
US 201102584.19A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0258419 A1

Glew (43) Pub. Date: Oct. 20, 2011

(54) ATTACHING AND VIRTUALIZING Publication Classification
RECONFIGURABLE LOGIC UNTS TO A
PROCESSOR (51) Int. Cl.

G06F 9/305 (2006.01)
G06F 9/44 (2006.01)

(76) Inventor: Andrew F. Glew, Hillsboro, OR (52) U.S. Cl. 712/223; 712/E09.018
(57) ABSTRACT

(21) Appl. No.: 13/170,524 In one embodiment, the present invention includes a pipeline
to execute instructions out-of-order, where the pipeline has

(22) Filed: Jun. 28, 2011 front-end stages, execution units, and back-end stages, and
the execution units are coupled between dispatch ports of the
front-end stages and writeback ports of the back-end stages.
Further, a reconfigurable logic is coupled between one of the

(63) Continuation of application No. 1 1/903,914, filed on dispatch ports and one of the writeback ports. Other embodi
Sep. 25, 2007, now Pat. No. 7,996,656. ments are described and claimed.

Related U.S. Application Data

10

Memory Hierarchy

Patent Application Publication Oct. 20, 2011 Sheet 1 of 5 US 2011/0258419 A1

F.G. 1A

In-Order
Execution

80 O Memory Hierarchy 85

F.G. 1B

Patent Application Publication Oct. 20, 2011 Sheet 2 of 5 US 2011/0258419 A1

Scheduler
Dispatch

Schcdulcr
Dispatch

FIG. 2B

Patent Application Publication Oct. 20, 2011 Sheet 3 of 5 US 2011/0258419 A1

Scheduler s Writeback

Dispatch O Ports

Ports

* DS

FIG. 2C

Scheduler s Writeback

Dispatch O PortS

Ports 52a
38 52

52b

Patent Application Publication Oct. 20, 2011 Sheet 4 of 5 US 2011/0258419 A1

100 General Purpose Processor

RL Opcode Other inputs
Al N.

Reconfigurable Logic Unit
Logic logic
Blocks Blocks

RL inputs
Physical RL

Int ti Loai Wirtual RE opcode +
OCC r NE O t Opcode Configuration D Physical RL opcode

Numer
Logic
Blocks RL Configuration Number N

155a 160 170
157 FG. 3A

200 General Purpose Processor 230

RL Control Block
Virtual Address RL opcode Other inputs

Reconfigurable
Logic Unit RL inputs

RL Control Physical RL
Bock Virtual RL. opcode +

RL Logic | Physical Opcode Configuration
InterConnection Address Number

NetWork

RL Configuration Number N

255 260 270
FIG. 3B

US 2011/0258419 A1

ATTACHING AND VIRTUALIZING
RECONFIGURABLE LOGIC UNTS TO A

PROCESSOR

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/903,914, filed Sep. 25, 2007, the
content of which is hereby incorporated by reference.

BACKGROUND

0002 Reconfigurable logic (RL) available using program
mable logic arrays (PLAS) are promoted as providing power
savings, performance improvements and Smaller chips, by
crafting custom logic to solve particular problems that stretch
the capabilities of microprocessors, by customizing data path
widths to a specified amount and allowing the same circuitry
to be reconfigured for different protocols if only one is in use
at a time. However, there are various obstacles to its use in
modern microprocessors. Currently, such reconfigurable
logic is only used in an embedded system and cannot be used
by multiple users without cooperation. Generally, the full
power of RL is only used by in-order processors or when the
RL is configured as an independent coprocessor.

BRIEF DESCRIPTION OF THE DRAWINGS

0003 FIG. 1A is a block diagram of a processor in accor
dance with an embodiment of the present invention.
0004 FIG. 1B is a block diagram of a processor in accor
dance with another embodiment of the present invention.
0005 FIGS. 2A-2D are block diagrams showing coupling
of a reconfigurable logic unit in accordance with various
embodiments of the present invention.
0006 FIG. 3A is a block diagram of the interaction
between a general purpose processor and a reconfigurable
logic unit in accordance with one embodiment of the present
invention.
0007 FIG. 3B is a block diagram of the interaction
between a general purpose processor and a reconfigurable
logic unit in accordance with another embodiment of the
present invention.
0008 FIG. 4 is a block diagram of a multiprocessor system
in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

0009. In various embodiments, a reconfigurable logic unit
(RL) may be attached to an out-of-order (OOO) processor to
enable use of the RL by the out-of-order processor, enabling
the benefits of reconfigurable logic in a modern processor
pipeline. As will be described further below, the RL may be
attached in various locations of Such a processor. Further
more, the RL Services may be requested in various manners
including, for example, synchronously by an instruction that
conceptually blocks the general purpose processor until the
RL operation is completed, by an operation that “forks one
or more threads of execution using the RL, or via a device
driver that initiates asynchronous processes using the RL. As
used herein, an RL is a unit in which a function to be per
formed can itself be changed. The configuration of the RL,
i.e., the functions performed by the logic (e.g., lookup table
(LUT)-implemented logic functions), and which RL ele
ments are connected to each other, may itselfbe part of the RL
state. The RL then may itself be configured as a coprocessor
with specialized State such as registers. Thus an RL includes

