US 20180097823A1

12y Patent Application Publication o) Pub. No.: US 2018/0097823 A1

a9y United States

Liu et al.

43) Pub. Date: Apr. 5, 2018

(54) PRE-PROCESSING BEFORE PRECISE
PATTERN MATCHING

Publication Classification

(51) Imt.CL
(71) Applicant: INTERNATIONAL BUSINESS HO4L 29/06 (2006.01)
MACHINES CORPORATION, (52) US. L
Armonk, NY (US) CPC HO4L 63/1408 (2013.01); GO6F 2207/025
(2013.01); HO4L 63/14 (2013.01)
72) Inventors: Dan U. Liu, Beijing (CN); Yang L.
72 Liu, Shanghai (CJNSg, g(on)g Lu, ¢ 67 ABSTRACT
Shanghai (CN); Yong Feng Pan, Pre-processing before precise pattern matching of a target
Shanghai (CN); Yan Ying, Shanghai pattern from a stream of patterns. Including acquiring occur-
(CN) rence numbers of target elements in the target pattern,
initializing the buffer, the buffer indicating a section in the
(21) Appl. No.: 15/805,309 stream of patterns, determining whether occurrence numbers
of the target elements in the buffer reach the occurrence
(22) Filed: Nov. 7, 2017 numbers of the target elemepts in the target pattern, updatipg
the buffer and then returning to the determining step, in
L. response to determining that the occurrence numbers of the
Related U.S. Application Data target elements in the buffer do not reach the occurrence
(63) Continuation of application No. 14/278,090, filed on ~ nhumbers of the target elements in the target pattern, and
May 15, 2014. outputting the elements in the buffer for subsequent pro-
cessing, in response to determining that the occurrence
(30) Foreign Application Priority Data numbers of the target elements in the buffer reach the
occurrence numbers of the target elements in the target
Jun. 27,2013 (CN) o 201310260868.0 pattern.
_SERIAL OCCURRENCE NUMBERS OF TARGET CHARACTERS IN THE BUFFER
R O | TEXT|H:1,E:1,L:0,0:0 [H: L,E:2,L:2.0:1 [H:0,E: 1,L:0,0:1 [H:,E:2,L:2.0:1 |H1,E:1,L2.001
4 THE TEXT COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 COLUMN 5
0 H H H
1 E E] E i
2 i : i
3 I [i [i
4 S | S S
5
8 C C
7 A A
8 L] L :
9 L i L ;
10 E E L
11 D D D D
12
13 J J J J
14 O o O O i
15 E E E |
16 . ; L
17 | H . H H]
18 | E : E E E :
19 L L i L i
20 | L P L | L 5
21 |0 ? o_ |
22 ,
23 J
24 o
25 E
26 !

Patent Application Publication Apr. 5,2018 Sheet 1 of 7 US 2018/0097823 A1

10

COMPUTER SYSTEM SERVER
12\ 30 MEMORY 34
W ﬁ
CACHE
16
l o 40~_]
PROCESSING | P 42~ |
UNIT - -
A
18
24 22 N
1§ 1 y 0
Vo Y
DISPLAY |« ' o INTERFACE(S) NETWORK ADAPTER l
Y
14
| R
EXTERNAL
DEVICE(S)

FIG. 1

Patent Application Publication Apr. 5,2018 Sheet 2 of 7 US 2018/0097823 A1

ACQUIRING OCCURRENCE NUMBERS OF | 201
THE TARGET ELEMENTS IN THE TARGET
PATTERN
l 203
INITIALIZING THE BUFFER |/
l 205
> UPDATING THE BUFFER |/
209
RETURNING TO | /
STEP 205
NO THE OCCURRENCE .

NUMBERS OF THE TARGET
ELEMENTS IN THE BUFFER REACH
THE TARGET
NUMBERS?

OUTPUTTING THE

BUFFERFOR | 211

SUBSEQUENT
PROCESSING

FIG. 2

Patent Application Publication Apr. 5,2018 Sheet 3 of 7 US 2018/0097823 A1

SERIAL OCCURRENCE NUMBERS OF TARGET CHARACTERS IN THE BUFFER

Ornmaoars | TEXTIH:1,E:1,L:0,0:0[H:1,E:2,L:2,0:1 [H:0,E:1,L.:0,0:1 [H:1,E:2,L:2,0:1 [H1,E:1,L.2,0:1
N THE TEXT COLUMN{ | COLUMNZ2 | COLUMN3 | COLUMN4 | COLUMNS

0 H H H

1 E | E , E |

2 i i i

3 I I i [!

4 |si s s

5

9] C C

7 A A

8 | L , L !

g L i L i

10 | E i E i e

11 D ! D ' D D

12

13 J J J J

14 |0 o_ o 0

15 | E E_ E

16 | . . o

17 | H : H : H ;

18 E i E ! E !

19 L L 5 L E

20 | L P L ? L 5

21 |0 P 0 |

22 ,

23 J

24 | O

25 E

26 !

