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ATTACHING AND VIRTUALIZING 
RECONFIGURABLE LOGIC UNTS TO A 

PROCESSOR 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/903,914, filed Sep. 25, 2007, the 
content of which is hereby incorporated by reference. 

BACKGROUND 

0002 Reconfigurable logic (RL) available using program 
mable logic arrays (PLAS) are promoted as providing power 
savings, performance improvements and Smaller chips, by 
crafting custom logic to solve particular problems that stretch 
the capabilities of microprocessors, by customizing data path 
widths to a specified amount and allowing the same circuitry 
to be reconfigured for different protocols if only one is in use 
at a time. However, there are various obstacles to its use in 
modern microprocessors. Currently, such reconfigurable 
logic is only used in an embedded system and cannot be used 
by multiple users without cooperation. Generally, the full 
power of RL is only used by in-order processors or when the 
RL is configured as an independent coprocessor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0003 FIG. 1A is a block diagram of a processor in accor 
dance with an embodiment of the present invention. 
0004 FIG. 1B is a block diagram of a processor in accor 
dance with another embodiment of the present invention. 
0005 FIGS. 2A-2D are block diagrams showing coupling 
of a reconfigurable logic unit in accordance with various 
embodiments of the present invention. 
0006 FIG. 3A is a block diagram of the interaction 
between a general purpose processor and a reconfigurable 
logic unit in accordance with one embodiment of the present 
invention. 
0007 FIG. 3B is a block diagram of the interaction 
between a general purpose processor and a reconfigurable 
logic unit in accordance with another embodiment of the 
present invention. 
0008 FIG. 4 is a block diagram of a multiprocessor system 
in accordance with an embodiment of the present invention. 

DETAILED DESCRIPTION 

0009. In various embodiments, a reconfigurable logic unit 
(RL) may be attached to an out-of-order (OOO) processor to 
enable use of the RL by the out-of-order processor, enabling 
the benefits of reconfigurable logic in a modern processor 
pipeline. As will be described further below, the RL may be 
attached in various locations of Such a processor. Further 
more, the RL Services may be requested in various manners 
including, for example, synchronously by an instruction that 
conceptually blocks the general purpose processor until the 
RL operation is completed, by an operation that “forks one 
or more threads of execution using the RL, or via a device 
driver that initiates asynchronous processes using the RL. As 
used herein, an RL is a unit in which a function to be per 
formed can itself be changed. The configuration of the RL, 
i.e., the functions performed by the logic (e.g., lookup table 
(LUT)-implemented logic functions), and which RL ele 
ments are connected to each other, may itselfbe part of the RL 
state. The RL then may itself be configured as a coprocessor 
with specialized State such as registers. Thus an RL includes 
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a plurality of logic blocks and interconnection blocks that 
may be coupled together by an interconnection network, 
rather than any type of bus. In this way, dynamic reprogram 
ming of the logic blocks may be realized, oftentimes with fine 
granularity. Such reconfiguration may be performed by Soft 
ware, as desired for a given task of a running process or upon 
a context Switch from a first Software process to a second 
Software process. 
0010. Using one or more such RL units within a processor, 
particular operations may be performed. Specifically, in 
many implementations these operations may correspond to 
specialized functions, bit permutations, or other operations to 
be performed on Small amounts of bits. In this way, Such 
operations can be efficiently performed without consuming 
the relatively larger area of a processor pipeline, in which 
operations are often relegated to fixed instruction and data 
widths of 16, 32 or 64bits. 
0011 While the scope of the present invention is not lim 
ited in this regard, some examples of operations to be per 
formed on Such an RL unit may be as follows: cryptography, 
audio and/or visual recognition, or other operations. Specifi 
cally, for Such operations various bit permutation operations 
Such as bit munging may be performed to permute or rear 
range bits in a particular specific manner. Other implementa 
tions may be for field extraction and video processing such as 
taking relatively small numbers of bits in multiple video 
fields, e.g., so-called Y. U and V fields and converting them 
into 16 bits of each of Y. U and V fields and so forth. Similarly, 
to effect such operations matrix operations, which may be on 
bit widths of a relatively small width, e.g., 4x4 bit widths, can 
be performed. Still further, specialized floating point repre 
sentations such as in accordance with a given Institute of 
Electrical and Electronics Engineers (IEEE) Standard 32 or 
64 bit numbers such as a floating point (FP) representation 
having 16 bits with a 4 bit exponent can be performed. For 
example, specialized fixed point processing can be performed 
such as a 2.6 by a 3.5 operation which generates a 5.11 fixed 
point number, which then must be shifted and extracted and 
rounded to a 2.6 representation. Ofcourse, otheridiosyncratic 
bit widths may also be manipulated in reconfigurable logic. 
Still further, embodiments may use RL implementations for 
custom interconnects, sorting networks such as a bubble net 
work or so forth. 

