
US010565179B2

United States Patent
Brunel et al .

(10) Patent No .: US 10,565,179 B2
(45) Date of Patent : Feb. 18 , 2020

(56) References Cited (54) HIERARCHICAL DATA GROUPING IN
MAIN - MEMORY RELATIONAL DATABASES

U.S. PATENT DOCUMENTS

(71) Applicant : SAP SE , Walldorf (DE) 6,487,546 B1 * 11/2002 Witkowski
2010/0153466 A1 * 6/2010 Burger

G06F 16/284
G06F 16/25

707/802 (72) Inventors : Robert Brunel , Heidelberg (DE) ;
Norman May , Karlsruhe (DE)

OTHER PUBLICATIONS
(73) Assignee : SAP SE , Walldorf (DE)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 483 days .

(21) Appl . No .: 15 / 370,835

(22) Filed : Dec. 6 , 2016

(65) Prior Publication Data
US 2018/0018383 A1 Jan. 18 , 2018

Related U.S. Application Data
(60) Provisional application No. 62 / 363,730 , filed on Jul .

18 , 2016 .

S. Al - Khalifa , H. Jagadish , N. Koudas , J. M. Patel , et al . Structural
joins : A primitive for ecient XML query pattern matching . In ICDE ,
2002 .
R. Brunel , J. Finis , G. Franz , N. May , A. Kemper , T. Neumann , and
F. Faerber . Supporting hierarchical data in SAP HANA . In ICDE ,
2015 .
N. Bruno . Holistic twig joins : Optimal XML pattern matching . In
SIGMOD , 2002 .
J. Celko . Trees and Hierarchies in SQL for Smarties . Morgan
Kaufmann , second edition , 2012 .
D. Chatziantoniou , T. Johnson , M. Akinde , and S. Kim . The
MD - join : An operator for complex OLAP . In ICDE , 2001 .
S. Chen , H.-G. Li , J. Tatemura , W.-P. Hsiung , et al . Twig2Stack :
Bottom - up processing of generalized tree pattern queries over XML
documents . In VLDB , 2006 .
S. Cluet and G. Moerkotte . Efficient evaluation of aggregates on
bulk types . In DBPL Workshop , 1995 .

(Continued)
Primary Examiner Kristopher Andersen
(74) Attorney , Agent , or Firm -Jones Day
(57) ABSTRACT
Addressed herein is the problem of expressing and evalu
ating computations on hierarchies represented as database
tables . Engine support for such computations is very limited
today , and so they are usually outsourced into stored pro
cedures or client code . Structural grouping is applied to
relational algebra to provide concise syntax to express a
class of useful computations . Algorithms are also provided
to evaluate such structural groupings efficiently by exploit
ing available indexing schemes . Related apparatus , systems ,
techniques and articles are also described .

20 Claims , 7 Drawing Sheets

(51) Int . Cl .
G06F 16/20 (2019.01)
GOOF 16/22 (2019.01)
G06F 16/28 (2019.01)

(52) U.S. CI .
CPC G06F 16/2282 (2019.01) ; G06F 16/282

(2019.01)
(58) Field of Classification Search

CPC G06F 16/2282 ; G06F 16/282
See application file for complete search history .

700

710
RECEIVE QUERY REQUESTING HIERARCHICAL
DATA STORED IN HIERARCHY OF NODES AND

SPECIFYING AGGREGATION OPERATION

ACCESS TABLE REPRESENTING HIERARCHICAL
DATA THAT COMPRISES TUPLES
WHICH EACH REPRESENT

DIFFERENT NODE OF HIERARCHY OF NODES
720

730
CHECK , FOR EACH TUPLE , WHETHER
NODE FOR SUCH TUPLE MATCHES

NODE FOR PREVIOUSLY PROCESSED TUPLE

740

REUSE , FOR EACH TUPLE , PREVIOUSLY
CALCULATED AGGREGATION VALUE IF
NODE OF SUCH TUPLE MATCHES
NODE FOR SUCH PREVIOUSLY

PROCESSED TUPLE

750
GENERATE , FOR EACH TUPLE , AGGREGATION

VALUE WHEN NODE FOR SUCH TUPLE
DOES NOT MATCH NODE FOR

PREVIOUSLY PROCESSED TUPLE

760 PROVIDE DATA COMPRISING RESULTS
RESPONSIVE TO QUERY

US 10,565,179 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

J. Finis , R. Brunel , A. Kemper , T. Neumann , N. May , and F. Faerber .
Indexing highly dynamic hierarchical data . In VLDB , 2015 .
S. J. Finkelstein , N. Mattos , I. Mumick , and H. Pirahesh . Expressing
recursive queries in SQL . In ANSI Document X3H2-96-075r1 ,
1996 .
C. Gokhale , N. Gupta , P. Kumar , L. V. S. Lakshmanan , et al .
Complex group - by queries for XML . In ICDE , 2007 .
G. Graefe . Query evaluation techniques for large databases . ACM
Computing Surveys , 25 (2) : 73-169 , 1993 .
J. Gray , S. Chaudhuri , A. Bosworth , A. Layman , et al . Data Cube :
A relational aggregation operator generalizing Group - By , Cross
Tab , and Sub - Totals . Data Mining and Knowledge Discovery ,
1 (1) : 29-53 , 1997 .
T. Grust , M. van Keulen , and J. Teubner . Staircase Join : Teach a
relational DBMS to watch its (axis) steps . In VLDB , 2003 .
V. Leis , K. Kundhikanjana , A. Kemper , and T. Neumann . Efficient
processing of window functions in analytical SQL queries . In
VLDB , 2015 .
N. May and G. Moerkotte . Main memory implementations for
binary grouping . In XSym , 2005 .
Multidimensional Expressions (MDX) Reference . SQL Server 2012
Product Documentation .

G. Moerkotte and T. Neumann . Accelerating queries with Group - By
and Join by Groupjoin . VLDB , 2011 .
T. Neumann . Efficiently compiling efficient query plans for modern
hardware . In VLDB , 2011 .
Oracle Corporation , Oracle 9i OLAP User's Guide , Release 2 (9.2) ,
2002. docs.oracle.com/cd/A97630 01 / olap.920 / a95295.pdf .
D. Ordonez . Optimization of linear recursive queries in SQL . In
TKDE Journal , 2010 .
SAP SE . Solutions | Data Management | SAP HANA Vora . go.sap .
com / germany / product / data - mgmt / hana - vora - hadoop.html , May 2016 .
P. G. Selinger , M. M. Astrahan , D. D. Chamberlin , R. A. Lorie , and
T. G. Price . Access path selection in a relational database manage
ment system . In SIGMOD , 1979 .
Information technology | database languages | SQL . ISO / IEC JTC
1 / SC 32 9075 , 2011 .
N. Wiwatwattana , H. V. Jagadish , L. V. S. Lakshmanan , and D.
Srivastava . X 3 : a Cube operator for XML OLAP . In ICDE , 2007 .
F. Zemke , K. Kulkarni , A. Witkowski , and B. Lyle . Introduction to
OLAP functions . ISO / IEC JTC1 / SC32WG3 : YGJ - 068 = ANSI NCITS
H2-99-154r2 , 1999 .
C. Zhang , J. Naughton , D. DeWitt , Q. Luo , and G. Lohman . On
supporting containment queries in relational database management
systems . In SIGMOD , 2001 .

* cited by examiner

U.S. Patent Feb. 18 , 2020 Sheet 1 of 7 US 10,565,179 B2 9

100

Node Weight
A1 A2

B1 B2
*

C1 C2 C3

8806 D1 D2 D3

FIG . 1

U.S. Patent Feb. 18. 2020 Sheet 2 of 7 US 10,565,179 B2

200

Inpl
Node Value

Inp2
WeightValue Node ID

NULL Emm @ gm EBBE
NULL

A1 NULL
* A2 NULL

(a) b)

FIG . 2

U.S. Patent Feb. 18 , 2020 Sheet 3 of 7 US 10,565,179 B2 9

300

Window Frame

?

A 1 OD
030

FIG . 3

U.S. Patent Feb. 18 , 2020 Sheet 4 of 7 US 10,565,179 B2 9

400

(lb) RECURSIVE II (Value * SUM (x) OVER bu) AS X
(2a) PRODUCT (Weight) OVER to
(35) RECURSIVE INI

(Weight * COALESCE (FIRST_VALUE (X) OVER td , 1)) AS X
(3a) SUM (Value) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(3b) RECURSIVE (SUK (Value) OVER bu)
(4m) RECURSIVE DOUBLE (Weight * (Value * SUM () OVER bu)) AS X
(46) RECURSIVE DOUBLE (Value Weight * (SUM (X) OVER bu)) AS X

(40) RECURSIVE DOUBLE (Value
SUM (VALUE_OF (Weight AT CURRENT_ROW) * x) OVER W) AS X

COALESCE (FIRST VALUE (X) OVER td , ') | ID) AS X

(cb) RECURSIVE DT (COALESCE (FIRST_VALUE (X) OVER 10 , 0) * 1) AS I

(75) RECURSIVE II (COALESCE (FIRST_VALUE (X) OVER td , 0) * 1) AS X
(8) RECURSIVE IT (1 * CBALESCE (MAX (X) OVER DI , 0)) AS X

(ga) COUNT (*) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(9b) RECURSIVE (COUNT (*) OVER bu)
(10) RECURSIVE (MY FUNC (ARRAY AGG (ROW (ID , O) OVER »)) AS X

FIG . 4

U.S. Patent Feb. 18 , 2020 Sheet 5 of 7 US 10,565,179 B2 9

500

(1b) total Value tt.Value + Luex 1.7
(2b) absolute Weight It Weight * Ilexu.2
(3b) Value sum over < 1 uex u.Value
(4a) weighted rollup † t.Weight * (t.Value + Luex 1.8)
(4b) (Lvex W.x)

t . Value - Luer u . Weight * x.x
(5) Dewey conversion

(6b) level
(75) subtree size
(8) subtree height

(9b) degree

1 14 Luex Xx
| 1 uex W.X

O , else 1 * maxxexu.X

FIG . 5

U.S. Patent Feb. 18 , 2020 Sheet 6 of 7 US 10,565,179 B2 9

600

IRA HAT

YY YY :

Nux

FIG . 6

U.S. Patent Feb. 18 , 2020 Sheet 7 of 7 US 10,565,179 B2 9

700

710
RECEIVE QUERY REQUESTING HIERARCHICAL
DATA STORED IN HIERARCHY OF NODES AND

SPECIFYING AGGREGATION OPERATION

ACCESS TABLE REPRESENTING HIERARCHICAL
DATA THAT COMPRISES TUPLES
WHICH EACH REPRESENT

DIFFERENT NODE OF HIERARCHY OF NODES
720

730
CHECK , FOR EACH TUPLE , WHETHER
NODE FOR SUCH TUPLE MATCHES

NODE FOR PREVIOUSLY PROCESSED TUPLE

740

REUSE , FOR EACH TUPLE , PREVIOUSLY
CALCULATED AGGREGATION VALUE IF
NODE OF SUCH TUPLE MATCHES
NODE FOR SUCH PREVIOUSLY

PROCESSED TUPLE

750

V
GENERATE , FOR EACH TUPLE , AGGREGATION

VALUE WHEN NODE FOR SUCH TUPLE
DOES NOT MATCH NODE FOR

PREVIOUSLY PROCESSED TUPLE

V
PROVIDE DATA COMPRISING RESULTS

RESPONSIVE TO QUERY
760

FIG . 7

1

5

30

US 10,565,179 B2
2

HIERARCHICAL DATA GROUPING IN backend . The foundation of the current approach are the data
MAIN - MEMORY RELATIONAL DATABASES model and SQL constructs which allow the user to conve

niently define and query arbitrary hierarchies . This arrange
RELATED APPLICATION ment opens up new opportunities : the backend becomes

aware of the hierarchy structure and can rely on powerful
The current application claims priority to U.S. Pat . App . indexing schemes for query processing . Below are intro