FIG. 3

Patent Application Publication Apr. 5,2018 Sheet 4 of 7 US 2018/0097823 A1

TARGET PATTERN
PROCESSING MEANS

BUFFER
INITIALIZATION MEANS

COMPARING MEANS

UPDATING MEANS

OUTPUTTING MEANS —— RESETTING MEANS

FIG. 4

Patent Application Publication

Apr. 5,2018 Sheet S of 7

US 2018/0097823 Al

REFERENCE
FEATURE TABLE
STORING MODULE

COMPARING
MODULE

MODULE

BUFFERING |

CHARACTER
PARSING
MODULE

BUFFER
FEATURE TABLE

UPDATING
MODULE

BUFFER FEATURE
TABLE STORING
MODULE

FIG. 5

Apr. 5,2018 Sheet 6 of 7 US 2018/0097823 Al

Patent Application Publication

AVERAGE
JUMPING
DISTANCE

7
173

3%
,

L1y

i
%
e
5

273

L%
W
4%

658,16

117

i

Y
Wz

MATCHING
NUMBER OF
FEATURE

543

%

7w

74

o
i

SR8

7,

858

gl
#5

MATCHING
NUMBER

194

%
£

oo

74

4y
Vi

W%

LENGTH

7

i

£

28

A

9%

4

oo
Wy

25

W5

2

o

TARGET
STRING

AP,
SASPIL,

Qe

AP

st

e

doas

\\\w\r

At

Lol

would

s
o

anped
saucer

s
Lo

A

s

ek

Laney

FIG. 6A

Apr. 5,2018 Sheet 7 of 7 US 2018/0097823 Al

Patent Application Publication

AVERAGE
JUMPING
DISTANCE

AR

ok

P
£

6481

S

1 s

MATCHING
NUMBER OF
FEATURE

1470

MATCHING
NUMBER

1

LENGTH

P

?.

o

Pl

o

o

¥4

e

]

w4

wi

v

el

ek

m\.&:.

TARGET STRING

o

§? 0 R0
biettd

N
¥

disapear

sdventures

over the lasv dog

mustand

orsatures

Abresdeand butter

FIG. 6B

US 2018/0097823 Al

PRE-PROCESSING BEFORE PRECISE
PATTERN MATCHING

BACKGROUND

[0001] The present invention relates to information pro-
cessing technologies, and more specifically, to a method, a
device and a circuit structure for pattern matching.

[0002] Pattern matching means finding a specific pattern
from a stream of patterns. Pattern matching is a basic
technique in computer applications. As an example, finding
a target string from a text is a kind of pattern matching. In
such a scenario, the target string to be found corresponds to
the above specific pattern and the text corresponds to the
above stream of patterns. As another example, Deep Packet
Inspection (DPI), which has been widely applied to Intru-
sion Detection/Intrusion Prevention, Spam Blocking, Anti-
virus, Data Leakage Prevention, Content Filtering or the
like, detects whether there is a packet or a sequence of
packets with attack characteristics in a stream of data. In this
scenario, the stream of data corresponds to the above stream
of patterns, and the packet or the sequence of packets with
attack characteristics correspond to the above specific pat-
tern.

[0003] On one hand, a long term of research has been
conducted for pattern matching and numerous software
algorithms have been obtained. On the other hand, as can be
appreciated by a person of skill in the art, circuit components
in a hardware platform operate in parallel and thereby a
faster speed can be reached. Accordingly, it is desired to
implement the software algorithms with hardware so as to
increase the speed of pattern matching. However, a problem
of high cost and high complexity will be confronted when
transplanting a whole software algorithm into the hardware
platform. To this end, it may be envisaged to transplant a
portion of the software algorithm suitable for hardware
implementation into the hardware platform.

SUMMARY

[0004] A method, a device and a circuit for pattern match-
ing are provided in the present invention.

[0005] According to an embodiment of the present inven-
tion, there is provided a method for pattern matching that
finds a target pattern from a stream of patterns, both of the
stream of patterns and the target pattern being comprised of
elements, the method comprising: acquiring occurrence
numbers of target elements in the target pattern; initializing
a buffer, the buffer indicating a section in the stream of
patterns; determining whether occurrence numbers of the
target elements in the buffer reach the occurrence numbers
of the target elements in the target pattern; updating the
buffer and then returning to the determining step, in response
to determining that the occurrence numbers of the target
elements in the buffer do not reach the occurrence numbers
of the target elements in the target pattern; outputting the
elements in the buffer for subsequent processing, in response
to determining that the occurrence numbers of the target
elements in the buffer reach the occurrence numbers of the
target elements in the target pattern.

[0006] According to another embodiment of the present
invention, there is provided a device for pattern matching
that finds a target pattern from a stream of patterns, both of
the stream of patterns and the target pattern being comprised
of elements, the device comprising: an acquiring means

Apr. 5, 2018

configured to acquire occurrence numbers of target elements
in the target pattern; a buffer initialization means configured
to initialize the buffer, the buffer indicating a section in the
stream of patterns; a comparing means configured to deter-
mine whether occurrence numbers of the target elements in
the buffer reach the occurrence numbers of the target ele-
ments in the target pattern; an updating means configured to
update the buffer and then return to perform the determina-
tion, in response to determining that the occurrence numbers
of the target elements in the buffer do not reach the occur-
rence numbers of the target elements in the target pattern; an
outputting means configured to output the elements in the
buffer for subsequent processing, in response to determining
that the occurrence numbers of the target elements in the
buffer reach the occurrence numbers of the target elements
in the target pattern.

[0007] According to another embodiment of the present
invention, there is provided a circuit for pattern matching
comprising: a buffering module for storing elements cur-
rently being processed; an element parsing module for
determining elements that are newly incorporated in the
buffer; a buffer feature table updating module for updating
occurrence numbers of target elements in the buffer based on
determination result of the element parsing module; a buffer
feature table storing module for recording occurrence num-
bers of the respective target elements in the buffer; a
reference feature table storing module for storing a reference
feature table; and a comparing module for comparing the
buffer feature table storing module and the reference feature
table storing module to determine whether the occurrence
numbers of the respective elements in the buffer reach the
occurrence numbers of the elements in a target pattern.

[0008] The technical solutions according to the embodi-
ments of the present invention can increase the speed for
pattern matching.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Through the more detailed description of some
embodiments of the present disclosure in connection with
the accompanying drawings, the above and other objects,
features and advantages of the present disclosure will
become more apparent, wherein the same reference number
generally refers to the same components in the embodiments
of the present disclosure.

