US 20160188326A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0188326 A1

Diewald et al.

43) Pub. Date: Jun. 30, 2016

(54)

(71)

(72)

@
(22)

(63)

PROCESSOR WITH INSTRUCTION
ITERATION

Applicant: TEXAS INSTRUMENTS
DEUTSCHLAND GMBH, Freising
(DE)

Inventors: Horst Diewald, Freising (DE); Johann

Zipperer, Unterschleissheim (DE)
15/063,308

Mar. 7, 2016

Related U.S. Application Data

Continuation of application No. 13/628,369, filed on
Sep. 27, 2012, now Pat. No. 9,280,344.

Appl. No.:
Filed:

Publication Classification

(51) Int.CL

GOGF 9/30 (2006.01)
(52) US.CL

() SR GOGF 9/30007 (2013.01)
(57) ABSTRACT

A processor includes a plurality of execution units. At least
one of the execution units is configured to repeatedly execute
a first instruction based on a first field of the first instruction
indicating that the first instruction is to be iteratively
executed.

100
102 104 106 108
\ N / /
EXECUTION | | EXECUTION | | EXECUTION | | EXECUTION
UNIT UNIT UNIT UNIT
A A A A WY A A
Y Y 4
A
A A A
114 ~_| INSTRUCTION INSTRUCTION | ~114 INSTRUCTION | ~114
DECODE UNIT DECODE UNIT DECODE UNIT
X
INSTRUCTION INSTRUCTION
BUFFER [116 BUFFER [“116
X
\
INSTRUCTION DATA
FETCH UNIT ACCESS UNIT
; /
110 112

Patent Application Publication

Jun. 30,2016 Sheet1 of 3

US 2016/0188326 Al

100
102 104 106 108
\ \ / /
EXECUTION | | EXECUTION | | EXECUTION | | EXECUTION
UNIT UNIT UNIT UNIT
A A y A A A
) 4 A 4
A
A A A
114 ~_| INSTRUCTION INSTRUCTION | 114 INSTRUCTION | ~114
DECODE UNIT DECODE UNIT DECODE UNIT
A A A
INSTRUCTION INSTRUCTION
BUFFER [“116 BUFFER [>116
Y
INSTRUCTION DATA
FETCH UNIT ACCESS UNIT FIG. 1
/ /
110 112
108 202
\‘ /
n > FUNCTION
INSTRUCTION > LOGIC
INSTRUCTIONS » EXECUTION LOGIC 1
L
210
- REGISTERS
ITERATION
CONTROL - DATA
DATA <> 7 RE/GISTERS
212 206 208 ["-204
0 > /
y STATUS
PROCESSOR RESOURCE REGISTERS
RESOURCES CONTROL
4
214 FIG. 2

US 2016/0188326 Al

Jun. 30,2016 Sheet2 of 3

Patent Application Publication

Juojeunsaq, ,8IN0g, Jeaday,
SLig-co slig-lo _ slg-w Slig-du sligd slig-u
w [o [o _I oPoWRY | | by sy wd [a]
pOe Wad jeadaypu3 ‘1eadsy‘AyD)'SH® SO uononisu|
D¢ DIA
Sl1lg-o _ Slig-w SLig-du sLig-d siig-u
1eadaypu3 | Jeaday _| SpONpPY | pd sy NIS I a I
206 Wad jeadaypu3 eadey ‘Y@ 'SH® NIS uononisy|
d¢ DIdAd
» S1ig -~
Slig-w sulgd | sligu
| wedoy [| py sy soo [| a]
Jeaday ‘AHD'sHD SOD uononisu|
o0g””
Ve DIA

Patent Application Publication

Jun. 30,2016 Sheet 3 of 3

US 2016/0188326 Al

400
~
—> SIGNAL AND DATAPATH -—- EVENTS AND TRIGGERS
402 |
SIGNAL
N ADC
|
L
N
502 ~| RECEIVE A FIRST
INSTRUCTION FOR EXECUTION
EXTRACT A VALUE FROM THE
504 FIRST INSTRUCTION AND, BASED
™ ONTHE VALUE, DETERMINE
WHETHER THE INSTRUCTION IS
TO BE REPEATEDLY EXECUTED
IDENTIFY ADDITIONAL
506 ~ INSTRUCTIONS TO BE
REPEATEDLY EXECUTED WITH
THE FIRST INSTRUCTION
IDENTIFY ITERATIVE EXECUTION
508 7| START AND END CONDITIONS
ITERATIVELY EXECUTE
51071 THE FIRST INSTRUCTION
512 —|_ GENERATE TRIGGER SIGNAL

FIG. 5

US 2016/0188326 Al

PROCESSOR WITH INSTRUCTION
ITERATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 13/628,369, filed Sep. 27, 2012, the
entirety of which is incorporated herein by reference.

