
THOUT AU LLLLLWAUTTUR US009804967B2

(12) United States Patent
Cain , III et al .

(10) Patent No . : US 9 , 804 , 967 B2
(45) Date of Patent : Oct . 31 , 2017

(54) METHODS OF CACHE PRELOADING ON A
PARTITION OR A CONTEXT SWITCH

(58) Field of Classification Search
None
See application file for complete search history .

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US) (56) References Cited

U . S . PATENT DOCUMENTS (72) Inventors : Harold W . Cain , III , Katonah , NY
(US) ; Vijayalakshmi Srinivasan , New
York , NY (US) ; Jason Zebchuk ,
Toronto (CA)

5 , 893 , 147 A
6 , 339 , 813 B1
8 , 954 , 709 B2

2003 / 0023663 AL
2006 / 0107024 A1

4 / 1999 Deng
1 / 2002 Smith , III et al .

2 / 2015 Nishiguchi et al .
1 / 2003 Thompson et al .
5 / 2006 Cypher

(Continued)
(73) Assignee : International Business Machines

Corporation , Armonk , NY (US)

(*) Notice : OTHER PUBLICATIONS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days . Notice of Allowance , dated Aug . 22 , 2016 , for U . S . Appl . No .

14 / 908 , 631 . *
(Continued) @ (21) Appl . No . : 15 / 375 , 913

(22) Filed : Dec . 12 , 2016
(65) Prior Publication Data

US 2017 / 0091105 A1 Mar . 30 , 2017

Primary Examiner — Ryan Bertram
Assistant Examiner — Trang Ta
(74) Attorney , Agent , or Firm — Scully , Scott , Murphy &
Presser , P . C . , Jennifer R . Davis , Esq .

Related U . S . Application Data
(63) Continuation of application No . 14 / 809 , 631 , filed on

Jul . 27 , 2015 , now Pat . No . 9 , 529 , 723 , which is a
continuation of application No . 13 / 545 , 304 , filed on
Jul . 10 , 2012 , now Pat . No . 9 , 092 , 341 .

(51) Int . C1 .
GOOF 12 / 00 (2006 . 01)
G06F 12 / 0862 (2016 . 01)
G06F 12 / 1009 (2016 . 01)
G06F 12 / 123 (2016 . 01)

(52) U . S . CI .
CPC GO6F 12 / 0862 (2013 . 01) ; G06F 12 / 1009

(2013 . 01) ; G06F 12 / 123 (2013 . 01) ; GOOF
2212 / 602 (2013 . 01) ; G06F 2212 / 69 (2013 . 01)

(57) ABSTRACT
A scheme referred to as a “ Region - based cache restoration
prefetcher " (RECAP) is employed for cache preloading on
a partition or a context switch . The RECAP exploits spatial
locality to provide a bandwidth - efficient prefetcher to reduce
the " cold ” cache effect caused by multiprogrammed virtu
alization . The RECAP groups cache blocks into coarse - grain
regions of memory , and predicts which regions contain
useful blocks that should be prefetched the next time the
current virtual machine executes . Based on these predic
tions , and using a simple compression technique that also
exploits spatial locality , the RECAP provides a robust
prefetcher that improves performance without excessive
bandwidth overhead or slowdown .

20 Claims , 6 Drawing Sheets

Processor

Demand Request Region Access Table (RAT)
Region Tag VRU

Region Tag VEI
Region Tag
Region Tag

Cache tag directory
Tag LRU

LRU Tag
Tag LRU
Tag LRU Hit

Miss

* Region Tag TVRTTTTTTTTT

Write - back buffer Tag

Prefetch FIFO
buffer Prefetch

Main
Memory La -

- AJ -

-

-

-

US 9 , 804 , 967 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

2007 / 0033371 A1
2008 / 0201530 AL
2010 / 0191921 Al *

2 / 2007 Dunshea et al .
8 / 2008 Franaszek et al .
7 / 2010 Cantin GO6F 12 / 0811

711 / 147
2 / 2012 Boller et al . 2012 / 0030275 A1

OTHER PUBLICATIONS

Office Action , dated Nov . 6 , 2015 , and Notice of Allowance , dated
Mar . 19 , 2015 , for U . S . Appl . No . 13 / 545 , 304 . *
Brown , J . et al . , “ Fast Thread Migration via Cache Working Set
Prediction ” Proceedings of the 17th Annual Symposium on High
Performance Computer Architecture (Feb . 2011) pp . 193 - 204 .
Cui , H . et al . , “ Extending Data Prefetching to Cope with Context
Switch Misses ” Proceedings of the 2009 IEEE International Con
ference on Computer Design (Oct . 4 - 7 , 2009) pp . 260 - 267
Daly , D . et al . , “ Cache Restoration for Highly Partitioned Virtual
ized Systems " Proceedings of the 18th Annual Symposium on High
Performance Computer Architecture (Feb . 25 - 29 , 2012) pp . 1 - 10 .
Mogul , J . et al . , “ The Effect of Context Switches on Cache Perfor
mance ” Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems (Apr . 1991) pp . 75 - 84 .
Somogyi , S . et al . , “ Spatial Memory Streaming ” Proceedings of the
33rd Annual International Symposium on Computer Architecture
(Jun . 2006) pp . 252 - 263 .
* cited by examiner

atent Oct . 31 , 2017 Sheet 1 of 6 US 9 , 804 , 967 B2

EI * * * * * *

mbon 0 .
LEES * * * * * * * * * * * * * .

. . Write - back buffer potensi w

E * * EEE EE D E F

MALI Region Access Table (RAT)

Region Tag VRUTTUIT Region Tag MRI Region Tag Region Tag
+

Region Tag wwwwwwww

w wwwwwwwwwww
ninn 1913 Prefetch FIFO

buffer Hit Miss wwwwwwwwwwwwww LRU LRU LRU
081 O87 wwwwwww w

Prefetch wwwwwwww

Processor Tag Tag bel
bel

w

wwwwww
w wwwwww

Demand Request Tag

Cache tag directory
Main Memory

block offset byte offset
bits

bits

Region tao

S = ceil (LogM)

wwwwww

atent

r bits

s bits

p bits

a bits

Address for a byte within the main memory
MXN RAT

Region group Intra - group region Identifier bits

Identifier bits

pogo

299999

999999pppppppppppp
9 . 200 .

999999999999ggggg0999999999999999
9 9999999999999999999999999999

possos

Oct . 31 , 2017

* *

*

* *

* * * *

*

* *

*

*

*

* *

* * *

*

* *

* * * *

* *

*

* *

*

*

*

* * * *

*

* *

*

* * *

*

*

* *

*

* * * *

*

* *

* * *

*

*

* *

*

*

* * * *

*

* *

*

* * *

*

* *

* *

*

*

* *

* * *

*

*

*

* * * * *

* *

*

* * * *

*

* *

XXXXXXXXXXXX

XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXX
1 .