Oct. 20, 2011

a plurality of logic blocks and interconnection blocks that
may be coupled together by an interconnection network,
rather than any type of bus. In this way, dynamic reprogram
ming of the logic blocks may be realized, oftentimes with fine
granularity. Such reconfiguration may be performed by Soft
ware, as desired for a given task of a running process or upon
a context Switch from a first Software process to a second
Software process.
0010. Using one or more such RL units within a processor,
particular operations may be performed. Specifically, in
many implementations these operations may correspond to
specialized functions, bit permutations, or other operations to
be performed on Small amounts of bits. In this way, Such
operations can be efficiently performed without consuming
the relatively larger area of a processor pipeline, in which
operations are often relegated to fixed instruction and data
widths of 16, 32 or 64bits.
0011 While the scope of the present invention is not lim
ited in this regard, some examples of operations to be per
formed on Such an RL unit may be as follows: cryptography,
audio and/or visual recognition, or other operations. Specifi
cally, for Such operations various bit permutation operations
Such as bit munging may be performed to permute or rear
range bits in a particular specific manner. Other implementa
tions may be for field extraction and video processing such as
taking relatively small numbers of bits in multiple video
fields, e.g., so-called Y. U and V fields and converting them
into 16 bits of each of Y. U and V fields and so forth. Similarly,
to effect such operations matrix operations, which may be on
bit widths of a relatively small width, e.g., 4x4 bit widths, can
be performed. Still further, specialized floating point repre
sentations such as in accordance with a given Institute of
Electrical and Electronics Engineers (IEEE) Standard 32 or
64 bit numbers such as a floating point (FP) representation
having 16 bits with a 4 bit exponent can be performed. For
example, specialized fixed point processing can be performed
such as a 2.6 by a 3.5 operation which generates a 5.11 fixed
point number, which then must be shifted and extracted and
rounded to a 2.6 representation. Ofcourse, otheridiosyncratic
bit widths may also be manipulated in reconfigurable logic.
Still further, embodiments may use RL implementations for
custom interconnects, sorting networks such as a bubble net
work or so forth.

0012 Still further, other implementations may be used to
handle instructions to perform particular operations, where
Such instructions have not been implemented into a given
instruction set architecture (ISA) of the processor with which
the RL is associated. For example, certain processors may
lack an instruction for a bit matrix multiply, which may be
used for various cryptographic and/or recognition operations.
Similarly, a Galois field multiply operations, which may be
used for error correction coding (ECC) and cryptography
may also be realized using RL. Other operations such as
compression operations such as compressed bits under a
mask, can also be implemented.
0013 Still further, embodiments may implement monitor
ing of usage of on-board RL units for Such specialized opera
tions, e.g., by way of counters, performance monitors and so
forth. As different end users of processors including such RL
units implement code to incorporate these specialized fea
tures, counts may be updated and intermittently provided to a
manufacturer of the processors. In this way, accurate feed
back regarding desirability of different operations based on
their usage in user applications can be determined. In this

US 2011/0258419 A1

way, it may later be determined by the manufacturer that one
or more of such instructions unavailable in a given ISA are in
Sufficiently wide usage that the expense, area and power
consumption needed for incorporation into the general-pur
poses processor is appropriate. In this way, feedback from
users of a processor can drive design of features for future
generation general-purpose processors. To this end, Software
Such as microcode may be included within the processor to
enable the counting, performance monitoring, and feedback
transmission to the manufacturer.
0014 Referring now to FIG. 1A, shown is a block diagram
of a processor in accordance with an embodiment of the
present invention. As shown in FIG. 1A, processor 10 may be
an out-of-order processor that includes at least one RL. Spe
cifically, as shown in FIG. 1A, processor 10 may be a multi
stage processor including so-called front-end and back-end
pipeline stages. In the embodiment shown in FIG. 1A, pro
cessor 10 may include a branch prediction unit 15 coupled to
an instruction fetch unit 20 which is turn is coupled to an
instruction decode unit 25. Note that branch prediction unit
15 and instruction decode unit 25 may be coupled to an
instruction cache 75.

