US011797600B2

a2 United States Patent

Mazar et al.

US 11,797,600 B2
Oct. 24, 2023

(10) Patent No.:
45) Date of Patent:

(54) TIME-SERIES ANALYTICS FOR DATABASE 10/06314; GO6Q 10/06316; GO6Q 30/00;
MANAGEMENT SYSTEMS GO06Q 30/01; GO6Q 30/014; GO6Q
30/012; GO6Q 30/018; GO6Q 40/123;
(71) Applicant: OWNBACKUP LTD., Tel Aviv (IL) GO06Q 40/125; GO6Q 40/128; GO6Q
30/015; HO4L 67/06; HO4L 67/01
(72) Inventors: Yehonatan Mazar, Tel Aviv (IL); Ori See app]ication file for comp]ete search history,
Yankelev, Tel Aviv (IL); Roi Dover,
Petah Tikva (IL); Adrian Kunzle, New (56) References Cited
York, NY (US)
U.S. PATENT DOCUMENTS
(73) Assignee: OWNBACKUP LTD., Tel Aviv (IL) .
6,460,055 B1* 10/2002 Midgley GOGF 11/2071
(*) Notice: Subject. to any disclaimer,. the term of this $.364.648 Bl 12013 Sim-Tang 709/236
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 197 days.
1) Appl. No.: 16/950,963 FOREIGN PATENT DOCUMENTS
. EP 2131284 Al 12/2009
(22) Filed: Nov. 18, 2020
(65) Prior Publication Data OTHER PUBLICATIONS
US 2022/0156310 A1 May 19, 2022 International Application # PCT/IB2021/055251 Search Report
dated Oct. 10, 2021.
(51) Int. Cl. (Continued)
GO6F 16/51 (2019.01)
G06Q 10/10 (2023.01) Primary Examiner — Kris E Mackes
G06Q 10/0631 (2023.01) Assistant Examiner — Cecile H Vo
HO4L 67/06 (2022.01) (74) Attorney, Agent, or Firm — KLIGLER &
G06Q 30/016 (2023.01) ASSOCTATES PATENT ATTORNEYS LTD
(Continued)
(52) U.S. CL (57 ABSTRACT
CPC GO6F 16/51 (2019.01); GOG6F 16/538 Methods, apparatuses and computer program products
(2019.01); GO6Q 10/06315 (2013.01); GO6Q implement embodiments of the present invention that
10/10 (2013.01); GO6Q 30/016 (2013.01); include capturing a series of point-in-time images of a
G060 40/12 (2013.12); HO4L 67/06 (2013.01) database including one or more tables, each of the tables
(58) Field of Classification Search including one or more fields. Upon receiving, from a user, a

CPC ... GOG6F 16/51; GO6F 16/538; GOGF 16/53;
GOGF 16/532; GOG6F 16/535; GOGF 16/50;

GOGF 16/55; GO6Q 10/06315; GO6Q

10/10; G06Q 30/016; GO6Q 40/12; GO6Q

10/063; GO6Q 10/0631; GO6Q 10/06311;

G06Q 10/06312; GO6Q 10/06313; GO6Q

query with respect to a variation of a given field over a
specified period of time, the point-in-time images are ana-
lyzed in order to extract the variation; and the extracted
variation is presented to the user.

38 Claims, 9 Drawing Sheets

PARTITIONED DATARASE UPDATE METHOD

CREATEA
FQl

NQ

CONVEY A REQUEST TO DOWNLOAD
RECORDS FROM THE SELECTED TABLE

CREATE, iN THE NEW ARCHIVE
DIRECTORY, AN IMAGE OF THE DATA
TABLE, AND STORE THE IMAGE TO
THE NEW ARCHIVE DIRECTORY

CREATE, FOR THE SELECTED TABLE,
A NEW DATABASE DIRECTORY FOR
THE CURRENT DATE

GENERATE, USING THE CURRENT
CONFIGURATION, A NEW DATABASE
TABLE WITH DATA FROM THE IMAGE.
OF THE DATA TABLE

WIOVE THE IMAGE OF THE DATA
TABLE TO THE NEW DATABASE
DIRECTORY

NEW ARCHIVE DIRECTORY |~ 180
R THE CURRENT DATI

190
GENERATE
DATABASE TABLEZ

YES

REMOTE DATA

US 11,797,600 B2

Page 2
(51) Int. Cl. 2020/0089798 Al* 3/2020 Ganichot GOG6F 16/254
2020/0110792 Al1* 4/2020 Tsabba GO6F 3/167
gng 22;?;8 (38528}) 2020/0389495 Al* 12/2020 Crabtree GOGF 16/2477
Q (:) 2021/0019288 Al* 1/2021 Pangcccooveene GOG6F 16/211
GO6Q 30/00 (2023.01) 2021/0326793 Al 10/2021 Frankel

2022/0197904 Al* 6/2022 Gillisccooeeennnn GOGF 16/2455

(56) References Cited 2022/0334725 Al 10/2022 Mertes et al.

8,732,213
11,080,336
11,157,463
11,269,731

2008/0121690

2008/0313005
2012/0169842
2012/0191682
2013/0166568
2013/0218840
2013/0275462
2013/0297610
2014/0058801
2014/0173135
2014/0351217
2015/0156213
2016/0092484
2017/0116552
2017/0329983

2017/0344593
2018/0285201

U.S. PATENT DOCUMENTS

B2
B2 *
B2 *
Bl
Al*

Al*
Al*
Al
Al
Al
Al*
Al*
Al*
Al
Al
Al*
Al*
Al*
Al*

Al
Al

5/2014
8/2021
10/2021
3/2022
5/2008

12/2008
7/2012
7/2012
6/2013
8/2013

10/2013

11/2013
2/2014
6/2014

11/2014
6/2015
3/2016
4/2017

11/2017

11/2017
10/2018

Sowell et al.
Van Dusen G06Q 50/01
Barabas GOG6F 16/21
Vig et al.
Carani GO1S 5/0294
235/376
Nessland G06Q 10/06
705/7.29
Chuang HO4N 7/181
348/E7.001
Banerjee et al.
Binkert et al.
Smith et al.
Jung i G11B 27/329
707/769
Devarakonda GOGF 16/1734
707/737
Deodhar G06Q 10/0639
705/7.38
Varney et al.
Bostock
Baker HO04L 63/1416
726/23
Finkler GOGF 16/258
707/715
Deodhar G06Q 10/0639
Grant GOGF 16/9535
Mullick et al.
Bangalore

OTHER PUBLICATIONS

Oracle, “Oracle Autonomous Database,” pp. 1-16, year 2021, as
downloaded from https://www.oracle.com/autonomous-database/.
Google, “Trusting your data with Google Cloud Platform”, Whitepaper,
pp. 1-17, Sep. 2019.

Kunzle et al., U.S. Appl. No. 17/528,290, filed Nov. 17, 2021.
International Application # PCT/IB2021/060550 Search Report
dated Feb. 24, 2022.

Kunzle et al., U.S. Appl. No. 63/115,076, filed Nov. 18, 2020.
Oracle, “Netsuite Erp”, data sheet, pp. 1-2, Jun. 4, 2019.

Sage Group PLC, “Sage Business Cloud Accounting”, Product
Brochure, pp. 1-6, Apr. 28, 2020.

Salesforce, “change Data Capture Developer Guide”, Version 49.0,
pp. 1-65, Sep. 1, 2020.

Slack Technologies, “Data Management Transparency and Con-
trol”, pp. 1-5, Sep. 27, 2020.

