwwwwwwwww w www 2 0 . 000

reck wwwcooowwwwwwiiiiiiiiiiw w wwwwwwwww olo000000000 todoscova m wwwwwwwwwwwww4417 . www w wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwinmoscowy
How

*

* *

w coisassaini p oondogope www

wwwwwwinan 000099 www
fow w wwwwwwwwwwwww w w wwwrooooooooo o wwwwwwwwwwwwwwwwwwwriting anyonini

Patent Application Publication Jan . 11 , 2018 Sheet 1 of 6 US 2018 / 0011692 A1

Select Processing Elements

mit 110 START 1
Done * 07 not done
vy momentin 120 * * * * * * * * * * * * *

* * * * * * * * * *

Dona ?

130 ON
tik

Go Unohtain value
Processing nempe ale)

rrrr + + + +

+ +

WAVAAAAY ANAN iijii ????????????????

Yes

wered 4444444444444444444444444422c ccareerrrrrrrrrrrrr
Element In
US ?

a commitment
ni me in 99 Free Entry

100 pes wreerrrrrrrrrrrr Assign Process BICHAN
Du Five Bany

rrrrrrrrrrrrrrrrrr w

Last Entry

w

Ves w

DONC done

. . . .

Heure 1

Patent Application Publication Jan . 11 , 2018 Sheet 2 of 6 US 2018 / 0011692 A1

Processing Blament In Use

START START 370 comm

?????? ? man Hound - 0 200 lm forand = 0 ; le tout Escorte * * * * * * * * ??????? ???? ???????

wi wie end of loop
for (inder Onder TABLE SIZE : ex D)

???????????????? www * * * *

iritti
of midi wwwwwwwwwwwwwwV mimimmmrw979 (tablet ander element) 2

ht + 43bowtime

240 14

wwwwwwwww FM Found TERUM Founds KULLIINNUNNI

??????????????????????? ??? vixii ???????????????????

carrier
END

Higure 2

occuegocios

wwwvW WU - GOOCOCCA

wwwswimmiinivac
inaniwa

D . P .

0 . 7 . Mopoce
wwwwwwwwwwwww

DATA FEED Modou

Patent Application Publication

Move
wwwwwwwww

wwwwwwwwwwwwwwww

wiwersock

22

w

NOW

FC

Datete ri

woonwinsonnirii
Lugo

c seng

toimit

w wwwwwwwwwwwxxxwwwviriw
w wwwwwwwwwwwwwwwwww

000000000016096

wilowwwwwwwwwwwwww
w ww700000

woooo

COMMONICATION PROTOCOL INTERFACE
Fast

O

wyposamovo

WWW

show

32
Rinium

www

m

ooponor
90099999999999999999

TW099990000000

2 799791dwww000D

winni

ARCHITECT
12

Modoué
lovely

rock??? ,
R . T . MED . Moppe
16

winning

monito

18

Jan . 11 , 2018 Sheet 3 of 6

Sooooooooooooo
oooooooooooooooo

doo

animatort
omorowania wodowania

. . ! : .

guionismo

rimiteti

wwwsssssssoooooooo
ciddididicos

DATA POLU . R . G .

Mopole
SYSTEM 20

wwwiiiennomxx000000
o

Soon

m

wig
0000000000000

wwwxzoosowanowicinawindoooooooooomissio odo
b owwwwvoor

mongw
owwwwww
XPRO

soosimin

y

STROCURE MEMORY MODULEI Meme
ooowomosos

ciocow
ani

comingsoo

r yawwwwwwww

cousticians anos
wwwxxxww

webcam combattere

DATA Pool PROUES
Mooie 34

aecenas

wwwwwwwwww

ssiccomissioonivoooooooo

www

ma
economouc coccoccowoom

w ww

Woucoracicaccouscoussource code porco

8 Sospod a Soccocconcinna

wwww * * 00066 m iniwmiwwwwwwwwnnwoooooooooo

FIG . 3

US 2018 / 0011692 A1

30

Patent Application Publication Jan . 11 , 2018 Sheet 4 of 6 US 2018 / 0011692 A1

wishiwawwwwwwwwwwwwwwwwwwwwwwwwwwwwww w www

PROVIDING A NON - DETERMOLI TLO
PATA Pool 12

Jawor
www . 007900wawa with access

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww w wwwwww mihan Senior mmocececosco

one more interesting t o mo re you
i di n iniainen sebe

WWW inisimovimenti

PROUIDERIG INFOMateod STREAM bowi6666666666000 ?????? MAWAwwwww www www x istin

minnie mos borr aren

DELAXING SELECTION 48
wwwwwwwwwwwwwww w www x 00000000

wwwwwwwwwww w ww inntinin

RANDOMLY S www . PLACES
ca

MonoLe so woooowwwwwwwwwww
M

powinno A

DETEKMING DURATLON wwwwwwwwww A RANDOM
52

0000 0000 niepowwwwwww wwwwwwwwww W innimiinium

000 downwa ii
incondicionadore

SEERING 0000000000000000000
Whoo

Domingo
Soooooooooooo o owowinni A Doininenot0000

ALTERING THE INFORMATION
www

SREAMS ?
food goo0000000000wowa

Fig . 4

Patent Application Publication Jan . 11 , 2018 Sheet 5 of 6 US 2018 / 0011692 A1

pouco con M w wwwwwwww wiwa

SCOWOW . COM RANDOMY SELECCIA A REPLACEMENT DATA
PROCESSING MoDoce 58 Passion wwwwwwwwwwwwwwwwww w powinien

pencerede wwwwwwwwwwwww wwwwwwwww

REPLAAH THE EXRST DATA PROCONG Module 10000 . 000

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww w wwwwwww hinnainen

000OOOOOOOOOOOOOOOOOOOOOooowww m asa dostoso

ALTERING THE FORMATO STREAM wwwwww
wwwwwwwwwwwwwww ww wwwwwwwwwwwwwwwwww wwww w www

Awwwwwwwww RANDOMLY LAYERING Wooooooo isimin i mi innews verwin wy wi

www w wwwwwwwwwwwaaron wwwwwwwwwww

SPOOK RECORDING STRUCTURE I MATED ble wires ww
mendi wwwwwwwwwwwww wwiivinen w wwwwww

www w wionowocowboy

LOKACKA wowwwwww AssocsACNG WITH A UM INDEX 68 person
w monocooowwwww

sinni wwindoctite www w ww

Ooooooowwwwwww STOCHASEXCALLY PRACE GT 70 Dowwwwww
0000

K

www

wwwcoooowwasooooowoominn

inyinginn MANAGAN MANAGING RANDOMIZATION 72 wissensc00600 Web

M OOO000000ori
dw o ocooning Opowi ada

Fig . 5

Patent Application Publication Jan . 11 , 2018 Sheet 6 of 6 US 2018 / 0011692 A1

stronomicosecondsvognooooo00006 * * * Wwwwwwwwwwwwwwwwww w wwww wwww wwwwwwwwwwwwww . . como mucopol

gawwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

within MEMORY www whooood
Device 86 Wowwww n i siipriomong ????????

DATA PROCESO
Mopove 90

1 . 3 . 25 . GS .
969696

Pool

www AANAWAWWWWWWWW Wirinin . 001 In

wwwinttorio thinkinia
POOL OF
DATA 3 ooooooooowwwwwwwwwwwwwwww Wooooooooooooooooo

win W ith Soo vor 000000

wwwwwwwwwww wwwwwwcoooooooooo w

www
wwwwwwwwwwwwwwwwwwwwwwwwwww

SON00 : 00 cond ARCH (TECT
Mopov : gossos . com

Wowow 97000W loanI OUTPOT MoDoce hb 4 0000000000 SSS W Wwwwwwwwwww i oooo wwwwwwwwwwwww wwwwwww

wwwwwwwwwieso retz 84 wwwwwwwwwwwww wwwwwwwwwwwwwwwwwwww missingissimo
Woordon

S w immwwwwwwwwwwwwww cooooooooooo

wwwwwwww00008 o wienie
Soowwwwwwwxviimwaminimosowansowodowaniwiwwwwwwww wwwwwwwwanasomoncoin . omwwwwwwwwwwwwwww wwwwwwwww

Fa : 6

US 2018 / 0011692 A1 Jan . 11 , 2018

STOCHASTIC PROCESSING
CROSS - REFERENCE TO RELATED

APPLICATIONS
[0001] This application is a Continuation Application of ,
under 35 U . S . C . $ 120 , and claims priority to , under 35
U . S . C . $ 120 , U . S . Non - Provisional application Ser . No .
13 / 482 , 723 , entitled STOCHASTIC PROCESSING OF AN
INFORMATION STREAM BY A PROCESSING ARCHI
TECTURE GENERATED BY OPERATION OF NON
DETERMINISTIC DATA USED TO SELECT DATA PRO
CESSING MODULES , by Patrick D . Ross , filed on May 29 ,
2012 . This invention claims priority therethrough , under 35
U . S . C . $ 120 , to the U . S . Provisional Patent Application No .
61 / 519 , 679 to Patrick D . Ross filed on May 27 , 2011 which
is incorporated by reference herein .

BACKGROUND OF THE INVENTION

Field of the Invention
[0002] The present invention relates to methods and sys
tems for protecting information , specifically to methods and
systems to produce dynamic applications that provide sto
chastic processing of information .

Description of the Related Art
[0003] Many applications require random values as part of
their internal processing . Some of these applications have
simple requirements like a uniform distribution of values ,
reproducibility from a given seed value , and very long
cycles before they repeat . To that end , many papers and
books describe good hardware and software functions that
provide these classic random value generators . The attri
butes of classic random value generators remain both useful
and problematic . Before addressing any shortcomings of
current random value generators , we generally must first
review how these generators work .
[0004) There exists a number of properties common to all
classic random value generators , whether they be hardware
or software based . The cornerstone of classic random value
generators is the use of static random functions . Each of
these functions processes the current non - zero data value
into the next random value in the sequence . The subsequent
processing of each new value creates the random sequence .
Assuming that a good function is used , the random sequence
will pass almost all known statistical tests for randomness .
100051 Numerous random functions have been tested and
published . Most of these published functions produce a
limited sequence of values before repeating the same
sequence of random values . These brief cycle lengths may
be too short to be compatible with many applications . In
hardware , the random functions are most often described as
Linear Feedback Shift Registers (LFSR) . Though fewer
software functions exist , a number of established functions
are available for the designer to use in new applications .
Also , most software random functions share the same short
cycle attribute .
[0006] Whether passing or failing , cycle length proves just
as important as statistical testing . Combining multiple pub
lished functions in a non - linear manner is the most common
way to increase cycle length . The function - based random
value generators are correctly called pseudorandom genera
tors and remain easy to " crack ” (invert) . Cracking a random

value generator allows an attacker to anticipate each of the
values in the sequence . As a rule of thumb , doubling the
classic random function complexity has the effect of squar
ing the effort required to crack it . As the speed of hardware
and therefore computers increases , the battle becomes an
arms race between the designer of random value generators
and the cracker wishing to break them .
[0007] Embracing this rule of thumb , hardware designers
adopt evermore complex random value generator functions .
The struggle between the designer and cracker persists
because the function driven paradigm is inevitably incom
plete . The cost to create , test , and deploy new random value
generators is thereby open - ended , because each new design
is destined to become obsolete . Subsequently , higher recur
ring chip costs translate directly into product costs . The
endpoint along this path is unknown , so a designer cannot
anticipate how long their newest function will prove safe
from cracking .
[0008] . The costs of increasing function complexity are
manifested in multiple ways . As noted above , the hardware
arms race persists as an inevitably incomplete problem .
Each new jump in hardware technology generally requires a
new corresponding generator design in order to stay ahead
of the crackers . This escalating cost forces many application
designers to forgo the hardware - based solution . To cut
system cost , many application designers resort to software
based random value generators . Often the process of tran
sitioning to a software solution either slows performance
unacceptably or increases CPU costs . While the recurring
costs are lower without dedicated silicon , the software
implementation taxes overall system performance . As the
software complexity increases , performance inversely
decreases .
[0009] In an effort to resist cracking , many designers
resort to secret (non - public) designs . Development in
secrecy necessitates limited testing , review , or reuse . Unfor
tunately , secret development guarantees a limited return on
investment because low volume of a given design generally
always carries higher cost per unit . Furthermore , secrecy
only sustains the integrity of these designs until someone
obtains a hardware or software example .
[0010] The final weakness to these classic functions stems
from a simple immutable fact : each random function pro
duces its own random sequence . Stated another way , there is
a one - to - one correspondence between the random function
and the unique sequence of values it produces . That
sequence acts like a “ melody ” with respect to its generating
function . A random “ melody ” is defined as both the values
and the order of those values as they are produced . The seed
value only defines where the “ melody ” starts .
[0011] All classic random value generators use a scalar
value (starting non - zero seed) to index the point at which
their unique “ melody ” begins . Since classic random value
generators are static function - based constructs , the seed
value generally must be protected because it acts as the key
to define the start of the pseudorandom sequence . In most
cases , the size of the seed value is used to indicate the overall
cycle length . All hardware and most software based classic
random value generators require a non - zero seed value to
start generating random values . In almost all cases , a zero
value seed will fail to generate any random stream .
[0012] In a futile effort to resist cracking , many designers
resort to secret (non - public) designs . Development in
secrecy necessitates limited testing , review , or reuse . Unfor

US 2018 / 0011692 A1 Jan . 11 , 2018

that solves one or more of the problems described herein
and / or one or more problems that may come to the attention
of one skilled in the art upon becoming familiar with this
specification .
[0016] The following and / or accompanying disclosure
information is provided as non - limiting examples of fea
tures , functions , structures , associations , connections , meth
ods , steps , benefits , consequences , and the like that may be
included independently , in any open combination , and in any
limited combinational form (consisting of) despite any lan
guage to the contrary , such as but not limited to " must "
" always " " never " " certainly ” and the like . Any dimensions
provided are exemplary and functionally equivalent ranges
that one skilled in the art may recognize after reading this
disclosure are implied . Disclosure provided may be pro
phetic , even if asserted as otherwise .