0012 Still further, other implementations may be used to 
handle instructions to perform particular operations, where 
Such instructions have not been implemented into a given 
instruction set architecture (ISA) of the processor with which 
the RL is associated. For example, certain processors may 
lack an instruction for a bit matrix multiply, which may be 
used for various cryptographic and/or recognition operations. 
Similarly, a Galois field multiply operations, which may be 
used for error correction coding (ECC) and cryptography 
may also be realized using RL. Other operations such as 
compression operations such as compressed bits under a 
mask, can also be implemented. 
0013 Still further, embodiments may implement monitor 
ing of usage of on-board RL units for Such specialized opera 
tions, e.g., by way of counters, performance monitors and so 
forth. As different end users of processors including such RL 
units implement code to incorporate these specialized fea 
tures, counts may be updated and intermittently provided to a 
manufacturer of the processors. In this way, accurate feed 
back regarding desirability of different operations based on 
their usage in user applications can be determined. In this 
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way, it may later be determined by the manufacturer that one 
or more of such instructions unavailable in a given ISA are in 
Sufficiently wide usage that the expense, area and power 
consumption needed for incorporation into the general-pur 
poses processor is appropriate. In this way, feedback from 
users of a processor can drive design of features for future 
generation general-purpose processors. To this end, Software 
Such as microcode may be included within the processor to 
enable the counting, performance monitoring, and feedback 
transmission to the manufacturer. 
0014 Referring now to FIG. 1A, shown is a block diagram 
of a processor in accordance with an embodiment of the 
present invention. As shown in FIG. 1A, processor 10 may be 
an out-of-order processor that includes at least one RL. Spe 
cifically, as shown in FIG. 1A, processor 10 may be a multi 
stage processor including so-called front-end and back-end 
pipeline stages. In the embodiment shown in FIG. 1A, pro 
cessor 10 may include a branch prediction unit 15 coupled to 
an instruction fetch unit 20 which is turn is coupled to an 
instruction decode unit 25. Note that branch prediction unit 
15 and instruction decode unit 25 may be coupled to an 
instruction cache 75. 