1

. 2 . .

2 .

1 . 1

wXXXXXXXXX + + +

Row Identification among Mrows

XXXXXXXXXXXXXXX

PETIT - TTTIIIIIIIIIIIII

Sheet 2 of 6

* *

* *

* * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

* *

* * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * *

*

* * * * * * * * * * * *

* *

* * * * * * * * * * * * *

* * * * * *

* *

*

* * * * * * * *

*

Region group identifier

valid reuse

LRU order

Block presence vector

s bits

1 bit 1 bit

t bits

20 bits

t = ceil (log , N)

FIG . 2

US 9 , 804 , 967 B2

Processor
Demand Request

D .

atent

Region Access Table (RAT)

Region Tag MAL Region Tag Region Tag Region Tag

Cache tag directory
Tag

Tag

LRU
LRU

LRU

Tag

Oct . 31 , 2017

Tag

Hit Miss

Region Tag

Evicted entries

Write - back buffer

Tag

LRU

Sheet 3 of 6

Prefetch FIFO
buffer

Prefetch

In - memory region prefetch list
(FIFO)

* * * * * * * * *

(

10

m

n

o

*

*

- - -

- - *

u

wWw we

- - - -

Main Memory

EU wu

- -

MAN

and

www www mm

ww

w

- - - -

-

u *

w

- -

no

VAN

-

-

- - - -

2

- - - - comme

wWw w

. be

*

ERED I

= *

E * * .

* * *

Ww

FIG . 3

US 9 , 804 , 967 B2

US 9 , 804 , 967 B2

FIG . 4

t = ceil (Log , N)

2P bits

i bits

1 bit

s bils

Block presence vector

order
valid | LRU

Region group identifier

Sheet 4 of 6

+

+ + +

XXXXXX

+

+ + +

W

+

12

WXXXXXXXXX

among Mrows Identification Row

Wwwwwww

XXXXXXXXXX
XXX

Oct . 31 , 2017

*

identifier
identifier

Region group Intra - group region

MXN RAT

_

Address for a byte within the main memory

qbits
p bits

s bits

r bits

atent

LA
Region tag

S = ceil (Log 2 M)

bits

bits

block offset byte offset

US 9 , 804 , 967 B2

FIG . 5

t = ceil (Log 2N)

2 bits

1 bit 1 bit

s bits

Block presence vector

valid reuse

Region group identifier

V

+

Sheet 5 of 6

XULUI
+ + + +

+ + + +

+ + +

+

+ + + +

+ + +

+

among Mrows Identification Row

*

* *

*

*

* * * *

* * * *

* * * *

* *

* *

* * * *

*

* *

*

* * * *

* * *

* *

* * * * * * *

*

* * * * * * * * * * * * * * * * * * *

* * * * * * * * *

* * *

*

* * *

*

* * * *

* *

* *

* * *

* * * *

*

* * * *

*

*

*

*

*

*

*

* * * *

*

* * *

*

*

* *

*

*

*

* * *

* * * *

* * *

*

* *

*

*

* * *

* * * *

* * * *

* *

* *

* * * * * * * * * * * * * * * * *

Oct . 31 , 2017

XXXXXXXXXXXXXX

Identifier bits

Region group Intra - group region identifier bits

MXN RAT
Address for a byte within the main memory

q bits

siiad
s bits

sia .

atent

php
Region tag

S = ceil (LogM)

bits

bits

block offset byte offset

block offset byte offset
bits

bits

S = ceil (Log 2M)

Region tag

atent

r bits

s bits

p bits

q bits

Address for a byte within the main memory
MXN RAT

Region group Intra - group region identifier bits

Identifier bits

* * * * * * * * *

* * * * * * * *

*

*

* *

* * * * * * * * * *

* * * * * * *

* * *

* * * * * * * *

*

* * * * * * * * * * * * * * * * *

* * * * *

* * * * * * * * * * * * * *

*

Oct . 31 , 2017

XXX

XXXXXXXX

XXU

.

+ * +

ULU

XXXXXXXXXXXXX

Row Identification among Mrows
HE

+ 2 +

2

+

Sheet 6 of 6

XXXXXXXX

xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
Xbox :

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Region group identifier

valid

Block presence vector

s bits

1 bit

2P bits

t = ceil (Log , N)

FIG . 6

US 9 , 804 , 967 B2

US 9 , 804 , 967 B2

15

METHODS OF CACHE PRELOADING ON A Multiprogrammed virtualization incurs overheads each
PARTITION OR A CONTEXT SWITCH time the hypervisor switches partitions , with much of this

slowdown coming from the loss of microarchitectural state
CROSS REFERENCE TO RELATED in the processor . While a partition is switched out , other

APPLICATION 5 partitions pollute the processor ' s caches , branch predictors ,
and translation lookaside buffers (TLBs) . By the time the

This application is a continuation of copending U . S . first partition is subsequently scheduled for its next execu
patent application Ser . No . 14 / 809 , 631 , filed Jul . 27 , 2015 , tion interval , the intervening partitions might have evicted
which is a continuation of U . S . patent application Ser . No . all of its state , resulting in an almost cold cache . While these
13 / 545 , 304 , filed Jul . 10 , 2012 . The entire contents and 10 effects could be amortized by executing each partition for
disclosure of U . S . patent application Ser . Nos . 14 / 809 , 631 longer periods of time , the need to maintain fast response
and 13 / 545 , 304 are hereby incorporated by reference in their times limits the applicability of this solution .
entirety .

SUMMARY
BACKGROUND

A method referred to as a “ Region - based cache restoration
The present disclosure generally relates to a method of prefetcher ” (RECAP) is employed for cache preloading on

cache preloading on a partition or a context switch , and a a partition or a context switch . The RECAP exploits spatial
system for implementing the same . locality to provide a bandwidth - efficient prefetcher to reduce

Virtualization has become a " magic bullet ” , providing a 20 the " cold ” cache effect caused by multiprogrammed virtu
means to increase utilization , improve security , lower costs , alization . The RECAP groups cache blocks into coarse - grain
and reduce management overheads . In some scenarios , the regions of memory , and predicts which regions contain
number of virtual machines consolidated onto a single useful blocks that should be prefetched the next time the
processor has grown even faster than the number of hard current virtual machine executes . Based on these predic
ware threads provided by modern processor . Multipro - 25 tions , and using a compression technique that also exploits
grammed virtualization allows multiple virtual machines to spatial locality , the RECAP provides a robust prefetcher that
time - share a single processor core , however this fine - grain improves performance without excessive bandwidth over
sharing comes at a cost . Each time a virtual machine gets head or slowdown .
scheduled by a hypervisor , it effectively begins with a " cold ” This disclosure leverages an observation that , for most
cache , since any cache blocks it accessed in the past have 30 workloads tracking , a relatively small number of coarse
likely been evicted by other virtual machines executing on grain regions is sufficient to capture a large portion of an
the same processor . application ' s cache working set . Tracking block reuse within

