
US010817302B2

(12) United States Patent (10) Patent No .: US 10,817,302 B2
(45) Date of Patent : Oct. 27 , 2020 Chen et al .

(56) References Cited (54) PROCESSOR SUPPORT FOR BYPASSING
VECTOR SOURCE OPERANDS

U.S. PATENT DOCUMENTS
(71) Applicant : Advanced Micro Devices , Inc. ,

Sunnyvale , CA (US) 6,542,986 B1 * 4/2003 White G06F 9/30152
712/217

6,550,059 B1 4/2003 Choe et al .
(Continued) (72) Inventors : Jiasheng Chen , Orlando , FL (US) ; Bin

He , Oviedo , FL (US) ; Mark M.
Leather , Los Gatos , CA (US) ; Michael
J. Mantor , Orlando , FL (US) ; Yunxiao
Zou , Shanghai (CN)

OTHER PUBLICATIONS

(73) Assignee : Advanced Micro Devices , Inc. , Santa
Clara , CA (US)

Teresa Monreal , Victor Vinals , Jose Gonzalez , Antonio Gonzalez ,
and Mateo Valero . “ Late Allocation and Early Release of Physical
Registers ” IEEE Transactions on Computers , vol . 53 , No. 10 , Oct.
2004 (Year : 2004) . *

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 150 days .

Primary Examiner Jacob Petranek
(74) Attorney , Agent , or Firm - Kowert Hood Munyon
Rankin and Goetzel PC ; Rory D. Rankin (21) Appl . No .: 15 / 644,045

(22) Filed : Jul . 7 , 2017

(65) Prior Publication Data
US 2018/0357064 A1 Dec. 13 , 2018

(30) Foreign Application Priority Data

Jun . 9 , 2017 (CN) 2017 1 0434300

(51) Int . Cl .
G06F 9/38 (2018.01)
GOOF 9/30 (2018.01)

(Continued)
(52) U.S. CI .

CPC G06F 9/3867 (2013.01) ; G06F 9/3001
(2013.01) ; G06F 9/3012 (2013.01) ;
(Continued)

(58) Field of Classification Search
CPC G06F 9/3887
See application file for complete search history .

(57) ABSTRACT
Systems , apparatuses , and methods for implementing a high
bandwidth , low power vector register file for use by a
parallel processor are disclosed . In one embodiment , a
system includes at least a parallel processing unit with a
plurality of processing pipeline . The parallel processing unit
includes a vector arithmetic logic unit and a high bandwidth ,
low power , vector register file . The vector register file
includes multi - bank high density random - access memories
(RAMs) to satisfy register bandwidth requirements . The
parallel processing unit also includes an instruction request
queue and an instruction operand buffer to provide enough
local bandwidth for VALU instructions and vector I / O
instructions . Also , the parallel processing unit is configured
to leverage the RAM's output flops as a last level cache to
reduce duplicate operand requests between multiple instruc
tions . The parallel processing unit includes a vector desti
nation cache to provide additional R / W bandwidth for the
vector register file .

20 Claims , 7 Drawing Sheets

VGPR Initialization . Texture Write LDS Write
Vector 10

Request Unit
345 - To Vec / o Blocks

VGPR WriteBack could be Shared with Vec / o Read

Recycling the Dependent VGPR when Cache Line Retired
RAM
Bank
315A

355 SIC A Forwarding Src B Forwarding Src C Forwarding
RAM
Bank
315B

?? B2

Vector Destination
Cadhe Even Bank

3604 Multi - Stage Vector
ALU Pipeline

350 B3
RAM
Bank
315C

Vector Destination
Cache Odd Bank

3608

RAM
Bank
3150

VDsts is allocated at
last pipeline Stage

320A - D
RAM Output Flops as
Last Level Cache

335
VGPR Bank Direct
Read Bypass Mux 325

330
Operands Buffer for
Multi - Instructions 300

US 10,817,302 B2
Page 2

2008/0022072 A1 * 1/2008 Jung GO6F 9/3836
712/209

2008/0133877 A1
2012/0151156 A1
2015/0205324 A1 *

6/2008 Chai et al .
6/2012 Citron et al .
7/2015 Havlir G06F 1/10

713/600
2018/0088948 Al
2018/0089090 A1 *
2018/0121386 A1 *

3/2018 Rasale et al .
3/2018 Havlir
5/2018 Chen

G06F 12/0875
G06F 9/3887

(51) Int . Ci .
G06F 12/0891 (2016.01)
G06F 12/0855 (2016.01)
G06F 12/0804 (2016.01)
GO6F 12/121 (2016.01)
G06F 12/0875 (2016.01)

(52) U.S. CI .
CPC GO6F 9/30021 (2013.01) ; G06F 9/30036

(2013.01) ; G06F 9/30141 (2013.01) ; G06F
9/3802 (2013.01) ; GO6F 9/383 (2013.01) ;

G06F 9/3826 (2013.01) ; G06F 9/3832
(2013.01) ; G06F 9/3857 (2013.01) ; G06F

9/3887 (2013.01) ; G06F 12/0804 (2013.01) ;
GO6F 12/0855 (2013.01) ; GO6F 12/0891

(2013.01) ; G06F 12/121 (2013.01) ; G06F
12/0875 (2013.01) ; G06F 2212/1008

(2013.01) ; GO6F 2212/1024 (2013.01) ; GO6F
2212/452 (2013.01)