SUMMARY OF THE INVENTION

tunately , secret development guarantees a limited return on
investment because low volume of a given design generally
always carries higher cost per unit . Furthermore , secrecy
only sustains the integrity of these designs until someone
obtains a hardware or software example . What is needed is
a true random value generator , one that implements a true
one way function , resulting in a random stream of values
that is non - deterministic and / or a method or system that
solves one or more of the problems described herein and / or
one or more problems that may come to the attention of one
skilled in the art upon becoming familiar with this specifi
cation . Some improvements have been made in the field .
Examples of references related to the present invention are
described below in their own words , and the supporting
teachings of each reference are incorporated by reference
herein : U . S . Patent Application Publication No . : 2011 /
0029588 , by Ross , discloses a system and method of gen
erating a one - way function and thereby producing a random
value stream . Steps include : providing a plurality of memory
cells addressed according to a domain value wherein any
given domain value maps to all possible range values ;
generating a random domain value associated with one of
the memory cells ; reading a data value associated with the
generated random domain value ; generating dynamically
enhanced data by providing an additional quantity of data ;
removing suspected non - random portions thereby creating
source data ; validating the source data according to a
minimum randomness requirement , thereby creating a vali
dated source data ; and integrating the validated source data
with the memory cell locations using a random edit process
that is a masking , a displacement - in - time , a chaos engine , an
XOR , an overwrite , an expand , a remove , a control plane , or
an address plane module . The expand module inserts a noise
chunk .
[0013] U . S . Patent Application Publication No . : 2010 /
0036900 , by Ross , discloses a system and method of gen
erating a one - way function and thereby producing a random
value stream . Steps include : providing a plurality of memory
cells addressed according to a domain value wherein any
given domain value maps to all possible range values ;
generating a random domain value associated with one of
the memory cells ; reading a data value associated with the
generated random domain value ; generating dynamically
enhanced data by providing an additional quantity of data ;
removing suspected non - random portions thereby creating
source data ; validating the source data according to a
minimum randomness requirement , thereby creating a vali
dated source data ; and integrating the validated source data
with the memory cell locations using a random edit process
that is a masking , a displacement - in - time , a chaos engine , an
XOR , an overwrite , an expand , a remove , a control plane , or
an address plane module . The expand module inserts a noise
chunk .
[0014] The inventions heretofore known suffer from a
number of disadvantages which include being difficult to
use , being complex , being expensive , being limited in use ,
being limited in application , being unreliable , being deter
minable , being certain , requiring ever larger periods of
processing time for subsequent sets of random data , failing
to be true “ one - way ” functions , having vulnerabilities and
weaknesses that make it easier for unauthorized users to
decrypt information , and the like and combinations thereof .
[0015] What is needed is a method , system , apparatus ,
device , computer program , kit , and / or combination thereof

[0017 The present invention has been developed in
response to the present state of the art , and in particular , in
response to the problems and needs in the art that have not
yet been fully solved by currently available static , (and
therefore deterministic) hardware and software solutions .
Accordingly , the present invention has been developed to
provide a method and / or a system of generating dynamic ,
nondeterministic solutions in either hardware or software ,
including but not limited to a system , method and / or device
for stochastic processing of information .
[0018] According to one embodiment of the invention ,
there is a system of stochastic processing of information
using a computing device . The system may include an
architect module that may have a processor . The architect
module may be configured to manage and control stochastic
processing of data . The architect module may include a
run - time modification module that may be configured to
randomly alter a stochastic architecture during run - time . The
run - time modification module may be seeded from the
non - deterministic data pool module . The architect module
may be configured to use random values to select between
the plurality of functionally equivalent data processing mod
ules during run - time . The architect module may use random
values to select run - time durations for use of one of the
plurality of functionally equivalent data processing modules
during run - time .
[0019] The system may include a non - deterministic data
pool module that may be functionally coupled to the archi
tect module and may be configured to provide a stream of
non - deterministic values that are not derived from a func
tion . The non - deterministic data pool module may include a
URNG system . The system may include a plurality of
functionally equivalent data processing modules that may be
functionally coupled to the architect module , and each may
be configured to stochastically process data as called upon
by the architect module .
[0020 The system may include a data feed module that
may be in functional communication with the architect
module and may be configured to feed a data set desired to
be stochastically processed . The system may include a
structure memory module that may have a memory storage
device . The structure memory module may be coupled to the
architect module and may be configured to provide sufficient
information for the architect module to duplicate a pre
defined processing architecture and to record a utilized

US 2018 / 0011692 A1 Jan . 11 , 2018

processing architecture . The structure memory module may
include an index module that indexes structure according to
a time structure .
[0021] The system may include a common data pool
processing module that may be functionally coupled to the
non - deterministic data pool module and may be configured
to stochastically process a common non - deterministic data
pool thereby generating an application specific non - deter
ministic data pool for use by the non - deterministic data pool
module . The system may include a communication protocol
interface that may be in communication with the data feed
module and may be configured to feed a communication
protocol map to the data feed module , receive a stochasti
cally processed communication protocol map from the
architect module , and to alter an information stream accord
ing to the stochastically processed communication protocol
map .
[0022] According to one embodiment of the invention ,
there is a method of stochastically processing information
using a computing device . The method may include the step
of providing a non - deterministic data pool that is verified to
be non - deterministic and is not derived from a function . The
method includes verifying that the non - deterministic data
pool passes the NIST test with a predominant 10 / 10 score .
The method may include the step of providing an informa
tion stream to be processed . The method may include the
step of delaying selection of all randomized data processing
characteristics until run - time .
[0023] The method may include randomly selecting a first
data processing module , using a processor , from a set of
functionally equivalent data processing modules , each con
figured to alter data . The method may include the step of
determining a random duration of use of the first data
processing module during run - time . The set of functionally
equivalent data processing modules may be selected from
the group of data processing modules including : subtraction ,
masking , NAND , NOR , OR , XOR , AND , and addition . The
method may include seeding a step of randomly selecting a
data processing module from the non - deterministic data
pool .
[0024] The method of stochastically processing informa
tion using a computing device may include the step of
altering the information stream by use of the first data
processing module . The method may include randomly
selecting a replacement data processing module , using a
processor , from the set of functionally equivalent data
processing modules while processing the information stream
with the first data processing module . The method may also
include replacing the first data processing module with the
replacement data processing module .
[0025] The method may include the step of altering the
information stream by use of the replacement data process
ing module . The information stream may be configured
according to a predefined communication protocol and the
first and replacement data processing modules each may
sufficiently process the information stream to make the
information stream fail to satisfy the requirements of the
predefined communication protocol . The method may
include randomly layering use of a plurality of data pro
cessing modules such that the information stream is pro
cessed through multiple randomized layers of data process
ing modules .
[0026] The method may further include the step of record
ing structure information sufficient to reproduce use of the

first and replacement data processing modules . The method
may include associating operation of the method with a time
index such that operation of the method by counterparts
beginning with identical time index positions and an iden
tical non - deterministic data pool may process the informa
tion stream identically . The method may include the step of
stochastically processing the non - deterministic data pool
before utilization of the non - deterministic data pool . The
method may also include the step of managing randomiza
tion such that each call to a source of random values goes to
a different source than each previous call .
[0027] According to one embodiment of the invention ,
there is a stochastic processing device configured to sto
chastically process information fed therein . The device may
include a processor and a non - volatile memory device that
may be functionally coupled to the processor . The non
volatile memory device may include a pool of non - deter
ministic data that may be verified to have passed the NIST
test with a predominant 10 / 10 score . The device may include
a data input interface module that may be functionally
coupled to the processor and may be configured to receive
data . The device may include a data output interface module
that may be functionally coupled to the processor and may
be configured to send data .
[0028] The device may also include a data processing
module that may be functionally coupled to the processor
and may include a plurality of functionally equivalent data
processing instruction sets . The device may include an
architect module that may be functionally coupled to the
processor , the data processing module and to the non
volatile memory device . The architect module may be
configured to manage and control stochastic processing of
data according to seed values from the pool of non - deter
ministic data by randomly selecting data processing modules
during run - time , thereby processing data received through
the data input interface module and providing stochastically
processed data to the data output interface module .
[0029] In one embodiment , a single , formerly static solu
tion is transformed into many dynamic custom solutions
within the same implementation . This new genome of solu
tions is based on a number of new technologies , including
but not limited to one or more of the following modules :

(0030) Uncertainty Function One Way Function
[0031] Uncertainty Random Number Generators
[0032] Dynamic Selection of Processing Components
[0033] Delayed Binding of Components Until Needed
[0034] On Demand Remixing of Components
10035) Data Driven Implementations

[0036] Embodiments of this new genome of dynamic
solutions simplify many preferred solutions . The replace
ment of static , “ one size fits all ” applications with custom
solutions resolve many currently unsolved problems .
[0037] In another embodiment , all of these new techniques
come together as an open - ended architectural solution for
generating random values . This kind of architectural model
scales from very low cost products to extremely demanding
applications , based on their random data requirements .
Thus , we arrive at data morphing data instead of functions
processing data .
[0038] In still another embodiment , there is a method of
morphing static protocols into evolving protocols . Custom ,
dynamically evolving protocols become impossible to hack .
[0039] In still another embodiment , a simple hash value
can be upgraded to become secure digital signatures .

US 2018 / 0011692 A1 Jan . 11 , 2018

[0049] FIG . 6 illustrates a stochastic processing device
configured to stochastically process information fed therein .

Assuming " service providers ” only support these secure
digital signatures , then any unauthorized hash values are
ignored . Thus , these digital signatures become a form of
revocable access control . This approach to access control
can extend to any item , phone number , email address , IP
address , control system , financial transaction , etc .
[0040] In still another embodiment , a correctly imple
mented example of the custom solutions will be harder to
invert than the same cost static solutions , assuming the
session data (to be defined later) has not been compromised .
This means that everyone can use the same public hardware /
software implementation yet still have the same resistance to
cracking
0041] Reference throughout this specification to features ,
advantages , or similar language does not imply that all of the
features and advantages that may be realized with the
present invention should be or are in any single embodiment
of the invention . Rather , language referring to the features
and advantages is understood to mean that a specific feature ,
advantage , or characteristic described in connection with an
embodiment is included in at least one embodiment of the
present invention . Thus , discussion of the features and
advantages , and similar language , throughout this specifi
cation may , but do not necessarily , refer to the same embodi
ment .
[0042] Furthermore , the described features , advantages ,
and characteristics of the invention may be combined in any
suitable manner in one or more embodiments . One skilled in
the relevant art will recognize that the invention can be
practiced without one or more of the specific features or
advantages of a particular embodiment . In other instances ,
additional features and advantages may be recognized in
certain embodiments that may not be present in all embodi
ments of the invention .
10043] These features and advantages of the present inven
tion will become more fully apparent from the following
description and appended claims , or may be learned by the
practice of the invention as set forth hereinafter .

DETAILED DESCRIPTION OF THE
INVENTION

[0050] For the purposes of promoting an understanding of
the principles of the invention , reference will now be made
to the exemplary embodiments illustrated in the drawing (s) ,
and specific language will be used to describe the same . It
will nevertheless be understood that no limitation of the
scope of the invention is thereby intended . Any alterations
and further modifications of the inventive features illustrated
herein , and any additional applications of the principles of
the invention as illustrated herein , which would occur to one
skilled in the relevant art and having possession of this
disclosure , are to be considered within the scope of the
invention .
[0051] Many of the functional units described in this
specification have been labeled as modules , in order to more
particularly emphasize their implementation independence .
For example , a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays ,
off - the - shelf semiconductors such as logic chips , transistors ,
or other discrete components . A module may also be imple
mented in programmable hardware devices such as field
programmable gate arrays , programmable array logic , pro
grammable logic devices or the like .
10052] . Any of the functions , features , benefits , structures ,
and etc . described herein may be embodied in one or more
modules . Many of the functional units described in this
specification have been labeled as modules , in order to more
particularly emphasize their implementation independence .
For example , a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays ,
off - the - shelf semiconductors such as logic chips , transistors ,
or other discrete components . A module may also be imple
mented in programmable hardware devices such as field
programmable gate arrays , programmable array logic , pro
grammable logic devices or the like .
[0053] Modules may also be implemented in software for
execution by various types of processors . An identified
module of programmable or executable code may , for
instance , comprise one or more physical or logical blocks of
computer instructions which may , for instance , be organized
as an object , procedure , or function . Nevertheless , the
executables of an identified module need not be physically
located together , but may comprise disparate instructions
stored in different locations which , when joined logically
together , comprise the module and achieve the stated pur
pose for the module .
[0054] Indeed , a module and / or a program of executable
code may be a single instruction , or many instructions , and
may even be distributed over several different code seg
ments , among different programs , and across several
memory devices . Similarly , operational data may be identi
fied and illustrated herein within modules , and may be
embodied in any suitable form and organized within any
suitable type of data structure . The operational data may be
collected as a single data set , or may be distributed over
different locations including over different storage devices ,
and may exist , at least partially , merely as electronic signals
on a system or network .
[0055] The various system components and / or modules
discussed herein may include one or more of the following :

BRIEF DESCRIPTION OF THE DRAWINGS
[0044] In order for the advantages of the invention to be
readily understood , a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments that are illustrated in the
appended drawing (s) . It is noted that the drawings of the
invention are not to scale . The drawings are mere schematics
representations , not intended to portray specific parameters
of the invention . Understanding that these drawing (s) depict
only typical embodiments of the invention and are not ,
therefore , to be considered to be limiting its scope , the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawing (s) , in which :
[0045] FIG . 1 is a flowchart depicting a selecting process
of elements for an instance of stochastic module / process ,
according to one embodiment of the invention ;
[0046] FIG . 2 is a flowchart depicting a testing of the
given processing element , according to one embodiment of
the invention ;
[0047] FIG . 3 illustrates a system of stochastic processing
of information according to one embodiment of the inven
tion ;
[0048] FIGS . 4 - 5 illustrate a method of stochastically
processing information using a computing device ; and

US 2018 / 0011692 A1 Jan . 11 , 2018

a host server or other computing systems including a pro
cessor for processing digital data ; a memory coupled to said
processor for storing digital data ; an input digitizer coupled
to the processor for inputting digital data ; an application
program stored in said memory and accessible by said
processor for directing processing of digital data by said
processor ; a display device coupled to the processor and
memory for displaying information derived from digital data
processed by said processor , and a plurality of databases . As
those skilled in the art will appreciate , any computers
discussed herein may include an operating system (e . g . ,
Windows Vista , NT , 95 / 98 / 2000 , OS2 ; UNIX ; Linux ;
Solaris ; MacOS ; and etc .) as well as various conventional
support software and drivers typically associated with com
puters . The computers may be in a home or business
environment with access to a network . In an exemplary
embodiment , access is through the Internet through a com
mercially - available web - browser software package .
[0056] The present invention may be described herein in
terms of functional block components , screen shots , user
interaction , optional selections , various processing steps ,
and the like . Each of such described herein may be one or
more modules in exemplary embodiments of the invention .
It should be appreciated that such functional blocks may be
realized by any number of hardware and / or software com
ponents configured to perform the specified functions . For
example , the present invention may employ various inte
grated circuit components , e . g . , memory elements , process
ing elements , logic elements , look - up tables , and the like ,
which may carry out a variety of functions under the control
of one or more microprocessors or other control devices .
Similarly , the software elements of the present invention
may be implemented with any programming or scripting
language such as C , C + + , Java , COBOL , assembler , PERL ,
Visual Basic , SQL Stored Procedures , AJAX , extensible
markup language (XML) , with the various algorithms being
implemented with any combination of data structures ,
objects , processes , routines or other programming elements .
Further , it should be noted that the present invention may
employ any number of conventional techniques for data
transmission , signaling , data processing , network control ,
and the like . Still further , the invention may detect or prevent
security issues with a client - side scripting language , such as
JavaScript , VBScript or the like .
[0057] Additionally , many of the functional units and / or
modules herein are described as being “ in communication ”
with other functional units and / or modules . Being " in com
munication ” refers to any manner and / or way in which
functional units and / or modules , such as , but not limited to ,
computers , laptop computers , PDAs , modules , and other
types of hardware and / or software , may be in communica
tion with each other . Some non - limiting examples include
communicating , sending , and / or receiving data and meta
data via : a network , a wireless network , software , instruc
tions , circuitry , phone lines , internet lines , satellite signals ,
electric signals , electrical and magnetic fields and / or pulses ,
and / or so forth .
10058] As used herein , the term “ network ” may include
any electronic communications means which incorporates
both hardware and software components of such .
[0059] Communication among the parties in accordance
with the present invention may be accomplished through any
suitable communication channels , such as , for example , a
telephone network , an extranet , an intranet , Internet , point of

