

US 20140099683A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0099683 A1

Apr. 10, 2014 (43) **Pub. Date:**

Chen et al.

(54) OMEGA-3 DESATURASE USED IN THE **BIOSYNTHESIS OF POLYUNSATURATED** FATTY ACIDS

- (71) Applicants: Haiqin Chen, Wuxi (CN); Zhennan Gu, Wuxi (CN); Hao Zhang, Wuxi (CN); Wei Chen, Wuxi (CN); Yuanda Song, Wuxi (CN); Fengwei Tian, Wuxi (CN); Jianxin Zhao, Wuxi (CN); Yongquan Chen, Wuxi (CN)
- (72) Inventors: Haiqin Chen, Wuxi (CN); Zhennan Gu, Wuxi (CN); Hao Zhang, Wuxi (CN); Wei Chen, Wuxi (CN); Yuanda Song, Wuxi (CN); Fengwei Tian, Wuxi (CN); Jianxin Zhao, Wuxi (CN); Yongquan Chen, Wuxi (CN)
- (73) Assignee: UNIVERSITY OF JIANGNAN, Wuxi (CN)
- (21) Appl. No.: 13/646,667

(22) Filed: Oct. 6, 2012

Publication Classification

(51)	Int. Cl.	
	C12N 9/02	(2006.01)
	C12N 15/63	(2006.01)
	C12P 7/64	(2006.01)
	C12N 15/53	(2006.01)
(52)	U.S. Cl.	

USPC 435/134; 536/23.2; 435/320.1; 435/189

(57)ABSTRACT

The present invention provides novel fatty acid desaturases genes used for synthesis of polyunsaturated fatty acids, especially omega-3 desaturases (FADS15). The present invention also provides nucleic acid sequence coding the above-described desaturases, expression vector of the above-described desaturases and recombinant microorganism expressing above-described desaturases.

3888 C 4444	282	262 444	22.2	8222 oz 2		8888 c coo	323 mm
*****	A288		5 × × ×	222	<u> 48888</u>	1022	2.2.2
5 7 8 0.00	10000 20000 10000	2223 2222	100 CO	10000 HANN	CALL MARK	A 2 2 0 000	3200
10 0 0 AXX	233 222	\$\$3 xxx	9222 wax	222.000	333 x**	22.2 2 2 2 2 2 2	**************************************
3222	8 8 0 0 0 0	10.00 G	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20223	1222	22.22	2/23
2 16 16 16 16 16 16 16 16 16 16 16 16 16	SSS www.	866 000	833 ×***	8655 XAA	1000 A.C.	25 8 8 N N N	866888
MEESE ANN	\$8.88 mm	Chili acce	222 xxxxx	XXX xo a	N 200 200 2	82880000	222 aaa
12:55		02550	222	2888	833		8833
and the second second	A A A NNN	2000 C 40000		223 200	6666 055	24.9.9.9.9.9.9.	100 000 000
1832 xxxx	222	828	28668 aaa	San an a	222 000	Sec. Cam	ి కి కి కి లాలు
22223	14.4.4	444	1222	AXXX	-3222	0006	822
રહેઉટુ નનન		333 xxx	1977 AAX	222 C 0X X		్యర్టిక్షి క్రి రి లం	
19.00 m	- 8888	3222 WWW	333 mm	SSS men	1999	No. Westerna	2833 nnn
3828	232	NS S S	+333	862	177 200	288	*82.92 *
19 19 19 HILL	6688000	860 MAA	88899 WAX	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SSC 2444	30 C C	****
28.8.9	333.000	662	35 6 8	2000	28882 mm	2003 a man	822 ana
4888	2888	883	1999	222	MXXX	8223	828
889.464	арай анни	333 000	6.00 200	SSX XXX	388 oox	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
222	8888	*390	State and	222	866	1999 y	**************************************
12.3.0	335	883 ~~~	8222		1666		868
ું લુકુ છું બનન	800 888	222 www	SAME GAM	<u> (Sğğğ</u> 200	్రశ్రీశ్రీశ్రీ 2000	<u> REELAA</u>	(X 2 2 0 0 0
2238 waa	Sec. Sec.	2220	\$88 mm	See non	\$222 mar	8379	828.444
233	8886	0.000	233	222	333	48888	62.33
10 2 2 KCK	(666) eeee	*****	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	the second state of the	and a solution	Q 2 2 0 000	20000 888
222	882	223 Back	83333	6 2 2 2 an m	222	1668 mar	822 ***
\$333	825	222	Scc	\$325	8222	22.2	883
NG 83 9 10 10 10	2003 xxx	2 2 X X X X	1222 440	200 xxxxx	<u>2222</u>	2000 C	883 ×**
1668	- 898 C	2868 444	233 Aug	322	1868	- 886 S	- 88 93 see
NEE CONTRACTOR	822	8898		333	417E	833	
1275 aug	1212 C & A.A.A.	222 000	Sugar bach	and the second	CARLE CARA	2226 6 22	6.66.333
a 222	888	200	10 C 10	No 2 2	. 333	12 2 2 L	888
100 A A	2989	883	288	878	2228	8000	824
600 aca	8323 AAA	6 1 C 1 M	8555 AAN	100 C ~~~~	10 0 2 XAA	800000	8833 ×××
1828	222	- 20 () () () () () () () () () (4888	362 cs s	1222 Sam	SSS and	2000 and
222	2222		2333	JX 2 2	12.2.8	1228	222
5 4 6 20 20 20	888 444	1.1.2 1.5 1.5 1.6	100 C 10 10 10 10	2020 Q 28 8	200 X XXX	මුදුල් සහම	Sec. 2 1999
*****		112 Jac	Section was	222	*****	8862	888 ann
333 ~~~~	- N922 (8112	8.6.6 M	332	100 Pr (0	8222	82.2.2
A X & C & C & C	8665 xxxx	S 1 1 2 2 4	1888 XXX	699 4000	888 ona	1999 A. M.	్ స్టర్ట్ పై కాలాల
388	888	338	8822 ANA	Sec. S. Same	- 866	868	893
30.0.2	000		333	0068	\$16.6 E	16 6 F	823
SCCT ANA			333.888	and the second	<u> <u> </u></u>	2000 X XX	0000
188 mm	4222	X	Self-man	28 67 P	228	18 8 8 A 4 4	SEEE www.
1888 mm	3.8.8		8333	823	1988 mm	8888 mm	866
1992 www	322 aug		•2222 exem		Since mer	1999 2000	કરે તે સે ખબસ
323	8.66	2.12	288		222	- 1999	888
8833	1000		Seee	30.00 C	87.02	2023 S	879
12 3 3 mm m	889 F F 222		Q23 2000	Sec. Sec. Sec. of	2000 000	N 2 2 4 10 10 10	g R R R S S S S S S S S S S S S S S S S
1288	18 S	N 128	222	WW 8	1868	1899	
233 mm	333		8888 C		× * *	3688 mm	833
Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	848 444		222.000	<u> </u>		333××××	8888.000
8833			1660	662	NSSS		222
2223	8866 · · · ·		833	32.3.3	186.9		28.62
1888 aaa	888 000 C	80 (S. C. X.	New 9 9 900 10	· · · · · · · · · · · · · · · · · · ·	រថ្មីថ្ងីទី អរមគ	St 2 2 0 000	
1883 waa	and and	818 2.2	7888 mm	-393	1228	322 am	888 eren
32.2.2	Sec.	1.1.8	888	8669	4288	:222	822
86655 000	2833×22		332 xxxx	100 Sa	శుప్రస్టర్ల రాజు	24682244	<u> </u>
10 0 11 19 10 10 10 10 10	200.02	9.164	22 8 8 march	228 244	6 4 6 A A A A A A	3335 x x x	880 8 W A.A.A
15.0.0	0.2.5		2.4.1.1	228	13.5.5	3335	
18 St 18 St 19 St	888 × * *		200 X X X X X X X X X X X X X X X X X X	100 1000 (MARKA) (2010) 2010	1202 0000	17. 17 E & XA	(2 2 2 XXXX)
288 AXA	22.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.3.2	1000 March	122 x4 4	2222	and a sec	333 czu
M888	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	12 A 22	0.00	05.6.6	3632	88222	222
888 ANN	- 7998 HAA	ST 2 1 1	200 C 806X	388 ***	ate ***		88.23 ····
302	662 000	Millio 1. 10	28888 acre	S. C. G. a. S. Y.	2788 mar.	622000	ALCO NAM
222	228		¥833	3336	1200	1232	883
10.65 0.00	(665 var	1.12.0.00	1000 oxx	See Cane	222 ××**	333000	833 MMM
2002 ana		1 3 3 2 3 A	and see	18 8 8 marca	M322	8888 Jun	222 aaa
2.2.2	1828		888	688	333	N228	82288
S.S.S. waa	(200 XXX		4333 200	18 8 19 March	1000 C 2020	333 × × ×	1
100 CC 10 10 40 40 40 40 40	10.6.11 19.9.1. 20.20.20	1 0 0 0 0 0 0 00	Sec. Sec.	- 222 x x	100 00 00 100 10 10 00000	10 0 0 P MA	10 10 10 10 10 10 10 10 10 10 10 10 10 1
3888	8888		200	*288	2333	3355	832
9889 B 202	1620 C ***		Sec. 200	1353 ×××	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$\$\$\$ ****
CCC DOD	NAR 9 max	Sec. 18 1. 10	888 332	332 xxx	3360 ana	1222 000	888 X
383	888		\$222	228	888	838	5537
(5.6 S & & & & &	(888 aaa	333 S ***	10000 and	2333 C 488	333 ****	1365-000	888 ***
. Canaa	Bag unu	13 X	\$222 3.3.2	ALC: NO DE LA D	State Same	322	200 xxxx
M888	2333		ace:	3322	8656 C	3336	838
8888 AAA	NGE G WWW	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2222 AAA	888 www	1558	*****	28 33 maa
SEE	222 yyy	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200 800	222 200	1888 Ana	222	******
1838	232	644	332	2622	and the second	1285	\$ 55
220 xxx	See and the second	222 444	1333 ×**	4.8.8.9 xmm	2833 - * • *	1000 C	0000 0000. 0000

N Fig.