BACKGROUND

[0002] Microprocessors (processors) are instruction execu-
tion devices that are applied, in various forms, to provide
control, communication, data processing capabilities, etc. to
an incorporating system. Processors include execution units
to provide data manipulation functionality. Exemplary execu-
tion units may provide arithmetic operations, logical opera-
tions, floating point operations etc. Processors invoke the
functionality of the execution units in accordance with the
requirements of the instructions executed by the processor.

SUMMARY

[0003] A processor and execution unit providing iterative
execution at the instruction level are disclosed herein. In one
embodiment, a processor includes a plurality of execution
units. At least one of the execution units is configured to
repeatedly execute a first instruction based on a first field of
the first instruction indicating that the first instruction is to be
iteratively executed.

[0004] In another embodiment, an execution unit for
executing instructions in a processor includes instruction
execution logic. The instruction execution logic is configured
to extract a first value from a first instruction to be executed by
the execution unit, and to determine based on the value
whether the first instruction is to be repeatedly executed. The
instruction execution logic is further configured to repeatedly
execute the first instruction based on a result of the determi-
nation.

[0005] Inyet another embodiment, a method for executing
instructions in an execution unit of a processor includes
extracting, by the execution unit, a first value from a first
instruction to be executed by the execution unit. Based on the
value, the execution unit determines whether the first instruc-
tion is to be repeatedly executed. Based on a result of the
determining, the execution unit repeatedly executes the first
instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a detailed description of exemplary embodi-
ments of the invention, reference will now be made to the
accompanying drawings in which:

[0007] FIG. 1 shows a block diagram of a processor in
accordance with various embodiments;

[0008] FIG. 2 shows a block diagram for an execution unit
in accordance with various embodiments;

[0009] FIGS. 3A-3C show exemplary instructions that
include instruction iteration information in accordance with
various embodiments;

[0010] FIGS. 4 shows a block diagram for a signal process-
ing system including execution units in accordance with vari-
ous embodiments; and

[0011] FIG. 5 shows a flow diagram for a method for
executing an instruction by a processor in accordance with
various embodiments.

Jun. 30, 2016

NOTATION AND NOMENCLATURE

[0012] Certain terms are used throughout the following
description and claims to refer to particular system compo-
nents. As one skilled in the art will appreciate, companies may
refer to a component by different names. This document does
not intend to distinguish between components that differ in
name but not function. In the following discussion and in the
claims, the terms “including” and “comprising” are used in an
open-ended fashion, and thus should be interpreted to mean
“including, but not limited to . . . ” Also, the term “couple” or
“couples” is intended to mean either an indirect or direct
electrical connection. Thus, if a first device couples to a
second device, that connection may be through a direct elec-
trical connection, or through an indirect electrical connection
via other devices and connections. Further, the term “soft-
ware” includes any executable code capable of running on a
processor, regardless of the media used to store the software.
Thus, code stored in memory (e.g., non-volatile memory),
and sometimes referred to as “embedded firmware,” is
included within the definition of software. The recitation
“based on” is intended to mean “based at least in part on.”
Therefore, if X is based on Y, X may be based onY and any
number of other factors.

DETAILED DESCRIPTION

[0013] The following discussion is directed to various
embodiments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip-
tion has broad application, and the discussion of any embodi-
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.

[0014] Execution units implemented in various processor
architectures may require one or more instruction cycles to
execute an instruction. For example, a reduced instruction set
architecture may execute simple instructions in a single
instruction cycle, while a complex instruction set architecture
may execute complex instructions in a plurality of instruction
cycles. Inclusion of execution units configured to execute
complex instructions allows for efficient provision of com-
plicated functionality.

[0015] The computational procedures executed using pro-
cessors often employ repeated or iterative execution of one or
more instructions. In conventional processors, iterative
execution is controlled via execution of instruction flow
change instructions, such as jump or branch, or alternatively,
by execution of a repeat instruction that specifies iterative
execution of a subsequent instruction.

