a2 United States Patent

Holmdahl et al.

US011789905B2

US 11,789,905 B2
Oct. 17, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

10,505,726 Bl
2012/0053946 Al

AUTOMATED GENERATION OF GAME
TAGS

Applicant: Roblox Corporation, San Mateo, CA
(US)

Inventors: Eric Holmdahl, San Mateo, CA (US);
Nikolaus Sonntag, San Mateo, CA
(US); Aswath Manoharan, San Mateo,
CA (US)

Assignee: Roblox Corporation, San Mateo, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 155 days.

Appl. No.: 16/885,047

Filed: May 27, 2020

Prior Publication Data

US 2021/0374098 Al Dec. 2, 2021

Int. C.

GO6F 16/16 (2019.01)

GO6N 3/08 (2023.01)

U.S. CL.

CPC oo, GO6F 16/164 (2019.01); GO6N 3/08

(2013.01)
Field of Classification Search
CPC GOGF 16/164; GO6N 3/08
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

12/2019 Andon et al.
3/2012 Bellegarda

2012/0134651 Al 5/2012 Cottrell
2014/0274354 Al* 9/2014 George G06Q 30/0631
463/29

2016/0019471 Al 1/2016 Shin et al.

2018/0001205 Al* 1/2018 Osman AG63F 13/5375

2019/0005043 Al 1/2019 Hemani et al.

2020/0078679 Al* 3/2020 Dantas de Castro ... A63F 13/67

2020/0078688 Al* 3/2020 Kaethler AG63F 13/67

2020/0118682 Al1* 4/2020 Villazon-Terrazasccocceeeen.
G16H 10/60

OTHER PUBLICATIONS

Barrington, et al., “Game-powered machine learning”, Proceedings
of the National Academy of Sciences 109.17; https://www.pnas.org/
content/109/17/6411.short, May 29, 2012, pp. 6411-6416.

WIPO, International Search Report for International Patent Appli-
cation No. PCT/US2021/032777, dated Aug. 13, 2021, 3 pages.

(Continued)

Primary Examiner — Hosain T Alam
Assistant Examiner — Anthony G Gemignani
(74) Attorney, Agent, or Firm — IP Spring

(57) ABSTRACT

Implementations relate to systems, methods, and computer-
readable media to generate text tags for games. A computer-
implemented method is provided to generate one or more
text tags for a game using a trained machine learning model.
Data that includes a game identifier of the game and a set of
digital assets associated with the game are provided as input
to the trained machine learning model. Predicted text tags
are generated using the trained machine learning model
based on the set of digital assets associated with the game.
The text tags are associated with a respective prediction
score. One or more text tags are selected from the plurality
of predicted text tags based on the respective prediction
score.

21 Claims, 9 Drawing Sheets

i hgial assels for gamas 810 oo

3

H

Gerwrate prodicted mgs for each geme 328

Compare pradictsd 1855 with grosndiuth tags 838

. ...-..«..~.._‘...,,.._.gw._“. N{}
faccuracy meels o
S

Dapioy yained mode! 663

US 11,789,905 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

WIPO, Written Opinion for International Patent Application No.
PCT/US2021/032777, dated Aug. 13, 2021, 6 pages.

KIP, First Office Action (with English translation) for Korean Patent
Application No. 10-2022-704393, dated May 17, 2023, 18 pages.

* cited by examiner

U.S. Patent Oct. 17, 2023 Sheet 1 of 9 US 11,789,905 B2

ohurt Davice & 1108 o Device B 118G SHent Device M 11n
G Appdingtion L Game Applicaton | Crame Application
4% N R ¥ir 1130
By intavtaonis) H0 interfaosis)
- ’:1 £

sy Ehnvis A
3

3

xarving sevvey 102

L angine 104

O oveaer 9 = -
Caves 1 S Appd

ki PYEs]

:»QQ ig;ﬁii P SRR cl -

W raoriaoeis

% 5

3

FIG. 1

U.S. Patent Oct. 17, 2023 Sheet 2 of 9 US 11,789,905 B2

Fur
o)

.y
[
g
4%

Febggm:

ATty GRS

o
TR

s pourse Bames

b

Sr

Figz, 24 Fis 20

U.S. Patent

Oct. 17, 2023

Sheet 3 of 9

XiE

P

US 11,789,905 B2

Game Assals

Mounisin-mage

38 muoviels

Ayatsrtanesh
Syvutardmash

%
g2
£
&

i

Moonwalk
Suhronstingt
Subroutingd

FIG. 3

U.S. Patent Oct. 17, 2023 Sheet 4 of 9 US 11,789,905 B2

FIG. 4

U.S. Patent

Oct. 17,2023 Sheet 5 of 9

US 11,789,905 B2

Supervised lsaming for label prediction

Training data 510

e R

Groun

Predicted tags 54

Faedbhack
Ganarator 550

Foedback 580

FIG. 5

U.S. Patent Oct. 17, 2023 Sheet 6 of 9 US 11,789,905 B2

/800

Recaive digital assels for games 810 .

k.

Benaraie pradicied ings for each game 620

Compare predivied tags with groundinuth tags 830

Update ML Mode! based on tag compansaon 844

et T
P e,
e

I Model acouracy meels e

e thrashold? 880 i

e, I
e i,
i
v, e
A

Yes |

é

Deploy trained mods! 880

FIG. 6

U.S. Patent Oct. 17, 2023 Sheet 7 of 9 US 11,789,905 B2

Game assels 710

s A S,
et wma,
o e,

SN e
A o pemarnat et i

Trained model 730 e « Tag fﬁiﬁé}&iiﬁ?}a

Pradicted tags for

FIG. 7

U.S. Patent Oct. 17, 2023 Sheet 8 of 9 US 11,789,905 B2

Receive game identifier and

Generate predicted tags and
seores 820

Select tags 830

FIG. 8

U.S. Patent Oct. 17, 2023 Sheet 9 of 9 US 11,789,905 B2

Computing Device Q00

RMarmory 904

L Opaerating System
Processons S
B2 5

Gaming Application
g10

HC Intertaceds)
it

FIG. 9

US 11,789,905 B2

1
AUTOMATED GENERATION OF GAME
TAGS

TECHNICAL FIELD

Embodiments relate generally to computer-based gaming,
and more particularly, to methods, systems, and computer
readable media to generate text tags for games.

BACKGROUND

Some online gaming platforms allow users to connect
with each other, interact with each other (e.g., within a
game), create games, and share information with each other
via the Internet. Users of online gaming platforms may
participate in multiplayer gaming environments (e.g., in
virtual three-dimensional environments), design custom
gaming environments, design characters and avatars, deco-
rate avatars, exchange virtual items/objects with other users,
communicate with other users using audio or text messag-
ing, and so forth.

Users may browse or search for games based on their
interests to discover suitable games for playing. For
example, users may browse games by categories (e.g.,
action, racing, puzzle, strategy, popular, trending, new, etc.)
or search games by tags, keywords, or concepts (e.g., “car
chase, “board game,” etc.).

SUMMARY

Implementations described herein relate to generation of
text tags for games. In some implementations, a computer-
implemented method to generate one or more text tags for a
game using a trained machine learning model includes
providing, as input to the trained machine learning model,
data that includes a game identifier of the game and a set of
digital assets associated with the games, generating, using
the trained machine learning model and based on the set of
digital assets associated with the game, a plurality of pre-
dicted text tags, each text tag associated with a respective
prediction score, and selecting the one or more text tags
from the plurality of predicted text tags based on the
respective prediction score.

In some implementations, the set of digital assets includes
one or more of game screenshots, game video snippets,
game objects, meshes, avatars, game source code, game
configuration parameters, game lighting, game level count,
avatar movements, text content of the game, chat content
generated within the game, game sounds, game background
music, code coverage, or a respective frequency of use of
digital assets during gameplay.

In some implementations, the one or more text tags are
indicative of a type of the game or a style of game play. In
some implementations, the method includes validating an
existing text tag for the game by comparing the existing text
tag with the one or more text tags.

In some implementations, a computer-implemented
method to train a machine learning model to generate tags
includes providing as input to the machine learning model,
data that includes a plurality of game identifiers and a
respective set of digital assets associated with each game
identified by the game identifiers, generating, by the
machine learning model, one or more predicted tags for each
game identified by the game identifiers, comparing the one
or more predicted tags with respective tags associated with

10

25

30

40

45

55

2

each game identified by the game identifiers, and adjusting
one or more parameters of the machine learning model
based on the comparison.

In some implementations, the machine learning model
includes a neural network and adjusting the one or more
parameters of the machine learning model includes adjusting
a weight associated with one or more nodes of the neural
network or adjusting a weight associated with a link between
a pair of nodes of the neural network.

In some implementations, the digital assets include one or
more of game screenshots, game video snippets, game
objects, meshes, avatars, game source code, game configu-
ration parameters, game lighting, game level count, avatar
movements, text content of the game, chat content generated
within the game, game sounds, game background music,
code coverage, or frequency of use of digital assets during
gameplay.

In some implementations, the method further includes
generating a respective feature vector for each game iden-
tified by the game identifiers based on the respective set of
digital assets. In at least some of the implementations,
generating the one or more predicted tags by the machine
learning model is based on the respective feature vector.

In some implementations, the machine learning model
includes one or more input neural networks and an output
neural network, and generating the respective feature vector
is performed using the one or more input neural networks.
In at least some of these implementations, the method
further includes providing the respective feature vector as
input to the output neural network.

