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(57) Abstract: A system for providing a floating point product comprises an analyzer circuit configured to determine a first status
of a first floating point operand and a second status of a second floating point operand based upon data within the first floating point
operand and data within the second floating point operand respectively. In addition, the system comprises a results circuit coupled
to the analyzer circuit. The results circuit is configured to assert a resulting floating point operand containing the product of the first
floating point operand and the second floating point operand. Additionally, the results circuit provides a resulting status embedded

within the resulting floating point operand.



w0 02/097606 A1 NI IO 0 OO 00 VY R

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.



WO 02/097606 PCT/US02/16016

FLOATING POINT MULTIPLIER WITH EMBEDDED STATUS INFORMATION

DESCRIPTION OF THE INVENTION
Field of the Invention

[001] The invention relates generally to systems and methods for performing
floating point operations, and more particularly to systems and methods for
performing floating point multiplication with embedded status information associated
with a floating point operand.

Background of the Invention

[002] Digital electronic devices, such as digital computers, calculators and
other devices, perform arithmetic calculations on values in integer, or “fixed point,”
format, in fractional, or “floating point” format, or both. Institute of Electrical and
Electronic Engineers (IEEE) Standard 754, (hereinafter “IEEE Std. 754" or “the
Standard”) published in 1985 and adopted by the American National Standards
Institute (ANSI), defines several standard formats for expressing values in floating
point format and a number of aspects regarding behavior of computation in
connection therewith. In accordance with IEEE Std. 754, a representation in floating

point format comprises a plurality of binary digits, or “bits,” having the structure
[003] § emsb e elsbﬂmb T ﬁsb

nn

where bit “s” is a sign bit indicating whether the entire value is positive or negative,

bits “e,,,---e,,” comprise an exponent field that represents the exponent “e” in
unsigned binary biased format, and bits “ £, ,--- f,,” comprise a fraction field that

represents the fractional portion “f” in unsigned binary format (“msb” represents
“most significant bit” and “Isb” represents “least significant bit”). The Standard
defines two general formats. A “single” format comprises thirty-two bits while a
“double” format comprises sixty-four bits. In the single format, there is one sign bit
“s,” eight bits “e;...ey" comprising the exponent field and twenty-three bits “fzs...f"
comprising the fraction field. In the double format, there is one sign bit “s,” eleven
bits “eq...e¢" comprising the exponent field and fifty-two bits “fs;...fo" comprising the

fraction field.
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[004] As indicated above, the exponent field of the floating point

representation “e,,---¢,,” represents the exponent “E” in biased format. The biased

msb

format provides a mechanism by which the sign of the exponent is implicitly

indicated. In particular, the bits “¢,_,---¢,,” represent a binary encoded value “e”

such that “e=E + bias.” This allows the exponent E to extend from -126 to +127, in
the eight-bit “single” format, and from -1022 to +1023 in the eleven-bit “double”
format, and provides for relatively easy manipulation of the exponents in
multiplication and division operations, in which the exponents are added and
subtracted, respectively.

[005] IEEE Std. 754 provides for several different formats with both the
single and double formats which are generally based on the bit patterns of the bits

14

e, "€y comprising the exponent field and the bits “ £, ,--- 7, ” comprising the

msb

fraction field. If a number is represented such that all of the bits “¢ ,---¢,,” of the

msb
exponent field are binary one’s (i.e., if the bits represent a binary-encoded value of
255" in the single format or “2047” in the double format) and all of the bits

“fus' S OF the fraction field are binary zeros, then the value of the number is

positive or negative infinity, depending on the value of the sign bit “s.” In particular,

the value “v” is v = (-1)° o0, where “x” represents the value “infinity.” On the other

hand, if all of the bits “¢,,---¢,,” of the exponent field are binary one’s and if the bits
“fo S Of the fraction field are not all zero’s, then the value that is represented is

deemed “not a number,” which is abbreviated in the Standard by “NaN.”

[006] If a number has an exponent field in which the bits “e_,---¢,,” are

msb
neither all binary ones nor all binary zeros (i.e., if the bits represent a binary-

encoded value between 1 and 254 in the single format or between 1 and 2046 in the
double format), the number is said to be a “normalized” format. For a number in the

normalized format, the value represented by the number is
y=(-1)% 2°%=(L ‘ o f0 ) » Where "I" represents a concatenation operation.

Effectively, in the normalized format, there is an implicit most significant digit having
the value “one,” so that the twenty-three digits in the fraction field of the single
format, or the fifty-two digits in the fraction field of the double format, will effectively
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represent a value having twenty-four digits or fifty-three digits of precision,
respectively, where the value is less than two, but not less than one.
[007] On the other hand, if a number has an exponent field in which the bits

13

e, e are all binary zeros, representing the binary-encoded value of “zero,” and

:
msb

a fraction field in which the bits 7,

n

=+ J @re not all zero, the number is said to be a

“de-normalized” format. For a number in the de-normalized format, the value
represented by the number is v = (-1)*2%**(0, l FosstFra)- 1t will be appreciated

that the range of values of numbers that can be expressed in the de-normalized
format is disjoint from the range of values of numbers that can be expressed in the
normalized format, for both the single and double formats. Finally, if a number has

an exponent field in which the bits “¢,,---¢,,” are all binary zeros, representing the

binary-encoded value of “zero,” and a fraction field in which the bits £,

w1 a@re all
zero, the number has the value “zero”. It will be appreciated that the value “zero”
may be positive zero or negative zero, depending on the value of the sign bit.

[008] Generally, circuits or devices that perform floating point computations
or operations (generally referred to as floating point units) conforming to IEEE Std.
754 are desighed to generate a result in three steps:

[009] (a) Inthe first step, an approximation calculation step, an
approximation to the absolutely accurate mathematical result (assuming that the
input operands represent the specific mathematical values as described by IEEE
Std. 754) is calculated that is sufficiently precise as to allow this accurate
mathematical result to be summarized. The summarized result is usually
represented by a sign bit, an exponent (typically represented using more bits than
are used for an exponent in the standard floating-point format), and some number
"N" of bits of the presumed result fraction, plus a guard bit and a sticky bit. The
value of the exponent will be such that the value of the fraction generated in step (a)
consists of a 1 before the binary point and a fraction after the binary point. The bits
are commonly célculated so as to obtain the same result as the following conceptual
procedure (which is impossible under some circumstances to carry out in practice):

calculate the mathematical result to an infinite number of bits of precision in binary
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scientific notation, and in such a way that there is no bit position in the significand
such that all bits of lesser significance are 1-bits (this restriction avoids the ambiguity
between, for example, 1.100000... and 1.011111... as representations of the value
"one-and-one-half"); let the N most significant bits of the infinite significand be used
as the intermediate result significand; let the next bit of the infinite significand be the
guard bit; and let the sticky bit be 0 if and only if ALL remaining bits of the infinite
significant are 0-bits (in other words, the sticky bit is the logical OR of all remaining
bits of the infinite fraction after the guard bit).

[010] (b) Inthe second step, a rounding step, the guard bit, the sticky bit,
perhaps the sign bit, and perhaps some of the bits of the presumed significand
generated in step (a) are used to decide whether to alter the result of step (a). For
conventional rounding modes defined by IEEE Std. 754, this is a decision as to
whether to increase the magnitude of the number represented by the presumed
exponent and fraction generated in step (a). Increasing the magnitude of the
number is done by adding 1 to the significand in its least significant bit position, as if
the significand were a binary integer. It will be appreciated that, if the significand is
all 1-bits, then the magnitude of the number is "increased" by changing it to a high-
order 1-bit followed by all 0-bits and adding 1 to the exponent.

[011] Regarding the rounding modes, it will be further appreciated that,

[012] ) if the result is a positive number, and

[013] (a) if the decision is made to increase, effectively the
decision has been made to increase the value of the result, thereby rounding the
result up (i.e., towards positive infinity), but

[014] (b) if the decision is made not to increase, effectively
the decision has been made to decrease the value of the result, thereby rounding
the result down (i.e., towards negative infinity); and

[015] (i) if the result is a negative number, and

[016] (@) if the decision is made to increase, effectively the
decision has been made to decrease the value of the result, thereby rounding the
result down, but
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[017] (b) if the decision is made not to increase, effectively
the decision has been made to increase the value of the result, thereby rounding the
result up.

[018] (c) In the third step, a packaging step, a result is packaged into a
standard floating-point format. This may involve substituting a special
representation, such as the representation defined for infinity or NaN if an
exceptional situation (such as overflow, underflow, or an invalid operation) was
detected. Alternatively, this may involve removing the leading 1-bit (if any) of the
fraction, because such leading 1-bits are implicit in the standard format. As another
alternative, this may involve shifting the fraction in order to construct a denormalized
number. As a specific example, it is assumed that this is the step that forces the
result to be a NaN if any input operand is a NaN. In this step, the decision is also
made as to whether the result should be an infinity. It will be appreciated that, if the
result is to be a NaN or infinity from step (b), the original result will be discarded and
an appropriate representation will be provided as the result.

[019] In addition in the packaging step, floating point status information is
generated, which is stored in a floating point status register. The floating point
status information generated for a particular floating point operation includes
indications, for example, as to whether

[020] (i) a particular operand is invalid for the operation to be
performed (“invalid operation”);

[021] (i) if the operation to be performed is division, the divisor is
zero (“division-by-zero”);

[022] (i)  an overflow occurred during the operation (“overflow”);

[023] (iv)  an underflow occurred during the operation (“‘underflow”);
and

[024] v) the rounded result of the operation is not exact
(“inexact”).

