a2 United States Patent
Resch

US011789832B1

US 11,789,832 B1
Oct. 17, 2023

(10) Patent No.:
45) Date of Patent:

(54) RETRYING FAILED WRITE OPERATIONS
IN A DISTRIBUTED STORAGE NETWORK

(71) Applicant: Pure Storage, Inc., Mountain View, CA
(US)
(72) Inventor: Jason K. Resch, Chicago, IL (US)
(73) Assignee: PURE STORAGE, INC., Santa Clara,
CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 25 days.
(21) Appl. No.: 16/836,451
(22) Filed: Mar. 31, 2020
Related U.S. Application Data
(63) Continuation of application No. 15/840,070, filed on
Dec. 13, 2017, now abandoned, which is a
(Continued)
(51) Imt. ClL
GO6F 12/00 (2006.01)
GO6F 13/00 (2006.01)
(Continued)
(52) US. CL
CPC GO6F 11/2094 (2013.01); GO6F 3/064
(2013.01); GO6F 3/0604 (2013.01); GO6F
3/065 (2013.01); GOGF 3/067 (2013.01);
GO6F 3/0619 (2013.01); GOG6F 3/0631
(2013.01); GO6F 3/0653 (2013.01); GO6F
3/0665 (2013.01); GO6F 3/0689 (2013.01);
(Continued)
(58) Field of Classification Search

CPC GO6F 3/0604; GOGF 3/0619; GOGF 3/0631;
GOG6F 3/064; GO6F 3/065; GOGF 3/0653;

GO6F 3/0665; GO6F 3/067; GOGF 3/0689;

GO6F 9/5016; GO6F 11/2094; GOGF

11/1076; GO6F 2201/82; GO6F 2201/805;

HO04L 67/1097

USPC ottt 711/114
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5/1978 Ouchi
9/1995 Mackay

(Continued)

4,092,732 A
5,454,101 A

OTHER PUBLICATIONS

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

(Continued)

Primary Examiner — Sheng Jen Tsai
(74) Attorney, Agent, or Firm — GARLICK &
MARKISON; Harry S. Tyson

(57) ABSTRACT

In various examples, a computing device of a dispersed
storage network (DSN) receives a store data request includ-
ing a data object. The computing device identifies a storage
unit pool associated with the store data request. The storage
unit pool includes a plurality of storage sets, each of the
storage sets associated with a plurality of address ranges that
are associated with a respective set of memories of the
storage set. The computing device identifies a first set of
memories of a first storage set of the storage unit pool, and
issues a set of write slice requests to the first set of memories
to initiate storage of encoded data slices produced from the
data object. When an unfavorable storage condition is
detected, the computing device identifies a second set of
memories of the first storage set and facilitates storage of the
data object in the second set of memories.

20 Claims, 6 Drawing Sheets

100
~
receive a store data request that includes a
102 data object
identify a storage pool associated with the store
104 7 data request
generate a DSN address, where the DSN
address falls within (a sub-address range of) an
106 7] address range associated with the identified
storage pool
initiate storage of the data object using the
108 7 DSN address
when an unfavorable storage condition is
110-7] detected, generate a second DSN address
facilitate storage of the data object using the
1127 second DSN address

US 11,789,832 B1

Page 2

Related U.S. Application Data

continuation-in-part of application No. 14/847,855,
filed on Sep. 8, 2015, now Pat. No. 9,916,114.

Provisional application No. 62/072,123, filed on Oct.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2022.01)

GO6F 9/5016 (2013.01); GOGF 11/1076

(2013.01); HO4L 67/1097 (2013.01); GO6F
2201/805 (2013.01); GOGF 2201/82 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

(60)
29, 2014.
(51) Int. CL
GOG6F 11720
GOG6F 3/06
GOG6F 11/10
GOG6F 9/50
HO4L 67/1097
(52) US. CL
CPC
(56)
5485474 A 1/1996
5774643 A 6/1998
5802364 A 9/1998
5809285 A 9/1998
5,890,156 A 3/1999
5987622 A * 11/1999
5991414 A 11/1999
6,012,159 A 1/2000
6,058,454 A 5/2000
6,128277 A 10/2000
6,175,571 Bl 1/2001
6,192472 Bl 2/2001
6,256,688 Bl 7/2001
6,272,658 Bl 82001
6,301,604 Bl 10/2001
6,356,949 Bl 3/2002
6,366,995 Bl 4/2002
6,374,336 Bl 4/2002
6415373 Bl 7/2002
6,418,539 Bl 7/2002
6,449,688 Bl 9/2002
6,567,948 B2 5/2003
6,571,282 Bl 5/2003
6,609,223 Bl 82003
6,700,809 B1* 3/2004
6,718,361 B1* 4/2004
6,760,808 B2* 7/2004
6,785,768 B2 $/2004
6,785,783 B2 /2004
6,826,711 B2 11/2004
6,879,596 Bl 4/2005
7,003,688 Bl 2/2006
7,024,451 B2 4/2006
7,024,600 B2 4/2006
7,080,101 B1* 7/2006
7,103,824 B2 9/2006
7,103,915 B2 9/2006
7,111,115 B2 9/2006
7,133,600 B1* 11/2006
7,140,044 B2 11/2006
7,146,644 B2 12/2006
7,171,493 B2 1/2007
7,222,133 Bl 5/2007
7240236 B2 7/2007
7,266,556 B1* 9/2007
7272613 B2 9/2007
7,636,724 B2 12/2009
8,924,681 B1* 12/2014

Rabin
Lubbers
Senator
Hilland
Rekieta
Lo Verso GOGF 11/1076
714/6.1
Garay
Fischer
Gerlach
Bruck
Haddock
Garay
Suetaka
Steele
Nojima
Katsandres
Nikolaevich
Peters
Peters
Walker
Peters
Steele
Bowman-Amuah
Wolfgang
GI11C 15/00
365/236
[ETRTRT HO04L 67/1095
707/999.01
HO4N 21/442

Moulton

Dooply

Pittelkow

Jorgenson

Wolfgang

Watsono... GOGF 16/2282

Halford

Redlich

Peters

Boyle HO04N 5/76
386/265

Redlich
Redlich
Shu
Raipurkar
Cutts
Coates
Sim
De la Torre
Throop ..cccocevevnae GOG6F 3/0671
711/170

................ GO6F 11/2094

8,972,694

9,072,169
9,244,152
9,727,266
9,841,925
9,916,114
9,921,907
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2003/0163718

2004/0024963
2004/0057316

2004/0122917
2004/0210729

2004/0215998
2004/0228493
2005/0015539

2005/0100022

2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0193084

2005/0229069
2006/0036669
2006/0047907
2006/0136448
2006/0156059
2006/0224603
2007/0079081
2007/0079082
2007/0079083
2007/0088970
2007/0174192