In some implementations, the one or more input neural
networks include at least one of: a first input neural network
that generates a first portion of the feature vector based on
one or more image assets in the digital assets, a second input
neural network that generates a second portion of the feature
vector based on one or more code assets in the digital assets,
a third input neural network that generates a third portion of
the feature vector based on one or more text assets in the
digital assets, a fourth input neural network that generates a
fourth portion of the feature vector based on one or more
audio assets in the digital assets, and a fifth input neural
network that generates a fifth portion of the feature vector
based on one more gameplay assets.

In some implementations, the first input neural network
generates the first portion of the feature vector based on one
or more image assets in the digital assets, and the one or
more image assets include one or more of game screenshots,
game video snippets, game objects, meshes, or avatars.

In some implementations, the second input neural net-
work generates the second portion of the feature vector
based on one or more code assets in the digital assets, and
the code assets include one or more of game source code,
game configuration parameters, game lighting, game level
count, or avatar movements.

In some implementations, the third input neural network
generates the third portion of the feature vector based on one
or more text assets in the digital assets, and the text assets
include one or more of text content of the game or chat
content generated within the game.

In some implementations, the fourth input neural network
generates the fourth portion of the feature vector based on
one or more audio assets in the digital assets, wherein the
audio assets include one or more of game sounds or game
background music.

In some implementations, the fifth input neural network
generates the fifth portion of the feature vector based on one

US 11,789,905 B2

3

more gameplay assets, and the gameplay assets includes one
or more of code coverage or frequency of use of digital
assets during gameplay.

Some implementations include a non-transitory com-
puter-readable medium with instructions that, responsive to
execution by a processing device, causes the processing
device to perform operations that include providing, as input
to a trained machine learning model, data that includes a
plurality of game identifiers and a respective set of digital
assets associated with each game identified by the game
identifiers, generating, using the trained machine learning
model, a plurality of predicted text tags, ecach text tag
associated with a respective prediction score, and selecting
the one or more text tags from the plurality of predicted text
tags based on the respective prediction score.

Some implementations include a system comprising:
memory with instructions stored thereon, and a processing
device, coupled to the memory, the processing device con-
figured to access the memory and execute the instructions,
wherein the instructions cause the processing device to
perform operations including providing, as input to a trained
machine learning model, data that includes a plurality of
game identifiers and a respective set of digital assets asso-
ciated with each game identified by the game identifiers,
generating, using the trained machine learning model, a
plurality of predicted text tags, each text tag associated with
a respective prediction score, and selecting the one or more
text tags from the plurality of predicted text tags based on
the respective prediction score.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example system architecture to
generate text tags for games, in accordance with some
implementations.

FIG. 2A illustrates an example listing of games arranged
by categories, in accordance with some implementations.

FIG. 2B illustrates an example tag-wise listing, in accor-
dance with some implementations.

FIG. 2C illustrates another example of a tag-wise listing,
in accordance with some implementations.

FIG. 3 is a diagram illustrating example data structures
associated with game digital assets, in accordance with some
implementations.

FIG. 4 is a diagram illustrating example screenshots from
a gameplay session, in accordance with some implementa-
tions.

FIG. 5 is a block diagram illustrating an example of
supervised machine learning (ML) to generate text tags, in
accordance with some implementations.

FIG. 6 is a flowchart illustrating an example method to
train a machine learning model to generate text tags, in
accordance with some implementations.

FIG. 7 is a block diagram illustrating an example method
to generate text tags for games using a machine learning
model, in accordance with some implementations.

FIG. 8 is a flowchart illustrating another example method
to generate text tags for games using a machine learning
model, in accordance with some implementations.

FIG. 9 is a block diagram illustrating an example com-
puting device, in accordance with some implementations.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In
the drawings, similar symbols typically identify similar

15

25

30

35

40

45

50

4

components, unless context dictates otherwise. The illustra-
tive embodiments described in the detailed description,
drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the
subject matter presented herein. Aspects of the present
disclosure, as generally described herein, and illustrated in
the drawings, can be arranged, substituted, combined, sepa-
rated, and designed in a wide variety of different configu-
rations, all of which are contemplated herein.

References in the specification to “some embodiments”,
“an embodiment”, “an example embodiment”, etc. indicate
that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may not necessarily include the particular feature, structure,
or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, such feature, structure, or character-
istic may be effected in connection with other embodiments
whether or not explicitly described.

Online gaming platforms (also referred to as “user-gen-
erated content platforms” or “user-generated content sys-
tems”) offer a variety of ways for users to interact with one
another. For example, users of an online gaming platform
may work together towards a common goal, share various
virtual gaming items, send electronic messages to one
another, and so forth. Users of an online gaming platform
may join games as virtual characters, playing game-specific
roles. For example, a virtual character may be part of a team
or multiplayer environment wherein each character is
assigned a certain role and has associated parameters, e.g.,
clothing, armor, weaponry, skills, etc. that correspond to the
role. In another example, a virtual character may be joined
by computer-generated characters, e.g., when a single player
is part of a game.

An online gaming platform may also allow users (devel-
opers) of the platform to create new games and/or charac-
ters. For example, users of the online gaming platform may
be enabled to create, design, and/or customize new charac-
ters (avatars), new animation packages, and make them
available to other users.

Games may be categorized based on their type and/or
game play style. In some implementations, games can be
organized by one or more of gameplay characteristics,
objective (of the game) type, and subject type (for example,
sports, challenge, action, or racing). The category may be
labeled by one or more text tags associated with the game.

Other users (players) may discover games to play by
browsing or based on a search. The search may be performed
by name or by category, and the user may select a game they
wish to play based on a list of games displayed. In some
implementations, games likely of interest to the player are
surfaced and displayed to the user, for example, at a time of
login to the game platform or resumption of a session at the
game platform by a player.

Game players and game platform owners benefit from
associating suitable text tags to various games. Labeling of
games by utilizing text tags can enable efficient discovery of
games by users and thus provide a better user experience on
the game platform. The text tags can be utilized for ranking
of games on the game platform and/or as input to recom-
mender models, e.g. machine learning models, utilized on
the game platform. For example, the recommender models
can generate game recommendations for users based on text
tags associated with games. The game recommendation
models may also utilize rankings in generating the game

US 11,789,905 B2

5

recommendations. A technical problem for game platform
operators is the accurate labeling and discoverability of
games across the game platform(s).

Some users may not provide tags for games that they
make available via the game platform, or may provide tags
that do not sufficiently aid discovery of the game by players
that use the game platform. In some cases, users may
intentionally incorrectly label a game with a view to get
increased player traffic to their game. Tags that are manually
assigned to a game (e.g. by a developer) can be evaluated by
comparison with generated text tags for the game to deter-
mine manually assigned tags that are incorrect or irrelevant.
Upon such evaluation, incorrect or irrelevant tags may be
suppressed, e.g., hidden and/or removed from association
with the game. Suppression of manually assigned tags in this
manner can help ensure that player traffic to a game is
genuine, based on the quality of the game and relevance of
the game to a player’s interests. This can lead to a higher
proportion of game play sessions that players enjoy, and
reduce the number of short (e.g., less than 1 minute) or
unsatisfactory sessions that may occur due to incorrect or
irrelevant labels. Some embodiments disclosed herein auto-
matically determine text tags that may be associated with
various games on the game platform. The text tags thus
determined can be associated with the game.

FIG. 1 illustrates an example system architecture 100, in
accordance with some implementations of the disclosure.
FIG. 1 and the other figures use like reference numerals to
identify like elements. A letter after a reference numeral,
such as “110,” indicates that the text refers specifically to the
element having that particular reference numeral. A refer-
ence numeral in the text without a following letter, such as
“110,” refers to any or all of the elements in the figures
bearing that reference numeral (e.g. “110” in the text refers
to reference numerals “110a,” “1105,” and/or “110#” in the
figures).

The system architecture 100 (also referred to as “system”
herein) includes online gaming server 102, data store 120,
client devices 110a, 1105, and 1107 (generally referred to as
“client device(s) 110” herein), and developer devices 130a
and 130% (generally referred to as “developer device(s) 130”
herein). Gaming server 102, data store 120, client devices
110, and developer devices 130 are coupled via network
122. In some implementations, client devices(s) 110 and
developer device(s) 130 may refer to the same or same type
of device.

Online gaming server 102 can include, among other
things, a game engine 104, one or more games 106, and
graphics engine 108. A client device 110 can include a game
application 112, and input/output (I/O) interfaces 114 (e.g.,
input/output devices). The input/output devices can include
one or more of a microphone, speakers, headphones, display
device, mouse, keyboard, game controller, touchscreen, vir-
tual reality consoles, etc.

A developer device 130 can include a game application
132, and input/output (I/O) interfaces 134 (e.g., input/output
devices). The input/output devices can include one or more
of a microphone, speakers, headphones, display device,
mouse, keyboard, game controller, touchscreen, virtual real-
ity consoles, etc.

System architecture 100 is provided for illustration. In
different implementations, the system architecture 100 may
include the same, fewer, more, or different elements con-
figured in the same or different manner as that shown in FIG.
1.

In some implementations, network 122 may include a
public network (e.g., the Internet), a private network (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

6

local area network (LAN) or wide area network (WAN)), a
wired network (e.g., Ethernet network), a wireless network
(e.g., an 802.11 network, a Wi-Fi® network, or wireless
LAN (WLAN)), a cellular network (e.g., a 5G network, a
Long Term Evolution (LTE) network, etc.), routers, hubs,
switches, server computers, or a combination thereof.

In some implementations, the data store 120 may be a
non-transitory computer readable memory (e.g., random
access memory), a cache, a drive (e.g., a hard drive), a flash
drive, a database system, cloud based storage, or another
type of component or device capable of storing data. The
data store 120 may also include multiple storage compo-
nents (e.g., multiple drives or multiple databases) that may
also span multiple computing devices (e.g., multiple server
computers).