Microsoft Corporation, “SQL Server 2019 editions”, pp. 1-3, Oct.
29, 2019.

Sureka, A., “28 Important Zendesk features for Better Customer
Support”, pp. 1-12, Jan. 15, 2019 downloaded from https://www.
clariontech.com/platform-blog/28-important-zendesk-features-for-
better-customer-support.

Nevogt, D., “JIRA Project Management: A How-To Guide for
Beginners”, pp. 1-17, May 16, 2019 downloaded from https://blog.
hubstaff.com/jira-project-management-guide-beginners/.

U.S. Appl. No. 17/528,290 Office Action dated Nov. 10, 2022.

* cited by examiner

U.S. Patent

Oct. 24, 2023

PROCESSOR

PARTIONED
DATABASE
MANAGER

MEMORY 52

/58

B

i
i

DOWNLOADED
TABLE IMAGE 88

]
ARCHIVED
IMAGES 80

e

PARTITIONED
DATABASE 22

g

CONFIGURATION 82

Sheet 1 of 9

US 11,797,600 B2

e

B

: : 32
DATA ANALYSIS \‘\ ; PARTITIONED | 3
SERVER 54 E TABLE 23 :
; :
PROCESSOR B - E@
\\‘] E i
34] o]
38 e u
TABLE 24 N
. FIELD
DATA tied b o dEr i ™M 48
MANAGEMENT DATA =
APPLICATION DICTIONARY P RECORD
\\ 48 P L 44
40 DATABASE 42
MEMORY
DATA SERVER

U.S. Patent Oct. 24, 2023 Sheet 2 of 9 US 11,797,600 B2
j 8
FIELD TITLE 1 FIELD TITLE 2 FIELDTITLEN || 74
¥]
78
HEADER
RAW DATA RECORD 1 N
RAW DATA RECORD 2
— 76
RAW DATA RECORD N ~
SN RAW DATA FILE
$& \
;"’ % \\\
wwwwwwwwwwwwww 5 kY . 70
RAW DATA RAW DATA RAW DATA
FIELD 1 FIELD 2 FIELD N
j
f
80
24
, i1 FIELDNAME 7
5 ‘,.e"d"ﬂ 3%
FIELD e FIELD NUMBER
DESCRIPTION | |77 ; 28
\ g TYPE -
§ 90
82 : FORMAT +
; 92

72

U.S. Patent Oct. 24, 2023 Sheet 3 of 9 US 11,797,600 B2

102
ARCHIVE

104
YEAR1T ...

106
T MONTH 1

108 108
T pav e payatr 7
i i
z]
ARCHIVED ARCHIVED
TABLE IMAGE TABLE IMAGE
60 &0

US 11,797,600 B2

Sheet 4 of 9

Oct. 24, 2023

U.S. Patent

JHOOEH 18V E

QINOILLLEY

,www\\

giL 13l
IASYEYLVD

A19VL ATIVA

9L e
1148 8Lk
.
/!/ A
SR ERIE
YWIHOS 31NN NOLLYHNDIINOD

A1gv.L ATVA

i HANOW

N gV L

d8vavLvQ

L AEvl

44

U.S. Patent Oct. 24, 2023 Sheet 5 of 9 US 11,797,600 B2

TABLE D FIELDID

140
i \@\44 \1\48 /‘”3

- CONFIGURATION RECORD

reser |8

FLAG

CONFIGURATION FILE

FIG. 6
120
/
B0~ taBtED
B2 rmEeLDnAME ey
1841 srarTpaTE TYPE o
162
LEE ——— | FORMAT
158 —_| L, ,,w‘”"ij STARTDATE | 184
- S
[[l e
UNIFIED SCHEMA FILE L

US 11,797,600 B2

Sheet 6 of 9

Oct. 24, 2023

U.S. Patent

L "4
{\\\1 WO TIYINIOH LAY 488 ZLN HLIAWS HL3G 489 Qb QZ-NYI-CL
DTLL
S271 W 8/0G-0GF-E21 866Gl SEANOM NYTY L9G Ggeli JE-NvYIr-¢ i
s\\\\ 8L96-0G-¢2t £e00lL SHNOP NYTIY 9% PGl QZ-NY[-80
YZit
4400 ,
HYIAG ¥ T LS0d SINYN gl AL 4150
\ N ™~ ~N N N N
gik Sl By el IPiL avis abi agvil ¥ril

U.S. Patent

Oct. 24,2023 Sheet 7 of 9 US 11,797,600 B2

< PARTITIONED DATABASE UPDATE METHOD >

+

CREATE A NEW ARCHIVE DIRECTORY
FOR THE CURRENT DATE

f’i%@

'Y

3 - 482
["SELECT A GIVEN REMOTE DATA TABLE 7

+

CONVEY A REQUEST TO DOWNLOAD
RECORDS FROM THE SELECTED TABLE

| - 184

NO

| RECEIVE THE REQUESTED RECORDS P"f

186

CREATE, IN THE NEW ARCHIVE
DIRECTORY, AN IMAGE OF THE DATA
TABLE, AND STORE THE IMAGE 10O

THE NEW ARCHIVE DIRECTORY

e 190
GENERATE

. TABASE TABL -
TTYES

CREATE, FOR THE&SELECTEB TABLE,
A NEW DATABASE DIRECTORY FOR
THE CURRENT DATE

v

IDENTIFY FIELDS TOINCLUDE INA
DATABASE TABLE

+

GENERATE, USING THE CURRENT
CONFIGURATION, A NEW DATABASE
TABLE WITH DATA FROM THE IMAGE

OF THE DATA TABLE

i

MOVE THE IMAGE OF THE DATA
TABLE TO THE NEW DATABASE
DIRECTORY

" SCHEMA CHANGE?
I YES

202
I "UPDATE THE UNIFIED SCHEMA |

o

ADDITIONAL
YES REMOTE DATA

o
3

=

TABLES?

FIG. 8

U.S. Patent

Oct. 24, 2023 Sheet 8 of 9

PARTITIONED DATABASE
QUERY METHOGD

X

US 11,797,600 B2

RECEWVE, FROM A USER, A QUERY
WITH RESPECT TO AVARIATION OF A
GIVEN FIELD IN A GIVEN DATABASE
TABLE OVER A SPECIFIED PERICD OF
TIME

k4

IDENTIFY THE RECORDS IN THE
GIVEN TABLE FOR THE SPECIFIED
PERIOD OF TIME

¥

ANALYZE THE IDENTIFIED RECORDS
iN ORDER TO EXTRACT THE
YARIATION

¥

CONVEY THE EXTRACTED VARIATION
TO THE USER

oo

U.S. Patent Oct. 24, 2023 Sheet 9 of 9 US 11,797,600 B2

PARTITIONED DATABASE
RECREATION METHGOD

X

SELECT A GIVEN TABLEID | — 220
CORRESPONDING TOA
GIVEN TABLE

¥

IDENTIFY IMAGES /v 222
CORRESPONDING TO THE
GIVEN TABLE

¥

SELECT A GIVEN ks
IDENTIFIED IMAGE

+

DELETE THE EXISTING DATABASE ¥ 228
TABLE CORRESPONDING TO THE
SELECTED IMAGE

¥

RECREATE, USING THE RAW DATA
FIELDS CORRESPONDING TO THE
FIELD IDS FOR THE GIVEN TABLE D | 248
IN THE CONFIGURATION FILE, THE
DATABASE TABLE FOR THE
SELECTED IMAGE

230

ADDITIONAL YES

. IMAGES?

| NO
232

ADDITIONAL

YES e
_ TABLEIDS?

