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GUARANTEED QUALITY OF SERVICE IN
SYSTEM-ON-A-CHIP UNCORE FABRIC

FIELD

[0001] This disclosure pertains to computing system, and
in particular (but not exclusively) to a system and method for
guaranteed real-time quality of service in system-on-a-chip
uncore fabric.

BACKGROUND

[0002] Inmany computer systems with multiple devices, an
arbitration is performed to provide access to a shared resource
such as a shared memory. Different types of arbitration
mechanisms are provided to enable arbitration between the
different agents or requestors. Some systems use a fixed pri-
ority arbitration system in which different agents are allo-
cated a particular priority. However, this can lead to unfair-
ness in usage and starvation of one or more agent’s ability to
obtain access to the shared resource. Other arbitration sys-
tems provide for a round robin-based approach to allocating
access to the shared resource,

[0003] In certain embodiments, the arbitration does not
account for shared resource factors such as power state. Thus,
in one example, a request is granted access to the shared
resource and causes the resource to exit a low power state,
although the device does not require immediate access to the
shared resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of a portion of a shared
memory fabric according to one or more examples of the
present Specification.

[0005] FIG. 2 is a block diagram of a further detail of an
admit arbiter according to one or more examples of the
present Specification.

[0006] FIG. 3 is a flow diagram of a method for updating
age values for an agent upon a determination of an arbitration
winner according to one or more examples of the present
Specification.

[0007] FIG. 4 is a block diagram of an admit arbiter state
machine according to one or more examples of the present
Specification.

[0008] FIG.5is a flow diagram of a method for performing
first level arbitration in an admit arbiter according to one or
more examples of the present Specification.

[0009] FIG. 6 is a block diagram of a portion of a resource
allocation logic according to one or more examples of the
present Specification.

[0010] FIG. 7 is a block diagram of a scoreboard index
generation logic according to one or more examples of the
present Specification.

[0011] FIG. 8 is a block diagram of a state machine for a
scheduler arbiter according to one or more examples of the
present Specification.

[0012] FIG.9is a flow diagram of a method for performing
memory scheduling according to one or more examples of the
present Specification.

[0013] FIG. 10 is a block diagram of an SoC according to
one or more examples of the present Specification.

[0014] FIG.11is ablock diagram of components present in
a computer system according to one or more examples of the
present Specification.

Jun. 30, 2016

[0015] FIG. 12 is a block diagram of an SoC in situ for use
in a control system according to one or more examples of the
present Specification.

[0016] FIG. 13 provides a flow diagram of a method or
providing a plurality of virtual channels within an uncore
fabric according to one or more examples of the present
Specification.

[0017] FIG. 14 provides a flow diagram of a method of
traffic classification according to one or more examples of the
present Specification.

[0018] FIG. 15 provides a flow diagram of a method of
traffic classification according to one or more examples of the
present Specification.

[0019] FIG. 16 provides a flow diagram of a method of
traffic classification according to one or more examples of the
present Specification.

[0020] FIG. 17 is a block diagram of a virtual channel
hierarchy according to one or more examples of the present
Specification.

DETAILED DESCRIPTION

[0021] In the following description, numerous specific
details are set forth, such as examples of specific types of
processors and system configurations, specific hardware
structures, specific architectural and micro architectural
details, specific register configurations, specific instruction
types, specific system components, specific measurements/
heights, specific processor pipeline stages and operation etc.
in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art
that these specific details need not be employed to practice the
present invention. In other instances, well known components
or methods, such as specific and alternative processor archi-
tectures, specific logic circuits/code for described algorithms,
specific firmware code, specific interconnect operation, spe-
cific logic configurations, specific manufacturing techniques
and materials, specific compiler implementations, specific
expression of algorithms in code, specific power down and
gating techniques/logic and other specific operational details
of computer system haven’t been described in detail in order
to avoid unnecessarily obscuring the present invention.
[0022] Inan example, a control system may include a sys-
tem-on-a-chip (SoC), including one processor for real-time
operation to manage devices in the control system, and
another processor configured to execute auxiliary functions
such as a user interface for the control system. The first core
and second core may share memory such as dynamic random
access memory (DRAM), and may also share an uncore fab-
ric configured to communicatively couple the processors to
one or more peripheral devices. The first core may require a
guaranteed quality of service (QoS) to memory and/or
peripherals. The uncore fabric may be divided into a first
“real-time” virtual channel designated for traffic from the first
processor, and a second “auxiliary” virtual channel desig-
nated for traffic from the second processor. The uncore fabric
may apply a suitable selection or weighting algorithm to the
virtual channels to guarantee the QoS.

[0023] In various embodiments, a shared fabric couples
multiple independent devices, also referred to herein as
“agents,” to a shared memory and to input/output (I/O)
devices. In one embodiments, the shared fabric comprises an
interconnect structure of a single die semiconductor device
that includes intellectual property (IP) logic blocks of differ-
ent types. At a high level, the shared fabric may include a
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shared memory fabric for accessing system memory, shared
1/O interconnect fabric, and a system agent that provides
intelligence to the overall shared fabric. The shared fabric
may be configured to enable compliance with quality of ser-
vice (QoS) requirements for time-critical isochronous
devices while also providing memory bandwidth proportion-
ing for non-isochronous devices, also referred to herein as
“best effort” devices.

[0024] This fabric may be referred to as “uncore,” indicat-
ing that the interconnects, registers, and other resources pro-
vided in the fabric are not part of the processing cores that
comprise the “agents”” The uncore fabric may include the
memory fabric described above, portions that connect
“agents” to memory, and also portions that connect agents to
each other and in particular, processor cores to other “agents.”
[0025] Reliable and predictable allocation and scheduling
of memory bandwidth occurs to support multiple devices and
device types connected to the shared memory fabric. By
including QoS functionality in a common shared memory
fabric (rather than a memory controller or other non-fabric
circuitry), the design may be more easily reused across mul-
tiple semiconductor devices such as systems-on-a-chip
(SOCs) since the design is independent of memory technol-
ogy.

[0026] Embodiments thus perform resource allocation,
bandwidth apportioning and time-aware QoS properties in a
shared memory fabric to provide predictable and reliable
memory bandwidth and latencies to meet the requirements of
devices connected to the fabric.

[0027] A class of service category is assigned to each
device coupled to the shared memory fabric. In an embodi-
ment, this assignment can be identified using configuration
registers of the fabric. Multiple classes of service may be
supported by the fabric. In one non-limiting example, devices
of'two classes of service categories may be present, including
an isochronous class of service category used for latency
sensitive devices and a best effort class of service category
used for devices that can tolerate longer latencies to service
their requests to memory. In some embodiments, latency
sensitive devices include content rendering devices such as,
by way of non-limiting example, audio or video players,
camera devices, and so forth, while lower priority devices
include processor cores, graphics processing units, and so
forth.

[0028] Time, in the form of a request deadline, is commu-
nicated from the isochronous devices to the fabric to indicate
to the fabric the required latency to complete a request to
memory. To enable synchronization, the fabric broadcasts a
global timer to all isochronous requesting agents. This global
timer is continuously driven on outputs from the fabric so it is
available for sampling by the isochronous devices. Respon-
sive to this time value, the agents determine a latency require-
ment for completion of a request and add this latency value to
the global timer value to form a deadline for the request. As an
example, the latency for a read can be determined by the
amount of data in the agent’s data buffer and the drain rate of
the buffer by the agent. If the agent consumes 1 cache line of
data every 250 nanoseconds (ns) and has 8 cache lines of data
in the buffer, the required deadline for a new request would
8%250 ns or 2 microseconds (us) before the buffer is empty.
Based on this communicated latency or deadline value, the
fabric may make better scheduling decisions based on knowl-
edge of the current power state of the memories and the
required latencies for other unscheduled memory requests
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pending in the fabric. This deadline communication may
improve memory bandwidth and also save system power.
[0029] Theuse ofrequest deadlines provides the fabric with
latency information for each request from an isochronous
device. Configuration registers programmed within the fabric
provide the fabric with information about the memory con-
figuration such as the latency required for the memories to
exit a low power, e.g., self-refresh and state. The fabric also
controls when the memory controller causes the attached
memory to enter and exit the self-refresh state by sending an
indication to the memory controller, e.g., in the form of a
status channel. The fabric determines when the memories
should enter and exit self-refresh by evaluating the latency
requirements for all pending memory requests. Because the
fabric has knowledge of the required latency for all pending
memory requests and required latency to exit self-refresh,
greater management of power state transitions of the memo-
ries may results in additional power savings.

[0030] Embodiments may also provide for efficiency in
memory bandwidth by allowing memory requests to be
scheduled out of order; however this may resultin long sched-
uling latencies for some requests. To resolve such concern,
the fabric assigns a priority level to each isochronous memory
request, e.g., a high or low priority. When scheduling high
priority isochronous requests, the amount of out-of-order
scheduling allowed is less than what is acceptable when
scheduling best effort or low priority isochronous requests.
Limiting the amount of out-of-order scheduling for high pri-
ority requests ensures that the request latency requirement is
met. Because request priority is determined from the deadline
of the request, the fabric can determine immediately after a
request is scheduled what the priority levels of other pending
requests are for an isochronous device. Using the deadline
method the priority level of all pending requests change only
when the global timer increments.

[0031] Embodiments may also improve portability and
reuse of the sophisticated QoS memory scheduling algo-
rithms across multiple SoC implementations, in that intelli-
gent memory scheduling logic is incorporated in the fabric,
while technology specific memory controller logic may be
implemented within the memory controller.

[0032] Embodiments may also incorporate anti-starvation
algorithms into multiple arbitration points of the fabric. In
one embodiment, these anti-starvation algorithms include a
weighted age-based arbitration method used by an admit
arbiter and an oldest of available scheduling queues used in a
memory scheduler and request tracker. In addition, request
weights may be used to switch between different priority
levels at the arbitration points in the fabric and for switching
from scheduling read requests to write requests, in contrast to
fixed-priority arbitration in which requests from high priority
isochronous devices always win.

[0033] In an embodiment, the shared memory fabric
includes two arbitration points that are used for scheduling
requests being sent to the memory controller. The first arbi-
tration point is used to admit requests from the devices into
the shared memory fabric and is referred to as an “admit
arbiter.” The second arbitration point is used to schedule the
requests sent to the memory controller from the shared
memory fabric and is referred to as a “scheduler arbiter.”
[0034] Each device connected to the shared memory fabric
has a request interface that is connected between the device
and fabric. The request interface supplies information about
the request that can be used for QoS memory scheduling. In
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an embodiment, this information includes a memory address,
order ID field and an opcode field. For isochronous devices an
additional field called a request deadline field is provided to
indicate the required latency needed to complete the request.
Note that in some implementations of SoCs the memory
fabric interface may be connected to other fabrics or switches
which allows multiple devices to share a common request
interface.

[0035] Inone embodiment of an SoC, one or more request-
ing agents are designated as “real-time” cores, while one or
more requesting agents are designated as “auxiliary” cores,
which are provided on a best-effort basis. As an example, an
SoC may be provided to control industrial machinery, provide
life support functions, control an autonomous or semi-au-
tonomous vehicle (such as a crash-avoidance system), or
otherwise perform mission-critical or safety-critical func-
tionality. In this example, the SoC includes a dual-core pro-
cessor, with a first core acting as the real-time agent, and the
second core acting as the auxiliary (best-effort) agent. Design
considerations may drive a requirement that the real-time
agent perform with a guaranteed QoS so that it does not fail in
its control function. The auxiliary agent may perform other
tasks that do not require a guaranteed QoS, such as providing
a user interface, reporting function, or other support function
that does not have critical timing.

[0036] In certain applications, the auxiliary agent may pro-
vide excess traffic that temporarily “floods” or otherwise
overwhelms the uncore fabric so that the real-time agent is
temporarily unable to operate on its required guaranteed QoS.
For example, if the auxiliary agent provides a user interface,
auser’s interaction with the interface may provide a stream of
data that overwhelms the uncore fabric so that real-time traffic
is temporarily bottle necked. This may result in a situation
where the real-time agent encounters a failure condition.
[0037] To avoid such bottle necks, the uncore fabric may be
divided into two or more separate virtual channels. Separa-
tion into virtual channels may be accomplished by appending
to each data packet flowing through the uncore fabric header
information, including the agent that either originated or is to
receive the data, and in some cases the device or peripheral
that either originated or is to receive the data. For example,
header information may designate a particular packet as
originating from “core 0” (in this example, the real-time
agent) and routed to DRAM. Another packet may be desig-
nated as originating from “core 1 (in this example, the aux-
iliary agent) and routed to a user display. In this case, the
arbiters described herein may provide preemptive priority to
the first packet over the second packet. In another example,
traffic from core O to a certain peripheral may be given
increased priority, but may not be so critical as to warrant
preemptive scheduling. Advantageously, dividing traffic into
multiple virtual channels enables of any suitable priority
scheme according to the requirements and design parameters
of a particular application.

[0038] Inthe FIGURES below, FIGS. 1-9 describe selected
portions of the operation of a memory fabric, including a
priority and QoS scheme. FIGS. 10 and 11 provide example
block diagrams of an SoC and application thereof. FIG. 12
provides an example block diagram of an SoC in situ, includ-
ing a shared uncore fabric, a real-time agent, and a best-effort
agent. FIGS. 13 and 13 A provide a flow chart of a method of
providing multiple virtual channels in an uncore fabric.
[0039] FIG. 1 is a block diagram of a portion of a shared
memory fabric according to one or more examples of the
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present Specification. As shown in FIG. 1, a shared memory
fabric 100 is coupled between a plurality of agents 115-0-
115-3 (generically agent 115) and a memory controller 170.
Note that in some embodiments more than one memory con-
troller is present. While not shown for ease of illustration, the
memory controller may be coupled to a system memory such
as a dynamic random access memory (DRAM) or other sys-
tem memory.