0.015. As further shown in FIG. 1A, instruction decode
stage 25 is coupled to a mapping stage 30, which may perform
reordering of instructions. In turn, mapping stage 30 is
coupled to a scheduler 35, which schedules operations to be
performed in a given execution unit. In the embodiment
shown in FIG. 1A, such execution units include first and
second execution units 40 and 45, which may be an integer
arithmetic logic unit (ALU) and a floating point ALU
(FPALU), although the scope of the present invention is not
limited in this regard. Still further, an RL 50 may also be
coupled to receive operations from scheduler 35. Also present
is a data cache 55. All of these components, namely execution
units 40 and 45, RL 50, and cache 55 are coupled between
scheduler dispatch ports 38 and write-back ports 52. These
ports may also be coupled, as shown in FIG. 1A to a physical
register file (PRF) 70 to both receive data therefrom and
provide results thereto. FIG. 1A further shows back-end por
tions of processor 10, including a reorder buffer (ROB) 60 in
turn coupled to a retirement unit 65, which itself may be
coupled to cache 55.
0016 Note that processor 10 further includes portions of a
memory hierarchy. Specifically, instruction cache 75 and data
cache 55 may be coupled to a shared cache 80, which in one
embodiment may be a shared instruction and data cache, e.g.,
of a level 2 (L2) cache, which in turn may be coupled to other
memory levels 85 such as additional caches, external memory
and so forth. While shown with this particular implementa
tion in the embodiment of FIG. 1A, the scope of the present
invention is not limited in this regard.
0017. If the RL function has approximately the same
latency as one of the fixed latency execution units. Such as an
integer ALU (typically 1 cycle) or a floating point add or
multiply (typically 4 or more cycles), it can be handled simi
larly in the pipeline. The RL may be given its own SuperScalar
pipeline with its own scheduler dispatch and writeback ports,
or it may share a dispatch and/or writeback ports with some
preexisting functional unit, and therefore not increase the
SuperScalarness.
0018. As shown in FIG. 2A, in one embodiment supersca
larness may be increased for the RL unit by providing sepa
rate ports 38A-38D and 52A-52D in dispatch ports 38 and
writeback ports 52, respectively for RL unit 50. In the

Oct. 20, 2011

embodiment shown in FIG. 2B, the RL unit may share ports
with a given functional unit, without increasing SuperScalar
ness. Specifically, as shown in FIG.2B, RL unit 50 may share
a dispatch port 38B and a writeback port 52B with execution
unit 45.
0019. Single cycle latencies comparable to integer ALU
latencies may be limiting for reconfigurable logic. They are
suited for small functions that are otherwise inconvenient to
implement using separate instructions, such as format con
versions for densely packed bit formats, e.g., expanding a
4:2:2Yo UY. V.Y. UY V video stream into the follow
ing 4 pixels Yo Uo VY Uo VY. U V YUV
where each component is 4 bits wide, this easily fits within a
64 bit wide datapath. Performing Such a conversion requires
more than a dozen scalarinstructions, and even with powerful
single instruction multiple data (SIMD) shuffle and permuta
tion instructions have considerable overhead, yet are straight
forward to implement in RL. Multicycle latencies compa
rable to the 4 or more cycles offloating point operations allow
more powerful operations to be implemented in RL. Treating
RL like floating point multiply–accumulate De-A*B+C is
well suited, since it has 3 inputs. Powerful RL operations
often require many input bits. SIMD operations, e.g., inputs
4*32=128 bits wide, are similarly advantageous; SIMD float
ing point multiply–accumulate (FMAC) better yet, with
3*128–384 bits of input.
0020 Generalizing, out-of-order processors cannot rely
on implicit inputs via code ordering. Out-of-order processors
often have limited inputs to each operation, (2 or 3). Imple
menting specialized functions such as RL on an out-of-order
processor may have as many input bits as possible, since
implicit inputs are harder to obtain via ordering. In addition to
the number of input bits, timing, the latencies of the operation
may be of concern on out-of-order processors, since it is
necessary to schedule both dispatch and writeback ports.
0021 One place to attach specialized hardware such as RL
to the pipeline of an out-of-order processor, where the func
tion has a long or variable latency, is at approximately the
same place as the divide hardware (integer or FP). Division is
often implemented by a special hardware block implement
ing an iterative algorithm that may exhibit variable latency.
Such a configuration would not only allow long RL latencies,
but might also allow complicated variable latency functions
to be implemented using RL. Placing the RL near or around
the divider and multiplier (if the FP divider uses a multipli
cative algorithm) has other advantages, since it may allow the
RL to control the large multiplier array and/or perform opera
tions using the multiplier. Thus in the embodiment shown in
FIG. 2C, RL unit 50 may be coupled between dispatch port
38B and writeback port 52B in parallel with execution unit
45, floating point unit 46 and divider unit 47.
0022. Another place to attach RL logic to the execution
pipeline is to treat it like the data cache, DS. The data cache
already handles variable latencies caused by cache misses,
translation lookaside buffer (TLB) misses, misaligned split
memory accesses, and so forth, and must arbitrate between
operations hitting the data cache and data returning from
cache misses. However, the data cache hit path is one of the
most critical in the processor. It is likely to be too “tight’ to
allow the overhead, in time and space, of attaching RL.
Another place, near the data cache but in a location probably
less critical for timing, is the page miss handler (PMH)—the
page table walker, or TLB miss handling state machine. This
is particularly well Suited as a place to situate special hard