Microsoft Micros	AND ADD TO A COMPANY	
i i i i i i i i i i i i i i i i i i i	***** Sm**	
- E.E	8868	
	an a	
NIN XXXX SEED COUL CONTACT SEED COUL COULD AND A COULD AND A	83522	
- 8888 7888 60000 2000 8888	BB28 ANNA	
- 8000 1880 1990 1988 🖉 🖓 1990	3333	
ANNEL	2222	
- States and stat	8888 NAAP	
State and a	SSSS NAME	
7222 2000	ESSEE NAME	
- 3222	SSSS RAMA	
	3333 0000	
*2222	See See .	
- 18888 19888 19888 1988 1988	See asses	
- 2000 2000 5000 60000	2222	
NELLER PRESS ANAL INC. THE ANAL IS ANAL	3055 xxxx	
NEED AAAA AND AAAAA AAAAA AAAAA AAAAA AAAAAA AAAAAAA	20000 Adda	
2222 2022 mmm 2000 2000 2000	SSSS xxx0	
Service and a service service and service serv	SSS www	
"New york #2222 New York #1000 "New York #1000	XXXXXX HANNA	
- 2000 1999 1999 2000 1000 1999	SECT ward	
	2222 unnx	
ASSESSMENT STATE CONTRACTOR STATE	22222 acres	
- HILL AND	10886 AAAA	
	8999 xxxx	
Need and the second	89933 NAMP	
A CALL AND A	Selle same	
2000 2000 2000	5555 xaaa	
	Seece Maas	à
1888 2000 3000 3000	\$2228 anno	S2222
- 2332 5005 9555 8000 8800	2222 aonx	
	2222	88882××××
Reconstruction and a second se	86666	
	SSAG waters	- MAAAAAAA
- 200 2000 2000	SSSX xxxo	
REAL AND ARE PRESENT AND ARE AND A	2000 exec	8222x222
- 2000	CAR PARA	82222aaa
	8888 00xx	
	00000 00000	
the second s	Seen Same	*********
- CARLER - C	8888 xuuu	\$\$\$\$\$aaaa
ANNE LINE SECTION AND AND AND AND AND AND AND AND AND AN	10000 X X X X X X X X X X X X X X X X X	
	SASS XXX0	1. 13 Banna
	2200 *****	8322
**************************************	SCOR STATE NAME	
- 2000 *####	See own	a the second
	5577 00AL	- WEEELAAL
_2222 ############################	8888 anna	1888.8
The same second and the second s	ACCESS AND	
	SAAA NXXX	*8332aaaa
area anan arre inter terreside arrestation arrestation arrestation		

Fig.