OTHER PUBLICATIONS

Fog , Agner , “ 3. The microarchitecture of Intel , AMD and VIA
CPUs : An optimization guide for assembly programmers and com
piler makers ” , Agner.org , Apr. 27 , 2018 , 236 pages , https : // www .
agner.org/optimize/microarchitecture.pdf . [Retrieved Aug. 6 , 2018] .
Fog , Agner , “ 4. Instruction tables : Lists of instruction latencies ,
throughputs and micro - operation breakdowns for Intel , AMD and
VIA CPUs ” , Agner.org , Apr. 27 , 2018 , 352 pages , https : // www .
agner.org/optimize/instruction_tables.pdf . [Retrieved Aug. 6 , 2018] .
" Intel® 64 and IA - 32 Architectures Software Developer's Manual ” ,
Intel.com , Sep. 2016 , 2198 pages , vol . 2 (2A , 2B , 2C & 2D) ,
https://www.intel.in/content/dam/www/public/us/en/documents/
manuals / 64 - ia - 32 - architectures - software - developer - instruction - set
reference - manual - 325383.pdf . [Retrieved Aug. 6 , 2018] .
Non - Final Office Action in U.S. Appl . No. 15 / 273,916 , dated May
24 , 2018 , 19 pages .
Final Office Action in U.S. Appl . No. 15 / 273,916 , dated Nov. 26 ,
2018 , 8 pages .

(56) References Cited

U.S. PATENT DOCUMENTS

7,197,625 B1
7,464,255 B1
8,966,461 B2
9,342,334 B2
9,600,288 B1 *

2004/0117595 A1
2005/0055543 A1

3/2007 Van Hook et al .
12/2008 Tan et al .
2/2015 Gaster et al .
5/2016 Beckmann et al .
3/2017 Potter
6/2004 Norris et al .
3/2005 Moyer

G06F 9/3824

* cited by examiner

125

U.S. Patent

I / O Interfaces
120

Oct. 27 , 2020

Processor (s)
110

Memory Device (s)
130

Sheet 1 of 7 US 10,817,302 B2

100

FIG . 1

LDS Return Data Texture Return Data VGPR Initialization

Vecio Command

Valu Command

U.S. Patent

215A

215B

215C

215D

255

N * 4

N * 4 + 1

N * 4 + 2

N * 4 + 3

Pending Instruction Queue

VGPR Bank

VGPR Bank

VGPR Bank

VGPR Bank

Dependency Check - 260

Veclo Cmd Queue

Oct. 27 , 2020

Micro - inst dispatch

220A

220B

220C

220D

270

VDST Cache

Gather Instruction Queue

V8 V4 VO

V9 V5 V1

V10 V6 V2

111 V7 V3

235

265

W

W

W

W

Sheet 2 of 7

Operand Buffers

240

W

WW

275

Vecio Request Units

Vector ALU

245

W

US 10,817,302 B2

To Veclo

200

Blocks

FIG . 2

VGPR Initialization
Texture Write

LDS Write

Vector I / O Request Unit 345

U.S. Patent

To Veclo Blocks

VGPR Write Back could be shared with Vec / o Read Recycling the Dependent VGPR when Cache Line Retired

RAM Bank 3154

355

Src B Forwarding

Src A Forwarding
Src C Forwarding

Oct. 27 , 2020

B01 B2

RAM Bank 315B HDF ? h
B

Vector Destination Cache Even Bank 360A
B1

B IBB 514113

Multi - Stage Vector ALU Pipeline 350

83

RAM Bank 315C

Vector Destination Cache Odd Bank 3608

Sheet 3 of 7

RAM Bank 315D

VDsts is allocated at last pipeline Stage

3204 - D

RAM Output Flops as Last Level Cache

335 VGPR Bank Direct Read Bypass Mux

330 Operands Buffer for
Multi - Instructions

US 10.817,302 B2

325

300

FIG . 3

U.S. Patent Oct. 27 , 2020 Sheet 4 of 7 US 10,817,302 B2

800

405
S.
VALU

Command 445

410 No Dependent
operands
ready ? VALU

pending
queue 450 Yes

415
Instruction issue

Instruction dispatch 455

420 Multi - stage
instruction
execution VALU

request
queue

425 460

Yes
VGPR bank
request

VDsts
full ? 475

Stall VALU pipeline 465 No
430

Allocate VDsts No Operands
fetched ? 470

Yes
435

Write result
to VDsts

No Pipeline
stalled ?

440 Yes

Wait

FIG . 4

U.S. Patent Oct. 27 , 2020 Sheet 5 of 7 US 10,817,302 B2

500 50
505

Pending
queue not
empty ?

510

Request
queue full ?

515

Fetch top of
pending queue
520

Dependency
check

525

Push to end of
request queue

FIG . 5

U.S. Patent Oct. 27 , 2020 Sheet 6 of 7 US 10,817,302 B2

605 600

Cycle Start
610

Bank ID = 0

615

No Bank IDS
total VGPR bank

num ? 625

Yes Cycle End Vec 1/0
request
queue 620

No Any Vec
10 request the

bank ?

Yes
630

No

640
Any

pending VALU
request this
bank ? Request bank

VALU
request
queue 635 Yes

645
Bank ID =
Bank ID + 1 No Match

Last - Level
Cache ?

650 Yes Last - Level
Cache

Notify issue logic
to read the data
directly from the

bank's output flops

Check next VALU
pending request for

this bank

655

FIG . 6

U.S. Patent Oct. 27 , 2020 Sheet 7 of 7 US 10,817,302 B2

700

Cycle Start
VALU write
request 710 725 730

No No
705

Any
empty cache

lines ?