In some implementations, the online gaming server 102
can include a server having one or more computing devices
(e.g., a cloud computing system, a rackmount server, a
server computer, cluster of physical servers, etc.). In some
implementations, the online gaming server 102 may be an
independent system, may include multiple servers, or be part
of another system or server.

In some implementations, the online gaming server 102
may include one or more computing devices (such as a
rackmount server, a router computer, a server computer, a
personal computer, a mainframe computer, a laptop com-
puter, a tablet computer, a desktop computer, etc.), data
stores (e.g., hard disks, memories, databases), networks,
software components, and/or hardware components that
may be used to perform operations on the online gaming
server 102 and to provide a user with access to online
gaming server 102. The online gaming server 102 may also
include a website (e.g., a webpage) or application back-end
software that may be used to provide a user with access to
content provided by online gaming server 102. For example,
users may access online gaming server 102 using the game
application 112 on client devices 110.

In some implementations, online gaming server 102 may
be a type of social network providing connections between
users or a type of user-generated content system that allows
users (e.g., end-users or consumers) to communicate with
other users on the online gaming server 102, where the
communication may include voice chat (e.g., synchronous
and/or asynchronous voice communication), video chat
(e.g., synchronous and/or asynchronous video communica-
tion), or text chat (e.g., synchronous and/or asynchronous
text-based communication). In some implementations of the
disclosure, a “user” may be represented as a single indi-
vidual. However, other implementations of the disclosure
encompass a “user” (e.g., creating user) being an entity
controlled by a set of users or an automated source. For
example, a set of individual users federated as a community
or group in a user-generated content system may be con-
sidered a “user.”

In some implementations, online gaming server 102 may
be a virtual gaming server. For example, the gaming server
may provide single-player or multiplayer games to a com-
munity of users that may access or interact with games using
client devices 110 via network 122. In some implementa-
tions, games (also referred to as “video game,” “online
game,” or “virtual game” herein) may be two-dimensional
(2D) games, three-dimensional (3D) games (e.g., 3D user-
generated games), virtual reality (VR) games, or augmented
reality (AR) games, for example. In some implementations,
users may participate in gameplay with other users. In some
implementations, a game may be played in real-time with
other users of the game.

US 11,789,905 B2

7

In some implementations, gameplay may refer to the
interaction of one or more players using client devices (e.g.,
110) within a game (e.g., 106) or the presentation of the
interaction on a display or other output device (e.g., 114) of
a client device 110.

In some implementations, a game 106 can include one or
more electronic file(s) that can be executed or loaded using
software, firmware or hardware configured to present the
game content (e.g., digital media item) to an entity. The
electronic file(s) can include digital game digital assets such
as animation routines, image files, audio files, and other
content utilized in set up of the game environment. The
game digital assets can be stored in data store 120 and/or in
games 106.

The game digital assets can include game objects, game
items, game characters, etc. that may each be stored in
electronic representations, e.g., 2D/3D sketches, 2D/3D
models of game objects, textures, images, videos, code,
avatars, etc. The game digital assets can also include the
electronic files utilized in a run-time environment to create
a virtual game environment.

In some implementations, a game application 112 may be
executed and a game 106 rendered in connection with a
game engine 104. In some implementations, a game 106
may have a common set of rules or common goal, and the
environment of a game 106 share the common set of rules
or common goal. In some implementations, different games
may have different rules or goals from one another.

In some implementations, games may have one or more
environments (also referred to as “gaming environments” or
“virtual environments” herein) where multiple environments
may be linked. An example of an environment may be a
three-dimensional (3D) environment. The one or more envi-
ronments of a game application 112 may be collectively
referred to a “world” or “gaming world” or “virtual world”
or “universe” herein. An example of a world may be a 3D
world of a game 106. For example, a user may build a virtual
environment that is linked to another virtual environment
created by another user. A character of the virtual game may
cross the virtual border to enter the adjacent virtual envi-
ronment.

It may be noted that 3D environments or 3D worlds use
graphics that use a three-dimensional representation of geo-
metric data representative of game content (or at least
present game content to appear as 3D content whether or not
3D representation of geometric data is used). 2D environ-
ments or 2D worlds use graphics that use two-dimensional
representation of geometric data representative of game
content.

In some implementations, the online gaming server 102
can host one or more games 106 and can permit users to
interact with the games 106 using a game application 112 of
client devices 110. Users of the online gaming server 102
may play, create, interact with, or build games 106, com-
municate with other users, and/or create and build objects
(e.g., also referred to as “item(s)” or “game objects” or
“virtual game item(s)” herein) of games 106.

For example, in generating user-generated virtual items,
users may create characters, decoration for the characters,
one or more virtual environments for an interactive game, or
build structures used in a game 106, among others. In some
implementations, users may buy, sell, or trade game virtual
game objects, such as in-platform currency (e.g., virtual
currency), with other users of the online gaming server 102.
In some implementations, online gaming server 102 may
transmit game content to game applications (e.g., 112).

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In some implementations, game content (also referred to
as “content” herein) may refer to any data or software
instructions (e.g., game digital assets, game objects, game,
user information, video, images, commands, media item,
etc.) associated with online gaming server 102 or game
applications. In some implementations, game objects (e.g.,
also referred to as “item(s)” or “objects” or “virtual objects”
or “virtual game item(s)” herein) may refer to objects that
are used, created, shared or otherwise depicted in game
applications 106 of the online gaming server 102 or game
applications 112 of the client devices 110. For example,
game objects may include a part, model, character, acces-
sories, tools, weapons, clothing, buildings, vehicles, cur-
rency, flora, fauna, components of the aforementioned (e.g.,
windows of a building), and so forth.

It may be noted that the online gaming server 102 hosting
games 106, is provided for purposes of illustration, rather
than limitation. In some implementations, online gaming
server 102 may host one or more media items that can
include communication messages from one user to one or
more other users. Media items can include, but are not
limited to, digital video, digital movies, digital photos,
digital music, audio content, melodies, website content,
social media updates, electronic books, electronic maga-
zines, digital newspapers, digital audio books, electronic
journals, web blogs, real simple syndication (RSS) feeds,
electronic comic books, software applications, etc. In some
implementations, a media item may be an electronic file that
can be executed or loaded using software, firmware or
hardware configured to present the digital media item to an
entity.

In some implementations, a game 106 may be associated
with a particular user or a particular group of users (e.g., a
private game), or made widely available to users with access
to the online gaming server 102 (e.g., a public game). In
some implementations, where online gaming server 102
associates one or more games 106 with a specific user or
group of users, online gaming server 102 may associated the
specific user(s) with a game 106 using user account infor-
mation (e.g., a user account identifier such as username and
password).

In some implementations, online gaming server 102 or
client devices 110 may include a game engine 104 or game
application 112. In some implementations, game engine 104
may be used for the development or execution of games 106.
For example, game engine 104 may include a rendering
engine (“renderer”) for 2D, 3D, VR, or AR graphics, a
physics engine, a collision detection engine (and collision
response), sound engine, scripting functionality, animation
engine, artificial intelligence engine, networking function-
ality, streaming functionality, memory management func-
tionality, threading functionality, scene graph functionality,
or video support for cinematics, among other features. The
components of the game engine 104 may generate com-
mands that help compute and render the game (e.g., render-
ing commands, collision commands, physics commands,
etc.) In some implementations, game applications 112 of
client devices 110/116, respectively, may work indepen-
dently, in collaboration with game engine 104 of online
gaming server 102, or a combination of both.

In some implementations, both the online gaming server
102 and client devices 110 may execute a game engine (104
and 112, respectively). The online gaming server 102 using
game engine 104 may perform some or all the game engine
functions (e.g., generate physics commands, rendering com-
mands, etc.), or offload some or all the game engine func-
tions to game engine 104 of client device 110. In some

US 11,789,905 B2

9

implementations, each game 106 may have a different ratio
between the game engine functions that are performed on
the online gaming server 102 and the game engine functions
that are performed on the client devices 110. For example,
the game engine 104 of the online gaming server 102 may
be used to generate physics commands in cases where there
is a collision between at least two game objects, while the
additional game engine functionality (e.g., generate render-
ing commands) may be offloaded to the client device 110. In
some implementations, the ratio of game engine functions
performed on the online gaming server 102 and client device
110 may be changed (e.g., dynamically) based on gameplay
conditions. For example, if the number of users participating
in gameplay of a particular game 106 exceeds a threshold
number, the online gaming server 102 may perform one or
more game engine functions that were previously performed
by the client devices 110.

For example, users may be playing a game 106 on client
devices 110, and may send control instructions (e.g., user
inputs, such as right, left, up, down, user election, or
character position and velocity information, etc.) to the
online gaming server 102. Subsequent to receiving control
instructions from the client devices 110, the online gaming
server 102 may send gameplay instructions (e.g., position
and velocity information of the characters participating in
the group gameplay or commands, such as rendering com-
mands, collision commands, etc.) to the client devices 110
based on control instructions. For instance, the online gam-
ing server 102 may perform one or more logical operations
(e.g., using game engine 104) on the control instructions to
generate gameplay instruction(s) for the client devices 110.
In other instances, online gaming server 102 may pass one
or more or the control instructions from one client device
110 to other client devices (e.g., from client device 110a to
client device 1105) participating in the game 106. The client
devices 110 may use the gameplay instructions and render
the gameplay for presentation on the displays of client
devices 110.