[0010] FIG. 1 is a block diagram of an exemplary com-
puter system/server 12 which is applicable to implement the
embodiments of the present invention;

[0011] FIG. 2 is a flow chart of a method for pattern
matching according to an embodiment of the present inven-
tion;

[0012] FIG. 3 is an operation schematic diagram of a

method for pattern matching according to an embodiment of
the present invention;

[0013] FIG. 4 is a block diagram of a device for pattern
matching according to an embodiment of the present inven-
tion;

[0014] FIG. 5 is a block diagram of a circuit for pattern
matching according to an embodiment of the present inven-
tion; and

[0015] FIGS. 6A and 6B illustrate experimental results
according to an embodiment of the present invention.

US 2018/0097823 Al

DETAILED DESCRIPTION

[0016] Some preferable embodiments of the present dis-
closure will be described below in more detail with refer-
ence to the accompanying drawings, in which the preferable
embodiments of the present disclosure have been illustrated.
However, the present disclosure can be implemented in
various manners, and thus should not be construed to be
limited to the embodiments disclosed herein. On the con-
trary, those embodiments are provided for the thorough and
complete understanding of the present disclosure, and com-
pletely conveying the scope of the present disclosure to
those skilled in the art.

[0017] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0018] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0019] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0020] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0021] Computer program code for carrying out opera-
tions for aspects of the present invention may be written in
any combination of one or more programming languages,

Apr. 5, 2018

including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

[0022] Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0023] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer readable medium produce an article
of manufacture including instructions means which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

[0024] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0025] Referring now to FIG. 1, in which an exemplary
computer systeny/server 12 which is applicable to implement
the embodiments of the present invention is shown. Com-
puter systenv/server 12 as shown in FIG. 1 is only illustrative
and is not intended to suggest any limitation as to the scope
of use or functionality of embodiments of the invention
described herein.

[0026] As shown in FIG. 1, computer system/server 12 is
shown in the form of a general-purpose computing device.
The components of computer system/server 12 may include,
but are not limited to, one or more processors or processing
units 16, a system memory 28, and a bus 18 that couples
various system components including system memory 28 to
processor 16.

[0027] Bus 18 represents one or more of any of several
types of bus structures, including a memory bus or memory

US 2018/0097823 Al

controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

[0028] Computer system/server 12 typically includes a
variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server 12, and it includes both volatile and non-
volatile media, removable and non-removable media.

[0029] System memory 28 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 30 and/or cache memory 32.
Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
in FIG. 1 and typically called a “hard drive). Although not
shown in FIG. 1, a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a
“floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In such instances, each can be connected to bus 18 by
one or more data media interfaces. Memory 28 may include
at least one program product having a set (e.g., at least one)
of program modules that are configured to carry out the
functions of embodiments of the invention.

[0030] Program/utility 40, having a set (at least one) of
program modules 42, may be stored in memory 28 by way
of example, the program modules 42 including, but not
limited to, an operating system, one or more application
programs, other program modules, and program data. Each
of the operating system, one or more application programs,
other program modules, and program data or some combi-
nation thereof, may include an implementation of a net-
working environment. Program modules 42 generally carry
out the functions and/or methodologies of embodiments of
the invention as described herein.

[0031] Computer system/server 12 may also communicate
with one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other modules of com-
puter system/server 12 via bus 18. It should be understood
that although not shown, other hardware and/or software
components could be used in conjunction with computer
system/server 12. Examples, include, but are not limited to:
microcode, device drivers, redundant processing units,
external disk drive arrays, RAID systems, tape drives, and
data archival storage systems, etc.

Apr. 5, 2018

[0032] The method for pattern matching according to an
embodiment of the present invention is actually a method for
pre-processing before a precise pattern matching. The
method may be implemented in software or hardware.
Finding a target string in a text is exemplified in the
following description. Those skilled in the art would readily
conceive of extending the method according to the embodi-
ment of the present invention described below by taking the
text and the target string as an example to a general scenario
of pattern matching for finding a target pattern from a stream
of patterns. The stream of patterns is comprised of consecu-
tive elements, where the element is a basic unit. The
elements in the stream of patterns form a variety of patterns.
It could be a case where one element forms a pattern, and
could also be a case where a plurality of consecutive
elements form a pattern. Pattern matching means finding a
target pattern from the variety of patterns that can be formed
of the elements of the stream of patterns. A text is comprised
of consecutive characters, where a character is a basic unit.
The characters of the text form a variety of strings. It could
be a case where one character forms a string, and could also
be a case where a plurality of consecutive characters form a
string. Finding a target string in a text means finding a target
string from the variety of strings formed of the characters of
the text. Thus, the text is a representation of the stream of
pattern, the target string is a representation of the target
pattern, and the character is a representation of the element.

[0033] The method for pattern matching according to an
embodiment of the present invention is described below in
connection with FIG. 2.

[0034] At step 201, an occurrence number(s) of at least a
portion of the elements in the target pattern is acquired.

[0035] For simplicity, assuming that processing is per-
formed merely on capital English letter(s) in the text and the
target string. It is assumed that the target string is “HELLO”.
In the target string “HELLO”, “H” occurs one time, “E”
occurs one time, “L” occurs two times and “O” occurs one
time. In the following description, a length of the target
string is denoted by “a@”. Said acquiring may comprise
calculating on the input target string so as to obtain the
occurrence numbers or acquiring by directly receiving the
occurrence numbers.

[0036] As described in the foregoing, the method accord-
ing to the embodiment of the present invention may be
implemented in software or hardware. Accordingly, the
method may be optimized differently for the software and
hardware implementations, respectively.

[0037] According to another embodiment of the present
invention, occurrence numbers of several characters which
occur at highest frequencies are obtained. The number of
characters to be obtained may be determined by a character
number threshold. For example, the character number
threshold may be set at 3. If “A” occurs 5 times in a string,
“B” occurs 4 times, “C” occurs 3 times, each of “D” and “E”
occurs 2 times, then only occurrence numbers for “A”; “B”
and “C” are obtained. The obtained portion of characters
may be referred to as target characters, and the occurrence
numbers of the target characters in the obtained target string
may be referred to as target numbers. In the software
implementation, the speed for subsequent steps can be
increased by obtaining occurrence numbers of only a portion
of characters of the target string. Below, description will be
provided in relation to other steps shown in FIG. 2.