Server consolidation , virtual desktop infrastructure (VDI) regions can be employed as an effective way to reduce the
environments , and cloud computing trends dominate the amount of bandwidth wasted prefetching blocks within a
landscape of new server purchases . The growth of these 35 region that will not be accessed .
trends has led not only to a much wider adoption of The RECAP is a bandwidth - efficient region - based cache
hardware virtualization , but also to an increasing number of restoration prefetcher that tracks data access patterns at a
virtual instances , or partitions , being consolidated onto each coarse granularity region including 2P + 9 bytes . Each region
physical system . For example , International Business includes 2P blocks , and each block includes 29 bytes . The
Machines Corporation (IBM) has reported a case study of 40 RECAP can achieve comparable or better performance
consolidating 3 , 900 servers onto only 30 mainframe systems compared to prior art schemes while significantly reducing
and a number of virtualization software case studies have the overall bandwidth requirement .
reported consolidation ratios from 4 : 1 to 15 : 1 . As another The RECAP is a robust method that consistently uses less
example , B . Botelho , “ Virtual machines per server , a viable bandwidth to achieve similar performance benefits com
metric for hardware selection ? ” available at http : / / itknowl - 45 pared to previous schemes . Hardware mechanisms are pro
edgeexchange . techtarget . com / server - farm / virtual - ma vided to reduce the performance impact caused by the
chines - per - server - a - viable - metric - for - hardwareselection , common cold cache problem created by multiprogrammed
has suggested that in virtual desktop infrastructure (VDI) virtualization .
environments a good rule of thumb is to combine six to eight According to an aspect of the present disclosure , a com
virtual desktop instances per processor core . In the future , 50 puting system is provided , which includes : a processor , a
the number of partitions on each machine is expected to cache in communication with the processor ; a main memory
continue to increase . in communication with the cache ; and a region access table

Consolidating many partitions onto a single system gen - (RAT) configured to track access of memory blocks in the
erally requires some form of multiprogrammed virtualiza - main memory , wherein the RAT includes a plurality of RAT
tion in which multiple partitions time - share a single hard - 55 entries . Each of the RAT entries includes : a region group
ware thread . To meet quality of service (QoS) constraints identifier configured to store region group identifier bits that
and provide real - time interactive response times , the execu - identify a region of the main memory that includes a
tion interval for each partition is kept relatively short . For plurality of memory blocks ; and a block presence vector
instance , the PowerVM partition manager available at IBM configured to store block presence identifier bits that identify
allocates some portion of a 10 ms dispatch window to each 60 at least one block among the plurality of memory blocks ,
active partition , such that a system with ten partitions might wherein the block presence vector represents at least one
execute each partition for only 1 ms at a time within the 10 block corresponding to an address specified by the processor
ms window . Anumber of virtualization software case studies during a cache access .
provide good examples of why short response times are According to another aspect of the present disclosure , a
important in VDI environments as they implement VDI in 65 method for operating a computing system is provided . The
hospitals , including in urgent care departments and other method includes : providing a computing system that
" mission critical " applications . includes : a processor ; a cache in communication with the

US 9 , 804 , 967 B2

processor ; a main memory in communication with the As used herein , virtualization is the creation of a virtual
cache ; and a region access table (RAT) configured to track (rather than actual) version of something , such as a hardware
access of memory blocks in the main memory , wherein the platform , operating system (OS) , storage device , or network
RAT includes a plurality of RAT entries , and each of the resources .
RAT entries includes a region group identifier and a block 5 As used herein , a “ partition ” refers to a subset of com
presence vector . The method further comprises : upon an puter ' s hardware resources , virtualized as a separate com
access of the cache by the processor for data in a byte in a puter . A partition can be a virtual instance that is mapped to
block of a region including plurality of memory blocks and physical resources . For example , a partition can include an
located within the main memory , storing region group operating system and other system software along with the

10 workloads , and can assumes a virtual instance of the com identifier bits that identify the region in a region group puter system to execute the workload . Such a virtual identifier of a selected RAT entry among the plurality of instance can be mapped to physical hardware resources to RAT entries ; and upon the access of the cache , storing block constitute a partition . presence identifier bits that identify at least one block among As used herein , a “ context switch ” refers to the computing the plurality of memory blocks in a block presence vector of 15 process of storing and restoring the state (context) of a CPU
the selected RAT entry , wherein a bit of the block presence so that execution can be resumed from the same point at a vector represents the block . later time . Context switches allow multiple tasks to share the

same physical hardware in a time - shared manner . BRIEF DESCRIPTION OF THE SEVERAL A “ region - based cache restoration prefetcher " (RECAP)
VIEWS OF THE DRAWINGS 20 scheme reduces the bandwidth overhead of cache restoration

prefetching by using a more compact representation of block
FIG . 1 is a schematic diagram illustrating a first exem addresses , and by avoiding prefetches for blocks predicted

plary hardware configuration for a region - based cache res not to be useful during the next execution interval . To
toration prefetcher (RECAP) according to an embodiment of accomplish this , RECAP leverages spatial locality and com
the present disclosure . 25 mon behavior within coarse - grain regions (which is larger

FIG . 2 is a schematic diagram illustrating a first exem than blocks) of memory while still maintaining enough
plary Region Access Table (RAT) according to an embodi - fine - grain information to identify and prefetch individual
ment of the present disclosure . cache blocks .

FIG . 3 is a schematic diagram illustrating a second Referring to FIG . 1 , a schematic diagram illustrating a
exemplary hardware configuration for the RECAP according 30 first exemplary hardware configuration for a region - based
to an embodiment of the present disclosure . cache restoration prefetcher (RECAP) according to an

FIG . 4 is a schematic diagram illustrating a second embodiment of the present disclosure is illustrated . The
RECAP is a scheme for storing data on cache accesses as a exemplary RAT according to an embodiment of the present

disclosure . list (herein referred to as a “ region prefetch list ”) in a portion
FIG . 5 is a schematic diagram illustrating a third exem 35 of the main memory upon ending a task , for example , on a

partition switch or a context switch , and for prefetching data plary RAT according to an embodiment of the present for cache restoration from the main memory on a next disclosure . partition switch or context switch that resumes the task . The FIG . 6 is a schematic diagram illustrating a fourth exem RECAP can be employed by utilizing the hardware for the
plary RAT according to an embodiment of the present 40 RECAP and a supporting software that runs in a processor ,
disclosure . which can be a hypervisor .