In some implementations, the control instructions may
refer to instructions that are indicative of in-game actions of
a user’s character. For example, control instructions may
include user input to control the in-game action, such as
right, left, up, down, user selection, gyroscope position and
orientation data, force sensor data, etc. The control instruc-
tions may include character position and velocity informa-
tion. In some implementations, the control instructions are
sent directly to the online gaming server 102. In other
implementations, the control instructions may be sent from
a client device 110 to another client device (e.g., from client
device 11054 to client device 110#), where the other client
device generates gameplay instructions using the local game
engine 104. The control instructions may include instruc-
tions to play a voice communication message or other
sounds from another user on an audio device (e.g., speakers,
headphones, etc.), for example voice communications or
other sounds generated using the audio spatialization tech-
niques as described herein.

In some implementations, gameplay instructions may
refer to instructions that allow a client device 110 to render
gameplay of a game, such as a multiplayer game. The
gameplay instructions may include one or more of user input
(e.g., control instructions), character position and velocity
information, or commands (e.g., physics commands, render-
ing commands, collision commands, etc.).

In some implementations, the online gaming server 102
may store characters created by users in the data store 120.
In some implementations, the online gaming server 102

10

15

20

25

30

35

40

45

50

55

60

65

10

maintains a character catalog and game catalog that may be
presented to users. In some implementations, the game
catalog includes images of games stored on the online
gaming server 102. In addition, a user may select a character
(e.g., a character created by the user or other user) from the
character catalog to participate in the chosen game. The
character catalog includes images of characters stored on the
online gaming server 102. In some implementations, one or
more of the characters in the character catalog may have
been created or customized by the user. In some implemen-
tations, the chosen character may have character settings
defining one or more of the components of the character.

In some implementations, a user’s character can include
a configuration of components, where the configuration and
appearance of components and more generally the appear-
ance of the character may be defined by character settings.
In some implementations, the character settings of a user’s
character may at least in part be chosen by the user. In other
implementations, a user may choose a character with default
character settings or character setting chosen by other users.
For example, a user may choose a default character from a
character catalog that has predefined character settings, and
the user may further customize the default character by
changing some of the character settings (e.g., adding a shirt
with a customized logo). The character settings may be
associated with a particular character by the online gaming
server 102.

In some implementations, the client device(s) 110 may
each include computing devices such as personal computers
(PCs), mobile devices (e.g., laptops, mobile phones, smart
phones, tablet computers, or netbook computers), network-
connected televisions, gaming consoles, etc. In some imple-
mentations, a client device 110 may also be referred to as a
“user device.” In some implementations, one or more client
devices 110 may connect to the online gaming server 102 at
any given moment. It may be noted that the number of client
devices 110 is provided as illustration. In some implemen-
tations, any number of client devices 110 may be used.

In some implementations, each client device 110 may
include an instance of the game application 112, respec-
tively. In one implementation, the game application 112 may
permit users to use and interact with online gaming server
102, such as control a virtual character in a virtual game
hosted by online gaming server 102, or view or upload
content, such as games 106, images, video items, web pages,
documents, and so forth. In one example, the game appli-
cation may be a web application (e.g., an application that
operates in conjunction with a web browser) that can access,
retrieve, present, or navigate content (e.g., virtual character
in a virtual environment, etc.) served by a web server. In
another example, the game application may be a native
application (e.g., a mobile application, app, or a gaming
program) that is installed and executes local to client device
110 and allows users to interact with online gaming server
102. The game application may render, display, or present
the content (e.g., a web page, a media viewer) to a user. In
an implementation, the game application may also include
an embedded media player (e.g., a Flash® player) that is
embedded in a web page.

According to aspects of the disclosure, the game appli-
cation may be an online gaming server application for users
to build, create, edit, upload content to the online gaming
server 102 as well as interact with online gaming server 102
(e.g., play games 106 hosted by online gaming server 102).
As such, the game application may be provided to the client

US 11,789,905 B2

11

device(s) 110 by the online gaming server 102. In another
example, the game application may be an application that is
downloaded from a server.

In some implementations, each developer device 130 may
include an instance of the game application 132, respec-
tively. In one implementation, the game application 112 may
permit a developer user(s) to use and interact with online
gaming server 102, such as control a virtual character in a
virtual game hosted by online gaming server 102, or view or
upload content, such as games 106, images, video items,
web pages, documents, and so forth. In one example, the
game application may be a web application (e.g., an appli-
cation that operates in conjunction with a web browser) that
can access, retrieve, present, or navigate content (e.g.,
virtual character in a virtual environment, etc.) served by a
web server. In another example, the game application may
be a native application (e.g., a mobile application, app, or a
gaming program) that is installed and executes local to client
device 110 and allows users to interact with online gaming
server 102. The game application may render, display, or
present the content (e.g., a web page, a media viewer) to a
user. In an implementation, the game application may also
include an embedded media player (e.g., a Flash® player)
that is embedded in a web page.

According to aspects of the disclosure, the game appli-
cation 132 may be an online gaming server application for
users to build, create, edit, upload content to the online
gaming server 102 as well as interact with online gaming
server 102 (e.g., provide and/or play games 106 hosted by
online gaming server 102). As such, the game application
may be provided to the client device(s) 110 by the online
gaming server 102. In another example, the game applica-
tion 132 may be an application that is downloaded from a
server. Game application 132 may be configured to interact
with online gaming server 102 and obtain access to user
credentials, user currency, etc. for one or more games 106
developed, hosted, or provided by a game developer.

In some implementations, a user may login to online
gaming server 102 via the game application. The user may
access a user account by providing user account information
(e.g., username and password) where the user account is
associated with one or more characters available to partici-
pate in one or more games 106 of online gaming server 102.
In some implementations, with appropriate credentials, a
game developer may obtain access to game virtual game
objects, such as in-platform currency (e.g., virtual currency),
avatars, special powers, accessories, that are owned by or
associated with other users.

In general, functions described in one implementation as
being performed by the online gaming server 102 can also
be performed by the client device(s) 110, or a server, in other
implementations if appropriate. In addition, the functionality
attributed to a particular component can be performed by
different or multiple components operating together. The
online gaming server 102 can also be accessed as a service
provided to other systems or devices through appropriate
application programming interfaces (APIs), and thus is not
limited to use in websites.

In some implementations, online gaming server 102 may
include a graphics engine 108. In some implementations, the
graphics engine 108 may be a system, application, or
module that permits the online gaming server 102 to provide
graphics and animation capability.

FIG. 2A illustrates an example listing of games arranged
by categories, in accordance with some implementations.
The listing is displayed via a user interface that includes
different games available on a game platform to a user.

10

15

20

25

30

40

45

50

55

60

65

12

Game lists may be generated (for example, by online
gaming server 102) from available games on a game plat-
form to enable game selection by users. Statistics of game-
play, number of users playing different games, engagement
level of users, game types, etc. may be utilized to determine
game popularity.

In some implementations, categories (220a-220d) of
games may be promoted (highlighted) to users. Example
categories may include popular games (220a), top social
games (2205), top adventure games (220c¢), and games
recommended for a user (2204), etc. Each category may
include a list of individual games (for example, 230).
Individual games may also be annotated with tags (240) that
may be displayed along with an icon or other display
associated with a game. In some implementations, the game
lists may be provided on an initial display of a user device
via a user interface.

Games may also be associated with tags indicative of
features associated with and included in the games. For
example, games may be associated with tags such as tycoon
game, obstacle course game, first person shooter game,
collaborative game, social game, etc. that can enable a user
to obtain additional information about the type of game.
Multiple tags may be associated with games that are asso-
ciated with a first category and games with a second tag can
be associated with multiple categories. For example, a
category of games titled “Racing Games” may include
games with example tags “city race,” “jungle race,” “desert
race,” “camel race,” etc.

In some implementations, games may be categorized into
various game categories based on their genre or tags asso-
ciated with the game (adventure game, social game, etc.).
Multiple text tags or categories may be assigned to a game.
In some implementations, the nature of gameplay interaction
may be utilized to categorize the games. In some implemen-
tations, example categories for a game may include action,
adventure, fighting, platform, puzzle, racing, role-playing,
shooter, simulation, sports strategy, etc. In some implemen-
tations, example categories for a game may include a
location setting, a genre, and/or a theme for the game, e.g.
town and country, western, space, etc.

Highlighting games may enable users to easily browse
available games, discover game(s) of interest to them, and
make a selection of their preferred game from all available
games on the platform.

In some implementations, example categories for a game
may include the type(s) of device that is well-suited to play
the game. For example, a game may be labeled as suitable
for desktop, mobile, virtual reality (VR), etc.

FIG. 2B illustrates an example tag-wise listing, in accor-
dance with some implementations. In this illustrative
example, the user interface (UI) displays a game or game
icon along with all its associated tags. With this Ul view, a
participant may browse game details and obtain information
about all the tags associated with the game.

FIG. 2C illustrates another example of a tag-wise listing,
in accordance with some implementations. In this illustra-
tive example, the user interface displays a list of all or
multiple games (or game icons) that are associated with a
given tag. This Ul view can enable a participant to browse
for games that are associated a tag of interest to the partici-
pant.

In some implementations, the text tags are associated with
the game and displayed in a user interface. In some imple-
mentations, the text tags are utilized to group together games
with similar text tags. In some implementations, the text tags

US 11,789,905 B2

13

are associated with a game, and searchable by a user when
the user is searching for a certain type of game.

FIG. 3 is a diagram illustrating example data structures
associated with game (digital) assets, in accordance with
some implementations.

In some implementations, the digital assets include vari-
ous assets associated with a game. The digital assets may
include user generated digital content, user uploaded digital
content, and/or digital content selected by the user from
digital assets available on the game platform(s).