[0016] Embodiments of the execution units disclosed
herein execute instructions wherein each instruction may
specify whether the instruction is to be repetitively executed.
Thus, embodiments provide iterative execution without the
use of additional flow control instructions that consume
instruction storage space. Furthermore, embodiments of the
execution units may trigger initiation and/or termination of
such instructions based on an event or condition occurring in
a processor. Consequently, embodiments of the execution
units are capable of a higher degree of autonomy than con-
vention execution units. Such autonomy can require activa-
tion of few processor components to provide a function than

US 2016/0188326 Al

is required in conventional processor architectures, and cor-
respondingly, provide power savings when applied in signal
processing and other systems.

[0017] FIG. 1 shows ablock diagram of a processor 100 in
accordance with various embodiments. The processor 100
includes a plurality of execution units 102, 104, 106, 108.
Other embodiments may include one or more execution units.
The processor 100 also includes an instruction fetch unit 110,
a data access unit 112, and one or more instruction decode
units 114. Some embodiments further include one or more
instruction buffers 116. The processor 100 may also include
other components and sub-systems that are omitted from FIG.
1 in the interest of clarity. For example, the processor 100 may
include data storage resources, such as random access
memory, communication interfaces and peripherals, timers,
analog-to-digital converters, clock generators, debug logic,
etc.

[0018] One or more of the execution units 102-108 can
execute a complex instruction. For example, an execution unit
(EU) 102-108 may be configured to execute a fast Fourier
transform (FFT) instruction, execute a finite impulse
response (FIR) filter instruction, an instruction to solve a
trigonometric function, an instruction of evaluate a polyno-
mial, an instruction to compute the length of a vector, etc. The
execution units 102-108 allow complex instructions to be
interrupted prior to completion of the instruction’s execution.
While an execution unit (e.g., EU 108) is servicing an inter-
rupt, other execution units (EU 102-106) continue to execute
other instructions. The execution units 102-108 may synchro-
nize operation based on a requirement for a result and/or
status generated by a different execution unit. For example, an
execution unit 102 that requires a result value from execution
unit 104 may stall until the execution unit 104 has produced
the required result. One execution unit, e.g., a primary execu-
tion unit, may provide instructions to, or otherwise control the
instruction execution sequence of, another execution unit.
[0019] To facilitate iterative execution of an instruction, or
a group of instructions, the execution units 102-108, identify,
based on a field of the instruction, whether the instruction is to
be repeatedly executed and a number of iterations of the
instruction to be executed. Embodiments of the execution
units 102-108 may further recognize, based on a field of the
instruction, a trigger event the occurrence of which initiates
and/or terminates execution of the instruction, a source of the
trigger event, etc. The execution units 102-108 may also
generate a signal indicating initiation, termination, or other
state of execution of the instruction and provide the signal to
a destination indicated via a field of the instruction. Thus,
embodiments of the execution units 102-108 may initiate
repeated execution of one or more instructions based on a
received trigger signal and on completion of processing pro-
vide trigger signal to a different component of the processor
100, an external component, etc. to initiate additional pro-
cessing.

[0020] The instruction fetch unit 110 retrieves instructions
from storage (not shown) for execution by the processor 100.
The instruction fetch unit 110 may provide the retrieved
instructions to a decode unit 114. The decode unit 114 exam-
ines instructions, locates the various control sub-fields of the
instructions, and generates decoded instructions for execu-
tion by the execution units 102-108. As shown in FIG. 1,
multiple execution units may receive decoded instructions
from an instruction decoder 114. In some embodiments, an
instruction decoder 114 may be dedicated one or more execu-

Jun. 30, 2016

tion units. Thus, each execution unit 102-108 may receive
decoded instructions from an instruction decoder 114
coupled to only that execution unit, and/or from an instruction
decoder 114 coupled to a plurality of execution units 102-
108. Some embodiments of the processor 100 may also
include more than one fetch unit 110, where a fetch unit 110
may provide instructions to one or more instruction decoder
114.