S

		Same.				12		\$						3		
80.58	200	08239	3,3530	888	000	222	***	~883×		*538	<u></u>		ું હયસ	38	ç nan	
E85	2.9.9	- XXX	xxx	82.33	20 U U	222	~~~	288.		222	***	2.22	****	833		
888	2.00	XXX	***	200		.2833	ed to to	333.		333	***	33		233	* >= == ==	
		2005		222	در مر مر	*268	8 a. a	2322.	(xx		50.000	1000		33	รุ่มแห	
1997 B	855	2332	000	- 222	***	288	XGG	949.		*2 <u>2</u> 23	\$22	8223	8 5 5 5 5	323	2000	
225	0.000	1833			***	828	xxo	- 682.	ander Kanadari	333	000	- ^ & & &		288		
833	444	833	222	888	330	26995		a%83.		882		58		33	8	
\$202		832	1.1.1.1.1	222		8388	in an	- * 6 883 (88888				200	8	
3338	<i></i>	285.6.6		255		\$35		883 1		*282		3 2 2 1		084	\$	
888	200	822		*283	***	3380	0.02	262.1	(A.A.	888		28		232	* > * *	
333	222	822		222	~~~	8888 B	0 V V	\$ 223 *	(eeee	222	***	22	44.2	22	0 0 0 0	
8668.	***	833	¢α.α	615	***	666	4.99	- 568 °	- <u></u>	8283	***	×22	ê 54 54 54 9	33	ို့ခံခံမ	
833	• • •	1023	****	20.00	nnr	888	200	566.		888	0 O O	1961	్రజల	823	5 8 7 7 7	
888		822	2 2 2	1888		2663	< 0 m	228.		233	v u u	283	5000	188	3 4 X X X	
2223	wnn	Ser.	220	832	000	222	مة مز من من	£5555.		.339	***		çanı.	÷÷	20.00	
1000	***	12.23	***	832	***	662	8000 A	222 ×	- 	83338	(* 19 19)	200	Mana	288	6 5 5 5	
- 1222	****	2.55	***	98623	×××	. 8983	se in in	- 226.		225	AAA	1 2 2 3	Ś.a.a.a	¥88		
- <u>885</u>	~~~	- 222			***	¥399				222	***	28	د د د	22	Šupa.	
2015		222	0.000	882		222				8665				222		
1633		1223		.883		222		800° 828		1000		\$ 2.5	\$	9 2 2 1	8	
822		822		- X000		8323		888	caa:	333		1000		\$33	ar a an a	
333	X X X	833		222	a	**???	86-8 R.S	<u>8683</u> *		8833		33	, naa	55	<u>.</u>	
80.2%	* 10 10		Here .	283	008	228	544	- 888 °		\$353	***	2.2	5 0 0 0	88	g maa Y	
882	200	2032	300	- 3332	***	883	***	333*	**	605	*****	* 2 2	acat x 5	865	6.23.24	
662	***	\$55	مانية (823	<i>ы</i> ж ж.	2889	*****	. <u>888</u> .	**	255	***	38	ann.		كتفري	
		- 233	000	- <u>8</u> 23	in in Ar	655	a a a	* 3833 -		2888 A	-2-66.6	- 22		23		
2550	0 0, 0,	8833	\$ 6.6	832	00 C	225	50 30 30	22.2 ×	000	2000 2000 2000	000	833	****	200		
- 893	6 A A	1866	***	- 88 C 3	A		ڊيد. د.	êêê.	ien ien	- 288		86	Sever	888	Saxa.	
833	0.00	- 893	8.8××	833	000	6825	~ A A	"888°,	100	228	1. G G		Sauce	÷Ş.	ann.	
8375			1. N. N	888	XX X			* XX 3 .		8888				୍ୟୁକ୍ତ		
833		1000		88.63	***	86W	64 54 54	222			16 Se 30	×33		228		
888		226		893		\$8555		88% Č		228	44422424	28	i Sanas-	22		
6886	~~~~	635		802		336		2288	509.09.5 0.0000	.888	2.2.2.	- 283	i e e e e	188		
NE 23	0.00			\$\$\$ð		533		888*		*223		288)	<u>.</u>	23		
825		1888		- 2000		220	-00 AD AD.	225 ×	66	888		200	3	838	5 A A A A A	
882	× 90	688	XXX	200	***	- X2/20	a. w. w.	- 683 °	100	888	222	62	· · · · · ·	33	7222	
1823	aax	222		288	10.00	223	5 8 8 .	1888		****	***	- 223	8000	38	ç v a a	
1223	XAA	8665	*****	288	***	6.2 4	003	688.	6.4.4	223	***	\$62	المراجع الم	433	2 000	
- 88ž	× 10 10	223	··· ·· (-	- N. S. S.	NON	\$860	×>>	8.82 ·	·	222	****	5.2	şerene -	122	4 × × ×	
893	~~~	253	\times \times \times	222	6 6 6 C	N888	200	*200×		.853	6 6 G	- 883	žann.	22	e n n n	
4363		0000	موجوجو	289	200	233	x	200 ×	2.5	*333	000	323	ટું અન્યત	28	8.44	
- 888	~~n		3:2:2	- 2433	20 W W	888	× • •	288 v	i ww	888	** 6* 6*	*88		200	Jana	
833	***	- 1998 1998	~~~	222	and w	\$993	***	JANE.		889	0,0000	28	ટું અન્યત્વ	188	5.00	8
_833	s	233	~~~~	868	***	222	• × ×	\$388 . . 388 8	(RR)	8.288	× >> >>	ČĽ.		22	xee	× ***
1883	***	8888	*****	.833		225	a a a	888.	enere Grene	* 888 S	aaa	\$23)	Sann	288	5 * 10 4 4	*******
888		289	6 6 - 6 -	1833				225		222	x	**	้แมม	288	i	8255
8886		933	1966) 1966	883		N SSS		\$ <u>6 6 6 6</u>		222		33	3	23		2263
	~~~	2555		888		- 222		* <u>223</u> *	***	*833		888		38		322
6.2.5		* <u>235</u>	~~~~	.832		0000	· 22	6288 ×		888	~~~	*88		808		
333	N. N. M.	322	222	- <u>*2</u> 22	222	2222	~~~	See *	, <b>n</b> . n.	333	~~~	<u> 22</u>		32	s.www.	8222
888	X 19.19	888	677	288	***	228	~ ~ *	\$ 33.2 3	< 20 SP	2888	***	88	in an	22	or xorecec ∑	222
1000	***		کې دې دې	228	11 I. I. I.	282	• × ×	555 -		22.23	\$ \$.\$.	833	e xnn	. 22	****	*****
893	***	888	***	100 C C C		322	~~~	538 •	XX	333		2 G S	i na	1000	5 W ANN	272×00
333	~~~	222	****	888	10 0 K	8555	14 m m	2566 -	·	268	~~~	20	ç xww	22	ğərr	*****
38330	~~~	2252	4.4.4	833	444	222	xxx	******		2388	\$.0 Q			32 22	ૢૼૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	
855	wnn	4228	***	.888	en n n	825	xxx	188 A		252	a wa	833	રું અલલ	233	ž so ne	885 ««×
883	444	2000	***	2000	223	2333	544	288 ·	(4)4)	289	***	22	a nn	186	0000	2255 220
225	***	222	distant.	842) 842)	***	1666		8335.		3¥\$	×××	22			8	365
		10.000		X 2 2 2	0.000.000	0000		3444 (M		1000		0.03	£	0.64	<i>a</i> .	10 CC 20

Fig. 4

New New York







28

Fig. 6A



Fig. 6B









Fig. 7C

#### OMEGA-3 DESATURASE USED IN THE BIOSYNTHESIS OF POLYUNSATURATED FATTY ACIDS

## FIELD OF INVENTION

**[0001]** The present invention relates to the field of microbial manufacturing of polyunsaturated fatty acids (PUFAs), specifically to the fatty acid desaturases in the synthesis process of polyunsaturated fatty acids.

#### BACKGROUND OF THE INVENTION

[0002] Lipids are first synthesized as saturated fatty acids and double bonds are introduced post-synthetically by oxygen-dependent enzymes known as fatty acid desaturases, in a process that is initiated by abstraction of hydrogen from a methylene group. Fatty acid desaturases are divided into soluble and integral membrane classes, which may have been evolved independently (Shanklin J, Somerville C., "Stearoylacyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs", Proc Natl Acad Sci USA 1991; 88:2510-4). The acyl-ACP desaturases are soluble enzymes found in the plastids of higher plants, whereas the more widespread class of integral membrane acyl-CoA desaturases is found in endomembrane systems in prokaryotes and eukaryotes (Shanklin J, Cahoon E B., "Desaturation and Related Modifications of Fatty Acids1", Annu Rev Plant Physiol Plant Mol Biol 1998; 49:611-41). Fatty acid desaturases in each class are closely related homologs based on their amino acid sequences, and yet perform highly regio- and stereo-selective reactions on longchain fatty acids composed of essentially equivalent methylene chains that lack distinguishing landmarks close to the site of desaturation. As pointed out by Nobel Laureate Dr. Konrad Bloch, this region- and stereo-specific removal of hydrogen "would seem to approach the limits of the discriminatory power of enzymes" (Bloch K., "Enzymatic synthesis of monounsaturated fatty acids", Accounts of Chemical Research 1969; 2:193-202).

[0003] The membrane class of desaturases consists of enzymes with c5, c6, c9, c12 or  $\omega$ 3-regio-selectivity. Mammalian cells possess c5, c6 and c9, but lack c12 and  $\omega$ 3 desaturases (Berquin I M, Edwards I J, Kridel S J, Chen Y Q, "Polyunsaturated fatty acid metabolism in prostate cancer", Cancer Metastasis Rev 2011; 30:295-309, and Chen Y Q, Edwards I J, Kridel S J, Thornburg T, Berquin I M., "Dietary fat-gene interactions in cancer", Cancer Metastasis Rev 2007; 26:535-51). Mortierella alpina belongs to the subphylum of Mucoromycotina (Hibbett D S, Binder M, Bischoff J F, et al., "A higher-level phylogenetic classification of the Fungi", Mycol Res 2007; 111:509-47). It can produce lipids up to 50% of its dry weight. We have recently characterized M. alpina genome (Wang L, Chen W, Feng Y, et al., "Genome Characterization of the Oleaginous Fungus Mortierella alpine", PLoS One 2011; 6:e28319) which encodes one c5, two c6, three c9, one c12 and one  $\omega$ 3 desaturase. Therefore, M. alpina has all known regio-selective groups of membrane desaturases.

**[0004]** We have expressed *M. alpina* c9, c12 and  $\omega3$  desaturases (FADS9-I, FADS12 and FADS15) in the methylotrophic yeast *Pichia pastoris*, purified the recombinant proteins and determined their enzymatic activities.

#### DETAILED DESCRIPTION OF THE INVENTION

[0005] The applicant has identified a novel  $\omega$ 3 desaturase and a  $\Delta 9$  desaturase, successfully expressed, purified and characterized their enzymatic activities More specifically, the applicant designed primers of nucleotide aiming to three desaturases coding for  $\Delta$ 9-I Des,  $\Delta$ 12 Des and  $\omega$ 3 Des on the basis of whole-genome sequencing of M. alpina, the sequences of specific primers are listed in Table 1. M. alpina RNA was extracted and reverse transcribed to obtain cDNA. The amplified three sequences by PCR with three pairs of primer of FF1 and FR1, FF2 and FR2, FF3 and FR3 to PCR were inserted into pET19b (PP) and sequenced, and then subcloned into pPinka-HC, an expression vector in Pichia pastoris. Expression vectors were linearized and transformed into PichiaPink strain 2. The recombinant strains thus obtained express the above-mentioned three desaturases. The enzyme activity analysis showed that the purified recombinant desaturases were functional