interaction device (point of sale device , personal digital
assistant , cellular phone , kiosk , etc .) , online communica
tions , off - line communications , wireless communications ,
transponder communications , local area network (LAN) ,
wide area network (WAN) , networked or linked devices
and / or the like . Moreover , although the invention may be
implemented with TCP / IP communications protocols , the
invention may also be implemented using IPX , Appletalk ,
IP - 6 , NetBIOS , OSI or any number of existing or future
protocols . If the network is in the nature of a public network ,
such as the Internet , it may be advantageous to presume the
network to be insecure and open to eavesdroppers . Specific
information related to the protocols , standards , and applica
tion software utilized in connection with the Internet is
generally known to those skilled in the art and , as such , need
not be detailed herein . See , for example , DILIP NAIK ,
INTERNET STANDARDS AND PROTOCOLS (1998) :
JAVA 2 COMPLETE , various authors , (Sybex 1999) ;
DEBORAH RAY AND ERIC RAY , MASTERING HTML
4 . 0 (1997) ; and LOSHIN , TCP / IP CLEARLY EXPLAINED
(1997) , the contents of which are hereby incorporated by
reference .
10060] Reference throughout this specification to an
" embodiment , " an " example ” or similar language means
that a particular feature , structure , characteristic , or combi
nations thereof described in connection with the embodi
ment is included in at least one embodiment of the present
invention . Thus , appearances of the phrases an " embodi
ment , " an " example , " and similar language throughout this
specification may , but do not necessarily , all refer to the
same embodiment , to different embodiments , or to one or
more of the figures . Additionally , reference to the wording
" embodiment , " " example ” or the like , for two or more
features , elements , etc . does not mean that the features are
necessarily related , dissimilar , the same , etc .
[0061] Each statement of an embodiment , or example , is
to be considered independent of any other statement of an
embodiment despite any use of similar or identical language
characterizing each embodiment . Therefore , where one
embodiment is identified as " another embodiment , " the
identified embodiment is independent of any other embodi
ments characterized by the language " another embodiment . "
The features , functions , and the like described herein are
considered to be able to be combined in whole or in part one
with another as the claims and / or art may direct , either
directly or indirectly , implicitly or explicitly .
[0062] As used herein , “ comprising , " " including , " " con
taining , " " is , " " are , " " characterized by , " and grammatical
equivalents thereof are inclusive or open - ended terms that
do not exclude additional unrecited elements or method
steps . “ Comprising " is to be interpreted as including the
more restrictive terms “ consisting of ” and “ consisting essen
tially of . ”
[0063] It remains difficult to solve a Calculus problem by
employing Algebra . These math tools are designed to deal
with different types of problems : dynamic vs . static . Note ,
whenever we apply the incorrect tool to solve a problem , we
inevitably settle for suboptimal solutions . Currently , hard
ware and software development confines solutions within a
narrow range of functionality , usually within a static , and
therefore deterministic range . Like Algebra , these imple
mentations are very good for solving some problems . How
ever , they remain inadequate when asked to address prob
lems that are better answered by dynamic solutions . Before

US 2018 / 0011692 A1 Jan . 11 , 2018

we can focus on dynamic solutions , we generally must first
review the current mathematics confining us to static solu
tions .

Uncertainty Function

[0070] So , why talk about Algebra , domain vs . range
relationships , and graphical plots ? Surprisingly , all current
digital products already use the Uncertainty Function . Yet
none of these product designers have seen the mathematical
implications . We know this function by its more common
use as simple RAM (Random Access Memory) . The read of
a memory cell within a buffer filled with random data
produces a nondeterministic value . Each valid memory
address maps to a memory cell that can contain any possible
range value . The graphical plot of RAM (the uncertainty
function) is black . One cannot predict the memory address
(domain value) given a memory (range) value . These are
profound enhancements over the mathematics of certainty .
10071] The memory buffer used within the Uncertainty
Function is called the " pool of uncertainty . " Each read from
this pool produces a nondeterministic value called Uncertain
Data . Uncertain Data remains " uncertain ” if and only if no
one ever sees its true value . Therefore , releasing values from
the pool of uncertainty presents us with a paradox — how do
we read from the data pool without exposing the contents of
the pool ? This issue defines the Data Paradox .
10072] While the Uncertainty Function is necessary , by
itself , it is not sufficient to deal with the data paradox . The
first functionally complete technology after the Uncertainty
Function is the creation of a nondeterministic Uncertainty
Random Number Generator (URNG) . Two additional data
paradox technologies are required to protect the integrity of
the pool of uncertainty .

[0064] The principle of certainty ” dominates the field of
Mathematics ; by certainty , We mean that traditional math
ematics provides functions where input values (domain
values) are used to mechanically compute a certain output
(range value) . Thus far , due to the mechanical nature of
computation , this process has generally always resulted in a
deterministic (range) value given any domain value . This
truth of deterministic functions has held for hundreds of
years .
[0065] The effects of certainty can be recognized as a
major cryptographical flaw , especially when it comes to
random number generation . Many people have proposed
solutions where this certainty is reduced by infusing some
amount of “ entropy ” (noise) to break up the normal certainty
of function computation . These solutions are major
improvements , but they still fall short in escaping the trap of
mathematical certainty .
0066] As students of Algebra , we are all taught , tested ,
graded and promoted by the sacred preservation of the equal
sign . Each subsequent math class continues to reiterate this
point . In order to keep both sides equal , we generally must
manipulate the left side of the equation in the same manner
that we manipulate the right side of the equation .
[0067] After centuries of using functions , we only found
deterministic functions . Thus we assume that only deter
ministic functions exist . This long history and our common
math training prevent us from recognizing the possibility of
nondeterministic functions . There are three possible rela
tionship mappings between domain and range : one - to - one
(domain - to - range mapping for traditional functions) , many
to - one (many different domains mapping to the same range
as found in Hash Functions) , and the missing relationship for
domain - to - range mapping — one - to - many .
[0068] So , why would the missing one - to - many domain
to - range mapping be important ? While a traditional function
is deterministic and therefore invertible , this new function
class is nondeterministic and noninvertible . Unlike tradi
tional functions that can only produce certainty from a
domain value , this new function class provides us with
“ uncertain ” range values . Hence , we name each member of
this new function family as an Uncertainty Function .
[0069] Let us demonstrate why no one can invert an
uncertainty function . We have seen the graphical plot of
many traditional functions . These traditional plots prove that
any range value can be mapped back to its domain value . In
contrast , each uncertainty function domain value maps to all
uncertainty function range values . The graphical plot of one
domain value is a vertical line . Therefore , the graphical plot
of all valid domain values shows that the plot of the
uncertainty function is completely “ black ” . This black
graphical plot means that range values are independent of
domain values . Thus , no one can find the unique domain
value that produced any given range value . The Uncertainty
Function is the basis of the mathematics of uncertainty . This
function class spawns an idea that " uncertainty ” can be
expanded from data into nondeterministic chaotic actions .
These chaotic actions define the means to create dynamic
custom solutions that may be unique .

The Ironic Solution to the Data Paradox . . .
[0073] The attributes of uncertain data create the data
paradox , but these same attributes facilitate an ironic solu
tion : Randomly selecting two uncertain data values from the
pool and adding them together results in a new uncertain
value . This new value is “ decoupled " from the values of its
parents , as a plurality of different sets of parents can result
in that same value . Therefore , the attribute of “ uncertainty ”
has carried forward to the next generation of values . So ,
while one generally must generally never reveal first gen
eration uncertain data , one can release subsequent genera
tions that have been processed from it , and thus , the data
paradox has been resolved . So long as randomly selected
uncertain values are processed with most binary or higher
operators , the results are nondeterministic . In this way , we
arrive at data morphing data instead of functions processing
data . We have , in effect . . . escaped from mathematical
certainty .
10074] The process where we hide or decouple the first
generation of uncertain data from subsequent generations is
called the Decoupling Process . Earlier in this document , the
first instance of the decoupling process has been applied to
Uncertainty Function range values . To complete the task of
protecting the integrity of the pool of uncertainty , we gen
erally must also decouple domain (memory address values)
as well as range values .
[0075] While the first generation of uncertain data has a
fixed size , subsequent generations can be of arbitrary size .
Metaphorically speaking , this " pool " can be amplified into
a lake , a bay , or even an ocean of uncertainty depending on
how much processing one chooses to invest .
[0076] Static functions or processes generally always lead
to deterministic (predictable) behavior . To overcome this
behavior , we reach for the only pure nondeterministic means
we have uncertain data . We generally must leverage this

US 2018 / 0011692 A1 Jan . 11 , 2018
7

typedef struct
{

means in order to cleanse deterministic behavior from
internal (URNG) functions , processes , and data . This multi
leveled cleansing effort results in a nondeterministic random
number generator that is no longer limited to the size of the
pool of uncertainty . Specifically , we decouple both addresses
and data through the use of uncertain data within the context
of a random edit process .

uint32 _ t poolsize ; 11 allocation size in r _ values
uint32 _ t modulo ; / / prime number addressing modulo
t _ prng prng [NUM _ STOCHASTIC _ POINTS) ; / / PRNG

addressing functions
r _ value * pool ; / / data pool pointer
} t _ urng ;
r _ value urng _ value (t _ urng * urng)

Outline of URNG
r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic

values
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the

pool
/ / Use 3 independent PRNGs to read uncertain mask values from the pool
maskl = urng - > pool? prng (1) % urng - > modulo] ;
mask2 = urng - > pool? prng (2) % urng - > modulo] ;
mask3 = urng - > pool? prng (3) % urng - > modulo] ;
Il Convert deterministic PRNG values into a paradox safe domain values
unsafe _ 1 = prng (4) ;
unsafe _ 2 = prng (5) ;
domain _ 1 = (- maski & unsafe _ 1) | (maski & unsafe _ 2) %
urng - > modulo ;
unsafe _ 1 = prng (6) ;
unsafe _ 2 = prng (7) ;
domain _ 2 = (~ mask2 & unsafe _ 1) | (mask2 & unsafe _ 2) %
urng - > modulo ;
/ / Manufacture a nondeterministic value from the pool while hiding
domain and range return (~ mask3 & urng - pool? domain _ 1]) |
(mask3 & urng - > pool? domain _ 2]) ;

[0077] The outline of each URNG has three steps . When
the URNG starts , we have only two initial ingredients : a
pristine , nondeterministic pool of uncertainty and a collec
tion of obscenely deterministic Pseudo - Random Number
Generators (PRNGs) . From these ingredients , we generally
must construct intermediate tools for internal use . The first
tool is the uncertain stream . This stream is created when any
good PRNG is applied as an address generator to read from
the pool of uncertainty , thereby giving us a raw , paradox
unsafe , random stream of uncertain values .
[0078] The next intermediate tools utilize the uncertain
stream . Using other independent PRNGs and the uncertain
stream as inputs to a random edit process , we obtain
nondeterministic data pool addresses , which become the
domain values to the uncertainty function . The act of using
these relatively “ cleansed ” domain values produces uncer
tainty function range values that no longer echo evidence of
a creation history .
[0079] The last step resolves the data paradox of the range
values . Given two range values via " cleansed ” domain
values , and one raw uncertain value , we can now complete
the decoupling of the range values . In summary , the repeti
tious use of uncertain data has washed away some / most / all
of the deterministic behavior found within the intermediate
tools . The nondeterministic addresses have become the
paradox safe domain values to the uncertainty function . By
decoupling both addresses (domain values) and data (range
values) from the uncertainty function , we achieve our essen
tial goal of a nondeterministic random number generator .
10080] A correctly implemented URNG has major advan
tages over a classic PRNG . In particular , the overall resis
tance to cracking is not derived from the complexity of
functions ; instead , it comes from the simplicity of uncertain
data . This naturally “ private ” random number generator
encourages a whole range of new technologies that enables
many applications .
[0081] A " hardware selector ” or “ Mask Generator " takes
bits from two input values (data0 , datal) to create a new
value . Each “ O ” bit in the " mask " takes the corresponding bit
from data0 , while each “ 1 ” bit in the " mask " takes the
corresponding bit from datal . The destructive edit value
specified by the " mask " value produces the following result :
result = " mask & data0) | (mask & datal) ; While data and
datal can be deterministic , if the mask is nondeterministic
(raw uncertain data) , then the result is also nondeterministic
(a paradox safe value) so long as the mask is generally never
visible in the output .

An Introduction to Chaotic Actions
[0083] Uncertain data plays multiple roles within the
URNG : random data , seed values , mask values , function
selectors , and even instructions . Once again , a seemingly
trivial idea has a profound effect . The philosophy of uncer
tainty dictates that many programming decisions are
deferred until execution , at which point they are driven by
random data . As randomness plays an increasing role in
program execution , the overall effect upon the application is
that it becomes less deterministic .
[0084] Given a collection of functions that resolve the data
paradox , random data is used to select which functions will
be executed . Groups of functions can be selected to fill a list ,
when random data is used as instructions (i . e . a function
selector) ; the result is dynamic switching between different
functions . Thus , the dynamic creation of possible functions
to be executed becomes the Chaos Engine . Notice that , at
any time , functions within the list can be replaced or the
entire list is dynamically recreated at runtime via random
data . This reconstruction of the list should routinely occur at
random intervals .
[0085] Like all random edit processes , neither the instruc
tion nor the edit streams are visible in the output stream
while both values come from the pool of uncertainty , (i . e .
independent uncertain streams) . Here is an example of a
simple 16 instruction Chaos Engine (see below) : In this
instance of a Chaos Engine , each “ instruction ” has three
operands / data0 , datal , and mask values . These values are
processed into “ Result ” . As you can see , not all instructions
use the mask value .
[0086] Result = DataO – Datal ; / / standard math subtract
operation
[0087] Result = Datal - Data0 ; / / standard math subtract
operation

Mask URNG
[0082] Examine the 10 line C procedure below to see a
Mask URNG . This code example (urng _ value) is the equiva
lent of the three - step process described above . The section
“ C header ” completes any missing details .