Any
un - dirty cache

lines ?
Stall VALU pipeline

Yes Yes 316

1

|
1

Cache
Recycling Select an un - dirty

cache line for new
entry based on
cache policy

735
740

Any
dependent

operands in the
VALU request

queue ?

1
1
1
1
1
1
1
1
1

Yes
745

715
No

Read the cache
line and write
back to source
operands buffer Allocate new

cache line

720 720 750

Commit the Result
to the Allocated
Cache Line

Replace the cache
line for new VALU

write request

755

Update cache
line ages

Cycle End

FIG . 7

30

US 10,817,302 B2
1 2

PROCESSOR SUPPORT FOR BYPASSING and mechanisms presented herein . However , one having
VECTOR SOURCE OPERANDS ordinary skill in the art should recognize that the various

embodiments may be practiced without these specific
PRIORITY INFORMATION details . In some instances , well - known structures , compo

5 nents , signals , computer program instructions , and tech This application claims benefit of priority to Chinese niques have not been shown in detail to avoid obscuring the Application No. 201710434300.4 , entitled “ STREAM PRO approaches described herein . It will be appreciated that for CESSOR WITH HIGH BANDWIDTH AND LOW simplicity and clarity of illustration , elements shown in the POWER VECTOR REGISTER FILE ” , filed Jun . 9 , 2017 , figures have not necessarily been drawn to scale . For the entirety of which is incorporated herein by reference in
its entirety . 10 example , the dimensions of some of the elements may be

exaggerated relative to other elements .
BACKGROUND Systems , apparatuses , and methods for implementing a

high bandwidth , low power vector register file for use by a
Description of the Related Art stream processor are disclosed herein . In one embodiment ,

15 a system includes at least a processing unit with a plurality
Many different types of computing systems include vector of stream processors . Each stream processor includes a

processors or single - instruction , multiple - data (SIMD) pro vector arithmetic logic unit (VALU) and a high bandwidth ,
cessors . Tasks can execute in parallel on these types of low power vector register file . The vector register file
processors to increase the throughput of the computing includes multi - bank high density random - access memories
system . Some instructions of these tasks can utilize a large 20 (RAM) to satisfy register bandwidth requirements . The
portion of a shared resource , which can reduce performance stream processor also includes an instruction request queue
of the processor . Accordingly , contention for shared and a source operand buffer to provide enough local band
resources can cause parallel tasks to be executed in an width for vector arithmetic logic unit (VALU) instructions
inefficient manner . Additionally , traditional schemes for and vector input / output (I / O) instructions . Also , the stream
sharing resources between parallel tasks can lead to an 25 processor is configured to leverage the RAM's output flops increase in power consumption . as a last level cache to reduce duplicate operand requests A parallel processor is typically pipelined . Ideally , every between multiple instructions . Additionally , the stream pro clock cycle produces useful execution of an instruction for cessor includes a vector destination cache to provide addi each stage of the pipeline . In order to utilize each clock tional write and read bandwidth for the vector register file . cycle , the processing pipeline needs to be supplied with data
for the various instructions which are in their various stages In various embodiments , the stream processor is able to
of execution . However , the sharing of resources among reduce power consumption by avoiding the duplication of
pipelines can cause contention for these resources and cause operands within the same instruction . Also , the stream
portions of the pipeline to be idle and not performing useful processor is configured bypass the source operand buffer
work . This reduces the efficiency of the processing pipeline . by reading directly from the vector register file RAM output
For example , when any two instructions conflict for access 35 flops when possible . Additionally , the vector destination
to a register file random - access memory (RAM) , the pipe cache includes multiple read ports for access from the VALU
line will stall while the conflict is resolved . allowing the VALU to bypass accessing the vector register

file bank RAM . Still further , the stream processor is con
BRIEF DESCRIPTION OF THE DRAWINGS figured to perform an on - demand allocation of the vector

40 destination cache to increase the storage utilization of the
The advantages of the methods and mechanisms vector destination cache . Still further , the stream processor

described herein may be better understood by referring to includes a cache recycling mechanism to avoid refetching
the following description in conjunction with the accompa operands and to provide an extended data dependency check
nying drawings , in which : window .

FIG . 1 is a block diagram of one embodiment of a 45 In one embodiment , the stream processor is configured to
computing system . identify one or more source operands of a first instruction .

FIG . 2 is a block diagram of one embodiment of a stream The stream processor is configured to determine whether to
processor . forward the one or more source operands from the vector

FIG . 3 is a block diagram of one embodiment of a portion register file , source operand buffer , or vector destination
of a stream processor . 50 cache to the VALU depending on one or more conditions .
FIG . 4 is a generalized flow diagram illustrating one When the stream processor executes the first instruction , the

embodiment of a method for processing instructions in a stream processor waits until a last pipeline stage of the
stream processor . VALU until allocating a cache line in the vector destination
FIG . 5 is a generalized flow diagram illustrating one cache . Then , the result of the first instruction is stored in the

embodiment of a method for implementing an instruction 55 cache line allocated in the vector destination cache .
dispatch sub - routine . Referring now to FIG . 1 , a block diagram of one embodi
FIG . 6 is a generalized flow diagram illustrating one ment of a computing system 100 is shown . In one embodi

embodiment of a method for implementing a VGPR bank ment , computing system 100 includes at least processor (s)
request arbiter . 110 , input / output (Ilo) interfaces 120 , bus 125 , and memory

FIG . 7 is a generalized flow diagram illustrating one 60 device (s) 130. In other embodiments , computing system 100
embodiment of a method for allocating and recycling in the can include other components and / or computing system 100
vector destination cache . can be arranged differently .