US 11,797,600 B2

1
TIME-SERIES ANALYTICS FOR DATABASE
MANAGEMENT SYSTEMS

FIELD OF THE INVENTION

The present invention relates generally to database man-
agement systems, and particularly to configuring database
data to enable processing time-series analyses on the data.

BACKGROUND OF THE INVENTION

Database management systems are used be used for
storing and managing large amounts of data. A database
engine can sort, change and present the information stored
in the database. Two popular configurations for storing data
in a database are row-based and column-based. Row-based
databases have an ability to write data very quickly, and are
therefore typically used for processing real-time transac-
tions. Column-based database tables have an ability to
aggregate large volumes of data for a subset of columns, and
are therefore typically used for processing highly analytical
queries.

The description above is presented as a general overview
of related art in this field and should not be construed as an
admission that any of the information it contains constitutes
prior art against the present patent application.

SUMMARY OF THE INVENTION

There is provided, in accordance with an embodiment of
the present invention, a method including capturing, by a
processor, a series of point-in-time images of a database
including one or more tables, each of the tables including
one or more fields, receiving, from a user, a query with
respect to a variation of a given field over a specified period
of time, analyzing the point-in-time images in order to
extract the variation, and presenting the extracted variation
to the user.

In some embodiments, capturing the point-in-time images
includes capturing the point-in-time images at predefined
intervals.

In a first embodiment, a given table includes a customer
relationship management data file.

In a second embodiment, a given table includes an enter-
prise resource planning file.

In a third embodiment, a given table includes an account-
ing data file.

In a fourth embodiment, a given table includes a customer
service system data file.

In a fifth embodiment, a given table includes a messaging
system data file.

In one embodiment, a given table includes a set of
records, and wherein capturing a given point-in-time image
of the database includes capturing the records in the given
table.

In another embodiment, capturing the records includes
capturing all the records in the given table.

In an additional, embodiment capturing the records
includes capturing a subset the records in the given table.

In a further embodiment, analyzing the series of point-
in-time images includes generating a database table includ-
ing the series of point-in-time images, and querying the
generated database table.

In a supplemental embodiment, generating a database
table includes generating a column-based database table.

In one embodiment, the method also includes generating
and maintaining a unified schema of the database that stores

10

15

20

25

30

35

40

45

50

55

60

65

2

a schema change in the series of point-in-time images used
to generate the database table.

In another embodiment, the series of point-in-time images
includes a first given image including a first set of fields
captured at a first time and a second given image including
a second set of fields captured at a second time subsequent
to the first time, and wherein the schema change includes a
given field in the second set that is not in the first set.

In some embodiments, the point-in-time images captured
during the specified period of time includes the first and the
second given images, and wherein presenting the extracted
variation includes presenting the first given image, and
presenting, in the first image a specified value for the given
field.

In an additional embodiment, the series of point-in-time
images includes a first given image including a first set of
fields captured at a first time and a second given image
including a second set of fields captured at a second time
subsequent to the first time, and wherein the schema change
includes a given field in the first set that is not in the second
set.

In some embodiments, the point-in-time images captured
during the specified period of time includes the first and the
second given images, and wherein presenting the extracted
variation includes presenting the second given image, and
presenting, in the second image a specified value for the
given field.

In a further embodiment, the series of point-in-time
images includes a first given image captured at a first time
and a second given image including captured at a second
time subsequent to the first time, wherein the first given
image includes a field having a first data type, wherein the
second given image includes a field having a second data
type, and wherein the schema change includes a difference
between the first and the second data types.

In some embodiments, the point-in-time images captured
during the specified period of time includes the first and the
second given images, and wherein presenting the extracted
variation includes presenting the field in first given image
and the second given image using a specified data type.

In a supplemental embodiment, the series of point-in-time
images includes a set of fields, and wherein the database
table includes a subset of the set of fields.

There is also provided, in accordance with an embodi-
ment of the present invention, an apparatus, including a
storage device, and at least one processor configured to
capture and store to the storage device a series of point-in-
time images of a database including one or more tables, each
of the tables including one or more fields, to receive, from
a user, a query with respect to a variation of a given field
over a specified period of time, to analyze the point-in-time
images in order to extract the variation, and to present the
extracted variation to the user.

There is additionally provided, in accordance with an
embodiment of the present invention, a computer software
product for protecting a computing system, the product
including a non-transitory computer-readable medium, in
which program instructions are stored, which instructions,
when read by a computer, cause the computer to capture a
series of point-in-time images of a database including one or
more tables, each of the tables including one or more fields,
to receive, from a user, a query with respect to a variation of
a given field over a specified period of time, to analyze the
point-in-time images in order to extract the variation, and to
present the extracted variation to the user.

US 11,797,600 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is herein described, by way of example
only, with reference to the accompanying drawings,
wherein:

FIG. 1 is a block diagram that schematically shows a
computing facility comprising a data analysis server that can
download data and organize data into a partitioned database
for processing time-series analysis queries, in accordance
with an embodiment of the present invention;

FIG. 2 is a block diagram that shows an example of the
downloaded data that the data analysis server can download,
in accordance with an embodiment of the present invention;

FIG. 3 is a block diagram that schematically illustrates an
example of a directory structure that the data analysis server
can use to store the downloaded data, in accordance with an
embodiment of the present invention;

FIG. 4 is a block diagram that schematically illustrates an
example of a directory structure that the data analysis server
can use to store the partitioned database, in accordance with
an embodiment of the present invention;

FIG. 5 is a block diagram that shows an example of a
configuration file that the data analysis server can use to
manage the partitioned database, in accordance with an
embodiment of the present invention;

FIG. 6 is a block diagram that shows an example of a
unified schema that the data analysis server can use to access
the partitioned database, in accordance with an embodiment
of the present invention;

FIG. 7 is a block diagram that shows a logical view of the
partitioned database, in accordance with an embodiment of
the present invention;

FIG. 8 is a flow diagram that schematically illustrates a
method of initializing and updating the partitioned database,
in accordance with an embodiment of the present invention;

FIG. 9 is a flow diagram that schematically illustrates a
method of processing time-based analytic queries on the
partitioned database, in accordance with an embodiment of
the present invention; and

FIG. 10 is a flow diagram that schematically illustrates a
method of recreating the partitioned database, in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Databases store data that can be updated on a continuing
basis. Therefore, any queries on data stored in the database
will typically be performed on current data stored in the
database.

Embodiments of the present invention provide methods
and systems for creating and managing database tables that
can be used to process queries comprising time-based ana-
Iytics of data stored in the database. As described hereinbe-
low, a series of point-in-time images of a database compris-
ing one or more tables are captured, each of the tables
comprising one or more fields. The term “point-in-time
image” is used in the context of the present description and
in the claims to refer to an image, i.e., a copy, of the data
stored in one or more tables of a database at a specified point
in time. Upon receiving, from a user, a query with respect to
a variation of one of the tables over a specified period of
time, the point-in-time images can be analyzed in order to
extract the variation, and the extracted variation can be
presented to the user.

System Description

FIG. 1 is a block diagram that schematically shows an
example of a data analysis server 20 that manages a parti-

10

20

30

40

45

65

4

tioned database 22 comprising a set of partitioned database
tables 23, in accordance with an embodiment of the present
invention. In embodiments described herein, data analysis
server 20 creates and updates partitioned database 22 using
data downloaded from remote data tables 24 stored on a data
server 26. Upon creating partitioned database 22, data
analysis server 20 can process time-series analysis queries
received from a user 28 operating a client computer 30.