US 2018 / 0011692 A1 Jan . 11 , 2018

- continued
edit _ process operation [MAX _ REPS] ; / / table of chaos operations
(Random Edit Processes)
} t _ chaos ;
typedef struct

{
uint32 _ t poolsize ; / / allocation size in r _ values
uint32 _ t modulo ; / / prime number addressing modulo
t _ prng prng [NUM _ STOCHASTIC _ POINTS] ; / / PRNG addressing

functions
t _ chaos cpuAdr0 ; 1l address chaos engine
t _ chaos cpuAdrl ; Il address chaos engine
t _ chaos cpudata ; Il data chaos engine
r _ value * pool ; / data pool pointer
} t _ curng ;
r _ value get _ instruction (t _ curng * urng , t _ chaos * cpu)
r _ value instruction , instr ;
instruction = cpu - > instruction ; / / local copy of instruction block
if (cpu - > PC > = INSTRUCTIONS _ PER _ WORD) { / / need new block ?
instruction = urng - pool? prng (0) % urng - > modulo] ; / / get next
instruction block
cpu - > PC = 0 ; / / reset to start of block

instr = instruction & INSTRUCTION _ MASK ; / / slice off instruction
from word
cpu - > instruction = instruction > > INSTRUCTION _ SHIFT ; / / move to
next instruction
cpu - > PC + + ;
return instr ;

[0088] Result = (" Mask & Data0) | (Mask & Datal) ; / / nor
mal mask Generator
10089] Result = (Mask & Data () (Mask & Datal) ; / / the
other mask Generator
10090] Result = (" Mask & “ Data () (Mask & Datal) ;
10091] Result = (" Mask & Data0) | (Mask & Datal) ;
[0092] Result = " (DataO & Datal) ; / / bitwise NAND
between two data elements
[0093] Result = " Data0 | Datal) ; / / bitwise NOR between
two data
[0094] Result = Data0 | Datal ; / / bitwise OR between two
data elements
[0095] Result = DataO ̀ Datal ; / / bitwise XOR between two
data elements
[0096] Result = Data & Datal ; / / bitwise AND between
two data elements
[0097] Result = DataO + Datal ; / / standard math add opera
tion
[0098] Result = " Data0 | Datal ; / / Comp Datao , bitwise OR
two data elements
[0099] Result = Data01 Datal ; / / Comp Data1 , bitwise OR
two data elements
[0100] Result = " DataO ̀ Datal ; / / Comp Datao , bitwise
XOR two data elements
[0101] Result = Data0 ̂ - Datal ; / / Comp Datal , bitwise
XOR two data elements
[0102] It is understood that the possible set of instructions
is much greater than 16 , and uncertain data was used to
create this list (both the order in the list and which instruc
tion to use) . Full - scale implementations of these nondeter
ministic chaotic actions have produced millions of unique
data driven instructions for the URNG . Thus , the nondeter
ministic nature of uncertain data is translated into nonde
terministic chaotic actions . This Chaos Software within the
URNG becomes another example of data morphing data .
[0103] As a general philosophy of chaos engines , any
function can be invoked under any number of common
parameters . This data driven Chaos Software may be used to
create any number of reproducible stochastic systems . It is
possible to customize chaos engines with unique random
data from the pool of uncertainty , or in other examples , a
URNG . The general application of Chaos Software is cov
ered in the section on Stochastic Processing .
0104] Simple simulations should guide the correct selec

tion of implementation parameters . In this mask URNG ,
only destructive edit via uncertain mask values are used in
the decoupling process . While functional , this low - cost
URNG may fail to be useful with small pools of uncertainty .
A much better solution can be found with a Chaos Engine .
The chaos URNG gives us massive amounts of random data
from a reasonably sized pool of uncertainty .

r _ value urng _ value (t _ curng * urng)

r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic
values
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the
pool
r _ value instr ; Il chaos instruction
/ / Use 3 independent PRNGs to read uncertain mask values from the pool
mask1 = urng - pool? prng (1) % urng - > modulo] ;
mask2 = urng - > pool? prng (2) % urng - > modulo] ;
mask3 = urng - pool? prng (3) % urng - > modulo] ;

/ / Decouple paradox unsafe (deterministic) values with address chaos
Il engines to create two paradox safe (nondeterministic) domain values .

unsafe _ 1 = prng (4) ;
unsafe _ 2 = prng (5) ;
instr = get _ instruction (urng , & urng - > cpuAdro) ;
domain _ 1 = (* urng - > cpuAdro . operation?instr])
(unsafe _ 1 , unsafe _ 2 . maskl) % urng - > modulo ;
unsafe _ 1 = prng (6) ;
unsafe _ 2 = prng (7) ;

= get _ instruction? urng , & urng - > cpuAdr1) ;
domain _ 2 = (* urng - > cpuAdr1 . operation [instr])
(unsafe _ 1 , unsafe _ 2 , mask2) % urng - > modulo ;

/ / Using data chaos engines to decouple range values from uncertainty
function
/ /

Chaos URNG
instr = get _ instruction (urng , & urng - > cpudata) ;
return (* urng - > cpudata . operation [instr]) (urng - > pool [domain _ 1] ,
urng - > pool [domain _ 2] , mask3) ;

[0105] Check out the short C procedures below to see a
Chaos URNG . The section “ C header " completes any miss
ing details .

typedef struct

[0106] Today , there are only a few thousand known func
tion - driven RNGs . Switching from function - driven to data
driven RNGs means trillions of unique RNGs that can pass
the National Institute of Standards and Technology NIST
(800 - 22) , test suite for randomness . While one can pass the
NIST tests with scores of 8 / 10 , thus far , each URNG with
10 / 10 data pools receives almost all 10 / 10 scores .

r _ value
r _ value

instruction ;
PC ;

/ / random value holding instructions
/ / current instruction counter within above
instruction

US 2018 / 0011692 A1 Jan . 11 , 2018

Comparison of Random Number Generators
[0107]

TABLE 1
Classic PRNG Entropy PRNG URNG
Pseudo Random
Function Driven

Full Entropy
Data Driven

No Cracking Resistance
Not valid for Crypto
Single Static Random
Stream
No Sub - streams

Pseudo Random + Entropy
Function Driven with data
updates
Better Cracking Resistance
Currently used for Crypto
Multiple random streams / based
on Entropy
No Sub - streams

Static Implementations
Not used for Crypto

Generator not normally shared
Used to create Crypto Keys

Best Cracking Resistance
Best for Crypto
Unlimited random streams (same
pool) *
Randomly Addressable Sub
streams *
Pool shared between users *
Public seed (timestamp or pool
address)
Supports Private Keyless
Encryption
Unique Data remains ageless
Unique Date gives Unique
Implementation
Dynamic seed from timestamp

NA Requires Key Exchange
NA
Fixed Implementation

Unknown Crypto life span
Fixed Implementation

Seed + entropy starts stream Seed - > start of single
stream

* The addressability of the Uncertainty Function means that pool addresses can be manipulated without affecting
the pool of uncertainty . Therefore , many different addressing models may be applied to the same pool .

[0108] A one - time data exchange may now possibly
replace any or all cryptographic key exchanges with a
common URNG implementation . The data exchange can
effectively exchange random number generators . Thus ,
unique on - demand key generation replaces any process that
formerly required key exchanges . There are an unbounded
number of ways to exchange data , from physical exchange
of media to any form of wireless transfers . Whatever the
means , each party that holds the same data also holds the
means to create the same random streams .
[0109] The use of dispersed , identical random number
generators , which do not require any active connection ,
infrastructure , or additional authentication , represents a
major simplification of many protocols . Furthermore , when
applied to stochastic processing , the effect represents an
exchange of custom applications / solutions .
0110] Given an URNG implementation with isolated
nonvolatile storage , a one - time load of random data provides
an effective hardware encapsulation . This permanently pro
tected implementation can provide random streams for use
in any number of applications .
[0111] A 128 Kbyte memory buffer holds 21048576 unique
values , which represents much more than 10300 , 000 values .
While not all of these values become random enough to pass
the statistical validation process , a large number of them
qualify . While technology implementations come and go ,
good random data remains " ageless ” . So long as the pool
data remains unknown , it is unlikely that any properly
implemented URNG will be cracked by analyses of the
random output stream . The random number generator resists
cracking solely based on data , rather than complex imple
mentation .

intervals much smaller or larger than we normally deal with
remain less meaningful to us , such as microseconds or
millennia . In spite of our limitations of perception , time
becomes vital throughout uncertainty technologies . The
properties of time are tapped in many applications . It is
helpful to review these time properties so that we can
understand their role in terms of the principles of uncer
tainty . A timestamp generally always signifies a scalar value
relative to some zero point . Analog / hardware clocks present
a “ beat count " of some kind . In software , the timestamp
increment may not generally always map into a real world
“ beat count ” , such as in the case of U . S . Pat . No . 5 , 526 , 515 ,
which is incorporated by reference herein for its supporting
teachings . While the difference between timestamps can be
computed to any value , the basic model of time generally
always moves in a “ monotonically ” increasing manner .
[0113] An increasing sequence number (as found in many
digital protocols) exhibits a common , but normally unrec
ognized form of a timestamp . Although these sequential
values do not map into a real - world view of time , they can
legitimately measure time moving forward . This represents
one of the forms of time utilized throughout uncertainty
technologies .
[0114] Memory addressing can be upgraded by blending
timestamps into addressing computations , thereby recasting
the base uncertainty function into one driven as a function of
time . As time continues to be monotonically increasing with
discontinuous jumps , the same time - based random stream
should not appear for any other value of time .
[0115] If one combines evolving time and a source file ,
then one obtains a unique random sequence for each
instance of the URNG . This means that random sequences
remain completely “ chaotic ” with respect to its continuous
tapping of the same source file . The continuous creation of
unique pools of uncertainty blocks / thwarts any formal
analyses of random sequences .
[0116] An uncertain time model is used to reproducibly
transform any timestamp into a URNG seed value (s) . As an
open - ended architectural concept , there are an unlimited

It ' s about Time . . .
101121 Domain values applied to the uncertainty function
represent fine grain addressing into the pool of uncertainty ,
while timestamps represent larger discontinuous jumps
between different streams of uncertain values . We tend to
think about time relative to a human scale of events . Time

US 2018 / 0011692 A1 Jan . 11 , 2018

number of possible time models . The timestamp may or may
not be mapped into a more familiar measure of time . These
time models become part of a source file . Each time a source
file is created , an uncertain time model is also created via
uncertain random values . An uncertain zero point in time is
selected . Any input timestamp generally represents an
" unknowable ” offset (delta) from the uncertain zero point in
time . The difference between the zero point in time and the
timestamp can be expressed through (any arbitrary) units
like days , hours , minutes , seconds , milliseconds , etc . Within
the time model , we select uncertain scaling factors for each
supported unit of time . We then compute required URNG
seed values by scaling each supported time unit , and sub
sequently summing them into values that become the seed
(s) . In this way , via an uncertain time model , a public
timestamp can be used to define private seed values . Thus ,
anyone sharing the same time model (within a source file)
can also create the same random stream . These seed values
represent two starting indexes into the pool of uncertainty ,
which become the values found in the Data Congruential
Generator (described below) . From this first addressing
function , all other initializations ' values are read from the
pool of uncertainty .
[0117] For example :
SeedO = delta _ days * dayscale) + (delta _
milliseconds * millisecondscale) ;
Seed1 = (delta _ hours * hourscale) + (delta _
minutes * minutescale) + (delta _ sec * secondscale) ;

of connections are ever made . Stochastic processing makes
many more connections available at runtime instead of
design time .
[0122] As the name implies , stochastic processing relates
to random processing . The use of random technology in
most current applications is limited to a few common tasks ,
such as dice (a probability function) , or as a " wild card ”
value (any value within a supported range) . The principles of
stochastic processing make a wider range of new processing
options possible . When used properly , these principles will
solve many previously unresolved technology problems .
The examples given here are for teaching the concepts , and
only present a sample of the value of stochastic processing .
While these ideas are simple to understand , the reader will
have to think (or rethink) about how best to use them in their
applications . As hardware designers and software develop
ers come to understand these elements , they will be sur
prised by the transformative nature of this new technology .
[0123] For effective stochastic processing , each decision
that can migrate from the design phase to the execution
phase increases the uncertainty . For barely any cost , some
functional parameters can become data driven , thus increas
ing the algorithmic complexity of the implementation .
Within the same data driven cost structure , the selection and
configuration of processing elements can “ explode ” the
overall algorithmic complexity . The on - demand remixing of
processing elements and / or redefining functional parameters
further increases the uncertainty . The net result of a design
that was limited to a single solution , now creates dynamic
custom solutions that are much more likely to be nondeter
ministic . Stochastic Processing

[0118] Dynamic applications simplify many solutions .
The methodologies of Stochastic Processing give us an
open - ended architectural means to create dynamic hardware
or software applications . In many cases , the deployments of
these dynamic implementations redefine many current (pre
ferred) solutions . There are additional classes of problems
that can only be effectively solved by dynamic applications .
The example embodiment for Dynamic Digital Protocols is
a class of problem requiring a dynamic application .
[0119] The current software development process has sta
bilized into a well - understood model of handcrafted code
units , somehow joined to create applications . The effective
use of randomness has not progressed with the rest of
software development . The current deployment of flawed
randomness technology fails to exploit its true potential .
Current applications of randomness remain primarily lim
ited to reducing repetitious behaviors in gaming (gambling) ,
video / computer games , and simulations .
[0120] A more robust application of randomness can sup
port the runtime augmentation of applications by dynami
cally creating updates . The dynamic execution of updates
morphs a base application into a custom application , which
may be unique . This more expansive deployment of ran
domness is called Stochastic Processing .

The Principles of Uncertainty
[0124] The principles of uncertainty represent an unusual
convergence of ideas across mathematics , computer science ,
and electrical engineering . . . producing dynamic , custom
hardware / software implementations . Outside of sampling
natural “ noise ” , the process of random number generation
has not had a robust functionally complete solution . Given
the mechanical nature of computation , traditional “ function
driven ” solutions cannot create a valid representation of
randomness . While function - driven solutions remain fatally
flawed , data - driven solutions can give practical representa
tions of randomness . The " unknowable ” data transforms a
common implementation into unique random streams .
0125] Conventional wisdom holds that hardware / soft
ware solutions are statically defined during development , so
these traditional solutions inevitably lead to a " one size fits
all ” mentality . Worse yet , these implementations are limited
to a single solution for any given problem . The effect of an
isolated solution means that they often become determinis
tic . Deterministic behavior is the antithesis of randomness .
This flawed (deterministic) behavior extends across many
applications that are better solved with dynamic , rather than
static , solutions .
[0126] Currently , software (and hardware) applications
can be defined as a " joined " collection of components .
Instead of limiting the set of components to be “ just enough "
to create a single solution , we increase the pool of “ func
tionally equivalent " components so that one could create
many solutions . Next , we use random data to select , during
execution , which set of components will be used to create
this instance of the application . Thus , from a common

Design Time Vs . Runtime Binding

[0121] In the software object paradigm , the binding (mak
ing connections) between classes is completed before run -
time execution . The tool set completes this static binding
task to improve programmer productivity . However , the
downside of static binding is clear , as only a limited number

US 2018 / 0011692 A1 Jan . 11 , 2018

implementation , driven by random data , we have created an
uncertain custom solution that may be nondeterministic .
[0127) The Uncertainty Random Number Generator
(URNG) is a dynamic solution in either hardware or soft
ware . Within the current URNG implementation , there are
over one hundred components that become joined (and
remixed) as needed during execution to create a nondeter
ministic random number generator . Even better , since this is
a data driven solution , each use of the URNG can be driven
by a dynamically created pool of uncertainty that may be
used once and then discarded . With this degree of random
ness , these URNGs can be the means to drive future
dynamic applications .

basic flaws of single stream ” PRNGs , each current call is
routed to a different PRNG . So , each one of them returns
values from a different random sequence , which is much
better than seven sequential values from the same sequence .
While multi - PRNGs solution is a major improvement , the
best solution for all other dynamic applications is to use an
URNG to provide non - correlated , nondeterministic values .
0133] Failure to deploy either of the above solutions
produces poor results . Applying classic PRNGs to select
processing elements remains as flawed as the generators ,
only producing deterministic selections . Instead , using the
Uncertainty Function or the URNG to select processing
elements produces nondeterministic selections . Any point in
a hardware or software application that can accept a func
tionally equivalent processing element is called a stochastic
“ scaffolding point ” .