US 2018/0097823 Al

[0038] According to an embodiment of the present inven-
tion, occurrence numbers of all characters in the target string
that belong to a target character set are obtained. The target
character set refers to a set of characters included in all
possible target strings. For all the possible target string being
composed of capital English letters, for example, the target
character set includes all the 26 English letters. Accordingly,
occurrence numbers of all the 26 capital English letters in
“HELLQO” are obtained. That is, an occurrence number of
zero is obtained for all the capital English letters other than
the above four. In the hardware implementation, a complex-
ity degree of the hardware can be decreased by obtaining the
occurrence numbers of all the characters in the target char-
acter set, thereby the speed for hardware processing can be
increased. This will be illustrated when describing a circuit
for pattern matching according to an embodiment of the
present invention in connection with other figures.

[0039] At step 203, a buffer is initialized.

[0040] The buffer indicates a section of text by using a
buffer starting point indicator and a buffer ending point
indicator, the section including a certain number of charac-
ters. The buffer starting point indicator is close to the
beginning of the text, and the buffer ending point indicator
is close to the end of the text. The buffer starting point
indicator indicates a character in the buffer that is closest to
the beginning of the text, and the buffer ending point
indicator indicates a character not in the buffer and closest
to the end of the text. The buffer starts at the character
indicated by the buffer starting point indicator and ends at a
character before the one indicated by the buffer ending point
indicator. In the following description, when a reference is
made to a direction of the text, a character “a” is before
another character “b” and the direction from the character
“a” to “b” is a forward direction, if the location of the
character “a” is closer to the beginning of the text than the
character “b”; accordingly, the character “b” is after the
character “a”, and the direction from the character “b” to “a”
is a backward direction.

[0041] According to an embodiment of the present inven-
tion, an initial value of the buffer ending point indicator
indicates the same character as that indicated by the buffer
starting point indicator. In this case, the buffer does not
contain any character, that is, the length of the buffer is zero.
[0042] According to another embodiment of the present
invention, assuming that the character at the beginning of the
text is the zero-th character, the character indicated by the
initial value of the buffer starting point indicator is the
zero-th character of the text, and the character indicated by
the initial value of the buffer ending point indicator is the
(a-1)th character. At this moment, the length of the buffer is
“4—1” characters. As described above, the method according
to the embodiment of the present invention is actually a
method for pre-processing before the precise pattern match-
ing. If the length of the buffer is small, the characters
contained in the buffer are unable to cover the target string,
thereby the pre-processing is not required for these situa-
tions.

[0043] At step 205, the buffer is updated.

[0044] Updating the buffer results in moving the buffer
ending point indicator towards the end of the text by one
character, so as to incorporate a new character into the
buffer. At this moment, the length of the buffer is a.
[0045] Upon moving the buffer ending point indicator
towards the end of the text by one character, the character

Apr. 5, 2018

indicated by the buffer ending point indicator before the
movement is incorporated into the buffer. The effect is
equivalent to expanding the buffer towards the end of the
text by one character.

[0046] The step of updating the buffer may also be imple-
mented as a part of the step 209.

[0047] At step 207, it is determined whether the occur-
rence numbers of the target element in the buffer reach the
target numbers.

[0048] If, at step 203, the character indicated by the initial
value of the buffer starting point indicator is the zero-th
character in the text and the character indicated by the initial
value of the buffer ending point indicator is the (f-1)th
character in the text, “f-1” characters are included in the
buffer. Upon processing at step 205, f characters are included
in the buffer. Steps 205 and 207 may be performed several
times as will be described later in more detail, thus the buffer
may be extended towards the end of the text character by
character, that is, more and more characters will be included
in the buffer. As a result, as long as the text is long enough,
the occurrence numbers of the target characters in the buffer
will finally reach the target numbers even if they do not
reach the target numbers when step 207 is performed for the
first time.

[0049] A counter may be provided for each target charac-
ter, with its initial value determined by the character(s) in the
buffer with the length of f. Every time when a new character
is incorporated into the buffer, comparison as to whether the
new character is one of the target characters is performed; if
s0, a corresponding counter is updated.

[0050] If only occurrence numbers of a portion of char-
acters in the target string are obtained at step 201, only
counters for this portion of characters are required to be
provided at this step, and only a comparison of the new
character with this portion of characters is required; in this
way, number of comparison may be reduced and operation
speed of the software may be increased.

[0051] At step 209, in response to the determination that
the occurrence numbers of the target elements in the buffer
do not reach the target numbers, processing is returned to
step 205.

[0052] At step 211, in response to the determination that
the occurrence numbers of the target elements in the buffer
reach the target numbers, the buffer is outputted for subse-
quent processing.

[0053] If the occurrence numbers of the target characters
in the buffer reach the target numbers, it indicates that the
characters contained in the buffer may possibly cover the
target string. According to an embodiment of the present
invention, the entire buffer is outputted for subsequent
processing, such as the precise pattern matching operation.
[0054] According to another embodiment of the present
invention, outputting the buffer for subsequent processing
comprises outputting f characters in the buffer that are
closest to the end of the text for the precise pattern matching
operation. This is because if the target string exists at a
location in the buffer close to the beginning of the text, the
occurrence numbers of the target characters in the buffer will
have reached the target numbers at that location. Hence if the
buffer contains the target string, it must be the case where the
f characters closest to the end of the text in the buffer form
the target string.

[0055] Through the above steps, a section of the text may
be identified with a length longer than that of the target

US 2018/0097823 Al

string. Only the last f characters in the section need to be
considered when performing the precise pattern matching
operation. Assuming that the section has a length of y, the
precise pattern matching operation needs to be performed
only once for the y characters in the text. In the conventional
method for pattern matching, however, the precise pattern
matching operation needs to be performed once for every
character in the text. It will be understood by those skilled
in the art that the highest volume of resources are consumed
by the precise pattern matching operation, and thus the speed
for pattern matching may be significantly increased by
reducing the numbers of the precise pattern matching opera-
tion.