In a computing system which includes a processor , a
DETAILED DESCRIPTION cache including a cache tag directory and in communication

with the processor , and a main memory in communication
As stated above , the present disclosure relates to a method 45 with the cache , a RECAP hardware can include four com

of cache preloading on a partition or a context switch and a ponents : a region access table (RAT) , a set of region prefetch
system for implementing the same , which are now described lists (RPL ' s) that can be stored in a portion of a main
in detail . memory , a write - back buffer that can be relatively small in
As used herein , an element is " configured ” to perform a size , and a prefetch first - in - first - out (FIFO) buffer that can be

task if the element has a hardware that implements the task 50 used to write from the RPL ’ s to the cache . The RECAP
through operation of components of the hardware alone , or hardware tracks regions using the region access table (RAT) .
through a combination of operation of components of the The regions include a plurality of memory blocks within
hardware and a program loaded into that hardware or into a the main memory . Each of the memory blocks in the main
processor in communication with that hardware . memory can include 29 bytes , and each of the region of the

As used herein , an " access " by a processor to a cache 55 main memory can include 2² memory blocks . Each of the p
refers to a request from the processor to the cache to return and the q are positive integers . In one embodiment 29 bytes
data stored within at least one byte within a main memory can refer to a cache block (or line) size . Cache block size is
to the processor . the size of the contiguous block of memory brought into

As used herein , a " cache hit ” refers to an event in which cache from the main memory to service a cache miss . In one
the data requested by a processor resides within the cache , 60 embodiment , each of the p and the q can be in a range from ,
and the cache returns the data to the processor . and including , 1 to , and including , 24 , i . e . , 1sps24 , and
As used herein , a " cache miss ” refers to an event in which lsqs24 . The value of p and the value of q can be indepen

the data requested by a processor does not reside within the dent of each other . In one embodiment , each of the p and the
cache , and the cache is forced to resort to communication q can be in a range from , and including , 4 to , and including ,
with a main memory to fetch the data from the main memory 65 12 , i . e . , 4sps12 , and 4sqs12 .
to the cache and to subsequently return the fetched data to Specifically , memory blocks each having a size of 29 bytes
the processor . are grouped into contiguous 2P + 9 byte sized regions of

US 9 , 804 , 967 B2

memory . Thus , each region includes 2 memory blocks . The (represented by the numeral 4 within a circle) . By combining
RECAP uses fewer bits to identify the blocks that need to be coarse - grain and fine - grain information , the RECAP accom
prefetched . This reduces the amount of bandwidth used plishes these tasks with low memory overhead and small
when these block addresses need to written to or read from hardware structures as described below .
main memory . 5 The plurality of RAT entries is organized as an MxN array

In an exemplary illustration , assuming 64 - byte cache of RAT entries . For example , each sheet including region
blocks , 4 kB regions (i . e . , regions each having a size of 4 tags in FIG . 1 can correspond to a single column including
kB) , and 46 - bit physical addresses in one hardware imple - M entries corresponding to M rows within a single column ,
mentation , up to 64 cache blocks can be identified using a and the total number of sheets can be N , i . e . , the number of
34 - bit tag and a 64 - bit vector for an overhead of 1 . 5 bits per 10 columns .
block . Simply listing the block addresses , on the other hand , Referring to FIG . 2 , a first exemplary RAT according to
requires 40 bits per block . Of course , not all blocks within an embodiment of the present disclosure is illustrated . The
every region will need to be prefetched , and in the worst region access table (RAT) is configured to track access of
case , when only one block in a region needs to be memory blocks in the main memory . The RAT includes a
prefetched , that single block requires 98 bits to identify it . 15 plurality of RAT entries . Each of the RAT entries includes a
However , for the workloads studied during the course of a region group identifier and a block presence vector . The
study leading to the present disclosure , the regions present region group identifier in each RAT entry is configured to
in the cache at the end of a partition switch contain an store region group identifier bits , which identify a region of
average of 17 blocks , resulting in an overhead of 5 . 6 bits per the main memory that includes a plurality of memory
block , seven times less than required for simply listing the 20 blocks . The block presence vector in each RAT entry is
block addresses . configured to store block presence identifier bits , which

In addition to reducing overhead for block addresses , the identify at least one block among the plurality of memory
RECAP also reduces the number of wasted prefetches by blocks . The block presence vector represents at least one
exploiting common behavior within a memory region to block corresponding to an address specified by the processor
predict which blocks are least likely to be useful after a 25 during a cache access .
partition switch and to avoid prefetching those blocks . If When the processor requests data for a specified byte by
history tends to repeat itself during operation of a task , then identifying the address of the main memory , the address is
blocks in the cache that have experienced cache hits are broken into address components representing a region tag
likely to see more hits in the future , and those that have that refers to a region , block offset bits that identify the offset
never seen any cache hits are unlikely to experience any in 30 of the block containing the specified address with respect to
the future . Although this may not be true of all blocks , the the first block within the same region , and byte offset bits
RECAP can serve as a first - order filter to predict which that identify the offset of the specified byte with respect to
blocks are unlikely to be useful if they are prefetched after the first address within the same block . Further , the region
a partition switch . tag can be broken into region group identifier bits that

While this simple behavior applies to individual cache 35 identifies the group of regions sharing the same most impor
blocks , tracking cache hits at the granularity of 4 kB regions tant bits within the region tag , and intra - group region
of memory requires less overhead . The use of coarse - grain identifier bits which identifies the offset of the region includ
regions also allows more cache blocks to benefit from the ing the specified address with respect to the first region
past experience of nearby blocks that likely exhibit similar within the same region group .
behavior . Filtering individual blocks based on whether they 40 In one embodiment , if the region tag includes rus bits
have experienced cache hits can be prejudicial to very young needed to identify a region , the region group identifier bits
cache blocks that have recently been brought into the cache can be the r most important bits of the rus bits , and the
but have not yet had time to experience a cache hit . intra - group region identifier bits can be the s least important
However , assuming that blocks within a region of memory bits of the rus bits . If each region includes 2 blocks , the
have similar behaviors , a cache hit for one block in a region 45 block offset bits has p bits . If each block includes 29 bytes ,
can serve as a prediction that newly accessed cache blocks the byte offset bits can have a bits .
within the same region are also likely to experience cache The first exemplary RAT is a set - associative lookup
hits in the future . The RECAP exploits this behavior by structure . Each entry within the first exemplary RAT con
identifying regions where at least one cache block has seen tains a region group identifier that is derived from a region
a cache hit and only prefetching blocks from these regions . 50 tag , a valid bit (V) , a reuse bit (R) , and a presence vector
This reduces the overhead of tracking which individual containing 2P bits in which each bit corresponds to a memory
blocks have experienced cache hits , and at the same time block having a size of 29 bytes . For example , if the memory
makes the RECAP slightly less aggressive in filtering out block size is 64 bytes (i . e . , p = 6) , and each region has a size
blocks that have not seen cache hits . of 4 kB (i . e . , p + q = 12) , the presence vectors has 64 bits (i . e . ,