0.015. As further shown in FIG. 1A, instruction decode 
stage 25 is coupled to a mapping stage 30, which may perform 
reordering of instructions. In turn, mapping stage 30 is 
coupled to a scheduler 35, which schedules operations to be 
performed in a given execution unit. In the embodiment 
shown in FIG. 1A, such execution units include first and 
second execution units 40 and 45, which may be an integer 
arithmetic logic unit (ALU) and a floating point ALU 
(FPALU), although the scope of the present invention is not 
limited in this regard. Still further, an RL 50 may also be 
coupled to receive operations from scheduler 35. Also present 
is a data cache 55. All of these components, namely execution 
units 40 and 45, RL 50, and cache 55 are coupled between 
scheduler dispatch ports 38 and write-back ports 52. These 
ports may also be coupled, as shown in FIG. 1A to a physical 
register file (PRF) 70 to both receive data therefrom and 
provide results thereto. FIG. 1A further shows back-end por 
tions of processor 10, including a reorder buffer (ROB) 60 in 
turn coupled to a retirement unit 65, which itself may be 
coupled to cache 55. 
0016 Note that processor 10 further includes portions of a 
memory hierarchy. Specifically, instruction cache 75 and data 
cache 55 may be coupled to a shared cache 80, which in one 
embodiment may be a shared instruction and data cache, e.g., 
of a level 2 (L2) cache, which in turn may be coupled to other 
memory levels 85 such as additional caches, external memory 
and so forth. While shown with this particular implementa 
tion in the embodiment of FIG. 1A, the scope of the present 
invention is not limited in this regard. 
0017. If the RL function has approximately the same 
latency as one of the fixed latency execution units. Such as an 
integer ALU (typically 1 cycle) or a floating point add or 
multiply (typically 4 or more cycles), it can be handled simi 
larly in the pipeline. The RL may be given its own SuperScalar 
pipeline with its own scheduler dispatch and writeback ports, 
or it may share a dispatch and/or writeback ports with some 
preexisting functional unit, and therefore not increase the 
SuperScalarness. 
0018. As shown in FIG. 2A, in one embodiment supersca 
larness may be increased for the RL unit by providing sepa 
rate ports 38A-38D and 52A-52D in dispatch ports 38 and 
writeback ports 52, respectively for RL unit 50. In the 
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embodiment shown in FIG. 2B, the RL unit may share ports 
with a given functional unit, without increasing SuperScalar 
ness. Specifically, as shown in FIG.2B, RL unit 50 may share 
a dispatch port 38B and a writeback port 52B with execution 
unit 45. 
0019. Single cycle latencies comparable to integer ALU 
latencies may be limiting for reconfigurable logic. They are 
suited for small functions that are otherwise inconvenient to 
implement using separate instructions, such as format con 
versions for densely packed bit formats, e.g., expanding a 
4:2:2Yo UY. V.Y. UY V video stream into the follow 
ing 4 pixels Yo Uo VY Uo VY. U V YUV 
where each component is 4 bits wide, this easily fits within a 
64 bit wide datapath. Performing Such a conversion requires 
more than a dozen scalarinstructions, and even with powerful 
single instruction multiple data (SIMD) shuffle and permuta 
tion instructions have considerable overhead, yet are straight 
forward to implement in RL. Multicycle latencies compa 
rable to the 4 or more cycles offloating point operations allow 
more powerful operations to be implemented in RL. Treating 
RL like floating point multiply–accumulate De-A*B+C is 
well suited, since it has 3 inputs. Powerful RL operations 
often require many input bits. SIMD operations, e.g., inputs 
4*32=128 bits wide, are similarly advantageous; SIMD float 
ing point multiply–accumulate (FMAC) better yet, with 
3*128–384 bits of input. 
0020 Generalizing, out-of-order processors cannot rely 
on implicit inputs via code ordering. Out-of-order processors 
often have limited inputs to each operation, (2 or 3). Imple 
menting specialized functions such as RL on an out-of-order 
processor may have as many input bits as possible, since 
implicit inputs are harder to obtain via ordering. In addition to 
the number of input bits, timing, the latencies of the operation 
may be of concern on out-of-order processors, since it is 
necessary to schedule both dispatch and writeback ports. 
0021 One place to attach specialized hardware such as RL 
to the pipeline of an out-of-order processor, where the func 
tion has a long or variable latency, is at approximately the 
same place as the divide hardware (integer or FP). Division is 
often implemented by a special hardware block implement 
ing an iterative algorithm that may exhibit variable latency. 
Such a configuration would not only allow long RL latencies, 
but might also allow complicated variable latency functions 
to be implemented using RL. Placing the RL near or around 
the divider and multiplier (if the FP divider uses a multipli 
cative algorithm) has other advantages, since it may allow the 
RL to control the large multiplier array and/or perform opera 
tions using the multiplier. Thus in the embodiment shown in 
FIG. 2C, RL unit 50 may be coupled between dispatch port 
38B and writeback port 52B in parallel with execution unit 
45, floating point unit 46 and divider unit 47. 
0022. Another place to attach RL logic to the execution 
pipeline is to treat it like the data cache, DS. The data cache 
already handles variable latencies caused by cache misses, 
translation lookaside buffer (TLB) misses, misaligned split 
memory accesses, and so forth, and must arbitrate between 
operations hitting the data cache and data returning from 
cache misses. However, the data cache hit path is one of the 
most critical in the processor. It is likely to be too “tight’ to 
allow the overhead, in time and space, of attaching RL. 
Another place, near the data cache but in a location probably 
less critical for timing, is the page miss handler (PMH)—the 
page table walker, or TLB miss handling state machine. This 
is particularly well Suited as a place to situate special hard 
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ware Such as an RL functional unit, since it is less critical for 
timing, but already has access to key datapaths such as write 
back. In some embodiments, the PMH operates by inserting 
special load micro operations (uops) to walk the page tables, 
e.g., directly to the first level data cache. In other processors, 
the PMH inserts uops to the L2 cache, not the L1, to reduce 
impact on the critical first level cache access. The ability for 
special function units such as RL to insert operations to access 
memory via the data caches, and also to access virtual 
memory hardware such as the TLB, has particular advantages 
for virtualization. In addition to virtualization, the ability to 
insert memory access uops enables the special function unit 
Such as RL to acquire more inputs (and to produce more 
outputs), enabling complex operations that are more likely to 
show the benefits of special hardware such as RL. As shown 
in FIG. 2D, RL unit 50 may be coupled between dispatch port 
38C and writeback port 52C in parallel with data cache 55, 
TLB 56 and PMHS7. 
0023 Typical modern processors are speculative: instruc 
tions may be executed, which should later be cancelled as a 
result of branch mispredictions or other events. The pipeline 
attachments described above may be suitable for “pure' func 
tions: special hardware such as RL which, apart from the RL 
configuration information, is stateless. Such an RL operator 
would take its inputs and produce its outputs, without modi 
fying State that affects Subsequent operations. 
0024. As explained above, in an out-of-order processor 
Software cannot rely on instructions to execute in the order in 
which they are fetched by the instruction sequencer. One way 
to overcome this is to enforce serialization, e.g., by adding 
artificial dataflow dependencies, as shown in the example 
code below: 

RL configurations 0, 1, 2, 3 loaded 
RLdepRegRL operation reset 
RLdepReg - RL load(EAX.RLdepReg) 
RLdepReg - RL load(EBX.RLdepReg) 
RLdepReg - RL load(ECX.RLdepReg) 
RLdepReg - RL load(EDX.RLdepReg) 
RLdepReg - RL operate2(RLdepReg) 