2007/0214285
2007/0234110
2007/0283167

2008/0243783
2009/0089149

2009/0094251
2009/0094318

2010/0023524
2010/0106907
2011/0066801
2011/0072321
2012/0117351
2012/0131584
2012/0167108
2013/0275656
2013/0326264

2014/0075112

BL*

BL*
BL*
B2 *
B2 *
B2 *
B2 *
Al
Al
Al
Al
Al
Al*
Al*

Al
Al*

Al*

Al*

Al
Al
Al*

Al*

Al
Al
Al
Al
Al
Al*

Al
Al*
Al
Al
Al
Al*
Al
Al
Al
Al
Al*
Al
Al
Al
Al*
Al*

Al*
Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

3/2015

6/2015
1/2016
82017
12/2017
3/2018
3/2018
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
8/2003

2/2004
3/2004

6/2004

10/2004

10/2004
11/2004
1/2005

5/2005

5/2005
6/2005
6/2005
6/2005
6/2005
9/2005

10/2005
2/2006
3/2006
6/2006
7/2006

10/2006
4/2007
4/2007
4/2007
4/2007
7/2007

9/2007
10/2007
12/2007

10/2008
4/2009

4/2009
4/2009

1/2010

4/2010

3/2011

3/2011

5/2012

5/2012

6/2012

10/2013

12/2013

3/2014

Dolanccccoovvnrs GOG6F 3/0685
T11/172
Coblerc.oovrns GO017J 3/0291
Thiagarajan GO1S 5/10
Resch GO6F 3/0625
Khadiwala .. GO6F 3/0659
Resch GO6F 3/0619
Volvovski . .. HO4L 67/1097
Butterworth
Ulrich
Gadir
Meffert
Watkins
Shu oo GOGF 11/1076
Johnson ... GOGF 21/79
713/193
Talagala
Kozakai GOGF 12/0246
711/E12.008
Menon HO04L 67/1002
709/219
Horii wovveeviviiee GI11C 7/1042
711/156
Buxton
Ma
Horii wovveeviviiee GI11C 7/1042
711/168
Ramprashad HO41 47/32
370/395.42
Corbett
Karpoff
Fatula, Jr.
Redlich
Schmisseur
Todd ..ocoovveviviie GOGF 3/067
709/214
Hassner
Radulescucccccvenenne 709/200
Shiga
Cialini
Kitamura
Correll ..o GO6F 16/283
Gladwin
Gladwin
Gladwin
Buxton
Gladwin GOGF 21/6227
705/40
Au
Soran
Venters, 111
Santioocoveenrenn G06Q 30/0254
Lerner GO6Q 10/047
705/7.34
Gladwinoco..... GOGF 16/10
Gladwin HO04L 67/1002
709/203
Gladwin GOG6F 3/0659
707/E17.032
Noguchi GOGF 11/2082
707/E17.014
Sato evveiivereene, GOG6F 3/0637
711/E12.001
Dhuseccovenennn. GOGF 11/1076
714/55
Motwani HO04L 63/0823
711/165
Raevsky ..o GOGF 8/45
718/102
Bowersocoen. GO6F 9/5072
718/103
Talagala GOGF 12/0246
711/103
Resch ..o, GOGF 11/1092
714/6.2
Baptistc...... HO04L 67/1097

711/114

US 11,789,832 B1
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0177476 Al* 6/2014 Perrett HO4L 41/145
370/255
2014/0223095 Al* 82014 Storm ... GOG6F 3/0619
711/114
2014/0304560 Al* 10/2014 Narasimha GO6F 13/1657
714/704
2015/0067421 Al* 3/2015 Baptistccoeveenne GO6F 16/13
714/723
2015/0378616 Al* 12/2015 Khadiwala GOG6F 3/0659
711/114
2015/0378626 Al* 12/2015 Motwani GO6F 3/067
711/114
2015/0378822 Al* 12/2015 Grube GO6F 3/061
714/763
2015/0381730 Al* 12/2015 Resch GOG6F 3/0623
709/225
2015/0381731 Al* 12/2015 Grube HO4L 67/325
709/224
2016/0179618 Al* 6/2016 Resch GO6F 21/80
714/764
2016/0188253 Al* 6/2016 Resch ... GOG6F 3/0647
711/172
2016/0226522 Al* 8/2016 Resch ... HO3M 13/3761
2016/0255150 Al* 9/2016 Dhuse HO4L 67/1097
709/213
2016/0292254 Al* 10/2016 Dhuse GO6F 16/2272
2016/0294949 Al* 10/2016 i .. GO6F 3/0632
2016/0306699 Al* 10/2016 GOG6F 3/0619
2016/0342475 Al* 11/2016 GOG6F 3/0619
2016/0378350 Al* 12/2016 Motwani HO4N 21/274
711/154
2017/0091035 Al* 3/2017 Kazi ...cooveiennn. GOG6F 3/0659
2017/0147428 Al* 5/2017 Volvovski GO6F 3/067
2017/0168720 Al* 6/2017 Kazi GO6F 11/1076
2017/0168749 Al* 6/2017 Grube GO6F 3/061
2017/0177228 Al* 6/2017 Baptist .. HO4N 21/2181
2017/0315871 Al* 11/2017 Gladwin .. . GO6F 11/1076
2018/0004604 Al* 1/2018 Khadiwala GO6F 16/10
2018/0074744 Al1* 3/2018 Kazi GO6F 3/0635
2018/0074879 Al* 3/2018 Khadiwala . GO6F 11/1092
2018/0081586 Al* 3/2018 Kazi GO6F 3/0653
2018/0101457 Al* 4/2018 Resch GO6F 3/0631
2019/0034276 Al* 1/2019 Mark ... GO6F 3/064

OTHER PUBLICATIONS

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Work-

ing Group; RFC 4513; Jun. 2006; pp. 1-32.

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
and Matching Rules; IETF Network Working Group; RFC 4517,
Jun. 2006; pp. 1-50.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Rabin; Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance; Journal of the Association for Com-
puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Croup; RFC 4519,
Jun. 2006; pp. 1-33.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 1511; Jun. 2006; pp.
1-68.

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516; Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String
Representation of Search Filters; IETF Network Working Group;
RFC 4515; Jun. 2006; pp. 1-12.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60
pgs.

Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
Storage Systems; 13th IEEE International Symposium on High
Performance Distributed Computing; Jun. 2004; pp. 172-181.
Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
tory Information Models; IETF Network Working Group; RFC
4512; Jun. 2006, pp. 1-49.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006, pp. 1-14.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
cal Specification Road Map; IETF Network Working Group; RFC
4510; Jun. 2006; pp. 1-8.