The RECAP exploits common behavior within coarse - 55 29 = 29 = 64) .
grain regions of memory to provide a space - efficient struc - The size of the RAT is determined in proportion to the size
ture that tracks a sub - set of memory blocks that are very of the cache and the average amount of spatial locality . A
likely to be accessed after a partition switch . The block reasonable sized RAT can contain two region entries for
diagram in FIG . 1 illustrates how the RECAP performs the every 4 kB of cache capacity . For a 2 MB cache , this results
tasks of tracking accesses to individual blocks using a region 60 in a 1024 entry RAT , which requires roughly 12 kB of
access table (RAT) (represented by the numeral 1 within a on - chip storage .
circle) , tracking which regions have seen cache hits (repre - Upon an access of the cache by the processor for data in
sented by the numeral 2 within a circle) , saving reused a block of a region including plurality of memory blocks and
regions in a region prefetch list (RPL) in a memory when a located within the main memory , the RECAP hardware ,
partition is switched out (represented by the numeral 3 65 either alone or in combination with the hypervisor , stores
within a circle) , and reading the region prefetch list from region group identifier bits that identify that region in a
memory and issue prefetches when a partition is rescheduled region group identifier of a selected RAT entry among the

US 9 , 804 , 967 B2

plurality of RAT entries . Further , upon the access of the within a same row of the MxN array . The LRU order bits
cache , the RECAP hardware , either alone or in combination include t bits , in which t is given by ceil (Log2 N) .
with the hypervisor , stores block presence identifier bits that For example , if N is 3 or 4 , t is 2 , and if N is 5 , 6 , 7 , or
identify at least one block among the plurality of memory 8 , t is 3 . Thus , the value of N is greater than 2 - 1 and does
blocks in a block presence vector of the selected RAT entry . 5 not exceed 24 . In one embodiment , the value of t can be from
A bit of the block presence vector represents the memory 1 to 16 . In another embodiment , the value of t can be from
block including the address . 2 to 8 . In one embodiment , the plurality of RAT entries is orga The LRU bits in all RAT entries within the row including nized as an MxN array of RAT entries . Specifically , the the selected RAT entry can be altered to represent the least plurality of RAT entries can be organized as an MxN array 10 recently used order (which is the opposite of the most of RAT entries . Each of M rows of the MxN array of the recently used order) for regions represented by RAT entries RAT entries can be configured to correspond to a unique within the row including the selected RAT entry . value for the intra - group region identifier bits . In this case , Further , each of the RAT entries can include a valid bit the number of bits of the intra - group region identifier bits , ie the integer s . can be determined by the following 15 configured to be reset to a default value during a reset of the
formula : s = ceil (Log2 M) , in which ceil is a function that RAT , and configured to be set to a non - default value when
generates a least small integer that is not less than an information is stored in the region group identifier and the
operand in parenthesis thereafter . In this case , the total block presence vector of that RAT entry . During operation of
number of bits in the region group identifier bits (which is the RAT , a value for the selected RAT entry can be set to a
the integer r) is equal to a total number of bits (which is the 20 non - default value when information is stored in the region
integer rus) identifying the region of the main memory less group identifier of the selected RAT entry and the block
ceil (Log , M) (which is the integer s) . presence vector of the selected RAT entry .

For example , if M is 3 or 4 , s is 2 , and if M is 5 , 6 , 7 , or Further , each of the RAT entries can include a reuse bit
8 , s is 3 . Thus , the value of M is greater than 25 - 1 and does configured to represent multiple accesses by the processor to
not exceed 24 . In one embodiment , the value of s can be from 25 the cache for data within at least one byte in a same region
1 to 16 . In another embodiment , the value of s can be from among the main memory during cache accesses tracked by
2 to 8 . The value of r depends on the total size of the main the RAT . In one embodiment , during operation of the RAT ,
memory , the size of a region , and the size of the intra - group the reuse bit in the selected RAT entry can be set only if the
region identifier bits . In one embodiment , the value of r can block presence vector indicates a previous access of the
be from 1 to 24 . In another embodiment , the value of r can 30 cache by the processor for at least one byte in the block .
be from 3 to 12 . Referring back to FIG . 1 , in addition to the RAT , the

In one embodiment , the region group identifier bits RECAP uses a set of region prefetch lists (RPL) stored in a
include r most important bits of the region tag identifying the portion of the main memory that is reserved for this purpose .
region . The relative location of a row among M rows of the hypervisor , or a partition manager , is responsible for
MxN array represents the s least important bits of the region 35 allocating RPL in a reserved portion of main memory , and
tag . A combination of the r most important bits and the s for assigning one RPL for every partition that will use the
least important bits unambiguously identify the region . RECAP mechanism .
An entry within a row of the MxN array can be identified Each RPL contains a number of entries , with each entry

as the selected RAT entry in the following manner . A 1 - to - 1 consisting of a region tag and a presence vector similar to
correspondence is established between all possible values 40 those in the RAT . These entries are used to produce a list of
for the intra - group region identifier bits and the rows of the blocks to prefetch when the associated partition executes .
MxN array . Then , the row that is associated with the The hypervisor can allocate enough memory for each RPL
intra - group region identifier (which is a remnant of the so that it can contain as many entries as the RAT .
specified address identifying the region of the specified Alternative implementations could allocate either smaller
address after removing the region group identifier) is 45 or larger amounts of memory for each RPL . In the case of
selected as the row from which a RAT entry is to be selected . smaller RPLs , only a fraction of the RAT could be saved ,

The RAT entries within a same row in the MxN array of potentially limiting the benefit of the RECAP in order to
RAT entries represent N different regions having a same set reduce the bandwidth and total memory footprint . Larger
of s least important bits in each region tag identifying the N RPLs can serve as victim buffers to increase the effective
different regions . In other words , the addresses for the 50 capacity of the RAT , potentially resulting in more useful
regions represented by the region group identifiers within prefetches at the cost of additional bandwidth and a larger
the same row of the MxN array of RAT entries differ from memory footprint . In one embodiment , each RPL can be
one another only within the first r most important bits large enough to hold the contents of the RAT .
corresponding to the region group identifier bits , which are In addition , the RECAP uses two small on - chip buffers ,
individually stored for each region , and have a same s least 55 which are herein referred to a write - back buffer and a
important bits that is impliedly associated with the row by prefetch first - in first - out (FIFO) buffer . The write - back buf
the design of the RAT . fer is a buffer that can be used to pack PRL entries as the