**[0006]** The present invention provides genes coding for *M. alpina*  $\omega$ 3 desaturase (FADS 15) and  $\Delta$ 9 desaturase (FADS9-I), whose nucleic acid sequences are shown as SEQ ID NO:1 and SEQ ID NO:3, respectively.

**[0007]** The present invention also provides expression vectors respectively containing SEQ ID NO:1 and SEQ ID NO:3 which can respectively express *M. alpina*  $\omega$ 3 desaturase (FADS 15) and  $\Delta$ 9 desaturase (FADS9-I). Preferably, the said expression vector is *Pichia pastoris* expression vector.

**[0008]** The present invention also provides a recombinant microorganism which can respectively express  $\omega$ 3 desaturase (FADS15) and *M. alpina*  $\Delta$ 9 desaturase (FADS9-I). Preferably, the said recombinant microorganism is recombinant *Pichia pastoris* PichiaPink strain 2, which contains *Pichia pastoris* expression vector carrying SEQ ID NO:1 or SEQ ID NO:3.

[0009] The present invention successfully expresses and purifies the novel membrane  $\omega$ 3 desaturase (FADS15) and  $\Delta$ 9 desaturase (FADS9-I), which play a key role in the polyunsaturated fatty acid biosynthetic pathway, and whose amino acid sequences are shown as SEQ ID NO:2 and SEQ ID NO:4. Furthermore, the present invention verifies the enzyme activity of the above two kinds of membrane desaturases. The present invention apply the above-mentioned novel membrane desaturases  $\omega$ 3 desaturase (FADS 15) in the polyunsaturated fatty acid biosynthesis, converting fatty acid C18:  $1^{\Delta 9}$  into C18: $2^{\Delta 9,15}$ , C18: $2^{\Delta 9,12}$  into C18: $3^{\Delta 9,12,15}$ , C20: $4^{\Delta 5,8}$ , 11,14 into C20:5 $^{\Delta5,8,11,14,17}$ . Omega-3 polyunsaturated fatty acids can be utilized as food supplementation to prevent human disorders, wherein said human disorders consisting of cancer, cardiovascular disease, inflammation, developmental disorders, psychiatric disorders, and cognitive aging.

TABLE	1
-------	---

	Pri	mers	' sequence table and its restriction enzyme cutt:	ing site:
Name			Sequence	Targeted vector
FF1 (SEQ	ID:	5)	<pre>atat<u>CATATG</u>ATGGCCCCCCCCCCCCGCGTGTCGACGAGCA(Nde I)</pre>	pET19b-FADS15
FF2 (SEQ	ID:	6)	<pre>atat<u>ATTAAT</u>ATGGCACCTCCCAACACTATTGATGCCGG(Ase I)</pre>	pET19b-FADS12
FF3 (SEQ	ID:	7)	atat <u>CATATG</u> ATGGCAACTCCTCTTCCCCCCTCTTTGT (Nde I)	pET19b-FADS9-I
FR1 (SEQ	ID:	8)	atat <u>GGATCC</u> TAATGCTTGTAGAACACTACGTC(BamH I)	pET19b-FADS15
FR2 (SEQ	ID:	9)	atat <u>GGATCC</u> TTACTTCTTGAAAAAGACCACGTC(BamH I)	pET19b-FADS12
FR3 (SEQ	ID:	10)	atat <u>AGATCT</u> TTATTCGGCCTTGACGTGGTCAGT(BgI II)	pET19b-FADS9-I
SF1 (SEQ	ID:	11)	atatatTGCGCACATCATCATCATCATCATCAT(Fsp I)	pPink-FADS
SR1 (SEQ	ID:	12)	atat <u>GAATTC</u> AT <u>ATTTAAAT</u> TAATGCTTGTAGAACACTACGTC(Eco RI, Swa I)	pPink-FADS15
SR2 (SEQ	ID:	13)	atatat <u>GGTACC</u> TTACTTCTTGAAAAAGACCACGTC(Kpn I)	pPink-FADS12
SR3 (SEQ	ID:	14)	atatat_ <u>GGTACC</u> TTATTCGGCCTTGACGTGGTCAGT(Kpn I)	pPink-FADS9-I

#### DESCRIPTION OF THE ATTACHED DRAWINGS

**[0010]** FIG. 1: Diagram of the cloning strategy for desaturase expression vectors. FADS coding sequences were PCR amplified using primers listed in Table 1. PCR fragment were digested with indicated restriction enzymes, column purified and inserted into the pET-19b(PP) vector linearized with corresponding restriction enzymes. The FADS coding sequence plus His tag and Precision protease recognition sequence were PCR amplified and inserted into the pPinkalpha-HC vector. TRP2: TRP2 gene, AmpR: ampicillin resistance gene, pUC ori: oriental promoter of pUC, PAOX1: 5'AOX1 promoter region,  $\alpha$ -factor:  $\alpha$ -mating factor secretion signal, CYC1 TT: CCY1 transcription termination region, PADE2 HC: high-copy ADE2 promoter region, ADE2: ADE2 open reading frame.

**[0011]** FIG. **2**: the sequencing results of the clone sequence of  $\omega$ 3 desaturase (FADS 15), in which FADS15 nucleotide sequence from *M. alpina* ATCC#32222 shows 93.1% identity with AB182163 from *M. alpina* 1s-4.

**[0012]** FIG. 3: the sequencing results of the clone sequence of  $\Delta$ 12 desaturase (FADS12), in which FADS 12 nucleotide sequence from *M. alpina* ATCC#32222 shows 99.9% identity with AF110509 from *M. alpina* 1s-4.

**[0013]** FIG. 4: the sequencing results of the clone sequence of  $\Delta 9$  desaturase (FADS9-I), in which FADS9-I nucleotide sequence from *M. alpina* ATCC#32222 shows 98.4% identity with AF085500 from *M. alpina* 1s-4.

**[0014]** FIG. **5**A: Growth curve of the recombinant *P. pas-toris* measured by cell density, wet weight and total protein concentration.

**[0015]** FIG. **5**B: Kinetics of recombinant protein induction. Desaturase expression was determined by Western blotting using anti-His tag antibody. The normalized level of highest expression was set at one arbitrary unit. Three independent experiments were performed and bars represent standard deviations.

**[0016]** FIG. **5**C: Quantification of the recombinant desaturase proteins by Coomassie blue staining after SDS-PAGE. Known concentrations of BSA were used as quantification standard.

**[0017]** FIG. **5**D: InVisionTM His-tag In-Gel Stain of recombinant FADS proteins. The arrow head indicates the addition of methanol for induction of recombinant protein expression. The triangles indicate the expressed recombinant proteins. M: protein marker, Cont: negative control which was Pichi-aPinkTM harboring pPink $\alpha$ -HC, 15: FADS15, 12: FADS12, 9-I: FADS9-I.

**[0018]** FIG. **6**A: Fractionation of recombinant desaturases. InVision[™] His-tag In-Gel Staining after SDS-PAGE analysis of FADS9-I membrane (top panel) and supernatant fraction (bottom panel), using different speeds of centrifugation. The triangles indicate the recombinant FADS9-I.

**[0019]** FIG. **6**B: Coomassie blue Staining and InVisionTM His-tag In-Gel Staining of recombinant desaturases after fractionation. T: total protein after grinded by glass beads, D: debris after centrifugation at 500 g for 10 min, M: membrane fraction after centrifugation at 10,000 g for 10 min, S: supernatant after the centrifugation. The triangles indicate the recombinant desaturase proteins.

**[0020]** FIG. **7**A: Solubilization of recombinant desaturases. Membrane fractions were suspended in 1% concentrations of various detergents and incubated at 4° C. for 2 hr. Proteins were visualized by InVisionTM His-tag In-Gel Staining (upper panel) and Western blot (lower panel). T20: Tween-20, T80: Tween-80, N40: NP-40, DDM: n-Dodecyl- $\beta$ -D-maltoside, F12: Fos-Choline 12, F16: Fos-Choline 16,S: supernatant, P: pellet.

**[0021]** FIG. 7B: Membrane fractions of recombinant FADS9-I were suspended in 1% Fos-Choline 16 and incubated at 4° C. for various time (0, 0.5, 1.5, 3, 12 hr). Aliquots were analyzed by InVisionTM His-tag In-Gel Staining. S: supernatant, P: pellet.

**[0022]** FIG. 7C: One-step purification using His Mag Sepharose Ni beads under the high yield (upper panel) and high stringency conditions (lower panel). Proteins were analyzed by SDS-PAGE and Coomassie blue staining. M: protein marker, S: supernatant, F: flow through, E: eluate.

### SPECIFIC EMBODIMENTS

#### Example 1

#### Mortierella Alpina Culture

[0023] Mortierella alpina (#32222, American Type Culture Collection, Manassas, Va., USA) was inoculated on Potato Dextrose Agar (PDA) plates (BD Difco[™] Potato Dextrose Agar cat#213400) and incubated for 20-30 days at 25° C. 5 mL broth (20 g/L Glucose, 5 g/L Bacto yeast extract BD Biosciences cat#212750, 1 g/L KH₂PO₄, 0.25 g/L MgSO₄, 10 g/L KNO3) were added to three plates. Spores were gently scraped off the surface with a sterile loop, and then filtrated through a 40 micron cell strainer. Spores were concentrated by centrifuging at 12,000×g for 15 min, suspended in a small volume of broth, enumerated using a hemocytometer, and kept at -80° C. in 30% glycerol at a density of approximately 10⁷ spores/mL. Alternatively, 3 mL of unconcentrated spore suspension were directly added into 45 mL broth without KNO₃ in a 250-mL flask covered with 8 layers of cheese cloth, and shaken at 200 rpm, 25° C. for 5 days. Cultures were blended using a Braun hand blender for 5 sec/pulse, 8 pulses, then 0.3 g wet mycelia were inoculated into 45 mL broth without KNO₃ in a 250-ml flask and shaken at 200 rpm, 25° C. for 24 h. The above step was repeated once, by which time the whole fungal culture was in proliferative phase and ready for experiments. Mycelia were collected by filtration and weighed. Samples were snap-frozen in liquid nitrogen, pulverized and kept at -80° C. for RNA extraction.