* cited by examiner

US 11,789,832 B1

Sheet 1 of 6

Oct. 17, 2023

U.S. Patent

I 'Ol

07 (NS@) omau
abel0)s ‘pasiadsip Jo ‘painquisip

gl un
Buibeuew

97 2100
punndwod

r

A

72 Mowsw NS@

——— ———————— — —— ——— — —— — ——_ ooy

0c hun
Buissaooud Ajubajul

9% Jun abe.ojs (Y X)

ot
(NS) nun abeJoys

fugndwod

B o o— —

¥Z Jlomiau

¢ aoepa)ul

A

71 9o1map bupndwioo

Y

|
|
|
I 97 109
|
|
|

3

A

£C aoepajul

4

A

OC e%epdjul |« y
3

A

g 2409
Bunndwoo

0% 109(qo ejep —

» (C ooeusiul

4
Z¢ aorpajul

A A

¥€ onpow
usip Sd

Gz 2109 Bugndwoo

97 991nsp Bunndwod

A 4
Z¢ aoeLioul

A

A 4

7€ sinpow
P sd

O¢ 2409 Bupndwod

21 9onap Bungndwoo

US 11,789,832 B1

Sheet 2 of 6

Oct. 17, 2023

U.S. Patent

A 4
A
A 4

Alowsw urew 19]|03u02 Alowsw

A

Buissasoid

Y

GG Jun Buissasoud
soyde.h oapia

¢ 9l

III -
I
07 s|npow ¥Z s|npow ¢/ 3|npow agepaul 0Z a|npow 89 s|npow 00 s|npow “
8%elaul NS aoelal QH ysey} 9oe LI YIom)au 9oepa)I YgH soepRluI ESN | |
A A A A A A _
I
I
I
YVY YVY _
35 s0epolI [0d 79 SOI |
7y NOY I
2 I
I
A 4 Y —_— _

— — 29 9|npow
9G J9j0u0d | | 09 a%epsiul - SoRLBIU I
0] 0] g . _
- 3JIA3P Ol I
I
I
a I
ve e 0G ainpow I
I
I
I
I
I
I
I
I
I

0g 2109 Bunndwoo

US 11,789,832 B1

Sheet 3 of 6

Oct. 17, 2023

U.S. Patent

9794
ITRE)] qjyelgoeep [qiynea _ # Juswibas eyep # Jejjid
09 sWeu 901s
176803 Ivmx €eX 78X Sx.l § O lo u w
R ANCE] X erX X PX | 4 !
1esa3 | 1| vex gex TEX e 2l W@ oa ea | |ty b
NALE pZX €ZX X lex | T | 8@ 4 9@ sa } 8 p
AN eE! PIX EIX TUX LIX va €a 2a 1a 9 q e
0195 T - T
sa3ion) @ @
{Wo) (W3) xyew
i XUjeus pepod {NQ) xupew ejep Bupoous L g
01| B1ep PapoaUs = SG3
alieu 39IIs = NS o1
A GSa3 A 7503 A €sa3 A Tsad A1 803 1 Juawbas
A GNS A 7NS A ENS A CNS A LNS mumc_emc elep
° ° Py . o 9 .mc_o__m e 0% 10elgo
. ‘Buipoous . AH_ elep
o = o = lola Bunuawbas
l 6803 R ANE L €803 A ANAE] L1 sad | Juowboes
LGNS | ¥ NS L E€NS L ¢NS L LNS MH_ BEp
9¢ G# NS 9¢ ¥ NS 9 eHNS 9eZ# NS 9¢ 1# NS 9110z 801nap bugnduiod

US 11,789,832 B1

Sheet 4 of 6

Oct. 17, 2023

U.S. Patent

90I|S B)ep Papoous = §q3

(NQ) Xiyew ejep

8 Ol

L] e

) xujew
Buipoosp

AL E]
dWeu 321|s = NS
A GSa3 A ¥Sa3 A €8a3 A ¢Sa3 A lSa3 A Juswboas
A GNS A NS A €NS A CNS A LNS _Hw Ejep
Buipoosp —
° ° ° ° ° : ® 29lqo
™ ™ ™ ™ ™ ™ elep
— — - - _ 8 Buioyisep aUIQUI0d
| 6Sa3 | ¥Sa3 | €503 | ¢Sa3 | 1Sd3 | Juswbas
| GNS L ¥ NS L €NS L ¢NS L L NS _Hw Ejep
9C %NS 9 NS 9 e# NS 9Cz#NS 9¢ 1#NS 91 10 ¢T 8o1nap bugndwoo

US 11,789,832 B1

Sheet 5 of 6

Oct. 17, 2023

U.S. Patent

- -

u-1 Jun abelos Z-1 hun abeio)s L-| hun abeiois

006 1senbau ejep ai0)s

N,

Aowsw NSQ

| 105 obei0}s |

" " " " " " - - - - - - - -~ -~ o]

| j0od jun abeJojs

6 9l4
s it
' d 100d Jun sbeio)s !
]
- - - " - - - - - - o
' o
»
L J
2 |
| Z j0od yun abeio)s ”
1
g S G G
2
. 1!
m m W Aowsw | |—1 | whiowsw | [—] | W Aowsuw I_\,_mmwmw%hw m '
I
1 000 YY) YY) YY) 5 Ly 96 xapul
I -
P L fowsw | |— | [Aowsw | |—| [] Aowew | |— ¥ 20Ut " [B2ly2EIB1Y
Vo Sseippe 1 76 sesuodsay | | /A0j081Ip NSQ
i 1] u-Shun abrlio)s Z-S Jun abeuois |-G Jun abeio}s ' SUM I
m “ gJes mmﬁew.m " - >
' - ' 5T 9|npow
m : " Jslo S
] “ Py
! -} 8buel | 26 sisenbai
] U a— P
“ ! E | Aowauw | I Asowauw Ssalppe 1 4 aqum | Suand
I 000 Y1) 000 000 5 P | 8IS bupnawos
| I -
! | Aowsw | |— | Aowsw | |— | Aowsw | |— |-} SbUEl
b ssaippe
2
.
] .
]
1
]

US 11,789,832 B1

Sheet 6 of 6

Oct. 17, 2023

U.S. Patent

0l 'Ol

ssalppe NS puodss
a1 Buisn 193(qo ejep ay) jo abelo)s ajel|ioe;

