
WA MALI MA LTA MAMA MATA NA MATATAN MELIHAT US 20180004716A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0004716 A1

Hund et al . (43) Pub . Date : Jan . 4 , 2018

(54) METHOD FOR CONVERTING A BINARY
DATA STREAM

(71) Applicant : SIEMENS
AKTIENGESELLSCHAFT , München
(DE)

(72) Inventors : Johannes Hund , München (DE) ;
Daniel Peintner , Meransen Mühlbach
(IT)

Publication Classification
(51) Int . Ci .

G06F 17 / 22 (2006 . 01)
(52) U . S . CI .

CPC GO6F 17 / 2258 (2013 . 01) ; G06F 17 / 2247
(2013 . 01) ; G06F 17 / 2252 (2013 . 01)

(57) ABSTRACT
A method is provided for converting a binary data stream ,
(e . g . , an EXI data stream) . In an initialization phase of the
method , a plurality of grammars , previously produced from
at least one description language scheme , are read from a
memory area and combined to form a combined grammar
and wherein the combined grammar is supplied to a runtime
environment for the purpose of converting the binary data
stream . The method firstly permits substantially accelerated
production of the desired grammar in comparison with a
grammar produced as required from individual schemes , and
secondly the memory space requirement may be kept down ,
because there is no need to keep a combinational variety of
grammars available .

(21) Appl . No . : 15 / 545 , 823

(22) PCT Filed : Jan . 26 , 2015

PCT / EP2015 / 051502 (86) PCT No . :
$ 371 (c) (1) ,
(2) Date : Jul . 24 , 2017

GRI - 8 B - GB2 tiva
rittit

t

ATE o OGA r XV i X

mit DST .
3

Winnin . w
* * * 14 This

Vizu K < « oso owocco . * * * * *

X " Y

9990892889898 WWW

WWW * * Marjan ni Marco * * * * *
e sono R

mah * * * * * * * *
7

W 12949000
A

w What
WWW * * * MY WWW * * * 14 * * *

Patent Application Publication Jan . 4 , 2 Patent Application Publication Jan . 4 , 2018 US 2018 / 0004716 A1

GR - O - GR2 18061

nst
I

ning DST .

http111 . tui STC ! sec uihin n

* * * par
.

wi hits
4 499990 1991 VIKA < Kokko Hiin WWWWWWWWW

Mi * * *
MM : 4

•

Eleven ??????
ht . w

van 7 . 4

www . wWXXWWV Wwwwwwwww 17477

FIG . 1

US 2018 / 0004716 A1 Jan . 4 , 2018

METHOD FOR CONVERTING A BINARY
DATA STREAM

[0001] The present patent document is a $ 371 national
ization of PCT Application Serial Number PCT / EP2015 /
051502 , filed Jan . 26 , 2015 , designating the United States ,
which is hereby incorporated by reference .

TECHNICAL FIELD

[0002] The disclosure relates to a method for converting a
binary data stream , e . g . , an EXI data stream .

simplicity , the term “ schemata ” below covers both schemata
in the sense of the preceding description and namespaces .
f0008] Coding of schemata in grammars is time - consum
ing and work - intensive . A further problem arises from the
fact that currently established methods for converting and / or
transmitting a binary EXI data stream frequently provide for
multiple schemata to be used . In such cases , a combination
of multiple schemata or schema files is required in order to
code a grammar . In many such instances of application , the
process is then unnecessarily performed repeatedly when
multiple EXI data streams require like or similar combina
tions of schemata .
[0009] In one frequently arising case , according to which
one schema from a multiplicity of schemata is subject to a
change , the process of coding a grammar from the multi
plicity of schemata , including unaltered schemata , needs to
be repeated .
[0010] Several different combinations of schemata result
in one grammar per combination each time . A technical need
to keep grammars ready for different combinations of sche
mata on a persistent basis may currently be satisfied only by
virtue of many variants of grammars being generated in
advance . With an increasing number of schemata , the num
ber of variants rises to an extreme degree on account of the
great combinational diversity of possible combinations ,
which means that the memory space requirement for storing
the grammars is accordingly high .