Ser . No. 62 / 363,730 filed on Jul . 18 , 2016 and entitled : duced concepts of hierarchical computations and corre
“ Index - Assisted Hierarchical Computations in Main sponding SQL constructs , which can be translated into
Memory Relational Databases ” , the contents of which are structural grouping operations in relational algebra . The
hereby fully incorporated by reference . 10 efficient evaluation of structural grouping can requires

index - assisted physical algebra operators .
BACKGROUND In one aspect , a query is received by a database which

comprises at least one request specifying a table whose rows
In business and scientific applications hierarchies appear can be related to a hierarchy of nodes . The query also

in many scenarios : organizational or financial data , for 15 specifies an aggregation operation for hierarchically aggre
example , is typically organized hierarchically , while the gating the data in the specified table according to the
sciences routinely use hierarchies in taxonomies , say for hierarchy of nodes . Thereafter , the specified table that rep
animal species . In the underlying relational database man resents the data to be aggregated hierarchically is accessed .
agement systems (RDBMS) they are represented in hierar This table includes a plurality of tuples which each can be
chical tables using relational tree encodings . Looking at 20 associated to at most one node of the hierarchy of nodes .
typical queries especially in analytic applications , it is noted Thereafter , it is checked , for a tuple , whether a hierarchy
that hierarchies serve mainly two purposes . The first is node associated to such tuple matches a node for a previous
structural pattern matching , i.e. , filtering and matching rows processed tuple ; such previously processed tuple having a
based on their positions in a hierarchy . The second is previously calculated aggregation value . Then , a previously
hierarchical computations : propagating measures and per- 25 calculated aggregation value is reused for a tuple if the node
forming aggregation - like computations alongside the hier of such tuple matches the node for such previous processed
archical dimension . To address both purposes on RDBMS tuple . An aggregation value is generated for each tuple when
level , two challenges need to be solved namely (1) how can the aggregation value for such tuple cannot be reused from
a user express a task at hand intuitively and concisely in any previously processed tuple .
SQL (expressiveness) ? and (2) how can the engine process The aggregation values for the previously processed
these SQL queries efficiently efficiency) ? tuples can be placed within a stack and the generated
Regarding pattern matching queries , both can be consid aggregation values can also be placed into the stack . The

ered adequately solved , as they boil down to straightforward hierarchy of nodes can include at least one node and a
filters and structural joins on hierarchy axes such as “ is plurality of leaf nodes and the hierarchy of nodes is traversed
descendant ” , and techniques for appropriate indexes and 35 in a direction of the leaf nodes to the at least one root node .
join operators are well - studied . The same cannot be said of The previously calculated aggregation values can be
hierarchical computations . For the purpose of computations , placed on top of the stack . Previously calculated aggregation
a subset of the hierarchy nodes is dynamically associated values can be removed from the stack that are no longer
with values to be propagated or aggregated , and possibly needed when traversing the tuples .
filtered . In analytic applications , this has always been a 40 In some variations , the hierarchy of nodes can be tra
routine task : Dimension hierarchies are typically modeled versed in a direction from the root nodes to the leaf nodes .
by denormalized leveled tables such as City - State - Country The stack , when viewed from its top , can include obsolete
Continent . Certain computations can then be expressed aggregation values which are dismissed and passed over .
using SQL's basic grouping mechanisms (in particular Providing data can include one or more of : persisting at
ROLLUP) . However , this is insufficient for computations 45 least a portion of the results , loading at least a portion of the
beyond simple rollups , especially when the hierarchy is not results into memory , transmitting at least a portion of the
organized into levels but exhibits an irregular structure results to a remote computing system , or displaying at least
where nodes on a level may be of different types — and a portion of the results in an electronic visual display .
arbitrary depth . Consider the hierarchy in diagram 100 of The query can be formulated in any of a variety of
FIG . 1. Suppose it is desired to compute weighted sums of 50 languages / protocols including Structured Query Language
some values attached to the leaves — how could one state a (SQL) .
rollup formula incorporating the edge weights ? This quickly The database can take many forms including , without
turns exceedingly difficult in SQL . One tool that comes to limitation , a main - memory relational database management
mind are recursive common table expressions (RCTEs) . system , a column - oriented in - memory database , and / or a
However , more intricate aggregation - like computations tend 55 distributed database in which data is stored across multiple
to result in convoluted , inherently inefficient statements . computing systems .
Lacking RDBMS support , today users resort to stored pro Hierarchical windows for the query can be determined .
cedures or client code as workarounds . These are unsatis Based on such hierarchical windows , input nodes and output
factory not only concerning expressiveness , they also ignore nodes within such window can be determined using binary
the known hierarchy structure and are thus handicapped in 60 structural grouping . In other variations , recursive expres
terms of efficiency . sions on the hierarchical window can be evaluated using

unary structural grouping .
SUMMARY Non - transitory computer program products (i.e. , physi

cally embodied computer program products) are also
The current subject matter addresses issues of expressive- 65 described that store instructions , which when executed by

ness and efficiency regarding complex computations on one or more data processors of one or more computing
arbitrary irregular hierarchies by enhancing the RDBMS systems , cause at least one data processor to perform opera

self :

30

US 10,565,179 B2
3 4

tions herein . Similarly , computer systems are also described archical table model is described in further detail in The
that may include one or more data processors and memory current subject matter is related to the systems , methods , and
coupled to the one or more data processors . The memory computer program products described and illustrated in U.S.
may temporarily or permanently store instructions that cause patent application Ser . No. 14 / 614,859 entitled “ Hierarchy
at least one processor to perform one or more of the 5 Modeling and Query ” filed on Feb. 5 , 2015 , the contents of
operations described herein . In addition , methods can be which are hereby fully incorporated by reference) .
implemented by one or more data processors either within a The Node attribute of HT identifies a row's position and
single computing system or distributed among two or more is backed by a hierarchy index H , which encapsulates the
computing systems . Such computing systems can be con forest structure . One can assume the index supports at the
nected and can exchange data and / or commands or other 10 minimum two basic primitives , is - before - pre and is - before
instructions or the like via one or more connections , includ post , in (log (HTI) or even O (1) . Given a pair (V1 , V2) of ing but not limited to a connection over a network (e.g. , the node values , they test whether vi precedes V2 with respect to Internet , a wireless wide area network , a local area network , pre- and post - order traversal of the hierarchy . This allows a wide area network , a wired network , or the like) , via a
direct connection between one or more of the multiple 15 one to test pairs of nodes against the main hierarchy axes :
computing systems , etc.

The subject matter provided herein provides many tech preceding : is - before - pre (V1 , V2) Ais - before - post (V1 , V2)
nical advantages . For example , the current subject matter descendant : is - before - pre (V2 , V1) A is - before - post (V1 , V2)
provides techniques for querying hierarchical data that is following : is - before - pre (V2 , V1) A is - before - post (V2 , V?)

is - before - pre (V1 , V2) Ais - before - post (V2 , V1) more rapid than conventional techniques that also use fewer 20 ancestor : V1 - V2 computational resources .
The details of one or more variations of the subject matter

described herein are set forth in the accompanying drawings In C3 follows B1 / C1 / C2 and precedes A2 / C4 / D3 . The
and the description below . Other features and advantages of ancestor / descendant and preceding / following axes are sym
the subject matter described herein will be apparent from the 25 metric . In pseudo code , one can denote e.g. “ H.is - descen
description and drawings , and from the claims . dant (V1 , V2) ” for an axis check “ v , is a descendant of va ” ,

and sometimes use “ -or - self " variants with the obvious
DESCRIPTION OF DRAWINGS meaning . Specific index implementations will natively sup

port these and other axes as well as further primitives (e.g. FIG . 1 is a diagram illustrating a sample table HT ; is - child , level) , but the current algorithms rely only on FIG . 2 is a diagram illustrating (a) input / output nodes for is - before - pre / post . An example implementation is the simple binary grouping and (b) a combination of HT1 and inp1 for PPPL labeling scheme . Here , Node is a 4 - tuple storing the unary grouping ;
FIG . 3 is a diagram illustrating a bottom - up hierarchical pre / post ranks , the parent's pre rank , and the level of the

window ; node . Additionally , the hierarchy table is indexed on the
FIG . 4 is a diagram illustrating SQL examples for unary pre / post ranks using two simple lookup tables . With PPPL ,

computations ; the index primitives obviously boil down to very cheap
FIG . 5 is a diagram illustrating definitions of Î's f (t , X) ; 0 (1) arithmetics on Node , so this is as fast as a hierarchy
FIG . 6 is a diagram illustrating experimental results ; and index can get . If some degree of update support is needed ,
FIG . 7 is a process flow diagram illustrating execution of 40 however , a more sophisticated indexing scheme must be

a database query on hierarchical data . chosen . Note again that , while one can rely on the NODE
abstraction for ease of presentation , the concepts and algo

DETAILED DESCRIPTION rithms herein can be adapted to any specific “ hard - coded ”
encoding that affords the said primitives .

The current subject matter is directed to the querying of 45 A hierarchical computation propagates and accumulates
hierarchical data stored in a database such as , for example , data - usually numeric values — along the hierarchy edges .
a relational database management system (RDBMS) includ Data flow can happen either in the direction towards the root
ing , without limitation , a main - memory RDMBS and / or a (bottom up) or away from the root (top down , matching the
column - oriented in - memory database such as the SAP natural direction of the edges) . Unlike the " static ” labels
HANA platform . As a starting point , hierarchical data can be 50 stored with the base table itself (e.g. , ID and Weight in HT) ,
represented in a relational table . More specifically , one can the computation input is generally the result of an arbitrary
assume a table that encodes — using a suitable scheme subquery that associates some hierarchy nodes with input
forest of ordered , rooted , labeled trees , such that one table values , such as table Inpl of FIG . 2A .
tuple (row) represents one hierarchy node . The labels of a In an analytic scenario , HT may be a so - called dimension
node are the associated row's fields . For trees a 1 : 1 asso- 55 hierarchy arranging products (leaves) into products groups
ciation between a node and its incoming edge can be made , (inner nodes) , and a fact table Sales may associate each sale
so each field value can be interpreted as a label on either the item with a specific product , i.e. , a leaf of HT :
node or edge . In the example table HT of FIG . 1 , Weight is
viewed as an edge label . The ordered property means that Sales : { [Sale , Item , Customer , Product , Date ,

Amount] } siblings have a defined order . It implies that every node has 60
a well - defined rank in the pre- or post - order sequence of all Here , the computation input would be the amounts from
nodes ; e.g. , B1 in the figure has pre rank 2 and post rank 3 . Sales , attached to some of the product leaves via join . A
While it can be appreciated that there are many options canonical task in such scenarios known as rollup is to sum
regarding the actual tree encoding to use , the current dis up the revenue of certain products - say , " type A ” —along
cussion of hierarchical computations is encoding - agnostic . 65 the hierarchy bottom up and report these sums for certain
The hierarchical table model conveniently hides the encod product groups visible in the user interface_say , the three
ing details through an abstract data type NODE (the hier uppermost levels . The following SQL statement I - a com