L Cll

1

$S0.ppe NS(Pu02ss e ajessush ‘pajosiap
SI UORIPUOY 9B.I0)S B|GRIOARIUN UB USYM

0L

1

ssaippe NSQ
8y Buisn 109[qo e1ep ay Jo sbelo)s slenul

L 801

1

jood abeiojs
payiuap! ayl ynm pajeroosse abuel ssaippe
ue (jo abuel ssaippe-qns) UIyIm Sie} ssaippe
NS 8y} alsym ‘ssaippe NS(e sjessuah

L 90l

1

1senbai ejep
21015 84} ynm pajeioosse jood abe.ols e Ajguspl

L 0L

1

Joslqo ejep
B $2pnjoul 1ey) 1senbail elep ai0ls e aaIdoal

L ¢0L

o)

=004

US 11,789,832 Bl

1
RETRYING FAILED WRITE OPERATIONS
IN A DISTRIBUTED STORAGE NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present U.S. Utility Patent Applications claims pri-
ority pursuant to 35 U.S.C. § 120 as a continuation of U.S.
Utility application Ser. No. 15/840,070, entitled “RETRY-
ING FAILED WRITE OPERATIONS IN A DISPERSED
STORAGE NETWORK?, filed Dec. 13, 2017, which is a
continuation-in-part of U.S. Utility application Ser. No.
14/847,855, entitled “DETERMINISTICALLY SHARING
A PLURALITY OF PROCESSING RESOURCES”, filed
Sep. 8, 2015, now U.S. Pat. No. 9,916,114, issued on Mar.
13, 2018, which claims priority pursuant to 35 U.S.C. §
119(e) to U.S. Provisional Application No. 62/072,123,
entitled “ASSIGNING TASK EXECUTION RESOURCES
IN A DISPERSED STORAGE NETWORK?, filed Oct. 29,
2014, all of which are hereby incorporated herein by refer-
ence in their entirety and made part of the present U.S.
Utility Patent Application for all purposes.

BACKGROUND

This invention relates generally to computer networks,
and more specifically, to selection of storage resources in a
dispersed storage network.

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As is further known, a computer may effectively extend
its CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage™ as part of its memory system. As is known,
cloud storage enables a user, via its computer, to store files,
applications, etc. on a remote storage system. The remote
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

In a RAID system, a RAID controller adds parity data to
the original data before storing it across an array of disks.
The parity data is calculated from the original data such that
the failure of a single disk typically will not result in the loss
of the original data. While RAID systems can address
certain memory device failures, these systems may suffer
from effectiveness, efficiency and security issues. For
instance, as more disks are added to the array, the probability
of a disk failure rises, which may increase maintenance
costs. When a disk fails, for example, it needs to be manually

25

40

45

50

2

replaced before another disk(s) fails and the data stored in
the RAID system is lost. To reduce the risk of data loss, data
on a RAID device is often copied to one or more other RAID
devices. While this may reduce the possibility of data loss,
it also raises security issues since multiple copies of data
may be available, thereby increasing the chances of unau-
thorized access. In addition, co-location of some RAID
devices may result in a risk of a complete data loss in the
event of a natural disaster, fire, power surge/outage, etc.

SUMMARY

According to embodiments of the present disclosure,
novel methods are presented for use in a dispersed storage
network (DSN) to select storage resources for retrying failed
write operations. In various examples, a store data request is
received, the store data request including a data object. A
storage unit pool associated with the store data request is
identified, the storage unit pool including a plurality of
storage sets. Hach of the storage sets is associated, for
example, with a plurality of address ranges that are associ-
ated with a respective set of memories of the storage set. A
first set of memories of a first storage set of the storage unit
pool is identified, and a set of write slice requests is issued
to the first set of memories to initiate storage of encoded data
slices produced from the data object. When an unfavorable
storage condition is detected, a second set of memories of
the first storage set is identified. The first set of memories
and the second set of memories can be located, at least in
part, in common storage units of the first storage set. The
data object is then stored in the second set of memories.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of an embodiment of
a dispersed or distributed storage network (DSN) in accor-
dance with the present disclosure;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present disclosure;

FIG. 3 is a schematic block diagram of an example of
dispersed storage error encoding of data in accordance with
the present disclosure;

FIG. 4 is a schematic block diagram of a generic example
of an error encoding function in accordance with the present
disclosure;

FIG. 5 is a schematic block diagram of a specific example
of an error encoding function in accordance with the present
disclosure;

FIG. 6 is a schematic block diagram of an example of slice
naming information for an encoded data slice (EDS) in
accordance with the present disclosure;

FIG. 7 is a schematic block diagram of an example of
dispersed storage error decoding of data in accordance with
the present disclosure;

FIG. 8 is a schematic block diagram of a generic example
of an error decoding function in accordance with the present
disclosure;

FIG. 9 is a schematic block diagram of an example of a
DSN performing data storage in accordance with an embodi-
ment of the present disclosure; and

FIG. 10 is a flow diagram illustrating an example of
storing data in accordance with the present disclosure.

DETAILED DESCRIPTION

FIG. 1 is a schematic block diagram of an embodiment of
a dispersed, or distributed, storage network (DSN) 10 that

US 11,789,832 Bl

3

includes a plurality of computing devices 12-16, a managing
unit 18, an integrity processing unit 20, and a DSN memory
22. The components of the DSN 10 are coupled to a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more non-public
intranet systems and/or public internet systems; and/or one
or more local area networks (LAN) and/or wide area net-
works (WAN).

The DSN memory 22 includes a plurality of storage units
36 that may be located at geographically different sites (e.g.,
one in Chicago, one in Milwaukee, etc.), at a common site,
or a combination thereof. For example, if the DSN memory
22 includes eight storage units 36, each storage umit is
located at a different site. As another example, if the DSN
memory 22 includes eight storage units 36, all eight storage
units are located at the same site. As yet another example, if
the DSN memory 22 includes eight storage units 36, a first
pair of storage units are at a first common site, a second pair
of storage units are at a second common site, a third pair of
storage units are at a third common site, and a fourth pair of
storage units are at a fourth common site. Note that a DSN
memory 22 may include more than or less than eight storage
units 36. Further note that each storage unit 36 includes a
computing core (as shown in FIG. 2, or components thereof)
and a plurality of memory devices for storing dispersed
storage (DS) error encoded data.

Each of the storage units 36 is operable to store DS error
encoded data and/or to execute (e.g., in a distributed man-
ner) maintenance tasks and/or data-related tasks. The tasks
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, maintenance tasks
(e.g., rebuilding of data slices, updating hardware, rebooting
software, restarting a particular software process, perform-
ing an upgrade, installing a software patch, loading a new
software revision, performing an off-line test, prioritizing
tasks associated with an online test, etc.), etc.