[025] These conditions are typically represented by flags that are stored in
the floating point status register. The floating point status information can be used

to dynamically control the operations in response to certain instructions, such as
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conditional branch, conditional move, and conditional trap instructions that may be
in the instruction stream subsequent to the floating point instruction. Also, the
floating point status information may enable processing of a trap sequence, which
will interrupt the normal flow of program execution. In addition, the floating point
status information may be used to affect certain ones of the functional unit control
signals that control the rounding mode. IEEE Std. 754 also provides for
accumulating floating point status information from, for example, results generated
for a series or plurality of floating point operations.

[026] IEEE Std. 754 has brought relative harmony and stability to floating-
point computation and architectural design of floating-point units. Moreover, its
design was based on some important principles, and rests on a sensible
mathematical semantics that eases the job of programmers and numerical analysts.
It also supports the implementation of interval arithmetic, which may prove to be
preferable to simple scalar arithmetic for many tasks. Nevertheless, |IEEE Std. 754
has some serious drawbacks, including:

[027] (i) Modes (e.g., the rounding modes and fraps
enabled/disabled mode), flags (e.g., flags representing the status information), and
traps required to implement IEEE Std. 754 introduce implicit serialization issues.
Implicit serialization is essentially the need for serial control of access (read/write) to
and from globally used registers, such as a floating point status register. Under
IEEE Std. 754, implicit serialization may arise between (1) different concurrent
floating-point instructions and (2) between floating point instructions and the
instructions that read and write the flags and modes. Furthermore, rounding modes
may introduce implicit serialization because they are typically indicated as global
state, although in some microprocessor architectures, the rounding mode is
encoded as part of the instruction operation code, which will alleviate this problem to
that extent. Thus, the potential for implicit serialization makes the Standard difficult
to implement coherently and efficiently in today's superscalar and parallel
processing architectures without loss of performance.

[028] (i)  The implicit side effects of a procedure that can change
the flags or modes can make it very difficult for compilers to perform optimizations
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on floating point code. As a result, compilers for most languages usually assume
that every procedure call is an optimization barrier in order to be safe. This
unfortunately may lead to further loss of performance.

[029] (i)  Global flags, such as those that signal certain modes,
make it more difficult to do instruction scheduling where the best performance is
provided by interleaving instructions of unrelated computations. Thus, instructions
from regions of code governed by different flag settings or different flag detection
requirements cannot easily be interleaved when they must share a single set of
global flag bits.

[030] (iv)  Furthermore, traps have been difficult to integrate
efficiently into computing architectures and programming language designs for fine-
grained control of algorithmic behavior.

[031] Thus, there is a need for a system that avoids such problems when
performing floating point operations and, in particular, when performing floating point
multiplication with embedded status information associated with a floating point
operand.

SUMMARY OF THE INVENTION

[032] Consistent with the current invention, a floating point multiplier with
embedded status information method and system are provided that avoid the
problems associated with prior art floating point multiplier systems as discussed
herein above.

[033] In one aspect, a system for providing a floating point product
comprises an analyzer circuit configured to determine a first status of a first floating
point operand and a second status of a second floating point operand based upon
data within the first floating point operand and the second floating point operand
respectively. In addition, the system comprises a results circuit coupled to the
analyzer circuit. The results circuit is configured to assert a resulting floating point
operand containing the product of the first floating point operand and the second
floating point operand and a resulting status embedded within the resulting floating

point operand.
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[034] In another aspect, a method for providing a floating point product
comprises determining a first status of a first floating point operand and a second
status of a second floating point operand based upon data within the first floating
point operand and the second floating point operand respectively. In addition, the
method comprises asserting a resulting floating point operand containing the
product of the first floating point operand and the second floating point operand and
a resulting status embedded within the resuiting floating point operand.

[035] In yet another aspect, a computer-readable medium on which is stored
a set of instructions for providing a floating point product, which when executed
perform stages comprising determining a first status of a first floating point operand
and a second status of a second floating point operand based upon data within the
first floating point operand and the second floating point operand respectively. The
instruction set further comprises asserting a resulting floating point operand
containing the product of the first floating point operand and the second floating
point operand and a resulting status embedded within the resulting floating point
operand.

[036] Both the foregoing general description and the following detailed
description are exemplary and are intended to provide further explanation of the
invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[037] The accompanying drawings provide a further understanding of the
invention and, together with the detailed description, explain the principles of the
invention. In the drawings:

[038] FIG. 1 is a functional block diagram of an exemplary system for
providing a floating point product consistent with an embodiment of the present
invention;

[039] FIG. 2 illustrates exemplary formats for representations of floating
point values generated by the system of FIG. 1 consistent with an embodiment of

the present invention;



WO 02/097606 PCT/US02/16016

[040] FIG. 3 illustrates a table useful in understanding the operations of the
exemplary system of FIG. 1 consistent with an embodiment of the present invention;
and

[041] FIGs. 4A through 4C depict exemplary patterns of input and output
signals received and generated by a multiplier decision table logic circuit used in the
exemplary system of FIG. 1 consistent with an embodiment of the present invention.

DESCRIPTION OF THE EMBODIMENTS

[042] Reference will now be made to various embodiments according to this
invention, examples of which are shown in the accompanying drawings and will be
obvious from the description of the invention. In the drawings, the same reference
numbers represent the same or similar elements in the different drawings whenever
possible.

[043] FIG. 1 is a functional block diagram of an exemplary multiplier unit 10
constructed in accordance with an embodiment of the invention. Generally, the
multiplier unit 10 receives two floating point operands and generates therefrom a
result and, in some cases, floating point status information, with the floating point
status information being encoded in and comprising part of the floating point
representation of the result. Since the floating point status information comprises
part of the floating point representation of the result, instead of being separate and
apart from the result as in prior art multiplier units, the implicit serialization that is
required by maintaining the floating point status information separate and apart from
the result can be obviated.

[044] The multiplier unit 10 encodes the floating point status information in
results that are generated in certain formats. This will be illustrated in connection
with FIG. 2. FIG. 2 depicts exemplary formats of floating point operands that the
multiplier unit 10 may receive and of results that it generates. With reference to the
embodiment illustrated in FIG. 2, seven formats are depicted, including a zero
format 70, an underflow format 71, a denormalized format 72, a normalized
non-zero format 73, an overflow format 74, an infinity format 75 and a not-a-number

(NaN) format 76. The zero format 70 is used to represent the values "zero," or,
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more specifically, positive or negative zero, depending on the value of "s," the sign
bit.

[045] The underflow format 71 provides a mechanism by which the multiplier
unit 10 can indicate that the result of a computation is an underflow. In the
underflow format, the sign bit "s" indicates whether the result is positive or negative,
the bits e,5...e55 Of the exponent field are all binary zero's, and the bits f.s...fisp+1 Of
the fraction field, except for the least significant bit, are all binary zero's. The least
significant bit 7, of the fraction field is a binary one.

[046] The denormalized format 72 and normalized non-zero format 73 are
used to represent finite non-zero floating point values substantially along the lines of
that described above in connection with IEEE Std. 754. In both formats 72 and 73,
the sign bit "s" indicates whether the result is positive or negative. The bits e,...e5
of the exponent field of the denormalized format 72 are all binary zero's, whereas
the bits e,s... €1 Of the exponent field of the normalized non-zero format 73 are
mixed one's and zero's, except that the exponent field of the normalized non-zero
format 73 will not have a pattern in which bits e,5... e+, are all binary ones and the
least significant bit e;;, zero and all of the bits £, .../ of the fraction field are all
binary one's. In both formats 72 and 73, the bits f...fis» Of the fraction field are not
all binary zero's.

[047] The overflow format 74 provides a mechanism by which the multiplier
unit 10 can indicate that the result of a computation is an overflow. In the overflow
format 74, the sign bit "s" indicates whether the result is positive or negative, the bits
emss---eisp+1 OF the exponent field are all binary ones, with the least significant bit e,
being zero. The bits f,s...fis» Of the fraction field are all binary ones.

[048] The infinity format 75 provides a mechanism by which the multiplier
unit 10 can indicate that the result is infinite. In the infinity format 75, the sign bit "s"
indicates whether the result is positive or negative, the bits e, ... Of the exponent
field are all binary ones, and the bits f,,;...fi+5 of the fraction field are all binary
zero's. The five least significant bits fi;4...fis Of the fraction field are flags, which

will be described below.

10
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[049] The NaN format 76 provides a mechanism by which the multiplier unit
10 can indicate that the result is not a number. In the NaN format, the sign bit "s"
can be any value, the bits e,;s...e;5 Of the exponent field are all binary ones, and the
bits fius-..fisv+s Of the fraction field are not all binary zero's. The five least significant
bits fis5+4...f1s» Of the fraction field are flags, which will be described below.

[050] As noted above, in values represented in the infinity format 75 and the
NaN format 76, the five low order bits fi+4...fis» of the fraction field are flags. In the
formats used with the multiplier unit 10, the five flags include the flags that are
defined by IEEE Std. 754, including an invalid operation flag "n", an overflow flag
"0", an underflow flag "u", a division-by-zero flag "z", and an inexact flag "x". For
example, a value in the NaN format 76 in which both the overflow flag "o" and the
division-by-zero flag "z" are set, indicates that the value represents a result of a
computation that involved an overflow (this from the overflow flag "0"), as well as an
attempt to divide by zero (this from the division-by-zero flag "z"). It should be noted
that the flags provide the same status information as provided by, for example,
information stored in a floating point status register in a prior art floating point unit.
Because the information is provided as part of the result and stored therewith in
registers in which the result is ultimately stored, multiple instructions can be
contemporaneously executed. This is because the floating point status information
that may be generated during execution of one instruction, when stored, will not
over-write previously-stored floating point status information generated during
execution of another instruction.