In the configuration shown in FIG. 1, data analysis server
20 can communicate with data server 26 and client computer
30 over a public network 32 such as the Internet. In some
embodiments, data analysis server 20 can use a secure
communication protocol when communicating with data
server 26 in order to protect data transmitted over Internet
32.

Data server 26 comprises a server processor 34, a server
memory 36 and a server storage device 38. In some embodi-
ments, memory 36 can store a data management application
40 that processor 34 can execute to manage a database 42
comprising data tables 24 stored on storage device 38. In the
configuration shown in FIG. 1, each given data table 24
comprises a set of data records 44, that store data in multiple
data fields 46. In embodiments of the present invention,
database 42 may comprise any type of data in a data
repository that uses a specified or a dynamic structure to
store the data.

In a first example, data management application 40 may
comprise a database management system such as a struc-
tured query language (SQL) server (e.g., MICROSOFT SQL
SERVER™, produced by Microsoft Corporation, One
Microsoft Way Redmond, Wash. 98052-6399 USA), and
data records 44 may comprise database tables.

In a second example, data management application 40
may comprise a customer relationship management (CRM)
system such as SALESFORCE™ (produced by salesforce-
.com, inc., Salesforce Tower 3rd Floor, 415 Mission Street,
San Francisco, Calif. 94105 USA) and data records 44 may
comprise CRM data files such as standard or custom
SALESFORCE™ objects.

In a third example, data management application 40 may
comprise a customer service system such as ZENDESK™
(produced by Zendesk Inc., 1019 Market Street, San Fran-
cisco, Calif. 94103 USA), and data records 44 may store
customer service system ticket data files.

In a fourth example, data management application 40 may
comprise an enterprise resource planning (ERP) system such
as NETSUITE™ (produced by Oracle Corporation, 500
Oracle Parkway, Redwood City, Calif. 94065 USA), and
data records 44 may store ERP data files.

In a fifth example, data management application 40 may
comprise an accounting system such as SAGE BUSINESS
CLOUD ACCOUNTING™ (produced by The Sage Group
plc, North Park, Newcastle upon Tyne NE13 9AA, United
Kingdom), and data records 44 may store accounting data
files.

In a sixth example, data management application 40 may
comprise a messaging application such as SLACK™ (pro-
duces by Slack Technologies, Inc., 500 Howard Street, San
Francisco, Calif. 94105 USA), and data records 44 may store
messaging system data files.

In a seventh example, data management application 40
may comprise a project management application such as
JIRA™ (produced by Atlassian Corporation Plc, 341 George
Street, Level 6, Sydney, NSW 2000, Australia), and data
records 44 may store project management data files.

In addition to these examples, any other type of applica-
tion 40 that is configured to manage information stored in

US 11,797,600 B2

5

data records 44 is considered to be within the spirit and
scope of the present invention.

In some embodiments, storage device 38 can store a data
dictionary 48 that defines the layout and configuration of
data fields 46 in data records 44.

Data analysis server 20 comprises an analysis processor
50, an analysis memory 52 and an analysis storage device
54. In some embodiments, processor 50 can execute, from
memory 52, a partitioned database manager 56 that can
perform embodiments described herein such as maintaining
partitioned database 22, and processing queries for data
stored in the partitioned database.

In the configuration shown in FIG. 1, partitioned database
manager 56 manages the following data entities stored on
storage device 54:

Partitioned database 22. Partitioned database 22 is
described in the respective descriptions referencing
FIGS. 4, 5 and 7 hereinbelow.

A set of downloaded table images 58. In embodiments
described herein, partitioned database manager 56 can
retrieve, at predefined intervals (e.g., daily), data from
each given data table 24, and store the retrieved data to
a corresponding downloaded table image 58. Each
given table image 58 comprises the data stored in the
corresponding data table at a specific point in time (i.e.,
that the data is downloaded). Downloaded table images
58 are described in the description referencing FIG. 2
hereinbelow.

A set of archived table images 60. In embodiments
described herein, upon downloading data from data
tables 24 and populating the set of downloaded table
images 58, partitioned database manager 56 can
archive the set of downloaded table images 58, as
described in the description referencing FIG. 3 herein-
below. The archived set 60 of downloaded table images
58 can be used to recreate partitioned database 22, as
described in the description referencing FIG. 10 herein
below.

A configuration file 62. In embodiments described herein,
configuration file 62 can store information as to which
specific data fields 46 in specific data tables 24 are to
be included in partitioned database 22. Configuration
file 62 is described in the description referencing FIG.
6 hereinbelow.

In the configuration shown in FIG. 1, client computer 30
comprises a display 64 that the client computer can use to
present query results, as described in the description refer-
encing FIG. 8 hereinbelow.

In some embodiments, the tasks performed by partitioned
database manager 56 may be split among multiple physical
and/or virtual computing devices. In other embodiments, the
tasks performed by data management application 40 and/or
partitioned database manager 56 may be performed in a data
cloud.

Examples of memories 36, 52 and storage devices 38, 54
include dynamic random-access memories and non-volatile
random-access memories. In some embodiments, the memo-
ries and/or the storage devices may comprise non-volatile
storage devices such as hard disk drives and solid-state disk
drives.

Processors 34 and 50 comprise general-purpose central
processing units (CPU) or special-purpose embedded pro-
cessors, which are programmed in software or firmware to
carry out the functions described herein. This software may
be downloaded to servers 20 and 26 in electronic form, over
a network, for example. Additionally or alternatively, the
software may be stored on tangible, non-transitory com-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

puter-readable media, such as optical, magnetic, or elec-
tronic memory media. Further additionally or alternatively,
at least some of the functions of processors 34 and 50 may
be carried out by hard-wired or programmable digital logic
circuits.

As shown in FIG. 1, data analysis server 20 stores
respective sets of partitioned tables 23 and archived images
60, and data server 26 stores a set of data tables 24. In
embodiments described herein, data analysis server creates
archived images from data tables 24, and creates partitioned
tables 23 from the archive images. Therefore, each archived
image 60 has a corresponding data table 24, and the archived
images have a one-to-one correspondence with portioned
tables 23.

FIG. 2 is a block diagram that shows an example of a
given downloaded table image 58 that stores data down-
loaded from a given data table 24, in accordance with an
embodiment of the present invention. Each given table
image 58 may comprise a raw data file 70 and a description
file 72. In some embodiments partitioned database manager
56 can store raw data file 70 in a standard format use for data
exchange. For example, file 70 may comprise a comma
separated value (CSV) file.

In the configuration shown in FIG. 2 raw data file 70
comprises a header 74 and a set of raw data records 76.
Header 74 comprises a set of field titles 78, and each raw
data record 76 comprises a set of raw data fields 80 that have
a one-to-one correspondence with field titles 78

In some embodiments, description file 72 comprises a set
of field descriptions 82 that describe data fields 46 in data
records 44 downloaded from the given data table. In some
embodiments, raw data file 70 is populated the data fields in
the downloaded table images. Field descriptions 82 have a
one-to-one correspondence with field titles 78, and each of
the field descriptions can store information such as:

A field name 84. This can be the same as the correspond-
ing field title 78.

A field number 86. Since CSV files do not store fields at
fixed locations, field number 86 can be used to identify
where a given raw data field 80 is stored in a given raw
data record 76. For example, since values in CSV files
are separated by commas, field number 86 can indicate
the location of the given raw given raw data field by the
number of commas before or after the data for the given
raw data field.