[0056] If the precise pattern matching operation finds out
that the target string is not contained in the buffer, the buffer
may be reset and then the processing is returned to step 203.
Assuming that the character indicated by the buffer ending
point indicator is ath character in the text at this moment, the
buffer starting point indicator is updated to indicate the
(a—f+1)th character in the text according to an embodiment
of the present invention. In this case, the length of the buffer
is restored to “f—17. That is to say, the last “f~1” characters
in the old buffer are the same as the first “f~1” characters in
the new buffer. This is because the last “f~1” characters in
the old buffer may match the first “a—1” characters of the
target string, although the last & characters in the old buffer
do not match it, which may also cause the target string to be
not included in the old buffer. As such, upon proceeding to
perform the step 205 to thereby incorporate a character into
the new buffer, the new buffer may possibly contain the
target string. It will be understood by those skilled in the art
that “4-1” is the minimum amount of overlap between the
old and new buffers.

[0057] It is also possible that the precise pattern matching
operation finds out the target string is contained in the buffer,
that is, the last a characters in the buffer form the target
string. If it is necessary to continue to find the target string
from the remaining portion of the text, the character indi-
cated by the current buffer ending point indicator is used as
a new starting point of the text, i.e. the zero-th character in
the text, and then the new buffer starting point indicator and
buffer ending point indicator are initialized as described at
step 203.

[0058] In the following, the method shown in FIG. 2 is
described in connection with the example of FIG. 3.

[0059] In FIG. 3, assuming that the text is “HE IS
CALLED JOEHELLO,JOE!”, and the target string is
“HELLO” which is case insensitive. Further assuming that
occurrence numbers for all the characters are acquired at
step 201, thus the target characters include “H”, “E”, “L”
and “O”, and the target numbers are 1 for “H”, 1 for “E”, 2
for “L”, and 1 for “O”. The value of “a” is 3.

[0060] After the initialization at step 203, the buffer start-
ing point indicator indicates the zero-th character in the text,
i.e. “H”, and the buffer ending point indicator indicates the
fourth character in the text, i.e. “S”.

[0061] After performing the step 205, the buffer ending
point indicator indicates the fifth character, and the content
in the buffer at this moment is indicated by the dotted line
in the first column of FIG. 3. At step 207, the calculated
occurrence numbers for the target characters in the buffer is
1 for “H”, 1 for “E”, 0 for “L” and 0 for “O”. Processing then
proceeds to step 209 where it is returned to step 205.

Apr. 5, 2018

[0062] After the steps 205, 207 and 209 are performed
several times, the buffer ending point indicator indicates the
14" character in the text, i.e. “O”. At this moment, the step
205 is performed once again so that the buffer ending point
indicator indicates the 15” character and the content in the
buffer at this moment is indicated by the dotted line in the
second column of FIG. 3. In step 207, the calculated
occurrence numbers for the target characters in the buffer are
1 for “H”, 2 for “E”, 2 for “L” and 1 for “O”. That is, the
target numbers are reached, and the processing then enters
step 211. As can be seen, the last 5 characters in the buffer
is “ED JO” which is apparently not the desired target string
“HELLO”.

[0063] Now, the processing is returned to step 203 where
the buffer starting point indicator is updated to indicate the
“15-5+1=11"th character in the text to thereby obtain a new
buffer. After performing the step 205, the buffer ending point
indicator indicates the 167 character in the text, and the
content in the buffer at this moment is indicated by the
dotted line in the third column of FIG. 3. At step 207, the
calculated occurrence numbers for the target characters in
the buffer are 0 for “H”, 1 for “E”, 0 for “L” and 1 for “O”.
As such, the procedure proceeds to step 209 where it is
returned to step 205.

[0064] After the steps 205, 207 and 209 are performed
several times, the buffer ending point indicator indicates the
20 character in the text, i.e. “L”. At this moment, the step
205 is performed once again, so that the buffer ending point
indicator indicates the 21 character and the content in the
buffer at this moment is indicated by the dotted line in the
fourth column of FIG. 3. In step 207, the calculated occur-
rence numbers for the target characters in the buffer are 1 for
“H”, 2 for “E”, 2 for “L” and 1 for “O”. That is, the target
numbers are reached, and the processing then enters step
211. As can be seen, the last 5 characters in the buffer is
“HELL” which apparently is still not the desired target
string “HELLO™.

[0065] Now, the processing is returned to step 203 where
the buffer starting point indicator is updated to indicate the
“21-541=17" th character in the text to thereby obtain a new
buffer. After performing the step 205, the buffer ending point
indicator indicates the 22% character in the text, and the
content in the buffer at this moment is indicated by the
dotted line in the fifth column of FIG. 3. At step 207, the
calculated occurrence numbers for the target characters in
the buffer are 1 for “H”, 1 for “E”, 2 for “L” and 1 for “O”.
That is, the target numbers are reached and the processing
proceeds to step 211. As can be seen, the last 5 characters in
the buffer at this moment is “HELLO” which is the desired
target string.

[0066] Ifitis necessary to continue to find the target string
“HELLO” in the remaining portion of the text, the character
indicated by the current buffer ending point indicator (i.e. the
227 character), i.e. “,” is used as the new buffer starting
point indicator, and the above steps are repeated.

[0067] FIG. 4 illustrates a block diagram of an apparatus
for pattern matching according to an embodiment of the
present invention.