[0040] Inthe embodiment shown in FIG. 1, different types
of agents are coupled to shared memory fabric 100. Specifi-
cally, the different agents include a first class of service (COS)
agent type, namely so-called isochronous agents and a second
class of service agent type, namely so-called best effort COS
agents. As seen, each of the agents 115 may communicate
request information to an admit arbiter 120. In turn, admit
arbiter 120 may communicate corresponding control type
information back to the agents. In addition, the isochronous
agents (namely agents 115-1 and 115-3 in the embodiment of
FIG. 1) further include an additional link to communicate
request deadline information to admit arbiter 120. To this end,
these agents may be further configured to receive global tim-
ing information from a global timer 150, also coupled to both
admit arbiter 120 and a scheduler arbiter 130.

[0041] Inthe embodiment of FIG. 1, admit arbiter 120 may
be configured to receive incoming requests from agents 115
(and request deadline information from isochronous agents)
and to select appropriate requests to admit to scheduler arbiter
130. To aid in its arbitration process, admit arbiter 120
receives configuration information from a set of configuration
registers 160, further coupled to scheduler arbiter 130. In
addition, a request and coherency tracker 140 may be coupled
to arbiters 120 and 130. In general, tracker 140 may include
multiple scoreboards 142, a data buffer 144, and correspond-
ing address tag storage 145, control queues 146 and other
resources such as various buffers, logic such as resource
allocation logic 148, and so forth. In some implementations,
the tag array and data buffer may be located elsewhere than
the tracker. It should be noted that the block diagram of FI1G.
1 is intended to be non-limiting, and that other elements may
be present in various embodiments.

[0042] The shared memory fabric may include certain finite
resources that are first allocated before a request from a
requesting agent can be granted by the admit arbiter. These
resources include available entries in the internal data buffer
and address tag storage. Other finite resources include avail-
able entries in the memory scheduler and request tracker
scoreboards. There is a one-to-one correspondence in
resources for the fabric’s internal data bufter, tag array and
memory scheduler scoreboard. In an embodiment, these
resources are allocated to a predetermined region (e.g., a
cache line width such as 64 bytes) of memory. Each active
request is also allocated its own entry in the request and
coherency tracker, but multiple requests to the same region in
memory share the same entry in the data butler, tag array and
memory scheduler scoreboard. Although it is possible for
more than one request to be allocated to the same data buffer,
tag array, and scheduler scoreboard entry, only one read
request is scheduled to the memory controller for all out-
standing read requests in the request and coherency tracker.
[0043] The request interface for all devices connects to the
admit arbiter of the fabric. Isochronous devices use the dead-
line field of the request bus to indicate to the fabric the
required latency to complete the request. The fabric sends a
global timer value to all isochronous devices that are attached
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to the fabric. For each request to be sent to the fabric, the
isochronous device, e.g., in a deadline logic, determines the
required latency needed for the request to complete and adds
the value to the current value of the global timer in order to
create the request deadline. Different methods may be used
by different isochronous devices to determine the required
latency for the request, but in one embodiment, all isochro-
nous devices indicate to the fabric the request latency using a
deadline field of the request interface. In other embodiments,
the uncore fabric may assign a deadline on behalf of agents
that require real-time QoS. Specific methods may vary, but
one example may be that by default, the uncore fabric assigns
a fixed deadline of x microseconds from current time for all
requests from the real-time core. In this example, x could be
a value derived from a configuration register.

[0044] In an embodiment, the admit arbiter has two levels
of priority. There is a high priority path in the arbiter that is
used for urgent isochronous requests. A request is considered
urgent if the requesting agent is configured as an isochronous
agent and the deadline field of the request is less than a value
stored in a configuration register specifying a threshold value,
referred to as an “urgency threshold value.” The admit arbiter
also has a low priority path used for best effort requests and
for isochronous requests that are not considered urgent. The
final level of arbitration is done using a priority selector that
selects between the winner of the high priority arbitration and
the winner of the low priority arbitration.

[0045] In one embodiment, the admit arbiter final selector
has two modes that can he selected using a configuration
register. The first mode is a fixed priority mode in which,
assuming at least one high priority request is present at the
input of the admit arbiter, the selector chooses the winner of
the high priority arbitration path before choosing the winner
of the low priority arbitration path. The second mode of the
final selector is a weighted round robin mode in which the
final selector switches between granting the high priority path
to granting the low priority path after N number of high
priority requests are granted. The selector then grants M
number of low priority requests from the winner of the low
priority path before switching back to granting requests from
the high priority path. In an embodiment, the values for N and
M may be referred to as “grant counts,” and are specified
using configuration registers.

[0046] FIG. 2 is a block diagram disclosing further details
of an admit arbiter according to one or more examples of the
present Specification. As shown in FIG. 2, arbiter 120
receives incoming requests from the requesting agents. In this
illustration, requesting agents 115-0 and 115-1 are non-iso-
chronous or best effort agents, while agents 115-2 and 115-3
are isochronous agents. Note that the isochronous agents may
include or be coupled to deadline determination logic 118 that
is used to calculate required latency for requests. In an
embodiment in which at least some of the agents are third
party IP blocks, this logic can be implemented in wrapper or
interface logic that couples the agent to the shared memory
fabric.

[0047] In the embodiment shown, admit arbiter 120
includes a first age-based arbiter 122 and a second age-based
arbiter 124, which correspond to low and high priority age-
based arbiters, respectively. Thus as seen, requests from all
agents 115 are provided to first arbiter 122, while only
requests from isochronous agents 115-2 and 115-3 are pro-
vided to second arbiter 124. To determine whether a particular
request from one of the isochronous agents is of an urgent
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status, a pair of deadline checker logics 120-1 and 120-%, are
each coupled to receive requests from a corresponding one of
the isochronous agents, as well as global timing information
from global timer 150. Based on a comparison of the deadline
information provided by the agent and the global timing
information, an indication of an urgent status for a corre-
sponding request can be provided to second arbiter 124.
[0048] In operation, arbiters 122 and 124 operate to select
an arbitration winner from a set of incoming requests. In the
embodiment shown, this determination is based in part on
information from an age storage 126 that stores an age value
for each of the agents. The corresponding winners from each
of'the arbiters may be coupled to a priority arbiter selector 125
that selects based on mode of operation a corresponding
request to provide to scheduler arbiter 130 (FIG. 1). To this
end, selector 125 may select a request for admission to the
scheduler arbiter based at least in part on information in a
priority storage 129. It should be noted that the block diagram
of FIG. 2 is intended to be non-limiting, and that other ele-
ments may be present in various embodiments.

[0049] Weighted Age-Based Arbitration Details

[0050] The age-based algorithm implemented by the admit
arbiter is such that the requesting agent which has waited the
longest since last being granted by the arbiter will be given the
highest priority level. Once an agent has received the highest
priority level, the priority level for that agent will not change
unless that agent has been granted by the arbiter. In this way,
starvation issues that may occur in certain embodiments of
round robin arbitration may be avoided by ensuring that the
priority level for a requesting agent can only increase in
priority level until that requesting agent has been granted by
the arbiter.

[0051] The admit arbiter also allows for agent weights to be
assigned to all requesting agents. Weights are used to allocate
a percentage of the request bandwidth for each requesting
agent. In an embodiment, a weight value is specified for each
agent via a value stored in an agent weight configuration
register. In one non-limiting example, the percentage of
request bandwidth that is allocated to an agent is equal to the
agent weight value divided by the sum of weights for all
agents. In another example, weight for real-time core can be
higher than other cores to give better QoS for a real-time core.
[0052] Weighted Age-Based Algorithm

[0053] The admit arbiter weighted age-based algorithm is
based on the relative age of when a requesting agent was last
granted by the arbiter. For each requesting agent that connects
to the admit arbiter, there is one age counter instantiated and
one weight counter instantiated.

[0054] Both the high priority and low priority arbitration
paths in the admit arbiter share common age and weight
counters for the agents connected to the admit arbiter. The
updating of the requesting agent’s age and weight registers is
determined by the final selector (namely the priority arbiter
selector 125) after choosing the final arbitration winner.
[0055] Inanexample, the age registers (e.g., of age storage
126) for all requesting agents are first initialized responsive to
receiving a reset input to the admit arbiter. When reset asserts,
the age registers are initialized to unique values in a range
starting at 0 and ending at a value of N-1, where the value of
N equals the number of request interfaces connected to the
admit arbiter.

[0056] Prior to any requests being asserted by the request-
ing agents, the agent weight counters (e.g., of weight storage
128) are initialized from programmed values in the agent
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weight configuration registers of the fabric. Once the weight
counters initialize, the counter for an agent decrements by one
for each request granted for that agent. Once an agent’s
weight counter reaches zero and if the agent is granted again
by the admit arbiter, the counter is reloaded with the value
programmed in the configuration register for that agent’s
weight.

[0057] In one embodiment, the age-based arbitration
method performed in first and second arbiters 122 and 124
uses a request bit vector (each arbiter having its own vector)
to determine the winner of the arbitration. When a request is
asserted for an agent the arbiter uses the age value for the
requesting agent as the priority level of the request. The
priority levels for the arbiter and thus the range of the bit
vector width is from 0 to N-1. The age-based algorithm
guarantees that the age values for all requesting agents are
always unique and therefore there is always only one winner
per arbitration.

[0058] The arbiter updates the age registers for all agents
when the weight counter for the winner of the request arbi-
tration has reached zero. In one embodiment, the age registers
for all agents are updated according to the following rules that
guarantee the age values for the agents are always a unique
value:

[0059] a. Rule 1: when the agent’s age equals the age of
the winner of the arbitration, the age register for that
agent is set to zero to indicate youngest request age or
lowest priority.

[0060] b. Rule 2: when the agent’s age is less than the
winner of the arbitration, the agent’s age register is
incremented by 1.

[0061] c. Rule 3: when the agent’s age is greater than the
winner of the arbitration, the agent’s age register does
not change.

[0062] FIG. 3 is a flow diagram of a method for updating
age values for an agent upon determining an arbitration win-
ner according to one or more examples of the present Speci-
fication. This method may be performed in one example to
update age values when the winner’s weight value equals
zero. As seen, method 200, which may be performed by the
priority arbiter selector, begins by determining whether the
age value of an agent equals the winner value (decision block
210). If so, control passes to block 215 where the age value for
this winning agent can be updated to the lowest priority level,
which in an embodiment may be equal to zero. From both of
block 215 and decision block 210, control passes to decision
block 220 where it can be determined whether the age value
is less than the winner value (namely corresponding to the age
of the agent). If so, control passes to block 225 where the
agent’s age value can be updated, e.g., incremented. I[f none of
these conditions occur, the agent’s age is greater than the
winner of the arbitration, and as such the age value for this
particular agent does not change. Note that method 200 can be
performed for each agent at the conclusion of each arbitration
round when a winner is selected. It should be noted that the
flow chart of FIG. 3 is intended to be non-limiting, and that
other operations may be present in various embodiments.

[0063] FIG. 4 is a block diagram of an admit arbiter state
machine according to one or more examples of the present
Specification. As shown in FIG. 4, state machine 250, which
may be present within admit arbiter 120 of FIG. 1, first enters
into an initialization (INIT) state 255 from a reset assertion.
From this state, control passes into an active state 260 in
which it remains so long as no requests are received. When a
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request is received and a granted agent has a weight of zero,
control passes to an update age state 270 in which age stor-
ages are updated and a weight counter for an arbitration
winner is reloaded to a predetermined value, e.g., obtained
from a configuration register. Control then passes to one of
active state 260, decrement agent weight state 280, or remains
at update age state 270, depending upon whether an addi-
tional request is present and a value of the granted agent’s
weight.

[0064] Similarly at decrement agent weight state 280, a
winner arbitration weight counter is decremented. But here
no weight counter reloads are performed. It should be noted
that the state machine block diagram of FIG. 4 is intended to
be non-limiting, and that other states and operations may be
present in various embodiments.

[0065] The states and descriptions of the state machine of
FIG. 4 includes the following:

State Description

Init Reset is asserted:
Agent weights reloaded to values in configuration registers
Agent age registers set to unique Agent ID values

Active No Agent Requests:
Agent age and weight registers remain in same state
Decrement Requests asserted from one or more agents.

Age Winner of arbitration weight counter is non-zero.
Weights Weight counter of winner is decremented.
Update Age Requests asserted from one or more agents.
Winner of arbitration weight counter is zero.
Agent age registers updated.
Weight counters for winner of arbitration reload to value in
configuration registers.

[0066] FIG. 5 is a flow diagram of a method 300 for per-
forming first-level arbitration in an admit arbiter according to
one or more examples of the present Specification. As shown
in FIG. 5, method 300 may be performed within the admit
arbiter both for purposes of performing arbitration between
incoming memory requests, as well as updating various age
and weight values based upon an arbitration. As seen in FIG.
5, method 300 may begin by receiving a memory request from
a device coupled to the fabric (block 310). More specifically
to illustrate operation with regard to deadline-based requests
from a latency-sensitive device, we can assume in one
example that this memory request includes or is associated
with a deadline value and is thus provided from an isochro-
nous or latency-sensitive device. As one such example this
latency-sensitive device is a media player. As seen, control
passes to decision block 315, where it can be determined
whether the deadline value is greater than a latency threshold.
In an embodiment, this latency threshold is a minimum
latency from the time a request is received until it is com-
pleted (e.g., by provision of requested data back to the
requesting device provision of a write completion for a write
request). Note that the deadline value is in one embodiment a
maximum latency that the requesting device can tolerate for
handling the memory request.

[0067] Ifit is determined that the deadline value is greater
than the latency threshold, control passes to block 3205,
where the memory request is forwarded to a low-priority
arbiter. Otherwise control passes to block 320a, where the
memory request is forwarded to a high-priority arbiter.
[0068] Notethe presence of parallel paths such that at block
325 (blocks 325a and 325b), an arbitration is performed in the
corresponding arbiter that is based on a bit vector associated
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with the age values for the devices that provide requests to the
corresponding arbiter. Next at block 330 (blocks 330a and
3305), the winning memory requests are forwarded to a final
arbiter. At block 335, a final arbitration is performed to select
the winner memory request.