[0021] Embodiments ofthe processor 100 may also include
one or more instruction buffers 116. The instruction buffers
116 store instructions for execution by the execution units
102-108. An instruction buffer 116 may be coupled to one or
more execution units 102-108. An execution unit may execute
instructions stored in an instruction buffer 116, thereby allow-
ing other portions of the processor 100, for example other
instruction buffers 116, the instruction fetch unit 110, and
instruction storage (not shown), etc., to be maintained in a
low-power or inoperative state. An execution unit may lock or
freeze a portion of an instruction buffer 116, thereby prevent-
ing the instructions stored in the locked portion of the instruc-
tion buffer 116 from being overwritten. Execution of instruc-
tions stored in an instruction buffer 116 (e.g., a locked portion
of an instruction buffer 116) may save power as no reloading
of the instructions from external memory is necessary, and
may speed up execution when the execution unit executing
the instructions stored in the instruction buffer 116 is exiting
a low-power state. An execution unit may call instructions
stored in a locked portion of an instruction buffer 116 and
return to any available power mode and/or any state or
instruction location. The execution units 102-108 may also
bypass an instruction buffer 116 to execute instructions not
stored in the instruction buffer 116. For example, the execu-
tion unit 104 may execute instructions provided from the
instruction buffer 116, instructions provided by the instruc-
tion fetch unit 110 that bypass the instruction buffer 116,
and/or instructions provided by an execution unit 102, 106-
108.

[0022] The instruction buffers 116 may also store, in con-
junction with an instruction, control or other data that facili-
tate instruction execution. For example, information specify-
ing a source of an instruction execution trigger, trigger
conditions and/or trigger wait conditions, instruction
sequencing information, information specifying whether a
different execution unit or other processor hardware is to
assist in instruction execution, etc. may be stored in an
instruction buffer 116 in conjunction with an instruction.
[0023] The data access unit 112 retrieves data values from
storage (not shown) and provides the retrieved data values to
the execution units 102-108 for processing. Similarly, the
data access unit 112 stores data values generated by the
execution units 102-108 in a storage device (e.g., random
access memory external to the processor 100). Some embodi-
ments of the processor 100 may include more than one data
access unit 112, where each data access unit 112 may be
coupled to one or more of the execution units 102-108.
[0024] The execution units 102-108 may be configured to
execute the same instructions, or different instructions. For
example, given an instruction set that includes all of the
instructions executable by the execution units 102-108, in
some embodiments of the processor 100, all or a plurality of
the execution units 102-108 may be configured to execute all
of the instructions of the instruction set. Alternatively, some
execution units 102-108 may execute only a sub-set of the
instructions of the instruction set. At least one of the execution

US 2016/0188326 Al

units 102-108 is configured to execute a complex instruction
that requires a plurality of instruction cycles to execute.
[0025] Each execution unit 102-108 is configured to con-
trol access to the resources of the processor 100 needed by the
execution unit to execute an instruction. For example, each
execution unit 102-108 can enable power to an instruction
buffer 116 if the execution unit is to execute an instruction
stored in the instruction buffer 116 while other instruction
buffers, and other portions of the processor 100, remain in a
low power state. Thus, each execution unit 102-108 is able to
independently control access to resources of the processor
100 (power, clock frequency, etc.) external to the execution
unit needed to execute instructions, and to operate indepen-
dently from other components of the processor 100.

[0026] FIG. 2 shows a block diagram for an execution unit
108 in accordance with various embodiments. The block
diagram and explanation thereof may also be applicable to
embodiments of the execution units 102-106. The execution
unit 108 includes function logic 202, registers 204, and
instruction execution logic 210. The function logic 202
includes the arithmetic, logical, and other data manipulation
resources for executing the instructions relevant to the execu-
tion unit 108. For example, the function logic may include
adders, multipliers, shifters, logical functions, etc. for integer,
fixed point, and/or floating point operations in accordance
with the instructions to be executed by the execution unit 108.
[0027] The registers 204 include data registers 206 and
status registers 208. The data registers 206 store operands to
be processed by, and results produced by, the function logic
202. The number and/or size of registers included in the data
registers 206 may vary across embodiments. For example,
one embodiment may include 16 16-bit data registers, and
another embodiment may include a different number and/or
width of registers. The status registers 208 include one or
more registers that store state information produced by opera-
tions performed by the function logic 202 and/or store
instruction execution and/or execution unit state information.
State information stored in a status register 208 may include
a zero result indicator, a carry indicator, result sign indicator,
overflow indicator, interrupt enable indicator, instruction
execution state, etc.

[0028] The instruction execution logic 210 controls the
sequencing of instruction execution in the execution unit 108.
The instruction execution logic 210 may include one or more
state machines that control the operations performed by the
function logic 202 and transfer of data between the registers
204, the function logic 202, other execution units 102-106,
the data access unit 112, and/or other components of the
processor 100 in accordance with an instruction being
executed. For example, the instruction execution logic 210
may include a state machine or other control device that
sequences the multiple successive operations of a complex
instruction being executed by the execution unit 108.