[051] In addition to including status information in the five low-order bits
Jisv+a.-.f1sp OF the fraction field for values in the NaN format 76, other information can
also be encoded in the next five low-order bits fisp+9...fiz+5. If the value in the NaN
format 76 is the result of an operation, the other information indicates the operation
and types of operands that gave rise to the result. In one embodiment, the other
information is associated with binary encoded values (BEV) of those bits fiz+9...fisp+5

as follows:

11
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Bit Pattern Of Result BEV of fiung. . fins Meaning
Oor1 no specific meaning
s 111111111 00000000000000010nouzx | 2 infinity minus infinity
s 111111111 00000000000000011nouzx | 3 OV minus OV
s 111111111 00000000000000100nouzx | 4 zero times infinity
s 111111111 00000000000000101nouzx | 5 UN times OV
6or7 no specific meaning
s 111111111 00000000000001000nouzx | 8 zero divided by zero

s 111111111 00000000000001001nouzx |9 infinity divided by infinity

s 111111111 00000000000001010nouzx | 10 UN divided by UN

s 111111111 00000000000001011nouzx | 11 OV divided by OV

s 111111111 00000000000001100nouzx | 12 square root of less than zero
13-16 no specific meaning

s 111111111 00000000000010001nouzx | 17 remainder by zero

s 111111111 00000000000010010nouzx | 18 remainder by UN

s 111111111 00000000000010011nouzx | 19 remainder by OV

s 111111111 00000000000010100nouzx | 20 remainder of infinity

s 111111111 00000000000010101nouzx | 21 remainder of infinity by zero

s 111111111 00000000000010110nouzx | 22 remainder of infinity by UN

s 111111111 00000000000010111nouzx | 23 remainder of infinity by OV

s 111111111 00000000000011000nouzx | 24 remainder of OV

s 111111111 00000000000011001nouzx | 25 remainder of OV by zero

s 111111111 00000000000011010nouzx | 26 remainder of OV by UN

s 111111111 00000000000011011nouzx | 27 remainder of OV by OV
28-31 no specific meaning

[052] In the following, it will be assumed that the formats represent thirty-two

bit values; extension to, for example, sixty-four bit values or values represented in

other numbers of bit will be readily apparent to those skilled in the art. Additionally,

"OV" refers to an operand in the overflow format 74, "UN" refers to an operand in

the underflow format 71 and "infinity" refers to an operand in the infinity format 75.

[053] In addition, it will be convenient in the following to have names for the

finite nonzero numbers that are adjacent to +OV (a value in the overflow pattern with

the sign bit "s" having the value "zero" indicating a positive value), -OV (a value in

the overflow pattern with the sign bit "s" having the value "one," indicating a negative

value), +UN (a value in the underflow pattern with the sign bit "s" having the value

"zero,." indicating a positive value), and -UN (a value in the underflow pattern with

the sign bit "s" having the value "one," indicating a negative value), as follows:

12
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0 00000000 00000000000000000000010 +TINY
1 00000000 00000000000000000000010 -TINY
011111110 11111111111111111111110 +HUGE
111111110 11111111111111111111110 -HUGE

[054] Generally, +OV can be deemed to refer to "some (or any) value that is
strictly between +HUGE and +o0" and +UN can be deemed to refer to "some (or
any) value that is strictly between +0 and +TINY". Similarly, -OV can be deemed to
refer to "some (or any) value that is strictly between -HUGE and -o0" and -UN can be

deemed to refer to "some (or any) value that is strictly between -0 and -TINY."

[055] With this background, the structure and operation of the exemplary
multiplier unit 10 will be described in connection with FIG. 1 and consistent with an
embodiment of the invention. With reference to FIG. 1, the exemplary multiplier unit
10 includes two operand buffers 11A and 11B, respective operand analysis circuits
12A and 12B, a multiplier core 13, a result assembler 14 and a multiplier decision
table logic circuit 15. The operand buffers 11A and 11B receive and store
respective operands from, for example, a set of registers (not shown) in a
conventional manner. The multiplier core 13 receives the operands from the
operand buffers 11A and 11B, except as described below, and rounding mode
information from, for example, a rounding mode store 16. The multiplier core 13
then generates a result in accordance with IEEE Std. 754. Mulitiplier core 13 is
conventional and will not be described in detail herein.

[056] Each operand analysis circuit 12A, 12B analyzes the operand in the
respective buffer 11A, 11B and generates signals providing information relating
thereto, which signals are provided to the multiplier decision table logic circuit 15.
The result assembler 14 receives information from a number of sources, including
the operand buffers 11A and 11B, multiplier core 13 and several predetermined
value stores as described below. Under control of control signals from the multiplier
decision table logic circuit 15, the result assembler 14 assembles the result, which is
provided on a result bus 17. The result bus 17, in turn, may deliver the result to any
convenient destination, such as a register in a register set (not shown), for storage
or other use.
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[057] The system for providing a floating point product may comprise an
analyzer circuit configured to determine a first status of a first floating point operand
and a second status of a second floating point operand based upon data within the
first floating point operand and the second floating point operand, respectively. In
one embodiment, the analyzer circuit includes buffers 11A, 11B and analysis circuits
12A, 12B. In addition, the system for providing a floating point product includes a
results circuit coupled to the analyzer circuit. The results circuit is configured to
assert a resulting floating point operand containing the product of the first floating
point operand and the second floating point operand and a resulting status
embedded within the resulting floating point operand. The results circuit may be
implemented with a multiplier circuit (comprising the multiplier core 13), the multiplier
decision logic table circuit 15, and resuit assembler 14.

[0568] Those skilled in the art will appreciate that the invention may be
practiced in an electrical circuit comprising discrete electronic elements, packaged
or integrated electronic chips containing logic gates, a circuit utilizing a
microprocessor, or on a single chip containing electronic elements or
microprocessors. It may also be provided using other technologies capable of
performing logical operations such as, for example, AND, OR, and NOT, including
but not limited to mechanical, optical, fluidic, and quantum technologies. In addition,
the invention may be practiced within a general purpose computer or in any other
circuits or systems as are known by those skilled in the art.

[059] As noted above, each operand analysis circuit 12A, 12B analyzes the
operand in the respective buffer 11A, 11B and generates signals providing
information relating thereto. These signals are provided to the multiplier decision
table logic circuit 15. In the exemplary embodiment, each operand analysis circuit
12A, 12B is implemented with a number of comparators, including:

[060] (i) a comparator 20A, 20B that generates an asserted signal if the bits
emsb--- €5y OF the exponent field of the operand in respective buffer 11A, 11B are all
binary one's, which will be the case if the operand is in the infinity format 75 or the
NaN format 76;
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[061] (ii) a comparator 21A, 21B that generates an asserted signal if the bits
emss---eisp+1 OF the exponent field of the operand in the respective buffer 11A, 11B are
all binary one's and the bit e, is a binary zero, which will be the case if the operand
is in the overflow format 74;

[062] (iii) a comparator 22A, 22B that generates an asserted signal if the bits
emss--- eisp+1 OF the exponent field of the operand in respective buffer 11A, 11B are all
binary one's and the bit ¢ is either a binary one or a binary zero, which will be the
case if the operand is in the overflow format 74, infinity format 75 or the NaN format
76;

[063] (iv) a comparator 23A, 23B that generates an asserted signal if the bit
emsy Of the exponent field of the operand in respective buffer 11A, 11B is a binary
one and respective bits e,..;...e are either binary one or a binary zero, which may
be the case if the operand is in the normalized non-zero format 73 and will be the
case for the overflow format 74, infinity format 75 or NaN format 76;

[064] (v) a comparator 24A, 24B that generates an asserted signal if the bit
emsy Of the exponent field of the operand in respective buffer 11A, 11B is a binary
zero and bits e,.;... €15 are all binary one's, which may be the case if the operand is
in the normalized non-zero format 73 and will be the case if the operand has the
value +1.0 or -1.0;

[065] (vi) a comparator 25A, 25B that generates an asserted signal if the bit
emsy Of the exponent field of the operand in respective buffer 11A, 11B is a binary
zero and respective bits eu.;...e15 are either binary one or binary zero, which will be
the case if the operand is in the zero format 70, underflow format 71, or
denormalized format 72 and may be the case for normalized non-zero format 73;

[066] (vii) a comparator 26A, 26B that generates an asserted signal if the bit
emsb---€isp OF the exponent field of the operand in respective buffer 11A, 11B are all
binary zero's, which will be the case if the operand is in the zero format 70,
underflow format 71, or denormalized format 72:

[067] (viii) a comparator 30A, 30B that generates an asserted signal if the
bits fuss...fisw+5 Of the fraction field of the operand in the respective buffer 11A, 11B
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are all binary ones, which may be the case if the operand is in the denormalized
format 72, normalized non-zero format 73, overflow format 74, or NaN format 76;

[068] (ix) a comparator 31A, 31B that generates an asserted signal if the bits
Jash---Jisp+s OF fraction field of the operand in the respective buffer 11A, 11B are all
binary zero's, which may be the case if the operand is in the zero format 70,
underflow format 72, denormalized format 72, normalized non-zero format 73 or
infinity format 75;

[069] (x) a comparator 32A, 32B that generates an asserted signal if the bits
Sisv+4.-.fisp Of the fraction field of the operand in the respective buffer 11A, 11B are all
binary one's, which may be the case if the operand is in the denormalized format 72
or normalized non-zero format 73 and which will be the case if the operand is in the
overflow format 74, or if all of the flags "n," "0," "u," "z," and "x" are set in the infinity
format 75 or NaN format 76;

[070] (xi) a comparator 33A, 33B that generates an asserted signal if the bits
Siss+a---fisp+1 Of the fraction field of the operand in the respective buffer 11A, 11B are
all binary zero's and if the bit fis, of the fraction field is either a binary "zero" or "one,"
which will be the case if the operand is in the zero format 70 or underflow format 71
and which may be the case if the operand is in the denormalized format 72,
normalized non-zero format 73, overflow format 74, or if the flags "n," "0," "u," and
"z" are clear and the flag "x" is either set or clear in the infinity format 75 or NaN
format 76; |

[071] (xii) a comparator 34A, 34B that generates an asserted signal if the
bits fisp+4...f1s+1 OF the fraction field of the operand in the respective buffer 11A, 11B
are binary zero's and if the bit £, of the fraction field is a binary "one," which will be
the case if the operand is in the underflow format 71 and which may be the case if
the operand is in the denormalized format 72, normalized non-zero format 73,
overflow format 74, or if the flags "n," "0," "u," and "z" are clear and the flag "x" is set
in the infinity format 75 or NaN format 76; and

[072] (xiii) a comparator 35A, 35B that generates an asserted signal if all of
the bits fis+4...f1s» Of the fraction field of the operand in the respective buffer 11A,

11B are binary zero's, which will be the case if the operand is in the zero format 70,
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and which may be the case if the operand is in the denormalized format 72,
normalized non-zero format 73, overflow format 74, or if the flags "n," "o0," "u," "z"
and "x" are clear in the infinity format 75 or NaN format 76.