[0069] Depending upon a mode of configuration for this
final arbiter, the winner request can be selected from the high
priority arbiter only, or a weighting between high priority and
low priority paths may occur. Thus at this point the winning
memory request is forwarded to a memory scheduler score-
board where it can be stored in an entry to thus enable arbi-
tration in the memory scheduler arbiter to consider this
memory request.

[0070] Various updating operations may further be per-
formed responsive to selection of a winner by the final arbiter.
Specifically, at decision block 340 it can be determined
whether the weight value of the winner agent equals zero. If
s0, control passes to block 345 where this weight value can be
updated to its configured value, e.g., stored in a configuration
register of the shared memory fabric. Control next passes to
block 350 where the age values for all agents can be updated
(block 350). To this end all non-winning agents may have
their age value incremented, while the winning agent may
have its age value set to a lowest priority value. e.g., zero. If
instead at decision block 340 it is determined that the weight
value of the winner agent is not zero, control passes to block
355 where the weight value of the winner agent is decre-
mented. It should be noted that the flow chart of FIG. 5 is
intended to be non-limiting, and that other operations may be
present in various embodiments.

[0071] Shared Memory Fabric Shared Resource Allocation
[0072] The memory fabric includes logic to allow for fair
allocation of the shared resources within the fabric, e.g., the
resource allocation logic 148 of FIG. 1. In one embodiment,
these shared resources are the fabric’s internal data buffer,
address tag storage and request tracker scoreboards. Since
there are no dedicated resources for any of the requesting
agents, mechanisms may limit the number of outstanding
requests that are pending in the fabric for each of the agents,
while also allowing entries to be reserved for an agent, e.g., by
reserving virtual entries in these shared resources. The fabric
allows for the specification of agent limits to prevent any one
requesting agent from using up all the available shared
resources of the fabric.

[0073] A portion of the memory scheduling algorithm deals
with minimizing the performance impact of read-to-write
turnaround times for memory technologies. In order mini-
mize the number of times the memory scheduler switches
between scheduling read requests to scheduling write
requests, a flush pool is used for queuing write requests. The
flush pool allows write requests targeting memory to be accu-
mulated in the memory fabric until enough write requests
have been received to allow the fabric’s memory scheduler to
send the write requests to the memory controller as a burst of
back-to-back requests. In order to prevent all available
resource in the fabric to be used up by the flush pool, a flush
limit can be specified. When specified, the flush limit causes
the fabric to block new write requests from all agents at the
admit arbiter until the number of entries in the flush pool is
less than the value programmed for the flush pool.

[0074] Memory Fabric Flush Pool for Write Requests
[0075] When a write request is received from a requesting
agent, the fabric transfers the write data from the requesting
agent to an internal data buffer. Once the new data is written
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to the fabric’s internal data buffer and the request is retired
from the agent’s point of view, the buffer entry is considered
to be in the “flush pool”. For coherent memory traffic the
fabric may receive snooped requests from the requesting
agents. Snooped requests can be either read or write requests
to memory. When the fabric receives a snooped read or write
request from a requesting agent, it sends a snoop request to all
caching agents coupled to the fabric. The caching agents will
respond to a snooped request that hits in their cache and will
return the write back (WB) data for a cache line that has been
modified by the caching agent. The WB data is then written
into the fabric’s internal data buffer and is then considered to
be included in the flush pool of write requests targeting
memory. When the number of entries in the flush pool reaches
the value programmed for the flush limit, new write requests,
e.g., as determined by decoding of the request opcode field,
are blocked at the admit arbiter.

[0076] Memory Fabric Reservations and Limits

[0077] The memory fabric allows reservations to be speci-
fied for any agent using agent reservation configuration reg-
isters. Using these configuration registers the user can specify
the number of entries in the memory fabric to reserve for each
agent. The reserved entries for an agent are the first entries
allocated to the agent and the last entries to be retired for the
agent. In order to determine if an agent’s reserved entries are
being allocated or retired, each agent has a request counter
that is compared against the value specified in the configura-
tion register. If the value in the request counter is less than or
equal to the value in the configuration register, the agent’s
reserved entries are being used.

[0078] The mechanism used to provide agents with
reserved entries varies over the full threshold limit as reserved
entries are allocated or freed for requesting agents. Initially,
the full threshold for all agents is calculated by subtracting the
total number of reserved entries for all agents (e.g., as speci-
fied by configuration registers) from the total number of
entries in the scoreboards. As reserved entries are allocated to
an agent, an accumulator is used to adjust the full threshold
based on the total number of reserved entries that have been
used. Agents that have used their reserved entries or do not
have reserved entries specified are blocked when the total
number of pending requests in the memory fabric reaches this
adjusted full threshold. Agents that have not used their
reserved entries are not blocked by the admit arbiter until they
have used all their reserved entries and the total number of
pending requests reaches the adjusted full threshold limit.
[0079] Agent limits may also be specified in configuration
registers of the memory fabric. These agent limits may be
disabled by setting the request limit for an agent to zero, in an
embodiment. When agent limits are disabled any agent may
be allocated all existing entries of the request tracker. In order
to prevent a single agent from using all request tracker entries,
a request limit can be specified for the agent. When the
agent’s request counter reaches the request limit specified for
the agent the request input to the admit arbiter for that agent
is disabled. When the request tracker retires requests for the
agent and the agent’s request counter becomes less than the
agent’s request limit, the request input to the admit arbiter for
that agent is enabled.

[0080] FIG. 6 is a block diagram of a portion of a resource
allocation logic according to one or more examples of the
present Specification. As shown in FIG. 6, logic 360 may be
used to control allocation of various resources shared
between all of the agents. As seen, an adder 368 determines a
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total number of reserved entries based on agent reserve values
received from a configuration storage 365. From this total
reserve entry value, a number of tag entries are subtracted at
subtracter 370. The resulting value is provided through a
flip-flop 372 to an adder 375 which combines this value with
anumber of reserved entries used, received from flip-flop 374
that is alternately incremented and decremented based on
increment and decrement reserve count values, described
further below.

[0081] As such, the sum generated by adder 375 corre-
sponds to an adjusted full threshold value that is provided to
one input of a comparator 382 that further receives a number
of allocated tag entries from flip-flop 376. If it is determined
that the adjusted full threshold value is less than or equal to
this number of allocated tag entries, a full flag is generated
and used to mask requests of agents that have no reserve
entries or have used their reserve entries.

[0082] As further seen, another comparator 380 is config-
ured to receive a given requestor’s reserve configuration
value and a request counter value for that requestor (from
flip-flop 378). The comparator thus generates an indication as
to whether that requester has any free reserved entries, which
is provided as an input to a pair of AND gates 384 and 385 that
further receive indications of a channel grant and a retirement
of an entry for that channel. As such, these AND gates thus
generate, respectively the increment and decrement values for
the corresponding requestor. Similar logic and operations are
performed for the other requestors, with all increment and
decrement reserve values being provided to corresponding
OR gates 386 and 387 that respectively generate the incre-
ment reserve count value and the decrement reserve count
value.

[0083] Finally, the request counter value for a requestor is
provided to another comparator 390 along with a configured
limit value for that requestor to thus determine whether this
requestor has reached its limit. If so, an indication of this limit
is used to mask off the requests from this agent for further
arbitration. It should be noted that the block diagram of FIG.
6 is intended to be non-limiting, and that other operations may
be present in various embodiments.

[0084] Shared Memory Fabric Scheduler Arbitration
Details
[0085] Embodiments may incorporate multiple scheduling

algorithms to enhance reuse across multiple SoCs that sup-
port different memory technologies. The fabric’s memory
scheduler logic contains advanced QoS scheduling algo-
rithms, and is also optimized to minimize performance bottle-
necks that are commonly found in most memory technolo-
gies. The typical performance bottlenecks that occur using,
e.g., DRAM memories include entering and exiting of low
power memory states, read-write turnaround times, consecu-
tive memory accesses to the same DRAM bank but to differ-
ent rows of memory, and consecutive memory accesses to
different DRAM memory ranks By including complex out-
of-order scheduling algorithms in the shared memory fabrics
scheduling logic, the fabric can be adapted to many different
SoCs by attaching simplified technology-specific constraint
solvers to the fabric to support their unique requirements for
memory technologies or configurations.

[0086] In other embodiments, the methods described in
FIGS. 7-9 may be wholly or partially replicated in memory
controllers or exclusively implemented by memory control-
lers.
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[0087] In addition to improving the portability of the
memory scheduling logic, embodiments also provide predict-
ability of memory request latency in that the combination of
advanced out-of-order scheduling algorithm with QoS sched-
uling logic results in improved predictability of the maximum
request latency, in that the memory controller has much less
flexibility to reorder memory requests.

[0088] Once a request is granted by the admit arbiter, it is
enqueued into the scheduler scoreboard. The scheduler score-
board stores information about the request that it uses to
forward the request to the memory controller in order to
perform a read or write to memory. In one embodiment, the
information includes request address, request length, com-
mand type (read or write), class of service category, memory
channel, memory bank, memory rank, and page hit/miss sta-
tus.

[0089] Memory Scheduler Oldest of Available Queue
[0090] Embodiments provide for out-of-order page aware
scheduling that is based on a history of requests sent to the
memory controller, although the fabric has no direct knowl-
edge of the true state of the memory bank. More specifically,
the fabric’s memory scheduler uses the scheduler scoreboard
as a history buffer of requests that have been sent to memory.
Because the scheduler scoreboard is used to reflect the history
of requests, it seeks to retain the status information for a
request in the scoreboard as long as possible. The memory
scheduler uses a structure called the oldest of available queue
to determine the oldest scoreboard entry that is available to be
reallocated.

[0091] The oldest of available queue is also used by the
memory scheduler to avoid starvation issues that can arise due
to the out-of-order scheduling of the requests to memory. The
fabric’s memory scheduler uses the oldest of available queue
to determine how many requests of the same class of service
category and type, read or write, have bypassed the oldest
pending request to memory. Once the number of requests that
have bypassed the oldest request reaches a preprogrammed
limit (e.g., set by software) the fabric’s memory scheduler
disables out-of-order scheduling of requests and grants the
oldest pending request.

[0092] As mentioned above, the scheduler keeps track of
the relative age of all requests in its scoreboard using the
oldest of available queue. When a request targeting a new
memory address is granted by the admit arbiter an index
pointer into the scheduler scoreboard is enqueued into the tail
entry of the oldest of available queue which is then considered
to be the newest request. When all pending requests have
completed transferring data to/from the requesting agents and
to/from the memory controllers, a scoreboard entry is avail-
able to be reallocated and can be reallocated for a new request
granted by the admit arbiter. Due to the out-of-order sched-
uling, the oldest entry in the oldest of available queue may not
always be available for reallocation.

[0093] To select the scoreboard entry to be re-allocated to a
new request, the scheduler detects whether all outstanding
requests to a scoreboard entry have completed. In one
embodiment, the scheduler uses a request bit vector having a
length equal to the number of scoreboard entries to indicate
which entries are available for reallocation. A bitsetto 1 inthe
request bit vector indicates the entry corresponding to that bit
position is available for reallocation. The request bit vector is
then sent to the oldest of available queue. The oldest of
available queue uses the indexes stored in the queue to select
the bit in the request vector corresponding to the request for
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that entry of the queue. Each entry of the queue is associated
with a unique bit in the request vector and a “find first”
function is performed starting from the oldest entry in the
queue to determine the oldest available request to be reallo-
cated. After determining the oldest available entry to be real-
located, the scoreboard index for that entry is output from the
oldest of available queue.

[0094] FIG. 7 is a block diagram of scoreboard index gen-
eration logic according to one or more examples of the
present Specification. As shown in FIG. 7, logic 400 includes
a plurality of flip-flops 410-0-410-7, coupled in a serial con-
figuration to store a corresponding scoreboard index. As seen,
flip-flops 410 are configured to receive a scoreboard index
corresponding to an index pointer into a scoreboard of the
scheduler which is also the index to the tag array and data
buffer. Flip-flops 410 may be configured in an order from
newest (namely flip-flop 410-0) to an oldest (namely flip flop
410-7). In a non-limiting example, each flip flop may be a
D-type flip-flop. In other embodiments, any suitable storage
element may be used.

[0095] Asseen, an output of each flip-flop 410 is coupled to
one of a corresponding plurality of multiplexer 420-0-420-7,
each of which is further configured to receive a bit of a
scoreboard request vector. As such, this bit vector provides an
indication. e.g., via a set bit to indicate that a corresponding
scoreboard entry is available for reallocation. Using the out-
puts from multiplexers 420, a grant signal can be generated
either directly from the comparator output (as from compara-
tor 420-) or via a corresponding one of logic gates 430-0-
430-n (which in the embodiment shown are configured as
AND gates having a first input received from a corresponding
multiplexer 420 and a second input corresponding to an
inverted output of a corresponding OR gate 425-0-425-(n-
2)). In this way only a single one of the grant signals may be
active at a time.

[0096] As further seen in FIG. 7, the grant output signals
may be coupled to a corresponding one of a plurality of AND
gates 435-0-435-n, also configured to receive an incoming
index signal. In turn the outputs from AND gates 435 may be
coupled to an OR gate 440 to thus output a scoreboard index
corresponding to the oldest available entry such thata “1-hot”
multiplexer function is performed to provide a “one hot”
multiplexing of the scoreboard index of the granted request. It
should be noted that the block diagram of FIG. 7 is intended
to be non-limiting, and that other elements may be present in
various embodiments.

[0097] Shared Memory Fabric Memory Scheduling Details
[0098] In an example, the fabric memory scheduler con-
tains three state machines that work together to schedule
requests sent to the memory controller.