[0029] The instruction execution logic 210 includes itera-
tion control logic 212 that manages repetitive execution of
one or more instructions provided to the instruction execution
logic 210. When the instruction execution logic 210 receives
a given instruction for execution, the iteration control logic
212 may examine the instruction and determine whether the
instruction is to be executed only once, or is to be executed
multiple times. Based on the determination, the iteration con-
trol logic 212 can direct the repetitive execution of the instruc-
tion. The iteration control logic 212 may also include logic
that allows for nested execution of repeated instructions. For

Jun. 30, 2016

example, a first instruction may specify that the first instruc-
tion and additional instructions including a specified number
of instructions subsequent to the first instruction be repeat-
edly executed, while a second instruction among the addi-
tional instructions also specifies repeated execution. Thus, the
second instruction forms a nested loop relative to the looping
construct formed by the first instruction. Embodiments of the
iteration control logic 212 may support any number of such
nested iterative instruction executions.

[0030] The iteration control logic 212 may also control
initiation of instruction execution, repetitive or non-repetitive
execution, based on an event or condition specified via the
instruction. An event may be, for example, a signal and/or
edge state (rising or falling) generated by different execution
unit or other component of the processor 100. A condition
may represent values of one or more states of the processor
100, such as values of execution unit status or status of other
components of the processor 100, register values, etc. The
instruction may indicate a source of an event or condition that
initiates execution, a delay to apply before initiating execu-
tion following detection of an event, conditions to be met,
and/or a multi-event sequence that must occur to initiate
execution. In some embodiments, the conditions and events/
event sequence used to trigger execution may change prior to
execution of the instruction. The instruction may also indicate
whether the iteration control logic 212 is to generate an
acknowledgement signal, and the timing thereof (e.g., at
event detection, at execution initiation, at execution termina-
tion, after N iterations, etc.) responsive to execution of the
instruction or an event that initiates execution of the instruc-
tion.

[0031] Similarly, the iteration control logic 212 may con-
trol termination of repetitive instruction execution based on
an event or condition specified via the instruction. The
instruction may indicate a source of a termination event or
condition. Applicable termination events/conditions include:
signals/conditions generated by hardware external to the
execution unit 108, values generated by instructions executed
by an execution unit 102-108, execution of a specified
instruction, etc. The instruction may indicate whether the
iteration control logic 212 is to generate a trigger signal to
initiate operation of or provide notification to a different
execution unit or component of the processor, and the desti-
nation and timing thereof (e.g., prior to termination of execu-
tion, at execution initiation, at execution termination, after N
iterations, etc.). The trigger signal may include information
such as identification of a component receiving the signal,
action to perform based on the signal, timing of action based
on reception of the signal, expectation of acknowledgement
and timing thereof, etc.

[0032] Based on information derived from the instruction,
the iteration control logic 212 may cause the instruction to be
executed a number of times that is determined prior to the first
iteration of the instruction. Alternatively, the iteration control
logic 212 may initiate iterative execution where the number of
iterations to be executed is indeterminate at initiation of
execution and determined after initiation of execution. In
such a case, iterative execution may be terminated based onan
event or condition as explained above (e.g., signal level, sig-
nal transition, status change, etc.).

[0033] Aninstruction may convey, to the instruction execu-
tion logic 210, information indicative of the number of itera-
tions of the instruction to be executed, and associated execu-
tion control information, in a variety of ways. FIGS. 3A-3C

US 2016/0188326 Al

show exemplary instructions that include instruction iteration
information in accordance with various embodiments. Other
instruction embodiments may include the various iteration,
initiation, termination, trigger, and other information dis-
closed herein in a different number of fields and/or in a
different arrangements of fields. In FIG. 3A, the instruction
300 includes a REPEAT field. The REPEAT field carries
information that directly or indirectly specifies one or more of
anumber of times the instruction is to be executed, conditions
for initiation of instruction execution, conditions for termi-
nation of instruction execution, generation and content of
triggering signals, and/or other operations disclosed herein.
Thus, in the instruction 300, the information may be expressly
provided via the REPEAT field, or the REPEAT field may
specify a location, such as a register or memory location,
where the iteration, triggering, etc. information is located.
[0034] The information described above with regard to the
REPEAT field of the instruction 300 may be provided via any
number of fields in various embodiments of the instructions
executed by the execution units 102-108. In FIG. 3B, the
instruction 302 includes a REPEAT field and an
ENDREPEAT field. The ENDREPEAT field may carry infor-
mation that directly or indirectly (e.g., via pointer) specifies
events, conditions, etc. on which the execution unit is to
terminate iterative execution of the instruction 302. The
REPEAT field may directly or indirectly specify a number
(one or more) of instruction iterations to be executed and/or
execution initiation conditions, etc.