[0068] A device for pattern matching that finds a target
pattern from a stream of patterns according to an embodi-
ment of the present invention, comprising:

[0069] an acquiring means configured to acquire occur-
rence numbers of target elements in the target pattern;

US 2018/0097823 Al

[0070] a buffer initialization means configured to initialize
the buffer, the buffer indicating a section in the stream of
patterns;

[0071] a comparing means configured to determine
whether occurrence numbers of the target elements in the
buffer reach the occurrence numbers of the target elements
in the target pattern;

[0072] an updating means configured to update the buffer
and then return to perform the determination, in response to
determining that the occurrence numbers of the target ele-
ments in the buffer do not reach the occurrence numbers of
the target elements in the target pattern;

[0073] an outputting means configured to output the ele-
ments in the buffer for subsequent processing, in response to
determining that the occurrence numbers of the target ele-
ments in the buffer reach the occurrence numbers of the
target elements in the target pattern.

[0074] Wherein, the initial length of the buffer is the
length of the target pattern.

[0075] Wherein, the outputting means comprises a module
for outputting 3 elements that entered in the buffer in the last
place for subsequent processing.

[0076] The device further comprises a buffer resetting
means configured to reset the buffer and then return to the
determination, in response to discovering in the subsequent
processing that the target pattern is not contained in the
buffer.

[0077] Wherein, the buffer is reset such that the first “a-1”
elements in the new buffer overlap with the last “a4—1” in the
old buffer.

[0078] Wherein, the target elements are the entirety of
elements contained in potential target patterns.

[0079] Below, a circuit for pattern matching according to
an embodiment of the present invention is described with
reference to FIG. 5.

[0080] In the description of the circuit shown in FIG. 5, it
is assumed that both the text and the target string contain
only the 26 capital English letters.

[0081] In FIG. 5, a buffering module is provided for
storing characters currently being processed and corre-
sponds to the above-described buffer. In terms of hardware,
the main part of a storing module is a series of memory units.
The characters in the buffer will be outputted at one time for
subsequent processing, as described above at step 211. A
module storing all the characters in the text is called text
storing module. According to an embodiment in the present
invention, the buffering module may be implemented as a
part of the text storing module with the storage region
comprised in the buffering module indicated by the buffer
starting point indicator and the buffer ending point indicator.
A description regarding how to set the buffer starting point
indicator and the buffer ending point indicator has been
provided in connection with FIGS. 2 and 3. According to
another embodiment of the present invention, the buffering
module is separate from the text storing module. The char-
acters are read one-by-one from the text storing module to
the buffering module to form the buffer.

[0082] A character parsing module is provided for deter-
mining which character the one newly incorporated in the
buffer corresponds to. The character parsing module has an
input connected to the buffering module and an output
connected to a feature updating module. According to an
embodiment of the present invention, the character parsing
module outputs a feature vector of 26 bits, each bit corre-

Apr. 5, 2018

sponding to a capital English letter. It may be configured
such that if a specific bit in the feature vector is zero, it
indicates that the character newly incorporated into the
buffer corresponds to a capital English letter corresponding
to that bit. It can be understood by those skilled in the art
that, for a specific character, only one bit could be zero in its
feature vector.

[0083] It can be understood by those skilled in the art that
the characters may be represented by using binary codes.
According to ASCII codes, for example, a character is
represented by eight bits (i.e. a byte). According to an
embodiment of the present invention, the character parsing
module may be implemented by using a comparator. ASCII
codes corresponding to the 26 capital English letters are
stored respectively. When a new character enters in the
buffer, ASCII code of the new character is compared with
ASCII codes corresponding to the stored capital English
letters, so as to determine which capital English letter the
character newly entered in the buffer is. As can be under-
stood by those skilled in the art, a comparison between two
bits may be implemented by using an Exclusive-OR gate
with two inputs, where if levels of the two inputs are
different, the output is 1; and if the levels of the two inputs
are the same, the output is 0. Accordingly, a comparison
between two bytes may be embodied by using a comparator
including eight Exclusive-OR gates with two inputs and an
OR gate with eight inputs, where the inputs of the OR gate
are connected to the outputs of the Exclusive-OR gates. The
two bytes are the same when the output of the OR gate is a
logical zero. In this way, the output of the OR gate may be
used directly as a value of the bit corresponding to the
capital English letter in the feature vector. It can be appre-
ciated that 26 comparators as described above are required
in order to generating in parallel the values of the bits
corresponding to the respective capital English letters in the
feature vector.

[0084] According to another embodiment in the present
invention, the character parsing module may be imple-
mented by using a decoder. Because the ASCII codes for the
26 capital English letters are determinate, the mapping
relationship between the inputs and outputs of the character
parsing module is also determinate. In such a case, the
mapping relationship may be embodied by using a specific
combinational circuit. A 3-8 decoder which is well-known to
those skilled in the art maps a 3-bit input to an 8-bit output,
with each combination of the 3-bit input corresponding to a
specific 8-bit output where a certain bit takes a different
value from others; for example, the certain bit takes 1 while
others take 0. Based on the same principle, it may also be
embodied as an 8-26 decoder for mapping an 8-bit input to
a 26-bit output, where the 8-bit input is an ASCII code of a
character and the 26-bit output is the above-described fea-
ture vector. It may also be embodied as a 5-26 decoder since
the ASCII codes for the 26 capital English letters have only
five different bits.

[0085] The circuit employing the decoder is simpler than
that employing the comparator, and as a result the circuit
area may be reduced. Further, signals are subjected to less
stages of gates, so that the circuit employing the decoder has
a higher processing speed than that employing the compara-
tor.

[0086] A buffer feature table storing module is provided
for recording occurrence numbers of the respective charac-
ters in the buffer. A buffer feature table updating module

US 2018/0097823 Al

updates the buffer feature table storing module based on the
outputs of the character parsing module. As described in the
foregoing, the output of the character parsing module is a
feature vector that indicates which one of the 26 capital
English letters the character newly entered in the buffer is.
The buffer feature table updating module updates the occur-
rence number of the corresponding character recorded in the
buffer feature table storing module based on the feature
vector.