Each of the computing devices 12-16, the managing unit
18, integrity processing unit 20 and (in various embodi-
ments) the storage units 36 include a computing core 26,
which includes network interfaces 30-33. Computing
devices 12-16 may each be a portable computing device
and/or a fixed computing device. A portable computing
device may be a social networking device, a gaming device,
a cell phone, a smart phone, a digital assistant, a digital
music player, a digital video player, a laptop computer, a
handheld computer, a tablet, a video game controller, and/or
any other portable device that includes a computing core. A
fixed computing device may be a computer (PC), a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment. Note that each of the managing unit
18 and the integrity processing unit 20 may be separate
computing devices, may be a common computing device,
and/or may be integrated into one or more of the computing
devices 12-16 and/or into one or more of the storage units
36.

Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, via the network 24, etc.)

10

15

20

25

30

35

40

45

50

55

60

65

4

between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 and 16 and the DSN memory
22. As yet another example, interface 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

Computing devices 12 and 16 include a dispersed storage
(DS) client module 34, which enables the computing device
to dispersed storage error encode and decode data (e.g., data
object 40) as subsequently described with reference to one
or more of FIGS. 3-8. In this example embodiment, com-
puting device 16 functions as a dispersed storage processing
agent for computing device 14. In this role, computing
device 16 dispersed storage error encodes and decodes data
on behalf of computing device 14. With the use of dispersed
storage error encoding and decoding, the DSN 10 is tolerant
of a significant number of storage unit failures (the number
of failures is based on parameters of the dispersed storage
error encoding function) without loss of data and without the
need for a redundant or backup copies of the data. Further,
the DSN 10 stores data for an indefinite period of time
without data loss and in a secure manner (e.g., the system is
very resistant to unauthorized attempts at accessing the
data).

In operation, the managing unit 18 performs DS manage-
ment services. For example, the managing unit 18 estab-
lishes distributed data storage parameters (e.g., vault cre-
ation, distributed storage parameters, security parameters,
billing information, user profile information, etc.) for com-
puting devices 12-14 individually or as part of a group of
user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSN memory 22 for a user device, a group
of devices, or for public access and establishes per vault
dispersed storage (DS) error encoding parameters for a
vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
unit 20.

The managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) in local
memory and/or within memory of the DSN memory 22. The
user profile information includes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The managing unit 18 creates billing information for a
particular user, a user group, a vault access, public vault
access, etc. For instance, the managing unit 18 tracks the
number of times a user accesses a non-public vault and/or
public vaults, which can be used to generate per-access
billing information. In another instance, the managing unit
18 tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate
per-data-amount billing information.

As another example, the managing unit 18 performs
network operations, network administration, and/or network
maintenance. Network operations includes authenticating
user data allocation/access requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-

US 11,789,832 Bl

5

ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network administration includes monitoring
devices and/or units for failures, maintaining vault informa-
tion, determining device and/or unit activation status, deter-
mining device and/or unit loading, and/or determining any
other system level operation that affects the performance
level of the DSN 10. Network maintenance includes facili-
tating replacing, upgrading, repairing, and/or expanding a
device and/or unit of the DSN 10. Examples of dynamic
resource selection for data access operations are discussed in
greater detail with reference to FIGS. 9-11.

To support data storage integrity verification within the
DSN 10, the integrity processing unit 20 (and/or other
devices in the DSN 10) may perform rebuilding of ‘bad’ or
missing encoded data slices. At a high level, the integrity
processing unit 20 performs rebuilding by periodically
attempting to retrieve/list encoded data slices, and/or slice
names of the encoded data slices, from the DSN memory 22.
Retrieved encoded slices are checked for errors due to data
corruption, outdated versioning, etc. If a slice includes an
error, it is flagged as a ‘bad’ or ‘corrupt’ slice. Encoded data
slices that are not received and/or not listed may be flagged
as missing slices. Bad and/or missing slices may be subse-
quently rebuilt using other retrieved encoded data slices that
are deemed to be good slices in order to produce rebuilt
slices. A multi-stage decoding process may be employed in
certain circumstances to recover data even when the number
of valid encoded data slices of a set of encoded data slices
is less than a relevant decode threshold number. The rebuilt
slices may then be written to DSN memory 22. Note that the
integrity processing unit 20 may be a separate unit as shown,
included in DSN memory 22, included in the computing
device 16, and/or distributed among the storage units 36.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSN interface module 76.

The DSN interface module 76 functions to mimic a
conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or
more of the interface 30-33 of FIG. 1. Note that the 1O
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

FIG. 3 is a schematic block diagram of an example of
dispersed storage error encoding of data. When a computing
device 12 or 16 has data to store it disperse storage error
encodes the data in accordance with a dispersed storage
error encoding process based on dispersed storage error
encoding parameters. The dispersed storage error encoding

20

30

35

40

45

55

6

parameters include an encoding function (e.g., information
dispersal algorithm, Reed-Solomon, Cauchy Reed-Solo-
mon, systematic encoding, non-systematic encoding, on-line
codes, etc.), a data segmenting protocol (e.g., data segment
size, fixed, variable, etc.), and per data segment encoding
values. The per data segment encoding values include a
total, or pillar width, number (T) of encoded data slices per
encoding of a data segment (i.e., in a set of encoded data
slices); a decode threshold number (D) of encoded data
slices of a set of encoded data slices that are needed to
recover the data segment; a read threshold number (R) of
encoded data slices to indicate a number of encoded data
slices per set to be read from storage for decoding of the data
segment; and/or a write threshold number (W) to indicate a
number of encoded data slices per set that must be accurately
stored before the encoded data segment is deemed to have
been properly stored. The dispersed storage error encoding
parameters may further include slicing information (e.g., the
number of encoded data slices that will be created for each
data segment) and/or slice security information (e.g., per
encoded data slice encryption, compression, integrity check-
sum, etc.).

In the present example, Cauchy Reed-Solomon has been
selected as the encoding function (a generic example is
shown in FIG. 4 and a specific example is shown in FIG. 5);
the data segmenting protocol is to divide the data object into
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of five, a decode threshold
of three, a read threshold of four, and a write threshold of
four. In accordance with the data segmenting protocol, the
computing device 12 or 16 divides the data (e.g., a file (e.g.,
text, video, audio, etc.), a data object, or other data arrange-
ment) into a plurality of fixed sized data segments (e.g., 1
through Y of a fixed size in range of Kilo-bytes to Tera-bytes
or more). The number of data segments created is dependent
of the size of the data and the data segmenting protocol.