[0035] FIG. 3C shows an instruction 304 that includes a
REPEAT field, SOURCE field, and a DESTINATION field.
The SOURCE and DESTINATION fields may include trig-
ger event source and destination information that may be
included in different fields of other instruction embodiments.
For example, the information specified via the DESTINA-
TION field of instruction 304 may be included in the
REPEAT field of the instruction 302. More specifically, the
SOURCE field may contain information that directly or indi-
rectly specifies a source of a trigger event and/or condition
applied by the iteration logic 212 to initiate and/or continue
execution of the instruction 304. The DESTINATION field
may contain information that directly or indirectly specifies a
destination of a trigger event and/or condition generated by
the execution unit based on execution of the instruction 304.
The REPEAT field may directly or indirectly specify a num-
ber (one or more) of instruction iterations to be executed, a
number of additional instructions to be iterated with the
instruction, etc.

[0036] FIGS. 4 shows ablock diagram for a signal process-
ing system 400 including execution units in accordance with
various embodiments. The system 400 may include or be
implemented in an embodiment of the processor 100. The
system 400 includes an analog-to-digital (A/D) converter
402, a memory 404, and one or more execution units 102-108.
The system 400 may also include other components that have
been omitted from FIG. 4 in the interest of clarity. In the
system 400, the A/D converter 402 digitizes an input signal
and stores the digitized signal samples in the memory 404.
The execution unit 108 is executing a FIR instruction with
iteration to generate a filtered sample. Iterative execution of
the FIR instruction by the execution unit 108 is triggered by
the availability of a sample in the memory 404. Thus, the
execution unit 108 may operate in a low-power state until a
sample is available and the FIR instruction is triggered.
[0037] When execution of the FIR instruction(s) by the
execution unit 108 is complete (or at a time specified by the
FIR instruction), the execution unit 108 generates a trigger
event that is detected by the execution unit 106. The execution

Jun. 30, 2016

unit 106 is executing an FFT instruction with iteration to
transform the filtered data to the frequency domain. On detec-
tion of the trigger event generated by the execution unit 108,
the execution unit 106 initiates execution of the FFT instruc-
tion. Thus, the execution unit 106 may operate in a low-power
state until the trigger event generated by execution of the FIR
instruction is detected and FFT instruction execution is initi-
ated.

[0038] When execution of the FFT instruction by the
execution unit 106 is complete (or at a time specified by the
FFT instruction), the execution unit 106 generates a trigger
event that is detected by another execution unit (e.g., execu-
tion unit 104) configured to provide processing of the fre-
quency domain data generated by the execution unit 106. The
execution unit 104 may initiate iterative execution of one or
more instructions responsive to the trigger event. The final
execution unit processing the data from the memory 404 may
generate a trigger event to an execution unit 102 which may
operate a central control or management unit for the proces-
sor 100.

[0039] Thus, embodiments of the execution units 102-108
employ iterative instruction execution with triggering to pro-
vide autonomous processing where each execution unit 102-
108 is independently activated for only the duration required
to execute a specific instruction. In this way, embodiments of
the processor 100 provide reduced power consumption rela-
tive to other processor architectures.

[0040] In some embodiments of a signal processing sys-
tem, rather than executing functions, such as the FIR and FFT,
in different execution units as described above with regard to
the system 400, the functions may be executed in a single
execution unit 108. In such a system, execution of the FIR
instruction may not be triggered until execution of the FFT
instruction is complete (i.e., the FFT instruction is atomically
executed). As in the system 400 a RAM buffers input data for
processing by the FIR instruction. When a predetermined
number of samples have been stored in the RAM, a flag,
interrupt, or other signal is generated indicating that FIR
execution may proceed. FFT execution may be initiated by a
trigger signal generated by the FIR instruction responsive to
generation of a predetermined number of filtered samples.
[0041] FIG. 5 shows a flow diagram for a method 500 for
executing an instruction by a processor in accordance with
various embodiments. Though depicted sequentially as a
matter of convenience, at least some of the actions shown can
be performed in a different order and/or performed in parallel.
Additionally, some embodiments may perform only some of
the actions shown.