Example types of digital assets include image files (320),
audio clips (330), codebase assets (340), 3D models and/or
meshes (350), animation routines (360), or gameplay data
(370). Other types of digital assets are possible based on a
type of game.

Image files (320) may include images utilized in the
game, for example, background images, wallpaper images,
maps, images that are displayed within the game, etc. Image
files may also include thumbnail image(s) and videos asso-
ciated with the game, e.g. images and videos provided by a
game developer. Image files utilized in a game may be
indicative of the game content. For example, if a game has
a number of car images, it may be indicative that the
gameplay relates to cars. If a game has a number of roadway
images that are loops, it may be indicative that the gameplay
relates to racetracks or racing, while if another game has
roadway images that are open stretches of road, it may be
indicative that the game is a travel or tour-related game. In
another example, if a game has a lot of automotive part
images but few complete vehicles, it may be indicative that
the game relates to building vehicles out of parts.

Audio clips (330) include user (developer) generated
audio clips and/or audio clips selected from a list of options
available on the game platforms. Example audio clips
include the sound of racing cars, sounds of the forest,
footsteps, character sounds, sounds associated with game
objects, etc. Audio files utilized in a game may be indicative
of the game content. For example, if the game digital assets
include a number of audio clips with the noise of racing cars,
it may be indicative that the game relates to car racing. If the
game has a number of audio files that are sounds of clashing
swords, it may be indicative that the game relates to a
fighting game. In another example, if the game has audio
files of cheering spectators, it may be indicative that the
game relates to sports.

Codebase assets (340) include the code base utilized for
the game may include initialization routines, pre-compiled
code, functional code, etc. The text and comment(s) in the
codebase may also be included. In some implementations, a
history of codebase changes may also be included. In some
implementations, codebase data may include data that
includes a record of the time spent by a developer on various
features and/or digital assets within the codebase. For
example, if comments in the codebase of a game refers to
names of racing cars, it may be indicative that the game
relates to car racing. In another example, if the codebase
includes subroutines that are associated with dancing moves,
it may be indicative that the game relates to dancing.

3D model data (350) can include the 3D model data,
including meshes associated with the game. For example,
the 3D model data may include mesh data of one or more
avatars and/or other objects utilized in the game. In an
example, if the 3D model data has mesh data of avatars that
is associated with humans riding on horses, it may be
indicative that the game relates to knights. In another

10

15

20

25

30

35

40

45

50

55

60

65

14

example, if the 3D model data has mesh data associated with
rollercoasters and/or other rides, it may be indicative that the
game relates to theme parks.

Animation routines (360) can include data associated with
animations and movements of avatars and/or objects within
the game. The animation routines can include platform-
provided animation routines (catalog animations) as well as
custom animations provided by a game developer. For
example, dancing moves, avatar gestures, action sequences,
etc. may be included. In an example, if the animation
routines associated with a game use a simulator associated
with motion capture dancing (Mocap dancing), it may be
indicative that the game is a dancing game. In another
example, if the animation includes a running animation, it
may be indicative that the game is a running game, or is a
game that includes running as an activity, e.g., a field sports
game.

Game play data (370) may include details of game
sessions played by one or more players on the game platform
(s). In some implementations, the game play data includes
details of use of various game digital assets. For example,
the game play data may include data of whether game digital
assets were actually invoked during the game sessions, a
frequency of use of one or more game digital assets, a total
duration of game play by one or more players, and a total
duration of use of the game digital assets and/or features
associated with the game digital assets. In an example, if a
running animation is a game digital asset that has substantial
use in the game, it may be indicative that the game is a
running game. In another example, the game digital asset
may include images of cars as well images of pizzas,
wherein the images of cars may not be utilized in the code
base while the images of pizzas are utilized in the code base,
indicating that the game relates to a pizza game and may not
be related to a car racing game.

In some implementations, game play data may include
chat data of players during one or more gameplay sessions.

Digital assets from multiple categories described above
are utilized in an analysis of the game. For example, if the
digital assets of a game includes image files of cars, race-
tracks, confetti, champagne, racings flags, and codebase
assets that include physics code associated with collisions,
and animation code associated with moving vehicles, it may
be indicative that the game is a racing game. In an example,
a game that includes image files of car parts, airplane parts,
spaceship parts, connectors, etc. but no animation/physics
code, it may be indicative that the game relates to a
mechanical building game. In another example, a game that
has digital assets that include image files of food ingredients
and 3D model data of buildings, it may be indicative that the
game relates to restaurant operation.

FIG. 4 is a diagram illustrating example images from a
gameplay session, in accordance with some implementa-
tions.

In some implementations, in addition to the digital assets
described with respect to FIG. 4, screenshots of gameplay
sessions may also be recorded. The screenshots may be
obtained from previous game play sessions by different
user(s) or groups of players. In some implementations,
screenshots may also be obtained from a rendering of
gameplay sessions in a simulated manner.

For example, screenshot 410 depicts a scene that includes
a house, trees, gently rolling hills; screenshot 420 depicts a
scene that includes a castle; and screenshot 430 depicts a
scene that includes a ship, water’s edge, a house, and a
forest.

US 11,789,905 B2

15

In some implementations, image analysis may be per-
formed on the screenshots to determine/identify physical
features, terrain, objects, etc. that may be depicted in the
screenshots. The determined physical features, terrain,
objects, etc. may be utilized to determine game character-
istics that may be utilized for the generation of text tags for
the game.

In some implementations, selected screenshots of the
game sessions are stored as a game digital asset. In some
implementations, the screenshots are processed, and labels
generated based on the screenshots are stored.

FIG. 5 is a block diagram illustrating an example of
supervised machine learning (ML) to generate text tags, in
accordance with some implementations.

The supervised learning can be implemented on a com-
puter that includes one or more processors and memory with
software instructions. In some implementations, the one or
more processors may include one or more of a general
purpose central processing unit (CPU), a graphics process-
ing unit (GPU), a machine-learning processor, an applica-
tion-specific integrated circuit (ASIC), a field-program-
mable gate array (FPGA), or any other type of processor.

In this illustrative example, supervised learning is used to
train a machine learning (ML) model 530 based on training
data 510 and a feedback generator 550. ML, model 530 may
be implemented using any suitable machine learning tech-
nique, e.g., a feedforward neural network, a convolutional
neural network, or any other suitable type of neural network.
In some implementations, other machine learning tech-
niques such as Bayesian models, support vector machines,
hidden Markov models (HMMs), etc. can also be used to
implement ML model 530.

The training data 510 includes game (digital) assets 515
and groundtruth tags 525 for a plurality of games. The digital
assets may include any digital assets, e.g., described with
respect to FIG. 3. The groundtruth text tags may be obtained
from tags provided by the developers of the games, game
players, or other human users.

In this illustrative example, digital assets 515 are provided
to a machine learning (ML) model under training 530. The
ML model generates a set of predicted tags 540 based on a
current state of the ML model and the digital assets. For
example, the ML, model may determine a feature vector (or
embedding) based on features of digital assets 515. The
feature vector (or embedding) may be a mathematical,
multi-dimensional representation generated based on the
digital assets 515. Different games may have different fea-
ture vectors, based on respective digital assets. Upon train-
ing, the ML model generates similar feature vectors for
similar games (games that are associated with similar types
of digital assets).

Analysis based on individual components of the digital
game digital assets can lead to inaccurate determination of
game content. Instead, analysis of the game digital assets
considered as a whole can lead to likely accurate determi-
nation of game content. Similar gameplay from multiple
games would include similar assets in a feature space that is
revealed by analyzing the game features using the ML
model. Each game digital asset and/or combinations of the
game digital assets could be used as a feature that is input to
an ML model. The features are utilized by the ML model to
cluster games and generate predicted tags associated with
the games.

Stated another way, the digital assets may be used to
determine features of the game using ML model 530. ML
model 530 may utilize the feature vectors to generate the text
tags for the game. For example, a first game may have digital

10

15

20

25

30

35

40

45

50

55

60

65

16

assets including maps, rooms, walls, trees, etc. along with
human characters and clothing/accessories for the charac-
ters, while a second game may have digital assets including
cars, racetracks, fuel, etc., animation code that renders the
cars moving, and game images/screenshots that depict mul-
tiple cars along a racetrack. ML, model 530 may generate
feature vectors that are significantly apart for these two
example games based on the games not having digital assets
that have similarity. On the other hand, for a third game that
includes digital assets such as trucks, road, confetti, etc., and
videos of trucks moving down a road, the generated feature
vector may be similar to that of the second game.

ML model 530 may generate game text tags based on the
digital assets associated with the game, e.g., based on the
feature vector, and/or based on similarity with feature vec-
tors of other games and tags associated with those other
games. For example, ML model 530 may generate a “rac-
ing” tag for the second and the third game, and an “adven-
ture” tag for the first game.

Codebase assets that include physics of navigation and
movement of an avatar provide additional signals that the
game may be a navigable game. Similarly, codebase assets,
for example, camera placement within the game, may pro-
vide signals about a game perspective—for example,
whether the game is a first person based game.

The predicted tags 540 generated by ML model 530 are
provided to feedback generator 550.

Feedback generator 550 is also provided with the
groundtruth tags 525 (e.g., human-curated tags) correspond-
ing to the game. Feedback 560 is generated by feedback
generator 550 based on a comparison of the predicted tags
with the groundtruth tags. For example, if predicted tags 540
are similar to groundtruth tags 525, positive feedback may
be provided as feedback 560, while if the tags are dissimilar
negative feedback is provided to the ML model under
training, which may be updated based on the received
feedback using reinforcement learning techniques.