US 2011/0258419 A1

ware Such as an RL functional unit, since it is less critical for
timing, but already has access to key datapaths such as write
back. In some embodiments, the PMH operates by inserting
special load micro operations (uops) to walk the page tables,
e.g., directly to the first level data cache. In other processors,
the PMH inserts uops to the L2 cache, not the L1, to reduce
impact on the critical first level cache access. The ability for
special function units such as RL to insert operations to access
memory via the data caches, and also to access virtual
memory hardware such as the TLB, has particular advantages
for virtualization. In addition to virtualization, the ability to
insert memory access uops enables the special function unit
Such as RL to acquire more inputs (and to produce more
outputs), enabling complex operations that are more likely to
show the benefits of special hardware such as RL. As shown
in FIG. 2D, RL unit 50 may be coupled between dispatch port
38C and writeback port 52C in parallel with data cache 55,
TLB 56 and PMHS7.
0023 Typical modern processors are speculative: instruc
tions may be executed, which should later be cancelled as a
result of branch mispredictions or other events. The pipeline
attachments described above may be suitable for “pure' func
tions: special hardware such as RL which, apart from the RL
configuration information, is stateless. Such an RL operator
would take its inputs and produce its outputs, without modi
fying State that affects Subsequent operations.
0024. As explained above, in an out-of-order processor
Software cannot rely on instructions to execute in the order in
which they are fetched by the instruction sequencer. One way
to overcome this is to enforce serialization, e.g., by adding
artificial dataflow dependencies, as shown in the example
code below:

RL configurations 0, 1, 2, 3 loaded
RLdepRegRL operation reset
RLdepReg - RL load(EAX.RLdepReg)
RLdepReg - RL load(EBX.RLdepReg)
RLdepReg - RL load(ECX.RLdepReg)
RLdepReg - RL load(EDX.RLdepReg)
RLdepReg - RL operate2(RLdepReg)

i? loaded into RL register #1
i? loaded into RL register #2
i? loaded into RL register #3
i? loaded into RL register #4
// RL2(EAX,EBX,ECX,EDX)

Oct. 20, 2011

able, e.g., loading registers for different configurations not
overlapping, different dataflow can be created using more
registers.
0026. Such artificial dataflow dependencies can also be
used to ensure that a configuration is completely loaded
before RL operations are begun. In other implementations,
using memory-like RL uops to manage ordering may be
realized. In this example, the “RL load operations have side
effects: they modify “registers' in the RL block. Unless the
RL block is intimately aware of how the processor handles
misspeculations such as branch mispredictions and their
recovery, such side effects cannot be allowed to be performed
until retirement.
0027. In yet other embodiments, placing RL or other spe
cial hardware in the pipeline of a speculative processor, in
Such away that multi-part operations such as those expressed
above can be implemented, but the RL state can be recovered
on a branch prediction. Standard OOO techniques can be
used: checkpointing all of the state, and then recording
changes more recent than a checkpoint, so that they can be
reapplied to a misspeculation point; or, reversible anti-opera
tions. With arbitrary RL it may be hard to do this in general;
but for the special case of loading operand values, it is easy to
implement.
0028. In one particular embodiment, “RL load ops may
be handled like memory stores. This doesn't mean that they
would be memory mapped, but rather that they would use the
same mechanisms, the store buffer, and so forth, as memory
stores. Memory stores are performed in order, at or after
retirement. Ordering of stores with subsequent loads can be
maintained by creating uops which behave like uncached,
at-retirement, loads (compared to stores which are performed

RLdepReg - RL load(MMXO.RLdepReg) i? loaded into RL register #1
RLdepReg - RL load(MMX1.RLdepReg) i? loaded into RL register #2
RLdepReg - RL load(MMX2,RLdepReg) i? loaded into RL register #3
RLdepReg - RL load(MMX3.RLdepReg) i? loaded into RL register #4
RLdepReg - RL operate2(RLdepReg) // RL2(MMXO.MMX1,MMX2, MMX3)

0025 The simple example above uses a single register,
RLdepReg, to force all of the RL related uops to execute in
sequence. A register, or at least a renaming resource, is dedi
cated to this purpose; if it can be overwritten by user code the
serialization would be broken. If some reordering is accept

after retirement). Store-like uops can be fully pipelined; how
ever, at-retirement loads cannot be. Such store-like and load
like RLuops may have artificial “addresses' applied to them,
so that existing store-buffer conflict detection mechanisms
can be used to enforce ordering, as shown in the example code
below:

RL configurations 0, 1, 2, 3 loaded
if in the below “a is an address
store-like RL load(a,EAX) i? loaded into RL register #1
store-like RL load(a,EBX) i? loaded into RL register #2
store-like RL load(a,ECX) i? loaded into RL register #3
store-like RL load(a,EDX) i? loaded into RL register #4
dest - load-like RL operate2(a)
Dest2 - load-like RL operate2(a)
store-like RL load(a,MMXO) i? loaded into RL register #1

US 2011/0258419 A1

-continued

store-like RL load(a,MMX1) i? loaded into RL register #2
store-like RL load(a,MMX2) i? loaded into RL register #3
store-like RL load(a,MMX3) i? loaded into RL register #4
dest - load-like RL operate2(a)