i? loaded into RL register #1 
i? loaded into RL register #2 
i? loaded into RL register #3 
i? loaded into RL register #4 
// RL2(EAX,EBX,ECX,EDX) 
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able, e.g., loading registers for different configurations not 
overlapping, different dataflow can be created using more 
registers. 
0026. Such artificial dataflow dependencies can also be 
used to ensure that a configuration is completely loaded 
before RL operations are begun. In other implementations, 
using memory-like RL uops to manage ordering may be 
realized. In this example, the “RL load operations have side 
effects: they modify “registers' in the RL block. Unless the 
RL block is intimately aware of how the processor handles 
misspeculations such as branch mispredictions and their 
recovery, such side effects cannot be allowed to be performed 
until retirement. 
0027. In yet other embodiments, placing RL or other spe 
cial hardware in the pipeline of a speculative processor, in 
Such away that multi-part operations such as those expressed 
above can be implemented, but the RL state can be recovered 
on a branch prediction. Standard OOO techniques can be 
used: checkpointing all of the state, and then recording 
changes more recent than a checkpoint, so that they can be 
reapplied to a misspeculation point; or, reversible anti-opera 
tions. With arbitrary RL it may be hard to do this in general; 
but for the special case of loading operand values, it is easy to 
implement. 
0028. In one particular embodiment, “RL load ops may 
be handled like memory stores. This doesn't mean that they 
would be memory mapped, but rather that they would use the 
same mechanisms, the store buffer, and so forth, as memory 
stores. Memory stores are performed in order, at or after 
retirement. Ordering of stores with subsequent loads can be 
maintained by creating uops which behave like uncached, 
at-retirement, loads (compared to stores which are performed 

RLdepReg - RL load(MMXO.RLdepReg) i? loaded into RL register #1 
RLdepReg - RL load(MMX1.RLdepReg) i? loaded into RL register #2 
RLdepReg - RL load(MMX2,RLdepReg) i? loaded into RL register #3 
RLdepReg - RL load(MMX3.RLdepReg) i? loaded into RL register #4 
RLdepReg - RL operate2(RLdepReg) // RL2(MMXO.MMX1,MMX2, MMX3) 

0025 The simple example above uses a single register, 
RLdepReg, to force all of the RL related uops to execute in 
sequence. A register, or at least a renaming resource, is dedi 
cated to this purpose; if it can be overwritten by user code the 
serialization would be broken. If some reordering is accept 

after retirement). Store-like uops can be fully pipelined; how 
ever, at-retirement loads cannot be. Such store-like and load 
like RLuops may have artificial “addresses' applied to them, 
so that existing store-buffer conflict detection mechanisms 
can be used to enforce ordering, as shown in the example code 
below: 

RL configurations 0, 1, 2, 3 loaded 
if in the below “a is an address 
store-like RL load(a,EAX) i? loaded into RL register #1 
store-like RL load(a,EBX) i? loaded into RL register #2 
store-like RL load(a,ECX) i? loaded into RL register #3 
store-like RL load(a,EDX) i? loaded into RL register #4 
dest - load-like RL operate2(a) 
Dest2 - load-like RL operate2(a) 
store-like RL load(a,MMXO) i? loaded into RL register #1 
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-continued 

store-like RL load(a,MMX1) i? loaded into RL register #2 
store-like RL load(a,MMX2) i? loaded into RL register #3 
store-like RL load(a,MMX3) i? loaded into RL register #4 
dest - load-like RL operate2(a) 

0029. Using artificial address dependencies enforces 
ordering between the store-like uops that set up a configura 
tion, or load extra operand inputs, and Subsequent load-like 
uops that depend on the store-like uops. However, in an out 
of-order processor normal cacheable loads can be performed 
out-of-order. This would disallow RL operations that produce 
both an output and a side effect that affects Subsequent opera 
tions. Treating Such side-effects as at retirement loads would 
be correct, but impede performance. Instead, by writing the 
result to an artificial dependency register and then moving it, 
a true dependency may be performed. In other embodiments, 
if it can be guaranteed that no misspeculations will be 
reported in the middle of the RL load sequences, the register 
dataflow can be used, although interrupts would be blocked 
and page faults averted. 
0030. In yet other embodiments, special hardware such as 
RL logic may be attached anywhere in the cache hierarchy or 
memory Subsystem. Attaching the RL like a non-memory 
function unit may allow more RL function units to be imple 
mented. It works for pure functions, but not for functions with 
extended inputs. It requires, however, that the RL configura 
tion load be serialized, or otherwise forced to be at or after 
retirement. Memory-like RL uops have a natural synchroni 
Zation and serialization mechanism. There may be fewer 
ports. But it provides freedom as to where in the memory 
system the RL is attached. 
0031. The above embodiments relate to attaching the spe 
cial hardware function block such as RL in an out-of-order 
section of the processor pipeline. Although out-of-order 
execution has many advantages, in-order execution can be 
significantly more efficient for Some operations—particular 
operations that produce a lot of state, which would be too 
expensive to manage by dataflow. FIG. 1B shows a microar 
chitecture that combines out-of-order and in-order pipelines. 
In addition to the conventional out-of-order execution sub 
system, with renamer/mapper, Scheduler, execution units, 
ROB, and PRF, there is an in-order execution section 62 
including a RL unit 63 after reordering in ROB 60, before 
retirement stage 65. Various operations, such as integer ALU 
or DS access, could be performed in the in-order section. 
Techniques such as pipelining that Support fast in-order pro 
cessors can be used here. In some embodiments, highly state 
ful function units, such as encryption or compression, or 
operations that use large amounts of dataflow, such as vectors 
and matrices, can be implemented in special hardware. Such 
as reconfigurable logic, placed in the in-order section. 
0032. Note that register values flow between the out-of 
order and in-order sections. While not shown in FIG. 1B, 
in-order execution units may be connected to memory, which 
may be desirable for memory intensive operations, but is not 
required. In the embodiment of FIG. 1B, RL unit 50 may be 
best Suited for pure functions, although the techniques of the 
previous section can be applied. RL unit 63 is best suited for 
highly stateful operations. In general, the earlier position in 
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the pipeline of RL unit 63 may reduce the branch mispredic 
tion penalty, if the specialized hardware such as RL is used in 
branch computations. 
0033. An RL unit may be used for flow control. That is, 
one area where dedicated hardware such as RL is faster than 
a software implementation using general purpose instructions 
is in selecting complex, multiway, alternatives using a large 
number of irregular inputs. A typical multi-way branch can be 
implemented using lookup tables. But, N bits of input natu 
rally require a lookup table of size 2'. Sparse branch condi 
tions may require far fewer terms in an RL Solution Such as a 
programmable logic array (PLA), e.g., mainly triangular pat 
terns such as the following may only require linear terms; but 
the irregularities may prevent a simple code sequence from 
calculating the output. PLAS are essentially a simplified, 
compressed, lookup table for Such functions. 