The least recent use (or most recent use of the regions RPL entries are written from the RAT to the main memory .
within a same row can be tracked by assigning a unique The prefetch FIFO buffer is a buffer that can be used to pack
number corresponding to the order of the least recent use (or 60 unpack the RPL entries as the RPL entries are read from the
the most recent use) . In one embodiment , the RAT can be main memory into the cache . In an exemplary illustration ,
configured to store the N different regions within the same 64 - byte buffers can be used to pack and un - pack 98 - bit RPL
row of the MxN array in an order of least recent use or most entries as they are written to and read from main memory .
recent use across N columns of the MxN array . In one The RECAP hardware can be operated in the following
embodiment , each of the RAT entries can include least 65 manner . The hypervisor , or the partition manager , is the
recent use (LRU) order bits configured to represent a least software that is responsible for initiating the operation of the
recently used order for regions represented by N RAT entries RECAP hardware . When the RECAP hardware is first

US 9 , 804 , 967 B2
10

activated , it resets all valid bits , reuse bits , least recent order to corresponding RPL in main memory . The third task is
bits , and presence vectors in the RAT to zero . updating RAT entries for cache accesses from the incoming

After the RAT is enabled , each cache access will search partition as it executes .
the RAT for an entry with a matching region tag . If a The prefetch buffer (represented as a FIFO prefetch buffer
matching region tag is not found in the RAT , then the least 5 in FIG . 1) can be configured to read the stored region
recently used RAT entry (or an invalid entry , if one exists) prefetch lists from the portion of the memory , and to
is selected , and its reuse bit and presence vector are reset to prefetch data from blocks in the main memory correspond zero , its valid bit is set to one , and its region tag is set based ing to the stored region prefetch list for the corresponding
on the address in the cache request . Once an entry in the task . The stored region prefetch list can be read from the RAT is selected , the block offset bits from the requested 10 portion of the memory , and data is prefetched from blocks address are used to select a bit in the presence vector , and
that bit is set to one . Specifically , the p bits within the in the main memory that correspond to the stored prefetch
address identify one of the 2P memory blocks within the list upon another partition switch or another context switch
same region . For example , if each region includes 64 blocks that initiates the same task as a task that previously gener
and the address in the cache request refers to the 10th block the cache request refers to the 10th block ated the stored prefetch list .
within a region . the presence vector can be : 15 Once the hypervisor provides the location of the RPL
0000000001000000000000000000000000000000000000 entries for the incoming partition or task , e . g . , RPL i for an
000000000000000000 . The t bits tracking the least recent i - th partition or task , the RECAP hardware begins to read
use (LRU) order are set accordingly to reflect the order of RPL entries of that RPL in blocks of a predetermined byte
the least recent use within the same row in the RAT as the size into the prefetch FIFO buffer . The predetermined byte
selected entry . For example , if the RAT includes 16 columns , 20 size can be , for example , 64 bytes . The RECAP issues
the LRU bits for the selected entry can be set to 0000 , and prefetches for all blocks marked present in each RPL entry .
the LRU bits for entries that previously had a value from Entries are removed from the prefetch FIFO buffer once all
0000 to 1111 are incremented by 1 (1111 becomes 0000) , of the contents in the blocks therein have been prefetched ,
and the valid bit for the entry that had an LRU bit of 1111 and new entries are read from the RPL in memory into the
is set to 0 . 25 prefetch FIFO buffer as space becomes available . This

If a matching region tag is found in the RAT , but the bit process continues until all RPL entries have been read and of the presence vector corresponding to the cache access has all prefetches have been issued . When the next partition or a value of 0 , i . e . , was not accessed previously within the time task is initiated upon a next partition switch or a context frame tracked by the RAT , then the matching RAT entry is switch , the RPL entries for the next incoming partition or selected , and the corresponding bit in the presence vector is
set to 1 . For example , if each region includes 64 blocks , and 30 30 task , i . e . , RPL j for a j - th partition or task , the RECAP
the address in the cache request refers to the 12th block hardware begin to read RPL entries of that RPL in blocks of
within a region , the presence vector had a previous value of : a predetermined byte size into the prefetch FIFO buffer .
0000000001000000000000000000000000000000000000 In one embodiment , to avoid excessive bandwidth use , the
000000000000000000 , then the new value for RECAP can limit the number of outstanding prefetches to a

presence vector can be : 35 predefined number , which can be , for example , four . As this
0000000001010000000000000000000000000000000000 process uses the prefetch FIFO buffer , it does not cause any
000000000000000000 . The t bits tracking the least recent contention with the other tasks proceeding in parallel .
use (LRU) order are set accordingly to reflect the order of In one embodiment , the RPL entries for the incoming
the least recent use within the same row in the RAT as the partition or task can be read on demand as blocks are
selected entry . For example , if the RAT includes 16 columns , 40 prefetched for the incoming partition or task . Alternately , the
the LRU bits for the selected entry can be set to 0000 , and RPL entries can be read back starting from the most - recently
the LRU bits for entries that previously had a value from accessed region to the least - recently accessed region .
0000 to 1111 are incremented by 1 (1111 becomes 0000) , The second parallel task includes writing entries to the
and the valid bit for the entry that had an LRU bit of 1111 RPL of the outgoing partition , so that useful prefetches can
is set to 0 . 45 be issued the next time that partition executes . The RECAP

If a matching region tag is found in the RAT , and the bit scans every entry in the RAT , and each entry with both its
of the presence vector corresponding to the cache access has valid and reuse bits set to one is copied to the write - back
a value of 1 , i . e . , was previously accessed within the time buffer . A RAT entry with both its valid and reuse bits set to
frame tracked by the RAT , then the matching RAT entry is one is a valid entry for the write - back operation . A RAT
selected , and the reuse bit for the RAT entry is set to one , 50 entry that is not a valid entry is not written back into the
indicating that this region has seen at least one cache hit main memory . A RAT entry which does not have the reuse
during the current execution interval . bit set , indicates that no cache block in that region was every

This process repeats for every access request received by re - used while being tracked in the RAT . So that region is
the cache until the hypervisor initiates a partition switch . In treated as a streaming region without reuse , and the RAT
addition to the normal operations the hypervisor performs as 55 entry is not written back into the main memory .
part of a partition switch , it also notifies the RECAP of the The write - back buffer is configured to receive valid
partition switch and provides the address of the RPL for the entries (i . e . , entries having 1 as the value of the valid bit)
outgoing partition . among the plurality of RAT entries , to temporarily store an

If the incoming partition has RPL stored in memory , then address of at least one block for each of the valid entries , and
the hypervisor also provides the information on the location 60 to store region prefetch lists in a portion of the main memory
of the stored RPL to the RECAP . Once the hypervisor has for each block corresponding to one of the temporarily
finished these partition switch operations , normal execution stored addresses . The valid entries among the plurality of
begins for the newly active partition . RAT entries are stored as region prefetch list in a portion of