A field type 88. Examples of field type 88 include date,
numeric and text.

A field format 90. In one example, the field format for
numeric data can indicate a number of digits to the right
of the decimal point. In another example, the field
formation can describe formats for telephone numbers,
postal (e.g., ZIP) codes, email addresses etc.

One or more field rules 92. A given rule 92 can indicate
a list of valid text/numeric data for a given raw data
field 80, or minimum/maximum values for numeric
data.

In some embodiments, each raw data file 70 stores data
from all the fields in its corresponding data table 24.

FIG. 3 is a block diagram that schematically illustrates an
example of an archive directory structure 100 that data
analysis server 20 can use to store archived table images 60
on storage device 54, in accordance with an embodiment of
the present invention. In the configuration shown in FIG. 3,

US 11,797,600 B2

7

processor 50 can create archive directory structure 100 on
storage device 38 as follows:

Create an archive directory 102.

Create year directories 104 (i.e., subdirectories of direc-
tory 102) for each year during which partitioned data-
base manager downloads images 58.

Create month directories 106 (i.e., subdirectories of each
given directory 104) for each given month during
which partitioned database manager downloads images
58.

Create day directories 108 (i.e., subdirectories of each
given directory 106) for each given day that partitioned
database manager downloads images 58.

Upon downloading table images 58 on a given date,
processor 50 creates a new directory 108 (and a new
directory 106 if the given date is the first day in the
current month, and a new directory 104 if the given
date is the first day in the current year), the analysis
processor stores the downloaded table images to the
new directory.

In the configuration shown in FIG. 3, processor 50
archives all table images 58 downloaded on a given date to
a single directory 108 corresponding to the given date.
Therefore, each archived table image 60 comprises a copy of
a given downloaded table image 58 that was captured at a
specific point in time.

In one embodiment, the table images downloaded on a
given date may comprise all the data stored in the corre-
sponding data tables 24. In another embodiment the table
images downloaded on a given date may comprise deltas
(i.e., additions, deletions and changes) from the most recent
previous archive table images 60.

In an additional embodiment, partitioned database man-
ager 56 can download a given table image 58 upon detecting
a change (e.g., an addition, a deletion or an update) to a
given date record 44 in a given data table 24. In this
embodiment, the given table image may simply comprise
the detected change (i.e., not the entire table 24).

FIG. 4 is a block diagram that schematically illustrates an
example of a database directory structure 110 that processor
50 can use to store partitioned database 22 on storage device
54, in accordance with an embodiment of the present inven-
tion. As described supra, partitioned database comprises a
set of partitioned tables 23.

In the configuration shown in FIG. 4, each partitioned
table 23 comprises multiple partitioned daily database tables
112, each of the partitioned daily tables comprising respec-
tive sets of partitioned database records 114 comprising
respective partitioned database fields 116.

In embodiments of the present invention, partitioned
database manager 56 creates a corresponding daily table 112
for a subset of archived table image 60. Therefore, for a
given data table 24 having a plurality of corresponding
archived table images 60, partitioned database manager 56
can create separate respective daily tables 112 for each of the
corresponding archived table images 60. Deciding which
daily tables 112 to create from archived image 60 is
described in the description referencing FIG. 5 hereinbelow.

As described supra, each archived table image 60 com-
prises a copy of a given downloaded table image 58 that was
captured at a specific point in time. In embodiments
described herein, each daily image 112 comprises data from
a corresponding archived table image 60 that was captured
(i.e., from a given data table 24) at a specific point in time.

In some embodiments, partitioned database manager 56
can define each partitioned table 23 as a logical database
table comprising set of physical daily tables 112. An

10

15

20

30

40

45

55

8

example of a given partitioned table 23 implemented as a
logical database table is described in the description refer-
encing FIG. 7 hereinbelow.

To create daily table 112, partitioned database manager 56
can use information stored in a configuration file 118 and a
unified schema file 120. Configuration file 118 is described
in the description referencing FIG. 5 hereinbelow, and
unified schema 120 is described in the description referenc-
ing FIG. 6 hereinbelow.

In some embodiments, processor 50 can create database
directory structure 110 on storage device 38 as follows:

Create a database directory 122.

Store configuration file 118 and unified schema 120 to
database directory 122.

Create, for each partitioned table 23, a corresponding
table directory 124 as a subdirectory of directory 122

Create, as needed, year directories 126 (i.e., subdirecto-
ries of directory 124) for each year during which
partitioned database manager 56 created archived table
images 60.

Create, as needed, month directories 128 (i.e., subdirec-
tories of directories 126) for each month (i.e., in the
year referenced by its respective parent directory) dur-
ing which partitioned database manager 56 created
archived table images 60.

Create, as needed, day directories 130 (i.e., subdirectories
of directories 128) for each day (i.e., in the month
referenced by its respective parent directory) during
which partitioned database manager 56 created
archived table images 60.

While the configuration of directory structure 110 in FIG.

4 shows partitioned database manager 56 creating tables 112
on a daily basis, creating the daily tables at other intervals
is considered to be within the spirit and scope of the present
invention. For example, partitioned database manager 56
can download table images 58 and create respective tables
112 at a higher frequency (e.g., every change to data tables
24, or every 4, 6 or 8 hours) or at a lower frequency (e.g.,
every 2, 4 or 7 days).

Also, while the configuration of directory FIG. 4 shows
partitioned database manager 56 creating directory structure
110 with directories 126, 128 and 130 as subdirectories of
directory 124, other configurations are considered to be
within the spirit and scope of the present invention. For
example, partitioned database manager 56 may generate
directory structure 110 in a similar manner to directory
structure 100, and store multiple daily tables 112 in a single
daily directory 130.

FIG. 5 is a block diagram that shows an example of
configuration file 118 that partitioned database manager 56
can use to manage partitioned database 22, in accordance
with an embodiment of the present invention. Configuration
file 118 may comprises a set of configuration records 140
and a reset flag 142. Each configuration record 140 com-
prises a table identifier (ID) 144 referencing a given parti-
tioned table 23 and a field ID 146 referencing a given
partitioned database field 116. In some embodiments data-
base field 116 may indicate a given field 46 to exclude from
daily tables 112.

In some embodiments, partitioned database manager 56
can store, to a given configuration record 140, a given table
1D referencing a given partitioned table 23, and a null/empty
value to field ID 146. The null/empty value indicates that
partitioned database manager 56 will include all fields 80 in
the corresponding raw data file 70 in the given partitioned
table.

US 11,797,600 B2

9

In embodiments of the present invention, the partitioned
database fields in given partitioned table 23 typically com-
prise a subset of the raw data fields in the corresponding
archived table image 60. This is because user 28 may not
need to query information stored in all fields 80.

Partitioned database manager 56 can use the information
stored in configuration file 118 to perform the following:

When initializing partitioned database 22 at a first time,
configuration file 118 defines which fields 80 from files
70 to store to partitioned tables 23. Partitioned database
manager 56 can then use the information stored in
configuration file 118 to initialize and update parti-
tioned database manager 56.

At a second time subsequent to the first time, a given field
46 may be added to a given data table 24, and user 28
may want to include the new field in the corresponding
partitioned table 23. In this instance, partitioned data-
base manager 56 can start (i.e., at the second time)
downloading the added field 46 to the table image 58
corresponding to the given data table, and add a new
database field 116 to the corresponding partitioned
table 23. In this example, configuration file 118 does
not need to be changed, since field IDs 140 indicate
which fields 46 to exclude when generating daily tables
112.