[0087] Foreach character, it is necessary to determine how
many bits in the buffer feature table storing module are used
to record the occurrence number of the character. The
number of the bits may be referred to as a depth of the buffer
feature table storing module. For example, if an occurrence
number of a character is recorded with four bits, occurrence
of the character may be recorded for at most 15 times, and
in this case the buffer feature table storing module has 104
(26*4) bits; if an occurrence number of a character is
recorded with 1 bit, occurrence of the character may be
recorded for at most one time, and in this case the buffer
feature table storing module has 26 bits.

[0088] According to another embodiment of the present
invention, the depth may be determined by collecting sta-
tistics about the occurrence numbers of the respective char-
acters in different target strings. For example, if, in terms of
common target strings, it is assumed that the occurrence
number of any character in any common target string does
not exceed 3, or the probability of exceeding 3 is not higher
than a certain probability threshold, the depth may be
determined to be 2 bits.

[0089] A comparing module is provided for determining
whether the occurrence numbers of the respective characters
in the buffer reach those in the target string.

[0090] According to an embodiment of the present inven-
tion, the occurrence number of each character recorded in
the buffer feature table storing module when initializing the
buffer is zero. The occurrence numbers recorded in the
buffer feature table storing module are incremented as the
characters are incorporated into the buffer one by one. In this
instance, the occurrence numbers for the respective charac-
ters in the target string are stored in a reference feature table
storing module as shown in FIG. 5. The reference feature
table storing module has the same length as the buffer
feature table storing module. The comparing module com-
pares the buffer feature table storing module with the ref-
erence feature table storing module, and in the case when the
two are the same, outputs a signal instructing the buffering
module to output the characters in the buffer for subsequent
processing.

[0091] According to another embodiment of the present
invention, the occurrence number of each character recorded
in the buffer feature table storing module when initializing
the buffer is the occurrence number of each of the characters
in the target string. The occurrence numbers recorded in the
buffer feature table storing module are decremented as the
characters are incorporated into the buffer one by one. In this
instance, values of zero are stored in a reference feature table
storing module of FIG. 5. The comparing module compares
the buffer feature table storing module with zero, and in the
case when the buffer feature table storing module stores all
zeros, outputs a signal instructing the buffering module to
output the characters in the buffer for subsequent processing.

Apr. 5, 2018

Because it is much easier to implement a zero-crossing
comparator, the circuit according to this embodiment has a
relatively simple structure.

[0092] As mentioned in the foregoing description, when
the technical solution according to the embodiment of the
invention is implemented in hardware, a complexity degree
of the hardware can be decreased by obtaining the occur-
rence numbers of all the characters in the target character set,
to thereby increase the speed for hardware processing. This
is because bit wide (i.e. a number of bits to be processed in
parallel) of the circuit is fixed in this instance, and accord-
ingly a controlling circuit required to change the bit wide is
omitted. Furthermore, the character parsing module can be
implemented by using a decoder only when the bit width is
fixed.

[0093] FIGS. 6A and 6B show experimental results
according to an embodiment of the present invention. In this
experiment, a piece of article is used as the text, and the
respective target strings shown in the column of “Target
String” are searched respectively. The column of “Length”
denotes the length of a corresponding target string, i.c. the
value of a. The column of “Matching Number” denotes
times of finding the respective target strings in the text. The
column of “Matching Number of Feature” denotes the times
of outputting the buffer when searching the respective target
strings. The column of “Average Jumping Distance” denotes
an average length of the buffers when searching the respec-
tive target strings. As described above, the precise pattern
matching operation needs to be performed only once for
each buffer; accordingly, the longer the average length of the
buffers is, the less times of precise pattern matching opera-
tion are performed. As can be learned from the experimental
results, the average length of the buffers is considerably
larger than the length of the target string, which indicates
that the times of the precise pattern matching operation are
reduced significantly by the algorithm according to the
embodiments of the present invention.

[0094] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0095] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the

US 2018/0097823 Al

described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer program product for identifying a target
pattern from a stream of patterns, the target pattern and the
stream of patterns comprises consecutive elements and the
target pattern comprises one or more of the consecutive
elements of the stream of patterns, the method comprising:

one or more computer-readable storage media and pro-
gram instructions stored on the one or more computer-
readable storage media, the program instructions com-
prising:

program instructions to acquire a first occurrence value
for each element in the target pattern, wherein the first
occurrence value is equal to the number of times each
element occurs in the target pattern;

program instructions to store a predetermined number of
consecutive elements from the stream of patterns in a
buffer as a section of elements, wherein the section of
elements is defined by a buffer starting point indicator
and a buffer ending point indicator;

program instructions to determine a second occurrence
value for each element in the target pattern, wherein the
second occurrence value is equal to the number of
times each element in the target pattern occurs in the
section of elements stored in the buffer;

program instructions to update the buffer to include one
additional element in the section of elements by mov-
ing the buffer ending point indicator towards the end of
the stream of patterns by one element;

program instructions to repeat determining the second
occurrence value and updating the buffer until the
second occurrence value matches the first occurrence
value for each element in the target pattern;

program instructions to output the elements in the buffer
in response to determining the second occurrence value
matches the first occurrence value for each element in
the target pattern;

program instructions to perform a precise pattern match-
ing operation on the outputted elements of the buffer to
determine if the target pattern is contained within only
the last x elements of the buffer, wherein x is equal to
the number of elements in the target pattern; and

in response to determining the target pattern is not con-
tained within the last x elements of the buffer, program
instructions to reset the buffer to its initial length by
updating the buffer starting point indicator to indicate
the (y—x+1)th character, wherein y is equal to the buffer
ending point indicator.

2. The computer program product according to claim 1,
wherein a length of the buffer is equal to the number of
elements stored in the buffer, and wherein an initial length
of the buffer is a length of the target pattern.

3. The computer program product according to claim 1,
wherein the program instructions to output the elements in
the buffer for subsequent processing comprises program
instructions to output only the last x elements of the buffer.