35

-a

US 10,565,179 B2
5 6

putes the rollup , using the IS_DESCENDANT_OR_SELF The proposed extensions to SQL's windowed table pro
and LEVEL constructs (as described in U.S. patent appli vided herein allow one to equivalently write :
cation Ser . No. 14 / 614,859) :

5 II - b

I - a

10

15

20

II - C

30

SELECT Node , SUM (Value) OVER (HIERARCHIZE BY Node)
WITH Inp1 AS (FROM Inp1

SELECT p.Node , s.Amount AS Value
FROM HT p JOIN Sales s ON p.Node = s.Product

WHERE p.Type = ' type A ') One can refer to this scheme as unary structural grouping ,
SELECT t . * , SUM (u.amount) AS Total since the computation now works on a single table . It FROM HT t LEFT OUTER JOIN Inpl u

ON IS_DESCENDANT_OR_SELF (u.Node , t.Node) inherently yields a result for every tuple , i.e. , every node acts
WHERE LEVEL (t . Node) < = 3 as both an input and output node . A binary grouping query
GROUP BY t . * can usually be rewritten to unary grouping by working on

the merged “ e , Ve ” table and filtering the output nodes a
This represents a type of hierarchical computations with posteriori . For example , Inp2 in FIG . 2b shows a combina

two particular characteristics : First , only a subset of nodes tion of HT and Inp1 ; here NULL is assigned as a neutral
carry an input value often only the leaves , as in the value to nodes which do not carry a meaningful value .
example ; one can call these input nodes . Second , the set of Rewriting binary to unary computations will often result in
input nodes is mostly disjunct from the output nodes that more concise and intuitive statements . Especially when
after the computation carry a result one can be interested in . there is no clear distinction between input and output nodes ,
Input and output nodes are therefore determined by separate unary grouping is the most natural approach .
subqueries and the queries follow a join - group - aggregate The unary structural grouping mechanism offers another
pattern . This scheme can be referred to as binary structural attractive language opportunity : support for structural recur
grouping . “ Structural ” here alludes to the role the hierarchy sion . Using a structurally recursive expression one can state
structure plays in forming groups of tuples . The query plans 25 the rollup in Stmt . II - a and II - b in yet another way :
are typically variations of 1t + xz : f (e , [t] * u < rez [u]) . Here
X denotes the standard left outer join operation . I denotes
unary grouping , which in this case groups its input tuples by
t . * , applies function f to each group , and attaches an SELECT Node , RECURSIVE INT (Value SUM (x) OVER W) AS X
attribute x carrying the resulting aggregate value to each FROM Inp1 WINDOW W AS (HIERARCHIZE BY Node)
group . < reflects the input / output relationship among tuples .
Suppose one wanted to compute a rollup based on the
example input Inpl , and one is interested in three output This expression for x sums up the readily computed sums
nodes given by Outl in FIG . 2A . To do so , one can use x of all tuples that are covered by the current tuple . Unlike
e , Outl , ez = Inp1 , and define the < predicate as H.is binary grouping , unary grouping with structural recursion
descendant - or - self (u.Node , t.Node) and f (x) as Euexu . 35 makes the reuse of previous results explicit and thus inher
Value . This yields the sums 6310 , 310 , and 100 for A1 , B1 , ently translates into the efficient evaluation approach . Fur
and C1 , respectively . thermore , it enables one to state significantly more complex

Such query plans perform acceptably when f is cheap to computations with remarkable conciseness . For example ,
compute and the set of output nodes is rather small . How one can now straightforwardly take the edge weights from
ever , there is a major efficiency issue : for each e , tuple , the 40 Inp2 into account in the rollup :
computation f bluntly sums up all matching input values
from ez , while ideally one can reuse results from previously
processed e tuples . In the example , to compute the sum for SELECT Node , RECURSIVE DOUBLE

Value + SUM (Weight * x) OVER W) AS X Al one can save some arithmetic operations by reusing the FROM Inp2 WINDOW w AS (HIERARCHIZE BY Node) sum of B1 and adding just the input values of D1 / D2 / D3 . 45
With respect to < , one can say that the output node B1 is
covered by the output node Al and thus carries a reusable Rather than actually performing recursion , the current
result . To enable such reuse , the binary grouping algorithms operators evaluate unary grouping in a bottom - up fashion ,
provided herein process the e , tuples in < order and memo leveraging a < -sorted input table like their binary counter rize any results that may be relevant for upcoming e , tuples . 50 parts . Thereby they overcome the mentioned inefficiencies .

From an expressiveness point of view , the widespread As described below , various computations can be
join - group - aggregate statements are fairly intuitive to most expressed in SQL . Unlike binary grouping , unary structural
SQL users , yet not fully satisfactory : they lack conciseness , grouping is a novel concept to SQL . Provided below are
since conceptually a table of < pairs must be assembled by 55 details regarding various new syntax and semantics of
hand prior to grouping , and the fact that a top - down or extensions for unary grouping .
bottom - up hierarchical computation is being done is some Windowed tables are a convenient and powerful means what disguised . They become tedious especially when the for aggregations and statistical computations on a single output and input nodes largely overlap or are even identical , table , which otherwise would require unwieldy correlated

subqueries . Their implicitly self - joining nature makes them
a natural fit for structural grouping . One can therefore extend

SELECT t.Node , SUM (u.Value) this mechanism by hierarchical windows .
FROM Inp1 AS t LEFT OUTER JOIN Inp1 AS u A standard window specification may comprise a window ON IS_DESCENDANT_OR_SELF (u.Node , t.Node) 65 partition clause , a window ordering clause , and a window GROUP BY t . *

frame clause . Consider how one may annotate the Sales
table from with per - customer sales totals running over time :

III

as in 60

II - a

to
15

20

US 10,565,179 B2
7 8

LOWING tuples to ancestors of t.v. These terms are not to
SELECT Customer , Date , SUM (Amount) OVER W be mixed up with the preceding and following hierarchy
FROM Sales WINDOW WAS axes . Tuples on those axes , as well as tuples where v is PARTITION BY Customer ORDER BY Date
RANGE BETWEEN UNBOUNDED PRECEDING AND NULL , fall into category (d) and are always excluded from
CURRENT ROW 5 the frame . The default frame clause includes categories (a) ,
EXCLUDE NO OTHERS) (c) , and the current row itself . The handling of (c) tuples can

be controlled independently via the EXCLUDE clause .
The frame clause “ RANGE ... NO OTHERS ” is the Consider FIG . 3 , where one can apply a bottom - up

implicit default and could be omitted . Briefly put , the query hierarchical window to table Inp3 and compute x = SUM
is conceptually evaluated as follows : (1) the Sales are 10 (Value) like in Stmt . II - b from above (and reproduced here :
partitioned by Customer ; (2) each partition is sorted by Date ;
(3) within each sorted partition , each tuple t is associated SELECT Node , SUM (Value) OVER (HIERARCHIZE BY Node) II - b with a group of tuples relative to t , its window frame as FROM Inp1
determined by the frame clause , in this case : all sales up) .
t ; (4) the window function (SUM) is evaluated for that group
and its result appended to t . The frame is always a subse

of the current ordered partition . Note that tuples need The matrix indicates the relationships of the tuples . Since the quence current window uses the default frame clause , the frames not be distinct with respect to the ORDER BY fields . Tuples
in t’s frame that match in these fields are called peers or comprise exactly the < , < :, and 4 tuples . Summing over

them yields the x values shown to the right . Note that TIES . although Inp3 does not include the intermediate nodes For unary structural grouping , the windowed table will be B1 / C3 / C4 , the input values of C1 / C2 do still count into A1 , some collection of nodes (e.g. Inpl) ; that is , there is a NODE and likewise for D1 / D3 and the B2 tuple , as illustrated by the field whose values are drawn from a hierarchical base table
(e.g. HT) . One can extend the standard window specification data flow graph to the right . As said , unary grouping does not
with a new HIERARCHIZE BY clause specifying a hierar- 25 require all intermediate nodes to be present in the input . In

that , it behaves precisely like the alternative binary approach chical window . This clause may take the place of the based on an IS_DESCENDANT_OR_SELF join (Stmt . ordering clause behind the partitioning clause . That is ,
partitioning happens first as usual , and hierarchizing II - a) . For basic rollups , which are by far the most common
replaces ordering . While window ordering turns the partition type of hierarchical computation , the implicit window frame
into a partially ordered sequence , hierarchizing turns it into 30 clause does exactly the “ right thing ” -thanks to the defini tions of < and the PRECEDING / FOLLOWING concepts an directed acyclic graph derived from the hierarchy . One and it is hard to imagine a more concise and readable way can begin the discussion with a minimal hierarchical win
dow specification , which omits partitioning and the frame of expressing them in SQL .

Recursive Expressions . clause (so the above default applies) : Thus far , hierarchical windows are merely a shorthand ;
HIERARCHIZE BY v [BOTTOM UP TOP DOWN] they can equivalently be expressed through join - group

The clause determines the NODE field v , its underlying aggregate statements . Structural recursion , however , signifi
hierarchy index H , and the direction of the intended data cantly extends their expressive power . To enable recursive
flow (bottom up by default) , giving one all information expressions , one can recycle the SQL keyword RECUR
needed to define an appropriate < predicate on the partition : 40 SIVE and allow wrapping it around expressions containing

one or more window functions :
top - down : u < t : H.is - descendant (t.vu.v)

RECURSIVE [T] (expr) AS c bottom - up : u < t : H.is - descendant (u.v , t.v)

The notion of covered elements used informally above is This makes a field c of type T accessible within any
also needed . An element u is said to be covered by another 45 contained window function , and thus provides a way to refer
element t if no third element lies between them : to the computed expr value of any tuple in the window

frame . If c is used anywhere in expr , t must be specified
Rust . Ju'u < u ' < t . Eq . 1 explicitly , and an implicit CAST to t is applied to expr .