Processors (s) 110 are representative of any number and
DETAILED DESCRIPTION OF EMBODIMENTS type of processing units (e.g. , central processing unit (CPU) ,

65 graphics processing unit (GPU) , digital signal processor
In the following description , numerous specific details are (DSP) , field programmable gate array (FPGA) , application

set forth to provide a thorough understanding of the methods specific integrated circuit (ASIC)) . In one embodiment ,

US 10,817,302 B2
3 4

processor (s) 110 includes a vector processor with a plurality the embodiment . For example , in one embodiment , local
of stream processors . Each stream processor can also be data share (LDS) return data , texture return data , VGPR
referred to as a processor or a processing lane . In one initialization inputs , and inputs from VDST cache 235 are
embodiment , each stream processor includes a vector arith coupled to the inputs of multiplexers 215A - D . In other
metic logic unit (VALU) and a high bandwidth , low power 5 embodiments , other inputs can be coupled to multiplexers
vector register file . The vector register file includes multi 215A - D . The outputs of multiplexers 215A - D are coupled to
bank high density random - access memories (RAMs) to VGPR banks 220A - D . It is noted that in other embodiments ,
satisfy register bandwidth requirements . The stream proces stream processor 200 can include other numbers of multi
sor also includes an instruction request queue and an instruc plexers 215A - D and / or other numbers of VGPR banks
tion operand buffer to provide enough local bandwidth for 10 220A - D .
vector arithmetic logic unit (VALU) instructions and vector In one embodiment , each VGPR bank 220A - D can be
input / output (1/0) instructions . Also , the stream processor is accessed independently from the other VGPR banks 220A
configured to leverage the RAM's output flops as a last level D. The VGPR banks 220A - D are coupled to operand buffers
cache to reduce duplicate operand requests between multiple 240. Each VGPR bank 220A - D include N registers , wherein
instructions . Additionally , the stream processor includes a 15 the value of N varies from embodiment to embodiment . The
vector destination cache to provide additional write and read size of the registers in VGPR banks 220A - D can also vary
bandwidth for the vector register file . according to the embodiment . In one embodiment , operand
Memory device (s) 130 are representative of any number buffers 240 includes dedicated buffers which can provide

and type of memory devices . For example , the type of three different operands to each ALU of vector ALU 245 to
memory in memory device (s) 130 can include Dynamic 20 serve an instruction like a fused multiply add (FMA) opera
Random Access Memory (DRAM) , Static Random Access tion which performs an a * b + c operation .
Memory (SRAM) , NAND Flash memory , NOR flash Vector ALU (VALU) commands are provided to pending
memory , Ferroelectric Random Access Memory (FeRAM) , instruction queue 255. Then , the commands are conveyed to
or others . Memory device (s) 130 are accessible by dependency check micro - instruction dispatch unit 260 to
processor (s) 110. I / O interfaces 120 are representative of any 25 check for dependencies between instructions . Then , VALU
number and type of I / O interfaces (e.g. , peripheral compo commands are conveyed to gather instruction queue 265 .
nent interconnect (PCI) bus , PCI - Extended (PCI - X) , PCIE The VALU commands are then conveyed to individual
(PCI Express) bus , gigabit Ethernet (GBE) bus , universal ALUs of ALU 245 from gather instruction queue 265 .
serial bus (USB)) . Various types of peripheral devices can be Vector input / output (I / O) commands (VecIO) are received
coupled to Ilo interfaces 120. Such peripheral devices 30 by vector I / o command queue 270 and conveyed to vector
include (but are not limited to) displays , keyboards , mice , I / O request units 275 via operand buffers 240. The operands
printers , scanners , joysticks or other types of game control generated for the vector I / O commands are conveyed to
lers , media recording devices , external storage devices , vector I / o request units 275 , which are coupled to vector Ilo
network interface cards , and so forth . blocks (not shown) . Depending on the embodiment , stream

Turning now to FIG . 2 , a block diagram of one embodi- 35 processor 200 can include any number of vector Ilo request
ment of a stream processor 200 is shown . Stream processor units 275 .
200 includes vector arithmetic logic unit (ALU) 245 . Referring now to FIG . 3 , a block diagram of one embodi
Depending on the embodiment , vector ALU 245 can include ment of a portion of a stream processor 300 is shown . The
any number of ALUs . In one embodiment , vector ALU 245 portion of stream processor 300 shown in FIG . 3 includes a
includes 16 ALUs . In other embodiments , vector ALU 245 40 single ALU pipeline . In one embodiment , stream processor
includes other numbers of ALUS . 200 (of FIG . 2) includes multiple of the ALU pipelines

The inputs to vector ALU 245 are provided from operand shown in FIG . 3. The entire stream processor includes any
buffers 240. In one embodiment , operand buffers 240 are number of pipelines , with the number of pipelines varying
configured to provide multiple operands to each ALU of from embodiment to embodiment . For example , in a pro
vector ALU 245 in a given clock cycle . The outputs of vector 45 cessor with a single instruction , multiple data (SIMD) width
ALU 245 are connected to vector destination (VDST) cache of 16 , the stream processor would include 16 instances of the
235. In one embodiment , when a given ALU in vector ALU pipeline shown in FIG . 3 .
245 generates a result , the given ALU performs a late The stream processor 300 includes multiple VGPR banks
allocation of a cache line in VDST cache 235 for the result . 315A - D . In one embodiment , the VGPR includes 4 banks . In
In other words , the given ALU performs an on - demand 50 other embodiments , the VGPR can include other numbers of
allocation of the cache line for the result . banks . In one embodiment , each bank can perform 1 read