[0042] Inblock 502, aninstruction is issued to an execution
unit (e.g., execution unit 104) of the processor 100 for execu-
tion. The instruction may be a complex instruction, such as an
FFT, that requires many instruction cycles to execute.
[0043] In block 504, the execution unit 104 analyzes the
instruction, and extracts from the instruction a value that
directly or indirectly indicates whether the instruction is to be
repeatedly executed. In some embodiments, the value may
expressly define a number of iterations of the instruction to be
executed, a condition/event terminating instruction iteration,
a condition/event that initiates or maintains iterative execu-
tion etc. In other embodiments, the value may indicate a
location containing iterative execution parameters such as are
disclosed herein.

[0044] Ifthe execution unit 104 determines that the instruc-
tion is to be repeatedly executed, then, in block 506, the
executionunit 104 identifies additional instructions that are to
be repeatedly executed in conjunction with the instruction.
For example, a field of the instruction may directly or indi-

US 2016/0188326 Al

rectly indicate a number of subsequent instructions to be
iteratively executed in conjunction with the instruction.
[0045] In block 508, the execution unit 104 identifies con-
ditions and/or events to be used to start and/or end iterative
execution of the instruction. For example, information
directly or indirectly specified by the instruction may indicate
that the instruction is to be executed immediately, or may
indicate that execution of the instruction is to be initiated only
on detection of a specified event or condition in the processor
100. Termination of execution may be similarly specified. For
example, execution may end after a specified number ofitera-
tions or on detection of a specified event or condition in the
processor 100.

[0046] In block 510, the execution unit 104 iteratively
executes the instruction and any additional instructions speci-
fied to be iteratively executed with the instruction. As
explained above, execution initiation may be immediate or
predicated on detection of a specified event and/or condition
generated by hardware or instructions in the processor 100 or
external to the processor 100. If initiation of execution is
triggered by an event or condition, then the execution unit 104
monitors for the presence/occurrence of the initiation event or
condition. The instruction may be executed for a fixed num-
ber of iterations or an indeterminate number of iterations
where execution is terminated based on detection of an event
or condition generated by hardware or instructions in the
processor 100 or external to the processor 100. If termination
of execution is triggered by an event or condition, then the
execution unit 104 monitors for the presence/occurrence of
the termination event or condition.

[0047] In block 512, the execution unit 104 generates a
trigger signal based on the execution of the instruction. The
instruction may directly or indirectly specify the nature, tim-
ing, content, etc. of the trigger signal. For example, the
instruction may specify that a trigger signal be directed to the
execution unit 102 at initation, termination, or iteration N of
instruction execution.

[0048] The above discussion is meant to be illustrative of
the principles and various embodiments of the present inven-
tion. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

1. A processor, comprising:
a plurality of execution units, at least one of the execution
units configured to:
repeatedly execute a first instruction based on a first field
of'the first instruction indicating that the first instruc-
tion is to be iteratively executed.
2. The processor of claim 1, wherein the first field com-
prises at least one of:
a value indicating a number of times that the first instruc-
tion is to be iteratively executed; and
indicia of a location storing a value indicating a number of
times that the first instruction is to be iteratively
executed.

3. The processor of claim 1, wherein the at least one execu-
tion unit is further configured to:
repeatedly execute a second instruction in conjunction
with the repeated execution of the first instruction; and
identify the second instruction based on a second field of
the first instruction.
4. The processor of claim 1, wherein the at least one execu-
tion unit is configured to suspend execution of the first

Jun. 30, 2016

instruction until an initiation event is detected by the at least
one execution unit; wherein the first field defines the initiation
event.

5. The processor of claim 4, wherein the initiation event is
at least one of:

execution of an instruction specified by the first field;

detection of a condition specified by the first field;

detection of a signal value specified by the first field.

6. The processor of claim 4, wherein the at least one execu-
tion unit is configured to delay execution of the first instruc-
tion until expiration of a programmable time interval after the
initiation event is detected.

7. The processor of claim 4, wherein the at least one execu-
tion unit is configured to generate an acknowledgement signal
responsive to detection of the initiation event.

8. The processor of claim 1, wherein the at least one execu-
tion unit is configured to repeatedly execute the first instruc-
tion until a termination event is detected by the at least one
execution unit; wherein the first field defines the termination
event.