Apr. 5, 2018

4. The computer program product according to claim 3,
wherein after outputting the elements in the buffer for
subsequent processing, the computer program product fur-
ther comprises:

in response to determining that the target pattern is not

contained in the last x elements of the buffer, program
instructions to return to the program instructions to
determine the second occurrence value after resetting
the subset of characters stored in the buffer to its initial
length.

5. A computer program product for identifying a target
string from a text, the text comprises consecutive characters
and the target string comprises one or more of the consecu-
tive characters of the text, the method comprising:

one or more computer-readable storage media and pro-

gram instructions stored on the one or more computer-
readable storage media, the program instructions com-
prising:

program instructions to acquire a first occurrence value

for each character in the target string, wherein the first
occurrence value is equal to the number of times each
character appears in the target string;
program instructions to store a predetermined number of
consecutive characters from the text in a buffer,
wherein the buffer is defined by a buffer starting point
indicator and a buffer ending point indicator;

program instructions to determine a second occurrence
value for each character in the target string, wherein the
second occurrence value is equal to the number of
times each character in the target string occurs in the
buffer;
program instructions to update the buffer to include one
additional character by moving the buffer ending point
indicator towards an end of the text by one character;

program instructions to repeat determining the second
occurrence value and updating the buffer until the
second occurrence value matches the first occurrence
value for each character in the target string;

program instructions to perform a precise pattern match-

ing operation on the characters of the buffer to deter-
mine if the target string is contained within only the last
x characters of the buffer, wherein x is equal to the
number of characters in the target string; and

in response to determining the target string is not con-

tained within the last x characters of the buffer, program
instructions to reset the buffer to its initial length by
updating the buffer starting point indicator to indicate
the (y—x+1)th character, wherein y is the buffer ending
point indicator.

6. The computer program product according to claim 5,
wherein the buffer starting point indicator indicates a char-
acter in the buffer that is closest to a beginning of the text,
and the buffer ending point indicator indicates a character
not in the buffer and closest to the end of the text, and the
buffer starts at the character indicated by the buffer starting
point indicator and ends at a character before the one
indicated by the buffer ending point indicator.

7. The computer program product according to claim 5,
wherein a length of the buffer is equal to the number of
characters stored in the buffer, and wherein an initial length
of the buffer is equal to a length of the target string.

8. The computer program product according to claim 5,
wherein the character indicated by the buffer ending point
indicator is not stored in the buffer.

US 2018/0097823 Al

9. The computer program product according to claim 5,
further comprising:

program instructions to update a counter in response to

the additional character added to the buffer during
updating being one of the characters of the target string.

10. The computer program product according to claim 5,
further comprising:

program instructions to update a counter in response to

one of the characters of the target string matching one
of the characters in the buffer.

11. A computer program product for identifying a target
string from a text, the text comprises consecutive characters
and the target string comprises one or more of the consecu-
tive characters of the text, the method comprising:

one or more computer-readable storage media and pro-

gram instructions stored on the one or more computer-
readable storage media, the program instructions com-
prising:

program instructions to determine a first occurrence value

for each character of the target string, wherein the first
occurrence value is equal to the number of times each
character appears in the target string;

program instructions to store a subset of characters in a

buffer, the subset comprising a predetermined number
of consecutive characters from the text, wherein a first
character of the subset is indicated by a buffer starting
point indicator and a last character of the subset is a
character immediately prior to a character of the text
indicated by a buffer ending point indicator;

program instructions to determine a second occurrence

value for each character of the target string, wherein the
second occurrence value is equal to the number of
times each character of the target string appears in the
subset of characters stored in the buffer;

program instructions to update the subset to include one

additional character by moving the buffer ending point
indicator towards an end of the text by one character
such that the number of characters include in the subset
of characters increase by one;

iteratively performing the program instructions to deter-

mine the second occurrence value and the program
instructions to update the buffer until the second occur-
rence value matches the first occurrence value for each
character of the target string, wherein during each
subsequent iteration a match between the first occur-
rence value and the second occurrence value is deter-
mined only for the last character in the subset added by
updating the buffer;

Apr. 5, 2018

program instructions to perform a precise pattern match-
ing operation on the characters of the subset of char-
acters stored in the buffer to determine if the target
string is contained within only the last x characters of
the subset of characters stored in the buffer, wherein x
is equal to the number of characters in the target string;
and

in response to determining the target string is not con-

tained within the last x characters of the subset of
characters stored in the buffer, program instructions to
reset the subset of characters stored in the buffer to its
initial length by updating the buffer starting point
indicator to indicate the (y—x+1)th character, wherein y
is the buffer ending point indicator.

12. The computer program product according to claim 11,
wherein the buffer starting point indicator indicates a char-
acter in the buffer that is closest to a beginning of the text,
and the buffer ending point indicator indicates a character
not in the buffer and closest to the end of the text, and the
buffer starts at the character indicated by the buffer starting
point indicator and ends at a character before the one
indicated by the buffer ending point indicator.

13. The computer program product according to claim 11,
wherein a length of the buffer is equal to the number of
characters in the subset, and wherein an initial length of the
subset is equal to a length of the target string.

14. The computer program product according to claim 11,
wherein the character indicated by the buffer ending point
indicator is not stored in the buffer.

15. The computer program product according to claim 11,
further comprising:

program instructions to update a counter in response to

the additional character added to the subset during
updating being one of the characters of the target string.

16. The computer program product according to claim 11,
further comprising:

program instructions to update a counter in response to

one of the characters of the target string matching one
of the characters in the subset.

17. The computer program product according to claim 11,
wherein the buffer starting point indicator indicates a char-
acter in the buffer that is closest to a beginning of the text,
and the buffer ending point indicator indicates a character
not in the buffer and closest to the end of the text, and the
buffer starts at the character indicated by the buffer starting
point indicator and ends at a character before the one
indicated by the buffer ending point indicator.

#* #* #* #* #*