[073] In the illustrated embodiment, each exemplary operand analysis circuit
12A, 12B also includes combinatorial logic elements that receive selected ones of
the signals from the comparators and generate characteristic signals to provide
indications as to certain characteristics of the respective operand. In more detail,
such combinational logic elements include:

[074] (xiv) an AND gate 50A, 50B, which will generate an a asserted signal if
comparators 31A, 31B, and 35A, 35B are both generating asserted signals, which
will be the case if the bits f,...fis» Of the fraction field of the operand in the
respective operand buffer 11A, 11B have the bit pattern
00000000000000000000000;

[075] (xv) an AND gate 51A, 51B, which will generate an asserted signal if
comparators 31A, 31B, and 34A, 34B, are both generating asserted signals, which
will be the case if the bits f,,s...fis of the fraction field of the operand in the
respective operand buffer 11A, 11B have the bit pattern
00000000000000000000001;

[076] (xvi) an AND gate 52A, 52B, which will generate an asserted signal if
comparators 30A, 30B, and 32A, 32B are both generating asserted signals, which
will be the case if the bits f,s... /s Of the fraction field of the operand in the
respective operand buffer 11A, 11B have the bit pattern
1M1111111111111111111111;

[077] (xvii) an AND gate 40A, 40B that generates an asserted signal if the
signals generated by both comparator 31A, 31B and comparator 33A, 33B are
asserted, which will be the case if the respective operand is in the zero format 70 or
underflow formal 71 and which may be the case if the operand is in the
denormalized format 72, normalized non-zero format 73, or if the flags "n," "o,"” "u"
and "z" are clear and the flag "x" is either set or clear in the infinity format 75;
otherwise stated, AND gate 40A, 40B will generate an asserted signal if the value of
the bits £, ...f1s» Of the fraction field of the operand in the respective operand buffer
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11A, 11B has the bit pattern 00000000000000000000001 or the bit pattern
00000000000000000000000;

[078] (xviii) a NAND gate 41A, 41B that generates an asserted signal if the
signal generated by comparator 26A, 26B is asserted and the signal generated by
AND gate 40A and 40B is negated, which will be the case if the respective operand
is in the denormalized format 72; otherwise stated, NAND gale 41A, 41B will
generate an asserted signal if the bits e,s...es5 Of the exponent field of the operand
in the respective operand buffer 11A, 11B have the pattern 00000000 and a bit of
the fraction field, other than the low order bit £, is a "one";

[079] (xix) a NAND gate 42A, 42B that generates an asserted signal if the
signal generated by comparator 24A, 24B is negated and the signal generated by
combarator 25A, 25B is asserted and the signal generated by comparator 26A, 26B
is negated, which will be the case if the respective operand is in the normalized
format 73 and its magnitude is less than 1.0; otherwise stated, NAND gate 42A, 42B
will generate an asserted signall if the high-order bit e, of the exponent field of the
operand in the respective operand buffer 11A, 11B is a "zero" but the bits e,... e/
of the exponent field of the operand in the respective operand buffer 11A, 11 B do
not have the bit pattern 00000000 or 01111111;

[080] (xx) an OR gate 43A, 43B that generates an asserted signal if either
NAND gate 41A, 41B or NAND gate 42A, 42B is asserted, which will be the case if
the bits e,...e155 Of the exponent field of the operand in the respective operand
buffer 11A, 11B have the pattern 00000000 and a bit of the fraction field, other than
the low order bit £, is a "one" (NAND gate 41A, 41B) or if the high-order bit e, of
the exponent field is a "zero", and the bits e,...es5 of the exponent field of the
operand in the respective operand buffer 11A, 11B do not have the bit pattern
00000000 or 01111111 (NAND gate 42A, 42B);

[081] (xxi) an AND gate 44A, 44B that generates an asserted signal if
comparator 24A, 24B is generating an asserted signal and AND gate 50A, 50B is
generating an asserted signal, which will be the case if the bits es;...es Of the

exponent field of the operand in the same operand buffer 11A, 11B have the bit
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pattern 01111111 and the bits £, ...fis» Of the fraction field of the operand in the
same operand buffer 11A, 11B have the bit pattern 00000000000000000000000;

[082] (xxii) a NAND gate 45A, 45B that generates an asserted signal if
comparator 24A, 24B is generating an asserted sighal and AND gate 50A, 50B is
generating a negated signal, which will be the case if the bits e,;s...¢s5 Of the
exponent field of the operand in the respective operand buffer 11A, 11B have the bit
pattern 01111111 and at least one bit f,,5...fi5» of the.fraction field of the operand in
the respective operand buffer 11A, 11B is "one";

[083] (xxiii) a NAND gate 46A, 46B that generates an asserted signal if
comparator 23A, 23B is generating an asserted signal and comparator 22A, 22B is
generating a negated signal, which will be the case if the bits eys...es5 of the
exponent field of the operand in the respective operand buffer 11A, 11B does not
have either bit pattern 11111110 or 11111111, but the high-order bit ¢, of the
exponent field of the operand in the respective operand buffer 11A, 11B is "one";

[084] (xxiv) a NAND gate 47A, 47B, which will generate an asserted signal if
comparator 21A, 21B is generating an asserted signal and AND gate 52A, 52B is
generating a negated signal which will be the case if the bits eys...es5 Of the
exponent field of the operand in the respective operand buffer 11A, 11B have the bit
pattern 11111110 and not every bit f,..../iss Of the fraction field of the operand in the
respective operand buffer 11A, 11B is "one"; and

[085] (xxv) an OR gate 48A, 48B, which will generate an asserted signal if
one or more of NAND gate 45A, 45B and NAND gate 46A, 46B and NAND gate
47A, 47B generates an asserted signal.

[086] In addition, the combinatorial logic in the illustrated embodiment
includes a comparator 53 that generates an asserted signal if the bits f....fisz+5 Of
the fraction field of the operand in operand buffer 11A represent a binary-encoded
value that is larger than the binary-encoded value represented by bits f,...fisp+s Of
the fraction field of the operand in operand buffer 11B. The combinatorial logic also
includes an XOR gate 54 that generates an asserted signal if the sign bits "s" of the
operands in the operand buffers 11A and 11B have different values.
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[087] Each exemplary operand analysis circuit 12A, 12B provides signals to

the multiplier decision table logic 15 as shown in the following table:
(a) the signal generated by comparator 26A, 26B
(b) the signal generated by the comparator 21A, 21B
(c) the signal generated by the comparator 20A, 20B
(d) the signal generated by comparator 31A, 31B
(e) the signal generated by AND gate 50A, 50B
(f) the signal generated by AND gate 51A, 51B
(9) the signal generated by AND gate 52A, 52B
(h) the signal generated by the OR gate 43A, 43B
(i) the signal generated by the AND gate 44A, 44B
(i) the signal generated by the OR gate 48A, 48B

[088] In addition, the signal generated by comparator 53 is provided to the
multiplier decision table logic 15, as are signals from rounding mode store 16
representative of the rounding mode and the signal generated by the XOR gate 54.

[089] In addition, the multiplier core 13 generates an overflow signal and an
underflow signal, which are also provided to the multiplier decision table logic 15.
The underflow signal is asserted if and only if the mathematical product should be
non zero but the multiplier core produces a zero result (those skilled in the art will
appreciate that this differs from the IEEE 754 definition of underflow). In the
illustrated embodiment, the multiplier decision table logic 15 generates control
signals for controlling the result assembler 14. In addition, control signals
generated by the multiplier decision table logic 15 control sets of XOR gates 67A,
67B; 68A, 68B that control toggling of one or both of the two least significant bits f,
fiso+1 Of the fraction field of the operands before they are provided to the multiplier
core 13. As noted above, the result assembler 14 receives information from a
number of sources, including the XOR gate 54, the operand buffers 11A and 11B,
multiplier core 13 and several predetermined value stores as described below.

[090] Under control of control signals from the multiplier decision table logic
circuit 15, the result assembler 14 assembles the appropriate results representing a

product of the two operands, onto a result bus 17. In general, the result assembler
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14 essentially assembles the result in four segments, including a sign segment that
represents the sign bit of the result, an exponent segment that represents the
exponent field of the result, a high-order fraction segment that represents the bits
Jmsp--Jisv+s Of the fraction field of the result, and a low-order fraction segment that
represents the five least significant bits fig+4...fi Of the result. It will be appreciated
that the low-order fraction segment, in results in the infinity format 75 and NaN
format 76, corresponds to the flags "n," "0," "u," “z”, and "x". One or more of these
segments will represent an embedded resulting status of the resulting floating point
operand.