Using < :, one can identify the immediate < neighbors Automatic type deduction in certain cases is a possible
(descendants / ancestors) of a tuple t within the current par- 50 future extension , but it is not generally possible without
tition . Note that in case all hierarchy nodes are contained in ambiguity . The following additional rules apply : First , if
the current partition , the “ tuple u is covered by 1 ” relation expr contains one or more window function expressions of
ship is equivalent to “ node u.v is a child / parent of t.v ” . the form " expr ; OVER w ; " , all used hierarchical windows Wi
However , the general < : notion is needed because the current must be equal (same partitioning and HIERARCHIZE
partition may well contain only a subset of the nodes . The < : 55 clause , i.e. , NODE field and direction) . Second , the frame of
predicate helps one establish a data flow between tuples each window w ; is restricted as follows : only the covered
even when intermediate nodes are missing in the input . tuples (“ RANGE 1 PRECEDING ”) can potentially be

A tuple u from the current partition can be related in four included in the frame , and in particular EXCLUDE GROUP
relevant ways to the current tuple t : is enforced . That is , the frame clause of every window

60 function within expr effectively becomes : (a) u < t (b) t < u (c) u.v = t.v (d) neither of those
To reuse the syntax of the standard window frame clause

without any modifications , one may need to reinterpret three
concepts accordingly : PRECEDING tuples are those of This in particular ensures that the window frame will not
category (a) ; FOLLOWING tuples are those of category (b) ; 65 contain the CURRENT ROW , any TIES , or any FOLLOW
TIES are tuples of category (c) . In the bottom - up case , ING tuples . If any of those were contained in the frame , any
PRECEDING tuples correspond to descendants and FOL access to field c within expr would create a circular depen

35

u < : t :

RANGE BETWEEN 1 PRECEDING AND CUR
RENT ROW EXCLUDE GROUP

US 10,565,179 B2
9 10

dency . Third , the field c may appear only within one of the
window function expressions expri ; say , in combination with SELECT Node , expr FROM Inp2

WINDOW td AS (HIERARCHIZE BY Node TOP DOWN) , an aggregate function AGG : bu AS (HIERARCHIZE BY Node BOTTOM UP)

IV

5

15

or

RECURSIVE T (... AGC (expr ') OVER W. .)
AS c (1) in FIG . 4 is the familiar rollup . Besides SUM , the

operation in (1a) of FIG . 1 could e.g. be AVG , MIN , MAX , Mentioning c outside a window function would implicitly COUNT (cf. Ex . 7) , EVERY , ANY , or ARRAY_AGG to access the current tuple , which is forbidden , whereas accord simply collect all values in an array . SQL's DISTINCT and ing to SQL's rules mentioning c within expr ' implicitly 10 FILTER constructs add further expressiveness . E.g. , in a bill accesses the frame row (FRAME_ROW) , which thanks to of materials one may count the distinct types of subparts of
the restrictive window frame can only be a covered tuple for a certain manufacturer that each part is built of :
which the c value is available . While this standard behavior
is what is usually intended and quite convenient , SQL has a COUNT (DISTINCT Type) FILTER (WHERE
way to override the implicit frame row access . One could for Manufacturer = ' A ') OVER bu
example refer to the current tuple even within AGG by using (2) in FIG . 4 is a top - down counterpart to (1) ; it yields the
a so - called nested window function : effective weights by multiplying over all tuples on the root

path . (2a) uses a hypothetical PRODUCT aggregation func
AGG (... VALUE_OF (C AT CURRENT tion , which is curiously missing from standard SQL ; (2b)

ROW) ...) OVER W 20 works around that via recursion , aptly taking advantage of
This is prohibited for c , but it is allowed any other field . FIRST_VALUE . To understand the example , note that for a
Returning to diagram 300 of FIG . 3 , one can now equiva top - down recursive computation , the window frame can be

lently apply the recursive rollup expression of Stmt . Il - c , either empty - making FIRST_VALUE yield NULL
X = RECURSIVE INT (Value + SUM (x) OVER W) AS x , to contain one covered ancestor . In the bill of materials the
Inp3 . The window frames are now restricted to the covered 25 weight could be the part’s multiplicity (“ how often ? ") within
< : tuples . Since Inp3 is already ordered suitably for bottom its super - part ; here the product would tell that the part often
up evaluation - i.e . postorder — one can fill in the x result appears in total in the assembly .
column in a single pass and always have the x values of the (3) is a variant of (1) summing over only the covered
frame rows at hand . tuples . In (3b) one can access only Value but not the actual

Even with non - recursive expressions , hierarchical win- 30 expression result (thus , its type t can be auto - deduced) ; still ,
dows are already an attractive alternative to verbose join the semantics are those of recursive evaluation . As Inp2

happens to contain all HT nodes , the cover relation < : group - aggregate statements . Consider the opening query I - a
from above (and reproduced below) . becomes equivalent the IS_CHILD predicate as noted

earlier ; so the same could as well be achieved via join
35 group - aggregate .

WITH Inp1 AS (4) are variants of weighted rollup . (4d) is mostly equiva
SELECT p.Node , s.Amount AS Value lent to (4b) , but brings it into a form similar to (4c) using a

FROM HT P JOIN Sales s ON p . Node nested window function to access the Weight of the current WHERE p.Type = ' type A ') row . In general , such weighted rollups cannot be performed SELECT t . * , SUM (u . Amount) AS Total
FROM HT t LEFT OUTER JOIN Inpl u 40 without (structural) recursion . However , a non - recursive

ON IS_DESCENDANT_OR_SELF (u . Node , t.Node) workaround that sometimes works is to “ multiply out the
WHERE LEVEL (t.Node) < = 3 expression according to the distributivity law and use two
GROUP BY t . * separate computations : First (2a) , yielding absolute weights

w for each tuple , then SUM (w * Value) bottom up .
SQL allows aggregation to be restricted by a FILTER . 45 (5) constructs a path - based Dewey representation of the

This handy feature allows one to state this query as follows : hierarchy using the same technique as (2) : it builds a string
from the ID values on the root path , e.g. / A1 / B1 / C1 ' for C1 .

(6-9) compute properties of the data flow graph over the
input table . As Inp2 contains all nodes of HT , they are equal SELECT * FROM 50 to the node's (6) level , (7) subtree size , (8) subtree height , SELECT HT . * ,

SUM (Amount) FILTER (WHERE Type = ' type A) OVER W and (9) child count . In general (7) gives the size of the
window frame and (9) the number of covered tuples .

WINDOW W AS (HI RARCHIZE BY Node) Finally (10) , if one needs to go beyond the capabilities of
) WHERE LEVEL (Node) < = 3 SQL's aggregate functions and expression language , one

55 can use ARRAY_AGG to collect data from the covered
This saves one join over Stmt . I - a . Note the outer join may tuples and pass it to a user - defined function . This way

yield tuples where Amount is NULL , but these are conve arbitrarily complex computations can be plugged in .
niently ignored by SUM . Altogether there are three points Structural Grouping Operators .
where one could add WHERE conditions : a priori (before Provided herein are two logical operators for evaluating
windows are formed) , as FILTER (restricting the computa- 60 hierarchical computation queries , one for unary and one for
tion input but not affecting the table) , and a posteriori binary structural grouping .
(restricting the output) . For the latter one must nest two Binary Grouping .
selections , as SQL currently has no HAVING equivalent for Binary structural grouping queries typically feature an
windowed tables . inner or left outer join on a hierarchy axis such as IS_DE

FIG . 4 shows further meaningful expressions , including 65 SCENDANT , and subsequent grouping of the outer side .
non - recursive variants where possible , each based on either They are initially translated into plans of the form (• B * . ')
a bottom - up or a top - down hierarchical window on Inp2 : with a suitable hierarchy predicate . Due to the efficiency

I - a

= s.Product

I - b

FROM HT LEFT OUTER JOIN Sales S ON Node s.Product

US 10,565,179 B2
11 12

issues noted above , the query optimizer to rewrite this encapsulated in Î's definition . The recursion is guaranteed
pattern into a single combined operator . to terminate , since < is a strict partial order .

The binary grouping operator N consumes two input For hierarchical windows , one can define < as above in
relations { T , } and { 12 } o given by expressions e , and en , terms of H.is - descendant , which is indeed irreflexive , tran
where { } o denotes a bag and T , and T2 are tuple types . Let 5 sitive , and asymmetric . One can now translate the two
be a join predicate , x a new attribute name , and f a scalar statements II - c and III above into plans based on Î .

aggregation function { tz } h ? N for some type N. The
V is defined as xif (Inp1) , f (t , X) = t.Value + SEXU.X II - C

III 10

UUEX

35

e , Nez : = { tº [x : flelo]] Eer } u Îx : f (Inp2) , f (t , Y) = t.Value + Exexu . Weight * u.x
where e [et] : = { uluEe (u , t) } . It extends each tuple tee , by FIG . 5 shows definitions of f corresponding to the SQL
an x attribute of N , whose value is obtained by applying expressions of FIG . 4. As the examples attest , RECURSIVE
function f to the bag e [et] , which contains the relevant input expressions translate almost literally into suitable f (t , X)
for tuples t . formulas .
As an example , the plan 1 , xf (Outl [t] * us , Inp1 [u]) 15 Urnary Versus Binary Grouping .

from above can be rewritten into Out1 Inp1 , using the Theoretically , there are little restrictions on the function f
same definitions of f and < . Beyond optimizing I (• B.) of and W ; the practical limit is what SQL's expression
plans , one can also use X to evaluate hierarchical windows language allows one to write . It is , however , useful to
with non 1 - RECURSIVE expressions . They are translated into distinguish a class of common “ simple ” functions that can
binary self - grouping er fe , with 6 - is - descendant - or - self 20 establish a correspondence between Îr (e) and binary self
in the bottom - up and = is - ancestor - or - self in the top - down grouping elle . An aggregation function { T }) ?N for use
case (modulo handling details of the frame clause and with T is simple if it is of the form
EXCLUDE) . Further optimizations are possible from there .
Consider Stmt . I - b , which has a condition H.level (v) s3 on
the output that does not depend on the computed sum x . 25 acce ; g (x) : = g (u) ,
Select operators Op of this kind can typically be pushed
down to the left input of N. The FILTER Y can be handled
by for pushed down to the right input . Such rewriting from where function g : T- N extracts or computes a value from
OpeN xifre) to ope) Xx : fº . ov (e) will always pay off , each tuple , and is a commutative , associative operator to
especially when the selections can be pushed down even 30 combine the N values . This largely corresponds to what
further . SQL allows for expressing in the form AGG (expr) where
Unary Structural Grouping . AGG is a basic aggregate function such as SUM , MIN ,
To evaluate recursive expressions on a hierarchical win MAX , EVERY , or ANY without DISTINCT set quantifier .

dow , a new operator is provided herein : unary structural (A further extension to arbitrary FILTER (WHERE O) con
grouping . Since the concept as such may be useful beyond ditions is possible .)
hierarchical windows , one may define it in terms of an One can define a structural counterpart as follows : A
abstract < comparison predicate on the tuples of its input structural aggregation function tx { To [x : N] } ? N for use
relation , which drives the data flow . It is required to be a with Î is simple if it is of the form
strict partial order : irreflexive , transitive , and asymmetric .
The operator arranges its input in an directed acyclic graph 40
whose edges are given by the notion of covered tuples str – accx : ; g (1 , X) : = g (1) Ou.x. (see Equation 1 above) . On that structure it evaluates a
structural aggregation function f , which performs an aggre
gation - like computation given a current tuple t and the
corresponding bag of covered tuples . In other words , a In FIG . 5 , functions 1b , 2b , 6b , and 7b are in fact simple .
variable , pseudo - recursive expression f is evaluated on a To obtain the correspondence , consider R : = Î

If the acyclic digraph imposed by < one is a treei.e . , there recursion tree predetermined by < .
Let expression e produce a relation { T } y for some tuple are no undirected cycles — the following holds for all tER :

type t ; let < be a comparator for t elements providing a strict
partial ordering of e’s tuples , x a new attribute name , and f 50
a structural aggregation function tx { to [x : N } } ? N , for t.x = g (1) U.x = g (t) g (u) = g (u)
some scalar type N. The unary structural grouping operator
Î associated with < , x , and f is defined as

where ust : u < tVu = t . The simple form of the aggre
Îx : f (e) : = { to [x : rector (0,1)] l / Ee } b , where 55 gation function allows one to “ hide ” the recursion through

the < predicate and obtain a closed form of the expression
for t.x based on the original input e . One can thus state the recr : f { (e , t) : = f (t , { u0 [x : recx : f (e , u)] luEe [< t] } y) . following correspondence :

One can reuse the symbol I of common unary grouping
for Î . Both are similar in that they form groups of the input 60 (e) .

tuples , but does not “ fold away ” the tuples . Instead , it Note that this equivalence will not hold if there are multiple
extends each tuple t in e by a new attribute x and assigns it chains u < : ... < : t connecting two tuples u < t in the input e .
the result of “ rec ” , which applies f to t and the bag of its In this situation , Î would indirectly count u multiple times
covered tuples u . The twist is that each tuple u in the bag into t’s result , while N would not . This is due to the
already carries the x value , which has in turn been computed 65 particular semantics of structural recursion , which simply
by applying rec to u , in a recursive fashion . Thus , while f propagates x values along the < : chains . When I is applied
itself is not recursive , a structurally recursive computation is in the hierarchical window setting , the equivalence holds as

HEX

45
x : str - ace (e) .