0029. Using artificial address dependencies enforces
ordering between the store-like uops that set up a configura
tion, or load extra operand inputs, and Subsequent load-like
uops that depend on the store-like uops. However, in an out
of-order processor normal cacheable loads can be performed
out-of-order. This would disallow RL operations that produce
both an output and a side effect that affects Subsequent opera
tions. Treating Such side-effects as at retirement loads would
be correct, but impede performance. Instead, by writing the
result to an artificial dependency register and then moving it,
a true dependency may be performed. In other embodiments,
if it can be guaranteed that no misspeculations will be
reported in the middle of the RL load sequences, the register
dataflow can be used, although interrupts would be blocked
and page faults averted.
0030. In yet other embodiments, special hardware such as
RL logic may be attached anywhere in the cache hierarchy or
memory Subsystem. Attaching the RL like a non-memory
function unit may allow more RL function units to be imple
mented. It works for pure functions, but not for functions with
extended inputs. It requires, however, that the RL configura
tion load be serialized, or otherwise forced to be at or after
retirement. Memory-like RL uops have a natural synchroni
Zation and serialization mechanism. There may be fewer
ports. But it provides freedom as to where in the memory
system the RL is attached.
0031. The above embodiments relate to attaching the spe
cial hardware function block such as RL in an out-of-order
section of the processor pipeline. Although out-of-order
execution has many advantages, in-order execution can be
significantly more efficient for Some operations—particular
operations that produce a lot of state, which would be too
expensive to manage by dataflow. FIG. 1B shows a microar
chitecture that combines out-of-order and in-order pipelines.
In addition to the conventional out-of-order execution sub
system, with renamer/mapper, Scheduler, execution units,
ROB, and PRF, there is an in-order execution section 62
including a RL unit 63 after reordering in ROB 60, before
retirement stage 65. Various operations, such as integer ALU
or DS access, could be performed in the in-order section.
Techniques such as pipelining that Support fast in-order pro
cessors can be used here. In some embodiments, highly state
ful function units, such as encryption or compression, or
operations that use large amounts of dataflow, such as vectors
and matrices, can be implemented in special hardware. Such
as reconfigurable logic, placed in the in-order section.
0032. Note that register values flow between the out-of
order and in-order sections. While not shown in FIG. 1B,
in-order execution units may be connected to memory, which
may be desirable for memory intensive operations, but is not
required. In the embodiment of FIG. 1B, RL unit 50 may be
best Suited for pure functions, although the techniques of the
previous section can be applied. RL unit 63 is best suited for
highly stateful operations. In general, the earlier position in

Oct. 20, 2011

the pipeline of RL unit 63 may reduce the branch mispredic
tion penalty, if the specialized hardware such as RL is used in
branch computations.
0033. An RL unit may be used for flow control. That is,
one area where dedicated hardware such as RL is faster than
a software implementation using general purpose instructions
is in selecting complex, multiway, alternatives using a large
number of irregular inputs. A typical multi-way branch can be
implemented using lookup tables. But, N bits of input natu
rally require a lookup table of size 2'. Sparse branch condi
tions may require far fewer terms in an RL Solution Such as a
programmable logic array (PLA), e.g., mainly triangular pat
terns such as the following may only require linear terms; but
the irregularities may prevent a simple code sequence from
calculating the output. PLAS are essentially a simplified,
compressed, lookup table for Such functions.

0000 0000 0000 0000 O

1100 0000 0000 OOOO 1

1010 0000 OOOO OOOO 2

0000 1XXX XXXX XXXX.1-> 3

0000 0100 0000 0000-> 4

0034. In the microarchitectures described above the RL
blocks attached to the out-of-order execution pipelines (or
memory, or in-order at retirement) can be used straightfor
wardly to implement multiway selections. It is immaterial
whether they perform an immediate multiway branch, or if
they produce an index which is then used for an indirect
branch out of a dense table. However, indirect branches often
predict poorly. Despite improvements in indirect branch pre
dictors, if the multiple targets are truly equiprobable—as
happens in compression and encryption problems—some
indirect branches will always continue to predict poorly. In
Some applications, many of the branch conditions can be
evaluated far in advance. If they could be fully evaluated, they
could be used in a prepare-to-branch instruction. Thus yet
another way of attaching RL to the pipeline may be to attach
it in a way that allows it to precompute as many of the
conditions affecting multiway branches as possible, deliver
ing this computation, partial or full, to the front-end for use in
branch prediction. If the multiway branch condition is known
far enough in advance, it can be used to eliminate the need for
a branch prediction; if not fully known, it may still be mixed
in with the other factors such as history used to make the
prediction.
0035. In various embodiments, RL units may be virtual
ized. That is, such RL's may be varied in implementation, so
that code can adjust to the varying capabilities of RL hard
ware, e.g., so that code that assumes that 4 different RL
functions can be implemented in the same hardware will
continue to work if only 3 can be implemented in a different
implementation of the RL hardware. However, although the
code may work, it may work at lower performance. Con