0000 0000 0000 0000 O 

1100 0000 0000 OOOO 1 

1010 0000 OOOO OOOO 2 

0000 1XXX XXXX XXXX.1-> 3 

0000 0100 0000 0000-> 4 

0034. In the microarchitectures described above the RL 
blocks attached to the out-of-order execution pipelines (or 
memory, or in-order at retirement) can be used straightfor 
wardly to implement multiway selections. It is immaterial 
whether they perform an immediate multiway branch, or if 
they produce an index which is then used for an indirect 
branch out of a dense table. However, indirect branches often 
predict poorly. Despite improvements in indirect branch pre 
dictors, if the multiple targets are truly equiprobable—as 
happens in compression and encryption problems—some 
indirect branches will always continue to predict poorly. In 
Some applications, many of the branch conditions can be 
evaluated far in advance. If they could be fully evaluated, they 
could be used in a prepare-to-branch instruction. Thus yet 
another way of attaching RL to the pipeline may be to attach 
it in a way that allows it to precompute as many of the 
conditions affecting multiway branches as possible, deliver 
ing this computation, partial or full, to the front-end for use in 
branch prediction. If the multiway branch condition is known 
far enough in advance, it can be used to eliminate the need for 
a branch prediction; if not fully known, it may still be mixed 
in with the other factors such as history used to make the 
prediction. 
0035. In various embodiments, RL units may be virtual 
ized. That is, such RL's may be varied in implementation, so 
that code can adjust to the varying capabilities of RL hard 
ware, e.g., so that code that assumes that 4 different RL 
functions can be implemented in the same hardware will 
continue to work if only 3 can be implemented in a different 
implementation of the RL hardware. However, although the 
code may work, it may work at lower performance. Con 
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versely, code can take advantage of more RL hardware when 
available. Further, RL units may be shared, between multiple 
users or threads in the same computing system, and context 
Switched, e.g., as processes are timesliced. 
0036. In some embodiments, a RL unit may be virtualized 
by concatenating a so-called process identifier onto a RL 
opcode. Thus an “RL opcode' may be extended so that it can 
be virtualized. This ProcessID or Thread ID is placed in a 
special register inside the general purpose processor. The 
general purpose processor's instructions to invoke reconfig 
urable logic operations are of the form “RLop(opcode.inputs) 
”. The “RL opcode' is either an immediate, or a value 
obtained from a register. The RL opcode and the ProcessID 
are concatenated, and are presented to logic inside the RL 
unit, typically a content addressable memory (CAM), that 
determines whether the function requested is loaded into the 
RL unit and, if so, what the physical RL opcode and configu 
ration number are. If the function requested is not present, an 
exception occurs. An exception handler may then “fault in 
the requested function. 
0037. By using the ProcessID, multiple processes can 
share the reconfigurable hardware. The ProcessID or 
ThreadID is guaranteed unique: no different users or pro 
grams should have the same value. In some embodiments, the 
OS provides Such a value, and certain control register values 
may be used as such a ProcessID Such as a control register 
(CR3), Page Table Base Register. Even without OS support, 
this feature can be useful to increment the ProcessID on every 
event that might possibly be associated with a process context 
Switch: on every page fault, or trap, or ring transition. When 
the ProcessID wraps, similarly all entries in the RL virtual to 
physical opcode mapping table may be invalidated, discard 
ing all of the RL configuration on every Such event. It means 
that it will be necessary to reconfigure the RL whenever it is 
used after every such event; but, the RL virtual to physical 
opcode mapping table nevertheless allows different libraries 
within the same program to act as if the RL hardware is 
virtualized, thus OS support enables cross-process virtualiza 
tion of the RL hardware. Lacking OS Support, cross-process 
virtualization is not enabled, but intra-process virtualization 
between modules of the same program is enabled. So long as 
context Switches are infrequent this is a win for performance; 
and it should always remain correct. For “pure' functions, it 
is not necessary to save the old configuration; it can be 
assumed that the original requester has kept it around, so that 
it can be reloaded. For Such pure functions, handling the 
exception solely in the user process, without first going to the 
OS, is permissible. 
0038. For stateful functions such as compression engines 
the RL state being Swapped out may be saved, which may 
belong to a different process. An OS level exception handler 
may be used; or the State can be saved eagerly, to a user 
specified virtual address, whenever it appears to be possible 
that the OS may swap the process; or the state may become 
part of the state that the OS context Switches, e.g., through a 
state save instruction. 