[0099] FIG. 8 is a block diagram of a state machine for a
scheduler arbiter according to one or more examples of the
present Specification. As shown in FIG. 8, state machine 500,
which may be performed in hardware, software and/or firm-
ware such as scheduler arbiter 130 of FIG. 1, may begin by
entering into an initialization state INIT upon reset of the
system. Control next passes into a self-refresh state machine
510 that includes an “enter” self-refresh state 512, a “request”
self-refresh state 513, and an “exit” self-refresh state 516.
[0100] As seen in FIG. 8 from exit self-refresh state 516,
control passes into a “read/write” grant state machine 520 that
in turn includes a “grant read request” state 522 and a “grant
write request” state 524. From these states control in turn
passes into a “read” state machine 530 that includes a plural-
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ity of states, namely a “bypass grant” state 532, a “high
priority read request” grant state 534, a “best effort” grant
read request state 536, and a “low priority” isochronous grant
read request state 538. It should be noted that the block
diagram of FIG. 8 is intended to be non-limiting, and that
other elements and modifications may be present in various
embodiments.

[0101] Self-Refresh State Machine

[0102] Embodiments may control when the memories are
allowed to enter and exit the low power memory state, also
referred to as the self-refresh state. The self-refresh state
machine is responsible for controlling when to send an indi-
cation to the memory controller to enter or exit self-refresh.
For best effort read requests, the self-refresh state machine
transitions immediately to the exit self-refresh state. For iso-
chronous read requests, the memory scheduler checks the
request deadline to determine if it is to exit self-refresh in
order to satisfy the required read latency for the request. To
determine if exiting self-refresh is required for meeting the
isochronous read requirement, the memory scheduler sub-
tracts the deadline of the request from the current value of the
global timer. The result of the subtraction is checked against
a configuration register in the fabric that is programmed to
reflect the worst case latency needed for the memory control-
ler to exit self-refresh and the fabric to return data to the
request agent.

[0103] For write requests, the fabric counts the number of
dirty entries in the flush pool and checks the result against a
programmable threshold value, termed the flush high water
mark. If the number of dirty entries exceeds the value of the
flush high water mark, the self-refresh state machine passes
control to the exit self-refresh state. In addition, the fabric
checks for read/write conflicts to the same tag address in
which the request is blocked by the admit arbiter. When the
fabric determines that a request is blocked by an address
conflict, agent limit or if the request tracker or memory sched-
uler scoreboards are full, control passes from the self-refresh
state machine to the exit self-refresh state. The fabric also
contains a configuration register that can be programmed to
disable entering self-refresh, in an embodiment.

[0104] When the memory scheduler sends an indication to
the memory controller to exit self-refresh, requests may begin
to be sent to the memory controller. The memory scheduler
continues to send an indication to the memory controller to
remain out of self-refresh while it is actively sending memory
requests to the memory controller. When the memory sched-
uler completes sending all read requests to the memory con-
troller and the number of write requests in the flush pool is
below the casual high water mark limit, the memory sched-
uler transitions to the request self-refresh slate.

[0105] In the request self-refresh state if no new requests
are granted by the admit arbiter the state machine transitions
to the “enter self-refresh” state after a programmable delay
value called the “enter self-refresh delay” is met. In an
embodiment, this delay is programmed in configuration reg-
isters in the fabric. If new requests are granted by the admit
arbiter, the self-refresh state machine may transition to the
“exit self-refresh” state under certain conditions. If anew best
effort read request is received or if a write request is received
that results in the number of entries in the flush pool exceed-
ing the number programmed in the flush high water mark
configuration register, the self-refresh state machine transi-
tions from the request self-refresh state back to the exit self-
refresh state. If an isochronous read request is received when
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the state machine is in the request self-refresh state, the dead-
line value of the request is checked against a programmed
value called the “enter self-refresh” threshold. If the deadline
latency is greater than the enter-self-refresh threshold, the
state machine continues in request sell-refresh state if the
deadline latency for a request is below the enter self-refresh
threshold, the state machine will transition to the exit self-
refresh state.

[0106] The self-refresh state machine drives status to the
memory controller to remain out of self-refresh until the state
machine transitions to the enter self-refresh state. Once in the
enter self-refresh state, the state machine sends an indication
to the memory controller to enter self-refresh.

[0107] Table 2 below is a description of a self-refresh state
machine in accordance with an embodiment of the present
Specification.

Current Next

State Condition Description State Outputs

Unknown Reset Reset pin asserted Enter Fabric drives
Self indication to
Refresh memory

controller to

enter self
refresh
Enter Self Memory  Number of flush Enter Fabric drives
Refresh Scheduler entries less than Flush ~ Self indication to
Idl HWM and no Best Refresh memory
Effort Read Requests controller to
and no ISOC read enter self
requests with refresh
deadline times less
than Exit Self Refresh
Threshold
Enter Self Exist Self Number of flush Exit Self Fabric drives
Refresh Refresh 1  entries greater than Refresh indication to
Flush HWM or Best memory
Effort Read Requests controller to
or ISOC read requests exit self
with deadline times refresh.
less than Exit Self
Refresh Threshold or
ISOC read request
blocked by Agent
Limit or Fabric
Scoreboard full
indications
Exit Self Memory  Isochronous or Best Exit Self Fabric drives
Refresh Scheduler Effort read requests Refresh indication to
Active pending or number of memory
Flush Pool entries controller to
above Casual HWM Exit Self
Refresh
Exit Self Request ~ No Isochronous or Request Fabric drives
Refresh Self Best Effort read Self indication to
Refresh requests pending and ~ Refresh memory
number of Flush Pool controller to
entries is below Exit Self
Casual HWM Refresh
Request Exit Self  Received Isochronous  Exit Self Fabric drives
Self Refresh 2 read request with Refresh indication to
Refresh deadline less than memory
Enter Self Refresh controller to
Threshold or Received Exit Self
Best Effort Read Refresh
request spending
number of Flush Pool,
entries is now above
Flush HWM
Request Request  No Best Effort read Enter Fabric drives
Self Self requests received and  Self indication to
Refresh Refresh number of Flush Pool ~ Refresh memory

entries is blow Flush controller to
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-continued
Current Next
State Condition Description State Outputs
HWM and Enter Self Enter Self
Refresh timer is Refresh

greater than Enter Self

Refresh Delay value
[0108] Read/Write Grant State Machine
[0109] Inanembodiment, the memory scheduler uses con-

figurable threshold values to specify when to start and stop
transferring a burst of write requests to the memory control-
ler. The memory scheduler may perform different types of
transfers of write data to memory. e.g., a high priority transfer
and a low priority transfer, also termed herein as a high
priority flush of write requests and casual flush of write
requests to memory, respectively. When the number of entries
in the flush pool reaches or exceeds a threshold value (the
flush high water mark), the memory scheduler begins sched-
uling a high priority write flush to memory and begins send-
ing write requests to the memory controller. The memory
scheduler continues to schedule write requests using the high
priority flush mechanism until the number of entries in the
flush pool reaches or is less than a threshold value (the flush
low water mark).

[0110] A casual flush may also be performed by the fabric
memory scheduler. A casual flush is triggered when the
memory scheduler has completed sending all read requests to
the memory controller and the number of entries in the flush
pool exceeds a threshold value (the casual flush limit). In an
embodiment, the casual flush limit can be typically set lower
than the high water mark, but greater than or equal to the low
water mark, for performance reasons. In some cases this
casual flush limit can be set to 0 to flush all write data to
memory. Once the last read request is sent to the memory
controller, if the number of entries in the flush pool is above
the casual flush limit, a counter called the casual flush timer
starts incrementing every' clock cycle. I[f no new read requests
to memory are received by the fabric and the casual flush
timer reaches the value specified by the casual flush delay,
which is a threshold stored in a configuration register, the
memory scheduler begins sending write requests to the
memory controller. This casual flush continues until the num-
ber of entries in the flush pool is less than the casual flush limit
or until a new read request is received by the fabric.

[0111] Theread/write grant state machine is responsible for
switching from granting read requests to granting write
requests. In an embodiment, the memory scheduler is config-
urable to allow write requests to have priority over read
requests or to use weights when switching between read
requests and write requests (in order to prevent starvation of
reads when the system is saturated by write requests). When
weights are enabled, the memory fabric uses configuration
registers to specify the read and write weights independently.
[0112] Table 3 below is a description of a read/write grant
state machine in accordance with an embodiment of the
present Specification.

Current State Condition Description Next State Outputs
Unknown Reset Reset Pin asserted ~ Grant Read  Memory
Requests scheduler
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-continued -continued
Current State Condition Description Next State Outputs Current State Condition Description Next State Outputs
sends Read greater than LWM
Requests to and read/write
Memory weights enabled
Controller and write count is
Grant Read  Grant Read Number of flush Grant Read  Memory greater than 0
Requests Requests  entries less than Request scheduler Grant Write  Grant Read Pending read Grant Read  Memory
Flush HWM and sends read Requests Requests  requests and Request scheduler
read/write weights requests to number of flush sends read
disabled or number memory entries less than requests to
of flush entries is controller Flush LWM or memory
greater than HWM pending read controller
and read/write requests and
weights enabled number of flush
and read weight entries is greater
count is greater than LWM and
than 0 read/write weights
Grand Read  Grant Number of flush Grant Write  Memory enabled and write
Request Write entries greater than ~ Requests scheduler weight count is
Request Flush HWM and sends write equal to 0
read/write weights requests to
disabled or number memory
of flush entries is controller [0113] Read State Machine
greater than HWM [0114] The read state machine is responsible for switching
and Read/Write between high priority isochronous read requests, best effort
weights enabled s s
and read weight read requests and low priority isochronous read requests. The
count is equal to 0 read state machine can be configured to operate in one of
or no read requests multiple modes. In one embodiment, two such modes are
pending and provided. A first mode is a fixed priority mode where the read
number of flush state machine gives high priority isochronous reads highest
entries Is greater priority, best effort read requests medium priority, and low
than casual HWM AN " > N
and casual timer has priority isochronous read requests receive the lowest priority.
expired A second mode is to enable the use of weights for switching
Grant Write  Grant Number of flush ~ Grant Write Memory between high priority isochronous reads and best effort read
Request Write entries greater than - Request scheduler requests. In this mode, low priority isochronous requests are
Request  Flush HWM and sends write ! ’

read/write weights
disabled or number
of flush entries is

requests to
memory
controller

only granted when there are no longer any high priority iso-
chronous or best effort read requests.

[0115] Table 4 is a description of a read state machine
according to the present Specification.

Current State  Condition Description Next State Outputs
Unknown Reset Reset Pin Asserted Bypass Grant  Enable Bypass
path from
output of Admit
Arbiter to
Memory
controller
Bypass Grant ~ No Read No Read Requests Bypass Grant  Enable Bypass
Request Pending In Scheduler path from
output of Admit
Arbiter to
Memory
controller
Bypass Grant ~ High Priority Out of Self Refresh Grant High Memory
ISOC and High Priority Priority ISOC  Scheduler
Requests ISOC Requests Requests Sends High
Pending Priority Read
request to
Memory
controller
Bypass Grant ~ Best Effort  Out of Self Refresh Grant Best Memory
Requests and No High Priority  Effort Requests Scheduler
ISOC Requests and Sends Best
Best Effort Requests Effort Read
pending requests to
Memory
controller
Bypass Grant ~ Low Priority Ouf of Self Refresh Gran Low Memory
ISOC and No High Priority  Priority ISOC  Scheduler
Requests ISOC Requests and Requests Sends Low
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-continued
Current State ~ Condition Description Next State Outputs
No Best Effort Priority Read
Requests and Low requests to
Priority ISOC Memory
Requests Pending controller
Grant High High Priority Out of Self Refresh Grant High Memory
Priority ISOC  ISOC and High Priority Priority ISOC  Scheduler
Requests Requests ISOC Requests Requests Send High
Pending and ISOC Priority Read
Weights not equal 0 requests to
Memory
controller
Grant High Best Effort  Out of Self Refresh Grant Best Memory
Priority ISOC  Requests and No High Priority ~ Effort Requests Scheduler
Requests ISOC Requests Sends Best
Pending and ISOC Effort Read
Weights equal 0 and requests to
Best Effort Requests Memory
pending controller
Grant High Low Priority Out of Self Refresh Grant Low Memory
Priority ISOC  ISOC and No High Priority ~ Priority ISOC  Scheduler
Requests Requests ISOC Requests and Requests Sends Low
No Best Effort Priority Read
Requests and Low requests to
Priority ISOC Memory
Requests Pending controller
Grant High No Read Out of Self Refresh Bypass Grant ~ Enable Bypass
Priority ISOC  Requests and No High Priority path from
Requests Pending ISOC Requests and output of Admit
No Best Effort Arbiter to
Requests and No Low Memory
Priority ISOC controller
Requests
Grant Best Best Effort  Out of Self Refresh Grant Best Memory
Effort Requests Requests and No High Priority ~ Effort Requests Scheduler
ISOC Requests or Sends Best
ISOC Weights equal 0 Effort Read
and Best Effort requests to
Requests Pending Memory
controller
Grant Best High Priority Out of Self Refresh Grant High Memory
Effort Requests ISOC and High Priority Priority ISOC  Scheduler
Requests ISOC Requests Requests Sends High
Pending and ISOC Priority Read
Weights not equal 0 or requests to
BE weights equal 0 Memory
controller
Grant Best Low Priority Out of Self Refresh Grant Low Memory
Effort Reqeusts ISOC and No High Priority ~ Priority ISOC  Scheduler
Requests ISOC Requests and Requests Sends Low
No Best Effort Priority Read
Requests and Low requests to
Priority ISOC Memory
Requests Pending controller
Grant Best No Read Out of Self Refresh Bypass Grant ~ Enable Bypass
Effort Requests Requests and No High Priority path from
Pending ISOC Requests and output of Admit
No Best Effort Arbiter to
Requests and No Low Memory
Priority ISOC controller
Requests
Grant Low High Priority Out of Self Refresh Grant High Memory
Priority ISOC  ISOC and High Priority Priority ISOC  Scheduler
Requests Requests ISOC Requests Requests Sends High
Pending Priority Read
requests to
Memory
controller
Grant Low Best Effort  Out of Self Refresh Grant Best Memory
Priority ISOC  Requests and No High Priority ~ Effort Requests Scheduler
Requests ISOC Requests and Sends Best
Best Effort Requests Effort Read
pending requests to
Memory

controller
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-continued
Current State ~ Condition Description Next State Outputs
Grant Low Low Priority Out of Self Refresh Grant Low Memory
Priority ISOC  ISOC and No High Priority ~ Priority ISOC  Scheduler
Requests Requests ISOC Requests and Requests Sends Low
No Best Effort Priority Read
Requests and Low requests to
Priority ISOC Memory
Requests Pending controller
Grant Low No Read Out of Self Refresh Bypass Grant ~ Enable Bypass
Priority ISOC  Requests and No High Priority path from
Requests Pending ISOC Requests and output of Admit
No Best Effort Arbiter to
Requests and No Low Memory
Priority ISOC controller
Requests
[0116] Scheduler Agent Weights requests, relationship between address locations of the pend-

[0117] The memory scheduler uses agent weights for pro-
portioning memory bandwidth between agents within the
same class of service category. In an embodiment, configu-
ration registers specify the weight value for each requesting
agent, and a weight counter is provided for each agent. The
agent weight configuration registers are common between the
admit arbiter and the memory scheduler.