If VDST cache 235 is unable to allocate a cache line for and 1 write per cycle . In one embodiment , the read result is
a result from a given ALU , then the given ALU of vector stored in the read FLOPs 320A - D once a read request is
ALU 245 will be stalled until the result can be stored in made to the VGPR bank . If an operand needed by a pending
VDST cache 235. In one embodiment , VDST cache 235 is 55 instruction is stored in a read FLOP 320 , the operand can be
configured to perform cache line recycling . For example , if provided to the ALU pipeline directly from read FLOP 320
an un - dirty cache line is evicted so as to allocate a new cache by bypassing source operands buffer 330 .
line for a result from the given ALU , the un - dirty cache line Source operands buffer 330 can hold multiple VALU

recycled to operand buffers 240 if the un - dirty cache instruction's source operands , with the number of operands
line includes one or more operands targeted by a subsequent 60 varying from embodiment to embodiment . In one embodi
request . ment , source operands buffer 330 holds up to 6 VALU
VDST cache 235 is coupled to the inputs of the multi instruction's source operands . In one embodiment , source

plexers 215A - D feeding the vector general purpose register operand buffer 330 includes dedicated buffers for providing
(VGPR) banks 220A - D . VDST cache 235 is also coupled to 3 different operands per clock cycle to serve instructions like
operand buffers 240. It is noted that the VGPR can also be 65 a fused multiply - add operation which performs a * b + c .
referred to as the vector register file herein . Any number of In one embodiment , a crossbar 325 routes the VGPR
inputs can be coupled to multiplexers 215A - D depending on bank's read result from the output flops 320A - B to the

can be

US 10,817,302 B2
5 6

operands buffer 330. In one embodiment , each individual bank . The vector destination cache 360 can retry the write
operand storage can receive a read from any bank 315A - D . back in the next cycle . If a vector I / O write matches a cache
A single bank's write can broadcast to multiple operand line of the vector destination cache 360 , the cache line of the
storage locations if the operands are requesting the same vector destination cache 360 will be invalidated to keep data
VGPR address . The crossbar 325 can also route data from a 5 coherence between the vector destination cache 360 and the
VGPR bank 315 read to a Vector Ilo Request Unit 345 to VGPR 315 .
provide operands for Vector I / O blocks (not shown) . Turning now to FIG . 4 , one embodiment of a method 400

In one embodiment , the source operands buffer 330 is for processing instructions in a stream processor is shown . bypassed if the VALU operands can be retrieved directly For
from the RAM output flops 320A - D . Retrieving VALU 10 those of FIGS . 5-7 are shown in sequential order . However , purposes of discussion , the steps in this embodiment and
operands directly from the RAM output flops 320A - D helps it is noted that in various embodiments of the described to save the power of reading and writing to the source
operands buffer 330 and also reduces the instruction issue methods , one or more of the elements described are per
latency . In one embodiment , the source operands buffer 330 formed concurrently , in a different order than shown , or are
provides 3 operands read per cycle for a multi - stage VALU 15 omitted entirely . Other additional elements are also per
pipeline 350 which also writes 1 operand per cycle as an formed as desired . Any of the various systems or apparatuses
output . Any of the three source operands of the multi - stage described herein are configured to implement method 400 .
VALU pipeline 350 can be forwarded from the vector The stream processor receives an instruction command
destination cache 360 . from an instruction sequencer (block 405) and stores the

In one embodiment , a cache line is assigned on - demand 20 instruction command into a pending queue for VALU
for a VALU destination operand at the last stage of ALU instructions (block 410) . An instruction dispatch unit fetches
pipeline 350. If the vector destination cache controller a VALU instruction from the front of the pending queue
cannot find a new cache line or re - assign a non - dirty cache (block 415) and sends the VALU instruction to the request
line to the request corresponding to the VALU destination queue when the request queue has space (block 420) . A
operand , the VALU pipeline 350 can be stalled . While some 25 VGPR bank request arbiter checks all the pending instruc
VALU instructions (e.g. , FMA instructions) only produce tion's valid source operands and makes requests to the
one destination operand , other VALU instructions (e.g. , VGPR banks to fully utilize the VGPR banks ' read band
double - precision FMA operations) produce two destination width (block 425) .
operands . In one embodiment , when the VALU pipeline 350 A VALU issue unit checks the status of the instruction at
is stalled , reads are not performed to the source operands 30 the front of the next request queue , and if all the required
buffer 330 to issue the next instruction . In one embodiment , operands have been fetched from the VGPR banks (condi
operands requests to the VGPR banks 315A - D from the tional block 430 , “ yes ” leg) , and the VALU pipeline is not
pending instructions queue and servicing vector I / o requests stalled (conditional block 435 , “ no ” leg) and all of the
can still be performed . dependent operands are ready (conditional block 445 , “ yes ”

In one embodiment , the vector destination cache 360 can 35 leg) , the issue block issues the instruction to the VALU
have multiple banks 360A - B . For example , in one embodi (block 450) . If the VALU pipeline is stalled (conditional
ment , the vector destination cache 360 can include 2 banks . block 435 , “ yes ” leg) , then the VALU issue unit waits (block
In this embodiment , the even bank 360A of the vector 440) before returning to conditional block 435. After block
destination cache 360 can cache VGPRs belonging to bank 450 , the instruction proceeds through a multi - stage instruc
315A and bank 315C of the VGPR File , and the odd bank 40 tion execution pipeline (block 455) . A VALU instruction
360B of the vector destination cache 360 can cache VGPRS might need multiple cycles to be executed in the VALU
belonging to the bank 315B and bank 315D of VGPR file . pipeline . For example , a typical FMA operation might need