HER [< : t] UEP [< r] uee [st]

e = = Î x - str - accresce x : acco , &

15

to
20

012 e12

0
x : f are now x : f

25

for t Ee

1
2
3
4
5
6
7

else

US 10,565,179 B2
13 14

< : is derived from the acyclic tree structure of H , if it is Provided herein are four specialized operators : hierarchy - Î
additionally made sure there are no duplicate v values in the and hierarchy- N , each in a top - down and a bottom - up
current window partition . The correspondence is then useful variant . The top - down variants require the inputs to be
in both directions and enables significant optimizations : As sorted in preorder , the bottom - up variants in postorder ; this
many typical non - recursive hierarchical window computa- 5 order is retained in the output . Their pseudo code is pre
tions (and sometimes even join - group - aggregate queries) fit sented in the following . For ease of presentation , concepts
the form of acc , one can rewrite their initial translation ere from relational algebra level are directly used : An abstract
into Î (e) . As assessed elsewhere herein , even when e is just data type Aggregate represents a tuple bag X and supports
a table scan , the current ? algorithms outperform w due to self - explanatory operations clear () , add (u) , and merge (X ') .
their simpler logic (e need not be evaluated twice) and 10 During execution of e , hierarchy- N e , or hierarchy - Î (e /) ,
effective pipelining . Vice versa , if one can algebraically one can create one Aggregate instance X per tuple teel ,
transform a given RECURSIVE expression into the form of assemble the appropriate input tuples in it and feed it into the
str - acc , M is an alternative to Î ' If a WHERE condition o on aggregation function f (X) or f (t , X) to obtain t.x. In the
the output or a FILTER condition y is applied 0 (0) Nov (e) actual query - specific implementation of an Aggregate and its
will usually be superior to opt , (e)) , as already noted operations , significant optimizations may be possible
above . Finally , the current manual rewrite of Stmt . I - a to I - b , depending on f .
where one join is saved , demonstrates an advanced optimi Unary Hierarchical Grouping .
zation from e Nez into T : By “ merging " the two inputs into Alg . 1 shows the two variants of hierarchy - Î .
€ 12 , one could (without going into details) rewrite e , nez

and then I (2.2) , which pays offife 2 can be further
simplified , e.g. , when ei and ez were very similar in the first Algorithm 1 : hierarchy - Ix : f ' (e)
place . Input : e : { T } h , where t has a v : NodeH field ; Efficient algorithms for X and Î e ordered by v in post- / preorder (bottom up / top down)
described . Output : { t } , where i : = T o [x : N] ; same order

S : Stack ([v : Node , u : t ' , X : Aggregate (t)]) [K - 1] X : Aggregate (Th)
A general approach for M is to treat o as an opaque join if S = () A S.top () . v = t.v predicate with partial order properties , and stick to a generic skip // reuse previous X sort - based join - group - aggregate technique : sort both inputs

e , and ez according to 0 , then use a sort - based left outer join 30 X.clear ()
(collect input) * e [t] 04.2 [u] , and then sort - based unary grouping T. ; xf to to [x : f (t , X)] compute the result . This requires a non - equi join operator S.push ([t.v , t ’ , X)]

that deals correctly with the fact that some tuples may be * (collect input)
incomparable through 0 , and retains the order of e . Since no while S = (A - H.is - before - pre (S.top () .vt.v)

[. , u , Xu] < S.pop () further assumptions are made on e , and e2 , a basic nested X.add (u) // leverage X , if possible !
loops join can be used , making the runtime complexity an * (collect input)
unattractive O (le , l * le2 !) . An index - based nested loops join while S = O AH.is - before - post (S.top () .v , t.v)
could not be used since there generally is no index on the S.pop ()

given inputs only the hierarchical base table HT is for [v , u , X ,] E upper part of S where v = S.top () . v
indexed . This approach can be referred to by “ W - T ” . It is X.add (u) // leverage X , if possible !
usually the only option when an encoding such as PPPL
from above is hand - implemented in an RDBMS without In a single pass through the input e , they effectively issue
further engine support . the following call sequence for each tuple t :

[hierarchy - W -] 45 X.clear () ; X.add (u) for each u < : t ; yield to [x : f (t , X)] where
When N and Î are used for hierarchical computations “ yield ” outputs a result tuple . The stack S (line 1) manages

previously processed tuples u and their computation states , and 0 and < operate on NODE fields , the underlying
hierarchy index H can and should be leveraged . A big i.e. , u.x and the corresponding aggregate X for potential

reuse . For each tEe (1 . 3) . The algorithm can first check
improvement over N - I is to use a hierarchy merge join , a 50 whether t.v matches the previous node ; in this case , the
sort - based structural join operator with a time and space algorithm can reuse X as is . (This step can be omitted if v
complexity of O (le , l + lezl + le , Mel) . A hierarchy merge is known to be duplicate - free) . Otherwise , the “ collect
join algorithm can be provided that consumes preorder input ” block (1. 8) maintains S and collects the tuples X
inputs , joins on the descendant axis , and retains the order of covered by t . The algorithm can then compute f (t , X) ,
either e , or e , in the output : It can be considered the state of 55 construct and yield an output tuple and put it on S together
the art and a natural baseline for the native Î and N algo with X for later reuse .
rithms . Note that even though more sophisticated join tech Regarding “ collect input ” , consider first the bottom - up
niques have been studied in the XML world , most are not case (postorder input) : Previously processed tuples on S , if
applicable to the current setting which is working on arbi any , are postorder predecessors and as such on the descen
trary inputs rather than the base table HT . 60 dant and preceding axes relative to t.v , in that order when

[hierarchy - I , hierarchy - W] viewed from the top of stack (whereas upcoming e tuples
While the mentioned approaches can keep implementa will be on the ancestor or following axes) . Therefore , the

tion efforts low by reusing existing operators , they cannot covered tuples X required for t are conveniently placed on
evaluate the structural recursion of Î , and they suffer from the upper part of S. The while loop (1. 11) collects and
the efficiency issues noted above : all < join pairs rather than 65 removes them , as they will no longer be needed . Any
just the < : pairs are materialized and processed during query remaining S entries are preceding and irrelevant to t , but
evaluation , and results from covered tuples are not reused . might be consumed later . In the top - down case (preorder

8
9

10
yield t '

bottom up :
11

35 12
13

top down :
14

S = 0
15
16
17
18

40

vl : v2 e2

break 45
46
47
48
49

1

case .

v1 : v2 e2

:

1
2 :

???

US 10,565,179 B2
15 16

input) , S may , when viewed from the top , contain obsolete -continued
preceding tuples , then relevant covered ancestor tuples to
add to X , then further non - immediate ancestors which may Algorithm 2 : e , hierarchy M ,
still be needed in a future iteration . The while loop (1. 14)
first dismisses the preceding tuples . If there is an entry left 5 if t?.V1 = tz.V2 V H.is - before - pre (tj.V1 t2.v2)
on top of S (1. 16) , it is a covered ancestor u < : t , and the for X.add (t2)
loop (1. 17) collects it and further tuples below with equal v S3.push (t2)

(if not distinct in e) . Due to the tree - structured data flow , pp + 1

there cannot be any further covered tuples . Unlike in the
bottom - up case , the algorithm cannot pop the covered 10 The bottom - up variant (postorder inputs) joins on O = is
entries , since they may still be needed for upcoming fol descendant - or - self , the top - down variant (preorder inputs)
lowing tuples (e.g. , a sibling of v) . on O = is - ancestor - or - self , with left outer join semantics .

Note that explicit checks are not needed for < : in this Other axes (child / parent and the non- “ self ” variants) as well
algorithm the covered tuples are identified implicitly . Note as inner joins could be handled with minor adaptions . Both
also that in 1. 13 and 18 , the full X , state corresponding to 15 inputs are sequentially accessed : The outer loop (1. 5) passes
u.x is available to the add () operation . This state may be through e1 , whereas e , is accessed via an iterator p . S2 needed for non - trivial computations where u.x alone does stashes processed ez tuples that may still become relevant as not provide enough information . In case it is not needed , one join partners . S , collects processed nodes v , from e , with the need not keep X on S at all . Likewise , one may include on S only the fields of u that are actually accessed by f to 20 corresponding aggregates X of 6 - matched e , tuples for
minimize memory consumption . reuse . i refers to an S2 position and is needed in the top - down

Binary Hierarchical Grouping .
Alg . 2 shows hierarchy- V. For each t , Ee (1.5) one can again either reuse X from a

previous equal node (1. 6-9) or assemble X via " collect
25 input " , before producing an output tuple and memoizing X

Algorithm 2 : e , hierarchy : 8 on S ,
In the bottom - up case (postorder inputs) , “ collect input ”

Input : e1 : { ti } h and e2 : { 12 } b , where t ; has a V ; : Node field first (1. 14) removes all covered descendant entries from S , e ; ordered by vi in post- / preorder (bottom up / top down)
Output : { T ; 0 [x : N] } h ; same order as e and merges their aggregates into X. This operation is the key

p : int , initially p = 0 // position in ez (iterator) 30 to effectively reusing partial results as motivated above . The
Si : Stack ([v : NodeH , X : : Aggregate (T2) , i : int]) following loop (1. 17) moves relevant o matches on the
S2 : Stack (T2) descendant - or - self axis from S2 to X , and the final loop (1 . Aggregate (T2)
for ti Ee 23) advances the right input ez up to the first postorder

if S1 = () AS .top () .v = t1.v? successor of V1 . Any encountered t2 is either a postorder
[. , X , .] Sj.top () 35 predecessor or V2 = Vi ; if t , is also a preorder successor , it is yield t ; o [x : f (X)] a descendant . O matches are added straight to X (1 . 28) , continue

X.clear () preceding tuples are stashed on S2 (1. 30) .
(collect input) * The top - down case (preorder inputs) is more involved : S ,
yield t ; o [x : f (X)] and S2 entries may be consumed multiple times and there S1.push ([t?.V1 , X , IS21])

* (collect input) 40 fore cannot be immediately popped from the stacks . S , and
while S , + () A - H.is - before - pre (Sl.top () .V1,11.V1) S2 are maintained in such way that they comprise the full