At a second time subsequent to the first time, a given field
46 whose information may be removed from a given
data table 24, and this given field was previously store
to a corresponding partitioned table 23. In this instance,
partitioned database manager 56 can stop (i.e., at the
second time) including the given field in the table
image 58 corresponding to the given data table, and
stop copying the given field to the corresponding
partitioned table 23. In this example, configuration file
118 may need to be updated if configuration file did not
store the field ID 146 for the given field (i.e., the given
field was previously included in tables 112.

At a second time subsequent to the first time, user 28 may
want to add and/or delete one or more fields 80 to
partitioned database 22. In some embodiments, user 28
can set reset flag 142 which instructs partitioned data-
base manager 56 to recreate all partitioned tables 23
from all archived images 60. Recreating partitioned
database 22 is described in the description referencing
FIG. 10 hereinbelow.

FIG. 6 is a block diagram that shows an example of
unified schema 120 that partitioned database manager 56 can
use to access partitioned database 22, in accordance with an
embodiment of the present invention.

As described supra, partitioned database manager 56 can
use configuration file 62 select which fields 80 to include in
partitioned database 22. This is because partitioned database
manager 56 downloads all fields 46 in tables 24 to images
58, and all the data fields might not be needed for analysis.
However, there may by instances when there is a change to
the configuration (i.e., layout) of a given data table 24.
Example of these changes for the given table include:

An addition of a new field 46. In this example, if parti-

tioned database manager 56 receives a query to retrieve
a value of this field for a date prior to the date the new
field was added, the partitioned database manager can
return a specific (e.g., blank/null) value in response to
the query.

A deletion of a given field 46. In this example, if parti-
tioned database manager 56 receives a query to retrieve
a value of this field for a date subsequent to the date the

5

30

40

45

50

60

10

given field was deleted, the partitioned database man-

ager can return a specific (e.g., blank/null) value in

response to the query.

A change in the date type of a given field 46. As described
in the description referencing an example shown in
FIG. 7 hereinbelow, the data type of the given field may
be changed from numeric to text. In this example:

If partitioned database manager 56 receives a query to
retrieve values for the given field during a time
period when the data type for the given field was
numeric, the partitioned database manager can return
numeric values in response to the query.

If partitioned database manager 56 receives a query to
retrieve values for the given field during a time
period when the data type for the given field was
text, the partitioned database manager can return text
strings in response to the query.

If partitioned database manager 56 receives a query to
retrieve values for the given field during a time
period when there were different data types for the
given field, the partitioned database manager can
select a data type for the response to the query. In this
example, partitioned database manager 56 can con-
vert the numeric values to text strings, and return text
strings in response to the query.

In an alternative embodiment, partitioned database
manager 56 can simply assign a single format (e.g.,
text) that can be used to store the different data types.

A change to the format of a given field 46. For example,
numeric data for the given field in archived table
images 60 may be stored using either two-digit or
three-digit precision. In this case, partitioned database
manager can select a single format (e.g., three-digit
precision) that can be used to store the different data
formats.

In the configuration shown in FIG. 6, unified schema 120

comprises:

A table ID 150 referencing a given partitioned table 23.

A field name 152 referencing a given field 116 in the given
table

A start date 154 indicating when the given field was added
to the given partitioned table. In some embodiments,
this can simply be the first date that partitioned data-
base manager 56 downloaded the table image 58 cor-
responding to the given partitioned table.

An end date 156 indicating a date when the given field
was removed from the given partitioned table. This can
be blank/null If the given field is still in the given
partitioned table.

One or more schema records 158 comprising:

A type 160 indicating a data type for the given field.

A format 162 indicating a format (e.g., length, decimal
point location) of the given field.

A start date 164 indicating when data table 24 started
storing data using data type 160 and/or format 162.

An end date 166 indicating when data table 24 stopped
storing data using data type 160 and/or format 162.
This can be blank/null if there is no change.

As described in the description referencing FIG. 4 here-
inabove, a given partitioned table 23 comprises multiple
daily tables 112 that partitioned database manager 56 gen-
erated from images 60 of a single given data table 24.
Therefore, there are typically multiple identical records 114
in the given partitioned table (i.e., stored in different daily
tables 112). In some embodiments, partitioned database
manager 56 can generate a logical view for the given

US 11,797,600 B2

11

partitioned table that enables differentiation, thereby
enabling the partitioned database manager to process time-
series analysis queries.

FIG. 7 is a block diagram that shows an example of a
logical table 170 comprising multiple partitioned table 23, in
accordance with an embodiment of the present invention. In
some embodiments, logical table 170 comprises logical
records 172 and logical fields 174.

As described in the description referencing FIG. 4 here-
inabove, a given partitioned table 23 comprises a set of daily
tables 112 that are stored in respective directories 130, the
daily tables comprising images of the corresponding data
table 24 on different dates. The records 172 shown in FIG.
7 are from a first partitioned table 23 that partitioned
database manager 56 created on Jan. 6, 2020 and a second
partitioned table 23 that the partitioned database manager
created on Jan. 13, 2020. In embodiments of the present
invention partitioned database manager can present, to user
28, multiple partitioned tables 23 (i.e., comprising respective
images pf the same daily table 23) as a single logical table
170.

In FIG. 7, logical records 172 and logical fields 174 can
be differentiated by appending a letter to the identifying
numeral, so that the logical records comprise logical records
172A-172C and the logical fields comprise logical fields
174A-174G. In the example shown in FIG. 7:

Logical field 174A stores a date of the archived table

image 60 from which data for a given logical record
172 was extracted.

Logical field 174B stores a time (e.g., HOUR:MINUTE)
indicating when the archived table image 60 from
which data for a given logical record 172 was extracted.

Logical field 174C stores a unique identifier each given
logical record 172.

Logical field 174D stores a name extracted from a field 80
of a record 76 in a given archived table image 60.

Logical field 174E stores a postal code extracted from a
field 80 of a record 76 in a given archived table image
60.

Logical field 174F stores a fax number extracted from a
field 80 of a record 76 in a given archived table image
60.

Logical field 174G stores email address extracted from a
field 80 of a record 76 in a given archived table image
60.

The example shown in FIG. 7 shows how fields 46 can be
added, be deleted, and have different data types over time.
In this example, a fax number is initially stored in a given
data record 44, but is later replaced with an email address.
The example also shows the data type of postal code
changing from numeric to text.

Additionally, while the example in FIG. 7 shows table 170
configured as a row-based table, configuring table 170 as a
column-based table is considered to be within the spirit and
scope of the present invention. Configuring table 170 as a
column-based table can help partitioned database manager
56 optimize processing time-series analysis queries on the
data stored in daily tables 112.

Database Time Series Analytics

FIG. 8 is a flow diagram that schematically illustrates a
method of creating and updating the partitioned database, in
accordance with an embodiment of the present invention.
The steps below describe operations that partitioned data-
base manager 56 can perform on a single given day.

5

10

20

25

30

35

40

45

50

55

60

65

12

In step 180, partitioned database manager 56 creates, on
storage device 54, a new day directory 108 for the given day.
If the given day is the first day of a month, partitioned
database manager 56 will create a new month directory 106
prior to creating new directory 108. If the given day is the
first day of a year, partitioned database manager 56 will
create a new year directory 104 prior to creating new
directory 106.