“ Functional Equivalency ” is Solely Based on
Application Requirements

[0128] Within the methodologies of Stochastic Process
ing , the meaning of “ functionally equivalent ” is much more
sensitive than the typical case found in the object paradigm .
Typically , the software paradigm leads developers to ignore
most implementation side effects in order to raise produc
tivity . Sometimes , these side effects matter and ignoring
them undermines the developer ' s goals .
[0129] For example , let us note the case of random number
generators . There are thousands of them and most have the
same properties . Most of these generators remain relatively
fast but not cryptographically secure , while a few are secure
but slow . So , if one sorts between secure and unsecure
generators , are they roughly equivalent within each cat
egory ? No . When we acquire multiple random numbers
from the same unsecure generator , we find that the values are
highly correlated to the extent that one can predict the next
value . Hence , it is not " random ” . Though secure generators
appear less correlated , they remain slower and rarely shar
able .
[0130] Current unsecure random number generators are
assumed to be functionally equivalent , but each of them are
ineffective at producing random values because there is a
single random stream for each generator . The only func
tional equivalence of these unsecure random number gen
erators rests with their flaws , yet application requirements
for randomness still remain . Therefore , we generally must
be careful when defining functional equivalence . Failure to
define functional equivalence correctly may result in an
application design as flawed as existing unsecure random
number generators .
[0131] Some background information on current random
number generators is required to explain these new meth
odologies of Stochastic Processing . Any given “ functionally
equivalent ” processing element may have unusual side
effects that are useful . Within the first teaching example ,
multiple common (but flawed) random number generators
are used to replace the sole default generator found in
software libraries . Additional teaching examples show a
richer illustration of functionally equivalent processing ele
ments .

Collections of Processing Elements Abstraction
[0134] Application - specific collections of processing ele
ments are created to provide many options . Each time we
define such a collection of processing elements , we gener
ally must size the collection and define the required “ qual
ity ” of each element . Often , though an unbounded number of
processing elements may exist from which we can select ,
most applications only require the collections to have many
times what they normally deploy . Clearly , some applications
will replace common choices with their own custom collec
tion .
[0135] The term " collection of processing elements ” is an
abstraction that can be implemented in different ways . For
example , in hardware , an LFSR (Linear Feedback Shift
Register classic hardware random bit - value generator) is
seeded with a value to create a random bit stream . However ,
if a programmable LFSR is used , it can be reconfigured to
generate many different random bit streams . In this way , the
configuration options within the programmable LFSR define
the possible collection , thereby providing choice . These
configuration options create a virtual collection .
[0136] The same virtual collection idea can be applied
through options in software . For example , a set of optional
uncertain parameters can be defined to further process
operands of the URNG ' s Random Edit Process . In this case ,
the pre - processing of operands can include bitwise rotate
left / right (with bit count) , bitwise NOT , reverse bit order ,
etc . The same sequence of options can be applied to the
result . The deployment of these uncertain parameters (op
tions) " explodes ” the size of the normal collection to create
a massive virtual collection .
[0137] As for the quality of each processing element , this
also becomes an application - specific design choice . In the
case of the URNG itself , the first patent dealt with the use
of inexpensive , yet deterministic PRNGs . A better quality
replacement for creating uncertainty function domain values
can be found in the Data Congruential Generator (defined
later) . However , we can continue with the valid teaching
examples assuming common PRNGS .
[0138] . The creation of the collection of processing ele
ments was to facilitate runtime selection . We use random
data to select which element (s) to use . FIG . 1 is a flowchart
depicting the selection process . Note the case where selec
tion is required .
[0139] FIG . 1 is a flowchart depicting an embodiment of
selecting processing elements for this instance of stochastic
module / process 100 in which the initial condition is set to

Stochastic “ Scaffolding Points ”
[0132] The first teaching example has seven calls to dif
ferent " random number generators ” to create memory
addresses . Any method that provides good random memory
addresses could therefore replace these classic PRNGs , as
they would be functionally equivalent . To overcome the

US 2018 / 0011692 A1 Jan . 11 , 2018

not “ Done = 0) ” 110 . The loop until “ Done ” 120 continues
with obtaining an Uncertain Value “ X ” that is used to select
a possible Processing Element from the PE _ table 130 . This
possible processing element is tested (see FIG . 2) to see if
it is already in use 140 . If the Processing Element is already
“ in use ” , then the loop starts over with the next Uncertain
Value 120 . However , if the Processing Element is “ not in
use ” , then a test is made looking for the next " free "
(available) entry 150 , where the Processing Element is
assigned to the free entry 160 , and the loop starts over . If the
last entry has been filled 170 , then the terminating condition
“ Done = 1 ” is set 180 and the loop starts over . The embodi
ment of selecting processing elements terminates when
“ Done ” is true .
[0140] FIG . 2 is a flowchart depicting an embodiment of
testing if the given Processing Element is “ In Use ” 200 , in
which the initial condition is set to not “ Found = 0 " 210 . The
(for) loop starts with the first index until the entire table is
indexed 220 and then exits the loop to continue by returning
the “ Found ” status 250 . The table entry indexed is tested
against the given element 230 , and if “ found ” then
“ Found = 1 ” is set 240 , and the (for) loop continues .
[0141] FIG . 3 illustrates a system of stochastic processing
of information according to one embodiment of the inven
tion . There is shown an architect module coupled to each of
a data pool module , a set of data processing modules , a data
feed module , and a structure memory module . The illus
trated data pool module is functionally coupled to each of a
common data pool processing module and a communication
protocol interface . The illustrated system is utilized to
process an information stream (TCP / IP packets , telephone
data , wireless communications data , private protocol com
munications , media files , data files , databases , and etc .) in a
manner that transforms the information stream . This is
generally done to prevent hacking of the information stream .
Accordingly , the system may be used to enhance privacy ,
validate communications , verify authorship / source of com
munications , and the like and combinations thereof .
[0142] The illustrated architect module is configured to
manage and control stochastic processing of data and may
include a processor and / or may be associated with a pro
cessor , processor module , processing device / system or the
like . It may also include one or more scripts for accomplish
ing the same and such scripts may be replaceable and / or
associated with specific applications of the system . As a
non - limiting example , there may be a script configured to
provide optimal function for generation of digital signatures
and / or certificates . An architect module may include a
plurality of scaffolding points that may operate to receive
other modules , especially data processing modules . Such
scaffolding points may be predetermined and / or may be
generated during run - time . Such points may interact with
each other and may be sources of data for each other .
Accordingly , the complexity of data processing may be
predetermined and / or may be generated during run - time . An
architecture module may include instructions on limitations
of the scaffolding points including but not limited to maxi
mum / minimum levels , points , connections , sources , redun
dancy of data processing elements , and the like and com
binations thereof . The illustrated architect module may use
random values to select between a plurality of functionally
equivalent data processing modules during run - time . The
architect module may use random values to select run - time
durations for use of one or more of the plurality of func

tionally equivalent data processing modules during run
time . Such durations may be in actual time , clock cycles ,
data chunks processed , numbers of times or portions thereof
of cycles made through repeating cycles of the data pro
cessing module , and the like and combinations thereof .
Non - limiting examples of an architect module may be a
control module as described in U . S . Pat . No . 5 , 430 , 836 ,
issued to Wolf et al . , or a control module described in U . S .
Pat . No . 6 , 243 , 635 , issued to Swan et al . which are incor
porated for their supporting teachings herein . An architect
module may include but is not limited to a processor , a state
machine , a script , a decision tree , and the like .
[0143] The illustrated architect module includes a run
time modification module configured to randomly alter a
stochastic architecture during run - time . The run - time modi
fication module may be seeded from the non - deterministic
data pool module , thereby enhancing the randomness char
acteristics of the scaffolding over PRNG sources . The run
time module includes instructions for making alterations to
the number of scaffolding points , the interconnections there
between , the data processing modules used therewith , and / or
the durations between such changes , and the like . Such a
module may also track progress through a data processing
task and as such may receive and act on information
associated with the context of the data stream being pro
cessed (remaining amount / time of data to process , presence
of repeating strings , number of communication cycles
between respective parties , and the like and combinations
thereof) and may alter operation of the run - time module
during run - time in response to changes in such information .
Non - limiting examples of a run - time modification module
may be a modification system as described in U . S . Pat . No .
6 , 898 , 788 , issued to Kosaka et al . ; or a modification module
as described in U . S . Patent Publication No . : 2004 / 0205567
by Nielsen which are incorporated for their supporting
teachings herein .
10144] The illustrated non - deterministic data pool module
is functionally coupled to the architect module so to be
accessible by the same and / or by associated modules . It is
configured to provide a stream of non - deterministic values
that are , ideally not derived from a classical function (there
fore non - deterministic) . In one non - limiting example of such
a pool , the non - deterministic data pool module includes one
or more components of a URNG system . Such a pool may
be sized to fit a particular desired use and / or may be used to
create larger or smaller pools that may be used in the same
or a similar manner . Non - limiting examples of a non
deterministic data pool may be a uncertain random number
generator as described in U . S . Patent Publication No . : 2010 /
00036900 and U . S . Patent Publication No . : 2011 / 0029588
both by Ross which are incorporated for their supporting
teachings herein .
[0145] The illustrated plurality of functionally equivalent
data processing modules are functionally coupled to the
architect module . In particular , each is configured to sto
chastically process data as called upon by the architect
module . Generally , such data processing modules will
include a defined operation used in association with a
random value stream . As a non - limiting example , such a
module may add , bitwise or in other " chunks , " a random
value from a random value stream to a value of an infor
mation / data stream thereby forming a transformed data
value and may do so over and over when called upon .
Accordingly , such a module generally requires access to a

US 2018 / 0011692 A1 Jan . 11 , 2018

random value generation tool , such as but not limited to a
PRNG , URNG , etc . Where maximum decryptable protec
tion is required , a URNG is generally selected as a source as
it will operate in a manner than is non - deterministic (one
way) and is reversible for those who have a copy of the pool
used . Non - limiting examples of data processing modules
may be a data processing system as described in U . S . Patent
Publication No . : 2010 / 0318851 by Learmonth ; or a data
processing module as described in U . S . Patent Publication
No . : 2009 / 0259862 by Bulusu et al . , which are incorporated
for their supporting teachings herein .
[0146] The illustrated data feed module is in functional
communication with the architect module and is configured
to feed a data set desired to be stochastically processed . Such
a module may include instructions and / or hardware config
ured to manage , access , control and otherwise provide data
to the system . Such a system may include interface tools for
transforming data from its source to a form that is more
usable by the system , such as through analog to digital or
from one protocol to another . Such a system may transmit /
receive data and / or may store the same . Non - limiting
examples of a data feed module may be an in - feed module
as described in U . S . Pat . No . 5 , 957 , 714 , issued to Johnson
et al . ; or a feed module as described in U . S . Patent Publi
cation No . : 2010 / 0241417 , by Bassett et al . , which are
incorporated for their supporting teachings herein .
101471 . The illustrated structure memory module is
coupled to the architect module and is configured to provide
sufficient information for an architect module to duplicate a
predefined processing architecture and / or to record a utilized
processing architecture such that it may be used later , by the
same system and / or a similar / companion system . There may
also be a memory storage device as part of or functionally
coupled to the structure memory module . The illustrated
structure memory module includes an index module that
indexes structure according to a time structure . This is
particularly advantageous because it permits time stamps of
various sorts to be used as keys for seeding the URNG . Such
time stamps are generally readily available , short , inexpen
sive to produce and / or transmit and permit associate systems
using the same data pools to easily reverse data transforma
tion . Such time stamps may be in the form (s) of actual time ,
clock cycles , data chunks processed , numbers of times or
portions thereof of cycles made through repeating cycles of
the data processing module , and the like and combinations
thereof . Non - limiting examples of a memory storage device
may include : a HP Storage Works P2000 G3 Modular Smart
Array System , manufactured by Hewlett - Packard Company ,
3000 Hanover Street , Palo Alto , Calif . , 94304 , USA ; a Sony
Pocket Bit USB Flash Drive , manufactured by Sony Cor
poration of America , 550 Madison Avenue , New York , N . Y . ,
10022 . Data storage modules may be databases or data files ,
and the memory storage device may be hard drives or tapes .
A non - limiting example of a data base is Filemaker Pro 11 ,
manufactured by Filemaker Inc . , 5261 Patrick Henry Dr . ,
Santa Clara , Calif . , 95054 .
[0148] The illustrated common data pool processing mod
ule is functionally coupled to the non - deterministic data pool
module and is configured to stochastically process a com
mon non - deterministic data pool thereby generating an
application specific non - deterministic data pool for use by
the non - deterministic data pool module . In this way , a user
may generate a personal non - deterministic data pool that
may be used in many different settings and shared (in its

transformed form) with a great variety of others without
compromising the integrity of the common pool . In a way ,
the system may be used to generate an (virtually) unlimited
number of non - deterministic data pools from a single com
mon pool , without sharing the common pool and violating
the integrity of the set . Non - limiting examples of a data pool
processing module may be a system as described in U . S . Pat .
No . 5 , 573 , 244 , issued to Mindes ; or a system as described in
U . S . Pat . No . 5 , 517 , 556 , issued to Pounds et al .
[0149] The illustrated communication protocol interface is
in communication with the data feed module and is config
ured to feed a communication protocol map to the data feed
module , receive a stochastically processed communication
protocol map from the architect module , and / or to alter an
information stream according to the stochastically processed
communication protocol map . Such a communication pro
tocol interface may operate to “ break ” a stream of informa
tion such that those devices / systems relying on data to meet
certain minimum standards for a particularly defined data
protocol will reject , fail to use , fail to " display ” or otherwise
determine that the information is unusable . As a non
limiting example , some protocols will reject packets of
information that fail to meet a parity check . A communica
tion protocol interface may operate the make certain that
some or all packets in an information stream are transformed
sufficiently to fail the parity check so that they are rejected
by those who are not undoing the transformation . Such
packets may appear to be simply bad packets by eavesdrop
pers . Non - limiting examples of a communication protocol
interface may be a circuit as described in U . S . Patent
Publication No . : 2010 / 0277104 , by Lin et al . ; or an interface
as described in U . S . Pat . No . 7 , 058 , 075 , issued to Wong et
al . ; which are incorporated for their supported teachings
herein .
[0150] According to one embodiment of the invention ,
there is a system of stochastic processing of information
using a computing device 10 . The system 10 includes an
architect module 12 that includes a processor 14 . The
architect module 12 is configured to manage and control
stochastic processing of data . The architect module 12
includes a run - time modification module 16 that is config
ured to randomly alter a stochastic architecture during
run - time .
[0151] The system 10 includes a non - deterministic data
pool module 18 is functionally coupled to the architect
module 12 and is configured to provide a stream of non
deterministic values that are not derived from a function .
The run - time modification module 16 is seeded from the
non - deterministic data pool module 18 . The non - determin
istic data pool module 18 includes a URNG system 20 . The
system 10 includes a plurality of functionally equivalent
data processing modules 22 that are functionally coupled to
the architect module 12 , and each may be configured to
stochastically process data as called upon by the architect
module 12 . The architect module 12 is configured to use
random values to select between the plurality of functionally
equivalent data processing modules 22 during run - time . The
architect module 12 is configured to use random values to
select run - time durations for use of one of the plurality of
functionally equivalent data processing modules 22 during
run - time .
[0152] The system may 10 includes a data feed module 24
that is in functional communication with the architect mod
ule 12 and is configured to feed a data set desired to be