BACKGROUND
[0003] Description languages for specifying data formats
and the methods needed for processing the data are known
in the prior art . One known description language is “ Exten
sible Markup Language ” , XML for short , which is used to
describe hierarchically structured data in text form or “ plain
text ” . The description language XML is used for platform
independent interchange of data between computer systems .
Owing to the textual nature of XML , the language may be
read both by machines and by human beings . In addition ,
schemata are known that are used to describe a structure and
to define data types . A schema for use for XML data is also
known as an XML schema definition or XSD .
[0004] Efficient data interchange between computer sys
tems is frequently necessary that cannot be achieved using
a textual description language such as XML . Therefore ,
binary representations of XML have been proposed . A
binary representation of XML referred to as “ Efficient XML
Interchange ” , EXI for short , is faster to process in compari
son with text - based XML data and requires less transmission
bandwidth for the data interchange between computer sys
tems . Use of EXI is , moreover , not restricted solely to a
binary representation of XML ; EXI may be used as an
interchange format for transmitting any semi - structured
data .
[0005] The interchange format EXI particularly exhibits
advantages when used in XML - based applications using a
microcontroller having a limited supply of memory space
and computation power . Devices that operate on the basis of
microcontrollers , (for example , intelligent sensors on a
production line or in a vehicle) , may be set up for device
internal processing of data in a binary format and inter
change these data with one another via appropriate commu
nication interfaces , also , e . g . , on the basis of binary data . In
particular , binary data in accordance with EXI specifications
allow inter - operability with XML - based systems in this
case .
[0006] For the interchange format EXI too , use of sche
mata , (e . g . , XML schema files) , is advantageous . Use of
schemata permits typed presentation of data being inter
changed , also known as “ typed data ” among experts , which
permits faster conversion of data into an internal represen
tation at a receiver end . In addition , this measure permits an
even more compact presentation , because knowledge
already known at the receiver end , (such as , e . g . , XML
element names) , may be transmitted no longer in a text
format but rather by bilaterally known , short identifiers .
[0007] To further optimize a binary data stream that is to
be transmitted in accordance with EXI , there is provision for
schemata to be coded in grammars , also known as EXI
grammars . In addition , a grammar also permits a coded
representation or declaration of namespaces . For reasons of

SUMMARY AND DESCRIPTION
[0011] The scope of the present disclosure is defined
solely by the appended claims and is not affected to any
degree by the statements within this description . The present
embodiments may obviate one or more of the drawbacks or
limitations in the related art .
[0012] The present disclosure is based on the object of
providing one or more grammars corresponding to combi
nations of schemata associated with less involvement in
terms of time and memory .
[0013] The object is achieved by a method that provides
an initialization phase in a method for converting a binary
data stream between a transmitter and a receiver , which
initialization phase involves a plurality of grammars gener
ated in advance being read from a memory area and said
grammars being compiled to form a combined grammar .
[0014] A subsequent or simultaneously proceeding coding
phase or runtime phase involves the combined grammar
being used to convert binary data and / or text format data into
a binary data stream or to convert a binary data stream into
binary data and / or text format data . The first alternative may
relate to a coding device , and the second alternative may
relate to a decoding device .
[0015] Text format data are supplied to the runtime envi
ronment and text format data may be taken from the runtime
environment in the form of description language schemata ,
for example , XML schema files , or data structures that are
equivalent to XML .
[0016] Binary data are supplied to the runtime environ
ment and binary data may be taken from the runtime
environment in the form of memory representations , for
example , using a format that is also known as document
object model (DOM) .
[0017] A memory representation is a presentation of the
data described by a description language schema and trans
mittable by a binary data stream , which presentation is

US 2018 / 0004716 A1 Jan . 4 , 2018

directly interchangeable with a program and may be pro
cessed . A coding device produces a serialized binary data
stream from this memory representation , e . g . , for the pur
pose of transmission . A decoding device converts a serial
ized binary data stream into a memory representation . The
memory representation is then used for device - internal pro
cessing of the binary data .
[0018] . The term “ runtime ” refers to the actual conversion
of the binary data stream , the conversion being realized by
a coding device or EXI encoder or by a decoding device or
EXI decoder , for example . The coding device and the
decoding device are alternatively combined in a single
device , which may be referenced by the runtime environ
ment .
[0019] There is provision for " atomic ” grammars gener
ated from one or more schemata to be stored on a persistent
basis . When a combination so requires , the grammars
needed may be loaded individually and processed in com
bination , just as if they were already available in combina
tion .
[0020] The method allows individual schemata or a com
bination of individual schemata to be converted into the
appropriate grammar representation in advance or in the
event of changes . From each combination of these atomic
grammars , the combined grammar needed in the instance of
application is generated in a runtime environment as
required . This measure firstly allows substantially acceler
ated generation of the desired grammar , and secondly it is
possible for the memory space requirement to be kept down ,
because there is no need to keep a combinational variety of
grammars available .
[0021] The object is additionally achieved by a computer
program product executed in a coding device and / or decod
ing device that , on execution , performs the method .
[0022] The object is additionally achieved by a coding
device and by a decoding device .