US 2011/0258419 A1

versely, code can take advantage of more RL hardware when
available. Further, RL units may be shared, between multiple
users or threads in the same computing system, and context
Switched, e.g., as processes are timesliced.
0036. In some embodiments, a RL unit may be virtualized
by concatenating a so-called process identifier onto a RL
opcode. Thus an “RL opcode' may be extended so that it can
be virtualized. This ProcessID or Thread ID is placed in a
special register inside the general purpose processor. The
general purpose processor's instructions to invoke reconfig
urable logic operations are of the form “RLop(opcode.inputs)
”. The “RL opcode' is either an immediate, or a value
obtained from a register. The RL opcode and the ProcessID
are concatenated, and are presented to logic inside the RL
unit, typically a content addressable memory (CAM), that
determines whether the function requested is loaded into the
RL unit and, if so, what the physical RL opcode and configu
ration number are. If the function requested is not present, an
exception occurs. An exception handler may then “fault in
the requested function.
0037. By using the ProcessID, multiple processes can
share the reconfigurable hardware. The ProcessID or
ThreadID is guaranteed unique: no different users or pro
grams should have the same value. In some embodiments, the
OS provides Such a value, and certain control register values
may be used as such a ProcessID Such as a control register
(CR3), Page Table Base Register. Even without OS support,
this feature can be useful to increment the ProcessID on every
event that might possibly be associated with a process context
Switch: on every page fault, or trap, or ring transition. When
the ProcessID wraps, similarly all entries in the RL virtual to
physical opcode mapping table may be invalidated, discard
ing all of the RL configuration on every Such event. It means
that it will be necessary to reconfigure the RL whenever it is
used after every such event; but, the RL virtual to physical
opcode mapping table nevertheless allows different libraries
within the same program to act as if the RL hardware is
virtualized, thus OS support enables cross-process virtualiza
tion of the RL hardware. Lacking OS Support, cross-process
virtualization is not enabled, but intra-process virtualization
between modules of the same program is enabled. So long as
context Switches are infrequent this is a win for performance;
and it should always remain correct. For “pure' functions, it
is not necessary to save the old configuration; it can be
assumed that the original requester has kept it around, so that
it can be reloaded. For Such pure functions, handling the
exception solely in the user process, without first going to the
OS, is permissible.
0038. For stateful functions such as compression engines
the RL state being Swapped out may be saved, which may
belong to a different process. An OS level exception handler
may be used; or the State can be saved eagerly, to a user
specified virtual address, whenever it appears to be possible
that the OS may swap the process; or the state may become
part of the state that the OS context Switches, e.g., through a
state save instruction.

0039. In some embodiments, a user level “exception han
dler may be implemented so that a reconfigurable logic
extension can be Supported without requiring OS Support.
One Such mechanism may specify the address of a function to
be called, if the RL opcode exception is produced. For
example, one of the RL operands may be a memory block
containing this function address, amongst other things. The
state may be saved in an OS transparent and conservative

Oct. 20, 2011

manner, or statelessness for the reconfigurable logic may be
realized by preventing latches from being configured in the
RL. Although this greatly limits the functionality of the
reconfigurable logic, OS transparency is a great enough ben
efit to warrant it. A mode bit may be set during OS or BIOS
boot to allow stateful RL to be configured if appropriate OS
support or a device driver is available.
0040. In some embodiments, virtual memory may be used
to virtualize the RL configuration. In such embodiments,
every RL instruction executed by the general purpose proces
sor specifies a virtual memory address which points to an “RL
control block. Additional inputs and opcodes may be pro
vided in the instruction or in the RL control block. The pro
cessor passes the physical address of the RL control block to
the RL unit; it may also pass the virtual address. The RL
control block specifies the RL configuration. The RL unit
contains a virtual to physical RL opcode mapping table, but
here it maps the tuple (RL control block address, opcode) to
the physical RL opcode and configuration number. If the
input tuple is not present in the table, then the missing infor
mation can be loaded from the RL control block in memory.
If the input tuple is present in the table, it can be used without
delaying to reconfigure. Such embodiments may be more
flexible than the mechanism set forth above. Although both
can be made OS transparent, with suitable hardware support
this virtual memory mechanism can Support cross-process
virtualization and still be OS transparent.
0041. Because the control in such embodiments is essen
tially memory mapped, it may be maintained consistent. For
example, it could be reloaded every instruction, it can be
Snooped, like a cache, or it can be maintained with “TLB
consistency': loaded once, and invalidated only when an
operation occurs that might lead to it being used for a different
process.

0042. In some embodiments, pipelined loading of the RL
configuration can occur. For example, if there are 4 RL con
figurations, and configurations 0, 2, and 3 are valid, then
configuration 1 can be in the process of being loaded, while
the other configurations are in use. In a simple microproces
Sor, Software can explicitly control this pipelined loading of
configurations so as to lose the least amount of time. Alter
nately, the need for Software to explicitly manage Such pipe
lined loading of the RL configuration may be eliminated by
looking ahead in the instruction stream, to see a reconfigura
tion instruction a long way ahead, to similarly determine
which configurations are not in use, and can be replaced, thus
initiating a pipelined load of the RL configuration early. To
ensure correctness when Such reconfiguration is done, as
intervening processor Stores may be in the process of chang
ing the configuration settings stored in the RL control block,
pipelined loading may be handled as other speculative loads,
by detecting store to load conflicts and forwarding, or by
permitting Such pipelined loads only for read-only pages of
memory.