US 2018 / 0011692 A1 Jan . 11 , 2018
14

stochastically processed . The system 10 includes a structure
memory module 26 that includes a memory storage device
28 . The structure memory module 26 is coupled to the
architect module 12 and is configured to provide sufficient
information for the architect module 12 to duplicate a
predefined processing architecture and to record a utilized
processing architecture . The structure memory module 26
includes an index module 30 that indexes structure accord
ing to a time structure .
[0153] The system 10 includes a common data pool pro
cessing module 34 that is functionally coupled to the non
deterministic data pool module 18 and configured to sto
chastically process a common non - deterministic data pool
thereby generating an application specific non - deterministic
data pool for use by the non - deterministic data pool module .
The system 10 includes a communication protocol interface
32 that is in communication with the data feed module and
is configured to feed a communication protocol map to the
data feed module , receive a stochastically processed com
munication protocol map from the architect module , and to
alter an information stream according to the stochastically
processed communication protocol map .
[0154] FIGS . 4 - 5 illustrate a method of stochastically
processing information using a computing device . The illus -
trated steps permit a data / information stream to be processed
in a manner that causes one - way transformation of the data
while still permitting others who have sufficient information
about the process to reverse the transformation and thereby
have access to the data . Eavesdroppers and others who may
gain access to the transformed data will not be able to use
shortcuts to hack the data as the transformation is a one - way
transformation . Further , because the process permits varia
tion in the transformation operations , a single pool of
non - deterministic values may be utilized almost infinitely
without substantially devaluing the pool . In summary , a
non - deterministic data pool is used to seed a scaffold of
randomly selected data transformation processes that oper
ate on an information stream while sufficient information
about the process is recorded such that the information may
be provided to another user of the method to undo the
transformation , thus enabling extremely powerful and
operationally inexpensive privacy , security , authentication ,
and other benefits . The illustrated steps are described indi
vidually below and it is understood that the illustrated order
of steps is not necessarily the only order that may be utilized
in operation of the method . Further , not all steps are neces
sary for various applications of the method .
[0155] The step of providing a non - deterministic data pool
that is verified to be non - deterministic and is not derived
from a function permits a bedrock of variability to be used
in the method without subjecting the method to the weak
nesses and vulnerabilities of deterministic PRNG functions
but permitting reversibility not offered by environmental
randomness sources . Such a pool may be formed as a URNG
as described herein . Such a pool may be provided as a stored
pool of data , a stream of data , or the like or variations
thereof .
[0156] The step of providing an information stream to be
processed permits the method to act upon an information
stream . Such may be provided through communication
tools / modules of any type that provides the information in a
usable form to a system / device that may be operating the
method . The information may be provided as a stream over
a communications network (wireless , internet , intranet , bus ,

etc .) and / or may be provided through access to a memory
device and / or memory feed such as but not limited to hard
drives , flash memory , ROM , RAM , optical discs , and the
like and combinations thereof .
[0157] The steps of randomly selecting a first data pro
cessing module , seeding a step of randomly selecting a data
processing module from the non - deterministic data pool ,
altering the information stream by use of the first data
processing module , randomly selecting a replacement data
processing module replacing the first data processing mod
ule with the replacement data processing module , stochas
tically processing the non - deterministic data pool before
utilization of the non - deterministic data pool , randomly
layering use of a plurality of data processing modules such
that the information stream is processed through multiple
randomized layers of data processing modules , managing
randomization such that each call to a source of random
values goes to a different source than each previous call and
altering the information stream by use of the replacement
data processing module collectively and individually pro
vide layers of structured variability within the method ,
thereby multiplying the usability of a single data pool and
obscuring the data pool itself . Such a random selection may
be seeded by the data pool and / or by another source . Such
a random selection may be performed using another instance
of this method . Such a random selection may be performed
using a processor . The data processing modules selected
from may be from a set of functionally equivalent data
processing modules that may each be configured to alter
data . Non - limiting examples of processes performed by data
processing modules including : subtraction , masking ,
NAND , NOR , OR , XOR , AND , and addition and the like
and combinations thereof .
[0158] The step of recording structure information suffi
cient to reproduce use of the first and replacement data
processing modules permits such a one - way transformation
to be reversed , thereby providing a useful benefit to receiv
ers of the transformed data . Such recording may be as simple
as a time stamp where corresponding systems are suffi
ciently configured and sufficiently identical to permit a time
stamp to serve as a key for unlocking the data . Such
recording may be more complicated and may include one or
more scripts , data sets , and / or data processing modules that
may be transmitted / packaged with and / or in association with
transformed data .
10159] The steps of delaying selection of all randomized
data processing characteristics until run - time and / or deter
mining a random duration of use of the first data processing
module during run - time are very helpful in strengthening the
resulting transformation against attack . Such a step may
include having a predefined scaffolding structure but not
selecting data processing modules to operate therein until
runtime and / or not selecting seed values to be used in such
systems until run - time .
[0160] The step of configuring an information stream
according to a predefined communication protocol and the
first and replacement data processing modules each suffi
ciently process the information stream to make the infor
mation stream fail to satisfy the requirements of the pre
defined communication protocol facilitates very inexpensive
(processing cost) data protection because only time changes
need to be made to the resulting stream in order to make
eavesdroppers reject the data as corrupted , while recipients

US 2018 / 0011692 A1 Jan . 11 , 2018
15

may only need to change a smaller percentage of the data in
order to properly utilize the same .
[0161] The step of associating operation of the method
with a time index such that operation of the method by
counterparts beginning with identical time index positions
and an identical non - deterministic data pool will process the
information stream identically .
[0162] The step of verifying that the non - deterministic
data pool passes the NIST test with a predominant 10 / 10
score provides a degree of security not otherwise found in
other methods . Passing with a predominant 10 / 10 score
means that more than 85 % , 90 % , 95 % , 99 % , and / or 99 . 9 %
of such testing results in a 10 / 10 score for non - overlapping
template testing , serial testing , and linear complexity testing ,
while scores of 2 / 2 or 1 / 1 are achieved for all RandomEx
cursions testing . In particular , the NIST test referenced
herein is the test for the Uniformity of P - Values and the
Proportion of Passing Sequences found in the NIST Special
Publication 800 - 22 , A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications which may be found at http : / / csrc . nist . gov /
groups / ST / toolkit / rg / documents / SP800 - 22b . pdf which is
incorporated by reference herein for its supporting teach
ings . In one non - limiting embodiment , only a common data
pool is verified / tested thusly while subsequent pools created
therefrom using the method (s) described herein are not
tested . This is advantageous because such testing is com
putationally expensive and because it has been observed that
pools that pass the NIST test and are then transformed by
this method will continue to pass the NIST test without
substantial degradation in the degree to which the test is
passed . This is generally only possible with functions that
are exponentially more expensive as further data is pro
duced , while the presently described method is linearly
expensive (time) .
[0163] According to one embodiment of the invention ,
there is a method of stochastically processing information
using a computing device 40 . The method 40 includes the
step of providing a non - deterministic data pool that is
verified to be non - deterministic and is not derived from a
function 42 . The method 40 includes verifying that the
non - deterministic data pool passes the NIST test with a
predominant 10 / 10 score 44 . The method 40 includes the
step of providing an information stream to be processed 46 .
The method 40 includes the step of delaying selection of all
randomized data processing characteristics until run - time
48 . The method 40 includes randomly selecting a first data
processing module , using a processor , from a set of func
tionally equivalent data processing modules , each config
ured to alter data 50 .
[0164] The method 40 includes the step of determining a
random duration of use of the first data processing module
during run - time 52 . The set of functionally equivalent data
processing modules is selected from the group of data
processing modules including : subtraction , masking ,
NAND , NOR , OR , XOR , AND , and addition . The method
40 includes seeding a step of randomly selecting a data
processing module from the non - deterministic data pool 54 .
[0165] . The method of stochastically processing informa
tion using a computing device 40 includes the step of
altering the information stream by use of the first data
processing module 56 . The method 40 includes randomly
selecting a replacement data processing module , using a
processor , from the set of functionally equivalent data

processing modules while processing the information stream
with the first data processing module 58 . The method 40 also
includes replacing the first data processing module with the
replacement data processing module 60 .
[0166] The method 40 includes the step of altering the
information stream by use of the replacement data process
ing module 62 . The information stream is configured accord
ing to a predefined communication protocol and the first and
replacement data processing modules each may sufficiently
process the information stream to make the information
stream fail to satisfy the requirements of the predefined
communication protocol . The method 40 includes randomly
layering use of a plurality of data processing modules such
that the information stream is processed through multiple
randomized layers of data processing modules 64 .
[0167] The method 40 further includes the step of record
ing structure information sufficient to reproduce use of the
first and replacement data processing modules 66 . The
method 40 includes associating operation of the method with
a time index such that operation of the method by counter
parts beginning with identical time index positions and an
identical non - deterministic data pool may process the infor
mation stream identically 68 . The method 40 includes the
step of stochastically processing the non - deterministic data
pool before utilization of the non - deterministic data pool 70 .
The method 40 also includes the step of managing random
ization such that each call to a source of random values goes
to a different source than each previous call 72 .
10168] FIG . 6 illustrates a stochastic processing device
configured to stochastically process information fed therein .
The illustrated device includes a processor respectively
coupled to a non - volatile memory device , a data input
interface module , a data output interface module , and an
architect module . In operation , the device permits a user to
take a data / information stream to be processed and process
it (transform it) in a manner that causes one - way transfor
mation of the data while still permitting others who have
sufficient information about the process to reverse the trans
formation and thereby have access to the data . Accordingly ,
a single device may be used to provide enhanced privacy ,
security , authentication , validation , verification and the like
and combinations thereof for users of the same .
[0169] The illustrated processor may include one or more
processing devices such as those found in common elec
tronic devices (computers , servers , tablets , smartphones ,
etc .) .
[0170] The illustrated non - volatile memory device may
include one or more memory devices that does not lose data
when unpowered . Hard drives and flash drives are non
limiting examples of such . The memory device is function
ally coupled to the processor and includes a pool of non
deterministic data that is verified to have passed the NIST
test with a predominant 10 / 10 score .
10171] The illustrated data input interface module is func
tionally coupled to the processor and configured to receive
data . The data output interface module is functionally
coupled to the processor and configured to send data . Such
interface modules may include data ports , USB ports , serial
ports , network cards , wireless transmitters / receivers and the
like and combinations thereof . Such will permit the device
to communicate with other devices and / or systems .
f0172] The illustrated data processing module is function
ally coupled to the processor and includes a plurality of
functionally equivalent data processing instruction sets , or a

US 2018 / 0011692 A1 Jan . 11 , 2018

plex as " application specific events ” could be defined to
trigger an update . These policies become important imple
mentation details .

library of such functions and / or data pools . Such may
include one or more instances of a URNG pool / system .
[0173] The illustrated architect module is functionally
coupled to the processor , the data processing module and / or
to the non - volatile memory device and is configured to
manage and / or control stochastic processing of data accord
ing to seed values from the pool of non - deterministic data .
Such may be accomplished by randomly selecting data
processing modules during run - time , thereby processing
data received through the data input interface module and
providing stochastically processed data to the data output
interface module . Such an architect module may include one
or more features , structures , functions and / or the like as
described elsewhere herein .
[0174] According to one embodiment of the invention ,
there is a stochastic processing device 80 configured to
stochastically process information fed therein . The device
80 includes a processor 84 and a non - volatile memory
device 86 that is functionally coupled to the processor 84 .
The non - volatile memory device 86 includes a pool of
non - deterministic data 88 that is verified to have passed the
NIST test with a predominant 10 / 10 score . The device 80
includes a data input interface module 82 that is functionally
coupled to the processor 84 and is configured to receive data .
The device 80 includes a data output interface module 92
that is functionally coupled to the processor 84 and is
configured to send data .
[0175] The device 80 also includes a data processing
module 90 that is functionally coupled to the processor 84
and includes a plurality of functionally equivalent data
processing instruction sets 96 . The device 80 includes an
architect module 94 that is functionally coupled to the
processor 84 , the data processing module 90 and to the
non - volatile memory device 86 . The architect module 94 is
configured to manage and control stochastic processing of
data according to seed values from the pool of non - deter
ministic data by randomly selecting data processing modules
during run - time , thereby processing data received through
the data input interface module and providing stochastically
processed data to the data output interface module .

Stochastic Development
[0179] Within the methodologies of stochastic processing ,
random values inhabit many different functional roles ,
including selection of processing elements , programmatic
control parameters , and simple data . Properly constructed
stochastic processing scaffolding will also support the use of
random values as software instructions . The simplest form
of this type of scaffolding is the URNG ’ s Chaos Engine . The
Chaos Engine represents a single selection from a list of
choices .
10180) Within the limitations of our development tools
and / or imagination , the open - ended application solution
space remains a challenge to the programmer or hardware
designer . The use of stochastic development concepts is just
as open - ended ; any dynamically defined quantities of pro
cessing elements , steps , passes , loops , and sequences can be
created . In traditional programming , " control variables ”
direct the path through the code . Within stochastic devel
opment , many control variables are defined / or redefined at
runtime with uncertain values . The unlimited range of
chaotic actions remains to be defined by the complexity of
this scaffolding . Once the scaffolding is set , only nondeter
ministic values are needed to exploit the chaotic actions .
This newly created , unknowable runtime software com
pletely transforms the application design space .

Stochastic “ Scaffolding Points ” Example
[0181] Look at the routine below and assume the follow
ing : design time static poolsize , addressing modulo , and a
single (library) PRNG call . Clearly , the same routine would
be more deterministic . So , we add methodologies of Sto
chastic Processing , with a substantial collection of PRNG
functions from which to choose . Each of the following
PRNG calls is dynamically selected with a different function
and seeded via uncertain data . In addition , the " poolsize ”
and " modulo ” uncertain parameters are defined when the
source file is created . In this way , some of the known flaws
of a single PRNG are mitigated while the overall scope of
uncertainty is widened . The net effect is a nondeterministic ,
uncertain random number generator known as the Mask
URNG .