[0118] When there are no requests pending in the memory
scheduler for any of the agents connected to the fabric, the
agent weight counters are loaded with values specified in the
agent weight configuration registers. When requests are
granted by the admit arbiter and enqueued into the memory
scheduler scoreboard, an agent ID field is stored in the
memory scheduler scoreboard along with the request infor-
mation. When the memory scheduler grants a request in its
scoreboard, the agent ID field is used to determine the source
of the request and the weight counter for that agent is decre-
mented by one. Once an agent’s weight counter has reached
zero, the remaining requests for that agent are masked and no
longer take part in the scheduler arbitration. When an agent is
masked from arbitration due to its weight counter reaching
zero, the memory scheduler continues to schedule requests
from the remaining agents. Once the weight counters for all
agents have reached zero or if an agent’s weight counter is
non-zero but there are no remaining requests for that agent, all
agent weight counters are reloaded with the values from agent
weight configuration registers.

[0119] FIG. 9is a block diagram of a method for perform-
ing memory scheduling according to one or more examples of
the present Specification. As shown in FIG. 9, method 600
may be performed by a scheduler arbiter of the shared
memory fabric. As seen, method 600 may begin by selecting
a memory request from the memory scheduler scoreboard for
delivery to a memory controller (block 610). Various consid-
erations may be taken into account in determining the appro-
priate entry including state of the memory, state of the various

ing requests and so forth. Next at block 620 the weight value
for the selected agent is updated. In an embodiment a decre-
menting of the weight value is performed. Note that while the
initial value for the weight value for the agents is the same as
obtained from the configuration register also used by the
admit arbiter, understand that different weight counters are
provided for each arbiter to enable independent control of
these weight values.

[0120] Still referring to FIG. 9, next at decision block 630 it
can be determined whether the weight value of the selected
agent is equal to zero. Note that in one non-limiting example,
this determination may be in an embodiment in which zero is
the lowest priority value. If it is determined that the weight
value is zero, control passes to block 640 where this selected
agent is masked from further arbitration within the memory
scheduler.

[0121] From both of decision blocks 630 and 640, control
passes to decision block 650 where it can be determined
whether the weight value of all agents equals zero. If so,
control passes to block 660 where the weight values for all the
agents can be updated to their configured values, e.g.,
obtained from a configuration register of the fabric. Other-
wise, control passes from decision block 650 to decision
block 670 to determine whether there are any remaining
requests in the memory scheduler for agents having a non-
zero weight value. If so, those requests can be handled. e.g.,
via another iteration of method 600. Otherwise if no addi-
tional requests remain, control passes to block 660 where the
weight values can be updated as described. It should be noted
that the flow diagram of FIG. 9 is intended to be non-limiting,
and that other elements and modifications may be present in
various embodiments.

[0122] Table 5 below provides example operation of
memory scheduling for plurality of clock cycles, based on
initial weight values for three agents as follows:

TABLE 5
Agent Agent 0 Agent1 Agent1 Agent Agent2 Reload
Clock Agent OReq Weight Agent Req  Weight Agent 2Req Weight Agent Agent
Cycle OReq  Mask Counter 1Req Mask Counter 2Req Mask Counter Weights Grant
1 False False 4 False False 2 False False 1 True No

Grant
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TABLE 5-continued
Agent Agent0 Agent1 Agent1 Agent Agent2 Reload
Clock Agent OReq Weight Agent Req  Weight Agent 2Req Weight Agent Agent
Cycle OReq Mask Counter 1Req Mask Counter 2Req Mask Counter Weights Grant
2 True False 4 True False 2 True False 1 False Grant
Agent 1
3 True False 4 True False 1 True False 1 False Grant
Agent 2
4 True False 4 True False 1 True True 0 False Grant
Agent 0
5 True False 3 True False 1 True True 0 False Grant
Agent 0
6 True False 2 True False 1 True True 0 False Grant
Agent 1
7 True False 2 True True 0 True True 0 False Grant
Agent 0
8 True False 1 True True 0 True True 0 True Grant
Agent 0
9 True False 4 True False 2 True False 1 False Grant
Agent 0
10 True False 3 True False 2 True False 1 False Grant
Agent 0
11 True False 2 True False 2 True False 1 False Grant
Agent 1
12 True False 2 True False 1 True False 1 False Grant
Agent 2
13 True False 2 True False 1 True True 0 False Grant
Agent 0
14 True False 1 True False 1 True True 0 False Grant
Agent 0
15 True True 0 True False 1 True True 0 True Grant
Agent 1
16 True False 4 True False 2 True False 1 False Grant
Agent 0
17 True False 3 True False 2 True False 1 False Grant
Agent 1
18 True False 3 True False 2 True False 1 False Grant
Agent 0
Agent) Weight =4
Agent 1 Weight=2
Agent 2 Weight =1
[0123] Out of Order Page Aware Scheduling [0126] When arequestis sent to the memory controller, the
[0124] The memory scheduler reorders requests sent to the memory scheduler compares the channel, rank and bank

memory controller and seeks to optimize the stream of
requests for the maximum memory bandwidth possible. The
memory scheduler contains configuration registers pro-
grammed to provide the scheduler with information about the
memory controller to which it is attached. In one embodi-
ment, these configuration registers include information about
what address bits are used for the memory channel, bank, rank
and row addresses. Using the memory configuration informa-
tion programmed in the configuration registers the memory
scheduler determines the bank, rank, row, and channel of each
request in the scheduler scoreboard. The memory scheduler
scoreboard also contains a page hit status bit for each request
that is used to optimize requests sent to the memory controller
so that requests to the same page in memory are sent to the
memory controller before sending request to a different page.
[0125] After initialization and before any requests are sent
to the memory controller, the memory scheduler clears all
page hit status bits in its scoreboard. As requests are sent to the
memory controller the memory scheduler updates the page
hit status bits in the scoreboard to indicate whether other
requests are to the same page or to a different page in memory.
Although the scheduler is not aware of the actual state of the
page in a given memory bank, these page hit status bits may
be used as a hint as to which requests are the best candidates
to send to the memory controller for optimal memory band-
width.

information for all other requests pending in the scoreboard.
If the channel, rank and bank information of a scoreboard
entry matches a request that is sent to the memory controller
the row address of the entry is compared against the row
address of the request sent to the memory controller. If the
row address of a scoreboard entry matches for the request the
page hit status bit is set to 1; if the row address does not match
the request the page hit status bit is set to 0 indicating a page
miss. For scoreboard entries where the channel, rank or bank
bits are different than the request sent to the memory control-
ler, no update of the page hit status occurs.

[0127] As new requests are granted by the admit arbiter and
enqueued into the scheduler scoreboard, the row address
information is compared against all entries currently in the
scoreboard. If the row address of the new request matches one
or more entries in the scheduler scoreboard and the page hit
status bit of any matching entries is set, the page hit status for
the new request is also set. If the row address does not match
any entries in the scoreboard or all entries it matches have the
page hit status set to zero, the page hit status for the new
request is also set to zero.

[0128] Using the page hit and rank status information
stored in the scheduler scoreboard, the memory scheduler
reorders requests sent to the memory controller based on a
priority encoded scheduling scheme that has been determined
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to provide optimal bandwidth for most DRAM-based
memory technologies. The memory scheduler grants higher
priority requests before granting requests with lower priority
levels.

[0129] Table 6 below shows the different priority levels
used by a memory scheduler in accordance with one embodi-
ment of the present Specification.

[0130] Memory Scheduler Page Aware Scheduling Priority
Pagehit Status Rank Status Priority Level
Pagehit Same Rank Priority Level 3 (Highest)
Pagehit Different Rank Priority Level 2
Pagemiss Same Rank Priority Level 1
Pagemiss Different Rank Priority Level 0 (Lowest)
[0131] Age Based Memory Scheduling and Starvation Pre-
vention
[0132] In order to prevent starvation of requests due to the

out-of-order page aware scheduling algorithm, the concept of
age is used at least in part to schedule requests. For each class
of service (COS) category, the memory scheduler contains a
configuration register to specify an out-of-order (OOO)
scheduling limit. To provide a shorter maximum read latency
for the isochronous COS category, the OOO scheduling limit
is typically set to a smaller value than the OOO scheduling
limit of the best effort COS category. The memory scheduler
creates a request hit vector for all pending requests in its
scoreboard for the best effort and isochronous COS catego-
ries. These request bit vectors are sent to the oldest of avail-
able queue, which determines the oldest request that is still
pending. The oldest of available queue outputs a one hot
encoded bit vector with the bit set to 1 to indicate the oldest
request. As the memory scheduler grants requests OOO based
on its page aware scheduling algorithm, the memory sched-
uler counts how many requests were granted that were not the
oldest pending request for each COS category. Once the
counter reaches the OOO scheduling limit for the COS cat-
egory, which may be determined by performance analysis
done for worst case acceptable latency for a COS category,
the page aware scheduling logic is disabled and the oldest
request for the COS category is granted by the memory sched-
uler. Any time the oldest request for a COS category is
granted, the counter for that COS category is reset to zero. To
provide the lowest possible latency for a COS category the
000 scheduling limit can be programmed to zero, essentially
disabling the page aware scheduling logic for that COS cat-
egory. When the OOO scheduling limit is set to zero for a
COS category, requests to memory may be scheduled using
request age, which is determined by the oldest of available
queue.

[0133] Best Effort Maximum Latency Starvation Preven-
tion
[0134] For best effort read requests, the fabric utilizes the

deadline storage information in the scheduler scoreboard to
store a value that is used to specify a maximum latency value
for scheduling best effort requests. The scoreboard is a pool of
entries and a request stored in the scoreboard may be either a
best effort or isochronous request determined by the request’s
class of service category, also stored in the scoreboard for
each request. In the case a request in the scoreboard is a best
effort read request, a maximum allowable latency. e.g., a
preprogrammed value stored in a configuration register, is
used to schedule the request. When the request is enqueued in
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the scoreboard and is a best effort read request the maximum
latency value is added to the current value of the global timer.
Once the global timer reaches the value stored for the best
effort requests’ maximum latency, page aware scheduling is
ignored for the request and results in the request being sched-
uled when it is the oldest request pending. e.g., as determined
by the oldest of available queue.

[0135] Request Tracker Write Priority and Weights

[0136] The request tracker is responsible for the transfer of
data from the requesting agents to the internal memory butler
of the fabric. The write protocol used by the shared memory
fabric causes all write data to be transferred in request order
from the requesting agent to the internal memory buffer in the
fabric. In one embodiment, the request tracker uses separate
linked lists per agent to preserve the ordering of the write
requests. The request tracker may perform coherency checks
for a write request prior to transferring data from the request-
ing agent to the internal data buffer.

[0137] For write requests, the request tracker may be con-
figured to support one or more priority levels. When a request
is granted by the admit arbiter the deadline information for the
request is stored in an array having a length corresponding to
the number of entries in the request tracker. The fabric uses a
threshold value, e.g., stored in a configuration register, to
specify when a request deadline value is considered to be high
priority. Each deadline value for a request is compared against
the threshold value programmed in the configuration register.
When the deadline latency is less than the value in the con-
figuration register, a bit is set in the tracker’s scoreboard entry
for the request indicating the request is a high priority request.
[0138] When enabled for two priority level operation, if a
write request for an agent reaches the head of the linked list
and the high priority bit is set for the request the write request
is considered to be high priority. If any write requests at the
head of any of the agent linked lists indicate the write request
is a high priority request, all low priority write requests at the
head of'the other linked list for other agents are masked before
being input to the write request arbiter. If multiple requests of
the same priority level are present at the head of the agent
linked lists, an arbitration is performed to select which agent
to choose to transfer the write data.

[0139] Request Tracker Write Request Arbiter

[0140] The write request arbiter uses a weighted priority
based fair arbiter to select which agent to transfer write data.
The weights for the write request arbiter are programmed in
configuration registers in the request tracker. The write arbiter
assigns each agent a unique priority at reset. On each cycle,
the arbiter only considers request candidates with data that is
ready to transfer, and grants to the requester with the highest
priority. When granted, a request candidate’s weight is dec-
remented by one. If the granted candidate already had a
weight of zero, then the arbiter also updates request candidate
priorities as follows: the granted candidate’s priority is set to
the lowest priority (e.g., zero): all candidates with priorities
lower than the granted candidate increment their priority, and
all candidates with priorities higher than the granted candi-
date leave their priority unchanged.