The computing device 12 or 16 then disperse storage error
encodes a data segment using the selected encoding function
(e.g., Cauchy Reed-Solomon) to produce a set of encoded
data slices. FIG. 4 illustrates a generic Cauchy Reed-
Solomon encoding function, which includes an encoding
matrix (EM), a data matrix (DM), and a coded matrix (CM).
The size of the encoding matrix (EM) is dependent on the
pillar width number (T) and the decode threshold number
(D) of selected per data segment encoding values. To pro-
duce the data matrix (DM), the data segment is divided into
a plurality of data blocks and the data blocks are arranged
into D number of rows with Z data blocks per row. Note that
Z is a function of the number of data blocks created from the
data segment and the decode threshold number (D). The
coded matrix is produced by matrix multiplying the data
matrix by the encoding matrix.

FIG. 5 illustrates a specific example of Cauchy Reed-
Solomon encoding with a pillar number (T) of five and
decode threshold number of three. In this example, a first
data segment is divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,
where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a fourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number. In the illustrated

US 11,789,832 Bl

7
example, the value X11=aD1+bD5+cD9, X12=aD2+bD6+
cD10, . . . X53=mD3+nD7+0D11, and X54=mD4+nD8+

oD12.

Returning to the discussion of FIG. 3, the computing
device also creates a slice name (SN) for each encoded data
slice (EDS) in the set of encoded data slices. A typical format
for a slice name 80 is shown in FIG. 6. As shown, the slice
name (SN) 80 includes a pillar number of the encoded data
slice (e.g., one of 1-T), a data segment number (e.g., one of
1-Y), a vault identifier (ID), a data object identifier (ID), and
may further include revision level information of the
encoded data slices. The slice name functions as at least part
of a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

As a result of encoding, the computing device 12 or 16
produces a plurality of sets of encoded data slices, which are
provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN 5_Y.

FIG. 7 is a schematic block diagram of an example of
dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored in the example of
FIG. 4. In this example, the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

In order to recover a data segment from a decode thresh-
old number of encoded data slices, the computing device
uses a decoding function as shown in FIG. 8. As shown, the
decoding function is essentially an inverse of the encoding
function of FIG. 4. The coded matrix includes a decode
threshold number of rows (e.g., three in this example) and
the decoding matrix in an inversion of the encoding matrix
that includes the corresponding rows of the coded matrix.
For example, if the coded matrix includes rows 1, 2, and 4,
the encoding matrix is reduced to rows 1, 2, and 4, and then
inverted to produce the decoding matrix.

In a dispersed storage network, storage units and memory
devices may occasionally be unavailable for processing data
storage requests (e.g., write slice requests). Such unavail-
ability may affect only a certain part of a DSN address range
or sub-address range. In the novel methodologies and
devices described more fully below in conjunction with
FIGS. 9 and 10, a failed storage request due to such
unavailability is resolved by generating a new DSN address
(e.g., an address associated with differing or known healthy
storage units/memory devices supporting a write threshold
number), and retrying the storage request using the new
DSN address.

Briefly, in an example of operation, a storage unit pool
includes a storage set having 48 storage units, and pillar
width of 12. In this example, the first one-quarter of an
address range associated with the storage unit pool covers a
set of storage units 0-11, the second quarter of the address
range covers a set of storage units 12-23, the next quarter of
the address range covers a set of storage units 24-35, and the
final quarter of the address range covers a set of storage units
36-47. If a write slice request(s) is received having a DSN
address processed by the set of storage units 24-35, and
fewer than a write threshold number of storage units of the
set are available, a second DSN address is determined for
use in retrying the write slice request(s). The second DSN

30

40

45

50

8

address may specifically avoid the set of storage units 24-35
(e.g., the second DSN address may cover storage units
36-47). In other examples, the second DSN address may
cover differing memory devices of the set of storage units
24-35.

Referring now to FIG. 9, a schematic block diagram of a
dispersed storage network (DSN) performing data storage in
accordance with an embodiment of the present disclosure is
illustrated. The DSN of this example includes the computing
device 16 of FIG. 1, the network 24 of FIG. 1, and the
distributed storage network (DSN) memory 22 of FIG. 1.
The computing device 16 includes the DS client module 34
of FIG. 1. The DSN memory 22 includes a plurality of
storage unit pools 1-P. Each storage unit pool includes one
or more storage sets 1-S. Each storage set includes a set of
storage units 1-», and each storage unit includes a plurality
of memories 1-M. Each storage unit may be implemented
utilizing the storage unit 36 of FIG. 1, and further include a
DS client module 34 and a processing module (not sepa-
rately illustrated). Each memory of each storage set is
associated with a DSN address range 1-M (e.g., range of
slice names). The storage units of a storage set/storage unit
pool may be located at a same physical location (site) or
located at multiple physical locations without departing
from the technology as described herein.

In general, DSN memory 22 stores a plurality of dispersed
storage (DS) error encoded data. The DS error encoded data
may be encoded in accordance with one or more examples
described with reference to FIGS. 3-6, and organized (for
example) in slice groupings or pillar groups. The data that is
encoded into the DS error encoded data may be of any size
and/or of any content. For example, the data may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies,
etc.), data files, and/or indexing and key information for use
in dispersed storage operations.

In an example of operation of storing data in DSN
memory 22, the computing device 16 receives a store data
request 90. The store data request 90 includes one or more
of'a data object, a data object name, and a requester identity.
Having received the store data request 90, the DS client
module 34 identifies a storage unit pool associated with the
store data request. In an example, identifying a storage unit
pool includes at least one of performing a vault lookup based
on the requester identity, performing a random selection,
selecting based on available storage set storage capacity, and
selecting based on storage set performance levels.

Having identified the storage unit pool, the DS client
module 34 generates a DSN address, where the DSN address
falls within an address range (or a sub-address range of an
address range) associated with a plurality of storage sets,
where each storage set is associated with a plurality of
address ranges, and where each address range is associated
with a set of memories. For example, the DS client module
34 generates the DSN address based on a random number to
produce an available DSN address within a plurality of
address ranges of the identified storage unit pool. As another
example, the DS client module 34 generates the DSN
address based on memory attributes such as performance
and available capacity.

Having generated the DSN address, the DS client module
34 initiates storage of the data object at the DSN address. For
example, the DS client module 34 dispersed storage error
encodes the data object (or a segment thereof) to produce a
plurality of sets of encoded data slices (each set of which
may include an information dispersal algorithm (IDA) width

US 11,789,832 Bl

9

number of encoded data slices) and issues, via the network
24, one or more sets of write slice requests as write requests
92 that includes the plurality of sets of encoded data slices
to be stored in the storage units associated with the DSN
address. Having issued the write requests 92, the DS client
module 34 receives write responses 94 from at least some of
the storage units.

When an unfavorable condition is detected with regards to
storage of the data object at the DSN address (e.g., less than
a write threshold number of favorable write responses have
been received), the DS client module 34 generates another
DSN address, where the other DSN address is associated
with another set of memories (e.g., of the same set of storage
units or from another set of storage units).