At this point , the RECAP coordinates three parallel tasks . the main memory on a partition switch or a context switch .
The first task is reading RPL entries from main memory for 65 Thus , the write - back buffer collects the valid entries into
the incoming partition and issuing prefetches . The second blocks of a predefined size and writes them back to memory .
task is writing the RAT entries from the outgoing partition The predetermined byte size can be , for example , 64 bytes .

the

US 9 , 804 , 967 B2
11 12

This scan proceeds in parallel with the execution of the Referring to FIG . 4 , a second exemplary RAT according
newly active partition . To reduce memory contention , write to an embodiment of the present disclosure can be derived
back requests make use of available bandwidth and have a from the first exemplary RAT of FIG . 2 by removing the
lower priority than demand requests . reuse bit . The block presence vector in each RAT entry can

In general , the write - back buffer is in communication with 5 be configured to represent at least one block corresponding
the RAT and the main memory , and the steps of storing of to a cache hit . In other words , the requirement for a cache
the valid entries can include : transmitting the valid entries access for the editing of a selected entry during the operation
among the plurality of RAT entries from the RAT to the of the first exemplary RAT of FIG . 2 is replaced with the
write - back buffer , temporarily storing an address of at least requirement for a cache hit for the editing of a selected entry
one block for each of the valid entries , storing the region 10 during the operation of the second exemplary RAT of FIG .

4 . In this case , the block presence identifier bits are changed prefetch list in a portion of the main memory for each block only if there is a cache hit for the access of the cache by the corresponding to one of the temporarily stored addresses , processor . and invalidating the valid entries in the RAT after the In this embodiment , a RAT entry with its valid bit set to transmitting of the valid entries . The invalidation of the valid 15 one is a valid entry for the write - back operation . A RAT entries in the RAT table provides the information to the RAT entry that is not a valid entry is not written back into the
table that the RAT entry can be selected in during perfor main memory during the write - back operation .
mance of subsequent tasks to encode new information on Referring to FIG . 5 , a third exemplary RAT according to
cache access during such subsequent tasks . an embodiment of the present disclosure is derived from the
While the RECAP is scanning the RAT and writing entries 20 first exemplary RAT of FIG . 2 by configuring the RAT to

into the RPL , the processor concurrently implements the reordering the row including the selected RAT entry in an
incoming partition and issues cache requests . The RECAP order of lease recent use or most recent use once all
coordinates updating the RAT for these requests with the information is encoded in the selected RAT entry . In this
ongoing scan operation . case , the LRU order bits can be eliminated from each RAT

In one embodiment , on a partition switch , the contents of 25 entry .
the RAT can be instantaneously copied to a shadow RAT so Referring to FIG . 6 , a fourth exemplary RAT according to
that the outgoing partition ' s RAT entries are preserved while an embodiment of the present disclosure is derived from the
the incoming partition is allocating and modifying its own second exemplary RAT of FIG . 4 by configuring the RAT to
RAT entries . This simplifies the logic for coordinating these reorder the row including the selected RAT entry in an order
two tasks at the cost of doubling the RAT hardware over - 30 of least recent use or most recent use once all information is
head . encoded in the selected RAT entry . In this case , the LRU

In one embodiment , the cost for implementing the order bits can be eliminated from each RAT entry .
RECAP hardware can be reduced by adding an additional The RECAP prefetcher of the present disclosure can be
incoming / outgoing bit to each RAT entry , thereby enabling employed to reduce the " cold cache effects caused by
data from two partitions to co - exist within the RAT simul - 35 multithreaded virtualization . The RECAP of the present
taneously . Such an implementation introduces complexity , disclosure exploits coarse - grain patterns in an applications
as the incoming partition may need to allocate new RAT memory access stream to restore the cache working set after
entries faster than the existing entries can be written back to a partition switch with minimal bandwidth overhead .
memory . However , in the event of resource starvation , the Compared to prior art cache restoration prefetcher , the
RECAP can discard either new RAT updates or existing 40 RECAP uses less bandwidth and provides the same or better
RAT entries from the outgoing partition . performance benefit in most instances . The RECAP offers

In one embodiment , the above approach can be further lower hardware overhead for tracking a large number of
extended so that the RECAP can simply ignore any cache blocks , lower bandwidth required to save and restore the list
accesses that occur while the RAT is being scanned and of blocks to prefetch after a partition switch , fewer
written to the RPL in memory , in effect , serializing the RAT 45 prefetches of blocks that will not be used after a partition
writeback and update phases , and eliminating the need for switch as a result of reuse - based filtering compared to prior
additional bits to differentiate incoming and outgoing RAT art cache restoration prefetcher . Further , the RECAP of the
entries . present disclosure does not require any modifications to the

In one embodiment , the RAT updates and write - backs can design of the cache or cache tag directory or complex
compete for a single access port of the RAT . Since the RAT 50 hardware for maintaining a large global LRU list of blocks
scan should require only a small portion of each partitions in the cache .
total execution window , and since RAT updates and write While the disclosure has been described in terms of
backs are not part of the critical path , other policies for specific embodiments , it is evident in view of the foregoing
coordinating these two actions should have a minimal description that numerous alternatives , modifications and
impact on overall performance . 55 variations will be apparent to those skilled in the art . Various

FIG . 3 is a schematic diagram illustrating a second embodiments of the present disclosure can be employed
exemplary hardware for the RECAP according to an either alone or in combination with any other embodiment ,
embodiment of the present disclosure . In the second exem - unless expressly stated otherwise or otherwise clearly
plary hardware for the RECAP , a in - memory region prefetch incompatible among one another . Accordingly , the disclo
list can be provided within a portion of the main memory . 60 sure is intended to encompass all such alternatives , modi
Evicted entries , i . e . , the entries that become an (N + 1) - th fications and variations which fall within the scope and spirit
recently used entry with the encoding of a selected entry in of the disclosure and the following claims .
a selected row , of the MxN array of RAT entries can be What is claimed is :
stored in the in - memory region prefetch list . Such an in 1 . A computing system comprising :
memory region prefetch list augments the corresponding 65 a processor , and wherein a plurality of virtual computing
prefetch list , and can be used to fetch additional data to the systems operate on the processor ;
cache on last - in first - out basis . a cache in communication with said processor ;

a

14
US 9 , 804 , 967 B2

13
a main memory in communication with said cache ; and that generates a least small integer that is not less than an
a region - based cache prefetcher for preloading the cache operand in parenthesis thereafter .