In step 182, partitioned database manager 56 selects a
given data table 24, and in step 184, the partitioned database
manager conveys, to data server 26, a request to retrieve a
plurality of records 44 from the given data table. In one
embodiment, the request may comprise a request to retrieve
all records 44 in the given data table. In another embodi-
ment, the request may comprise a request to only retrieve
changes to the records in the given data table.

In step 186, partitioned database manager 56 receives
(i.e., captures) the requested records, and stores them to
storage device 54.

In step 188, partitioned database manager 56 creates,
using the downloaded records (i.e., downloaded from the
selected table 24), a new table image 58. Upon creating new
table image 58, partitioned database manager 56 copies the
created table image 58 to a new archived table image 60 in
the new archive directory.

In step 190 partitioned database manager 56 checks table
IDs 144 in configuration records 140 to see if a given
partitioned table 23 is to be generated from the data table 26
selected in step 182. If a given partitioned table 23 is to be
generated from the selected data table, then in step 192,
partitioned database manager 56 creates, in the table direc-
tory 124 corresponding to the given data table, a new day
directory 130 for the given day. If the given day is the first
day of a month, partitioned database manager 56 will create
a new month directory 128 prior to creating new directory
130. If the given day is the first day of a year, partitioned
database manager 56 will create a new year directory 126
prior to creating new directory 128.

In step 194, partitioned database manager 56 identifies, in
configuration file 118, which raw data fields 80 are to be
included a new partitioned table 23 corresponding to the
given data table. As describe supra, configuration 118 file
may store field IDs 146 that are to be excluded from the new
partitioned table. Partitioned database manager 56 can use
this information to create the new partitioned table.

In step 196, partitioned database manager 56 generates,
using the data stored in the identified raw data fields 80, a
new partitioned database table 23, and in step 198 the
partitioned database manager moves the created partitioned
database table to the new day directory 130 (i.e., the day
directory created in step 192).

Upon performing step 198, partitioned database manager
56 can analyze the identified fields to see if there is are any
changes to the identified raw data fields 80 that require a
change to unified schema file 120. As described supra,
examples of changes can include a new raw data field 80, a
deleted raw data field 80 or a change of the data type for a
given raw data field.

In step 200, if partitioned database manager 56 detects a
change that requires a change to unified schema file 120,
then in step 202, the partitioned database manager updates
the unified schema file 120 accordingly.

Finally, in step 204, if there are additional remote data
tables 24 that were not yet selected in step 184, then the
method continues with step 184. In other words, step 184,
only selects previously unselected remote data tables 24.

US 11,797,600 B2

13

Returning to step 204, if there are no unselected remote
data tables 24, then the method ends.

Returning to step 200, if partitioned database manager 56
does not detect any change that requires a change to unified
schema file 120, then the method continues with step 204.
Returning to step 190, if a given partitioned table 23 is not
to be generated from the selected data table, then the method
continues with step 204.

FIG. 9 is a flow diagram that schematically illustrates a
method of processing a time-based analytic query on the
partitioned tables 23 in partitioned database 22, in accor-
dance with an embodiment of the present invention.

In step 210, partitioned database manager 56 receives,
from user 28 (i.e., via client computer 30), a query with
respect to a variation of a given field 174 in table 170 over
a specified period of time. As described supra, table 170
comprises multiple partitioned tables 23.

For example, the query may comprise a request to identify
how many names 174D were added and/or deleted and/or
updated on Nov. 12, 2020.

In step 212, partitioned database manager 56 identifies
records 172 for the specified period of time, and in step 214,
the partitioned database manager analyzes the identified
records in order to extract the variation.

Continuing the example described supra, partitioned data-
base manager 56 can perform step 212 by:

Identifying a first set of records 172 for Nov. 11, 2020

(i.e., as indicated by date 174A).
Identifying a second set of records for Nov. 12, 2020.
Analyzing the first and the second set of records to
identify how many names 174D are in the second set of
records and not in the first set of records.

Finally, in step 216, partitioned database manager 56
presents the extracted variation to user 28, and the method
ends. To present the extracted variation to user 28, parti-
tioned database manager 56 can convey the extracted varia-
tion to client computer 30, and upon receiving the extracted
variation, the client computer can present the extracted
variation on display 64.

FIG. 10 is a flow diagram that schematically illustrates a
method of recreating partitioned database 22, in accordance
with an embodiment of the present invention. As described
supra, partitioned database manager 56 can initiate recreat-
ing partitioned database 22 upon detecting that reset flag 142
is set.

In step 220, partitioned database manager 56 selects, from
configuration file 118, a given table ID 144 corresponding to
a given partitioned database table 23.

In step 222, partitioned database manager 56 identifies the
archived table images 60 corresponding to the given table
23.

In step 224, partitioned database manager 56 selects a
given identified archive table image 60, and in step 226 the
partitioned database manager deletes the existing daily data-
base table 112 that corresponds to the selected archive table
image 60.

In step 228, partitioned database manager 56 uses the
given identified archive image to recreate, using the infor-
mation stored in configuration file 118, the daily table 112
corresponding to the given identified archive image.

In step 230, if partitioned database manager 56 identifies
any of the identified table images (i.e., in step 222) that were
not yet selected (i.e., in step 224), then the method continues
with step 224.

When partitioned database manager 56 determines that all
the identified table images have been selected, then in step

10

15

20

25

30

35

40

45

50

55

60

65

14

232, partitioned database manager 56 determines if there are
any table ids 144 that have not yet been selected in step 220.

If there are any table ids 144 that have not yet been
selected in step 220, then the method continues with step
220. If all the table ids 144 have already been selected, then
the method ends.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and subcombinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art.

The invention claimed is:
1. A method, comprising:
capturing, by a hardware processor, a series of point-in-
time images of a database, wherein the database com-
prises data that can be periodically updated and que-
ried, wherein the data is stored in multiple fields of
multiple records in one or more tables of the database,
and wherein the point-in-time images comprise
archived copies made at predefined intervals of the data
stored in one or more of the tables of the database;

storing, by the hardware processor, raw data fields con-
taining data from the captured series of point-in-time
images to a corresponding series of raw data files on a
storage device, wherein the raw data files store the raw
data fields in a data exchange format in which the raw
data fields are not stored at fixed locations in the raw
data files;

receiving, from a user, a retrospective query with respect

to a variation of a given field in a given table of the
database over a specified period of time;

defining a logical table containing values of the given

field extracted from the raw data fields in the series of
raw data files that were stored over the specified period
of time,

wherein defining the logical table comprises generating a

partitioned table comprising the data from the series of
point-in-time images;

generating and maintaining a unified schema of the data-

base, wherein the unified schema stores respective field
names and respective data types for the fields in the
table, including any schema changes in the database
tables in the series of point-in-time images used to
generate the partitioned table;

analyzing, by the hardware processor, the values of the

given field in the logical table, by querying the gener-
ated partitioned table in order to extract the variation of
the given field in the given table over the specified
period of time; and

presenting the extracted variation to the user.

2. The method according to claim 1, wherein capturing the
point-in-time images comprises capturing the point-in-time
images at predefined intervals.

3. The method according to claim 1, wherein the given
table comprises a customer relationship management data
file.

4. The method according to claim 1, wherein the given
table comprises an enterprise resource planning file.

5. The method according to claim 1, wherein the given
table comprises an accounting data file.

6. The method according to claim 1, wherein the given
table comprises a customer service system data file.

US 11,797,600 B2

15

7. The method according to claim 1, wherein the given
table comprises a messaging system data file.

8. The method according to claim 1, wherein the given
table comprises a set of records, and wherein capturing a
given point-in-time image of the database comprising cap-
turing the records in the given table.