Having generated the other DSN address, the DS client
module 34 facilitates storage of the data object at the other
DSN address. For example, the DS client module 34 resends
the one or more sets of write slice requests 92 to a set of
storage units associated with the other set of memories.
Having resent the one or more sets of write slice requests 92,
the DS client module 34 may also update a DSN directory/
hierarchical index 96 (e.g., maintained by the computing
device 16 and/or other DSN devices) or equivalent to
associate the data object name and the other DSN address.

In further examples, after another unfavorable condition
is detected, the DS client module 34 may generate a third (or
more) DSN address for use in storage of the data object. In
addition, when a write slice request fails due to an unavail-
able or impaired memory device, the associated storage
unit(s) may return an error response that includes a list of
address ranges of the storage unit associated with available/
unavailable memory devices. The DS client module 34 may
then utilize this information to generate a DSN address that
falls within an address range including available memory
devices. This embodiment may be useful, for example,
where only a single set of storage units is available (e.g., a
storage set of 12 storage units and an IDA width of 12).

FIG. 10 is a flowchart 100 illustrating an example of
storing data. The method begins or continues at step 102
where a processing module (e.g., of a distributed storage
(DS) client module 34) receives a store data request that
includes a data object. Receiving the store data request may
further include receiving a requester identity and a data
object name. The method continues at step 104 where the
processing module identifies a storage unit pool associated
with the store data request. Identifying a storage unit pool
may include one or more of interpreting system registry
information, interpreting a vault entry associated with the
requester identifier, performing a random selection, select-
ing based on performance, and selecting based on available
storage capacity.

The method continues at step 106 where the processing
module generates a dispersed storage network (DSN)
address, where the DSN address falls within an address
range (or a sub-address range of an address range) associ-
ated with the identified storage unit pool. Generating a DSN
address may include at least one of generating a random
address within the address range of the identified storage
unit pool (e.g., to include a vault identifier and a random
object number), selecting a next available DSN address, and
selecting a DSN address associated with a set of memories
associated with favorable performance and storage capacity.

The method continues at step 108 where the processing
module initiates storage of the data object using the DSN
address. In various examples, the processing module dis-
persed storage error encodes the data object to produce a
plurality of sets of encoded data slices, generates a plurality

25

40

45

10

of sets of slice names that includes the DSN address (e.g.,
includes a slice index, a segment number, the vault identifier,
and the random object number), generates one or more sets
of write slice requests that includes the plurality of sets of
encoded data slices and the plurality of sets of slice names,
and sends the one or more sets of write slice requests to a
storage set associated with the DSN address.

When an unfavorable storage condition is detected, the
method continues at step 110 where the processing module
generates a second DSN address. For example, the process-
ing module detects the unfavorable storage condition (e.g.,
a time frame expires without receiving a write threshold
number of favorable write slice responses), identifies a set of
memories associated with the DSN address, selects a dif-
ferent set of memories associated with favorable perfor-
mance and available capacity, and generates a DSN address
associated with the other set of memories as the second DSN
address.

The method continues at step 112 where the processing
module facilitates storage of the data object using the second
DSN address. For example, the processing module issues
write slice requests to storage units associated with the other
set of memories, where the write slice requests include the
plurality of sets of encoded data slices. When receiving
favorable write slice responses, the processing module asso-
ciates the data object name and the second DSN address. For
example, the processing module updates a DSN directory.
As another example, the processing module updates a dis-
persed hierarchical index.

The methods described above in conjunction with the
computing device 16 and storage units 36 can alternatively
be performed by other modules (e.g., DS client modules 34)
of a dispersed storage network or by other devices (e.g.,
managing unit 18 or integrity processing unit 20). Any
combination of a first module, a second module, a third
module, a fourth module, etc. of the computing devices and
the storage units may perform the method described above.
In addition, at least one memory section (e.g., a first memory
section, a second memory section, a third memory section,
a fourth memory section, a fifth memory section, a sixth
memory section, etc. of a non-transitory computer readable
storage medium) that stores operational instructions/pro-
gram instructions can, when executed by one or more
processing modules of one or more computing devices
and/or by the storage units of the dispersed storage network
(DSN), cause the one or more computing devices and/or the
storage units to perform any or all of the method steps
described above.

As may be used herein, the terms “substantially” and
“approximately” provide an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent. As may also be used herein, the
term(s) “configured to”, “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for an example of indirect coupling, the intervening item
does not modify the information of a signal but may adjust
its current level, voltage level, and/or power level. As may
further be used herein, inferred coupling (i.e., where one
element is coupled to another element by inference) includes
direct and indirect coupling between two items in the same
manner as “coupled to”. As may even further be used herein,
the term “configured to”, “operable to”, “coupled to”, or
“operably coupled to” indicates that an item includes one or

US 11,789,832 Bl

11

more of power connections, input(s), output(s), etc., to
perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item.

As may be used herein, the term “compares favorably”,
indicates that a comparison between two or more items,
signals, etc., provides a desired relationship. For example,
when the desired relationship is that signal 1 has a greater
magnitude than signal 2, a favorable comparison may be
achieved when the magnitude of signal 1 is greater than that
of'signal 2 or when the magnitude of signal 2 is less than that
of signal 1. As may be used herein, the term “compares
unfavorably”, indicates that a comparison between two or
more items, signals, etc., fails to provide the desired rela-
tionship.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, “processor”, and/or “processing
unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputet, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on
hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an integrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that if the
processing module, module, processing circuit, and/or pro-
cessing unit includes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

One or more embodiments have been described above
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and

30

35

40

45

12

spirit of the claims. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

To the extent used, the flow diagram block boundaries and
sequence could have been defined otherwise and still per-
form the certain significant functionality. Such alternate
definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

In addition, a flow diagram may include a “start” and/or
“continue” indication. The “start” and “continue” indica-
tions reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication reflects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a flow diagram indi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained. For example, two blocks shown in succes-
sion may, in fact, be executed substantially concurrently, or
the blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flow
diagrams, and combinations of blocks in the block diagrams
and/or flow diagrams, can be implemented by special pur-
pose hardware-based systems that perform the specified
functions or acts or carry out combinations of special
purpose hardware and computer instructions.