In some implementations, the ML, model includes one or
more neural networks. The neural network(s) may be orga-
nized into a plurality of layers including a plurality of layers.
Each layer may comprise a plurality of neural network
nodes. Nodes in a particular layer may be connected to
nodes in an immediately previous layer and nodes in an
immediately next layer. In some implementations, the ML
model may be a convolutional neural network (CNN).

In some implementations, the digital assets are all pro-
cessed simultaneously by a single MLL model. In some
implementations, a particular type of digital assets are
processed by a first ML model, while other types of digital
assets may be processed by respective ML, models for the
types of assets. For example, the image files may be pro-
cessed by a first ML model, the audio clips by a second ML
model, etc. In these implementations, the structure of ML
model 530 may include a plurality of ML, models that
analyze different types of digital assets and produce respec-
tive feature vectors, and an ML model that takes as input the
individual feature vectors, combines them, and generates
predicted tags 540.

In some implementations, different types of ML models
may be utilized to process different categories of digital
assets and identify characteristic features in each category of
digital asset. For example, processing of image digital assets
may utilize a convolutional neural network (CNN), process-
ing of audio digital assets may utilize a deep neural network
(DNN) architecture, processing of text digital assets may
utilize a Bidirectional Encoder Representations from Trans-
formers (BERT) model, etc. The identified features may then

US 11,789,905 B2

17

be processed by a different ML, model that operates on these
intermediate outputs as its inputs to generate the predicted
tags.

The training of the MLL model may be performed peri-
odically at specified intervals, or may be triggered by events.
In some implementations, the training may be repeated until
a threshold level of text tag prediction accuracy is reached.

FIG. 6 is a flowchart illustrating an example method to
train a machine learning model to generate text tags, in
accordance with some implementations.

In some implementations, method 600 can be imple-
mented, for example, on gaming server 102 described with
reference to FIG. 1. In some implementations, some or all of
the method 600 can be implemented on one or more client
devices 110 as shown in FIG. 1, on one or more developer
devices 130, or on one or more server device(s) 102, and/or
on a combination of developer device(s), server device(s)
and client device(s). In described examples, the implement-
ing system includes one or more digital processors or
processing circuitry (“processors”), and one or more storage
devices (e.g., a database 120 or other storage). In some
implementations, different components of one or more serv-
ers and/or clients can perform different blocks or other parts
of the method 600. In some examples, a first device is
described as performing blocks of method 600. Some imple-
mentations can have one or more blocks of method 600
performed by one or more other devices (e.g., other client
devices or server devices) that can send results or data to the
first device.

In some implementations, the method 600, or portions of
the method, can be initiated automatically by a system. In
some implementations, the implementing system is a first
device. For example, the method (or portions thereof) can be
periodically performed, or performed based on one or more
particular events or conditions, e.g., an accuracy of text tag
prediction falling below a threshold, a predetermined time
period having expired since the last performance of method
600, and/or one or more other conditions occurring which
can be specified in settings read by the method.

Method 600 may begin at block 610. At block 610, digital
assets associated with various games are provided as input
to the machine learning model. The data includes a plurality
of game identifiers, and a respective set of digital assets
associated with each game identified by the game identifiers.
For example, a title or alphanumeric code associated with a
game, and a set of digital game digital assets, e.g. image
files, 3D models, etc. may be provided as input to the ML
model.

As described earlier, the digital assets may include one or
more of game screenshots, game video snippets, game
objects, meshes, avatars, game source code, game configu-
ration parameters, game lighting, game level count, avatar
movements, text content of the game, chat content generated
within the game, game sounds, game background music,
code coverage, or frequency of use of digital assets during
gameplay. Block 610 may be followed by block 620.

At block 620, predicted text tags are generated by the ML
model based on the digital assets for the game identified by
the game identifiers and a current state of the ML, model.

In implementations using a neural network, a respective
feature vector may be generated for each game identified by
the game identifiers based on the respective set of digital
assets. The feature vector (or embedding) may be a math-
ematical, multi-dimensional representation generated based
on the game digital assets. Different games may have
different feature vectors, based on respective digital assets.
Upon training, the ML model generates similar feature

10

20

40

45

18

vectors for similar games (games that are associated with
similar types of game digital assets).

In some implementations, the machine learning model
includes one or more input neural networks and an output
neural network. The respective feature vector(s) are gener-
ated using the one or more input neural networks and the
respective feature vector(s) may be provided as inputs to the
output neural network.

In some implementations, a first neural network generates
a first portion of the feature vector based on one or more
image assets in the digital assets, a second neural network
generates a second portion of the feature vector based on one
or more code assets in the digital assets, a third neural
network generates a third portion of the feature vector based
on one or more text assets in the digital assets, a fourth
neural network generates a fourth portion of the feature
vector based on one or more audio assets in the digital assets,
and a fifth neural network that a fifth portion of the feature
vector based on one more gameplay assets.

In some implementations, the one or more image assets
may include one or more of game screenshots, game video
snippets, game objects, meshes, or avatars. In some imple-
mentations, the code assets may include one or more of
game source code, game configuration parameters, game
lighting, game level count, or avatar movements.

In some implementations, the text assets may include one
or more of text content of the game or chat content generated
within the game. In some implementations, the audio assets
may include one or more of game sounds or game back-
ground music. In some implementations, the gameplay
assets may include one or more of code coverage or fre-
quency of use of digital assets during gameplay. Block 620
may be followed by block 630.

At block 630, the predicted text tags are compared to
groundtruth tags. For example, one or more predicted text
tags for the game identified by the game identifier are
compared to respective groundtruth tags associated with the
game. The groundtruth text tags may be obtained from tags
provided by the developers of the games, game players, or
other human users. An accuracy of text tag prediction is
determined for each game, e.g. it is evaluated whether the
ML model successfully predicted text tags for each game
based on the provided digital assets. A loss value is deter-
mined based on the accuracy of text tag predictions. For
example, a cross entropy loss function on a multi-class
classifier can be utilized for the text tag predictions. Block
630 may be followed by block 640.

At block 640, the ML model is updated based on feedback
generated from the comparison of the predicted tags and the
groundtruth tags. For example, the loss value is utilized to
adjust one or more parameters of the ML model. For
example, when the ML model is implemented using a neural
network, the weight associated with one or more nodes of
the neural network and/or a connection between one or more
pairs of nodes of the neural network may be adjusted based
on the loss value. In some implementations, a weight
associated with a link between a pair of nodes of the neural
network may be adjusted. Block 640 may be followed by
block 650.

At block 650, an accuracy of the ML model is determined
based on cumulative results, and compared to a threshold.
For example, the tags generated by the ML, model may be
compared against groundtruth tags to determine the accu-
racy. In another example, the tags generated by the ML
model may be used to display a user interface to game
platform users and the effectiveness of the tags be measured
(e.g., based on clickthrough rate for the tags, gameplay

US 11,789,905 B2

19

generated by the user interface that includes the tags gen-
erated the ML model vs. tags obtained in other ways in a A/B
testing configuration, human evaluation of the tags, etc.) If
the accuracy meets a threshold, the trained ML model is
determined to be suitable for deployment and processing
proceeds to block 660, else, the ML model training is
continued and processing reverts to 610.

At block 660, the trained ML model may be deployed for
the generation of text tags for games.

Method 600, or portions thereof, may be repeated any
number of times using additional inputs. For example,
blocks 620 and 630 may be repeated with multiple sets of
groundtruth text tags. In another example, block 610-650
may be repeated with additional games. Method 600 may be
repeated until a threshold level of text tag prediction accu-
racy is reached.

In some implementations, method 600, or portions
thereof, may be repeated based on a change in game ratings,
e.g. change in ratings of top/popular games on the game
platform, or based on the results of an A/B test. In some
implementations, model parameters may be adjusted, and
the model retrained based on a triggering factor, e.g. change
in game ratings, results of an A/B test, etc.

FIG. 7 is a block diagram illustrating an example method
to generate text tags for games using a machine learning
model, in accordance with some implementations In some
implementations, the trained machine learning model 730 is
utilized for the generation of text tags 750 based on game
(digital) assets 710. A tag repository 740 may be utilized to
store a plurality of text tags. Predicted text tags 750 are
generated based on the digital assets 710.

As described earlier with respect to FIG. 5, game digital
assets and game digital asset combinations are provided as
features to the ML model, which uses the features to cluster
games and to determine text tags associated with the games.

In some implementations, the ML model is a neural
network, e.g. similar to the neural network model described
with respect to FIG. 6.

In some implementations, the ML. model may include one
or more of binary classification, multiclass classification,
and regression. In some implementations, the ML model
may be a K-means model, kNN model, Linear Regression
model, Logistic Regression model, Decision Tree model,
SVM model, Naive Bayesian model, Random Forest model,
etc.

In some implementations, different ML, models may be
utilized for different classes of digital assets. In some
implementations, the same ML model may be utilized across
all digital assets.

In some implementations, the predicted text tags may be
determined based on agreement of predicted tags based on
different types (classes) of digital assets. For example, a text
tag may be predicted when predictions from two or more
types of digital assets are the same. In some implementa-
tions, a text tag may be predicted when predictions from
three or more types of digital assets are the same.

In some implementations, weights may be assigned to
predictions based on different digital assets, and a weighted
score may be utilized to determine a predicted tag by the ML,
model.

In some implementations, text tags provided by users
(developers) may be validated by the ML, model to ensure
that malicious developers do not provide misleading text
tags that are not supported by game features. For example,
if a certain type/category of game is very popular, a game
developer may attach a tag to their game that indicates that

10

20

30

40

45

50

20

the game belongs to the popular game category, when in
reality, it may not include features corresponding to the
popular game category.