9. The method according to claim 8, wherein capturing the
records comprises capturing all the records in the given
table.

10. The method according to claim 8, wherein capturing
the records comprises capturing a subset of the records in the
given table.

11. The method according to claim 1, wherein generating
a partitioned table comprises generating a column-based
partitioned table.

12. The method according to claim 1, wherein the series
of point-in-time images comprises a first given image com-
prising a first set of fields captured at a first time and a
second given image comprising a second set of fields
captured at a second time subsequent to the first time, and
wherein the schema change comprises a given field in the
second set that is not in the first set.

13. The method according to claim 12, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein presenting the extracted variation comprises pre-
senting the first given image, and presenting, in the first
image a specified value for the given field.

14. The method according to claim 1, wherein the series
of point-in-time images comprises a first given image com-
prising a first set of fields captured at a first time and a
second given image comprising a second set of fields
captured at a second time subsequent to the first time, and
wherein the schema change comprises a given field in the
first set that is not in the second set.

15. The method according to claim 14, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein presenting the extracted variation comprises pre-
senting the second given image, and presenting, in the
second image a specified value for the given field.

16. The method according to claim 1, wherein the series
of point-in-time images comprises a first given image cap-
tured at a first time and a second given image comprising
captured at a second time subsequent to the first time,
wherein the first given image comprises a field having a first
data type, wherein the second given image comprises a field
having a second data type, and wherein the schema change
comprises a difference between the first and the second data
types.

17. The method according to claim 16, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein presenting the extracted variation comprises pre-
senting the field in first given image and the second given
image using a specified data type.

18. The method according to claim 1, wherein the series
of point-in-time images comprise a set of fields, and wherein
the partitioned table comprises a subset of the set of fields.

19. The method according to claim 1, wherein the raw
data files comprise CSV (comma separated value) files.

20. An apparatus, comprising:

a storage device configured to store a database, wherein
the database comprises data that can be periodically
updated and queried, and wherein the data is stored in
multiple fields of multiple records in one or more tables
of the database; and

w

10

15

20

25

30

35

40

45

50

55

60

65

16

at least one hardware processor configured:

to capture and store to the storage device a series of
point-in-time images of the database, wherein the
point-in-time images comprise archived copies made
at predefined intervals of the data stored in one or
more of the tables of the database,

to store raw data fields containing data from the cap-
tured series of point-in-time images to a correspond-
ing series of raw data files on a storage device,
wherein the raw data files store the raw data fields in
a data exchange format in which the raw data fields
are not stored at fixed locations in the raw data files,

to receive, from a user, a retrospective query with
respect to a variation of a given field in a given table
of the database over a specified period of time,

to define a logical table containing values of the given
field extracted from the raw data fields in the series
of raw data files that were stored over the specified
period of time,

wherein the logical table comprises a partitioned table
comprising the data from the series of point-in-time
images,

to generate and maintain a unified schema of the
database, wherein the unified schema stores respec-
tive field names and respective data types for the
fields in the table, including any schema changes in
the database tables in the series of point-in-time
images used to generate the partitioned table,

to analyze the values of the given field in the logical
table, by querying the generated partitioned table in
order to extract the variation of the given field in the
given table over the specified period of time, and

to present the extracted variation to the user.

21. The apparatus according to claim 20, wherein a given
processor is configured to capture the point-in-time images
by capturing the point-in-time images at predefined inter-
vals.

22. The apparatus according to claim 20, wherein the
given table comprises a customer relationship management
data file.

23. The apparatus according to claim 21, wherein the
given table comprises an enterprise resource planning file.

24. The apparatus according to claim 20, wherein the
given table comprises an accounting data file.

25. The apparatus according to claim 20, wherein the
given table comprises a customer service system ticket data
file.

26. The apparatus according to claim 20, wherein the
given table comprises a messaging system data file.

27. The apparatus according to claim 20, wherein the
given table comprises a set of records, and wherein a given
processor is configured to capture a given point-in-time
image of the database by capturing the records in the given
table.

28. The apparatus according to claim 27, wherein a given
processor is configured to capture the records by capturing
all the records in the given table.

29. The apparatus according to claim 27, wherein a given
processor is configured to capture the records by capturing
a subset of the records in the given table.

30. The apparatus according to claim 20, wherein a given
processor is configured to generate a partitioned table by
generating a column-based partitioned table.

31. The apparatus according to claim 21, wherein the
series of point-in-time images comprises a first given image
comprising a first set of fields captured at a first time and a
second given image comprising a second set of fields

US 11,797,600 B2

17

captured at a second time subsequent to the first time, and
wherein the schema change comprises a given field in the
second set that is not in the first set.

32. The apparatus according to claim 31, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein a given processor is configured to present the
extracted variation by presenting the first given image, and
presenting, in the first image a specified value for the given
field.

33. The apparatus according to claim 20, wherein the
series of point-in-time images comprises a first given image
comprising a first set of fields captured at a first time and a
second given image comprising a second set of fields
captured at a second time subsequent to the first time, and
wherein the schema change comprises a given field in the
first set that is not in the second set.

34. The apparatus according to claim 33, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein a given processor is configured to present the
extracted variation by presenting the second given image,
and presenting, in the second image a specified value for the
given field.

35. The apparatus according to claim 20, wherein the
series of point-in-time images comprises a first given image
captured at a first time and a second given image comprising
captured at a second time subsequent to the first time,
wherein the first given image comprises a field having a first
data type, wherein the second given image comprises a field
having a second data type, and wherein the schema change
comprises a difference between the first and the second data
types.

36. The apparatus according to claim 35, wherein the
point-in-time images captured during the specified period of
time comprises the first and the second given images, and
wherein a given processor is configured to present the
extracted variation by presenting the field in first given
image and the second given image using a specified data
type.

37. The apparatus according to claim 20, wherein the
series of point-in-time images comprise a set of fields, and
wherein the partitioned table comprises a subset of the set of
fields.

10

40

18

38. A computer software product for protecting a com-
puting system, the product comprising a non-transitory
computer-readable medium, in which program instructions
are stored, which instructions, when read by a computer,
cause the computer:

to capture a series of point-in-time images of a database,

wherein the database comprises data that can be peri-
odically updated and queried, wherein the data is stored
in multiple fields of multiple records in one or more
tables of the database, and wherein the point-in-time
images comprise archived copies made at predefined
intervals of the data stored in one or more of the tables
of the database;

to store raw data fields containing data from the captured

series of point-in-time images to a corresponding series
of raw data files on a storage device, wherein the raw
data files store the raw data fields in a data exchange
format in which the raw data fields are not stored at
fixed locations in the raw data files;

to receive, from a user, a retrospective query with respect

to a variation of a given field in a given table of the
database over a specified period of time;

to define a logical table containing values of the given

field extracted from the raw data fields in the series of
raw data files that were stored over the specified period
of time,

wherein the logical table comprises a partitioned table

comprising the data from the series of point-in-time
images;

to generate and maintain a unified schema of the database,

wherein the unified schema stores respective field
names and respective data types for the fields in the
table, including any schema changes in the database
tables in the series of point-in-time images used to
generate the partitioned table;

to analyze the values of the given field in the logical table,

by querying the generated partitioned table in order to
extract the variation of the given field in the given table
over the specified period of time; and

to present the extracted variation to the user.

#* #* #* #* #*