0039. In some embodiments, a user level “exception han 
dler may be implemented so that a reconfigurable logic 
extension can be Supported without requiring OS Support. 
One Such mechanism may specify the address of a function to 
be called, if the RL opcode exception is produced. For 
example, one of the RL operands may be a memory block 
containing this function address, amongst other things. The 
state may be saved in an OS transparent and conservative 
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manner, or statelessness for the reconfigurable logic may be 
realized by preventing latches from being configured in the 
RL. Although this greatly limits the functionality of the 
reconfigurable logic, OS transparency is a great enough ben 
efit to warrant it. A mode bit may be set during OS or BIOS 
boot to allow stateful RL to be configured if appropriate OS 
support or a device driver is available. 
0040. In some embodiments, virtual memory may be used 
to virtualize the RL configuration. In such embodiments, 
every RL instruction executed by the general purpose proces 
sor specifies a virtual memory address which points to an “RL 
control block. Additional inputs and opcodes may be pro 
vided in the instruction or in the RL control block. The pro 
cessor passes the physical address of the RL control block to 
the RL unit; it may also pass the virtual address. The RL 
control block specifies the RL configuration. The RL unit 
contains a virtual to physical RL opcode mapping table, but 
here it maps the tuple (RL control block address, opcode) to 
the physical RL opcode and configuration number. If the 
input tuple is not present in the table, then the missing infor 
mation can be loaded from the RL control block in memory. 
If the input tuple is present in the table, it can be used without 
delaying to reconfigure. Such embodiments may be more 
flexible than the mechanism set forth above. Although both 
can be made OS transparent, with suitable hardware support 
this virtual memory mechanism can Support cross-process 
virtualization and still be OS transparent. 
0041. Because the control in such embodiments is essen 
tially memory mapped, it may be maintained consistent. For 
example, it could be reloaded every instruction, it can be 
Snooped, like a cache, or it can be maintained with “TLB 
consistency': loaded once, and invalidated only when an 
operation occurs that might lead to it being used for a different 
process. 

0042. In some embodiments, pipelined loading of the RL 
configuration can occur. For example, if there are 4 RL con 
figurations, and configurations 0, 2, and 3 are valid, then 
configuration 1 can be in the process of being loaded, while 
the other configurations are in use. In a simple microproces 
Sor, Software can explicitly control this pipelined loading of 
configurations so as to lose the least amount of time. Alter 
nately, the need for Software to explicitly manage Such pipe 
lined loading of the RL configuration may be eliminated by 
looking ahead in the instruction stream, to see a reconfigura 
tion instruction a long way ahead, to similarly determine 
which configurations are not in use, and can be replaced, thus 
initiating a pipelined load of the RL configuration early. To 
ensure correctness when Such reconfiguration is done, as 
intervening processor Stores may be in the process of chang 
ing the configuration settings stored in the RL control block, 
pipelined loading may be handled as other speculative loads, 
by detecting store to load conflicts and forwarding, or by 
permitting Such pipelined loads only for read-only pages of 
memory. 