Uncertain Application Parameters
[0176] Since static parameters lead to deterministic
results , many processing elements will require additional
parameters to function correctly . Whenever possible , all of
these parameters should be dynamically acquired from the
uncertainty function or the URNG . In this way , each addi
tional uncertain parameter continues to expand the scope of
uncertainty .

typedef struct

uint32 _ t poolsize ; / / allocation size in r _ values
uint32 _ t modulo ; / / prime number addressing modulo
t _ prng prng [NUM _ STOCHASTIC _ POINTS] ; / / PRNG addressing
functions
r _ value * pool ; / / data pool pointer
} t _ urng ;
r _ value urng _ value (t _ urng * urng)

Control Plane Responsibilities
[0177] The concept of the “ control plane ” was first cov
ered in the original URNG patent . While the idea remains
the same , the responsibilities have been generalized for
stochastic processing . The selection / reselection of process
ing elements , initialization or re - initialization of processing
elements , and updating of stochastic scaffolding points , are
all executed with the primary goal of dynamically replacing
many / most / all of these values / elements at some point during
runtime execution .
[0178] An application designer is responsible for defining
the policies that update processing elements or dynamic
values . Simple tools like " countdown counters ” , or as com

r _ value unsafe _ 1 , unsafe _ 2 ; / / paradox unsafe PRNG deterministic
values
r _ value domain _ 1 , domain _ 2 ; / / paradox safe domain values
r _ value mask1 , mask2 , mask3 ; / / Raw nondeterministic values from the
pool
/ / Use 3 independent PRNGs to read uncertain mask values from the pool
mask1 = urng - > pool? prng (1) % urng - > modulo] ;
mask2 = urng - > pool? prng (2) % urng - > modulo] ;
mask3 = urng - > pool? prng (3) % urng - > modulo) ;

US 2018 / 0011692 A1 Jan . 11 , 2018
17

- continued
/ / Convert deterministic PRNG values into a paradox safe domain values
unsafe _ 1 = prng (4) ;

unsafe _ 2 = prng (5) ;
domain _ 1 = (~ maskl & unsafe _ 1) | (maski & unsafe _ 2) %
urng - > modulo ;
unsafe _ 1 = prng (6) ;
unsafe _ 2 = prng (7) ;
domain _ 2 = (mask2 & unsafe _ 1) | (mask2 & unsafe _ 2) %
urng - > modulo ;
/ / Manufacture a nondeterministic value from the pool while

hiding domain and range
return (- mask3 & urng - > pool? domain _ 1]) |
(mask3 & urng - > pool? domain _ 2]) ;

[0182] However , by adding the dynamic unknowable
replacement of these PRNGs with new seed values , and
creation of on - demand pools of uncertainty , the same imple
mentation then becomes a dynamic custom solution each
time it is invoked .

Stochastic Scaffolding Chaos Example
[0183] We now start with two collections , one for PRNG
functions and another one for URNG Random Edit Pro
cesses (REP) functions . Using the same data driven pro
cesses for selecting PRNGs , we also select and create a REP
list . Each random edit process is a decoupling process .
While the Mask Generator represents only one decoupling
process , the Chaos URNG (see above code) uses uncertain
values to choose among many decoupling processes . The
overall result is substantially more uncertain random values
created from the same pool of uncertainty .

inappropriate as a canon is to kill a housefly as each appears
to represent massive overkill .
[0187] Given this understanding about sensitivity to dis
ruption , we should look closer at the internal data structures
of these protocols . Today , all digital protocols are defined to
be static with respect to data structures . Instead of encryp
tion to gain protection from hacking , we should apply
" dynamic evolution ” to transform these static protocol data
structures into unknowable “ moving targets ” . The ongoing ,
lightweight random evolution allows people to still read
(with effort) the data structures , but prevents programmers
from predicting the next evolutionary change . Thus , we gain
the hacking protection of encryption for barely any cost .
[0188] To demonstrate how this works , we start with a
common example of a digital protocol - computer instruc
tions . Changing just a few bits can easily break the under
lying software defined by these instructions . In nearly every
case , the change of just one bit per instruction results in the
destruction of the software program . Therefore , the breaking
and the restoration of software can be an inexpensive
lightweight process .
[0189] Any given CPU processor defines public data
structures for its instruction . A custom , inexpensive , and
dynamic means to break and then restore software instruc
tions can transform these public protocols into private
protocols . This transformation would make a useful tool to
implement a Digital Rights Management (DRM) system for
software , books , media , etc .
[0190] Basic economics drives the demand for custom
solutions . When people share a common DRM system , they
also share the same risks of hacking . The cracking of the first
DVD copy protection exposed the risks of using common
protection . Once the first DVD copy protection was cracked ,
then all protected DVDs were at risk . Thus , the sharing of
common protection effectively invites large economic pay
offs to defeat them . In contrast , if all media were guarded by
custom protection , then the successful cracking of one piece
of protected media would not risk any other protected media .
This poor return on effort would foil most cracking for
profit .
[0191] Since shared data protection invites larger eco
nomic payoffs , it also generally requires stronger protection
(Blu - ray for example) . However , custom protection justifies
simpler implementations . The deployment of dynamic digi
tal protocols resets these basic rules of economics . After
illustrating why the fragility of protocols is helpful , as well
as the economics , we now discuss the details of implemen
tation .

Effects of Stochastic Processing
[0184] The uncertainty of stochastic processing demon
strates why this is a much more useful application of
randomness . Without the exact pool data , no one can predict ,
(from knowledge of the implementation) , which version of
a custom solution will be invoked . Current (static) imple
mentations in hardware and software conform to mathemati
cal certainty . These static solutions will give way to dynamic
solutions . These technologies of uncertainty will free appli
cations to become chaotic , less expensive and much better
solutions .

Common Custom Environment

Dynamic Digital Protocols
10185) Data structures and actions define current digital
protocols . Developers apply painstaking efforts to perfect
implementations of these protocols . This near perfection of
implementation means that most current digital protocols are
extremely fragile . How do we protect fragile data structures
within digital protocols ? Only by deliberately breaking them
do we gain the means to protect them . . . this irony defines
the Data Structure Protection Paradox .
[0186] To utilize this paradox , with the aid of stochastic
processing , we use data structure fragility as a tool — we
create a dynamic means to uniquely “ break ” the perfection ,
and then uniquely “ restore ” the perfection of the same data
structure . We can see the value of this fragility with a simple
contrast . While a canon can kill a housefly , so can a fly
swatter . Both complete the task , yet one of them remains
completely inappropriate for the scale of the problem .
Encryption can protect a digital protocol , yet it remains as

[0192] There are two parties in most digital protocols — the
producer (source or initiator) and the consumer who pro
cesses the protocol . To be successful with dynamic digital
protocols , these two parties generally must start with the
same custom environment , which include a common source
file , timestamp , URNG implementation , and stochastic pro
cessing application (s) . In this way , both parties know that
they have the same random data stream (s) and application (s)
to process them into compatible dynamic digital protocols .
So long as the dynamic digital protocol “ producer " and
" consumer ” are synchronized , they can continue to
exchange data structures without concern that they may be

US 2018 / 0011692 A1 Jan . 11 , 2018

hacked . Without exactly the same environment , no one else
can create the expected data structure that will be accepted
by the protocol consumer .

URNG Value Primitive
[0203] The “ URNG _ value ” is the standard URNG inter
face primitive for obtaining random values .
[0204] r _ value urng _ value (t _ urng * urng) Innovations Around the Data , Address , and Control

Planes of Randomness

[0193] Each of these “ planes ” represents an independent
opportunity for innovation . One can change the addressing
into the data pool without affecting the data . Likewise , fixing
(freezing the state) on one plane still allows developers to
innovate in the other planes . These opportunities for inno
vation flow from the properties of the Uncertainty Function .
Therefore , these same opportunities are available within
stochastic processing (data / address / control planes) .
[0194] Stochastic processing generally requires the ability
to reproducibly create the same random streams . This
requirement can be met via an open - ended number of
solutions , from pre - generating data , resetting implementa
tions , or building URNG primitives to support this require
ment . These primitives lay the groundwork for building
dynamic digital protocols .
[0195] Any given source file contains a pool of uncer
tainty , and a time model . The timestamp determines the seed
values within the pool of uncertainty , defining which
instance of a URNG will be created . Therefore , any time
stamp represents an addressing function into all possible
URNG instances . While each URNG instance is limited to
producing one random stream , many different streams can
be produced from the same pool of uncertainty . The follow
ing are supporting primitives :

Random Sub - Streams Indexed URNG Primitive
[0205] The " indexed URNG ” is the interface primitive for
obtaining the next random value in the “ indexed ” stream .
Each time that the index changes , the index stream resets .
This “ resetting ” allows the indexed URNG to be reused and
thus reproduce any indexed stream . An example would
entail setting the index to a temp value , and then restoring
back to the previous index , so that the same index stream
would start reproducing the same random stream . The use of
the clone URNG interface primitive , in conjunction with the
indexed URNG interface primitive , allows any number of
(different) simultaneous random streams to be supported
from the same pool of uncertainty .
[0206] r _ value indexed _ urng (t _ urng * urng , int32 _ t _ in
dex) ;

The Virtual Cut - Memory Address + Offset
[0207] For example , adding an offset of the memory
address used to read the data pool (s) has the same effect as
moving the origin of the memory range . This is similar to
“ cutting ” the deck in a card game .

Static URNG Primitive

The Virtual Shuffle Memory Address XOR
Shuffle Value

[0208] The act of a bit - wise XOR of a Shuffle Value with
a memory address is comparable to the effect of a quick
shuffle in place the memory range has been reordered by
the XOR operation . One can shuffle then cut , or one can cut
then shuffle . These virtual card tricks can be performed as
many times as one wishes .

[0196] The “ Static UNRG ” creates an URNG instance
based on the pool of uncertainty found in the source file .
Each unique timestamp creates a different instance of the
URNG while sharing the same data .
[0197] t _ urng * static _ urng (char * source _ name , t _ time
stamp timestamp) ;

Random Sub - Streams — Using the Memory Address
Offset

Dynamic URNG Primitive
[0198] The “ Dynamic URNG ” takes the given source file
and timestamp to create a new pool of uncertainty . This new
pool of uncertainty and timestamp defines this dynamic
instance of the URNG . Therefore , each unique timestamp
creates a unique random number generator , which in turn
creates a unique random stream .
[0199] t _ urng * dynamic _ urng (char * source _ name , t _ time -
stamp timestamp) ;
[0200] The same source file , timestamp , and above primi
tives create the same instance of the URNG , and subse
quently produces the same random stream . Once a given
URNG instance is defined , then the data plane has been
assigned

[0209] Manipulating the memory address can have some
very useful side effects . Normally , the uncertainty random
value generator would only produce one random stream . If
each memory address used within the uncertainty random
value generator had an offset added to it , then a different
random sub - stream would be produced for each different
offset . Any number of arbitrary random sub - streams can be
produced via selective addition of memory - offset values .
This gives us a randomly addressable sub - stream whenever
it is needed . This tool is very useful in many applications .

The Identification of Source Files and URNG
Instance

Clone URNG Primitive

[0210] In most cases , the naming of a “ file ” generally
requires first identifying where it can be found (path name)
within some form of “ name space ” . Typically , only the last
part of the location is used to name the file . While the path
name specifies the external source file identification , addi
tional internal identification exists : a creation timestamp and
a non - unique identifier . Between the external and internal
identification , any source file should be located within
known systems . Once the correct source file has been found ,
a dynamic identifier (open file ID) can be defined .

[0201] The “ Clone URNG ” creates a copy of the given
URNG instance . Each clone will produce the same random
stream from the point of cloning .
[0202] t _ urng * clone _ urng (t _ urng * urng) ;

US 2018 / 0011692 A1 Jan . 11 , 2018
19

[0211] As source files and timestamps are employed to
create URNG instances , they are given dynamic URNG
instance identifiers . As clone instances are created , they are
also given additional identifiers . Clearly , stochastic process
ing applications will have to manage and track these URNG
instance identifiers .
[0212] In hardware applications , the loading of the pool of
uncertainty , and initialization of address generators com
pletes the identification of a URNG instance . Each addi
tional addressing generator that supports " cut ” (with or
without “ shuffle ") provides the means for indexed URNGs .

The Synchronization of Producers and Consumers
[0213] . So long as the producer and consumer of data
structures start with the same source file and timestamp , they
have reached the first level of synchronization by creating
the same instances of the URNG . The stochastic processing
application (s) generally must define values (sub - stream
identifiers) that represent distinct random sequences . These
sub - stream identifiers become the " index " values of the
indexed URNG primitive . Each time the stochastic process
ing application generally requires a new random sub - stream ,
it can just create a new index (stream) value . This index
value may or may not be in the data structure . For example ,
some Internet protocols have “ sequence numbers " embed
ded in the protocol definition : these sequence numbers can
be mapped into index values . These index values become a
fine grain addressing (time) function for randomness .
Clearly , while most protocol sequence numbers are ordered
for a reason , these index values do not need to be contigu
ous . So long as the algorithm for creating and managing
these indexes is correct , the indexed URNG primitive will
give the same random sub - stream for any given (valid)
index .
[0214] Starting index values can be explicitly or implicitly
defined by the application . A transaction accounting number
could be an example of an explicitly defined index , while the
third attachment in an email could be an implicit example .
However , any application specific algorithm can create any
(valid) index values .

[0217] The reversible morphing of a static data structure
can be inserted between many existing hardware and / or
software solutions . This protection upgrade can be accom
plished for relatively low cost to or disruption of existing
systems .
[0218] Another means to protect fragile data structures is
to directly move towards dynamic data structures . For
example , many different data structures can be overlapped
(formatted) via a " variant record ” means . In this way , the
same overall data can be stored in roughly the same amount
of space . Within each variant record , the only significant
difference is that the same fields are stored in a different
order . Both producer and consumer would have to synchro
nize whichever variant is to be used this time . The ideal
synchronization would be selection of a variant record (or
selection of a routine to construct a variant record) based on
uncertain data . In this way , over time , the same fields within
the data structure would appear to be constantly moving .
This variant record solution does not require the “ breaking
and restoring ” collection , but does require reworking the
hardware / software accesses to the fields within the data
structures .
[0219] The incorporation of breaking the certainty of
existing static data structures should be so low cost that it
can become almost ubiquitous . In this way , we gain security
of digital protocols without any substantial overhead . The
second collection (hash function or CRC) gives an option
that may carry even lower overhead .

Upgrading the CRC Metaphor to Become the Ross
Integrity Check (RIC)

Application Specific Collections — Hash Functions ,
Breaking and Restoring Processes

[0215] The task of protecting the fragile (static) data
structures within digital protocols may require up to two
different application - specific collections of processing ele
ments . The first collection is some form of hash " or Cyclic
Redundancy Check (CRC) function that reduces a data
structure into a single value . If needed , the second collection
is used to invoke the data structure protection paradox .
[0216] The possibilities of breaking and restoring ” static
data structures are infinite , so it will remain an open - ended
solution space . Any reversible means to mangle the static
data structure . . . and then restore it is equally effective . This
list of examples to process static data structures represents
just a hint of possible solutions . Once the static data struc
ture is created , then any combination of the following can be
employed : bit flipping of any size , bit swapping of any size ,
data of any size injected and then removed , rotating any
number of bits left or right (within any size unit) , reversing
bit order of (byte , 16 - bit , word) , etc . As an open - ended
solution space , many more solutions can be created .