[091] In the illustrated embodiment, the result assembler 14 may include
four elements, including a link from XOR gate 54, an exponent field selector 60, a
high-order fraction field selector 61 and low-order fraction field combiner 62. The
link from XOR gate 54 provides the sign of the result. As is conventional, the sign of
the result is positive, in which case the sign bit would have the value "zero," if the
sign bits of the operands in both operand buffers 11A, 11B are the same. On the
other hand, the sign of the result is negative, in which case the sign bit would have
the value "one,” if the sign bits of the operands in the operand buffers 11A, 118
differ. It will be appreciated that the XOR gate 54 generates a signal of the
appropriate value for the sign bit for the result, which signal is coupled onto the
result bus 17.

[092] As noted above, the exemplary selector 60 couples exponent value
signals representative of the exponent field of the result to the resuit bus 17. In this
embodiment, the selector 60 receives four sets of exponent field value signals,
namely, the signals from the multiplier core 13 associated with the exponent field as
well as three sets of signals representative of three predetermined exponent field bit
patterns, such as the patterns depicted in FIG. 1. It will be appreciated that these
predetermined exponent field bit patterns correspond to the exponent fields
associated with the zero format 70, underflow format 71, overflow format 74, infinity
format 75 and NaN format 76. In addition, the selector 60 receives four exponent
field control signals from the multiplier decision table logic 15. One of these control
signals is associated with the signals from the multiplier core 13 that are associated
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with the exponent field. The rest of these control signals are associated with each
of the sets of exponent field value signals, respectively. In enabling the result
assembler 14 to assemble the result, the multiplier decision table logic 15 will assert
one of the four exponent field control signals. Additionally, the selector 60 will
couple the set of exponent field value signals associated with the asserted exponent
field control signal to the result bus 17 to provide the exponent field of the result.

[093] The exemplary selector 61 couples high-order fraction field signals
representative of the high-order fraction field bits f,...fiss+5 Of the fraction field of the
result to the result bus 17. In the illustrated embodiment, the selector 61 receives
seven sets of high-order fraction field value signals, namely, the signals from the
multiplier core 13 associated with the high-order fraction field, signals representative
of bits f.s...fisv+5 Of the fraction field of the operand in buffer 11A, signals
representative of bits f.../is+5 Of the fraction field of the operand in buffer 11B, as
well as four sets of signals representative of four predetermined high-order fraction
field bit patterns, such as the patterns depicted in FIG. 1. It will be appreciated that
these predetermined high-order fraction field bit patterns correspond to the
high-order fraction fields associated with the zero format 70, underflow format 71,
overflow format 74, infinity format 75 and NaN format 76. In addition, the selector
61 receives seven high-order fraction field control signals from the multiplier
decision table logic 15. One of these control signals is associated with the multiplier
core 13. The rest of these control signals are associated with each of the sets of
high-order fraction field value signals, respectively. It will be appreciated that the
control signal associated with the multiplier core 13 is the same control signal that
controls the selector 60. In enabling the result assembler 14 to assemble the result,
the multiplier decision table logic will assert one of the seven high-order fraction field
control signals, and the selector 61 will couple the set of high-order fraction field
value signals associated with the asserted high-order fraction field control signal to
the result bus 17 to provide bits fs...fiss+5 Of the fraction field of the result.

[094] Similarly, the exemplary combiner 62 couples low-order fraction field
value signals representative of the low-order fraction field bits fis+4...fis» Of the
fraction field of the result to the result bus 17. The combiner 62 receives four sets of
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low-order fraction field signals, namely, the signals from the multiplier core 13
associated with the low-order fraction field, signals representative of bits fis+4...fiss Of
the fraction field of the operand in buffer 11A, signals representative of bits fis+4.../1s
of the fraction field of the operand in buffer 11B, and one set of signals from the
multiplier decision table logic 15. It will be appreciated that in the illustrated
embodiment, the set of signals provided by the multiplier decision table logic 15 are
used in controlling the condition of flags "n", "o", "u", "z", and "x" for those formats in
which the low order bits fi+4...fis5 represent flags. In addition, the sets of signals
provided by the operands in buffers 11A and 11B may also represent the flags "n",

o", "u", "z", and "x". In addition, the combiner 62 receives three low-order fraction
field control signals from the multiplier decision table logic 15. One control signal is
associated with the sets of low-order fraction field value signals provided by the
multiplier core and the two others are associated with the sets of signals provided by
the buffers 11A and 11B.

[095] In enabling the result assembler 14 to assemble the resuit, the
multiplier decision table logic 15 may provide signals representative of the low-order
fraction field and negate all of the low-order fraction field control signals. When this
occurs, the signals representative of the low order fraction field provided by the
multiplier decision table logic 15 will be coupled to the result bus 13 to provide bits
Sisp+4...fisp OF the fraction field of the result.

[096] Alternatively, the multiplier decision table logic 15 may negate all of the
low-order fraction field value signals provided thereby and assert one of the three
low-order fraction field control signals. When this occurs, the combiner 62 will
couple the set of low-order fraction field value signals associated with the asserted
low-order fraction field control signal to the result bus 17 to provide bits fip++...fis» Of
the fraction field of the result. As a further alternative, the multiplier decision table
logic 15 may negate all of the low-order fraction field value signals provided thereby
and assert more than one of the three low-order fraction field control signals. As a
result, the combiner 62 will couple the bit-wise OR of the sets of low-order fraction
field value signals associated with the asserted low-order fraction field control

signals to the result bus 17 to provide bits fis+4...fis» Of the fraction field of the result.
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As yet another alternative, the multiplier decision table logic 15 may assert one or
more of the low-order fraction field value signals provided thereby and assert one or
more of the three low-order fraction field control signals. As a result, the combiner
62 will couple the bit-wise OR of the sets of low-order fraction field value signals
associated with the asserted low-order fraction field control signals and the low-
order fraction field value signals provided by the multiplier decision table logic 15 to
the result bus 17 to provide bits fi;+4...fis» Of the fraction field of the result.

[097] In more detail, the exemplary combiner 62 in the illustrated
embodiment comprises an OR circuit 63 and three AND circuits 64 through 66.
(Each gate in the diagram actually represents five such gates, one for each bit
position fis+4...fiss, but for the sake. of clarity and to avoid confusion, the diagram
illustrates them as a single gate.) The AND circuits 64-66 receive the low-order
fraction field value signals from the multiplier core 13 and operand buffers 11A and
11B respectively, as well as the respective low-order fraction field control signal.
These AND circuits 64-66 perform a bit-wise AND operation to, if the respective low-
order fraction field control signal is asserted, couple the low-order fraction field value
signals to a respective input of OR circuit 63. The OR circuit 63, whose output is
connected to the result bus 17, performs a bit-wise OR operation in connection with
the signals that it receives from the AND circuits 64-66 and the low-order fraction
field value signals provided by the multiplier decision table logic 15. If the multiplier
decision table logic 15 negates all of the low-order fraction field control signals, the
AND circuits 64-66 will block the low-order fraction field value signals that they
receive, and the signals provided by the OR circuit 63 will conform to the low-order
fraction field value signals provided by the multiplier decision table logic 15.

[098] On the other hand, if the multiplier decision table logic 15 asserts one
or more of the low-order fraction field control signals, the AND circuits 64-66 that
receive the asserted low-order fraction field control signal will couple the low-order
fraction field value signals that they receive to the OR circuit 63 and the other AND
gates will block the low-order fraction field signal that they receive. As will be
described below, under some circumstances, the multiplier decision table logic 15

will assert two low-order fraction field control signals to enable two sets of low-order
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fraction field value signals to be coupled to the OR circuit 63. In that case, the OR
gate will perform a bit-wise OR operation in connection with signals representing
respective bits of the low-order fraction field.

[099] Thus, multiplier decision table logic 15 will assert two low-order fraction
signals if, for example, both operands in operand buffers 11A and 11B are in NaN
format to enable the respective flags "n," "0," "u," and "x" to be ORed together.
However, if the low-order fraction field value signals provided by the multiplier
decision table logic 15 are negated, the low-order fraction field value signals
provided by the OR circuit 63 will conform to the low-order fraction field signals
provided by the AND circuit or circuits that receive the asserted low-order fraction
field control signal.

[0100] As noted above, the multiplier decision table logic 15 generates control
signals for controlling the selectors 60 and 61 and combiner 62 comprising the result
assembler 14 and for controlling the toggling of the signals representing the
low-order bits f;,+; and fi from the operand buffers 11A and 11B before they are
presented to the multiplier core 13. The control signals generated by the multiplier
decision table logic 15 are such as to enable the result to be assembled in the
desired format 70-76 having status information embedded within the result itself.
Before proceeding further, it would be helpful to describe the results that are to be
generated by the multiplier unit 10.

[0101] Generally, exemplary results generated by the multiplier unit 10 are
described in the table depicted in FIG. 3. In that table, one skilled in the art will
appreciate that "+P" or "+Q" means any finite positive representable value greater
than "one," other than +QOV (that is, a value in the overflow format 74 with the sign
bit "s" being "zero"). "-P" or "-Q" means any finite negative representable value less
than negative-one, other than -QV (that is, a value in the overflow format 74, with
the sign bit being "one"). "+R" or "+S" means any positive non-zero representable
value less than "one," other than +UN (that is, a value in the underflow format 71
with the sign bit "s" being "zero"). "-R" or "-S" means any negative non-zero
representable value greater than negative-one, other than -UN (that is, a value in

the underflow format 71, with the sign bit being "one"). Finally, those skilled in the
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art will appreciate that "NaN" means any value whose exponent field is 11111111,

other than one of the values represented by +oo (that is, a value in the infinity format

75, with the sign bit "s" being "zero") and -co (that is, a value in the infinity format 75,
with the sign bit "s" being "one").