Depending on the embodiment , each vector destination 4 to 5 pipeline stages to finish execution .
cache bank 360A - B can have one or multiple write ports . At the end of the VALU pipeline (which in one embodi
Each vector destination cache bank 360A - B can have mul- 45 ment is a rounding stage for the example pipeline of FIG . 3) ,
tiple forwarding read ports to provide additional VGPR read the pipeline requests the vector destination cache controller
bandwidth if the source operand hits in the vector destina to allocate a cache line for the result . If the vector destination
tion cache 360. Each vector destination cache bank 360A - B cache is not full (conditional block 460 , “ no ” leg) , then the
can provide multiple write back read ports to write back vector destination cache controller allocates a cache line for
dirty cache lines to the VGPR 315. In one embodiment , the 50 the result (block 465) . Once the required cache lines have
write back read ports are shared with the Vector I / O read been allocated for the finished VALU instruction , the result
requests . The vector destination cache 360 also provides is committed to the vector destination cache (block 470) and
source forwarding to the start of the ALU pipeline 350 to is written back to the main VGPR banks when necessary .
bypass source operands buffer 330 . After block 470 , method 400 ends . If the vector destination

In one embodiment , the vector destination cache 360 55 cache controller cannot find a new cache line (conditional
provides a special , dedicated read port 355 for cache recy block 460 , “ yes ” leg) , the VALU pipeline is stalled (block
cling , with the number of read ports depending on the 475) and the result is kept in flops for the next cycle to retry .
number of cache lines the system can allocate . The vector Referring now to FIG . 5 , one embodiment of a method
destination cache 360 can store multiple entries , with the 500 for implementing an instruction dispatch sub - routine is
number of entries varying depending on the embodiment . In 60 shown . In one embodiment , method 500 is implemented as
one embodiment , each bank 360A - B of the vector destina block 415 (i.e. , the instruction dispatch block) of method
tion cache holds 4 entries , for a total 8 entries with 2 banks . 400 (of FIG . 4) . In one embodiment , the instruction dispatch
A vector I / o write can write directly to the VGPR 315 rather unit is responsible for moving instructions from the pending
than writing to the vector destination cache 360. In one queue to the request queue (conditional block 505) . If the
embodiment , when a vector I / O write is performed directly 65 request queue is not full (conditional block 510 , “ yes ” leg) ,
to the VGPR 315 , the write would block the vector desti then the instruction from the top of the pending queue is
nation cache 360 write back path for the corresponding fetched and stored in the request queue (block 515) .

10

US 10,817,302 B2
7 8

The instruction dispatch unit performs dependency check VALU request to the bank (conditional block 640 , “ no ” leg) ,
ing for the instructions in the request queue (block 520) . Any then method 600 jumps to block 635 to increment the bank
of the instruction's source operands can depend on an ID .
un - executed instruction sitting in the request queue , or the If the pending VALU request matches the data in the
source operands can depend on an executing instruction in 5 last - level cache (conditional block 645 , “ yes ” leg) , then the
the VALU pipeline or on any previously executed instruction arbiter notifies the issue logic to read the data directly from
that has its result available in the vector destination cache . the bank's output flops (block 650) . Then , the arbiter checks
If a source operand has a dependency , then in some cases , it the next VALU pending request for this bank (block 655) ,
might not need to fetch any data from the VGPR , which and then method 600 returns to conditional block 640. If the
helps to save the bandwidth of the VGPR banks and also pending VALU request does not match the data in the
save power . last - level cache (conditional block 645 , “ no ” leg) , then

For example , if a source operand can be fetched from the method 600 jumps to block 630 with the arbiter making a
vector destination cache , then the source operand can be request of this bank for the operand targeted by the VALU
read directly from the vector destination cache to save the 15 request . It is noted that in one embodiment , method 600 is
VGPR banks ' bandwidth and power . Some instructions are performed by the arbiter during each clock cycle .
complex instructions that might need multiple cycles or Referring now to FIG . 7 , one embodiment of a method
require more than 3 operands as a FMA instruction . These 700 for allocating and recycling in the vector destination
instructions may need multiple slots in the source operand cache is shown . A finished vector ALU (VALU) instruction
buffer . The dispatch block would also be responsible to push 20 can request one or more cache lines in the vector destination
the instructions to the request queue (block 525) . After block cache to commit its result . In response to receiving a VALU
525 , method 500 ends . write request (block 705) , the vector destination cache