0043 Referring now to FIG.3A, shown is a block diagram
of the interaction between a general purpose processor and a
reconfigurable logic unit to enable virtualization in accor
dance with one embodiment of the present invention. As
shown in FIG. 3A, a general purpose processor 100 may be
coupled to reconfigurable logic unit 150. Processor 100
includes a register to store a process ID 120 and further
provides a RL instruction 130 which may include an RL
opcode 135, as well as other inputs 138, which may corre
spond to data for the specialized function. This information

US 2011/0258419 A1

may be provided to reconfigurable logic unit 150, and more
specifically to a mapping table 160 that receives a virtual RL
opcode and maps it to a physical RL opcode and configuration
number, namely state stored in a physical RL opcode 165 and
RL configuration 170, while other inputs 138 are provided to
RL inputs 180.
0044 As shown also in FIG.3A, reconfigurable logic unit
150 may include a plurality of logic blocks 155-155, (ge
nerically logic blocks 155). In various embodiments, differ
ent functionality may be present in one or more of these logic
blocks. Furthermore, based on a given configuration
instructed by mapping table 160, an interconnection network
157 may dynamically reconfigure connections between one
or more of various logic blocks 155 to enable desired opera
tions or functions to be performed under software control.
0045 Referring now to FIG.3B, shown is a block diagram
of the interaction between a general purpose processor and a
reconfigurable logic unit to enable virtualization in accor
dance with another embodiment of the present invention. As
shown in FIG. 3B, a general purpose processor 200 may be
coupled to reconfigurable logic unit 250. Processor 200 pro
vides a RL instruction 230 which may include an RL control
block virtual address 232, RL opcode 235, as well as other
inputs 238. This information may be provided to reconfig
urable logic unit 250, and more specifically to a mapping
table 260 that receives the address, and the virtual RL opcode
and maps them to a physical RL opcode and configuration
number, namely state stored in a physical RL opcode 265 and
RL configuration 270, while other inputs 238 are provided to
RL inputs 280. In the embodiment of FIG. 3B, virtual
memory may virtualize the RL configuration by the providing
of RL control block virtual address 232 to mapping table 260
to thus obtain physical opcode 265 and RL configuration 270.
As similarly shown in FIG. 3B, a reconfigurable logic/inter
connection network 255 may be present in reconfigurable
logic unit 250. As described above, under appropriate soft
ware control the selection and coupling of different reconfig
urable logic blocks may be realized.
0046 Referring now to FIG. 4, shown is a block diagram
of a multiprocessor System in accordance with an embodi
ment of the present invention. As shown in FIG.4, multipro
cessor system 500 is a point-to-point interconnect system,
and includes a first processor 570 and a second processor 580
coupled via a point-to-point interconnect 550, although the
multiprocessor System may be of a multi-drop bus or another
Such implementation. As shown in FIG. 4, each of processors
570 and 580 may be multi-core processors including first and
second processor cores (i.e., processor cores 574a and 574b
and processor cores 584a and 584b), although other cores and
potentially many more other cores may be present in particu
lar embodiments. Furthermore, as shown in FIG. 4 a RL unit
575 and 585 may be coupled to each pair of processor cores
574a and 574b and 584a and 584b, respectively.
0047 Still referring to FIG. 4, first processor 570 further
includes a memory controller hub (MCH) 572 and point-to
point (P-P) interfaces 576 and 578. Similarly, second proces
Sor 580 includes a MCH 582 and P-P interfaces 586 and 588.
As shown in FIG.4, MCH's 572 and 582 couple the proces
sors to respective memories, namely a memory 532 and a
memory 534, which may be portions of main memory (e.g., a
dynamic random access memory (DRAM)) locally attached
to the respective processors.
0048 First processor 570 and second processor 580 may
be coupled to a chipset 590 via P-P interconnects 552 and

Oct. 20, 2011

554, respectively. As shown in FIG.4, chipset 590 includes
P-P interfaces 594 and 598. Furthermore, chipset 590
includes an interface 592 to couple chipset 590 with a high
performance graphics engine 538. In one embodiment, an
Advanced Graphics Port (AGP) bus 539 or a point-to-point
interconnect may be used to couple graphics engine 538 to
chipset 590. In turn, chipset 590 may be coupled to a first bus
516 via an interface 596.
0049. As shown in FIG.4, various I/O devices 514 may be
coupled to first bus 516, along with a bus bridge 518 which
couples first bus 516 to a second bus 520. In one embodiment,
second bus 520 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 520 including, for
example, a keyboard/mouse 522, communication devices 526
and a data storage unit 528 which may include code 530, in
one embodiment. Further, an audio I/O524 may be coupled to
Second bus 520.
0050 Embodiments may be implemented in code and may
be stored on a storage medium having stored thereon instruc
tions which can be used to program a system to perform the
instructions. The storage medium may include, but is not
limited to, any type of disk including floppy disks, optical
disks, compact disk read-only memories (CD-ROMs), com
pact disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories (ROMs),
random access memories (RAMs) such as dynamic random
access memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program
mable read-only memories (EEPROMs), magnetic or optical
cards, or any other type of media Suitable for storing elec
tronic instructions.
0051 While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.
What is claimed is:
1. An apparatus comprising:
a processor including a register to store a thread identifier

and a pipeline having a plurality of stages to execute
instructions out of order, the stages including a plurality
of front-end stages, a plurality of execution units, and a
plurality of back-end stages; and

a first reconfigurable logic unit including configurable
logic elements coupled between a dispatch port and a
writeback port of the pipeline, wherein the first recon
figurable logic unit is to perform a reconfigurable logic
function indicated by a first instruction including a
reconfigurable logic opcode, wherein first logic of the
first reconfigurable logic unit is to determine whether the
reconfigurable logic function is loaded based on the
reconfigurable logic opcode and the thread identifier,
and if so to provide a physical reconfigurable logic
opcode and a configuration number associated with a
configuration of the configurable logic elements, and
otherwise to cause an exception.