[0141] Request Tracker Read Data Return

[0142] Requestingagents either supportinorder data return
or out-of-order data return. To support out-of-order data
return, an order ID field is used. An order ID is sent from the
agent with each request and is stored in the request tracker
scoreboard. Requests from the same agent that have the same
order ID are returned in request order. Data for requests from
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the same agent having different order IDs do not need to be
returned in request order. In an embodiment, the request
tracker uses linked lists for ensuring read data is properly
ordered when it is returned to the requesting agent.

[0143] The entry of the internal data buffer where data is to
be written is chosen prior to a request being granted by the
admit arbiter. When a request is granted by the admit arbiter,
request information including the index into the internal data
buffer is forwarded to the request tracker. As data is returned
from the memory controller, the memory scheduler forwards
a read completion indication to the request tracker, which
includes the index field into the internal data buffer where the
data is being written and an indication of which chunks of the
memory address have completed a read of memory. When the
request tracker receives a read completion, it compares the
index field with the index fields for all requests Stored in the
request tracker scoreboard. Ifa scoreboard entries’ index field
matches a read completion for a request and all chunk bits for
the request are set for the read completion, a bit is set in the
request tracker scoreboard indicating the read request has
completed.

[0144] If a read request has reached the head of the linked
list and the read completion status bit in the request tracker is
set and all coherency checks for the request have completed,
the request is available to return read data to the agent. Similar
to write requests, the request tracker uses the request deadline
information for a scoreboard entry to indicate request priority.
Inone embodiment, the request tracker creates two request bit
vectors for scoreboard entries that have data ready to return to
the requesting agents. One bit vector is for low priority read
requests and the other bit vector is for high priority read
requests. The request bit vectors are input to the request
tracker oldest of available queue. The oldest of available
queue determines which request is the oldest for both request
hit vectors. The request tracker has a configuration mode
which when enabled will cause a return of data from the
oldest high priority request selected by the oldest of available
queue before returning data for any low priority requests.
When support of the high priority data return is not enabled,
the request tracker treats all scoreboard entries that are ready
to return read data as having the same priority level. In this
mode, only the low priority bit vector is used as an input to the
oldest of available queue that in turn determines the oldest
read request in the scoreboard. Read data for the scoreboard
entry determined to be the oldest is then returned to the
requesting agent.

[0145] Embodiments may be used in many different SoCs
orother semiconductor devices that integrate various IPs onto
a single die to connect these IPs to memory via a memory
fabric. Still further a memory fabric in accordance with an
embodiment of the present Specification may be used to
provide a QOS level for meeting isochronous requirements of
at least some of these IPs.

[0146] FIG. 10 is a block diagram of an SoC according to
one or more examples of the present Specification. As shown
in FIG. 10, SoC 700 is a single die semiconductor device
including multiple IP blocks along with a shared memory
arbiter as described above. In the embodiment of FIG. 10 a
plurality of cores 710-1-710-» are provided, each of which
can independently execute instructions. In one embodiment,
all of these cores are of a single design such as an in-order core
design, e.g., of an Intel Architecture™ such as an Core™-
based design. In other embodiments, the cores may be out-
of-order processors such as an Intel Architecture™ (1A) 32
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core such as an Intel Core™-based design. In other embodi-
ments, a mix of heterogeneous cores may be provided. In
addition, a plurality of graphics engines, namely independent
graphics units 720-0-720-z, may be provided each to inde-
pendently perform graphics operations. As seen, the multiple
cores are coupled to a shared cache memory 715 such as a
level 2 (L2) cache and similarly, the graphics engines are
coupled to another shared cache memory 725.

[0147] A system agent 730 is coupled to these cores and
graphics engines via corresponding in-die interconnects 728
and 729. As seen, system agent 730 includes a shared memory
fabric 735 which may be configured as described herein.
Various other logic, controllers and other units such as a
power management unit may also be present within system
agent 730. As seen, shared memory fabric 735 communicates
with a memory controller 740 that in turn couples to an
off-chip memory such as a system memory configured as
DRAM. In addition, system agent 730 is coupled via a set of
interconnects 744 to one or more internal agents 750 such as
various peripheral devices. In an embodiment, interconnect
744 may include a priority channel interconnect, a sideband
channel interconnect, and a memory channel interconnect. A
similarly configured interconnect 74 provides for communi-
cation between system agent 730 and one or more off-chip
agents (not shown for ease of illustration in the embodiment
of FIG. 10). It should be noted that the block diagram of FIG.
10 is intended to be non-limiting, and that other elements and
modifications may be present in various embodiments.

[0148] FIG. 11 is ablock diagram of components present in
a computer system according to one or more examples of the
present Specification. As shown in FIG. 11, system 800 can
include many different components. These components can
be implemented as ICs, portions thereof, discrete electronic
devices, or other modules adapted to a circuit board such as a
motherboard or add-in card of the computer system, or as
components otherwise incorporated within a chassis of the
computer system. Note also that the block diagram of FIG. 11
is intended to show a high level view of many components of
a computer system, however, it is to be understood that addi-
tional components may be present in certain implementations
and furthermore, different arrangement of the components
shown may occur in other implementations.

[0149] As seen in FIG. 11, a processor 810, which may be
a low power multicore processor socket such as an ultra-low
voltage processor, may act as a main processing unit and
central hub for communication with the various components
of'the system. Such a processor can be implemented as a SoC
as described herein. In one embodiment, processor 810 may
be an Intel® Architecture Core™-based processor such as an
i3, 15, 17, or another such processor available from Intel Cor-
poration, Santa Clara, Calif., such as a processor that com-
bines one or more Core™.-based cores and one or more Intel ®
ATOM™-based cores to thus realize high power and low
power cores in a single SoC. However, understand that other
low power processors such as available from Advanced Micro
Devices. Inc. (AMD) of Sunnyvale, Calif., and ARM-based
design from ARM holdings, [.td., or a MIPS-based design
from MIPS Technologies, Inc., of Sunnyvale. Calif., or their
licensees or adopters may instead be present in other embodi-
ments such as an Apple AS or A6 processor. In yet other
embodiments, processor 810 may be a virtual processor real-
ized as a combination of hardware and/or software in a virtual
machine.
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[0150] Processor 810 may communicate with a system
memory 815, which in an embodiment can be implemented
via multiple memory devices to provide for a given amount of
system memory. To provide for persistent storage of informa-
tion such as data, applications, one or more operating systems
and so forth, a mass storage 820 may also couple to processor
810. Also shown in FIG. 11, a flash device 822 may be
coupledto processor 810, e.g., via a serial peripheral interface
(SPI). This flash device may provide for non-volatile storage
of system software, including a basic input/output software
(BIOS) as well as other firmware of the system.

[0151] Various input/output (to) devices may be present
within system 800. Specifically shown in the embodiment of
FIG. 11 is a display 824 which may be a high definition LCD
or LED panel configured within a lid portion of the chassis.
This display panel may also provide for a touch screen 825,
e.g., adapted externally over the display panel such that via a
user’s interaction with this touch screen, user inputs can be
provided to the system to enable desired operations. e.g., with
regard to the display of information, accessing of information
and so forth. In one embodiment, display 824 may be coupled
to processor 810 via a display interconnect that can be imple-
mented as a high performance graphics interconnect. Touch
screen 825 may be coupled to processor 810 via another
interconnect, which in an embodiment can be an 12C inter-
connect. As further shown in FIG. 11, in addition to touch
screen 825, user input by way of touch can also occur via a
touch pad 830 which may be configured within the chassis
and may also be coupled to the same 12C interconnect as
touch screen 825.

[0152] For perceptual computing and other purposes, vari-
ous sensors may be present within the system and can be
coupled to processor 810 in different manners. Certain iner-
tial and environmental sensors may couple to processor 810
through a sensor hub 840, e.g., via an I12C interconnect. In the
embodiment shown in FIG. 11, these sensors may include an
accelerometer 841, an ambient light sensor (ALS) 842, a
compass 843, and a gyroscope 844. Other environmental
sensors may include one or more thermal sensors 846, which
may couple to processor 810 via a system management bus
(SMBus) bus in one embodiment.

[0153] Also seen in FIG. 11, various peripheral devices
may couple to processor 810 via a low pin count (LPC)
interconnect. In the embodiment shown, various components
can be coupled through an embedded controller 835. Such
components can include a keyboard 836 (e.g., coupled via a
PS2 interface), a fan 837, and a thermal sensor 839. In some
embodiments, touch pad 830 may also couple to EC 835 via
a PS2 interface. In addition, a security processor such as a
trusted platform module (TPM) 838 in accordance with the
Trusted Computing Group (TCG) TPM Specification Version
1.2, dated Oct. 2, 2003, may also couple to processor 810 via
this LPC interconnect.

[0154] System 800 can communicate with external devices
in a variety of manners, including wirelessly. In the embodi-
ment shown in FIG. 11, various wireless modules, each of
which can correspond to a radio configured for a particular
wireless communication protocol, are present. One manner
for wireless communication in a short range such as a near
field may be via a near field communication (NFC unit 845
which may communicate, in one embodiment with processor
810 via an SMBus. Note that via this NFC unit 845, devices in
close proximity to each other can communicate. For example.
a user can enable system 800 to communicate with another
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(e.g.,) portable device such as a smartphone of the user via
adapting the two devices together in close relation and
enabling transfer of information such as identification infor-
mation payment information, data such as image data or so
forth. Wireless power transfer may also be performed using a
NFC system.

[0155] As further seen in FIG. 11, additional wireless units
can include other short range wireless engines including a
WLAN unit 850 and a Bluetooth unit 852. Using WLAN unit
850, Wi-Fi™ communications in accordance with a given
Institute of Electrical and Electronics Engineers (IEEE) 802.
11 standard can be realized, while via Bluetooth unit 852,
short range communications via a Bluetooth protocol can
occur. These units may communicate with processor 810 via,
e.g., a USB link or a universal asynchronous receiver trans-
mitter (UART) link. Or these units may couple to processor
810 via an interconnect via a Peripheral Component Intercon-
nect Express™ (PCle™) protocol in accordance with the PCI
Express Specification Base Specification version 3.0 (pub-
lished Jan. 17, 2007), or another such protocol such as a serial
data input/output (SDIO) standard. Of course, the actual
physical connection between these peripheral devices, which
may be configured on one or more add-in cards, can be by way
of the next generation form factor (NGFF) connectors
adapted to a motherboard.

[0156] In addition, wireless wide area communications.
e.g., according to a cellular or other wireless wide area pro-
tocol, can occur via a wireless wide area network (WWAN)
unit 856 which in turn may couple to a subscriber identity
module (SIM) 857. In addition, to enable receipt and use of
location information, a GPS module 855 may also be present.
Note that in the embodiment shown in FIG. 11, WWAN unit
856 and an integrated capture device such as a camera module
854 may communicate via a given USB protocol such as a
USB 2.0 or 3.0 link, or a UART or I2C protocol. Again the
actual physical connection of these units can be via adaptation
of'a NGFF add-in card to an NGFF connector configured on
the motherboard.

[0157] To provide for audio inputs and outputs, an audio
processor can be implemented via a digital signal processor
(DSP) 860, which may couple to processor 810 via a high
definition audio (HDA) link. Similarly. DSP 860 may com-
municate with an integrated coder/decoder CODEC) and
amplifier 862 that in turn may couple to output speakers 863
which may be implemented within the chassis. Similarly,
amplifier and CODEC 862 can be coupled to receive audio
inputs from a microphone 865 which in an embodiment can
be implemented via dual array microphones to provide for
high quality audio inputs to enable voice-activated control of
various operations within the system. Note also that audio
outputs can be provided from amplifier/CODEC 862 to a
headphone jack 864.

[0158] FIG. 12 is a block diagram of an SoC in situ in an
example control system. It should be noted, however, that a
control system, and this particular control system, are pro-
vided by way of non-limiting example only.

[0159] In the example of FIG. 12, SoC 1200 includes a
multicore processor, including RT agent 115-0 and auxiliary
agent 115-1. RT agent 115-0 acts as a real-time (isochronous)
agent, while auxiliary agent 115-1 acts as a best effort agent.
[0160] RT agent 115-0 and auxiliary agent 115-1 share
memory controller 170-0 and memory controller 170-1,
which control memory bank 1220-0 and 1220-1 respectively.
In certain examples, memory bank 1220-0 and memory bank
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1220-1 are completely independent of one another, and may
be interleaved such that even-numbered memory addresses
go through memory controller 170-0 to bank 1220-0, while
odd-numbered memory locations are routed through memory
controller 170-1 to memory bank 1220-1. This is provided by
way of example only, and other memory configurations and
interleaving methods are available. It should also be noted
that in this example, memory controllers 170 and memory
banks 1220 are shown on a separate memory bus. This is also
disclosed by way of non-limiting example. In other examples,
other memory architectures may be used, such as a shared
bus, or a network-on-a-chip.

[0161] RT agent 115-0 may be configured to interface with
a control subsystem 1290 for controlling a device under con-
tro11292. In one embodiment, device under control 1292 may
be a mission-critical or safety-critical device such as a manu-
facturing robot, life support system, environmental control
system, traffic control system, or drive-by-wire system by
way of non-limiting example. Control subsystem 1290 pro-
vides to RT agent 115-0 all of the software, firmware, and
hardware necessary to control device under control 1292. The
requirements of controlled system 1290 may be such that a
guaranteed QoS is necessary to maintain real-time operation.

[0162] However, it may also be desirable to provide auxil-
iary functions, such as a user interface so that a user can
provide necessary inputs. Auxiliary agent 115-1 may also
provide functions such as monitoring and user feedback.
Thus, it is desirable to design SoC 1200 so that RT agent
115-0 is guaranteed its necessary QoS for its real-time func-
tions, but doesn’t completely monopolize system resources
so that auxiliary agent 115-1 is unable to perform its function,
or vice versa. To this end, a shared uncore fabric 1230 with
multiple virtual channels to separate out real-time and auxil-
iary traffic, and an associated priority scheme, may be pro-
vided to grant higher priority to real-time traffic, while leav-
ing sufficient bandwidth for auxiliary agent 115-1 to function
properly.