Turning now to FIG . 6 , one embodiment of a method 600 controller checks if there ar any empty cache lines in the
for implementing a VGPR bank request arbiter is shown . vector destination cache (conditional block 710) . It is noted
There can be multiple instructions (vector I / O and VALU) 25 that the vector destination cache controller may be referred
sitting in queues which need the VGPR bank request arbiter to within the discussion of FIG . 7 as the cache controller for
to select which operands can be read from which VGPR the purposes of brevity . In one embodiment , the vector banks . The arbiter checks all the pending requests (vector destination cache has multiple banks , and the vector desti I / O and VALU) for each bank . For any bank of the VGPR , nation cache bank ID is determined by the LSBs of the
a vector I / O request would have higher priority . If there is no 30 VALU result’s VGPR address . In other embodiments , the
vector I / O request for the bank , the arbiter would choose the vector destination cache bank ID can be determined in other oldest VALU pending instruction's first unfetched operand
and make the request for this operand unless certain condi manners . If there are empty cache lines to hold the VALU
tions are met . For example , if the VALU operand depends on result (conditional block 710 , “ yes ” leg) , then a new cache
an unfinished previous instruction or if the VALU operand 35 line is allocated for the result (block 715) . Then , the VALU
matches a cache line from the vector destination cache , then commits the result to the allocated cache line (block 720) .
the arbiter does not need to make the request to the VGPR . If there are no empty entries to hold the VALU result
If the current VALU request matches the pending request of (conditional block 710 , “ no ” leg) , then the cache controller
the bank or if the current VALU request matches the data determines if there are any un - dirty cache lines that can be
available at the output flops of the RAM , the arbiter would 40 reassigned for the new VALU result (conditional block 725) .
not send this request and instead would notify the instruction It is noted that an un - dirty cache line refers to an unmodified
issue logic to fetch the data directly from the RAM output or clean cache line (i.e. , with the dirty bit not set) . If the
flops and write the data to the source operand buffer . cache does not have any un - dirty cache lines (conditional
An example cycle for the arbiter is shown in the flowchart block 725 , “ no ” leg) , then the VALU result cannot be

of FIG . 6 for method 600. The cycle starts in block 605 , with 45 committed , and the VALU pipeline is stalled and the state is
the arbiter starting with a bank ID equal to 0 (block 610) . If kept for the next cycle to retry (block 730) . The cache
the bank ID is less than or equal to the total number of controller's write back logic might free up some space that
VGPR banks (conditional block 615 , “ yes ” leg) , then the is able to be reused for the next cycle .
arbiter determines , from the vector I / O request queue , if If the cache controller finds an un - dirty cache line to
there are any vector I / O requests to the bank (conditional 50 replace (conditional block 725 , “ yes ” leg) , then the cache
block 620) . Otherwise , if the bank ID is greater than the total controller selects an un - dirty cache line for the new entry ,
number of VGPR banks (conditional block 615 , “ no ” leg) , with the selection based on the cache replacement policy
then the cycle ends (block 625) . (block 735) . Next , the cache controller determines if the

If there is a vector I / O request to the bank (conditional un - dirty cache line includes dependent operands needed by
block 620 , “ yes ” leg) , then the arbiter makes a request of this 55 requests in the VALU request queue (conditional block 740) .
bank for the operand targeted by the vector I / O request If the un - dirty cache line has operands needed by requests in
(block 630) . Then , the arbiter increments the bank ID (block the VALU request queue (conditional block 740 , “ yes ” leg) ,
635) and method 600 returns to conditional block 615. If then the data from the un - dirty cache line is written back to
there is a not a vector I / O request to the bank (conditional the source operands buffer (block 745) . Next , the un - dirty
block 620 , “ no ” leg) , then the arbiter determines , via the 60 cache line is replaced with data from the new VALU write
VALU request queue , if there is a pending VALU request to request (block 750) . Then , the cache line age is updated
the bank (conditional block 640) . If there is a pending VALU (block 755) . After block 755 , method 700 ends . One benefit
request to the bank (conditional block 640 , “ yes ” leg) , then of recycling the retired cache line is avoiding having to
the arbiter determines if the pending VALU request matches refetch the operands from the VGPR for the pending instruc
the data in the last - level cache (conditional block 645) . It is 65 tion in the request queue . Also , once a VALU instruction
noted that the flops on the outputs of the VGPR banks can gets pushed into the request queue after performing a
be referred to as a “ last - level cache ” . If there is not a pending dependency check , an operand that can be fetched directly

25

30

US 10,817,302 B2
9 10

from the previous instruction in the pipeline or the vector in the source operand buffer responsive to determining
destination cache does not need to fetch data from the VGPR the one or more source operands are stored in the vector
banks . register file ; and

In various embodiments , program instructions of a soft convey the one or more source operands from the source
ware application are used to implement the methods and / or 5 operand buffer to the VALU responsive to issuing the
mechanisms previously described . The program instructions first instruction to the VALU .
describe the behavior of hardware in a high - level program 4. The system as recited in claim 1 , wherein the processor ming language , such as C. Alternatively , a hardware design further comprises a plurality of flip - flops on outputs of the language (HDL) is used , such as Verilog . The program vector register file . instructions are stored on a non - transitory computer readable 10 5. The system as recited in claim 4 , wherein the vector storage medium . Numerous types of storage media are
available . The storage medium is accessible by a computing register file comprises multiple banks , and wherein the
system during use to provide the program instructions and processor is further configured to :
accompanying data to the computing system for program determine if a first operand matches a previous result on
execution . The computing system includes at least one or 15 a given bank of the vector register file ; and
more memories and one or more processors configured to bypass the source operand buffer to retrieve the first
execute program instructions . operand from flip - flops on the output of the given bank