The one or more embodiments are used herein to illustrate
one or more aspects, one or more features, one or more
concepts, and/or one or more examples. A physical embodi-
ment of an apparatus, an article of manufacture, a machine,
and/or of a process may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from Figure to Figure, the embodiments may incorpo-
rate the same or similarly named functions, steps, modules,
etc. that may use the same or different reference numbers
and, as such, the functions, steps, modules, etc. may be the
same or similar functions, steps, modules, etc. or different
ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, if a signal path is shown as a single-ended path, it
also represents a differential signal path. Similarly, if a signal
path is shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

US 11,789,832 Bl

13

The term “module” is used in the description of one or
more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate in association with a memory that stores operational
instructions. A module may operate independently and/or in
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

As may further be used herein, a memory includes one or
more memory elements. A memory element may be a
separate memory device, multiple memory devices, or a set
of memory locations within a memory device. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. The
memory device may be in a form a solid-state memory, a
hard drive memory, cloud memory, thumb drive, server
memory, computing device memory, and/or other physical
medium for storing digital information.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be one or
more tangible devices that can retain and store instructions
for use by an instruction execution device. The computer
readable storage medium may be, for example, but is not
limited to, an electronic storage device, a magnetic storage
device, an optical storage device, an electromagnetic storage
device, a semiconductor storage device, or any suitable
combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium
includes the following: a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

10

15

20

25

30

35

40

45

50

55

60

14

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

While particular combinations of various functions and
features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present
disclosure is not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by one or more processing
modules of a storage network, the method comprises:

receiving a store data request, the store data request

including a data object;

identifying a storage unit pool associated with the store

data request, the storage unit pool including a plurality
of storage sets;

identifying a first set of memory devices of a storage set

of the plurality of storage sets, wherein the storage set
includes a plurality of storage units;

issuing a set of write slice requests to the first set of

memory devices of the storage set, the set of write slice
requests including a set of encoded data slices produced
from the data object;

detecting an unfavorable storage condition in response to

the set of write slice requests, including receiving an
error response from the storage set that includes an
indication that at least one memory device of the first
set of memory devices is unavailable for use in storing
the data object;

in response to detecting the unfavorable storage condi-

tion, identifying a second set of memory devices of the
set of storage units of the storage set, wherein at least
one memory device of the first set of memory devices
and at least one memory device of the second set of
memory devices are located in the same storage unit of
the storage set; and

facilitating storage of the data object in the second set of

memory devices.

2. The method of claim 1, wherein detecting the unfavor-
able storage condition further includes receiving, from the
storage unit pool, less than a write threshold number of

US 11,789,832 Bl

15

favorable write slice responses to the set of write slice
requests prior to expiration of a predetermined time frame.

3. The method of claim 1, wherein detecting the unfavor-
able storage condition includes receiving an error response
that includes an indication of one or more address ranges of
a storage unit that are unavailable for use in storing the data
object.

4. The method of claim 1 further comprises:

generating a first address that falls within an address range

associated with the first set of memory devices of the
storage set, wherein the set of write slice requests is
issued in accordance with the first address.

5. The method of claim 4, wherein generating the first
address is based on an address range associated with a set of
memory devices having favorable performance and capacity
attributes.

6. The method of claim 1, wherein identifying the storage
unit pool associated with the store data request is based on
requester identification.

7. The method of claim 1, wherein identifying the storage
unit pool associated with the store data request is based on
one or more storage set performance levels.

8. The method of claim 1, wherein the first set of memory
devices and the second set of memory devices are located in
the same storage units, respectively, of the storage set.

9. The method of claim 1 further comprises:

detecting a second unfavorable storage condition in

response to facilitating storage of the data object in the
second set of memory devices;
in response to detecting the second unfavorable storage
condition, identifying a third set of memory devices of
the storage set, the first set of memory devices and the
third set of memory devices located, at least in part, in
common storage units of the storage set; and

facilitating storage of the data object in the third set of
memory devices of the storage set.

10. The method of claim 1, wherein facilitating storage of
the data object in the second set of memory devices includes
issuing a second set of write slice requests to the second set
of memory devices, the second set of write slice requests
including the set of encoded data slices produced from the
data object.

11. The method of claim 1, the store data request further
including at least one of a data object name and a requester
identity.

12. A computing device comprises:

a network interface;

a local memory; and

a processing module operably coupled to the network

interface and the local memory, wherein the processing

module operates to:

receive, via the network interface, a store data request,
the store data request including a data object;

identify a storage unit pool associated with the store
data request, the storage unit pool including a plu-
rality of storage sets;

identify a first set of memory devices of a storage set of
the plurality of storage sets, wherein the storage set
includes a plurality of storage units;

issue, via the network interface, a set of write slice
requests to the first set of memory devices of the

10

20

25

30

35

40

45

50

55

60

16

storage set, the set of write slice requests including
a set of encoded data slices produced from the data
object;

receive an error response to the set of write slice
requests, wherein the error response includes an
indication that at least one memory device of the first
set of memory devices is unavailable for use in
storing the data object;

in response to receiving the error response, identify a
second set of memory devices of the set of storage
units of the storage set, wherein at least one memory
device of the first set of memory devices and at least
one memory device of the second set of memory
devices are located in the same storage unit of the
storage set; and

facilitate, via the network interface, storage of the data
object in the second set of memory devices.

13. The computing device of claim 12, wherein receiving
the error response further includes receiving, from the
storage unit pool, less than a write threshold number of
favorable write slice responses to the set of write slice
requests prior to expiration of a predetermined time frame.

14. The computing device of claim 12, wherein receiving
the error response further includes receiving an indication of
one or more address ranges of a storage unit that are
unavailable for use in storing the data object.

15. The computing device of claim 12, wherein the
processing module further operates to:

generate a first address that falls within an address range

associated with the first set of memory devices of the
storage set, wherein the set of write slice requests is
issued in accordance with the first address.

16. The computing device of claim 15, wherein generat-
ing the first address is based on an address range associated
with a set of memory devices having favorable performance
and capacity attributes.

17. The computing device of claim 12, wherein identify-
ing the storage unit pool associated with the store data
request is based on at least one of a requester identification,
system registry information, a random selection, or available
storage capacity of the storage unit pool.

18. The computing device of claim 12, wherein the first
set of memory devices and the second set of memory devices
are located in the same storage units of the storage set.

19. The computing device of claim 12, wherein the
processing module further operates to:

detect a second error response in response to facilitating

storage of the data object in the second set of memory
devices;

in response to detecting the second error response, iden-

tify a third set of memory devices of the storage set, the
first set of memory devices and the third set of memory
devices located, at least in part, in common storage
units of the storage set; and

facilitate storage of the data object in the third set of

memory devices of the storage set.

20. The computing device of claim 12, wherein facilitat-
ing storage of the data object in the second set of memory
devices includes issuing a second set of write slice requests
to the second set of memory devices, the second set of write
slice requests including the set of encoded data slices
produced from the data object.

#* #* #* #* #*