FIG. 8 is a flowchart illustrating another example method
to generate text tags for games using a machine learning
model, in accordance with some implementations.

For example, the trained ML, model may be ML model
530, obtained after training using the techniques described
above with reference to FIG. 5.

In some implementations, method 800 can be imple-
mented, for example, on gaming server 102 described with
reference to FIG. 1. In some implementations, some or all of
the method 800 can be implemented on one or more client
devices 110 as shown in FIG. 1, on one or more developer
devices 130, or on one or more server device(s) 102, and/or
on a combination of developer device(s), server device(s)
and client device(s). In described examples, the implement-
ing system includes one or more digital processors or
processing circuitry (“processors”), and one or more storage
devices (e.g., a database 120 or other storage). In some
implementations, different components of one or more serv-
ers and/or clients can perform different blocks or other parts
of the method 800. In some examples, a first device is
described as performing blocks of method 800. Some imple-
mentations can have one or more blocks of method 800
performed by one or more other devices (e.g., other client
devices or server devices) that can send results or data to the
first device.

At block 810, a game identifier for a game in addition to
digital assets associated with the game are received. The
game identifier and the digital assets are provided as input to
the trained machine learning model.

In some implementations, the digital assets may include
one or more of game screenshots, game video snippets,
game objects, meshes, avatars, game source code, game
configuration parameters, game lighting, game level count,
avatar movements, text content of the game, chat content
generated within the game, game sounds, game background
music, code coverage, or frequency of use of digital assets
during gameplay. Block 810 may be followed by block 820.

At block 820, predicted text tags and scores associated
with each of the predicted tags are generated. The predicted
tags may be generated, for example, by a trained ML model,
as described in FIG. 6. A plurality of predicted text tags may
be generated using the trained machine learning model.
Each text tag may also be associated with a respective
prediction score, which is indicative of a prediction confi-
dence computed using the machine learning model for the
text tag.

In some implementations, the predicted text tags may be
restricted to a collection of words or vocabulary that is
specific to the game platform. For example, words and/or
phrases from text tags that are manually provided by users,
e.g., game creators, game players, etc. and are associated
with games on the game platform may form the vocabulary.
In some implementations, the predicted text tags may be
unrestricted, e.g., may include any word from a larger corpus
of words such as a language dictionary.

In some implementations, the one or more text tags are
indicative of a type of the game or a style of game play. For
example, the text tags may include tags such as tycoon
game, obstacle course game, first person shooter game,
collaborative game, social game.

In some implementations, thresholds may be utilized to
surface a set of predicted tags. Block 820 may be followed
by block 830.

US 11,789,905 B2

21

At block 830, one or more tags may be selected based on
the thresholds. One or more text tags may be selected from
the plurality of predicted text tags based on the respective
prediction score.

In different implementations, the selected tags may be
utilized for various purposes. In some implementations, one
or more of the selected tags can be stored in a database in
association with the game identifier. In these implementa-
tions, the stored tags can be utilized to support game search
or browsing. For example, a semantic comparison of a
user-entered search term (e.g., “horse riding”) with the
stored tags may be performed to identify games that match
the user search. In another example, the stored tags may be
used to render a user interface that enables a user to browse
games by tags assigned to the game.

In some implementations, the selected tags for a game
may be utilized to evaluate tags that are manually assigned
to a game (e.g., by a game creator). The evaluation may
include determination of whether each manually assigned
tag are incorrect or irrelevant. Upon such evaluation, incor-
rect or irrelevant tags may be suppressed, e.g., hidden and/or
removed from association with the game. Suppression of
manually assigned tags in this manner can help ensure that
player traffic to a game is genuine, based on the quality of
the game and relevance of the game to a player’s interests.
This can lead to a higher proportion of game play sessions
that players enjoy, and reduce the number of short (e.g., less
than 1 minute) or unsatisfactory sessions that may occur due
to incorrect or irrelevant labels.

FIG. 9 is a block diagram of an example computing
device 900 which may be used to implement one or more
features described herein. In one example, device 900 may
be used to implement a computer device (e.g. 102 and/or 110
of FIG. 1), and perform appropriate method implementa-
tions described herein. Computing device 900 can be any
suitable computer system, server, or other electronic or
hardware device. For example, the computing device 900
can be a mainframe computer, desktop computer, worksta-
tion, portable computer, or electronic device (portable
device, mobile device, cell phone, smartphone, tablet com-
puter, television, TV set top box, personal digital assistant
(PDA), media player, game device, wearable device, etc.). In
some implementations, device 900 includes a processor 902,
a memory 904, input/output (I/O) interface 906, and audio/
video input/output devices 914.

Processor 902 can be one or more processors and/or
processing circuits to execute program code and control
basic operations of the device 900. A “processor” includes
any suitable hardware and/or software system, mechanism
or component that processes data, signals or other informa-
tion. A processor may include a system with a general-
purpose central processing unit (CPU), multiple processing
units, dedicated circuitry for achieving functionality, or
other systems. Processing need not be limited to a particular
geographic location, or have temporal limitations. For
example, a processor may perform its functions in “real-
time,” “offline,” in a “batch mode,” etc. Portions of process-
ing may be performed at different times and at different
locations, by different (or the same) processing systems. A
computer may be any processor in communication with a
memory.

Memory 904 is typically provided in device 900 for
access by the processor 902, and may be any suitable
processor-readable storage medium, e.g., random access
memory (RAM), read-only memory (ROM), Electrical
Erasable Read-only Memory (EEPROM), Flash memory,
etc., suitable for storing instructions for execution by the

15

20

30

35

40

45

50

55

22

processor, and located separate from processor 902 and/or
integrated therewith. Memory 904 can store software oper-
ating on the server device 900 by the processor 902, includ-
ing an operating system 908, one or more applications 910,
e.g., an audio spatialization application and application data
912. In some implementations, application 910 can include
instructions that enable processor 902 to perform the func-
tions (or control the functions of) described herein, e.g.,
some or all of the methods described with respect to FIGS.
6 and 8.

For example, applications 910 can include an audio
spatialization module 912, which as described herein can
provide audio spatialization within an online gaming server
(e.g., 102). Any of software in memory 904 can alternatively
be stored on any other suitable storage location or computer-
readable medium. In addition, memory 904 (and/or other
connected storage device(s)) can store instructions and data
used in the features described herein. Memory 904 and any
other type of storage (magnetic disk, optical disk, magnetic
tape, or other tangible media) can be considered “storage” or
“storage devices.”

1/0O interface 906 can provide functions to enable inter-
facing the server device 900 with other systems and devices.
For example, network communication devices, storage
devices (e.g., memory and/or data store 120), and input/
output devices can communicate via interface 906. In some
implementations, the I/O interface can connect to interface
devices including input devices (keyboard, pointing device,
touchscreen, microphone, camera, scanner, etc.) and/or out-
put devices (display device, speaker devices, printer, motor,
etc.).

The audio/video input/output devices 914 can include a
user input device (e.g., a mouse, etc.) that can be used to
receive user input, a display device (e.g., screen, monitor,
etc.) and/or a combined input and display device, that can be
used to provide graphical and/or visual output.

For ease of illustration, FIG. 9 shows one block for each
of processor 902, memory 904, /O interface 906, and
software blocks 908 and 910. These blocks may represent
one or more processors or processing circuitries, operating
systems, memories, I/O interfaces, applications, and/or soft-
ware engines. In other implementations, device 900 may not
have all of the components shown and/or may have other
elements including other types of elements instead of, or in
addition to, those shown herein. While the online gaming
server 102 is described as performing operations as
described in some implementations herein, any suitable
component or combination of components of online gaming
server 102 or similar system, or any suitable processor or
processors associated with such a system, may perform the
operations described.

A user device can also implement and/or be used with
features described herein. Example user devices can be
computer devices including some similar components as the
device 900, e.g., processor(s) 902, memory 904, and 1/O
interface 906. An operating system, software and applica-
tions suitable for the client device can be provided in
memory and used by the processor. The 1/O interface for a
client device can be connected to network communication
devices, as well as to input and output devices, e.g., a
microphone for capturing sound, a camera for capturing
images or video, a mouse for capturing user input, a gesture
device for recognizing a user gesture, a touchscreen to detect
user input, audio speaker devices for outputting sound, a
display device for outputting images or video, or other
output devices. A display device within the audio/video
input/output devices 914, for example, can be connected to

US 11,789,905 B2

23

(or included in) the device 900 to display images pre- and
post-processing as described herein, where such display
device can include any suitable display device, e.g., an LCD,
LED, or plasma display screen, CRT, television, monitor,
touchscreen, 3-D display screen, projector, or other visual
display device. Some implementations can provide an audio
output device, e.g., voice output or synthesis that speaks
text.

One or more methods described herein (e.g., methods 600
and 800) can be implemented by computer program instruc-
tions or code, which can be executed on a computer. For
example, the code can be implemented by one or more
digital processors (e.g., microprocessors or other processing
circuitry), and can be stored on a computer program product
including a non-transitory computer readable medium (e.g.,
storage medium), e.g., a magnetic, optical, electromagnetic,
or semiconductor storage medium, including semiconductor
or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), flash memory, a rigid magnetic disk, an
optical disk, a solid-state memory drive, etc. The program
instructions can also be contained in, and provided as, an
electronic signal, for example in the form of software as a
service (SaaS) delivered from a server (e.g., a distributed
system and/or a cloud computing system). Alternatively, one
or more methods can be implemented in hardware (logic
gates, etc.), or in a combination of hardware and software.
Example hardware can be programmable processors (e.g.
Field-Programmable Gate Array (FPGA), Complex Pro-
grammable Logic Device), general purpose processors,
graphics processors, Application Specific Integrated Circuits
(ASICs), and the like. One or more methods can be per-
formed as part of or component of an application running on
the system, or as an application or software running in
conjunction with other applications and operating system.