[. , X , .] < S1.pop () chain of ancestor tuples from e , and e , relative to V ;. Field
X.merge (x1) i on S , establishes the relationship to Sz : For an S , entry [v , while S2 + () X , i] , the bag X incorporates all & matches for v , corre t2 = S2.top
if - (tj.V1 = tz.V2 V H.is - before - pre t1.V1 t2.v2)) 45 sponding to the S2 range [0 , i [(i.e. , from the bottom to

position i , exclusively) . If there is another S , entry [v ' , X ' , i ']
S2.pop () below , then v ' is the covered ancestor of v , and X consists
X.add (t2)

while 7 e2.size () exactly of X ' plus the S2 tuples at positions [i ' , i [. Maintain
t2 = e3 [p] ing these invariants requires four steps : First (1. 32) , one can
if H.is - before - post (t1.V1 , t2.V2) 50 pop obsolete preceding entries from S ,. Second (1. 35) , any

remaining entry on S , is an ancestor , so one can reuse its X ' . if t?.V1 = tz.V2 V H.is - before - pre (tj.V12t2.v2) Third (1. 38) , one can add to X any additional ancestors tz X.add (t2) that were not already in X ' (starting from position j) . Then ,
S2.push (t2) the remaining S , tuples from positions j to top are preceding

p < p + 1 55 and therefore obsolete (1. 41) . Finally (1. 42) , one can * (collect input) — top down :
while S , # () A H.is - before - post (Sy.top () .V1 , t1.V1) advance e , up to the first preorder successor of V1 , adding

S1.pop () ancestor - or - self tuples to X and S , but ignoring preceding
j = 0 tuples .
if S1 + () Recall from above that hierarchy - It is used for RECUR [. , X , .] - S .top () 60 SIVE expressions on hierarchical windows and hierarchy X.merge (x4)
while j = S2.size () A H.is - before - post (t1.V1 , S2 [j] .v2) W or non - recursive expressions (through self - grouping

X.add (S2 [j]) eNe) as well as certain classes of join - group - aggregate
j « j + 1 statements . Handling the details of hierarchical windows pop Sz [j] , ... , Sz.top () i.e. , different variants of frame and EXCLUDE clauses while p = ez.size ()
tz e3 [p] 65 requires further additions to Alg . 1 and 2 ; in particular ,
if H.is - before - pre?t1.V1 , t2.V2) tuples with equal v values must be identified and handled as

a group .

4
5
6
7
8
9

10
11
12
13

X :

bottom up :

1

break

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

P

break

else

32
33
34
35
36
37
38
39
40
41
42
43
44

10

to

15
X + t.x .

US 10,565,179 B2
17 18

Inline Computations . pipelines ; thus , there is minimal friction loss through the
The following optimization is crucial to the practical algebra , and one has effective pipelining .

performance of W and I ' : While the pseudo code of Alg . 1 For the hierarchy table HT , the schema from FIG . 1 was
and 2 explicitly collects tuples into some bag X , one can used , where each tuple has a unique CHAR (8) ID and a
often avoid this buffering altogether by evaluating f on the 5 TINYINT Weight randomly drawn from the small domain
fly . To this end the query compiler has to generate specific [1,100] . The table size ?HT) was varied from 103 to 10 to
code in place for the Aggregate operations : also cover loads that by far exceed L3 cache capacity : at 10 % ,

1 X.clear () , X.add (u) , X.merge (l ') , 4 HT and its index use ~ 218 MB . For the hierarchy index one
(f (t , X) . can compare two alternatives : [static] refers to the simple

PPPL labeling scheme from above , which does not support Consider Expr . 1b from FIG . 5 : The actual state of X updates but is extremely fast and thus attractive for read would be a partial sum x : N , and the operations boil down mostly analytic scenarios . [dynamic] refers to the BO - tree
indexing scheme , where each Node is linked to two entries

1 x = 0 , x = -x + 4.x , x -x + X'x , and 4 in a dynamic B + -tree structure . The suggested configuration
with mixed block sizes and gap back - links was used . It is a

This works with both Î and X. good fit for dynamic OLTP scenarios , although the support
As a structurally recursive example with Î , consider the for updates comes at a cost of computationally non - trivial

Expr . 4c : here the state remains the same but becomes 0 (log | HTI) query primitives and increased memory traffic .
X < x + u.Weight * u.x . 20 Other dynamic indexing schemes will of course show dif

Eliminating X like this works whenever either the scalar ferent characteristics ; still , comparing dynamic vs. static
x value itself or some other data of O (1) -bounded size can gives one a good hint of the overhead to expect from
adequately represent the required information of a sub accessing an external , dynamic index structure . All experi
computation . This roughly corresponds to the classes of ments use a generated forest structure Regular (k) where
distributive (e.g. COUNT , MIN , MAX , and SUM) and 25 each tree is given m = 104 nodes and each inner node exactly
algebraic aggregation functions (e.g. AVG , standard devia k children . This way increasing | HT | does not affect the total
tion , and “ k largest / smallest ”) . But then there are SQL height h . To assess the influence of the hierarchy shape , very
expressions , such as ARRAY_AGG or DISTINCT aggre deep (k = 2 , h ~ 13.2) trees to very shallow (k = 32 , h – 3.6) trees
gates , for which one can have to actually maintain X or some were compared .
state of size (XI) . Consider COUNT (DISTINCT Weight) : 30 Hierarchical Windows .
To evaluate this using either Î or the Aggregate has to To assess the bare performance of hierarchical windows ,
maintain a set of distinct Weight values . Still , the current Stmt . IV can be run with various expressions from diagram
mechanism for reusing sub - computations provides certain 400 of FIG . 4 on a pre - materialized table Inp . Queries Q1
optimization opportunities ; e.g. , using an efficient set union and Q2 compute Expr . la bottom up and top down , respec
algorithm for operation 3 35 tively and represent non - recursive computations . Q3 com

Complexities . putes Expr . (4c) and represents a structurally recursive
With this in mind , consider the runtime and space com computation . Q4 computes COUNT (DISTINCT Weight)

plexities . One can assume the is - before primitives to be in bottom up and features a comparatively expensive duplicate
O (1) for most static indexes and in 0 (log ?HTI) for elimination . For each query one can measure alternative
common dynamic indexes , | HT | being the hierarchy size ; 40 plans . All plans work on the same input Inp , which is
either way , they are not affected by the input sizes of În and prepared a priori as follows : One can select the contents of
W. Furthermore , if the computation is done inline as HT (thus , \ Inpl = | HTI) , add a randomly populated INT Value
discussed , IXI and all operations on X are actually in O (1) . field , project the required fields and sort the data in either
Under this assumption , the time and space complexity is preorder or postorder as needed by the respective plan . The
O (lel) for hierarchy - Î and 0 (le , [+ lezl) for hierarchy - . If 45 measurements thus show the bare performance of the
the computation can not be inlined , one can fall back to respective operators without any pre - or post - processing — in
actually collecting the respective input tuples in the X bags ; particular , without sorting — but including materialization of
this means the current algorithms degenerate to plain hier the query result . One can compare the following plans ,
archy merge join algorithms and their time and space where applicable : (a) the straight translation into hierarchy
complexities become (le , [+ lezl + le , Mez !) . To obtain these 50 Î (Inp) ; (b) the alternative hierarchy - X (Inp , Inp) , to assess
results , an amortized analysis is needed to argue that the the overhead over hierarchy - ? ; (c) the hierarchy - X - I
inner loops of the algorithms do not contribute to the overall approach above with a preorder - based hierarchy merge join ;
complexity : Regarding hierarchy - Î , observe that the outer (d) the X - T approach with a nested loops join . As explained
for loop pushes each e tuple once onto S (so Slslel) , above , (c) is a natural baseline , whereas (d) will often be the
whereas the inner while loops remove one S entry per 55 only option with hand - implemented encodings . One can
iteration ; their bodies can thus be amortized to the respective furthermore consider two plans based on a semi - naive
pushes . Regarding hierarchy - Y , the loop bodies of 1. 23 least - fixpoint operator , which mimic SQL's recursive CTEs :
and 1. 42 are executed lezl times in total , regardless of the (e) iterative uses repeated IS_CHILD hierarchy merge joins
outer loop ; at most le , and lezl tuples are pushed onto S , and to first compute all < pairs bottom up (Q1) or top down (Q2)
S2 , respectively ; and since the other loops pop either an S , 60 and then performs the actual computation using sort - based
or S2 entry within each iteration , a similar argument applies . grouping . (f) iterative * additionally applies sort - based “ early

Evaluation . grouping ” within each iteration . This gives one a hint of the
The algorithms above by design fit into an execution performance to expect from an exceptionally well - optimized

model which features a push - based physical algebra — by RCTE or from a hand - crafted iterative stored procedure .
simply leaving out the outer for loops . Modern engines such 65 One can commonly see such procedures in real - world appli
are able to translate these algebra expressions into efficient cations that still rely on trivial parent / child tables (known as
machine code with no visible operator boundaries within adjacency list model) . However , (e) and (f) are no general

1

5

15

US 10,565,179 B2
19 20

solutions ; they work in the setup only because all HT nodes nodes involved in is - before checks are usually close in terms
are present in Inp . Note also that plans (b) (f) work only for of pre / post distance , therefore the relevant BO - tree blocks
non - recursive computations . will be in cache . hierarchy - X - T and iterative are much more

FIG . 6 is a diagram 600 that shows the results , normalized sensitive to | HT | due to their growing intermediate results .
with respect to the processed elements (Inpl . The red line Note that the above experiments assess only e , ez
indicates the speed of tuple - by - tuple copying a precomputed where e , Fe2 , i.e. , a unary hierarchical window setup . One
result table as the physical upper bound (~ 37.6M / s) . In Q1-3 can also conducted measurements where e zez with varying

le , and lezl sizes . However , the result was found to be with static , Î is remarkably close to this bound (~ 25.4M / s ,
or 67 %) . That non - recursive computations (Q1) using Î are 10 e) of completely in line with the complexity O (le l + lezl + le ,
not slower than recursive ones (Q3) comes at no surprise Sorting .
since the algorithm is identical . For both Î and , the Being order - based , hierarchy - Î and hierarchy - require
top - down algorithms (Q2) are slightly slower than the pre- or post - ordered inputs . It is up to the cost - based
bottom - up algorithms (Q1) , as they cannot dismiss covered optimizer to provide them by employing (a) explicit Sort
tuples as early and thus inherently issue more index calls . operations via is - before ; (b) ordered hierarchy index scans

on the base table HT to establish the order in the first place ; The duplicate elimination of Q4 is costly — both ÎY and (c) order - preserving operators such as hierarchy merge join
become roughly 3x to 4x slower over the trivial arithmetics and the ÎN to retain the order once establishedConsider
of Q1-3 . When comparing eNe to f ' (e) over all queries running Expr . 2b from FIG . 4 directly on HT . In the
Q1-4 , one can see the latter is on average around 32 % faster . 20 bottom - up case , one can compare e , = 1 " (HTpost) on an
The overhead of binary grouping stems from evaluating e already post - ordered copy of HT , just like in Q1 ; ez = Î
twice (which in this case is a table scan) and from the extra (Sortpos : (HT)) , a full sort ; ez = 1 ' (IndexScanpose (HT)) , which
index calls needed to associate e , and ez tuples . hierarchy accesses HT through a hierarchy index scan ; and (4 = ÎN
X - T is significantly slower than Y , mostly in bottom - up (Rearrangepos (HT)) ; mutatis mutandis in the top - down case .
Q1 (e.g. -11x slower at k = 2) but also in top - down Q2 (~ 3.5x 25 The Rearrange operator consumes an already pre - ordered