the runtime environment RTE via a nonstandardized inter
face , e . g . , an EXI grammar interface . Depending on the
combinational requirement , the grammars GR1 , GR2 are
loaded individually and , after being compiled , are processed
as a combined grammar CGR , just as if a grammar were
already available in combined form .
[0028] Structure coding STC and content coding CTC are
used to process the input data FLE supplied to the runtime
environment RTE to produce the binary data stream DST
from the combined grammar CGR .
[0029] As is known to a person skilled in the art , a
grammar is a coding and decoding instruction for an XML
document , a data structure equivalent to XML , or a memory
representation of an XML document , for example , as a
document object model , DOM , of a coding device . A
decoding device uses the grammar as an instruction to
produce an XML document , a data structure equivalent to
XML , or a memory representation of an XML document
from a received data stream .
[0030] The functional units depicted in FIG . 1 may be
present both in a coding device at a transmitter end and in
a decoding device at a receiver end . At the receiver end , the
binary data stream DST then forms the input data that are
supplied via the interface IFC to the units for structure
coding STC and content coding CTC to produce the struc
ture and the content . The XML document , the memory
representation , or the data structure equivalent to XML are
then the output data from the receiver .
0031] In accordance with one embodiment , the initializa
tion phase described for the transmitter and linked to com
piling the combined grammar may also be dispensed with at
the receiver end , however . This is made possible in this
embodiment by virtue of the grammar CGR required for the
function of the transmitter and receiver being generated by
the transmitter and then transmitted to the receiver in an
initialization phase before the actual runtime of the data
interchange . All of the information that the grammar CGR
contains may be contained in a first , (e . g . , characterized) ,
data stream section that is transmitted from the transmitter to
the receiver .
[0032] . The text below explains the concept of a combined
grammar based on an illustrative example . In this case , it is
assumed that conversion of a binary data stream requires an
XML schema having the file name " basket . xsd " , where the
file suffix " xsd ” denotes an XML schema definition . In the
basket schema , elements of further schemata , for example
the schemata “ apple . xsd ” , “ pear . xsd ” , and “ citrus . xsd " , are
used on a case - by - case basis .
[0033] Conversion of a binary data stream using previ
ously known methods required the following grammars Gk ,
Gka , Gkb , . . . Gkabc to be generated and kept available
using a grammar (. . .) call from a respective combination
of schemata :
[0034] Gk = grammar (basket . xsd)
[0035] Gka = grammar (basket . xsd + apple . xsd)
[0036] Gkb = grammar (basket . xsd + pear . xsd)
[0037] Gkc = grammar (basket . xsd + citrus . xsd)
[0038] Gkab = grammar (basket . xsd + apple . xsd + pear . xsd)
[0039] Gkac = grammar (basket . xsd + apple . xsd + citrus . xsd)
[0040] Gkbc = grammar (basket . xsd + pear . xsd + citrus . xsd)
[0041] Gkabc = grammar (basket . xsd + apple . xsd + pear . xsd +
citrus . xsd)
(0042] The grammars Gk , Gka , Gkb , . . . Gkabc denoted
above either had to be produced from the respective sche

BRIEF DESCRIPTION OF THE DRAWINGS
[0023] Further exemplary embodiments and advantages of
the disclosure are explained in more detail below with
reference to the drawing .
[0024] FIG . 1 depicts an example of a schematic depiction
of functional units of a coding device in which text format
data of a description language that are supplied to the coding
device are converted into a binary data stream .

DETAILED DESCRIPTION
[0025] As depicted in FIG . 1 , the actual coding is effected
in a unit referred to as a runtime environment RTE to which
input data are supplied in file or text form . By way of
example , input data in the form of an XML document FLE
are supplied to the runtime environment RTE . Alternatively ,
memory representations or data structures equivalent to
XML are supplied as input data .
[00261 Using a structure coding STC and a content coding
CTC , a binary data stream DST is generated in the runtime
environment RTE , which is transmitted to a receiver (not
depicted) via an interface IFC of the coding device .
[0027] A plurality of atomic grammars GR1 , GR2 gener
ated from at least one description language schema in
advance are read from a memory area (not depicted) and
compiled to form a combined grammar CGR in an initial -
ization phase . The combined grammar CGR is supplied to