0043 Referring now to FIG.3A, shown is a block diagram 
of the interaction between a general purpose processor and a 
reconfigurable logic unit to enable virtualization in accor 
dance with one embodiment of the present invention. As 
shown in FIG. 3A, a general purpose processor 100 may be 
coupled to reconfigurable logic unit 150. Processor 100 
includes a register to store a process ID 120 and further 
provides a RL instruction 130 which may include an RL 
opcode 135, as well as other inputs 138, which may corre 
spond to data for the specialized function. This information 
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may be provided to reconfigurable logic unit 150, and more 
specifically to a mapping table 160 that receives a virtual RL 
opcode and maps it to a physical RL opcode and configuration 
number, namely state stored in a physical RL opcode 165 and 
RL configuration 170, while other inputs 138 are provided to 
RL inputs 180. 
0044 As shown also in FIG.3A, reconfigurable logic unit 
150 may include a plurality of logic blocks 155-155, (ge 
nerically logic blocks 155). In various embodiments, differ 
ent functionality may be present in one or more of these logic 
blocks. Furthermore, based on a given configuration 
instructed by mapping table 160, an interconnection network 
157 may dynamically reconfigure connections between one 
or more of various logic blocks 155 to enable desired opera 
tions or functions to be performed under software control. 
0045 Referring now to FIG.3B, shown is a block diagram 
of the interaction between a general purpose processor and a 
reconfigurable logic unit to enable virtualization in accor 
dance with another embodiment of the present invention. As 
shown in FIG. 3B, a general purpose processor 200 may be 
coupled to reconfigurable logic unit 250. Processor 200 pro 
vides a RL instruction 230 which may include an RL control 
block virtual address 232, RL opcode 235, as well as other 
inputs 238. This information may be provided to reconfig 
urable logic unit 250, and more specifically to a mapping 
table 260 that receives the address, and the virtual RL opcode 
and maps them to a physical RL opcode and configuration 
number, namely state stored in a physical RL opcode 265 and 
RL configuration 270, while other inputs 238 are provided to 
RL inputs 280. In the embodiment of FIG. 3B, virtual 
memory may virtualize the RL configuration by the providing 
of RL control block virtual address 232 to mapping table 260 
to thus obtain physical opcode 265 and RL configuration 270. 
As similarly shown in FIG. 3B, a reconfigurable logic/inter 
connection network 255 may be present in reconfigurable 
logic unit 250. As described above, under appropriate soft 
ware control the selection and coupling of different reconfig 
urable logic blocks may be realized. 
0046 Referring now to FIG. 4, shown is a block diagram 
of a multiprocessor System in accordance with an embodi 
ment of the present invention. As shown in FIG.4, multipro 
cessor system 500 is a point-to-point interconnect system, 
and includes a first processor 570 and a second processor 580 
coupled via a point-to-point interconnect 550, although the 
multiprocessor System may be of a multi-drop bus or another 
Such implementation. As shown in FIG. 4, each of processors 
570 and 580 may be multi-core processors including first and 
second processor cores (i.e., processor cores 574a and 574b 
and processor cores 584a and 584b), although other cores and 
potentially many more other cores may be present in particu 
lar embodiments. Furthermore, as shown in FIG. 4 a RL unit 
575 and 585 may be coupled to each pair of processor cores 
574a and 574b and 584a and 584b, respectively. 
0047 Still referring to FIG. 4, first processor 570 further 
includes a memory controller hub (MCH) 572 and point-to 
point (P-P) interfaces 576 and 578. Similarly, second proces 
Sor 580 includes a MCH 582 and P-P interfaces 586 and 588. 
As shown in FIG.4, MCH's 572 and 582 couple the proces 
sors to respective memories, namely a memory 532 and a 
memory 534, which may be portions of main memory (e.g., a 
dynamic random access memory (DRAM)) locally attached 
to the respective processors. 
0048 First processor 570 and second processor 580 may 
be coupled to a chipset 590 via P-P interconnects 552 and 
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554, respectively. As shown in FIG.4, chipset 590 includes 
P-P interfaces 594 and 598. Furthermore, chipset 590 
includes an interface 592 to couple chipset 590 with a high 
performance graphics engine 538. In one embodiment, an 
Advanced Graphics Port (AGP) bus 539 or a point-to-point 
interconnect may be used to couple graphics engine 538 to 
chipset 590. In turn, chipset 590 may be coupled to a first bus 
516 via an interface 596. 
0049. As shown in FIG.4, various I/O devices 514 may be 
coupled to first bus 516, along with a bus bridge 518 which 
couples first bus 516 to a second bus 520. In one embodiment, 
second bus 520 may be a low pin count (LPC) bus. Various 
devices may be coupled to second bus 520 including, for 
example, a keyboard/mouse 522, communication devices 526 
and a data storage unit 528 which may include code 530, in 
one embodiment. Further, an audio I/O524 may be coupled to 
Second bus 520. 
0050 Embodiments may be implemented in code and may 
be stored on a storage medium having stored thereon instruc 
tions which can be used to program a system to perform the 
instructions. The storage medium may include, but is not 
limited to, any type of disk including floppy disks, optical 
disks, compact disk read-only memories (CD-ROMs), com 
pact disk rewritables (CD-RWs), and magneto-optical disks, 
semiconductor devices such as read-only memories (ROMs), 
random access memories (RAMs) such as dynamic random 
access memories (DRAMs), static random access memories 
(SRAMs), erasable programmable read-only memories 
(EPROMs), flash memories, electrically erasable program 
mable read-only memories (EEPROMs), magnetic or optical 
cards, or any other type of media Suitable for storing elec 
tronic instructions. 
0051 While the present invention has been described with 
respect to a limited number of embodiments, those skilled in 
the art will appreciate numerous modifications and variations 
therefrom. It is intended that the appended claims cover all 
such modifications and variations as fall within the true spirit 
and scope of this present invention. 
What is claimed is: 
1. An apparatus comprising: 
a processor including a register to store a thread identifier 

and a pipeline having a plurality of stages to execute 
instructions out of order, the stages including a plurality 
of front-end stages, a plurality of execution units, and a 
plurality of back-end stages; and 

a first reconfigurable logic unit including configurable 
logic elements coupled between a dispatch port and a 
writeback port of the pipeline, wherein the first recon 
figurable logic unit is to perform a reconfigurable logic 
function indicated by a first instruction including a 
reconfigurable logic opcode, wherein first logic of the 
first reconfigurable logic unit is to determine whether the 
reconfigurable logic function is loaded based on the 
reconfigurable logic opcode and the thread identifier, 
and if so to provide a physical reconfigurable logic 
opcode and a configuration number associated with a 
configuration of the configurable logic elements, and 
otherwise to cause an exception. 