### Example 2

#### Expression Vector Construction

[0024] M. alpina RNA extraction was performed using Trizol Reagent (Invitrogen, CA) according to the manufacturer's instructions. Total RNA was reverse transcribed with Super-Script® III First-Strand Synthesis SuperMix (Invitrogen) following the manufacturer's instructions. Using both C- and N-terminal sequences as primers (Table 1), desaturase coding sequences were PCR amplified as follows: denaturation at 95° C. for 30 sec, annealing at 55° C. for 45 sec and extension at 72° C. for 1 min for 25 cycles. The amplified products were cloned into a modified pET19 vector (Novagen) derivative containing a PreScission protease cleavage site (GE Healthcare) between the multiple cloning site and N-terminal His tag (Jonsson T J, Johnson L C, Lowther W T (2009) Protein engineering of the quaternary sulfuredoxin.peroxiredoxin enzyme.substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation. J Biol Chem 284: 33305-33310.) to construct pET19b-FADS15, pET19b-FADS12 and pET19b-FADS94). The desaturase genes, including the His-Tag and PreScission protease cleavage site, were then PCR amplified using primers SF1 and SR1-SR3 (Table 1). The PCR conditions used were the same as the first step for cDNAs. The PCR fragments were then purified and inserted into pPink $\alpha$ -HC to generate the expression vectors pPinka-HC-FADS15, pPinka-HC-FADS12 and pPinka-HC-FADS9-I. The presence of the inserts in the plasmids was confirmed by restriction digestion analysis and sequencing. The strategy used for constructing desaturase expression vectors is shown in FIG. 1. Sequencing results from the amplified fragment of these desaturases are in FIG. 2-4. The FADS12 and FADS9-I genes from M. alpina ATCC#32222 are 99.9% and 98.4% identical, respectively, to the corresponding genes

from *M. alpina* 1s-4. The FADS12 and FADS9-I proteins from *M. alpina ATCC#*32222 are 100% and 99.6% identical, respectively, to these proteins from *M. alpina* 1s-4. The high similarity of FADS12 and FADS9-I genes between two strains indicates that these genes are highly conserved in *M. alpina. Interestingly, the FADS* 15 gene is much less conserved at both DNA (93.1% identity) and protein (97.9%) levels.

#### Example 3

## Protein Expression

**[0025]** Desaturase expression vectors and pPink $\alpha$ -HC (negative control vector) were linearized with restriction enzyme Spe I and transformed into *P. pastoris* strains (Pichi-aPink strain 1, 2, 3 and 4) using the MicroPulser Electroporator (Bio-Rad Laboratories, Hercules, Calif.) according to the User Manual of PichiaPink Expression System (Invitrogen). *P. pastoris* were incubated with YPDS media (YPD with 1 M sorbitol) in the Gene Pulser Cuvettes at 28° C. for 2 hr without shaking, spread onto PAD (Pichia Adenine Dropout) agar selection plates, and then incubated at 28° C. for 4 days until distinct colonies were formed. Eight white colonies for each transformation were picked and plasmid integration in the yeast genome was confirmed by PCR.

[0026] Isolated clones were individually inoculated into 10 mL of BMGY medium (Buffered Glycerol-complex Medium, 1% yeast extract; 2% peptone; 100 mM potassium phosphate, pH 6.0; 1.34% YNB-Yeast Nitrogen Base; 0.0004% biotin; 1% glycerol) in 50 mL conical tubes. The cells were grown for 48 hr at 28° C. with vigorous shaking at 250 rpm. Then, the cultures were centrifuged at 1,500 g for 5 min at room temperature, the cell pellets were resuspended in 2 mL of BMMY medium (Buffered Methanol-complex Medium, 1% yeast extract; 2% peptone; 100 mM potassium phosphate, pH 6.0; 1.34% YNB; 0.0004% biotin; 0.5% methanol) and cultured at 28° C. with shaking at 250 rpm to induce the expression. After continuous cultivation for 72 hr with daily addition of 0.5% methanol, cells were harvested by centrifuging for 10 min at 1500 g. Supernatant was transferred to a separate tube and both the supernatant and cell pellet were stored at -80° C. until ready for assay. Supernatants and cell pellets were analyzed for protein expression by SDS-PAGE Coomassie blue staining and Western blot. Our data showed that PichiaPink strain 2(ade2, pep4) supported the highest level of expression for FADS15, 12 and 9-I.

#### Example 4

#### Expression Condition Optimization and Protein Analysis

**[0027]** Individual colonies of *P. pastoris*-FADS15, FADS12 and FADS9-I were inoculated into 10 mL of BMGY medium in 50 mL conical tubes and cultured for 48 hr at 28° C. at shaking speed of 250 rpm. Then, 2.5 mL of culture were inoculated into 50 mL of BMGY medium in 250-mL volume shaker flasks and grown at 28° C. for 24 hr at 250 rpm. The cells were collected by centrifugation at 1500 g for 10 min, and resuspended in 10 mL induction medium (BMMY medium with 0.5% methanol) in a 100-mL shaker flask. The induction of protein expression was performed for 96 hr at 28° C. with 250 rpm agitation and daily addition of 0.5% methanol. Samples were collected at 0, 6, 24, 48, 72 and 96 hr for measuring cell density at  $OD_{600}$ , wet cell weight and total protein concentration, and for Western blot analysis of desaturase expression levels.

**[0028]** The cell pellets and supernatants were collected by centrifuging 100  $\mu$ L cell culture at 1500 g for 10 min Cell pellets were resuspended in 100  $\mu$ L lysis buffer (20 mM Tris. Cl pH7.9, 1 mM EDTA, 5% Glycerol) with an equal volume of 0.5 mm Glass Beads (Biospec products, Inc.), and vortexed for 10 min at 4° C. Cell lysates were mixed with 4×SDS sample buffer and heated for 5 min at 95° C. About 5  $\mu$ l sample was loaded onto Mini-Protein Precast Gels (4-15%, Bio-Rad Laboratories, Cat #456-1086), and ran for 40 min at 150 V. Then, the SDS-PAGE gels were used for Coomassie blue stain, Invision His-Tag in-gel stain (Invitrogen) or Western blot.

**[0029]** For Western blot analysis, protein gels were transferred onto a nitrocellulose transfer membrane (Schleicher & Schuell GmbH, Germany) by electroblotting (100 V, 2 hr) using Mini Trans-Blot electrophoretic transfer cell (Bio-Rad Laboratories). The membrane was blocked with 3% BSA in TBST (150 mM NaCl, 10 mM Tris-Cl pH 7.5, 0.05% Tween20), and probed with mouse Penta.His antibody (Invitrogen) followed by HRP-conjugated goat anti-mouse IgG (GE Healthcare). Blots were then incubated with enhanced chemiluminescence reagent (ECL, GE healthcare) and analyzed using Fluorchem E (Cell Biosciences, Inc.).

**[0030]** The total protein concentration was determined with Pierce BCA protein assay kit (Thermo Scientific). The quantification of target protein on Coomassie blue stained gel was performed using known concentrations of BSA as standard, and analyzed with the AlphaView SA software (Cell Biosciences, Inc.).

[0031] To determine potential toxicity of recombinant proteins, we first examined cell growth density, weight and total protein synthesis of the PichiaPink pPinka-HC-FADS clones. The recombinant PichiaPink pPink $\alpha$ -HC-FADS cells had growth characteristics similar to the control (FIG. 5A). A time course experiment showed that desaturase expression was detectable after 24 hr induction with 0.5% methanol and remained high for at least 72 hr post-induction (FIG. 5B). There were no significant differences in protein expression when cells were induced at different temperatures (16° C., 22° C., 28° C.) or with a different concentration of methanol (0.5%, 1%). Therefore, we used an optimized procedure as described in the Materials and Methods for the expression of recombinant desaturase. Under this condition, expression levels of recombinant desaturase proteins reached approximately 130 mg/L of culture for FADS15, 110 mg/L for FADS12 and 350 mg/L for FADS9-I (FIG. 5C).

#### Example 5

#### Protein Purification

**[0032]** All purification procedures were performed at 4° C. Cells harvested from 800  $\mu$ L of culture were suspended in 800  $\mu$ L of lysis buffer. After addition of 0.5 mm glass beads to the cell suspension, *P. pastoris* cells were disrupted by vortexing at 4° C. for 10 min Cell lysis efficiency was usually more than 95% evaluated using a light microscope. Intact cells and cell debris were removed from the membrane suspension by low speed centrifugation (500 g, 10 min at 4° C.). Then various centrifugation speeds and time (1,000 g for 10 min; 10,000 g for 10 min; 20,000

g for 20 min) were used to determine the best centrifugation conditions for collecting the membrane fraction.

**[0033]** Fractions containing recombinant desaturases were solubilized in buffer, containing 20 mM Tris.Cl, pH 7.9, 500 mM NaCl, 10% glycerol, 0.1 mM EDTA, and different concentrations (0.5%, 1%, 2%) of various detergents (Tween 20, Tween 80, Nonidet P-40, DDM, Fos-Choline 12, Fos-Choline 16) at 4° C. for different times (0.5, 1, 1.5, 2 hr and overnight). The insoluble materials were removed by centrifugation at 25,000 g for 30 min at 4° C.

[0034] Optimized culture and protein solubilization conditions were used for the subsequent purification process. His Mag Sepharose[™] Ni affinity beads (GE Healthcare) were washed with binding buffer (20 mM Tris.Cl, pH 7.9, 500 mM NaCl, 10% glycerol, 0.1 mM EDTA, 0.5% Fos-Choline 16, 5 or 20 mM imidazole) and added to the solubilized fractions after detergent incubation. The bead-protein sample mixtures were incubated for 45 min at 4° C. with end-over-end mixing. After washing three times with binding buffer containing 5 mM or 20 mM imidazole, desaturase enzymes were eluted with elution buffer (20 mM Tris.Cl, pH 7.9, 500 mM NaCl, 10% glycerol, 0.1 mM EDTA, 0.5% Fos-Choline 16, 500 mM imidazole). The purified FADS15, FADS12 and FADS9-I proteins were stored at -80° C. in aliquots. The quantity and quality of these purified enzymes were analyzed by SDS-PAGE and desaturase activity assay.