One or more methods described herein can be run in a
standalone program that can be run on any type of comput-
ing device, a program run on a web browser, a mobile
application (“app”) run on a mobile computing device (e.g.,
cell phone, smart phone, tablet computer, wearable device
(wristwatch, armband, jewelry, headwear, goggles, glasses,
etc.), laptop computer, etc.). In one example, a client/server
architecture can be used, e.g., a mobile computing device (as
a client device) sends user input data to a server device and
receives from the server the final output data for output (e.g.,
for display). In another example, all computations can be
performed within the mobile app (and/or other apps) on the
mobile computing device. In another example, computations
can be split between the mobile computing device and one
or more server devices.

Although the description has been described with respect
to particular implementations thereof, these particular
implementations are merely illustrative, and not restrictive.
Concepts illustrated in the examples may be applied to other
examples and implementations.

The functional blocks, operations, features, methods,
devices, and systems described in the present disclosure may
be integrated or divided into different combinations of
systems, devices, and functional blocks as would be known
to those skilled in the art. Any suitable programming lan-
guage and programming techniques may be used to imple-
ment the routines of particular implementations. Different
programming techniques may be employed, e.g., procedural
or object-oriented. The routines may execute on a single
processing device or multiple processors. Although the
steps, operations, or computations may be presented in a
specific order, the order may be changed in different par-

10

15

20

25

30

35

40

45

50

55

60

65

24

ticular implementations. In some implementations, multiple
steps or operations shown as sequential in this specification
may be performed at the same time.

What is claimed is:

1. A computer-implemented method to generate one or
more text tags for a game using a trained machine learning
model, the method comprising:

providing, as input to the trained machine learning model,

data that includes a game identifier of the game and a
set of digital assets of different classes associated with
the game;

generating, using the trained machine learning model and

based on the set of digital assets of different classes
associated with the game, a plurality of predicted text
tags, each predicted text tag associated with a respec-
tive prediction score, wherein each predicted text tag is
determined based on a respective class of the set of
digital assets; and

selecting one or more text tags from the plurality of

predicted text tags based on an agreement between at
least a particular number of the one or more predicted
text tags determined based on the different classes of
the set of digital assets, wherein at least one of the one
or more selected text tags is indicative of a genre of the
game.

2. The computer-implemented method of claim 1,
wherein the set of digital assets includes developer-provided
assets that include one or more of game objects, meshes,
avatars, game source code, game configuration parameters,
game lighting, avatar movements, text content of the game,
game sounds, game background music, or code coverage, or
one or more digital assets generated based on user activity
in instances of the game including a respective frequency of
use of digital assets during gameplay.

3. The computer-implemented method of claim 1,
wherein the one or more selected text tags are displayed
along with a game icon associated with the game in a user
interface.

4. The computer-implemented method of claim 1, further
comprising:

obtaining an existing text tag for the game that is provided

by a developer of the game;

validating the existing text tag for the game by comparing

the existing text tag with the one or more selected text
tags;

determining that the existing text tag is incorrect based on

the comparison; and

removing the existing text tag from association with the

game.

5. A computer-implemented method to train a machine
learning model to generate tags, the method comprising:

providing as input to the machine learning model, data

that includes a plurality of game identifiers and a
respective set of digital assets of different classes
associated with each game identified by the game
identifiers;

generating, by the machine learning model, and based on

the set of digital assets of different classes associated
with the game, one or more predicted tags for each
game identified by the game identifiers, wherein at least
one of the one or more predicted tags is indicative of a
genre of the game;

comparing the one or more predicted tags with respective

tags associated with each game identified by the game
identifiers; and

adjusting one or more parameters of the machine learning

model based on the comparison and an agreement

US 11,789,905 B2

25

between at least a particular number of the one or more
predicted text tags determined based on the different
classes of the set of digital assets.

6. The computer-implemented method of claim 5,
wherein the machine learning model comprises a neural
network and wherein adjusting the one or more parameters
of the machine learning model comprises adjusting a weight
associated with one or more nodes of the neural network or
adjusting a weight associated with a link between a pair of
nodes of the neural network.

7. The computer-implemented method of claim 5,
wherein the digital assets include one or more of: game
objects, meshes, avatars, game source code, game configu-
ration parameters, game lighting, avatar movements, text
content of the game, game sounds, game background music,
code coverage, or frequency of use of digital assets during
gameplay.

8. The computer-implemented method of claim 5, further
comprising: generating a respective feature vector for each
game identified by the game identifiers based on the respec-
tive set of digital assets, wherein the generating the one or
more predicted tags by the machine learning model is based
on the respective feature vector.

9. The computer-implemented method of claim 8,
wherein the machine learning model includes one or more
input neural networks and an output neural network,
wherein generating the respective feature vector is per-
formed using the one or more input neural networks, the
method further comprising:

providing the respective feature vector as input to the
output neural network.

10. The computer-implemented method of claim 9,
wherein the one or more input neural networks include at
least one of:

a first input neural network that generates a first portion of
the feature vector based on one or more image assets in
the digital assets;

a second input neural network that generates a second
portion of the feature vector based on one or more code
assets in the digital assets;

a third input neural network that generates a third portion
of the feature vector based on one or more text assets
in the digital assets;

a fourth input neural network that generates a fourth
portion of the feature vector based on one or more
audio assets in the digital assets; and

a fifth input neural network that generates a fifth portion
of the feature vector based on one more gameplay
assets.

11. The computer-implemented method of claim 10,
wherein the first input neural network generates the first
portion of the feature vector based on one or more image
assets in the digital assets, wherein the one or more image
assets include one or more of game screenshots, game video
snippets, game objects, meshes, or avatars.

12. The computer-implemented method of claim 10,
wherein the second input neural network generates the
second portion of the feature vector based on one or more
code assets in the digital assets, wherein the code assets
include one or more of game source code, game configura-
tion parameters, game lighting, game level count, or avatar
movements.

13. The computer-implemented method of claim 10,
wherein the third input neural network generates the third
portion of the feature vector based on one or more text assets

10

20

25

30

35

40

45

55

65

26

in the digital assets, wherein the text assets include one or
more of text content of the game or chat content generated
within the game.

14. The computer-implemented method of claim 10,
wherein the fourth input neural network generates the fourth
portion of the feature vector based on one or more audio
assets in the digital assets, wherein the audio assets include
one or more of game sounds or game background music.

15. The computer-implemented method of claim 10,
wherein the fifth input neural network generates the fifth
portion of the feature vector based on one more gameplay
assets, wherein the gameplay assets includes one or more of
code coverage or frequency of use of digital assets during
gameplay.

16. A non-transitory computer-readable medium compris-
ing instructions that, responsive to execution by a processing
device, causes the processing device to perform operations
comprising:

providing, as input to a trained machine learning model,

data that includes a plurality of game identifiers and a
respective set of digital assets of different classes
associated with each game identified by the game
identifiers;

generating, using the trained machine learning model and

based on the set of digital assets of different classes
associated with the game, a plurality of predicted text
tags, each predicted text tag associated with a respec-
tive prediction score, wherein each predicted text tag is
determined based on a respective class of the set of
digital assets; and

selecting one or more text tags from the plurality of

predicted text tags based on an agreement between at
least a particular number of the one or more predicted
text tags determined based on the different classes of
the set of digital assets, wherein at least one of the one
or more selected text tags is indicative of a genre of the
game.

17. The non-transitory computer-readable medium of
claim 16, wherein the digital assets comprise developer-
provided assets that include one or more of game objects,
meshes, avatars, game source code, game configuration
parameters, game lighting, avatar movements, text content
of the game, game sounds, game background music, or code
coverage, or one or more digital assets generated based on
user activity in instances of the game including a respective
frequency of use of digital assets during gameplay.

18. The non-transitory computer-readable medium of
claim 16, wherein the one or more selected text tags are
displayed along with a game icon associated with the game
in a user interface.

19. A system comprising:

a memory with instructions stored thereon; and

a processing device, coupled to the memory, the process-

ing device configured to access the memory and
execute the instructions, wherein the instructions cause
the processing device to perform operations compris-
ing:

providing, as input to a trained machine learning model,

data that includes a plurality of game identifiers and a
respective set of digital assets of different classes
associated with each game identified by the game
identifiers;

generating, using the trained machine learning model and

based on the set of digital assets of different classes
associated with the game, a plurality of predicted text
tags, each predicted text tag associated with a respec-

US 11,789,905 B2

27

tive prediction score, wherein each predicted text tag is
determined based on a respective class of the set of
digital assets; and

selecting one or more text tags from the plurality of

predicted text tags based on an agreement of at least a
particular number of the one or more predicted text tags
determined based on the different classes of the set of
digital assets, wherein at least one of the one or more
selected text tags is indicative of a genre of the game.

20. The system of claim 19, wherein the operations further
comprise generating a respective feature vector for each
game identified by the game identifiers based on the respec-
tive set of digital assets, wherein the generating the one or
more predicted tags by the machine learning model is based
on the respective feature vector.

21. The system of claim 19, wherein the digital assets
comprise one or more of game objects, meshes, avatars,
game source code, game configuration parameters, game
lighting, avatar movements, text content of the game, game
sounds, game background music, code coverage, or fre-
quency of use of digital assets during gameplay.

#* #* #* #* #*

10

15

20

28