It should be emphasized that the above - described embodi responsive to determining that the first operand
ments are only non - limiting examples of implementations . matches the previous result on the given bank of the
Numerous variations and modifications will become appar- 20 vector register file .
ent to those skilled in the art once the above disclosure is 6. The system as recited in claim 1 , wherein the processor
fully appreciated . It is intended that the following claims be is further configured to :
interpreted to embrace all such variations and modifications . stall the VALU if the processor is unable to allocate a
What is claimed is : cache line in the vector destination cache ; and
1. A system comprising : wait to allocate a cache line in the vector destination cache
a memory ; and until a result is generated by the VALU .
a processor coupled to the memory , wherein the processor 7. The system as recited in claim 1 , wherein the processor comprises : is configured to write the first cache line to the vector a vector register file ; register file responsive to determining that the first cache a source operand buffer ; line is a dirty cache line . a vector arithmetic logic unit (VALU) ; and 8. A method comprising : a vector destination cache for storing results of instruc selecting a first cache line of a vector destination cache tions executed by the VALU ;
wherein the processor is configured to : based on a cache replacement policy , responsive to

select a first cache line of the vector destination cache 35 determining :
based on a cache replacement policy , responsive to a vector arithmetic logic unit (VALU) has result data to
determining : write to the vector destination cache ; and
the VALU has result data to write to the vector no cache line in the vector destination cache is empty ;

destination cache ; and evicting the selected first cache line from the vector
no cache line in the vector destination cache is 40 destination cache ; and

empty ; writing the first cache line to the source operand buffer
evict the selected first cache line from the vector responsive to determining :

destination cache ; and that the first cache line is a clean cache line ; and
write the first cache line to the source operand buffer that the first cache line comprises one or more source

responsive to determining : operands targeted by a pending instruction .
that the first cache line is a clean cache line ; and 9. The method as recited in claim 8 , further comprising :
that the first cache line comprises one or more source identifying one or more source operands of a first instruc

operands targeted by a pending instruction . tion ;
2. The system as recited in claim 1 , wherein the processor determining whether to forward the one or more source

is further configured to : operands from one of the vector register file , the source
identify one or more source operands of a first instruction ; operand buffer , and the vector destination cache to the
determine whether to forward the one or more source VALU depending on one or more conditions ;

operands from one of the vector register file , the source waiting until a last pipeline stage of the VALU until
operand buffer , and the vector destination cache to the allocating a cache line in the vector destination cache ;
VALU ; and

wait until a last pipeline stage of the VALU until allocat storing a result of the first instruction in the cache line
ing a cache line in the vector destination cache ; and allocated in the vector destination cache .

store a result of the first instruction in the cache line 10. The method as recited in claim 9 , wherein :
allocated in the vector destination cache . forwarding the one or more source operands from the

3. The system as recited in claim 2 , wherein the processor 60 source operand buffer responsive to determining the
is configured to : one or more source operands are stored in the source

forward the one or more source operands from the source operand buffer ;
operand buffer responsive to determining the one or prefetching the one or more source operands from the
more source operands are stored in the source operand vector register file and store the one or more source
buffer ; operands in the source operand buffer responsive to

prefetch the one or more source operands from the vector determining the one or more source operands are stored
register file and store the one or more source operands in the vector register file ; and

45

50

55

65

20

US 10,817,302 B2
11 12

conveying the one or more source operands from the 16. The apparatus as recited in claim 15 , wherein the
source operand buffer to the VALU responsive to apparatus is further configured to :
issuing the first instruction to the VALU . identify one or more source operands of a first instruction ;

11. The method as recited in claim 8 , wherein a plurality determine whether to forward the one or more source
of flip - flops are located on outputs of the vector register file . 5 operands from one of the vector register file , the source

12. The method as recited in claim 11 , further comprising : operand buffer , and the vector destination cache to the
determining if a first operand matches a previous result on VALU depending on one or more conditions ;

a given bank of the vector register file ; and wait until a last pipeline stage of the VALU until allocat
bypassing the source operand buffer to retrieve the first ing a cache line in the vector destination cache ; and

operand from flip - flops on the output of the given bank 10 store a result of the first instruction in the cache line
allocated in the vector destination cache . responsive to determining that the first operand

matches the previous result on the given bank of the 17. The apparatus as recited in claim 16 , wherein the
vector register file . apparatus is further configured to :

13. The method as recited in claim 8 , further comprising : forward the one or more source operands from the source
stalling the VALU responsive to being unable to allocate 15 operand buffer responsive to determining the one or

a cache line in the vector destination cache ; and more source operands are stored in the source operand
waiting to allocate a cache line in the vector destination buffer ;

cache until a result is generated by the VALU . prefetch the one or more source operands from the vector
14. The method as recited in claim 8 , further comprising register file and store the one or more source operands

writing the first cache line to the vector register file in the source operand buffer responsive to determining respon
sive to determining that the first cache line is a dirty cache the one or more source operands are stored in the vector
line . register file ; and

15. An apparatus comprising : convey the one or more source operands from the source
a vector register file ; operand buffer to the VALU responsive to issuing the

first instruction to the VALU . a source operand buffer ;
a vector arithmetic logic unit (VALU) ; and 18. The apparatus as recited in claim 15 , wherein the
a vector destination cache for storing results of instruc apparatus further comprises a plurality of flip - flops on

tions executed by the VALU ; outputs of the vector register file .
wherein the apparatus is configured to : 19. The apparatus as recited in claim 18 , wherein the

select a first cache line of the vector destination cache 30 vector register file comprises multiple banks , and wherein
based on a cache replacement policy , responsive to the apparatus is further configured to :
determining : determine if a first operand matches a previous result on
the VALU has result data to write to the vector a given bank of the vector register file ; and

destination cache ; and bypass the source operand buffer to retrieve the first
no cache line in the vector destination cache is 35 operand from flip - flops on the output of the given bank

empty ; responsive to determining that the first operand
evict the selected first cache line from the vector matches the previous result on the given bank of the

destination cache ; and vector register file .
write the first cache line to the source operand buffer 20. The apparatus as recited in claim 15 , wherein the

responsive to determining : 40 apparatus is further configured to stall the VALU if the
that the first cache line is a clean cache line ; and apparatus is unable to allocate a cache line in the vector

destination cache . that the first cache line comprises one or more source
operands targeted by a pending instruction .

25