US 2018 / 0004716 A1 Jan . 4 , 2018

mata by an encoder or a decoder ad hoc , that is to say
immediately before their respective use , or had to be gen
erated in advance and buffer - stored in a memory area ,
particularly a cache memory , until they were used . While the
first is disadvantageous on account of time - consuming and
resource - involving ad - hoc generation , the second variant
has the disadvantage that a high memory requirement is
necessary for keeping all the grammars that may be required
available . In addition , a change in one of the schemata
requires all the grammars affected to be produced afresh .
[0043] In addition , entry of a further schema , for example
" date . xsd " , requires a grammar to be generated for every
possible combination with this schema , and in the above
example there would be entry of 18 additional combinations
of possible schema combinations . This may entail a change
in the schema basket . xsd , which means that new grammars
have to be generated for all combinations of schemata , in
that case 26 in the example above .
[0044] In certain examples , there is , by contrast , provision
for a plurality of grammars already generated from a schema
in advance to be compiled to form a combined grammar .
Alternatively , these grammars already generated in advance
may also have been generated from a plurality of schemata .
[0045] To keep available the grammars G ' k , G ' a , G ' b , G ' c
already generated from a schema in advance , subsequently
also referred to as an atomic grammar or atomic combinable
grammar , an atomic grammar (. . .) call is used as follows :
[0046] G ' k = atomic grammar (basket . xsd)
[0047] G ' a = atomic grammar (apple . xsd)
[0048] G ' b = atomic grammar (pear . xsd)
[0049] G ' c = atomic grammar (citrus . xsd)
[0050] These atomic grammars permit substantially more
efficient combination in a runtime environment to form a
combined grammar than previously known generation of a
grammar from a combination of schemata , which means that
multiple atomic grammars may be compiled to form a
combined grammar substantially more quickly in the run
time environment .
[0051] Even when a further schema is added as explained ,
it is merely necessary for every directly changed schema to
be produced afresh as explained below using the example of
an entering date schema :
[0052] G ' d = atomic _ grammar (date . xsd)
[0053] Only the atomic grammar G ' k associated with the
changed basket schema needs to be produced afresh in the
course of this entry :
[0054] G ' k = atomic _ grammar (basket . xsd)
[0055] If the grammar Gkbc , which , according to conven
tional methods , would either have to be in the cache or
would have to be generated , is now needed in the applica
tion , then it may be combined from the atomic grammars as
a combined grammar , e . g . , using a combine (. . .) call :
[0056] Gkbc = combine (G ' k + G ' b + G ' c)
[0057] The combined grammar is moreover identical at
runtime to the conventionally generated grammar , e . g . , the
grammar generated and kept available from the combination
of the basket , pear , and citrus schemata using a grammar (
. . .) call :
[0058] Gkbc = grammar (basket . xsd + pear . xsd + citrus . xsd)
10059] For an implementation of the runtime environment
in accordance with the rules of the EXI standard , the
resultant combined grammar corresponds to a grammar that

would also have emerged for a combination of different
schemata in accordance with XML schema definition or
XSD .
[0060] The prerequisite for combinability of atomic gram
mars that needs to be called for in accordance with a
embodiment is that global elements of respective atomic
grammars , e . g . , those generated in advance , may be supplied
to a combined list of global elements of the combined
grammar .