[0163] In this example, RT agent 115-0 communicatively
couples to controlled system 1290 via suitable means, such as
a network interface, dedicated bus, or other connection. In
this drawing, RT agent 115-0 also communicatively couples
to RT peripheral device 1210-0 via shared uncore fabric 1230.
In certain embodiments, shared uncore fabric 1230 may be
provided as single or multiple modular IP blocks for simplic-
ity of design.

[0164] For simplicity of the drawing, and to illustrate that
many different styles of interconnect are possible, no physical
or logical connection is illustrated here between RT periph-
eral device 1210-0 and control subsystem 1290. But this is not
intended to exclude such a connection. In some examples, RT
peripheral device 1210-0 may be a control interface that
forms a part of control subsystem 1290, or a physical and
logical interface to device under control 1292, in which case
a logical and/or physical connection may be provided. In
other embodiments, RT peripheral device 1210-0 may pro-
vide other real-time functionality that may or may not be
directly logically related to device under control 1292.

[0165] Similarly, auxiliary agent 115-1 communicatively
couples to user interface 1270 by way of example, or to any
other suitable auxiliary system or subsystem. User interface
1270 may, similar to control subsystem 1290, provide any
suitable set of software, firmware, and hardware for provi-
sioning a user interface.

Jun. 30, 2016

[0166] Auxiliary agent 1150-1 also communicatively
couples to auxiliary peripheral device 1210-1 via shared
uncore fabric 1230. As with real-time peripheral device 1210-
0, auxiliary peripheral device 1210-1 may or may not com-
municatively couple to user interface 1270. For simplicity of
the drawing, and to illustrate that many different connection
options are possible, no physical or logical connection is
shown in this figure between auxiliary peripheral device
1210-1 and user interface 1270, but in some embodiments,
such a connection may be provided.

[0167] In a non-limiting example, selected elements of
shared uncore fabric 1230 include a shared 1/O fabric 1232,
shared memory fabric 100, and a system agent 730. Shared
1/0O fabric 1232 provides interconnects, scheduling, and other
communication services to peripheral devices 1210. In one
example, shared [/O fabric 1232 is substantially similar to
shared memory fabric 100, including implementing similar
priority schemes to those described in this Specification.
Shared memory fabric 100 was described in more detail in
connection with FIGS. 1-9. System agent 730 includes a
controller to provide intelligence to shared uncore fabric 100,
including methods described herein. In one example, addi-
tional hardware, firmware, or software may include execut-
able instructions or microcode that provide instructions for
system agent 730 to perform the functions disclosed herein.
Peripherals 1210, memory banks 1220, and any similar
devices that connect to requesting agents via uncore fabric
1230 may be collectively referred to as “data terminals,”
indicating that they ultimately send data to or receive data
from agents 115.

[0168] Inone example, shared uncore fabric 1230 includes
only one set of physical buses, interconnects, registers, and
other resources that real-time agent 115-0 and auxiliary agent
115-1 (along with any other agents) may use to communica-
tively couple to peripheral devices 1210, and to memory
controllers 170. Thus, to ensure a guaranteed QoS for real-
time agent 115-0, shared interconnect resources 1230 may
need to provide a priority scheme between agents 115,
peripherals 1210, and memory controllers 170.

[0169] Certain embodiments of a shared uncore fabric may
employ only one virtual channel that is shared between all
agents. However, the present Specification also describes a
method of providing a plurality of virtual channels so that
shared uncore fabric 1230 can discriminate, segregate, and
prioritize between traffic for real-time agent 115-0 and traffic
for auxiliary agent 115-1. This segregation may be desirable
so that in cases where it is necessary, traffic from real-time
agent 115-0 may receive priority, including preemptive pri-
ority over traffic from auxiliary agent 115-1.

[0170] In one example, two virtual channels are defined:
namely virtual channel VC_AUX 1240, and virtual channel
VC_RT 1242. VC_AUX 1240 may be provided for best-
effort transactions, while VC_RT 1242 is dedicated to real-
time or isochronous transactions. Traffic patterns may include
agent-to-peripheral (via shared 1/O fabric 1232), agent-to-
memory (via shared memory fabric 100), peripheral-to-agent
(via shared I/O fabric 1232), peripheral to memory (via
shared /O fabric 1232 and shared memory fabric 100), and
memory-to-peripheral (via shared I/O fabric 1232 and shared
memory fabric 100).

[0171] Division into virtual channels may be accomplished
in one example by decoding the source agent for a packet
originating from an agent 115. It should be noted that in
certain known embodiments, the destination of each packet is
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decoded for routing purposes, and may be based on attributes
of the packet such as memory address and/or opcode. In this
example, destination decoding may still be provided, and may
be in addition to decoding of the source agent. Once the
source agent is decoded, the packet may be assigned to a
“traffic class,” which may have a one-to-one correspondence
to a virtual channel. For example, traffic class O may corre-
spond to VC_AUX, while traffic class 1 may correspond to
VC_RT. Advantageously, the traffic class may be encoded as
a field in the header or metadata for the packet so that end-
points such as peripherals 1210 need not be aware of the
virtual channel architecture to preserve end-to-end virtual
channel functionality. This may preserve legacy interoper-
ability. In one example, system agent 730 may prepend
header data to each packet, identifying the virtual channel or
traffic class on which the packet is to be carried. Certain
virtual channels may be given certain priority weights accord-
ing to the QoS scheme described herein. Priority schemes
may include providing a high “grant count” number for high-
priority traffic and/or assigning traffic on VC_RT an expired
deadline to expedite that traffic.

[0172] In the case of a packet, such as a response packet,
originating from a peripheral 1210, the peripheral 1210 may
not be aware of the virtual channel architecture. However, a
well-configured peripheral 1210 should echo back the traffic
class field that was attached to the packet it is responding to.
Thus, a legacy peripheral 1210 may be able to successfully
direct the packet to its appropriate virtual channel despite
being agnostic of the existence of multiple virtual channels
within shared uncore fabric 1230.

[0173] Inthe case of a packet originating from a peripheral
1210 and directed to memory 1220 (rather than a response to
an agent 115), a traffic class may be assigned based on the
nature of the peripheral 1210 itself. For example, if RT
peripheral 1210 is known to be generally used for real-time
transactions, then packets from RT peripheral 1210 to
memory 1220 may be directed to VC_RT. Similarly, packets
originating from auxiliary peripheral device 1210-1 and
directed to memory 1220 may be directed to VC_AUX.

[0174] Inoneexample, virtual channels may also be further
subdivided, for example according to the destination of each
packet. Thus, for example, traffic from real-time agent 115-0
to any memory controller 170 may be given very high or even
preemptive priority to guarantee a QoS. However, traffic from
real-time agent 115-0 to real-time peripheral device 1210-0
may be less time critical. Thus, this traffic may be assigned a
somewhat lower (though possibly still expedited) priority. In
one example, VC_RT and VC_AUX may be prioritized dif-
ferently based on which shared resource is being considered.
For example, a VC_RT and VC_AUX path from peripherals
to memory may use deadlines for different prioritization,
whileaVC_RT and VC_AUX path between cores and periph-
erals may use grant counts. These configurations are, of
course, provided by way of non-limiting example only. A
person having skill in the art will select an appropriate priority
scheme according to the design constraints of a particular
embodiment.

[0175] FIG. 13 is a flow chart of a method 1300 according
to one or more examples of the present specification. In one
example, method 1300 is particularly applicable to traffic
from an agent 115 to memory 1120.

[0176] In block 1310, shared uncore fabric 100 receives
incoming traffic from a requesting agent 115.
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[0177] In block 1320, system agent 730 of shared uncore
fabric 100 decodes the source agent for the traffic. The source
agent in this case refers to the core that originates the trans-
action. This operation may also include (or a precedent opera-
tion may include) designating one core as the “real-time”
core, for example by writing a value to a special-purpose
register. For example, in a four-core system, a register may be
provided in which the value “00” may be written to indicate
that core 0 is the real-time core. Other configurations are also
contemplated herein.

[0178] Inblock 1330, system agent 730 assigns the incom-
ing packet to a traffic class, which maps to a particular chan-
nel, based on the source agent identified in block 1320.
Assigning a traffic class and virtual channel may also include
other factors, such as the opcode of the instruction or the
destination address, thus permitting finer-grained control
over traffic classification. In one example, the traffic class is
prepended to a header or other metadata for the packet, so that
it can be routed to the correct virtual channel throughout
uncore fabric 100, and so that return traffic can also be cor-
rectly classified.

[0179] In decision block 1350, system agent 730 deter-
mines whether the assigned virtual channel is VC_RT.
[0180] If the assigned virtual channel is VC_RT, then a
high-priority scheme may be applied. In some cases, preemp-
tive priority may be necessary for certain sub-channels of
VC_RT. However, preemptive priority may be overkill for
other sub-channels of VC_RT, and thus a non-preemptive
high-priority scheme may be used instead. For example, in
block 1360, shared uncore fabric 100 may assign an expired
deadline or higher-than-normal grant count to ensure that the
packet receives higher priority. In one embodiment, this may
be applicable only for traffic from cores and peripheral
devices targeting DRAM. Other paths originating from cores
to peripherals and peripherals to cores may simply rely on
different grant counts to give preferential treatment for
VC_RT.

[0181] Inblock 1370, if the packetis noton VC_RT, then it
may be assigned a standard deadline.

[0182] In block 1390, the method is done.

[0183] FIG. 14 is a flow diagram of a method 1400 accord-
ing to one or more examples of the present Specification. In
one example, method 1400 may be particularly applicable to
transactions from a requesting agent 115 to a peripheral 1210.
[0184] In block 1410, shared uncore fabric 1230 receives
incoming traffic from an agent 115.

[0185] In decision block 1420, system agent 730 deter-
mines whether the shared uncore fabric is currently config-
ured for real-time operation. In one embodiment, real-time
operation is not enabled immediately after device power up.
Rather, device enumeration occurs strictly in auxiliary mode.
Only after all devices have been enumerated and appropriate
drivers loaded does real-time mode become enabled.

[0186] If RT mode is not currently enabled, then in block
1450, the traffic is automatically assigned to VC_AUX, and to
the appropriate traffic class, which in this example is TCO0. In
certain embodiments, each traffic class maps to exactly one
virtual channel, so that TC0=—=VC_AUX.

[0187] Returning to block 1420, if RT mode is enabled,
then in block 1430, system agent 730 decodes the source
agent for the packet to determine which agent 115 originated
the packet. Decoding may also include decoding the destina-
tion, or at least whether the traffic is to be routed through
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interconnect fabric 1232 or memory fabric 100. This may
affect classification into a particular VC or subchannel.
[0188] In block 1440, system agent 730 assigns a traffic
class and corresponding virtual channel (or subchannel, as
appropriate) to the packet. The TC may be prepended to the
packet, such as within a header or other metadata, so that the
VC can be tracked even through portions of the system that
are not VC aware, such as peripherals 1210 and memory
1220.

[0189] Inblock 1460, system agent 730 sends the packet to
shared interconnect fabric 1232 via the designated VC.
[0190] In block 1480, system agent 730 may prioritize the
packet according to the VC, for example by assigning higher
priority to RT packets.

[0191] In block 1490, the method is done.

[0192] FIG.151sablock diagram ofa method 1500 accord-
ing to one or more examples of the present Specification.
Method 1500 may be particularly appropriate to transactions
from a peripheral 1210 to memory 1220.

[0193] In block 1510, shared uncore fabric 1230 receives
incoming traffic from an agent 115.

[0194] In block 1520, system agent 730 (or another
decoder, as appropriate) decodes the traffic class, which may
be included, for example, in a header or other metadata
attached to the packet.

[0195] Inblock 1530, system agent 730 or another decoder
maps the TC to its corresponding VC. In some embodiments,
each TC maps to exactly one VC.

[0196] Inblock 1540, system agent 730 or another decoder
sends the packet to the assigned VC on shared memory fabric
100.

[0197] In block 1560, depending on the type of memory
operation, memory 1220 may provide a response. The
response may include the appropriate TC, in which case,
blocks 1520, 1530, 1540, and 1550 may be repeated for the
response.

[0198] Inblock 1570, system agent 730 or another decoder
forwards the response as a return to the device 1220 that
initiated the transaction.

[0199] In block 1590, the method is done.

[0200] FIG.161sablock diagram of a method 1600 accord-
ing to one or more examples of the present Specification.
Method 1600 may be particularly appropriate to transactions
from a peripheral 1210 to an agent 115.

[0201] In block 1610, shared uncore fabric 1230 receives
incoming traffic from an agent 115.

[0202] In block 1620, system agent 730 (or another
decoder, as appropriate) decodes the traffic class, which may
be included, for example, in a header or other metadata
attached to the packet.

[0203] Inblock 1630, system agent 730 or another decoder
maps the TC to its corresponding VC. In some embodiments,
each TC maps to exactly one VC.

[0204] Inblock 1640, system agent 730 or another decoder
sends the packet to the assigned VC on shared memory fabric
100.

[0205] In block 1650, the packet is forwarded to the agent
115 according to the attributes that were decoded.

[0206] In block 1590, the method is done.

[0207] FIG. 17 is a block diagram of a hierarchical shared
interconnect fabric according to one or more examples of the
present Specification. The hierarchical arrangement of FIG.
17 may provide all or part of shared interconnect fabric 1232
of FIG. 12.
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[0208] Inthis example, a dual-core processor 1710 includes
RT CPU 115-0 and AUX CPU 115-1, each of which is an
independent processing core configured to act as a requesting
agent. Dual-core processor 1710 is provided strictly by way
of'example, and is intended to be non-limiting. Furthermore,
the hierarchical structure for shared interconnect fabric 1232
as disclosed in FIG. 17 is also provided by way of non-
limiting example.