HT copy and employs a stack - based structural sorting algo at k = 2) ; the gap grows with the hierarchy height . This rithm similar to Î ; its advantage is that it allows limited confirms the known " groupjoin advantage ” also for the pipelining
hierarchical case in line with the reports on hash - based From the results in diagram 600 of FIG . 6 , one can equi - groupjoins . hierarchy - * - T is somewhat handicapped 30 observe that full sorting is less expensive than one may
at Q1 , as the hierarchy merge join algorithm that can be used expect (roughly 3x slower with static) , considering that the
is preorder - based ; as preorder is more natural to top - down algorithm is not multithreaded . Leveraging an index scan
computations , hierarchy - X - I performs noticeably better at also helps much . But most interestingly , the “ order - based
Q2 . Interestingly , hierarchy - X - T is not slowed down as sorting ” of Rearrange is greatly superior to a full Sort ,
much at Q4 vs. Q1 as the others ; apparently , the intermediate 35 especially in the bottom - up static case : Rearrange closely
join dominates the costs so that the subsequent processing approaches the perfect " speed of e ,! This is again explained

by pipelining effects and the favorable data locality in the friendly sort - based grouping does not matter much . Corre already preordered inputs . This means the bottom - up algo spondingly , the overhead over X is smaller at Q4 , though rithms are not restricted to postorder ; they could be applied
still noticeable . 40 to preorder inputs as well at only moderate extra costs . To a

The iterative solutions are generally slow . Early aggrega slightly lesser extent this also applies to the preorder - based
tion helps much in the bottom - up case , where iterative * even top - down algorithms . approaches hierarchy - X - I at ?HTI = 10 % . In the top - down Report Query
case , however , early aggregation does not help reduce the Having assessed hierarchical windows in isolation , one
intermediate result sizes , as IS_PARENT is an N : 1 join ; 45 can next look at a complete query , Q7 . To emulate the setting
here , the (minor) savings over iterative come from saved of Stmt . I - a from above , one can use | HT | = 104 and k = 8 , and arithmetic operations by reusing results of previous itera prepare a table Inp with only a subset of the hierarchy HT ,
tions . namely p % of its 8751 leaf nodes (randomly chosen) . At the

Regarding dynamic versus static indexes , the more com heart , Q5 performs a bottom - up rollup as Q1 , but addition
plex axis checks of the former are clearly noticeable ; espe- 50 ally (a) needs a join / union with the relevant output nodes of
cially in top - down Q2 , where inherently more axis checks HT , (b) computes the contribution in % of each node's X
are issued . Note the BO - tree is freshly bulkloaded ; in value to the parent's total , (c) carries 128 bytes of further
practice the performance of most dynamic indexes tends to payload through the computation , (d) outputs only the 3
further degrade from incremental updates . upper levels (584 nodes) , ordered in preorder , and visualizes

If one considers the hierarchy shape_deep k = 2 versus 55 the nodes ' positions to the user by Dewey - style path strings .
flat k = 32 one can see that iterative and iterative * are very Such additional " stress factors ” are commonly found in
sensitive — unsurprisingly , as their time complexity is pro real - world queries . An example result line may be [* / A1 /
portional to h — whereas I and Y are practically indifferent . B1 / C2 ' , 125 , 10 % , payload] , if the X value of A1 / Bl ’ is
The intermediate join result of hierarchy - IX - I is somewhat 1250. In SQL :
proportional to h , so it is also affected to some extent (factor 60
2-3) .

Increasing the hierarchy size | HT | should slow down WITH T1 (Node , ID , Payload , X) AS (
dynamic due to the (log (HTI) complexity of the index SELECT HT.Node , HT.ID , HT.Payload ,

SUM (Inp.Value) OVER (HIERARCHIZE BY HT.Node) primitives . However , for the chosen block - based BO - tree FROM HT LEFT OUTER JOIN Inp ON HT.Node = Inp.Node) , index this apparently does not matter much in practice : the 65 T2 (Node , ID , Payload , X , Contrib , Path) AS (
figures are practically indifferent to (HT) . One reason for this SELECT Node , ID , Payload , X ,
is the favourable data locality in the ordered inputs : the

10

US 10,565,179 B2
21 22

-continued the like , but this is merely syntactic sugar for GROUPING
SETS and again of limited expressiveness . The hierarchical

RECURSIVE (100.0 * X / FIRST_VALUE (X) OVER w) , table model relieves the user from dealing with the com
RECURSIVE VARCHAR (255) (plexities and limitations of a hand - implemented encoding . COALESCE (FIRST_VALUE (P) OVER W , ' ') || / || ID) AS

P , 5 Its abstract nature ensures that the provided constructs work
FROM T1 WINDOW a AS (HIERARCHIZE BY Node TOP with a multitude of indexing schemes on the query / update
DOWN)) performance spectrum . Moreover , its main concept of a SELECT Path , X , Contrib , Payload FROM T2

WHERE LEVEL (Node) < = 3 -- 0 NODE field encapsulating the hierarchy provides attractive
ORDER BY PRE_RANK (Node) syntax opportunities which was explored above .

Recursion in SQL .
The only two common RDBMS - level mechanisms for One can measure the following hand - optimized plans : working with recursively structured data are RCTEs and a . f ' (Rearrangepre (0 , (Sortpos (HTp) USortpos (Inp))))) (iterative or recursive) stored procedures . These mecha b . Î (Rearrangere (Sortpost (HTP) W x Sortpos . (Inp))) nisms afford generative recursion and are thus more pow

c . Map (* (* (Tx (Sortpre (HTp) XSortpre (Inp))))) 15 erful than the structural recursion of the RECURSIVE
d . Sort (Map (K (K (TX (HT . * Inp))))) expressions . But their power and generality also makes them
e . Iterative (HT , Inp) difficult to handle and optimize . With the optimization of
In all plans , op has been pushed down and is handled by linearly recursive CTEs with GROUP BY , directed graphs

an ordered index scan of HT . Plans a and b use the Î and can be considered , whereas the focus is specifically on tree
W operators . The outer Î handles both top - down compu- 20 structures . Unsurprisingly , the specialized algorithms easily
tations and preserves the desired preorder . For Plan c one outperform techniques for RCTEs . Also , the simple nature
can assume the hierarchical table model without the of structural recursion — where the recursion tree is prede
enhancements : It relies only on hierarchy merge joins , i.e. , termined — leaves more room for optimizations , as provided
the hierarchy - X - T approach . Lacking the syntax exten above . Aside from performance , one may ask whether
sions , a lot of manual “ SQL labour ” is involved : The upper 25 RCTEs are at least “ sufficient ” in terms of expressiveness ,
3 levels must be joined via two IS_PARENT joins and the i.e .: Can RCTE - based recursion with GROUP BY emulate
path strings built by hand (the two outer X and Map structural grouping ? Alas , all the attempts to phrase such a
operators in c / d) . For Plan d one can assume a hand computation in an iterative way starting at the < -minimal
implemented static PPPL - like labeling scheme . Lacking tuples , then sweeping breadth - first over the input via < : ̂ led
engine support , it can use only nested loops joins , i.e. , the 30 to very convoluted EXISTS subqueries . Also , GROUP BY
X - T approach . For Plan e , one can assume again the is forbidden in an RCTE definition to enable the semi - naive
adjacency list model and a hand - written stored procedure fix - point evaluation . Even if GROUP BY could be used , it
which does an iterative fixpoint computation (like iterative would not necessarily capture all relevant covered nodes
in Q1 / Q2) . Although Plans d - e are severely handicapped within each iteration . Thus , for the use cases , the computa
versus a - c , they are representative of the state of the art in 35 tional power of RCTEs is only of theoretical relevance .
real - world applications . Evaluating Aggregation Queries .

FIG . 6 shows the measured query throughput over vary Evaluating GROUP BY can be done using either sort
ing p . The biggest pain point in this query is the expensive based or hash - based methods . Like sort - based grouping , the
sorting of Inp , which could be alleviated through parallel operators require ordered inputs and are order - preserving .
sorting . Nevertheless , one can still see the merits of the 40 Group - join improves join - group - aggregate plans by fusing
proposed syntax and algorithms : Both I and I reasonably K and T. Consider the non - equi case , which is more com
handle the query , but the latter more naturally fits its binary parable to the hierarchy - X setting . Regarding ROLLUP ,
nature . Their advantage over plain hierarchy - X - T (c) is still one approach can use a dedicated single - pass operator that
visible , but less pronounced due to the damping effect of the reuses results of lower levels . It will be appreciated that
sorting . It is not surprising that Plans c , d , and e , besides 45 techniques for standard windowed tables cannot easily be
being unwieldy hand - crafted solutions , cannot hold up in adapted to the hierarchical windows due to their unique
terms of expressiveness and efficiency . Q7 is just one semantics .
example query typically found in the application scenarios . Hierarchy - Aware Operators .

Expressing Hierarchical Computations . Since XML data is inherently hierarchical and often
While some query languages such as MDX or XML / 50 stored in relational tables , there is a significant body of work

XQuery offer native support for hierarchical data and certain on querying native XML stores or XML - enhanced RDBMS .
computations , the goal is to remain in the world of SQL . Structural join operators resembling self - merge - joins lever
Prior to the hierarchical tables , a uniform data model and age an available (though hard - wired) hierarchy encoding
language for handling hierarchies in RDBMS was lacking . and maintain a stack of relevant intermediate results . Not all
Earlier solutions are therefore usually hard - wired to particu- 55 techniques from the XML world fit into the setting , however :
lar relational encodings , which largely dictate the computa Some of the more sophisticated join operators were designed
tions that can be expressed : On the low end is the trivial to work directly on an indexed XML document . This enables
adjacency list model based on foreign key references to advanced optimizations such as skipping . In contrast , the
parent nodes , where recursion (see below) is required even current operators are usually applied to arbitrary input tables
for simple tasks . More sophisticated path- or containment- 60 with a NODE field (e.g. , Inp1) rather than the hierarchical
based encodings alleviate many tasks by allowing one to table (e.g. , HT) itself . As indexing Inpl on the fly seems
replace recursion by hierarchy joins , but computations are infeasible ; only HT's index was relied on , which renders
then limited to what join - group - aggregate statements can do . many of the optimizations inapplicable . While one could e.g.
Another common " scheme ” is the leveled model , where a adapt Staircase Join for cases where the computation runs
denormalized table encodes a hierarchy with a fixed number 65 directly on HT , this would benefit only a limited number of
of homogenous levels . Targeting this model in particular , queries . Beyond binary structural joins , powerful tree pat
SQL has a ROLLUP construct for simple sums , counts , and tern matching operators (e.g. , twig joins) were proposed in

a

US 10,565,179 B2
23 24

the XML context ; but these are beyond the requirements for computer programs running on the respective computers and
handling hierarchical data in RDBMS . having a client - server relationship to each other .