for the virtual systems , including grouping blocks of 9 . The computing system of claim 6 , wherein said RAT is
the cache into regions of the main memory , and when configured to store said N different regions within said same
each of the virtual systems executes , identifying one or 5 row of said MxN array in an order of least recent use or most
more of said regions for prefetching from the main recent use across N columns of said MxN array . memory and into the cache based on previous accesses 10 . The computing system of claim 1 , wherein each of
by said each virtual system to the cache ; said RAT entries comprises a reuse bit configured to repre the region - based cache prefetcher comprising a region sent multiple accesses by said processor to said cache for access table (RAT) configured to track access of 10 data within at least one byte in a same block among said memory blocks in said main memory , wherein said main memory during cache accesses tracked by said RAT . RAT comprises a plurality of RAT entries , and each of
said RAT entries comprises : 11 . A method for operating a computing system , said
a region group identifier configured to store region method comprising : me group identifier bits that identify a region of said 15 providing a computing system comprising :
main memory that includes a plurality of memory a processor , and wherein a plurality of virtual comput
blocks ; and ing systems operate on the processor ;

a block presence vector configured to store block a cache in communication with said processor ,
presence identifier bits that identify at least one block a main memory in communication with said cache ; and
among said plurality of memory blocks , wherein said 20 a region - based cache prefetcher for preloading the
block presence vector represents at least one block cache for the virtual systems , including grouping
corresponding to an address specified by said pro blocks of the cache into regions of the main memory ,
cessor during a cache access ; and and when each of the virtual systems executes ,

wherein the region - based cache prefetcher tracks cache identifying one or more of said regions for prefetch
hits during operation of each of the virtual computing 25 ing from the main memory and into the cache based
systems to identify regions of the main memory where on previous accesses by said each virtual system to
at least one cache block has had a cache hit during the cache ;
operation of said each virtual computing system , and the region - based cache prefetcher comprising a region
the region - based cache prefetcher only prefetches access table (RAT) configured to track access of
memory blocks from the identified regions of the main 30 memory blocks in said main memory , wherein said
memory for said each virtual operating system . RAT comprises a plurality of RAT entries , and each

2 . The computing system of claim 1 , wherein each of said of said RAT entries comprises a region group iden
memory blocks in said main memory includes 29 bytes , and tifier and a block presence vector ;
each of said region of said main memory includes 2 bytes , upon an access of said cache by said processor for data in
wherein each of said p and said q are positive integers . 35 a byte in a block of a region including plurality of

3 . The computing system of claim 2 , wherein said plu memory blocks and located within said main memory ,
rality of RAT entries is organized as an MxN array of RAT storing region group identifier bits that identify said
entries . region in a region group identifier of a selected RAT

4 . The computing system of claim 3 , wherein a total entry among said plurality of RAT entries ;
number of bits in said region group identifier bits is equal to 40 upon said access of said cache , storing block presence
a total number of bits identifying said region of said main identifier bits that identify at least one block among
memory less ceil (Log2 M) , wherein ceil is a function that said plurality of memory blocks in a block presence
generates a least small integer that is not less than an vector of said selected RAT entry , wherein a bit of said
operand in parenthesis thereafter . block presence vector represents said block ; and

5 . The computing system of claim 4 , wherein said region 45 the region - based cache prefetcher tracking cache hits
group identifier bits comprise most important bits of a region during operation of each of the virtual computing
tag identifying said region , and a relative location of a row systems to identify regions of the main memory where
among M rows of said MxN array represents least important at least one cache block has had a cache hit during said
bits of said region tag , and a combination of said most operation of said each virtual computing system , and
important bits and said least important bits unambiguously 50 the region - based cache prefetcher only prefeteching
identify said region . memory blocks from the identified regions of the main

6 . The computing system of claim 3 , wherein RAT entries memory for the each virtual operating system .
within a same row in said MxN array of RAT entries 12 . The method of claim 11 , further comprising storing
represent N different regions having a same set of least valid entries among said plurality of RAT entries as a region
important bits in each region tag identifying said N different 55 prefetch list in a portion of said main memory on a partition
regions . switch or a context switch .

7 . The computing system of claim 6 , wherein said same 13 . The method of claim 12 , wherein said computing
set of least important bits include s bits , wherein s is given system further comprising a write - back buffer in communi
by ceil (Log2 M) , wherein ceil is a function that generates a cation with said RAT and said main memory , and said
least small integer that is not less than an operand in 60 storing of said valid entries further comprises :
parenthesis thereafter . transmitting said valid entries among said plurality of

8 . The computing system of claim 6 , wherein each of said RAT entries from said RAT to said write - back buffer ;
RAT entries comprises least recent use (LRU) order bits temporarily storing an address of at least one block for
configured to represent a least recently used order for each of said valid entries ;
regions represented by N RAT entries within a same row of 65 storing said region prefetch list in a portion of said main
said MxN array , and said LRU order bits include t bits , memory for each block corresponding to one of said
wherein t is given by ceil (Log2 N) , wherein ceil is a function temporarily stored addresses ; and

15
US 9 , 804 , 967 B2

16
invalidating said valid entries in said RAT after said 17 . The method of claim 11 , wherein said plurality of RAT

transmitting of said valid entries . entries is organized as an MxN array of RAT entries , each
14 . The method of claim 11 , further comprising prefetch of said RAT entries comprises least recent use (LRU) order

ing data from blocks in said main memory that correspond bits , and said method further comprises altering LRU bits in
to said stored prefetch list upon another partition switch or 5 ish or 5 all RAT entries within a row including said selected RAT

entry to represent a least recently used order for regions another context switch that initiates a same task as a task that represented RAT entries within said row including said previously generated said stored prefetch list . selected RAT entry .
15 . The method of claim 14 , wherein said computing 18 . The method of claim 11 , wherein said plurality of RAT

system further comprises a prefetch buffer , and said uentries is organized as an MxN array of RAT entries , and
prefetching data from blocks in said main memory com - " said method further comprises reordering a row including
prises : said selected RAT entry in an order of lease recent use or

reading said stored region prefetch list from said portion most recent use .
of said memory ; and 19 . The method of claim 11 , wherein each of said RAT

prefetching data from blocks in said main memory that entries comprises a reuse bit , and said method further
correspond to said stored region prefetch list . comprises setting a reuse bit in said selected RAT entry only

16 . The method of claim 11 . wherein said plurality of RAT if said block presence vector indicates a previous access of
entries is organized as an MxN array of RAT entries , and said cache by said processor for at least one byte in said
said method further comprises : identifying an entry within a block .
row of said MxN array as said selected RAT entry , wherein 20 20 . The method of claim 11 , further comprising changing
said row is associated with an intra - group region identifier said block presence identifier bits only if there is a cache hit
that is a remnant of an address identifying a region after for said access of said cache by said processor .
removing said region group identifier . * * * * *