[0209] Dual-core CPU 1710 communicatively couples to
shared fabric element SF0 1720, which is a top layer of shared
interconnect fabric 1232. SF0 1720 in this example includes
system agent 730, which more generally may be treated as a
species of decoder. In one example system agent 730 is con-
figured to sufficiently decode a packet to determine whether it
should be directed to display 1740 (a species of auxiliary
peripheral device 1210-1 of FIG. 12) or to shared fabric
element SF1 1730.

[0210] Because display 1740 is inherently an auxiliary
device, any traffic directed toward display 1740 is assigned to
VC_AUX/TCO.

[0211] Traffic assignedto SF1 1720 can be either VC_AUX
traffic or VC_RT traffic. Thus, to assign an appropriate TC,
system agent 730 may also need to sufficiently decode the
packet to determine which port on SF0 1720 the traffic is
assigned to.

[0212] SF11720 also includes a decoder 1732, which is one
example includes less functionality than system agent 730.
For example, decoder 1732 need not make VC or TC assign-
ments in certain embodiments. Decoder 1732 may suffi-
ciently decode a packet to direct it to either “other device”
1750, which may be, for example, any suitable auxiliary
peripheral device 1210-1, or to root port (RP) 1760. Traffic
directed to other device 1750 may be delivered viaVC_AUX,
and prioritized appropriately. Traffic to RP 1760 may be
delivered via VC_RT when RT mode is enabled, or via
VC_AUX during enumeration.

[0213] Finally, RP 1760 forwards the packet to RT device
1770, which may be, for example, any suitable RT peripheral
device 1210-0.

[0214] In an embodiment with two-level shared intercon-
nect fabric hierarchy, downstream transactions may flow as
follows:

[0215] a. When the system is first booted, the shared
fabric may operate only in AUX mode while devices are
enumerated. Once device enumeration is complete, RT
mode may be enabled.

[0216] b. When RT mode is enabled, “memory” address
space transactions from the RT port are statically
mapped to VC_RT (TC1) in shared uncore fabric 1230.

[0217] c. Admit arbiter 120 may propagate the TC to
shared fabric element SF0.

[0218] d. SFO routes traffic to SF1 on the same egress
channel as it was received on, propagating the TC value.

[0219] e.SF1routes traffic to the root port connecting the
RT agent using fabric decode, propagating the TC value.

[0220] {£. The root port propagates TC to the RT device.

[0221] g. The RT device returns a response with the TC
from the associated read request

[0222] h. The root port propagates TC to SF1

[0223] i.SF1uses TCto map the completion to the egress
channel as follows: TC0=VC_AUX, TC1=VC_RT.

[0224] In one embodiment, channel map registers may be
used in shared uncore fabric 1230 to steer traffic correctly.
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[0225] In some cases, transactions from the RT devices
may be statically mapped to VC_RT (TC1).

[0226] A PCle IP block may be configured to include TC
preservation and propagation from request to response to aid
in routing.

[0227] Upstream packets may also be handled in a similar,
but reversed fashion, for example according to method 1600
of FIG. 16.

[0228] Embodiments of the present Specification provide
advantages over certain embodiments that provide only a
single VC for downstream traffic, some of which do not
provide end-to-end QoS for real-time applications.

[0229] Advantages may be maximized by judicious use of
preemptive priority schemes. In particular, overuse of pre-
emption may result in conditions where best effort devices
such as auxiliary agent 115-1 are completely swamped so that
they are unable to perform any useful work at all. Thus, in
certain embodiments, preemptive priority is reserved only for
traffic that has a strict guaranteed QoS requirement that can-
not otherwise be satisfied. In designing a particular embodi-
ment of the present specification, a practitioner in the art will
exercise reasonable and judicious skill to assign a priority
scheme that works for the particular embodiment.

[0230] While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

[0231] A design may go through various stages, from cre-
ation to simulation to fabrication. Data representing a design
may represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented using
ahardware description language (HDL) or another functional
description language. Additionally, a circuit level model with
logic and/or transistor gates may be produced at some stages
of the design process. Furthermore, most designs, at some
stage, reach a level of data representing the physical place-
ment of various devices in the hardware model. In the case
where conventional semiconductor fabrication techniques
are used, the data representing the hardware model may be the
data specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit.

[0232] Insome implementations, software based hardware
models, and HDL and other functional description language
objects can include register transfer language (RTL) files,
among other examples. Such objects can be machine-pars-
able such that a design tool can accept the HDL object (or
model), parse the HDL object for attributes of the described
hardware, and determine a physical circuit and/or on-chip
layout from the object. The output of the design tool can be
used to manufacture the physical device. For instance, a
design tool can determine configurations of various hardware
and/or firmware elements from the HDL object, such as bus
widths, registers (including sizes and types), memory blocks,
physical link paths, fabric topologies, among other attributes
that would be implemented in order to realize the system
modeled in the HDL object. Design tools can include tools for
determining the topology and fabric configurations of system
on chip (SoC) and other hardware device. In some instances,
the HDL object can be used as the basis for developing
models and design files that can be used by manufacturing
equipment to manufacture the described hardware. Indeed, an
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HDL object itself can be provided as an input to manufactur-
ing system software to cause the described hardware.

[0233] Inany representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclo-
sure.

[0234] A module as used herein refers to any combination
of hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

[0235] Use of the phrase ‘to’ or ‘configured to,” in one
embodiment, refers to arranging, putting together, manufac-
turing, offering to sell, importing and/or designing an appa-
ratus, hardware, logic, or element to perform a designated or
determined task. In this example, an apparatus or element
thereof that is not operating is still ‘configured to’ perform a
designated task if it is designed, coupled, and/or intercon-
nected to perform said designated task. As a purely illustrative
example, a logic gate may provide a 0 ora 1 during operation.
But a logic gate ‘configured to’ provide an enable signal to a
clock does not include every potential logic gate that may
providea 1 or 0. Instead, the logic gate is one coupled in some
manner that during operation the 1 or 0 output is to enable the
clock. Note once again that use of the term ‘configured to’
does not require operation, but instead focus on the latent state
of an apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware, and/
or element is operating.

[0236] Furthermore, use of the phrases ‘capable of/to,” and
or ‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
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apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

[0237] A value, as used herein, includes any known repre-
sentation of a number, a state, a logical state, or a binary
logical state. Often, the use of logic levels, logic values, or
logical values is also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a high
logic level and O refers to a low logic level. In one embodi-
ment, a storage cell, such as a transistor or flash cell, may be
capable of holding a single logical value or multiple logical
values. However, other representations of values in computer
systems have been used. For example the decimal number ten
may also be represented as a binary value of 1010 and a
hexadecimal letter A. Therefore, a value includes any repre-
sentation of information capable of being held in a computer
system.

[0238] Moreover, states may be represented by values or
portions of values. As an example, a first value, such as a
logical one, may represent a default or initial state, while a
second value, such as a logical zero, may represent a non-
default state. In addition, the terms reset and set, in one
embodiment, refer to a default and an updated value or state,
respectively. For example, a default value potentially includes
a high logical value, i.e. reset, while an updated value poten-
tially includes a low logical value, i.e. set. Note that any
combination of values may be utilized to represent any num-
ber of states.

[0239] The embodiments of methods, hardware, software,
firmware or code set forth above may be implemented via
instructions or code stored on a machine-accessible, machine
readable, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc, which are to be distinguished from the non-transitory
mediums that may receive information there from.

[0240] Instructions used to program logic to perform
embodiments of the invention may be stored withina memory
in the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
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puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer)

[0241] The following examples pertain to embodiments in
accordance with this Specification. One or more embodi-
ments may provide an apparatus, a system, a machine read-
able storage, a machine readable medium, hardware- and/or
software-based logic, and a method to receive a first packet
from a first agent over a shared fabric that communicatively
couples at least the first agent and a second agent to one or
more terminals, assign the first packet to a first virtual channel
within the shared fabric, receive a second packet from the
second agent directed to one of the one or more terminals, and
assign the second packet to a second virtual channel within
the shared fabric.

[0242] In at least one example, the first virtual channel is a
real-time virtual channel (VC_RT) and the second virtual
channel is an auxiliary virtual channel (VC_AUX).

[0243] Inatleast one example, a prioritizer assigns VC_RT
a first priority and VC_AUX a second priority.

[0244] In at least one example, the prioritizer is to assign
VC_RT an expedited priority.

[0245] In at least one example, assigning VC_RT an expe-
dited priority includes assigning an expired deadline or a
higher-than-normal grant count.

[0246] In at least one example, a decoder is to assign the
packet to a traffic class, where the traffic class corresponds
exactly to a virtual channel.

[0247] In at least one example, the decoder is further to
receive a packet from a data terminal directed to an agent,
decode the traffic class from the packet, and assign the packet
to the virtual channel that corresponds exactly to the traffic
class.

[0248] In at least one example, the one or more data termi-
nals include a peripheral device, and where the shared fabric
includes a shared interconnect fabric to communicatively
couple the one or more agents to the peripheral device.
[0249] In at least one example, the one or more data termi-
nals include a memory, and where the shared fabric includes
a shared memory fabric to communicatively couple the one or
more agents to the memory.

[0250] One or more embodiments may provide a system on
chip that includes a first agent including a first processing
core, a second agent including a second processing core, at
least one data terminal, and a shared fabric to communica-
tively couple the first agent and the second agent to the at least
one data terminal. The shared fabric can include a decoder to
receive a first packet from the first agent directed to the at least
one data terminal, assign the first packet to a first virtual
channels within the shared fabric, receive a second packet
from the second agent directed to the same or a different data
terminal, and assign the second packet to a second virtual
channel within the shared fabric.

[0251] Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of'the present invention. Thus, the appearances of the phrases
“in one embodiment” or “in an embodiment” in various
places throughout this specification are not necessarily all
referring to the same embodiment. Furthermore, the particu-
lar features, structures, or characteristics may be combined in
any suitable manner in one or more embodiments.
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[0252] Inthe foregoing specification, a detailed description
has been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What is claimed is:

1. An apparatus comprising:

a decoder to:

receive a first packet from a first agent over a shared
fabric, wherein the shared fabric is to communica-
tively couple at least the first agent and a second agent
to one or more terminals, and the first packet is to be
directed to one of the one or more terminals;

assign the first packet to a first virtual channel within the
shared fabric;

receive a second packet from the second agent directed
to one of the one or more terminals; and

assign the second packet to a second virtual channel
within the shared fabric.

2. The apparatus of claim 1, wherein the first virtual chan-
nel is a real-time virtual channel (VC_RT) and the second
virtual channel is an auxiliary virtual channel (VC_AUX).

3. The apparatus of claim 2, further comprising a prioritizer
to assign VC_RT a first priority and VC_AUX a second pri-
ority.

4. The apparatus of claim 3, wherein the prioritizer is to
assign VC_RT an expedited priority.

5. The apparatus of claim 4, wherein assigning VC_RT an
expedited priority comprises assigning an expired deadline or
a higher-than-normal grant count.

6. The apparatus of claim 1, wherein the decoder is further
to assign the packet to a traffic class, wherein the traffic class
corresponds exactly to a virtual channel.

7. The apparatus of claim 6, wherein the decoder is further
to receive a packet from a data terminal directed to an agent,
decode the traffic class from the packet, and assign the packet
to the virtual channel that corresponds exactly to the traffic
class.

8. The apparatus of claim 1, wherein the one or more data
terminals comprise a peripheral device, and wherein the
shared fabric comprises a shared interconnect fabric to com-
municatively couple the one or more agents to the peripheral
device.

9. The apparatus of claim 1, wherein the one or more data
terminals comprise a memory, and wherein the shared fabric
comprises a shared memory fabric to communicatively
couple the one or more agents to the memory.

10. A system on chip, comprising:

a first agent comprising a first processing core;

a second agent comprising a second processing core;

at least one data terminal; and
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a shared fabric to communicatively couple the first agent
and the second agent to the at least one data terminal,
wherein the shared fabric is to comprise:

a decoder to:

receive a first packet from the first agent directed to
the at least one data terminal, and to assign the first
packet to a first virtual channels within the shared
fabric; and

receive a second packet from the second agent
directed to the same or a different data terminal,
and assign the second packet to a second virtual
channel within the shared fabric.

11. The system on chip of claim 10, wherein the first virtual
channel is a real-time virtual channel (VC_RT) and the sec-
ond virtual channel is an auxiliary virtual channel (VC_
AUX).

12. The system on chip of claim 11, wherein the shared
fabric further comprises a prioritizer to assign VC_RT a first
priority and VC_AUX a second priority.

13. The system on chip of claim 12, wherein the prioritizer
is to assign VC_RT an expedited priority.

14. The system on chip of claim 13, wherein assigning
VC_RT an expedited priority comprises assigning an expired
deadline or a higher-than-normal grant count.

15. The system on chip of claim 10, wherein the decoder is
further to assign the packet to a traffic class, wherein the
traffic class corresponds exactly to a virtual channel.

16. The system on a chip of claim 15, wherein the decoder
is further to receive a packet from a data terminal directed to
an agent, decode the traffic class from the packet, and assign
the packet to the virtual channel that corresponds exactly to
the traffic class.

17. The system on a chip of claim 10, wherein the one or
more data terminals comprise a peripheral device, and
wherein the shared fabric comprises a shared interconnect
fabric to communicatively couple the one or more agents to
the peripheral device.

18. The system on a chip of claim 10, wherein the one or
more data terminals comprise a memory, and wherein the
shared fabric comprises a shared memory fabric to commu-
nicatively couple the one or more agents to the memory.

19. Atleast one machine accessible storage medium having
code stored thereon, the code when executed on a machine,
causes the machine to:

receive a first packet from a first agent directed to at least
one data terminal;

assign the first packet to a real-time traffic class and real-
time virtual channel within a shared fabric;

receive a second packet from a second agent directed to the
same or a different data terminal; and

assign the second packet to an auxiliary traffic class and
auxiliary virtual channel within the shared fabric.

20. The at least one machine accessible storage medium of

claim 19, wherein the code further causes the machine to:
prioritize the first packet according to a first priority
scheme; and

prioritize the second packet according to a second priority
scheme.