2. The apparatus of claim 1, further comprising a second
reconfigurable logic unit coupled between a reorder buffer
and a retirement unit of the back-end stages, wherein the
second reconfigurable logic unit and the retirement unit are to
execute operations in order on result data from the reorder
buffer.

US 2011/0258419 A1

3. The apparatus of claim 2, wherein the second reconfig
urable logic unit is to perform a compression operation on
matrix data of NXM form, wherein N and Mare greater than
1.

4. The apparatus of claim 1, wherein the first reconfig
urable logic unit is to share a port of a plurality of dispatch
ports and a port of a plurality of writeback ports with a first
cache memory, a translation lookaside buffer (TLB), and a
page miss handler (PMH), wherein the TLB is closer to the
first cache memory than the PMH, and the PMH is closer to
the first cache memory than the first reconfigurable logic unit.

5. The apparatus of claim 1, wherein the reconfigurable
logic opcode and the thread identifier are concatenated and
provided to a content addressable memory to determine
whether the reconfigurable logic function is loaded.

6. The apparatus of claim 1, wherein the first instruction
further includes a reconfigurable logic control block virtual
address, and the first reconfigurable logic unit includes a
mapping table to map a tuple of the first instruction to the
physical reconfigurable logic opcode and the configuration
number.

7. The apparatus of claim 1, wherein the first reconfig
urable logic unit is virtualized among a plurality of threads.

8. The apparatus of claim 1, wherein a state of the first
reconfigurable logic unit is saved on a context Switch from a
function responsive to a user-specifiedaddress and without an
operating system execution handler.

9. The apparatus of claim 1, wherein the first reconfig
urable logic unit is to perform a pipelined load of a configu
ration of the configurable logic elements for an instruction to
be performed while executing a second instruction in a dif
ferent configuration of the configurable logic elements.

10. An apparatus comprising:
a general-purpose processor including a pipeline having a

plurality of stages to execute instructions out-of-order,
the stages including a plurality of front-end stages, a
plurality of execution units, and a plurality of back-end
stages; and

a reconfigurable logic unit coupled within a pipeline of the
general-purpose processor unit including configurable
logic elements, wherein the reconfigurable logic unit is
to perform a reconfigurable logic function indicated by
an instruction, the instruction including a reconfigurable
logic control block virtual address and a reconfigurable
logic opcode, and the reconfigurable logic unit including
a mapping table to map a tuple of the instruction to a
physical reconfigurable logic opcode and configuration
number associated with a configuration of the config
urable logic elements.

11. The apparatus of claim 10, wherein the reconfigurable
logic unit is to pre-compute a plurality of conditions affecting
a multiway branch.

Oct. 20, 2011

12. The apparatus of claim 11, wherein the reconfigurable
logic unit is to provide a result of the pre-computation to a
branch predictor of the front-end units for use in a prediction.

13. The apparatus of claim 10, wherein the reconfigurable
logic unit is coupled between one of a plurality of dispatch
ports of the front-end stages and one of a plurality of write
backports of the back-end stages and is to share the port of the
dispatch ports and the port of the writeback ports with at least
one of the execution units.

14. The apparatus of claim 13, wherein the reconfigurable
logic unit is to share the port of the dispatch ports and the port
of the writeback ports with a divider unit, wherein the recon
figurable logic unit and the divider unit each have a variable
latency.

15. The apparatus of claim 10, further comprising a second
reconfigurable logic unit coupled between a first stage and a
second stage of the back-end stages, wherein the second
reconfigurable logic unit and the second stage are to execute
operations in-order.

16. The apparatus of claim 10, wherein the instruction
includes a reconfigurable logic opcode concatenated with an
identifier to identify a process executing on the apparatus
associated with the instruction, wherein a plurality of pro
cesses are to share the reconfigurable logic unit.

17. The apparatus of claim 10, wherein the reconfigurable
logic unit includes a content addressable memory (CAM) to
receive a concatenation of the reconfigurable logic opcode
and a thread identifier and determine if a function associated
with the instruction is loaded in the reconfigurable logic unit,
wherein the reconfigurable logic unit is to signal an exception
handler to obtain the function if it is not loaded.

18. A method comprising:
receiving a first instruction and a thread identifier in a

reconfigurable logic unit from a processor coupled to the
reconfigurable logic unit;

determining whether a reconfigurable logic function is
loaded in the reconfigurable logic unit based on the
reconfigurable logic opcode and the thread identifier;
and

if so, providing a physical reconfigurable logic opcode and
a configuration number associated with a configuration
of configurable logic elements of the reconfigurable
logic unit.

19. The method of claim 18, further comprising if the
reconfigurable logic function is not loaded, causing an excep
tion.

20. The method of claim 19, further comprising loading the
reconfigurable logic function responsive to the exception via
an exception handler.