2. The apparatus of claim 1, further comprising a second 
reconfigurable logic unit coupled between a reorder buffer 
and a retirement unit of the back-end stages, wherein the 
second reconfigurable logic unit and the retirement unit are to 
execute operations in order on result data from the reorder 
buffer. 
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3. The apparatus of claim 2, wherein the second reconfig 
urable logic unit is to perform a compression operation on 
matrix data of NXM form, wherein N and Mare greater than 
1. 

4. The apparatus of claim 1, wherein the first reconfig 
urable logic unit is to share a port of a plurality of dispatch 
ports and a port of a plurality of writeback ports with a first 
cache memory, a translation lookaside buffer (TLB), and a 
page miss handler (PMH), wherein the TLB is closer to the 
first cache memory than the PMH, and the PMH is closer to 
the first cache memory than the first reconfigurable logic unit. 

5. The apparatus of claim 1, wherein the reconfigurable 
logic opcode and the thread identifier are concatenated and 
provided to a content addressable memory to determine 
whether the reconfigurable logic function is loaded. 

6. The apparatus of claim 1, wherein the first instruction 
further includes a reconfigurable logic control block virtual 
address, and the first reconfigurable logic unit includes a 
mapping table to map a tuple of the first instruction to the 
physical reconfigurable logic opcode and the configuration 
number. 

7. The apparatus of claim 1, wherein the first reconfig 
urable logic unit is virtualized among a plurality of threads. 

8. The apparatus of claim 1, wherein a state of the first 
reconfigurable logic unit is saved on a context Switch from a 
function responsive to a user-specifiedaddress and without an 
operating system execution handler. 

9. The apparatus of claim 1, wherein the first reconfig 
urable logic unit is to perform a pipelined load of a configu 
ration of the configurable logic elements for an instruction to 
be performed while executing a second instruction in a dif 
ferent configuration of the configurable logic elements. 

10. An apparatus comprising: 
a general-purpose processor including a pipeline having a 

plurality of stages to execute instructions out-of-order, 
the stages including a plurality of front-end stages, a 
plurality of execution units, and a plurality of back-end 
stages; and 

a reconfigurable logic unit coupled within a pipeline of the 
general-purpose processor unit including configurable 
logic elements, wherein the reconfigurable logic unit is 
to perform a reconfigurable logic function indicated by 
an instruction, the instruction including a reconfigurable 
logic control block virtual address and a reconfigurable 
logic opcode, and the reconfigurable logic unit including 
a mapping table to map a tuple of the instruction to a 
physical reconfigurable logic opcode and configuration 
number associated with a configuration of the config 
urable logic elements. 

11. The apparatus of claim 10, wherein the reconfigurable 
logic unit is to pre-compute a plurality of conditions affecting 
a multiway branch. 
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12. The apparatus of claim 11, wherein the reconfigurable 
logic unit is to provide a result of the pre-computation to a 
branch predictor of the front-end units for use in a prediction. 

13. The apparatus of claim 10, wherein the reconfigurable 
logic unit is coupled between one of a plurality of dispatch 
ports of the front-end stages and one of a plurality of write 
backports of the back-end stages and is to share the port of the 
dispatch ports and the port of the writeback ports with at least 
one of the execution units. 

14. The apparatus of claim 13, wherein the reconfigurable 
logic unit is to share the port of the dispatch ports and the port 
of the writeback ports with a divider unit, wherein the recon 
figurable logic unit and the divider unit each have a variable 
latency. 

15. The apparatus of claim 10, further comprising a second 
reconfigurable logic unit coupled between a first stage and a 
second stage of the back-end stages, wherein the second 
reconfigurable logic unit and the second stage are to execute 
operations in-order. 

16. The apparatus of claim 10, wherein the instruction 
includes a reconfigurable logic opcode concatenated with an 
identifier to identify a process executing on the apparatus 
associated with the instruction, wherein a plurality of pro 
cesses are to share the reconfigurable logic unit. 

17. The apparatus of claim 10, wherein the reconfigurable 
logic unit includes a content addressable memory (CAM) to 
receive a concatenation of the reconfigurable logic opcode 
and a thread identifier and determine if a function associated 
with the instruction is loaded in the reconfigurable logic unit, 
wherein the reconfigurable logic unit is to signal an exception 
handler to obtain the function if it is not loaded. 

18. A method comprising: 
receiving a first instruction and a thread identifier in a 

reconfigurable logic unit from a processor coupled to the 
reconfigurable logic unit; 

determining whether a reconfigurable logic function is 
loaded in the reconfigurable logic unit based on the 
reconfigurable logic opcode and the thread identifier; 
and 

if so, providing a physical reconfigurable logic opcode and 
a configuration number associated with a configuration 
of configurable logic elements of the reconfigurable 
logic unit. 

19. The method of claim 18, further comprising if the 
reconfigurable logic function is not loaded, causing an excep 
tion. 

20. The method of claim 19, further comprising loading the 
reconfigurable logic function responsive to the exception via 
an exception handler. 