**[0035]** In order to solubilize and purify the recombinant desaturases from cell membrane for in vitro enzymatic activity, we first tested conditions to enrich the cell membrane containing recombinant FADS15, FADS12 and FADS9-I. Different centrifugation speeds and times were examined for the separation of the membrane fractions containing target proteins. Efficient recovery of each recombinant desaturase produced in *P. pastoris* was achieved by centrifuging the cell homogenates at 500 g for 10 min to remove cell debris, then at 10,000 g for 10 min to collect membrane fractions (FIG. 6).

[0036] Solubilization of membrane proteins requires the presence of detergents. Therefore, we tested the conditions for solubilization of the recombinant FADS 15, FADS 12 and FADS9-I from enriched cell membrane fractions using a panel of detergents: Tween-20, Tween-80, NP-40, n-Dodecyl-β-D-maltoside (DDM), Fos-Choline 12 or Fos-Choline 16. After treatment with 1% (w/v) of Fos-Choline 12 or Fos-Choline 16, FADS9-I and FADS12 were totally solubilized, and approximately 50% and 80% of FADS 15 was solubilized with Fos-Choline 12 and Fos-Choline 16, respectively (FIG. 7A). Tween-20, Tween-80, NP-40 and DDM had little effect on extracting these desaturase enzymes from the membrane. In addition, we noticed that FADS9-I protein degradation occurred during protein solubilization. This phenomenon was visible for proteins solubilized by both Fos-Choline 12 and 16. Thus, we investigated detergent incubation time during solubilization to optimize for the least protein degradation. Our results showed that the solubilization of FADS9-I protein reached its maximum level after incubation with detergent for 1.5 hr. Degradation of desaturase protein increased after more than 3 hr of incubation (FIG. 7B). To maximize the ratio of intact vs. degraded proteins, we used 1.5 hr as our standard detergent incubation time for protein solubilization. We also compared the effect of detergent concentrations on protein solubilization efficiency and found that 0.5%, 1% or 2% of Fos-Choline 16 had similar effects. Taken together, our results indicate that all three recombinant desaturase enzymes can be solubilized efficiently from the cell membrane with 0.5% Fos-Choline 16 for 1.5 hr at 4° C. **[0037]** Solubilized FADS 15, FADS 12 and FADS9-I were affinity-purified on His Mag Sepharose Ni beads (GE health-care) with aims of high purity or high yield. High purity (>95%) was achieved after one step purification using the His Mag Sepharose Ni beads with high stringency wash before elution (FIG. 7C). High yield (2-fold higher than that in the high purity process) was achieved with low stringency wash. Yield and quantity of each desaturase enzyme are summarized in Table 2. Our estimated yields of desaturases with purity >95% are approximately 22.5 mg/L for FADS15, 12 mg/L for FADS12 and 188 mg/L for FADS9-I.

TABLE 2

		Pı	urificati	on of M	. <i>alpina</i> d	esaturas	ses			
		FADS	S15 prot	tein	FADS	S12 pro	tein	FADS	59-I pro	tein
Process	Vol (µL)	Con. (mg/L)	Total (µg)	Yield (%)	Con. (mg/L)	Total (μg)	Yield (%)	Con. (mg/L)	Total (µg)	Yield (%)
Cell lysates Centrifugal collections	200 200	130.0 112.0	26.0 22.4	100.0 86.2	110.0 82.0	22.0 16.0	100.0 72.7	350.0 254.0	70.0 50.8	100.0 72.6
(500-10 kg) Detergent treatment extracts	200	76.0	15.2	58.5	74.8	15.0	68.2	223.0	44.6	63.7
Ni-NTA (20 mM ID)	40	22.5	0.9	3.5	12.0	0.5	2.3	188.0	7.5	10.7
Ni-NTA (5 mM ID)	100	10.5	1.1	4.2	7.5	0.8	3.6	185.0	18.5	26.4

ID: imidazole

#### Example 6

#### Desaturase Activity Assay

[0038] Approximately 20 mg of P. pastoris cell pellets were collected and used for each lipid extraction with the method of Bligh and Dyer (Bligh E G, Dyer W J (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917). under acidified conditions with pentadecanoic acid and heneicosanoic acid added as internal standards. The solvent from the extract was removed under a stream of nitrogen. Lipids were saponified in 1 mL of freshly prepared 5% ethanolic potassium hydroxide at 60° C. for 1 hr under an argon atmosphere. After cooling, 1 mL of water was added to the samples and non-saponifiable lipids were extracted into 3 mL of hexane. The aqueous layer was acidified with 220 µL of 6 M hydrochloric acid and the fatty acids extracted into 3 mL of hexane. After removing the hexane in a stream of nitrogen, fatty acids were converted to methyl esters by first treating with 1 mL of 0.5 M methanolic sodium hydroxide at 100° C. for 5 min under argon followed by 1 mL of 14% methanolic boron trifluoride at 100° C. for 5 min under argon (Metcalfe L D, Schmitz A A, Pelka J R (1966) Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis. Analytical Chemistry 38: 514-515.). After cooling, the sample was mixed with 2 mL of hexane followed by 4 mL of saturated aqueous sodium chloride. After separating the phases, aliquots of the hexane layers were diluted 24-fold with hexane and then analyzed by GC/MS. One µL was injected in the splitless mode onto a 30 m×250 µm DB-WAXETR column (Agilent Technologies,

[0039] In Vivo Desaturase Activity Analysis:

**[0040]** Individual colonies of *P. pastoris*-FADS15, FADS 12 and FADS9-I were cultured as described in the Recombinant protein expression section. Protein expression was induced for 72 hr with 0.5% methanol. Cell pellets were collected by centrifugation and stored at -80° C. for fatty acid analysis.

[0041] In Vitro Desaturase Activity Analysis:

**[0042]** 20  $\mu$ L of the purified protein was added to 200  $\mu$ L of yeast EGY49 cell homogenate, prepared by breaking cells with 0.5 mm glass beads in lysis buffer (20 mM Tris-HCl pH7.9, 1 mM EDTA, 5% Glycerol). The enzyme reactions were performed at 28° C. for 3 h with shaking (250 rpm), and the assay mixture (220  $\mu$ L) were stored at -80° C. for fatty acid analysis.

**[0043]** To determine the functional activity of the recombinant *M. alpina* desaturase in vivo, PichiaPink cells were cultured and induced to express desaturases. Fatty acid methyl esters (FAME) analysis of cell pellets showed that expression of recombinant desaturases in PichiaPink cells altered their fatty acid contents compared to the control. Table 3 shows the percentage increase of  $C16:1^{\Delta 9}$ ,  $C18:1^{\Delta 9}$ ,  $C18:2^{\Delta 9,12}$  and  $C18:2^{\Delta 9,12,15}$  compared to the negative control. The  $C16:1^{\Delta 9}$  and  $C18:1^{\Delta 9}$  were increased 40% and 20%, respectively, in PichiaPink cells expressing FADS9-I, suggesting that FAD9-I can insert the first double bond into both C16:0 and C18:0 with a preference for C16:0 as substrate. The C18:2^{$\Delta 9$}, ¹² content was 27% higher in cells expressing FADS12, suggesting that FADS12 can desaturate C18:1^{$\Delta 9$} at the c12-position to produce C18:2^{$\Delta 9,12,15}</sup> in cells expressing FADS15, suggesting that FADS15 can desaturate C18:2^{<math>\Delta 9,12,15}</sup>. These results suggest that the recombined of the combine of the combined of the combined com</sup>$ </sup>

Santa Clara, Calif.) with 0.25  $\mu$ m film thickness. The temperature program was as follows: 100° C. for 2 min, ramp to 200° C. at 16° C. per min, hold for one min, ramp to 220° C. at 4° C. per min, hold one min, ramp to 260° C. at 10° C. per min, and hold for 11 min Helium was the carrier gas at a constant flow of 1.5 mL/min. The mass spectrometer was operated in positive-ion electron impact mode with interface temperature 260° C., source temperature 200° C., and filament emission 250  $\mu$ A. Spectra were acquired from m/z 50 to 450 with a scan time of 0.433 s. Lower-boiling fatty acid methyl esters were quantified using the pentadecanoic acid internal standard, whereas higher-boiling methyl esters were quantified using the heneicosanoic acid internal standard.

nant desaturases, FADS9-I, FADS 12 and FADS 15, were active in *P. pastoris*.

**[0044]** We used yeast EGY49 cell homogenate for our in vitro assay of recombinant desaturase activity. Our results

showed that purified recombinant FADS12 converted C18:  $1^{\Delta 9}$  to C18: $2^{\Delta 9,12}$  in vitro, and C18: $2^{\Delta 9,12}$  level was increased 116% compared to the control (Table 3). Activities of purified FADS9-I and FADS 15 were relatively low in vitro.

TABLE 3

		M. alpina	desaturases in-v	vivo and in-	vitro activi	ties		