9. The processor of claim 8, wherein the termination event
is at least one of:

execution of an instruction specified by the first field;

detection of a condition specified by the first field;

detection of a signal value specified by the first field.

10. The processor claim 1, wherein the at least one execu-
tion unit is configured to:

generate a trigger signal based on the repeated execution of

the first instruction;

wherein the first field defines at least one of:

a destination of the trigger signal; and
a generation time of the trigger signal.

11. The processor of claim 10, wherein the trigger signal
comprises information specifying at least one of:

a receiver of the trigger signal;

an action to be taken by the receiver of the trigger signal;

a timing of the action to be taken by the receiver of the

trigger signal; and

generation of an acknowledgement signal.

12. An execution unit for executing instructions in a pro-
cessor, the execution unit comprising:

instruction execution logic configured to:

extract a first value from a first instruction to be executed
by the execution unit;

determine based on the value whether the first instruc-
tion is to be repeatedly executed; and

repeatedly execute the first instruction based on a result
of the determination.

13. The execution unit of claim 12, wherein the execution
unit is configured to interpret the first value as at least one of:

indicia of a number of times that the first instruction is to be

iteratively executed; and

indicia of a location storing a value indicating a number of

times that the first instruction is to be iteratively
executed.

14. The execution unit of claim 12, wherein the execution
unit is configured to:

identify a second instruction based on a second field of the

first instruction; and

repeatedly execute the second instruction in conjunction

with the repeated execution of the first instruction.

15. The execution unit of claim 12, wherein the execution
unit comprises at least one of:

US 2016/0188326 Al

logic configured to initiate the execution of the first instruc-
tion based on detection of an initiation event by the
execution unit; wherein the first field defines the initia-
tion event; and

logic configured to terminate the execution of the first

instruction based on detection of a termination event by
the execution unit; where the first field defines the ter-
mination event.

16. The execution unit of claim 15, wherein the initiation
event and the termination event comprise at least one of:

execution of an instruction specified by the first field;

detection of a condition specified by the first field; and
detection of a signal value specified by the first field.

17. The execution unit of claim 15, wherein the execution
unit is configured to generate an acknowledgement signal
responsive to detection of the initiation event.

18. The execution unit of claim 12, wherein the execution
unit is configured to:

generate a trigger signal based on the repeated execution of

the first instruction;

wherein the first field defines at least one of:

a destination of the trigger signal; and
a generation time of the trigger signal.

19. The execution unit of claim 18, wherein the execution
unit is configured to include, in the trigger signal, information
specifying at least one of:

a receiver of the trigger signal;

an action to be taken by the receiver of the trigger signal;

and

a timing of the action to be taken by the receiver of the

trigger signal.
20. A method for executing instructions in an execution
unit of a processor, comprising:
extracting, by the execution unit, a first value from a first
instruction to be executed by the execution unit;

determining, by the execution unit, based on the value,
whether the first instruction is to be repeatedly executed;
and

repeatedly executing, by the execution unit, the first

instruction based on a result of the determining.

21. The method of claim 20, further comprising interpret-
ing the first value to be at least one of:

Jun. 30, 2016

indicia of a number of times that the first instruction is to be

iteratively executed; and

indicia of a location storing a value indicating a number of

times that the first instruction is to be iteratively
executed.

22. The method of claim 20, further comprising:

identifying a second instruction based on a second field of

the first instruction; and

repeatedly executing the second instruction in conjunction

with the repeated execution of the first instruction.

23. The method of claim 20, further comprising at least one
of:

initiating the execution of the first instruction based on

detection of an initiation event by the execution unit;
wherein the first field defines the initiation event; and
terminating the execution of the first instruction based on
detection of a termination event by the execution unit;
where the first field defines the termination event.

24. The method of claim 23, wherein the initiation event
and the termination event comprise at least one of:

execution of an instruction specified by the first field;

detection of a condition specified by the first field; and
detection of a signal value specified by the first field.

25. The method of claim 23, further comprising generating
an acknowledgement signal responsive to detection of the
initiation event.

26. The method of claim 20, further comprising:

generating a trigger signal based on the repeated execution

of the first instruction;

wherein the first field defines at least one of:

a destination of the trigger signal; and
a generation time of the trigger signal.

27. The method of claim 25, further comprising including
in the trigger signal information specifying at least one of:

a receiver of the trigger signal;

an action to be taken by the receiver of the trigger signal;

and

a timing of the action to be taken by the receiver of the

trigger signal.