[0102] Key to symbols in the table with exemplary results depicted in FIG. 3
are as follows:

[0103](a)  The result is +o0, with the five least significant bits fi+4...7iss Of
the fraction field of the result being the bitwise OR of the five least significant bits
Sisb+4...f1s» OF the fraction fields of the two operands.

[0104](b)  The result is +oo, with the five least significant bits fi+4... /i Of
the fraction field of the result being the bitwise OR of the five least significant bits
Sisv+4-..fisp O the fraction field of the infinite operand with 01001 (to indicate overflow
and inexact).

[0105](c)  The result is +oo, with the five least significant bits fig+s...fi» Of

the fraction field of the result being equal to the five least significant bits fjsp-4... /i Of

the fraction field of the infinite operand.
[0106](d)  The result is +o0, with five least significant bits fig+4.../1s Of the

fraction field of the result being the bitwise OR of the five least significant bits
Sisv+a-..fisp OF the fraction field of the infinite operand with 00101 (to indicate underflow
and inexact).

[0107](e)  For "round toward plus infinity", the result is +co, with the five
least significant bits fis+4...fis» Of the fraction field of the result being equal to the five
least significant bits fi+4...f1s» Of the fraction field of the infinite operand. For "round
toward minus infinity,"” the result is +0. For all other rounding modes, the result is a
positive NaN value 0 11111111 10000000000000010010uzx (to indicate "zero times
infinity" with the invalid operation flag set), where ouzx are the four least significant
bits fis5+3.../is Of the fraction field of the infinite operand.

[0108] () For "round toward plus infinity," the result is -0. For "round

toward minus infinity," the result is -co, with five least significant bits fis+4...fis Of the
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fraction field being equal to the five least significant bits fj;-+..../5s of the fraction field
of the infinite operand. For all other rounding modes, the result is a negative NaN
value 1 11111111 10000000000000010010uzx (to indicate "zero times infinity" with
the invalid operation flag set), where ouzx are the four least significant bits fis+3.../is
of the fraction field of the infinite operand.

[0109](9)  The result is -00, with the five least significant bits fs+4...fiss Of

the fraction field of the result being the bitwise OR of the five least significant bits
Sisb+4...f1s5, OF the fraction field of the infinite operand with 00101 (to indicate
underflow and inexact).

[0110](h)  The resulit is -o0, with the five least significant bits f+4...fisp Of

the fraction field being equal to the five least significant bits fjs5+4...fis» Of the fraction

field of the infinite operand.

[0111] (i) The result is -oo, with the five least significant bits fjs+4...fis Of

the fraction field of the result being the bitwise OR of the five least significant bits
Jisp+2---fisp OF the fraction field of the infinite operand with 01001 (fo indicate overflow
and inexact).

[0112] (§) The result is -0o, with five least significant bits fis+4...fis Of the
fraction field of the result being the bitwise OR of the five least significant bits
Jisp+a..-fisp OF the fraction fields of the operands.

[0113](k)  The result is a copy of the NaN operand, except that its sign is
reversed if the other operand is negative, and that the five least significant bits
Sisv+4...f1sp OF the fraction field of the result are the bitwise OR of the five least
significant bits fis+4...fis» Of the fraction fields of the operands.

[0114] () For "round toward plus infinity," the result is the same as if -OV
were replaced by -HUGE. For all other rounding modes, the result is +OV.

[0115](m)  For "round toward plus infinity," the result is +OV. For "round
toward minus infinity," the result is +UN. For all other rounding modes, the result is
the positive NaN value 0 11111111 10000000000000010111101 (to indicate "UN
times OV" with the invalid operation, overflow, underflow, and inexact flags set).
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[0116](n)  For "round toward plus infinity," the result is -UN. For "round
toward minus infinity," the result is -OV. For all other rounding modes, the result is
the negative NaN value 1 11111111 10000000000000010111101 (to indicate "UN
times OV" with the invalid operation, overflow, underflow, and inexact flags set).

[0117](0)  For "round toward minus infinity," the result is the same as if
-OV were replaced by -HUGE. For all other rounding modes, the result is -OV.

[0118](p)  The result is a copy of the NaN operand, except that its sign is
reversed if the other operand is negative. The five least significant bits fisp+4...fis» Of
the fraction field of the result are ORed with 01001 (to indicate overflow and
inexact).

[0119](g)  The result is as computed in accordance with IEEE Std. 754.
However, if overflow occurs or if the rounding mode is "round toward plus infinity"
and the mathematical product is greater than +HUGE, the result is +OV. Further, if
underflow occurs and a computation in accordance with IEEE Std. 754 would result
in the value +0 or if the rounding mode is "round toward minus infinity" and the
mathematical product is less than +TINY, the result is +UN.

[0120] () For "round toward plus infinity," the result is the same as if -UN
were replaced by -TINY. For all other rounding modes, the result is as computed in
accordance with IEEE Std. 754.

[0121](s) For "round toward minus infinity," the result is the same as if
+UN were replaced by +TINY. For all other rounding modes, the result is as
computed in accordance with IEEE Std. 754.

[0122] (1) The result is as computed in accordance with IEEE Std. 754.
However, if overflow occurs or if the rounding mode is "round toward minus infinity"
and the mathematical product is less than -HUGE, the result is -OV. Further, if
underflow occurs and a computation in accordance with IEEE Std 754 would provide
the result -0 or if the rounding mode is "round toward plus infinity" and the
mathematical product is greater than -TINY, the result is -UN.

[0123](u)  The result is a copy of the NaN operand, except that its sign is
reversed if the other operand is negative.
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[0124] (v) For "round toward minus infinity," the result is the same as if
+OV were replaced by +HUGE. For all other rounding modes, the result is -OV.

[0125](w)  For "round toward minus infinity," the result is the same as if -
UN were replaced by -TINY. For all other rounding modes, the resulit is as
computed in accordance with IEEE Std. 754.

[0126] (x)  The result is a copy of the NaN operand, except that its sign is
reversed if the other operand is negative. The five least significant bits fj+4... /i Of
the fraction field of the result are ORed with 00101 (to indicate underflow and
inexact).

[0127]1(y)  For "round toward plus infinity," the result is the same as if +UN
were replaced by +TINY. For all other rounding modes, the result is as computed in
accordance with IEEE Std. 754.

[0128] (2) For "round toward minus infinity," the result is the same as if
+0OV were replaced by +HUGE. For all other rounding modes, the result is +OV.

[0129]1(@) The resultis a copy of the NaN operand that has the larger
value in the fraction field, except that the five least significant bits fj;+4...fis of the
fraction field of the result are the bitwise OR of the five least significant bits fip-... /s
of the fraction field of the operands and the sign bit of the result is 1, indicating a
negative result, if and only if the sign bits of the two NaN operands differ.

[0130] Multiplication is commutative with multiplier unit 10 operating according
to the table depicted in FIG. 3. This is true even with those cases where one or both
operands are values in the NaN format 76.

[0131] As noted above, multiplier decision table logic 15 generates control
signals for controlling the selectors 60, 61 and combiner 62 comprising the result
assembler 14 and for controlling the toggling of the signals representing the
low-order bits fi;+; and fi» from the operand buffers 11A and 11B before they are
presented to the multiplier core 13. The particular signals that the multiplier decision
table logic 15 will generate depends on the signals provided thereto by the operand
buffers 11A and 11B representing the states of the respective sign bits, the operand
analysis circuits 12A and 12B, comparator 40, rounding mode store 16, and the
overflow and underflow signals from the multiplier core 13. In the illustrated
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embodiment, the series of input signals received by the multiplier decision table
logic 15 are as follows:

[0132](a)  a signal from comparator 26A that is asserted if the exponent
field of the operand in operand buffer 11A has the bit pattern 00000000;

[0133](b)  asignal from comparator 21A that is asserted if the exponent
field of the operand in operand buffer 11A has the bit pattern 11111110;

[0134] (c) a signal from comparator 20A that is asserted if the exponent
field of the operand in operand buffer 11A has the bit pattern 11111111;

[0135](d)  a signal from the comparator 31A that is asserted if the operand
in operand buffer 11A has a high order fraction field with all 0-bits;

[0136](e)  a signal from AND gate 50A that is asserted if the operand in
operand buffer 11A has high- and low-order fraction fields with the collective bit
pattern 00000000000000000000000;

[0137](F) a signal from AND gate 51A that is asserted if the operand in
operand buffer 11A has high- and low-order fraction fields with the collective bit
pattern 00000000000000000000001;

[0138](g)  asignal from AND gate 52A that is asserted if the operand in
operand buffer 11A has high- and low-order fraction fields with the collective bit
pattern 11111111111111111111111;

[0139](h)  asignal from OR gate 43A that is asserted if any of the
following signals are asserted:

[0140](1)  asignal from NAND gate 41A that is asserted if the exponent
field of the operand in operand buffer 11A has a bit pattern 00000000 (which will be
the case if the signal from comparator 26A is asserted) and the high- and low-order
fraction field of the operand in operand buffer 11A has a bit pattern in which at least
one bit other than the least significant bit, is "1" (which will be the case if the signal
from AND gate 40A is negated); and

[0141](2)  asignal from NAND gate 42A that is asserted if the exponent
field of the operand in operand buffer 11A does not have a bit pattern 01111111
(which will be the case if the signal from comparator 24A is negated) and also does
not have the bit pattern 00000000 (which will be the case if the signal from
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comparator 26A is negated), but the high-order bit e,,;; of the exponent field in
operand buffer 11A is "0" (which will be the case if the signal from comparator 25A
is asserted);

[0142] (i) a signal from AND gate 44A that is asserted if the exponent
field of the operand in operand buffer 11A has the bit pattern 01111111 (which will
be the case if the signal from comparator 24A is asserted) and the bits of the
fraction field of the operand in operand buffer 11A are all "0" (which, will be the case
if the signal from AND gate 50A is asserted);