	I	n vivo			I	n vitro		
FAD	S9-I	FADS12	FADS15	FAD	FADS9-I		FADS15	
C16:1 ^{Δ9} (% ^a )	C18:1 ^{Δ9} (%)	C18:2 ^{Δ9,12} (%)	C18:3 ^{Δ9,12,15} (%)	C16:1 ^{Δ9} (%)	C18:1 ^{Δ9} (%)	C18:2 ^{Δ9,12} (%)	C18:3 ^{Δ9,12,15} (%)	
40 ± 6	20 ± 7	27 ± 4	5 ± 3	6 ± 8	7±7	116 ± 40	8 ± 4	
60 ±	7 ^b			13 :	± 8			

^aPercent increase over control;

 b Sum of two products

		SE	QUENCE	LISTI	NG					
SEQ ID NO: 1										
atggcccccc c	tcacgttg	t cgacga	agcaa g	gtacgac	gca	gaat	cgto	gt (	cgago	gacgag
atccagtcca a	gaagcagt	t tgage	gcaac t	atgtgo	cta	tgga	ctt	aca	aatca	aggag
attcgagatg c	gateccag	c ccacct	cttc a	atccgtg	jata	ccac	aaag	gtc g	gatco	tgcat
gtcgtcaagg a	tctggtca	c tatcgo	catc g	yttttt	act	gtgc	aaco	ctt (	catco	gagact
ctgecetege t	cgctctga	g agttco	ctgcc t	ggatca	acct	acto	gato	cat o	ccaa	ggaact
gtcatggtcg g	cccctgga	t tctggo	cccac g	gagtgcg	gcc	atgg	Jagee	gtt (	ctcg	gacagc
aagacgatca a	caccatct	t tggato	gggtc d	cttcact	ctg	ctct	tttg	ggt g	geeet	accag
gcttgggcca t	gtcgcatt	c caagca	accac a	aagggca	ictg	gato	cate	gag (	caago	gatgtc
gttttcatcc c	tgccactc	g atccta	acaag g	ggcette	ccc	cact	ggag	yaa g	gcct	geegeg
gaagaggagg t	tttggagc	a ggagca	atcac c	caccatg	jaag	agto	cato	tt 1	tget	gagact
cccatctaca c	tctcggag	c gcttt	tttc g	gteetga	acct	tggg	jatgo	gee (	cttgt	acttg
atcatgaact t	ttctggac	a cgaago	ccct d	cactggg	ytca	acca	ctto	cca g	gacgo	gtcgcc
cctctgtatg a	gcctcacc	a gegeaa	agaac a	attttct	act	ccaa	ictgo	gg (	catto	gteget
atgggctcga t	cctcactt	a cctcto	gatg g	gtettet	cgc	cctt	gact	gt g	gttca	atgtac
tatggcatcc c	ctacctcg	g agtcaa	atgct t	ggatcg	gtct	gcat	caco	ta 1	teted	cagcac
accgatccca a	ggtgcctc	a tttcco	gtgat a	aacgagt	gga	actt	ccag	lcd (	cggt	getgee
tgcactatcg a	ccgatcct	t cggtad	catt g	gtcaacc	act	tgca	iccac	ca (	catto	ggtgac
tctcatcaat g	tcatcata	t gttete	cgcag a	atgecet	tct	acaa	icgcc	gt i	tgago	gctaca
aagcatctca a	.agccaagc	t tggcaa	agtac t	acatat	ttg	acga	icact	cc (	catto	Jccaag
gecetetace g	caattgga	g agagto	gcaaa t	tcgtgg	jagg	acga	ıggga	iga (	cgtag	gtgttc
tacaagcatt a	.a									
CEO TO NO. 2										
Mot No: 2	Dro Ilia		Agn Cl	u cin	Vol	7	7.200	3 ma	т1-	1101
Wel Ala PIO	Clu Ile (	Cln Cor	Ive L	ia Gln	Dho	Glu	Arg	Arg	Tur	vai Val
Dro Met App	Dhe Thr			le Ara	Agn	Ala	TID	Pro		Var Uic
Leu Phe Ile	Arg Asp '	Thr Thr	LVS Se	er Tle	Leu	His	Val	Val	Lvs	Asp
Leu Val Thr	Tle Ala	Tle Val	Phe Tr	r Cvs	Ala	Thr	Phe	Tle	Glu	Thr
Leu Pro Ser	Leu Ala	Leu Ara	Val Pi	o Ala	Trp	Ile	Thr	Tvr	Trp	Ile
Ile Gln Glv	Thr Val I	Met Val	Glv Pi	o Trp	Ile	Leu	Ala	His	Glu	Cvs
Gly His Gly	Ala Phe	Ser Asp	Ser Ly	s Thr	Ile	Asn	Thr	Ile	Phe	Gly
Trp Val Leu	His Ser 2	Ala Leu	Leu Va	al Pro	Tyr	Gln	Ala	Trp	Ala	Met
Ser His Ser	Lys His 1	His Lys	Gly Th	nr Gly	Ser	Met	Ser	Lys	Asp	Val
Val Phe Ile	Pro Ala '	Thr Arq	Ser Ty	r Lys	Gly	Leu	Pro	Pro	Leu	Glu
Lys Pro Ala	Ala Glu (	Glu Glu	Val Le	eu Glu	Gln	Glu	His	His	His	His
Glu Glu Ser	Ile Phe 2	Ala Glu	Thr Pi	ro Ile	Tyr	Thr	Leu	Gly	Ala	Leu
Phe Phe Val	Leu Thr I	Leu Gly	Trp Pi	ro Leu	Tyr	Leu	Ile	Met	Asn	Phe
Ser Gly His	Glu Ala 🗄	Pro His	Trp Va	al Asn	His	Phe	Gln	Thr	Val	Ala
Pro Leu Tyr	Glu Pro 1	His Gln	Arg Ly	/s Asn	Ile	Phe	Tyr	Ser	Asn	Cys
Gly Ile Val	Ala Met (	Gly Ser	Ile Le	eu Thr	Tyr	Leu	Ser	Met	Val	Phe
Ser Pro Leu	Thr Val 3	Phe Met	Tyr Ty	r Gly	Ile	Pro	Tyr	Leu	Gly	Val
Asn Ala Trp	Ile Val (	Cys Ile	Thr Ty	r Leu	Gln	His	Thr	Asp	Pro	Lys
Val Pro His	Phe Arg 2	Asp Asn	Glu Tr	rp Asn	Phe	Gln	Arg	Gly	Ala	Ala
Cys Thr Ile	Asp Arg	Ser Phe	Gly Th	nr Ile	Val	Asn	His	Leu	His	His
His Ile Gly	Asp Ser 1	His Gln	Cys Hi	ls His	Met	Phe	Ser	Gln	Met	Pro
Phe Tyr Asn	Ala Val (	Glu Ala	Thr Ly	/s His	Leu	Lys	Ala	Lys	Leu	Gly
Lys Tyr Tyr	Ile Phe 2	Asp Asp	Thr Pi	co Ile	Ala	Lys	Ala	Leu	Tyr	Arg
Asn Trp Arg	Glu Cys 🗄	Lys Phe	Val GI	lu Asp	Glu	Gly	Asp	Val	Val	Phe
Tyr Lys His										

-continued

	SEQUENCE LISTING
SEQ ID NO:	3
gatectetee	agcacgagga actgccccct ctcttccccg agaaaatcac catcttcaac
atctqqaqat	atettqaeta caaqeatqtt eteqqtetqq qqetqaeqee tttqateqet
ctctatggtc	tettgaegae egagateeag aegaagaeae tgatetggte eateatetae
tattatgcta	cgggacttgg catcacagca ggttaccatc gactctgggc ccatcgtgct
tacaacgcag	gaccagccat gagettegtg etegeactge teggegeegg tgeagttgaa
aaggacccct	acagegetea eegegetea egegeteate acegeteggat tyacategag acagegetea eegaggaete ttettetege acattggetg gatgttgate
aagcgccctg	gatggaagat tggccatgcc gatgttgacg acctcaacaa gagcaaactc
gttcagtggc	agcacaagaa ctaccttcct cttgttctta tcatgggtgt cgtcttcccc
acggttgttg	ctggactcgg ctggggcgat tggcgtggag gctacttcta tgctgctatc
adtaataaaa	contrasta concentration activation terration
actttqqqaq	aqqqctacca caactttcat caccaattcc cccaqqacta ccqcaacqct
atccgttttt	accagtacga tcctaccaag tgggtcatcg ccctctgtgc tttctttggc
ctcgctacgc	acctcaagac cttccctgag aatgaagtcc gcaagggtca gctccagatg
attgagaagc	gtgtcctgga gaagaagacc aagctccagt ggggcactcc cattgccgat
atcotottog	aggetetega gyacticeag catgetigea adaacgacaa caagaagtgg
gagaagtacc	tcaagatggg cgtcggcaag gacatgaccg cagctttcaa cggcggtatg
tacgatcaca	gcaatgccgc ccgcaacctg ctgagcttga tgcgcgtcgc cgtcgttgag
tatggtggtg	aggtggaggc acagaagaag aaccettega tgeecateta eggeaetgae
cacgtcaagg	ccgaataa
SEO ID NO:	4
Met Ala Th:	r Pro Leu Pro Pro Ser Phe Val Val Pro Ala Thr Gln Thr
Glu Thr Arg	g Arg Asp Pro Leu Gln His Glu Glu Leu Pro Pro Leu Phe
Pro Glu Ly:	3 Ile Thr Val Tyr Asn Ile Trp Arg Tyr Leu Asp Tyr Lys
Leu Thr Th	s GIY Leu GIY Leu THY PYO Leu IIE AIA Leu TYY GIY Leu r Glu Ile Gln Thy Lys Thy Leu Ile Typ Sey Ile Ile Tyy
Tyr Tyr Ala	a Thr Gly Leu Gly Ile Thr Ala Gly Tyr His Arg Leu Trp
Ala His Arg	g Ala Tyr Asn Ala Gly Pro Ala Met Ser Phe Val Leu Ala
Leu Leu Gly	y Ala Gly Ala Val Glu Gly Ser Ile Lys Trp Trp Ser Arg
Gly His Are	g Ala His His Arg Trp Thr Asp Thr Glu Lys Asp Pro Tyr
Lvs Arg Pro	o Gly Tro Lys Ile Gly His Ala Asp Val Asp Asp Leu Asp
Lys Ser Ly:	s Leu Val Gln Trp Gln His Lys Asn Tyr Leu Pro Leu Val
Leu Ile Met	t Gly Val Val Phe Pro Thr Val Val Ala Gly Leu Gly Trp
Gly Asp Tr	p Arg Gly Gly Tyr Phe Phe Ala Ala Ile Leu Arg Leu Val
Cly Acp Cly	S HIS AIA THY PHE CYS VAL ASH SEY LEU AIA HIS TYP LEU
Thr Ala Phe	e Val Thr Leu Gly Glu Gly Tyr His Asn Phe His His Gln
Phe Pro Gli	n Asp Tyr Arg Asn Ala Ile Arg Phe Tyr Gln Tyr Asp Pro
Thr Lys Tr	p Val Ile Ala Leu Cys Ala Phe Phe Gly Leu Ala Thr His
Leu Lys Th:	r Phe Pro Glu Asn Glu Val Arg Lys Gly Gln Leu Gln Met
Pro Ile Ala	a Asp Leu Pro Ile Leu Ser Phe Glu Asp Phe Gln His Ala
Cys Lys Asi	n Asp Asn Lys Lys Trp Ile Leu Leu Glu Gly Val Val Tyr
Asp Val Ala	a Asp Phe Met Thr Glu His Pro Gly Gly Glu Lys Tyr Ile
Lys Met Gly	y Val Gly Lys Asp Met Thr Ala Ala Phe Asn Gly Gly Met
Tyr Asp His	s Ser Asn Ala Ala Arg Asn Leu Leu Ser Leu Met Arg Val
Ser Met Pro	o Ile Tvr Glv Thr Asp His Val Lvs Ala Glu
	,,
SEQ ID NO:	5
atatcatatg	atggcccccc ctcacgttgt cgacgagca
SEO TO NO.	6
atatattaat	atggcacete ceaacaetat tgatgeegg
	55 55
SEQ ID NO:	7
atatcatatg	atggcaactc ctcttccccc ctcctttgt
SEO ID NO.	8
atatggatcc	taatgettgt agaacaetae gte
SEQ ID NO:	9
atatggatcc	ttacttcttg aaaaagacca cgtc
SEQ ID NO:	10atatagatet ttatteggee ttgaegtggt eagt
SEQ ID NO:	11
atatattgcg	cacatcatca tcatcatcat cat

-continued

### SEQUENCE LISTING

SEQ ID NO: 12 atatgaattc atatttaaat taatgcttgt agaacactac gtc SEQ ID NO: 13 atatatggta ccttacttct tgaaaaagac cacgtc

SEQ ID NO: 14 atatatggta ccttattcgg ccttgacgtg gtcagt

#### SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 14 <210> SEQ ID NO 1 <211> LENGTH: 1212 <212> TYPE: DNA <213> ORGANISM: Mortierella alpina <400> SEQUENCE: 1 atggcccccc ctcacgttgt cgacgagcaa gtacgacgca gaatcgtcgt cgaggacgag 60 atccagtcca agaagcagtt tgagcgcaac tatgtgccta tggactttac aatcaaggag 120 attegagatg egateceage ceacetette atcegtgata ceacaaagte gateetgeat 180 gtcgtcaagg atctggtcac tatcgccatc gttttttact gtgcaacctt catcgagact 240 ctgecetege tegetetgag agtteetgee tggateaeet actggateat ceaaggaaet 300 gtcatggtcg gcccctggat tctggcccac gagtgcggcc atggagcgtt ctcggacagc 360 aagacgatca acaccatctt tggatgggtc cttcactctg ctcttttggt gccctaccag 420 gcttgggcca tgtcgcattc caagcaccac aagggcactg gatccatgag caaggatgtc 480 gttttcatcc ctgccactcg atcctacaag ggccttcccc cactggagaa gcctgccgcg 540 gaagaggagg ttttggagca ggagcatcac caccatgaag agtccatctt tgctgagact 600 cccatctaca ctctcggagc gcttttttc gtcctgacct tgggatggcc cttgtacttg 660 atcatgaact tttctggaca cgaagcccct cactgggtca accacttcca gacggtcgcc 720 cctctgtatg agcctcacca gcgcaagaac attttctact ccaactgcgg cattgtcgct 780 atgggetega teeteactta cetetegatg gtettetege cettgaetgt gtteatgtae 840 tatggcatcc cctacctcgg agtcaatgct tggatcgtct gcatcaccta tctccagcac 900 accgatccca aggtgcctca tttccgtgat aacgagtgga acttccagcg cggtgctgcc 960 tgcactatcg accgatcctt cggtaccatt gtcaaccact tgcaccacca cattggtgac 1020 teteateaat gteateatat gttetegeag atgeeettet acaaegeegt tgaggetaea 1080 aagcatetea aagecaaget tggcaagtae tacatatttg aegacaetee cattgecaag 1140 1200 gccctctacc gcaattggag agagtgcaaa ttcgtggagg acgagggaga cgtagtgttc 1212 tacaagcatt aa

<210> SEQ ID NO 2 <211> LENGTH: 403 <212> TYPE: PRT <213> ORGANISM: Mortierella alpina

-continued

<400	)> SH	EQUEI	ICE :	2											