Expressing hierarchical computations in RDBMS has These computer programs , which can also be referred to
always been severely impeded by data model and language as programs , software , software applications , applications ,
issues , and even when possible , convoluted RCTEs or 5 components , or code , include machine instructions for a
procedure calls rendered an efficient evaluation very diffi programmable processor , and can be implemented in a
cult . One can resolve this situation by exploiting the oppor high - level procedural language , an object - oriented program
tunities of the hierarchical table model in terms of expres ming language , a functional programming language , a logi
siveness and engine support . The NODE type and SQL's cal programming language , and / or in assembly / machine
windowed tables turn out to be a natural fit . Together with 10 language . As used herein , the term “ machine - readable
structural recursion , a useful class of computations can be medium ” refers to any computer program product , apparatus
expressed concisely and intuitively . For their evaluation an and / or device , such as for example magnetic discs , optical
order - based , index - assisted structural grouping operators is disks , memory , and Programmable Logic Devices (PLDs) ,
proposed . They rely entirely on pre- and post - order primi used to provide machine instructions and / or data to a pro
tives and thus work with a multitude of indexing schemes . 15 grammable processor , including machine - readable
The current experiments confirm their merits over conven medium that receives machine instructions as a machine
tional approaches , which result from their robust linear readable signal . The term “ machine - readable signal ” refers
space and time complexities and their computational power . to any signal used to provide machine instructions and / or
Altogether the novel functionality provided herein greatly data to a programmable processor . The machine - readable
simplifies and speeds up the many applications that deal 20 medium can store such machine instructions non - transito
with hierarchies , in business software and beyond , by allow rily , such as for example as would a non - transient solid - state
ing them to push even more logic down to the RDBMS layer . memory or a magnetic hard drive or any equivalent storage

FIG . 7 is a process flow diagram 700 in which , at 710 , a medium . The machine - readable medium can alternatively or
query is received by a database which comprises at least one additionally store such machine instructions in a transient
request for a table whose rows can be related to a hierarchy 25 manner , such as for example as would a processor cache or
of nodes and specifies an aggregation operation for aggre other random access memory associated with one or more
gating the data in this table according to the hierarchy of physical processor cores .
nodes . Thereafter , at 720 , the table is accessed that repre In the descriptions above and in the claims , phrases such
sents the data to be aggregated hierarchically that comprises as “ at least one of ” or “ one or more of ” may occur followed
a plurality of tuples which each can be associated to at most 30 by a conjunctive list of elements or features . The term
one node of the hierarchy of nodes . Later , for each tuple , it “ and / or ” may also occur in a list of two or more elements or
is checked , at 730 , whether the hierarchy node associated to features . Unless otherwise implicitly or explicitly contra
such tuple matches a node for an previously processed tuple , dicted by the context in which it is used , such a phrase is
such previously processed tuple having a previously calcu intended to mean any of the listed elements or features
lated aggregation value . In addition , at 740 , the previously 35 individually or any of the recited elements or features in
calculated aggregation value is reused for each tuple if the combination with any of the other recited elements or
node of such tuple matches the node for such previous features . For example , the phrases “ at least one of A and B ; "
processed tuple . Further , at 750 , an aggregation value is “ one or more of A and B ; ” and “ A and / or B ” are each
generated for a tuple when the aggregation value for such intended to mean “ A alone , B alone , or A and B together . ”
tuple cannot be reused from any previously processed tuple . 40 A similar interpretation is also intended for lists including
Subsequently , at 760 , data is provided that comprises results three or more items . For example , the phrases “ at least one
responsive to the query based on at least a portion of the of A , B , and C ; " “ one or more of A , B , and C ; ” and “ A , B ,
previously calculated aggregation values and at least a and / or C ” are each intended to mean “ A alone , B alone , C
portion of the generated aggregation value . Provided , in this alone , A and B together , A and C together , B and C together ,
context , can include one or more of : storing at least a portion 45 or A and B and C together . ” In addition , use of the term
of the results in tangible data storage , loading at least a “ based on , " above and in the claims is intended to mean ,
portion of the results in memory , displaying at least a portion “ based at least in part on , ” such that an unrecited feature or
of the results on an electronic visual display , and / or trans element is also permissible .
mitting at least a portion of the results to a remote computing The subject matter described herein can be embodied in
system . 50 systems , apparatus , methods , and / or articles depending on
One or more aspects or features of the subject matter the desired configuration . The implementations set forth in

described herein can be realized in digital electronic cir the foregoing description do not represent all implementa
cuitry , integrated circuitry , specially designed application tions consistent with the subject matter described herein .
specific integrated circuits (ASICs) , field programmable Instead , they are merely some examples consistent with
gate arrays (FPGAs) computer hardware , firmware , soft- 55 aspects related to the described subject matter . Although a
ware , and / or combinations thereof . These various aspects or few variations have been described in detail above , other
features can include implementation in one or more com modifications or additions are possible . In particular , further
puter programs that are executable and / or interpretable on a features and / or variations can be provided in addition to
programmable system including at least one programmable those set forth herein . For example , the implementations
processor , which can be special or general purpose , coupled 60 described above can be directed to various combinations and
to receive data and instructions from , and to transmit data subcombinations of the disclosed features and / or combina
and instructions to , a storage system , at least one input tions and subcombinations of several further features dis
device , and at least one output device . The programmable closed above . In addition , the logic flows depicted in the
system or computing system may include clients and serv accompanying figures and / or described herein do not nec
ers . A client and server are generally remote from each other 65 essarily require the particular order shown , or sequential
and typically interact through a communication network . order , to achieve desirable results . Other implementations
The relationship of client and server arises by virtue of may be within the scope of the following claims .

10

15

30

US 10,565,179 B2
25 26

What is claimed is : 11. The method of claim 1 , wherein the database is a
1. A method for implementation by one or more data distributed database in which data is stored across multiple

processors forming part of at least one computing device , the computing systems .
method comprising : 12. The method of claim 1 further comprising :

receiving , by a database , a query which comprises at least 5 determining a hierarchical window for the query ; and
one request specifying a table whose rows can be determining , using binary structural grouping , input
related to a hierarchy of nodes , the query specifying an nodes and output nodes within the hierarchical window .
aggregation operation for hierarchically aggregating 13. The method of claim 1 further comprising :
data in the specified table according to the hierarchy of determining a hierarchical window for the query ; and
nodes ; evaluating recursive expressions on the hierarchical win

determining a hierarchical window for the query ; dow using unary structural grouping .
evaluating , based on the hierarchical window , recursive 14. A system comprising :

expressions on the hierarchical window using unary at least one data processor ; and
structural grouping having structural recursion in memory storing instructions which , when executed by the
which each node acts as an input node and an output at least one data processor , result in operations com
node ; prising :

accessing the specified table that represents the data to be receiving , by a database , a query which comprises at
aggregated hierarchically , the table comprising a plu least one request specifying a table whose rows can
rality of tuples which each can be associated to at most 20 be related to a hierarchy of nodes , the query speci
one node of the hierarchy of nodes ; fying an aggregation operation for hierarchically

checking , for a tuple , whether a hierarchy node associated aggregating data in the specified table according to
to the ple matches a node for one of a plurality of the hierarchy of nodes ;
previous processed tuples , each previous processed determining a hierarchical window for the query ;
tuple having a corresponding previously calculated 25 evaluating , based on the hierarchical window , recursive
aggregation value ; expressions on the hierarchical window using unary

reusing , for the tuple , the previously calculated aggrega structural grouping having structural recursion in
tion value if the node of the tuple matches the node for which each node acts as an input node and an output
the previous processed tuple , the aggregation value node ;
being one of a plurality of aggregation values placed accessing the specified table that represents the data to
within a stack ; and be aggregated hierarchically , the table comprising a

generating , for the tuple , an aggregation value when the plurality of tuples which each can be associated to at
aggregation value for the tuple cannot be reused from most one node of the hierarchy of nodes ;
the previously processed tuple and placing the aggre- 35 checking , for a tuple , whether a hierarchy node asso
gation value into the stack . ciated to the tuple matches a node for one of a

2. The method of claim 1 , wherein the hierarchy of nodes plurality of previous processed tuples , each previous
comprises at least one root node and a plurality of leaf nodes processed tuple having a corresponding previously
and the hierarchy of nodes is traversed in a direction of the calculated aggregation value ;
plurality of leaf nodes to the at least one root node . reusing , for the tuple , a previously calculated aggrega

3. The method of claim 2 , wherein the previously calcu tion value if the node of the - tuple matches the node
lated aggregation value is placed on top of the stack . for the previous processed tuple , the aggregation

4. The method of claim 3 further comprising : value being one of a plurality of aggregation values
removing previously calculated aggregation values from placed within a stack ; and

the stack that are no longer needed when traversing the 45 generating , for the tuple , an aggregation value when the
plurality of tuples . aggregation value for the tuple cannot be reused

5. The method of claim 1 , wherein the hierarchy of nodes from the previously processed tuple and placing the
comprises at least one root node and a plurality of leaf nodes aggregate value into the stack .
and the hierarchy of nodes is traversed in a direction from 15. The system of claim 14 further comprising the data
the root nodes to the plurality of leaf nodes . 50 base .
6. The method of claim 5 , wherein the stack , when viewed 16. The system of claim 14 , wherein the hierarchy of

from its top , comprises obsolete aggregation values which nodes comprises at least one root node and a plurality of leaf
are dismissed and passed over . nodes and the hierarchy of nodes is traversed in a direction

7. The method of claim 1 further comprising : of the plurality of leaf nodes to the at least one root node .
providing data comprising results to the query ; 17. The system of claim 16 , wherein the previously
wherein providing data comprises at least one of : persist calculated aggregation values are placed on top of the stack .

ing at least a portion of the results , loading at least a 18. A method for implementation by one or more data
portion of the results into memory , transmitting at least processors forming part of at least one computing device , the
a portion of the results to a remote computing system , method comprising :
or displaying at least a portion of the results in an 60 receiving , by a database , a query that can be related to
electronic visual display . data in a form according to a hierarchy of nodes , the

8. The method of claim 1 , wherein the query is formulated query specifying an aggregation operation for hierar
in Structured Query Language (SQL) . chically aggregating the data according to the hierarchy

9. The method of claim 1 , wherein the database is a of nodes ;
main - memory relational database management system . determining a hierarchical window for the query ;

10. The method of claim 9 , wherein the database is a evaluating , based on the hierarchical window , recursive
column - oriented in - memory database . expressions on the hierarchical window using unary

40

55

65

28
US 10,565,179 B2

27
structural grouping having structural recursion in
which each node acts as an input node and an output
node ;

determining a hierarchical window for the query ;
accessing tuples of data to be aggregated hierarchically 5
which each can be associated to at most one node of the
hierarchy of nodes ;

checking , for a tuple , whether a hierarchy node associated
to the tuple matches a node for one of a plurality of
previous processed tuples , each previous processed 10
tuple having a corresponding previously calculated
aggregation value ;

reusing , for the tuple , a previously calculated aggregation
value if the node of the tuple matches the node for such
previous processed tuple , the aggregation value being 15
one of a plurality of aggregation values placed within
a stack ;

generating , for the tuple , an aggregation value when the
aggregation value for the tuple cannot be reused from
the previously processed tuple and placing the aggre- 20
gation value into the stack ; and

responding to the query with either the previously calcu
lated aggregation value or the generated aggregation
value .

19. The method of claim 18 , wherein the hierarchy of 25
nodes comprises at least one root node and a plurality of leaf
nodes and the hierarchy of nodes is traversed in a direction
of the plurality of leaf nodes to the at least one root node .

20. The method of claim 19 , wherein the previously
calculated aggregation value is placed on top of the stack . 30