[0143] () a signal from OR gate 48A that is asserted if any of the
following signals are asserted:

[0144] (1)  asignal from NAND gate 45A that is asserted if the
exponent field of the operand in operand buffer 11A has the bit pattern 01111111
(which will be the case if the signal from comparator 24A is asserted) and at least
one bit of the fraction field of the operand in operand buffer 11A is "1" (which will be
the case if the signal from AND gate 50A is negated);

[0145] (2) asignal from NAND gate 46A that asserted if the
exponent field of the operand in operand buffer 11A does not have the bit pattern
11111110 or 11111111 but the high-order bit of the exponent field is 1 (which will be
the case if the signal from comparator 23A is asserted and the signal from
comparator 22A is negated); and

[0146] (3) asignal from NAND gate 47A that is asserted if the
exponent field of the operand in operand buffer 11A has the bit pattern 11111110
(which will be the case if the signal from comparator 21A is asserted) and at least
one bit of the fraction in the fraction field of the operand in operand buffer 11A is "0"
(which will be the case if the signal from AND gate 52A is negated);

[0147](k)  a signal from comparator 26B that is asserted if the exponent
field of the operand in operand buffer 11B has the bit pattern 00000000;

[0148] (1) a signal from comparator 21B that is asserted if the exponent
field of the operand in operand buffer 11B has the bit pattern 11111110;

[0149](m) a signal from comparator 20B that is asserted if the exponent
field of the operand in operand buffer 11B has the bit pattern 11111111,
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[0150](n)  a signal from the comparator 31B that is asserted if the operand
in operand buffer 11B has a high-order fraction field with all 0-bits;

[0151]1(0)  asignal from AND gate 50B that is asserted if the operand in
operand buffer 11B has high- and low-order fraction fields with the collective bit
pattern 00000000000000000000000;

[0152](p)  a signal from AND gate 51 B that is asserted if the operand in
operand buffer 11B has high- and low-order fraction fields with the collective bit
pattern 00000000000000000000001;

[0153](q)  asignal from AND gate 52B that is asserted if the operand in
operand buffer 11B has high- and low-order fraction fields with the collective bit
pattern 11111111111111111111111;

[0154] (1) a signal from OR gate 43B that is asserted if any of the
following signals are asserted:

[0155] (1)  asignal from NAND gate 41B that is asserted if the
exponent field of the operand in operand buffer 11B has a bit pattern 00000000
(which will be the case if the signal from comparator 26B is asserted) and the high-
and low-order fraction field of the operand in operand buffer 11B has a bit pattern in
which at least one bit, other than the least significant bit, is "1" (which will be the
case if the signal from AND gate 40B is negated); and

[0156] (2) asignal from NAND gate 42B that is asserted if the
exponent field of the operand in operand buffer 11B does not have a bit pattern
01111111 (which will be the cast if the signal from comparator 24B is negated) and
also does not have the bit pattern 00000000 (which will be the case if the signal
from comparator 26B is negated), but the high-order bit e, of the exponent field in
operand buffer 11B is "0" (which will be the case if the signal from comparator 25B
is asserted);

[0157]1(s)  a signal from AND gate 44B that is asserted if the exponent
field of the operand in operand buffer 11B has the bit pattern 01111111 (which will
be the case if the signal from comparator 24B is asserted) and the bits of the
fraction field of the operand in operand buffer 11B are all "0" (which will be the case
if the signal from AND gate 50B is asserted);
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[0158] (1) a signal from OR gate 48B that is asserted if any of the
following signals are asserted:

[0159] (1)  asignal from NAND gate 45B that is asserted if the
exponent field of the operand in operand buffer 11B has the bit pattern 01111111
(which will be the case if the signal from comparator 24B is asserted) and at least
one bit of the fraction field of the operand in operand buffer 11B is "1" (which will be
the case if the signal from AND gate 50B is negated);

[0160] (2) asignal from NAND gate 46B that asserted if the
exponent field of the operand in operand buffer 11B does not have the bit pattern
11111110 or 11111111 but the high-order bit of the exponent field is 1 (which will be
the case if the signal from comparator 23B is asserted and the signal from
comparator 22B is negated); and |

[0161] (3) asignal from NAND gate 47B that is asserted if the
exponent field of the operand in operand buffer 11B has the bit pattern 11111110
(which will be the case if the signal from comparator 21B is asserted) and at least
one bit of the fraction in the fraction field of the operand in operand buffer 11B is "0"
(which will be the case if the signal from AND gate 52B is negated);

[0162](u)  a signal from comparator 53 that is asserted if the binary-
encoded value of the bits comprising the high-order fraction field of the operand in
operand buffer 11A is greater than the binary-encoded value of the bits comprising
the high-order fraction field of the operand in operand buffer 11B;

[0163] (v) a signal from the rounding mode store 16 that is asserted if the
rounding mode is either "round toward plus infinity" or "round toward minus infinity";

[0164] (w)  a signal from the rounding mode store 16 that is asserted if the
rounding mode is either "round toward zero" or "round toward minus infinity";

[0165] (x) a signal from XOR gate 54 that is asserted if operand signs are
different;

[0166] (y) an "overflow" signal from the multiplier core 13; and

[0167](2) an "underflow" signal from the multiplier core 13.

[0168] In response to these signals, the exemplary multiplier decision logic

table 15 generates the following:
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[0169](1)  a signal that, if asserted, enables the second least-significant bit
of the operand in operand buffer 11A to be toggled before being presented to the |
mulitiplier core 13;

[0170](2) a signal that, if asserted, enables the least significant bit of the
operand in operand buffer 11A to be toggled before being presented to the multiplier
core 13;

[0171](3)  a signal that, if asserted, enables the second-least significant bit
of the operand in operand buffer 11B to be toggled before being presented to the
multiplier core 13;

[0172](4) a signal that, if asserted, enables the least significant bit of the
operand in operand buffer 11B to be toggled before being presented to the multiplier
core 13;

[0173]1(5) a signal that, if asserted, enables the exponent field and the
high-part of the fraction of the result to be provided by the multiplier core 13, and
moreover, the five least-significant bits fis;+4...fis Of the fraction field of the output
provided by the multiplier core 13 will contribute to the five least significant bits
Sisp+a...fisp OF the result;

[0174]1(6) a signal that, if asserted, will enable the exponent field of the
result to have the bit pattern 00000000;

[0175](7)  a signal that, if asserted, the will enable the exponent field of
the result to have the bit pattern 11111110;

[0176](8) a signal that, if asserted, will enable the exponent field of the
result to have the bit pattern 11111111;

[0177](9)  a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the high-order portion of the fraction of the operand in
operand buffer 11A; ‘

[0178] (10) a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the high-order portion of the fraction of the operand in
operand buffer 11B;

[0179]1(11) a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the bit pattern 000000000000000000;
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[0180](12) a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the bit pattern 111111111111111111;

[0181](13) a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the bit pattern 100000000000000100 (to represent a
NaN value "zero times infinity");

[0182](14) a signal that, if asserted, will enable the high-order fraction of
the result to correspond to the bit pattern 100000000000000101 (to represent a
NaN value "underflow times overflow");

[0183](15) a signal that, if asserted, will enable the low-order fraction field
of the operand in output buffer 11A to contribute to the five least-significant bits
Siss+a..-fis» Of the fraction field of the result;

[0184] (16) a signal that, if asserted, will enable the low-order fraction field
of the operand in output buffer 11B to contribute to the five least-significant bits
Jise+a..-fisp OF the fraction field of the result; and

[0185] (17)-(21) signals that always contribute to the five least-significant bits
Sisna-.-fisp Of the fraction field of the result.

[0186] The specific patterns of output signals (1) through (21) generated by
the exemplary multiplier decision table logic 15 in response to patterns of input
signals (a) through (z) are depicted in FIGS. 4A through 4C. Generally, in FIGS. 4A-
4C, each row represents conditions of the output signals (1) through (21) that are
generated by the multiplier decision table logic 15 in response to one pattern of
input signals (a) through (z). In each row, the indicia to the left of the asterisk (*)
represent the pattern of input signals (a) through (z) and the indicia to the right of
the asterisk represent the pattern of output signals (1) through (21) with a "1"
indicating that the respective input or output signal is asserted, a "0" indicating that
the respective input or output signal is negated and a "-" indicating that the
respective input signal may be either negated or asserted. Each row is further
annotated with an indication as to the respective format 70 through 76 of the
operand in the respective operand buffers 11A and 11B and the format of the result.