[0061] In accordance with one embodiment , this is
achieved , by way of example , by virtue of references to
qualified names , which are referred to as QNames in the EXI
vernacular , of elements of the individual atomic grammars
being brought together in a list , that ultimately represents the
combined grammar . A qualified name is a globally explicit
descriptor that is compiled from the element name and a
descriptor for the namespace . Specifically , a qualified name
or QName may be compiled from what are known as
Non - Colonized Names (NCNames) , each of the NCNames
apart from the last denoting a namespace . The last NCName
corresponds to the local name within the namespace . The
individual NCNames are compiled by dots (.) to form a
QName .
[0062] In accordance with one embodiment , the combin
ability is supported by virtue of global elements of the
combined list of global elements of the combined grammar
referring to global elements of respective grammars gener
ated in advance by virtue of indirectness . This means , by
way of example , that a combined list of global elements with
the length (e . g . , length G1 + length G2) is kept that indirectly
refers to the existing lists . A list of references to the
respective atomic grammars is thus created . This list may be
set up in the initialization phase when different atomic
grammars are combined .
[0063] In accordance with one embodiment , the combin
ability is supported by virtue of the initialization phase
involving elements of respective fragmentary grammars
generated in advance being supplied to a combined list of
global elements of the combined grammar , wherein a match
for a qualified name or " OName " in different elements
prompts the matching qualified name to be created precisely
once in the combined list of global elements , with name
conflicts being resolved in accordance with a schema
informed grammar . This embodiment relates to elements of
a " FragmentContent Grammar ” in accordance with the EXI
standard . The approach in this regard is inherently analogous
to the global elements explained above . An exception
thereto is formed only by definitions having identical
QNames , which are compiled from the element name and a
descriptor for the namespace . The aim of converting numer
ous elements having the same name into a single , explicit
element in the combined grammar is achieved by resolving
name conflicts analogously to the approach in a schema
informed grammar or “ Schema - informed Element Fragment
Grammar ” .
[0064] In accordance with one embodiment , the combin
ability is supported by virtue of the initialization phase
involving type attributes of respective grammars generated
in advance being supplied to a combined list of type attri
butes that is set up as required from a combination of
grammars generated in advance and grammars containing
type attributes . When a type attribute " xsi : type cast ”
appears , an EXI codec jumps to the referenced type “ Gram
mar ” , if the latter is available . In the case of combined

US 2018 / 0004716 A1 Jan . 4 , 2018

grammars , the list is set up afresh when first required by
virtue of it setting up a combination of all type grammars
(e . g . , G1 + G2 + . . .) .
10065] . In accordance with one embodiment , the combin
ability is supported by virtue of the initialization phase
involving at least one global element from the combined
grammar with an applicable local name and / or an applicable
namespace descriptor being used for wildcard expressions or
wildcards . When wildcard expressions or wildcards appear ,
for example wildcards defined in EXI , (such as , e . g . , AT (*) ,
AT (uri , *) , SE (*) , SE (uri , *)) , a grammar may use a list of
all possible global elements and / or attributes as a possible
comparison . In this case , an attempt is made to find a global
element and / or attribute that matches the local name and a
descriptor or Uniform Resource Identifier (URI) of the
namespace in the list . In the case of multiple combined
grammars , the combined list is accordingly searched .
[0066] In accordance with one embodiment , the combin
ability is supported by virtue of the initialization phase
involving an extended substitution group , in which elements
from different grammars generated in advance are assigned
to one and the same substitution group , being formed for
elements from substitution groups of different grammars
generated in advance . In XML and EXI , an element may be
substituted with all elements that belong to the same sub
stitution group or " substitutionGroup ” . In the case of com
bined grammars , the substitution group or the list associated
with the substitution group may need to be extended if
elements from different grammars belong to the same sub
stitutionGroup .
[0067] The disclosure relates , in summary , to a method for
converting a binary data stream , (e . g . , an EXI data stream) ,
wherein an initialization phase involves a plurality of gram
mars generated from at least one description language
schema in advance being read from a memory area and
compiled to form a combined grammar and wherein the
combined grammar is supplied to a runtime environment for
the purpose of converting the binary data stream .
[0068] The disclosure firstly permits substantially accel
erated generation of the desired grammar in comparison
with a grammar generated as required from individual
schemata , and secondly the memory space requirement may
be kept down , because there is no need to keep a combina
tional variety of grammars available .
[0069] The disclosure provides increased flexibility by
allowing new , possibly unforeseen , combinations without
having to generate a new grammar for these combinations .
Furthermore , faster updating is possible for changes in
individual schemata , because only the atomic grammar
affected rather than all combinations needs to be generated
afresh .
[0070] In addition , the disclosure permits reduced man
agement of metadata , because an atomic grammar may
relate to just one schema rather than to a combination of
schemata .
[0071] It is to be understood that the elements and features
recited in the appended claims may be combined in different
ways to produce new claims that likewise fall within the
scope of the present disclosure . Thus , whereas the dependent
claims appended below depend from only a single indepen
dent or dependent claim , it is to be understood that these
dependent claims may , alternatively , be made to depend in
the alternative from any preceding or following claim ,

whether independent or dependent , and that such new com
binations are to be understood as forming a part of the
present specification .
10072] While the present disclosure has been described
above by reference to various embodiments , it may be
understood that many changes and modifications may be
made to the described embodiments . It is therefore intended
that the foregoing description be regarded as illustrative
rather than limiting , and that it be understood that all
equivalents and / or combinations of embodiments are
intended to be included in this description .