Met 1	Ala	Pro	Pro	His 5	Val	Val	Asp	Glu	Gln 10	Val	Arg	Arg	Arg	Ile 15	Val
Val	Glu	Aab	Glu 20	Ile	Gln	Ser	Lys	Lys 25	Gln	Phe	Glu	Arg	Asn 30	Tyr	Val
Pro	Met	Asp 35	Phe	Thr	Ile	Lys	Glu 40	Ile	Arg	Aab	Ala	Ile 45	Pro	Ala	His
Leu	Phe 50	Ile	Arg	Asp	Thr	Thr 55	Lys	Ser	Ile	Leu	His 60	Val	Val	Lys	Asp
Leu 65	Val	Thr	Ile	Ala	Ile 70	Val	Phe	Tyr	Суз	Ala 75	Thr	Phe	Ile	Glu	Thr 80
Leu	Pro	Ser	Leu	Ala 85	Leu	Arg	Val	Pro	Ala 90	Trp	Ile	Thr	Tyr	Trp 95	Ile
Ile	Gln	Gly	Thr 100	Val	Met	Val	Gly	Pro 105	Trp	Ile	Leu	Ala	His 110	Glu	Сүз
Gly	His	Gly 115	Ala	Phe	Ser	Asp	Ser 120	Lys	Thr	Ile	Asn	Thr 125	Ile	Phe	Gly
Trp	Val 130	Leu	His	Ser	Ala	Leu 135	Leu	Val	Pro	Tyr	Gln 140	Ala	Trp	Ala	Met
Ser 145	His	Ser	Lys	His	His 150	Lys	Gly	Thr	Gly	Ser 155	Met	Ser	Lys	Asp	Val 160
Val	Phe	Ile	Pro	Ala 165	Thr	Arg	Ser	Tyr	Lys 170	Gly	Leu	Pro	Pro	Leu 175	Glu
Lys	Pro	Ala	Ala 180	Glu	Glu	Glu	Val	Leu 185	Glu	Gln	Glu	His	His 190	His	His
Glu	Glu	Ser 195	Ile	Phe	Ala	Glu	Thr 200	Pro	Ile	Tyr	Thr	Leu 205	Gly	Ala	Leu
Phe	Phe 210	Val	Leu	Thr	Leu	Gly 215	Trp	Pro	Leu	Tyr	Leu 220	Ile	Met	Asn	Phe
Ser 225	Gly	His	Glu	Ala	Pro 230	His	Trp	Val	Asn	His 235	Phe	Gln	Thr	Val	Ala 240
Pro	Leu	Tyr	Glu	Pro 245	His	Gln	Arg	Lys	Asn 250	Ile	Phe	Tyr	Ser	Asn 255	Суа
Gly	Ile	Val	Ala 260	Met	Gly	Ser	Ile	Leu 265	Thr	Tyr	Leu	Ser	Met 270	Val	Phe
Ser	Pro	Leu 275	Thr	Val	Phe	Met	Tyr 280	Tyr	Gly	Ile	Pro	Tyr 285	Leu	Gly	Val
Asn	Ala 290	Trp	Ile	Val	Сүз	Ile 295	Thr	Tyr	Leu	Gln	His 300	Thr	Asp	Pro	Lys
Val 305	Pro	His	Phe	Arg	Asp 310	Asn	Glu	Trp	Asn	Phe 315	Gln	Arg	Gly	Ala	Ala 320
Cya	Thr	Ile	Asp	Arg 325	Ser	Phe	Gly	Thr	Ile 330	Val	Asn	His	Leu	His 335	His
His	Ile	Gly	Asp 340	Ser	His	Gln	Суз	His 345	His	Met	Phe	Ser	Gln 350	Met	Pro
Phe	Tyr	Asn 355	Ala	Val	Glu	Ala	Thr 360	Lys	His	Leu	LÀa	Ala 365	Lys	Leu	Gly
ГÀа	Tyr 370	Tyr	Ile	Phe	Asp	Asp 375	Thr	Pro	Ile	Ala	Lүа 380	Ala	Leu	Tyr	Arg
Asn 385	Trp	Arg	Glu	Сүз	Lys 390	Phe	Val	Glu	Asp	Glu 395	Gly	Asp	Val	Val	Phe 400

Tyr Lys His

<210> SEQ ID NO 3 <211> LENGTH: 1338 <212> TYPE: DNA <213> ORGANISM: Mortierella alpina <400> SEQUENCE: 3 atggcaactc ctcttccccc ctcctttgtc gtccctgcga cacagacgga aacccgcaga 60 gatectetee ageaegagga actgeceet etetteeeeg agaaaateae catetteaae 120 atctqqaqat atcttqacta caaqcatqtt ctcqqtctqq qqctqacqcc tttqatcqct 180 ctctatqqtc tcttqacqac cqaqatccaq acqaaqacac tqatctqqtc catcatctac 240 tattatgcta cgggacttgg catcacagca ggttaccatc gactctgggc ccatcgtgct 300 tacaacgcag gaccagccat gagettegtg etegeactge teggegeegg tgeagttgaa 360 ggatetatea agtggtggte eegeggeeae egtgeteaee acegetggae tgacaeegag 420 aaggacccct acagcgctca ccgaggactc ttcttctcgc acattggctg gatgttgatc 480 aagegeeetg gatggaagat tggeeatgee gatgttgaeg aceteaacaa gageaaacte 540 gttcagtggc agcacaagaa ctaccttcct cttgttctta tcatgggtgt cgtcttcccc 600 acggttgttg ctggactcgg ctgggggggat tggcgtggag gctacttcta tgctgctatc 660 ctccgtcttg tctttgttca ccacgccacc ttctgtgtca actccctggc ccattggctc 720 ggtgatggac cctttgatga ccgccactct ccccgcgacc acttcatcac tgcctttgtc 780 actttgggag agggctacca caactttcat caccaattcc cccaggacta ccgcaacgct 840 atccgttttt accagtacga tcctaccaag tgggtcatcg ccctctgtgc tttctttggc 900 ctcgctacgc acctcaagac cttccctgag aatgaagtcc gcaagggtca gctccagatg 960 1020 attgagaagc gtgtcctgga gaagaagacc aagctccagt ggggcactcc cattgccgat ctgcccattc tgagctttga ggacttccag catgcttgca aaaacgacaa caagaagtgg 1080 atcctcttgg agggtgtcgt ttacgacgtt gccgacttta tgaccgagca ccctggtggt 1140 qaqaaqtacc tcaaqatqqq cqtcqqcaaq qacatqaccq caqctttcaa cqqcqqtatq 1200 tacgatcaca gcaatgccgc ccgcaacctg ctgagcttga tgcgcgtcgc cgtcgttgag 1260 tatggtggtg aggtggaggc acagaagaag aaccettega tgeecateta eggeaetgae 1320 1338 cacqtcaaqq ccqaataa <210> SEQ ID NO 4 <211> LENGTH: 445 <212> TYPE: PRT <213> ORGANISM: Mortierella alpina <400> SEQUENCE: 4 Met Ala Thr Pro Leu Pro Pro Ser Phe Val Val Pro Ala Thr Gln Thr 1 10 15 Glu Thr Arg Arg Asp Pro Leu Gln His Glu Glu Leu Pro Pro Leu Phe 2.0 25 30 Pro Glu Lys Ile Thr Val Tyr Asn Ile Trp Arg Tyr Leu Asp Tyr Lys 35 40 45 His Val Phe Gly Leu Gly Leu Thr Pro Leu Ile Ala Leu Tyr Gly Leu 50 55 60 Leu Thr Thr Glu Ile Gln Thr Lys Thr Leu Ile Trp Ser Ile Ile Tyr

a

65					70					75					80
Tyr	Tyr	Ala	Thr	Gly 85	Leu	Gly	Ile	Thr	Ala 90	Gly	Tyr	His	Arg	Leu 95	Trp
Ala	His	Arg	Ala 100	Tyr	Asn	Ala	Gly	Pro 105	Ala	Met	Ser	Phe	Val 110	Leu	Ala
Leu	Leu	Gly 115	Ala	Gly	Ala	Val	Glu 120	Gly	Ser	Ile	Lys	Trp 125	Trp	Ser	Arg
Gly	His 130	Arg	Ala	His	His	Arg 135	Trp	Thr	Asp	Thr	Glu 140	ГЛЗ	Asp	Pro	Tyr
Ser 145	Ala	His	Arg	Gly	Leu 150	Phe	Phe	Ser	His	Ile 155	Gly	Trp	Met	Leu	Ile 160
Lya	Arg	Pro	Gly	Trp 165	ГЛа	Ile	Gly	His	Ala 170	Asp	Val	Asp	Asp	Leu 175	Asn
L'Aa	Ser	Lys	Leu 180	Val	Gln	Trp	Gln	His 185	Lys	Asn	Tyr	Leu	Pro 190	Leu	Val
Leu	Ile	Met 195	Gly	Val	Val	Phe	Pro 200	Thr	Val	Val	Ala	Gly 205	Leu	Gly	Trp
Gly	Asp 210	Trp	Arg	Gly	Gly	Tyr 215	Phe	Phe	Ala	Ala	Ile 220	Leu	Arg	Leu	Val
Phe 225	Val	His	His	Ala	Thr 230	Phe	Суз	Val	Asn	Ser 235	Leu	Ala	His	Trp	Leu 240
Gly	Asp	Gly	Pro	Phe 245	Asp	Asp	Arg	His	Ser 250	Pro	Arg	Aap	His	Phe 255	Ile
Thr	Ala	Phe	Val 260	Thr	Leu	Gly	Glu	Gly 265	Tyr	His	Asn	Phe	His 270	His	Gln
Phe	Pro	Gln 275	Asp	Tyr	Arg	Asn	Ala 280	Ile	Arg	Phe	Tyr	Gln 285	Tyr	Asp	Pro
Thr	Lys 290	Trp	Val	Ile	Ala	Leu 295	Сүз	Ala	Phe	Phe	Gly 300	Leu	Ala	Thr	His
Leu 305	Lys	Thr	Phe	Pro	Glu 310	Asn	Glu	Val	Arg	Lys 315	Gly	Gln	Leu	Gln	Met 320
Ile	Glu	Lys	Arg	Val 325	Leu	Glu	ГЛа	Lys	Thr 330	ГЛа	Leu	Gln	Trp	Gly 335	Thr
Pro	Ile	Ala	Asp 340	Leu	Pro	Ile	Leu	Ser 345	Phe	Glu	Asp	Phe	Gln 350	His	Ala
Суа	ГЛа	Asn 355	Asp	Asn	ГЛа	ГЛа	Trp 360	Ile	Leu	Leu	Glu	Gly 365	Val	Val	Tyr
Asp	Val 370	Ala	Asp	Phe	Met	Thr 375	Glu	His	Pro	Gly	Gly 380	Glu	Lys	Tyr	Ile
Lys 385	Met	Gly	Val	Gly	Lys 390	Asp	Met	Thr	Ala	Ala 395	Phe	Asn	Gly	Gly	Met 400
Tyr	Asp	His	Ser	Asn 405	Ala	Ala	Arg	Asn	Leu 410	Leu	Ser	Leu	Met	Arg 415	Val
Ala	Val	Val	Glu 420	Phe	Gly	Gly	Glu	Val 425	Glu	Ala	Gln	Гла	Lys 430	Asn	Pro
Ser	Met	Pro 435	Ile	Tyr	Gly	Thr	Asp 440	His	Val	Гла	Ala	Glu 445			
<210 <211 <212 <212	0> SI L> LI 2> T 3> OI	EQ II ENGTH (PE : RGANI	D NO H: 39 DNA ISM: SF:	5 9 Art:	ific	ial :	Seque	ence							

-continued
concinaca

<223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 5	
atatcatatg atggcccccc ctcacgttgt cgacgagca	39
<210> SEQ ID NO 6 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 6	
atatattaat atggcacete eeaacaetat tgatgeegg	39
<210> SEQ ID NO 7 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: /	
atateatatg atggeaacte etetteeeee eteettigt	39
<210> SEQ ID NO 8 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 8	
atatggatcc taatgcttgt agaacactac gtc	33
<210> SEQ ID NO 9 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 9	
atatggatcc ttacttcttg aaaaagacca cgtc	34
<210> SEQ ID NO 10 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 10	
atatagatet ttatteggee ttgaegtggt eagt	34
<210> SEQ ID NO 11 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for	PCR
<400> SEQUENCE: 11	
atatattgcg cacatcatca tcatcatcat cat	33

<210> SEQ ID NO 12 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for PCR <400> SEQUENCE: 12 atatqaattc atatttaaat taatqcttqt aqaacactac qtc 43 <210> SEQ ID NO 13 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for PCR <400> SEQUENCE: 13 atatatggta ccttacttct tgaaaaagac cacgtc 36 <210> SEO ID NO 14 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer sequences for PCR <400> SEQUENCE: 14 atatatggta ccttattcgg ccttgacgtg gtcagt 36

1. (canceled)

**2**. (canceled)

3. (canceled)

4. (canceled)

- 5. (canceled)
- 6. (canceled)
- 7. (canceled)
- 8. (canceled)
- 9. (canceled)
- 10. (canceled)

**11**. An isolated cDNA molecule consists of a nucleotide sequence that encodes an omega-3 desaturase.

**12**. The isolated cDNA molecule of claim **11**, said nucleotide sequence is shown as SEQ ID NO:1, and said omega-3 desaturase is shown as SEQ ID NO:2.

**13**. A vector consists of a cDNA molecule encoding an omega-3 desaturase, wherein said vector expresses a sequence that encodes for said omega-3 desaturase in said cDNA molecule.

14. The vector of claim 13, said cDNA molecule includes a nucleotide sequence shown as SEQ ID NO:1, said omega-3 desaturase is shown as SEQ ID NO:2.

**15**. The vector of claim **13**, said vector is constructed by:

(a) obtaining mRNA from a fungi;

(b) synthesizing primers;

- (c) performing a polymerase chain reaction (PCR) on said mRNA and said primers to produce said nucleotide sequence that encodes said omega-3 desaturase; and
- (d) cloning said nucleotide sequence into an expression vector.

16. The vector of claim 15, said fungi is Mortierella alpina.

17. The vector of claim 15, said primers are selected from a group of nucleotide primers consisting of SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, and SEQ ID NO:14.

18. The vector of claim 15, said expression vector is pPink $\alpha$ -HC.

**19**. The vector of claim **13**, said vector is able to be utilized for treatment of fatty acid-associated disorders in a subject.

20. The vector of claim 19, said subject includes human.

* * * * *