[0220] Many Internet protocols employ a CRC function to
detect damaged (invalid) packets . If the CRC check fails ,
then the packet is discarded . These protocols naturally
replace the missing packet and the only result is a temporary
glitch . There are many different CRC functions currently
deployed throughout the network . However , in order to
function as intended , each invocation of a current CRC
generally must use the correct function . This defines the
current CRC metaphor .
[0221] So , we can change the metaphor with a simple
question — what happens if the wrong CRC function was
invoked ? In this case , the protocol is broken and each
request is discarded . If this consistent failure of a CRC check
is the correct intent , then the CRC value has become a failed
" digital signature ” . Unfortunately , if the CRC function
becomes known , then the CRC value could be hacked to an
extent that it passes the CRC check . To complete the solution
and prevent hacking , we generally must incorporate uncer
tain data into the CRC computation . This required uncertain
data (of uncertain size) could only be produced by the
correct instance of an URNG . Thus , the collection of hash /
CRC functions plus additional uncertain data actually
upgrades the simple CRC metaphor to become a secure
digital signature for each packet . Therefore , any unauthor
ized packets are ignored . This RIC replacement of the CRC
metaphor remains low cost enough to become ubiquitous .
[0222] Given an uncertain selection of a hash / CRC func
tion from the collection and an uncertain data addendum of
uncertain size , we compute the data structure plus addendum
hash / CRC RIC value . The service provider selects the same
hash / CRC function , creates the same uncertain addendum ,

US 2018 / 0011692 A1 Jan . 11 , 2018
20

and then computes the RIC value . The service is only
provided if the authentication matches the value found in the
data structure .

Applications of the RIC
[0223] Clearly , the RIC could be added to any digital
protocol to provide a low cost means for authentication .
Many services are provided without authentication , while
others have very complex infrastructures to support authen
tication (Secure Socket Level SSL for instance) . If the one
time data exchange has been completed , then we have also
exchanged random number generators . Therefore , we have
also set up the minimal required infrastructure to support
authentication . Assuming shared stochastic processing
application (s) are used via this data exchange , then dynamic
custom applications in either hardware or software have also
been exchanged .

[0229] Clearly , the framework will have to deal with
restoring whatever breaking was accomplished . Assuming
that any new breaking process element may affect the results
of previous breaking process elements , then the restoration
sequence will have to back out each break by restoring them
in reverse order . The processing of a “ last in first out
(LIFO) ” stack is a classic , well - understood , algorithmic
metaphor .
[0230] Assuming that both the BR process and RIC are
employed , then the RIC value is computed and saved within
the data structure before any changes are made . Once the
data structure is restored , then the RIC is recomputed to
validate the data structure and confirm authorization .

Converting Public Addresses into Private Addresses
(Fine Grain Access Control) (

[0224] Let us assume that many service providers have
known “ public addresses ” . Assuming these service provid
ers are upgraded to support RIC authentication , then only
authorized services will be provided , while all other requests
are ignored . Thus , the RIC becomes a form of revocable
access control for the service . This access control has an
open - ended number of possible applications .
[0225] Here is a simple example of this effect : if my phone
optionally supports RIC authentication , then I could “ open "
my phone number during the day , while limiting (closing)
access at night to only those that I gave permission to call
me . Another way to view the effect of the RIC is to think of
this as converting the public (known) address into a private
(authorized only) address . Now , any email , phone number ,
control system , IP address , financial or Internet transaction ,
etc . can have fine - grain access control .
02261 . The lack of fine - grain revocable access control
plagues many applications . For example , the typical access
given to databases covers all records . Instead , many orga
nizations would benefit from dynamically limiting access to
only those records where a need - to - know has been autho
rized , while denying access to the rest of the database .
Clearly , this fine - grain access control would be useful in
healthcare and IRS organizations . This type of access con
trol is another wide - open application space .

Optional Use of Breaking / Restoration or RIC
10231] The above section covers the case where both the
BR process and RIC are employed at the same time .
However , there are many valid applications in which only
one of them would be used . The RIC will stand alone in
many digital protocols as a low cost solution for access
control . The standalone use of the BR process will be used
in cases of software DRMs . If only the RIC is employed in
this software DRM case , then that single point of attack
would be a tempting target to hack , thus overriding the effect
of the RIC . However , the standalone use of the BR process
is strong enough to protect the software . After all , any
improperly restored software remains nonfunctional . There
are an open - ended number of applications that will only use
either the BR process or the RIC .
[0232] Data Congruential Generator " Linear Congruential
Generators ” produce deterministic values that generally
must be transformed into paradox safe values within the
URNG implementation . While the requirements for produc
ing paradox safe domain values for the Uncertainty Function
remain the same , the removal of the flawed PRNG simplifies
the process with better randomness quality :
[0233] mask = urng - > pool [prng (1) % urng - > modulo) ;
[0234] unsafe _ 1 = prng (4) ;
[0235] unsafe _ 2 = prng (5) ;
[0236] domain = (- mask & unsafe _ 1) | (mask & unsafe _ 2)
% urng - > modulo ;
[0237] Starting with one (or more) nondeterministic value
(s) from the pool of uncertainty , we can generate a domain
value from a prime modulo operation . Instead of a “ Linear
Congruential Generator ” , we replace a “ linear ” equation
with paradox safe data to produce the Data Congruential
Generator (DCG) . Given two random indexes (seedo , seedl)
into the pool of uncertainty , here is the replacement C code
example .

uint64 _ t
uint32 _ t
hi

Stochastic Scaffolding — the Same Distinct
Breaking / Restoration Algorithm

[0227] The Breaking and Restoring (BR) process contin
ues with the stochastic scaffolding framework . Each devel
oper of BR applications will be creating a framework for the
multi - step selection and invocation of BR processing ele
ments . The limitations set upon programmatic control vari
ables (number of steps , order of steps , selection of BR
elements , etc .) are all defined by the data produced by the
URNG .
(0228] While the synchronization is established with the
correct URNG instance , each part of the stochastic scaffold
ing starts with the same distinct uncertain data . Each sub
step within the framework may require additional data
parameters . Any parameter , data item , selection value , chaos
instruction , etc . can be provided with the indexed URNG in
a consistent (and reproducible) manner .

low
y
domain

y ;
hi , low , domain ;

= urng - > pool [seed0 + + % urng - > modulo] ;
= urng - > pool [seedl - - % urng - > modulo] ;
= ((uint64 _ t) hi < < 32) | (low) ;
= (y % prime) % urng - > modulo ;

[0238] Note : this embodiment uses the concatenation of
two 32 - bit values to create a 64 - bit value . In lieu of
concatenation , nearly any binary operation will function as
well . While a single pool value is functional , it tends to
repeat the same addressing sequence far too quickly . By
replacing the above “ prime ” number , one can create a

US 2018 / 0011692 A1 Jan . 11 , 2018

different domain value generator . The DCG embodiment can
be created in either hardware of software .

C Header
[0239] This C header fills in some details missing in the
above code snippets

define MAX _ REPS 16
define INSTRUCTIONS _ PER _ WORD 8
define INSTRUCTION _ MASK OxF
define INSTRUCTION _ SHIFT
defineNUM _ STOCHASTIC _ POINTS 7
define prng (num)
((* urng - > prng [num] . PRNG) (& urng - > prng [num] . state))
typedef uint32 _ t r _ value ; / / base type of uncertainty
value
Il generic PRNG function
typedef r _ value (* PRNG _ function) (r _ value * seed) ;
/ / generic Random Edit Process
typedef r _ value (* edit _ process) (r _ value , r _ value , r _ value) ;
typedef struct

PRNG _ function PRNG ;
r _ value state ;

} t _ prng ;
/ / STRUCTURE : t _ chaos

/ / Chaos CPU
instruction (block) currently 4 bits each

Il PC Program Counter within instruction block
/ 16 CPU operations indexed via 4 bit instruction
Il each operation is a generic Random Edit Process

each operation is randomly selected via uncertainty value from
REP table

/ / Since each instruction block is randomly fished from pool of uncertainty
/ / and then used to perform random operations against other random
1 / streams , the Chaos Engine is an appropriate name .
typedef struct

by the appended claims rather than by the foregoing descrip
tion . All changes which come within the meaning and range
of equivalency of the claims are to be embraced within their
scope .
[0241] For example , although the above discussion
describes particular uses for such systems , methods and etc . ,
it is understood that the applications are plethoric and in
some cases unknowable at this point .
[0242] . Additionally , although the figures illustrate specific
connections , relationships , and sequences , it is understood
that the plethoric connections , relationships and sequences
not described by but also not contraindicated by the claims
are envisioned and may be implemented in one or more
non - limiting embodiments of the invention .
[0243] Thus , while the present invention has been fully
described above with particularity and detail in connection
with what is presently deemed to be the most practical and
preferred embodiment of the invention , it will be apparent to
those of ordinary skill in the art that numerous modifica
tions , including , but not limited to , variations in size , mate
rials , shape , form , function and manner of operation , assem
bly and use may be made , without departing from the
principles and concepts of the invention as set forth in the
claims . Further , it is contemplated that an embodiment may
be limited to consist of or to consist essentially of one or
more of the features , functions , structures , methods
described herein .
What is claimed is :
1 . A method of generating seed values for use in a random

number generator , comprising the steps of :
a . receiving a timestamp ;
b . determining a difference between the timestamp and an

uncertain zero point in time , using a processor , thereby
determining an offset ;

c . expressing the offset through a plurality of time units ,
using a processor , each time unit having a correspond
ing uncertain scale value , thereby generating a set of
delta values ;

d . multiplying each delta value in the set of delta values
by the corresponding uncertain scale value , using a
processor , associated with the time unit , thereby gen
erating a set of addends ; and

e . summing the addends using a processor , thereby gen
erating a seed value .

2 . The method of claim 1 , wherein the timestamp is a
public timestamp .

3 . The method of claim 1 , wherein the timestamp is
derived from a set of sequentially increasing values .

4 . The method of claim 1 , wherein the timestamp is
mapped into a familiar unit of time .

5 . The method of claim 1 , wherein the offset is expressed
through two or more of days , hours , minutes , second , and
milliseconds .

6 . The method of claim 1 , wherein the timestamp is in the
form of clock cycles .

7 . A method of generating a second source file from a first
source file , comprising the steps of :

a . determining a difference between a timestamp and an
uncertain zero point in time , using a processor , thereby
determining an offset ;

b . expressing the offset through a plurality of time units ,
each time unit having a corresponding uncertain scale
value , thereby generating a set of delta values ;

r _ value instruction ; / / random value holding
instructions
r _ value PC ; / / current instruction counter within above
instruction
edit _ process operation [MAX _ REPS] ; / / table of chaos operations
(Random Edit Processes)
} t _ chaos ;
typedef struct

{
uint32 _ t poolsize ; / / allocation size in r _ values
uint32 _ t modulo ; Il prime number addressing modulo
t _ prng prng [NUM _ STOCHASTIC _ POINTS] ; / / PRNG addressing
functions
t _ chaos cpuAdr0 ; / / address chaos engine
t _ chaos cpuAdr1 ; / / address chaos engine
t _ chaos cpudata ; Il data chaos engine
r _ value * pool ; 1 / data pool pointer
} t _ curng ;
typedef struct

uint32 _ t poolsize ; / / allocation size in r _ values
uint32 _ t modulo ; Il prime number addressing modulo
t _ prng prng [NUM _ STOCHASTIC _ POINTS) ; / / PRNG addressing
functions
r _ value * pool ; / data pool pointer
} t _ urng ;

[0240] It is understood that the above - described embodi
ments are only illustrative of the application of the principles
of the present invention . The present invention may be
embodied in other specific forms without departing from its
spirit or essential characteristics . The described embodiment
is to be considered in all respects only as illustrative and not
restrictive . The scope of the invention is , therefore , indicated

US 2018 / 0011692 A1 Jan . 11 , 2018

c . multiplying each delta value in the set of delta values
by the corresponding uncertain scale value , using a
processor , associated with the time unit , thereby gen
erating a set of addends ;

d . summing the addends using a processor , thereby gen
erating a seed value ;

e . seeding an uncertainty random number generator
including the first source file with the seed value and
operating the same through a processor , thereby gen
erating a random stream ;

f . loading the random stream , thereby generating a pool of
uncertain data ; and

g . associating a time model , including : the time stamp , the
uncertain zero point in time , and the uncertain scale
values with the pool of uncertain data , thereby gener
ating a second source file .

8 . The method of claim 7 , wherein the second source file
includes a name .

9 . The method of claim 8 , wherein the name of the second
source file includes path information .

10 . The method of claim 7 , further comprising receiving
the timestamp .

11 . The method of claim 7 , further comprising selecting
the timestamp .

12 . The method of claim 7 , wherein the timestamp is
derived from a set of sequentially increasing values .

13 . The method of claim 7 , wherein a time unit of the
plurality of time units is selected from the group of time
units consisting of days , hours , seconds , and milliseconds .

14 . The method of claim 7 , wherein the timestamp is a
public timestamp .

15 . The method of claim 7 , further comprising the step of
seeding the second source file and operating the same ,
thereby generating a second random stream .

16 . A computing device for generating seed values , com
prising a processor and instructions for operating the pro
cessor in functional communication with the processors , the
instructions including the steps of :

a . determining a difference between s timestamp and an
uncertain zero point in time , using the processor ,
thereby determining an offset ;

b . expressing the offset through a plurality of time units ,
using the processor , each time unit having a corre
sponding uncertain scale value , thereby generating a set
of delta values ;

c . multiplying each delta value in the set of delta values
by the corresponding uncertain scale value , using the
processor , associated with the time unit , thereby gen
erating a set of addends ; and

d . summing the addends using the processor , thereby
generating a seed value .

17 . The device of claim 16 , wherein the timestamp is a
public timestamp .

18 . The method of claim 16 , wherein the timestamp is
derived from a set of sequentially increasing values .

19 . The method of claim 16 , wherein the timestamp is
mapped into a familiar unit of time .

20 . The method of claim 16 , wherein the offset is
expressed through two or more of days , hours , minutes ,
second , and milliseconds .

21 . The method of claim 16 , wherein the timestamp is in
the form of clock cycles .

22 . A computing device for generating a pool of uncertain
data , comprising a processor and instructions for operating
the processor in functional communication with the proces
sor , the instructions including the steps of :

a . determining a difference between a timestamp and an
uncertain zero point in time , using a processor , thereby
determining an offset ;

b . expressing the offset through a plurality of time units ,
each time unit having a corresponding uncertain scale
value , thereby generating a set of delta values ;

c . multiplying each delta value in the set of delta values
by the corresponding uncertain scale value , using a
processor , associated with the time unit , thereby gen
erating a set of addends ;

d . summing the addends using a processor , thereby gen
erating a seed value ;

e . seeding an uncertainty random number generator
including the first source file with the seed value and
operating the same through a processor , thereby gen
erating a random stream ;

f . loading the random stream , thereby generating a pool of
uncertain data ; and

g . associating a time model , including : the time stamp , the
uncertain zero point in time , and the uncertain scale
values with the pool of uncertain data , thereby gener
ating a second source file .

23 . The method of claim 22 , wherein the second source
file includes a name .
24 . The method of claim 23 , wherein the name of the

second source file includes path information .
25 . The method of claim 22 , further comprising receiving

the timestamp .
26 . The method of claim 22 , further comprising selecting

the timestamp .
27 . The method of claim 22 , wherein the timestamp is

derived from a set of sequentially increasing values .
28 . The method of claim 22 , wherein a time unit of the

plurality of time units is selected from the group of time
units consisting of days , hours , seconds , and milliseconds .

29 . The method of claim 22 , wherein the timestamp is a
public timestamp .

30 . The method of claim 22 , further comprising the step
of seeding the second source file and operating the same ,
mere thereby generating a second random stream .

* * * * *