1 . A method for converting a binary data stream , the
method comprising :

forming a combined grammar in an initialization phase
from a plurality of grammars , the forming including
reading the plurality of grammars from a memory area
and compiling the plurality of grammars into the com
bined grammar , wherein the plurality of grammars is
generated in advance of the forming from at least one
description language schema ; and

supplying the combined grammar to a runtime environ
ment to convert the binary data stream .

2 . The method of claim 1 , wherein the conversion of the
binary data stream comprises supplying binary data , text
format data , or both the binary data and the text format data
of a description language to the runtime environment .

3 . The method of claim 1 , wherein the binary data stream
is converted into binary data , text format data , or both the
binary data and the text format data of a description lan
guage .

4 . The method of claim 1 , wherein the initialization phase
involves global elements of respective grammars generated
in advance being supplied to a combined list of global
elements of the combined grammar .

5 . The method of claim 4 , wherein the global elements of
the combined list refer to global elements of respective
grammars generated in advance by virtue of indirectness .

6 . The method of claim 1 , wherein the initialization phase
involves elements of respective fragmentary grammars gen
erated in advance being supplied to a combined list of global
elements of the combined grammar ,

wherein a match for a qualified name in different elements
prompts the matching qualified name to be created
precisely once in the combined list of global elements ,
and

wherein name conflicts are resolved in accordance with a
schema - informed grammar .

7 . The method of claim 1 , wherein the initialization phase
involves type attributes of respective grammars generated in
advance being supplied to a combined list of type attributes
set up from a combination of grammars generated in
advance and grammars containing type attributes .

8 . The method of claim 7 , wherein the initialization phase
involves at least one global element from the combined
grammar with an applicable local name and / or an applicable
namespace descriptor being used for wildcard expressions .

9 . The method of claim 1 , wherein the initialization phase
involves an extended substitution group , in which elements
from different grammars generated in advance are assigned
to one and the same substitution group , being formed for
elements from substitution groups of different grammars
generated in advance .

10 . A computer program product having program code
configured to , when the computer program product is

US 2018 / 0004716 A1 Jan . 4 , 2018

executed on a coding device or decoding device , cause the
coding device or decoding device to at least perform :

form a combined grammar in an initialization phase from
a plurality of grammars , the forming including reading
the plurality of grammars from a memory area and
compiling the plurality of grammars into the combined
grammar , wherein the plurality of grammars is gener
ated in advance of the forming from at least one
description language schema ; and

supply the combined grammar to a runtime environment
to convert the binary data stream .

11 . A coding device for converting a binary data stream ,
the coding device comprising :

an initialization unit configured to read a plurality of
grammars generated from at least one description lan
guage schema in advance from a memory area and
compile the plurality of grammars to form a combined
grammar ; and

a runtime unit configured to convert binary data , text
format data , or both the binary data and the text format
data of a description language , which are supplied to
the coding device , into a binary data stream by applying
the combined grammar .

12 . A decoding device for receiving a binary data stream ,
comprising

an initialization unit configured to read a plurality of
grammars generated from at least one description lan
guage schema in advance from a memory area and
compile the plurality of grammars to form a combined
grammar , and

a runtime unit configured to convert a binary data stream
supplied to the decoding device into binary data , text

format data , or both the binary data and the text format
data of a description language by applying the com
bined grammar .

13 . The method of claim 3 , wherein the initialization
phase involves global elements of respective grammars
generated in advance being supplied to a combined list of
global elements of the combined grammar .

14 . The method of claim 13 , wherein the global elements
of the combined list refer to global elements of respective
grammars generated in advance by virtue of indirectness .

15 . The method of claim 2 , wherein the initialization
phase involves global elements of respective grammars
generated in advance being supplied to a combined list of
global elements of the combined grammar .

16 . The method of claim 15 , wherein the global elements
of the combined list refer to global elements of respective
grammars generated in advance by virtue of indirectness .

17 . The method of claim 6 , wherein the initialization
phase involves at least one global element from the com
bined grammar with an applicable local name and / or an
applicable namespace descriptor being used for wildcard
expressions .

18 . The method of claim 5 , wherein the initialization
phase involves at least one global element from the com
bined grammar with an applicable local name and / or an
applicable namespace descriptor being used for wildcard
expressions .

19 . The method of claim 4 , wherein the initialization
phase involves at least one global element from the com
bined grammar with an applicable local name and / or an
applicable namespace descriptor being used for wildcard
expressions .

* * * *