[0187] Referring now to FIG. 4A, a discussion of the first row of input signal
values and corresponding output signal values follows.
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[0188](A) for the three input patterns to the left of the asterisk:

[0189] (i) the first pattern "--10------ " indicates that signal (c) is
asserted, signal (d) is negated, and signals (a), (b), and (e) through (j) may be either
asserted or negated, with the pattern indicating a value in the NaN format 76
("[NaNJ");

[0190] (i)  the second pattern "--10------ " indicates that signal (m) is
asserted, signal (n) is negated, and signals (k), (I) and (o) through (t) may be either
asserted or negated, with the pattern indicating a value in the NaN format 76
("[NaN]"); and

[0191] (iii)  the third pattern "1 -- - --" indicates that the signal (u) is
asserted, indicating that the binary-encoded value of the high-order bits f,;...fiss+5 Of
the fraction field of the operand in operand buffer 11A is greater than the
binary-encoded value of the high-order bits fss...fis+5 Of the fraction field of the
operand in operand buffer 11B, and signals (v) through (z) may be either asserted or
negated; and

[0192](B)  for the six output patterns to the right of the asterisk:

[0193] (i) the pattern "0000" to the immediate right of the asterisk
indicates that the signals provided to XOR gates 67A, 68A, 67B and 68B, which
control the toggling of the low-order bits fi;3+; and fis of the fraction fields of the
operands in operand buffers 11A and 11B before being presented to multiplier core
13, are all negated,;

[0194] (i) the next "0" indicates that the signal provided to selectors
60 and 61 and AND circuit 64, is negated thereby to ensure that the output from
multiplier core 13 will not contribute the result;

[0195] (iiiy  the next pattern "001" indicates that the signal will be
asserted that will enable selector 60 to couple signals representative of the pattern
11111111 to the result bus 17, and the signals associated with the other patterns
00000000 and 11111110 will be negated,

[0196] (iv)  the next pattern "100000" indicates selector 61 is

enabled to couple the signals associated with the bits f,...fis5+5 (comprising the
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high-order fraction field of the operand in buffer 11A) to the result bus 17 as the bits
Jusb---fisp+5 Of the fraction field of the result;

[0197] (v)  the next pattern "11" indicates that the signals provided
by the muitiplier decision table logic 15 will provide asserted signals to both AND
circuits 65 and 66, enabling both AND gates to couple signals received thereby from
both operand buffers 11A and 11B to the OR circuit 63; and

[0198] (vi)  the last pattern "00000" indicates that the signals
provided by the multiplier decision table logic 15 to the OR circuit 63 are all negated.
With such a last pattern, the OR gate will perform a bit-wise OR operation in
connection with those signals and the signals provided thereto by AND circuits 65
and 66. Further, the negated signal described in (B)(ii) provides that the signals
provided by AND circuit 64 are also negated in which case the signals coupled by
OR circuit 63 to result bus 17 will correspond to the OR of the bits fi+4...fi; from the
fraction fields of the operands in operand buffers 11A and 11B.

[0199] On the right hand side of the first row in FIG. 4A, the legend "[NaN op1
f1|f2]" indicates that the result value is in the NaN format 76 with the bits f;....fis+5
of the fraction field of the result corresponding to bits f;s...fis+5 Of the fraction field of
the operand in operand buffer 11A and the bits fis+..../is» Of the result corresponding
to the OR of the bits fis+4...fiss Of the fraction fields of the operands in both operand
buffers 11A and 11B. It should be noted that this corresponds to the result
represented by symbol (@) in the table depicted in FIG. 3.

[0200] In the context of the above discussion, the other rows of FIG. 4A and
the rows in FIGS. 4B-4C will be apparent to those skilled in the art.

[0201] As described above, the sign of the result is provided directly by the
XOR gate 54.

[0202] Multiplier decision table logic 15 may be implemented by many
different circuit elements that will be apparent to those skilled in the art, including,
but not limited to programmable logic arrays, ASIC circuits, general memory
registers, other addressable memory storage devices or a combination thereof.

[0203] One of ordinary skill in the art will recognize that other formats and bit
patterns could be used to represent the floating point operand formats without
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departing from the principles of the present invention. One of ordinary skill in the
art will also recognize that the floating point status information contained in the |
operands could easily be represented by other bit combinations (not shown) without
departing from the principles of the present invention. For example, more or fewer
bits could be used, a subset or superset of the exemplary status bits could be used,
or the most significant bits of an operand (or some other subset of bits) could be
used to indicate the floating point status information, instead of the least significant
bits illustrated.

[0204] It will be appreciated that a system in accordance with an embodiment
of the invention can be constructed in whole or in part from special purpose
hardware or a general purpose computer system, or any combination thereof. Any
portion of such a system may be controlled by a suitable program. Any program
may in whole or in part comprise part of or be stored on the system in a
conventional manner, or it may in whole or in part be provided in to the system over
a network or other mechanism for transferring information in a conventional manner.
In addition, it will be appreciated that the system may be operated and/or otherwise
controlled by means of information provided by an operator using operator input
elements (not shown) which may be connected directly to the system or which may
transfer the information to the system over a network or other mechanism for
transferring information in a conventional manner.

[0205] The foregoing description has been limited to a specific embodiment
of this invention. It will be apparent, however, that various variations and
modifications may be made to the invention, with the attainment of some or all of the
advantages of the invention. It is the object of the appended claims to cover these
and such other variations and modifications as come within the true spirit and scope
of the invention.

[0206] Other embodiments of the invention will be apparent to those skilled in
the art from consideration of the specification and practice of the invention disclosed
herein. lt is intended that the specification and examples be considered as
exemplary only, with a true scope and spirit of the invention being indicated by the
following claims.
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CLAIMS
WHAT IS CLAIMED IS:

1. A system for providing a floating point product, comprising:

an analyzer circuit configured to determine a first status of a first floating point
operand and a second status of a second floating point operand based upon data
within the first floating point operand and data within the second floating point
operand respectively; and

a results circuit coupled to the analyzer circuit and configured to assert a
resulting floating point operand containing the product of the first floating point
operand and the second floating point operand and a resulting status embedded
within the resulting floating point operand.

2. The system for providing a floating point product of claim 1, wherein
the analyzer circuit further comprises:

a first operand buffer configured to store the first floating point operand;

a second operand buffer configured to store the second floating point
operand,;

a first operand analysis circuit coupied to the first operand buffer, the first
operand analysis circuit configured to generate a first characteristic signal having
information relating to the first status; and

a second operand analysis circuit coupled to the second operand buffer, the
second operand analysis circuit configured to generate a second characteristic
signal having information relating to the second status.

3. The system for providing a floating point product of claim 2, wherein
the first status and the second status are determined without regard to memory

storage external to the first operand buffer and the second operand buffer.
4, The system for providing a floating point product of claim 3, wherein

the memory storage external to the first operand buffer and the second operand

buffer is a floating point status register.
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5. The system for providing a floating point product of claim 1, wherein
the results circuit further comprises:

a multiplier circuit coupled to the analyzer circuit, the multiplier circuit
configured to produce the product of the first floating point operand and the second
floating point operand,;

a multiplier logic circuit coupled to the analyzer circuit and configured to
produce the resulting status based upon the first status and the second status; and

a result assembler coupled to the multiplier circuit and the multiplier logic
circuit, the result assembler configured to assert the resulting floating point operand

and embed the resulting status within the resulting floating point operand.

6. The system for providing a floating point product of claim 5, wherein
the multiplier logic circuit is organized according to the structure of a decision table.

7. The system for providing a floating point product of claim 1, wherein
the product of the first floating point operand and the second floating point operand
is identical in all cases to the product that would be produced if the two operands

were first swapped.

8. The system for providing a floating point product of claim 1, wherein
the first status, the second status, and the resulting status are each one of the
following: an invalid operation status, an overflow status, an underflow status, a

division by zero status, an infinity status, and an inexact status.

9. The system for providing a floating point product of claim 8, wherein

the overflow status represents one in a group of a +OV status and a -OV status.

10.  The system for providing a floating point product of claim 8, wherein
the overflow status is represented as a predetermined non-infinity numerical value.
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11.  The system for providing a floating point product of claim 8, wherein

the underflow status represents one in a group of a +UN status and a -UN status.

12.  The system for providing a floating point product of claim 8, wherein

the underflow status is represented as a predetermined non-zero numerical value.

13.  The system for providing a floating point product of claim 8, wherein
the invalid status represents a not-a-number (NaN) status due to an invalid

operation.

14.  The system for providing a floating point product of claim 8, wherein
the infinity status represents one in a group of a positive infinity status and a
negative infinity status.

15. A method for providing a floating point product, comprising:

determining a first status of a first floating point operand and a second status
of a second floating point operand based upon data within the first floating point
operand and data within the second floating point operand respectively; and

asserting a resulting floating point operand containing the product of the first
floating point operand and the second floating point operand and a resulting status
embedded within the resulting floating point operand.

16. The method for providing a floating point product of claim 15, wherein
the determining stage further comprises:

storing the first floating point operand in a first operand buffer;

storing the second floating point operand in a second operand buffer;

generating a first characteristic signal representative of the first status; and

generating a second characteristic signal representative of the second status.

17.  The method for providing a floating point product of claim 16, wherein

the first characteristic signal and the second characteristic signal are generated
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without regard to memory storage external to the first operand buffer and the

second operand buffer.

18.  The method for providing a floating point product of claim 17, wherein
the memory storage external to the first operand buffer and the second operand

buffer is a floating point status register.

19.  The method for providing a floating point product of claim 15, wherein
the asserting stage further comprises:

producing the product of the first floating point operand and the second
floating point operand; and

asserting the resulting floating point operand having the resulting status
embedded within the resulting floating point operand.

20. The method for providing a floating point product of claim 15, wherein
the product of the first floating point operand and the second floating point operand
is identical in all cases to the product that would be produced if the two operands

were first swapped.

21.  The method for providing a floating point product of claim 15, wherein
the first status, the second status, and the resulting status are each one of the
following: an invalid operation status, an overflow status, an underflow status, a

division by zero status, an infinity status, and an inexact status.

22. The method for providing a floating point product of claim 21, wherein
the overflow status represents one in a group of a +QV status and a -OV status.

23. The method for providing a floating point product of claim 22, wherein

the overflow status is represented as a predetermined non-infinity numerical value.
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24.  The method for providing a floating point product of claim 21, wherein
the underflow status represents one in a group of a +UN status and a -UN status.

25. The method for providing a floating point product of claim 24, wherein

the underflow status is represented as a predetermined non-zero numerical value.

26. The method for providing a floating point product of claim 21, wherein
the invalid status represents a not-a-number (NaN) status due to an invalid

operation.

27. The method for providing a floating point product of claim 21, wherein
the infinity status represents one in a group of a positive infinity status and a

negative infinity status.
28.  The method for providing a floating point product of any one of claims

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or 27 wherein a set of instructions are
stored on a computer readable media, which when executed, perform the method.
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