
US 20220269743A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0269743 A1

Balasubramanian et al . (43) Pub . Date : Aug. 25 , 2022

(54) METHODS AND SYSTEMS FOR DYNAMIC
SEARCH LISTING RANKING OF
SOFTWARE COMPONENTS

(71) Applicant : Open Weaver Inc. , Miami , FL (US)

GOOF 16/9538 (2006.01)
GO6F 21/56 (2006.01)
G06K 9/62 (2006.01)
GO6N 20/00 (2006.01)

(52) U.S. CI .
CPC G06F 16/9535 (2019.01) ; G06F 16/9536

(2019.01) ; G06F 16/9538 (2019.01) ; G06F
21/565 (2013.01) ; G06K 9/6256 (2013.01) ;

G06N 20/00 (2019.01)

(72) Inventors : Ashok Balasubramanian , Chennai
(IN) ; Karthikeyan Krishnaswamy
Raja , Chennai (IN) ; Arul Reagan S ,
Chengalpattu District (IN) ; John
Hansel , Chennai (IN)

(73) Assignee : Open Weaver Inc. , Miami , FL (US)
(21) Appl . No .: 17 / 677,771
(22) Filed : Feb. 22 , 2022 9

Related U.S. Application Data
(60) Provisional application No. 63 / 153,210 , filed on Feb.

24 , 2021 .

(57) ABSTRACT

Systems and methods for automatically generating search
list rankings of software components are provided . An
exemplary method includes generating a list of software
components in response to a request , generating ranking
parameters , determining first weight values correlating with
each of the ranking parameters , generating an index corre
lating each of the software components with each of the
ranking parameters , parsing web data to populate the index ,
determining , via the ranking parameters , scores for each of
the software components , storing the scores on the index ,
applying the first weight values to the scores on the index ,
and generating , for each of the software components , a
combined score , wherein the combined score is a combina
tion of each of the scores that are associated with each of the
software components .

Publication Classification

a (51) Int . Ci .
G06F 16/9535
GOOF 16/9536

(2006.01)
(2006.01)

100

Dynamic Search Listing Ranking of Software Components System
-103 101 102

Messaging Bus 115 Database Web
GUI
Portal

API Hub 105
Ranking Weight

Assigner

104 · 112

Sort Rank
Processor

Dynamic Rank
Generator

Services Containers
107 106 114 108

Repository
Stars Rating

Service

Releases
Rating Service

Forks Rating
Service File Storage

109 110 111
- 113 Defects Rating

Service
Q & A Rating

Service
Vulnerability

Rating Service Software
Ecosystem
Crawler

100

Dynamic Search Listing Ranking of Software Components System

102

103

101

Messaging Bus

- 115

Database

Web GUI Portal

Patent Application Publication

API Hub

7105 Ranking Weight Assigner
- 104

1121

Sort Rank Processor

Dynamic Rank Generator

Aug. 25 , 2022 Sheet 1 of 8

Services Containers

· 114

106

107

108

Repository Stars Rating Service

Releases Rating Service

Forks Rating Service

File Storage

109

110

111

113

Defects Rating Service

Q & A Rating Service

Vulnerability Rating Service

Software Ecosystem Crawler

US 2022/0269743 A1

FIG . 1

200

202

Computer System

Memory

100

204

201

Processor

Dynamic Search Listing Ranking of Software Components (Processing Modules)

Patent Application Publication

205

202

Storage Modules

Network Bus

Memory

-116

114

115

Software Ecosystem Crawler
File Storage

Database

203

Aug. 25 , 2022 Sheet 2 of 8

Display 101

Search System

US 2022/0269743 A1

FIG . 2

Patent Application Publication Aug. 25 , 2022 Sheet 3 of 8 US 2022/0269743 A1

300

301

Start Assign Ranking Weights
303

Repository Star Rating Y 302
304

Releases Rating

305
Forks Rating

Process Sort Ranking
306

Defects Rating
307

Q & A Rating

308
309 Vulnerability Rating

Generate Dynamic Sort
Ranking

310

Rank and Transmit to
Search System

Stop

FIG . 3

Patent Application Publication Aug. 25 , 2022 Sheet 4 of 8 US 2022/0269743 A1

301

Start 404

Ranking Parameter

401
Popularity score
Release score
Fork and download score
Defect and quality score
Support score
Security and vulnerability score

Capturing Search Request and
Search Result List

{
" search_request " : " ess vulnerable frontend libraries ” ,
" search_result_list " : [{ name : “ comp2 " , score : 0.3 } , { name : " comp5 ” ,

score : 0.4 } ,
{ name : " comp3 ” , score : 0.35 } , { name : “ comp4 ” , score : 0.35 }]

} 402
Using Ranking Algorithm to Rank the Software Components

f (search_result_item_score , user_preference)

{ ranking_parameter : [" Security ” , " Defect " } }
4037

Assigning weights to ranking parameters

[{ param : " security " , weight : “ 0.8 " } , { param : " defect ” , weight : “ 0.6 " }]
{ ranking_parameter : [" Security " , " Defect '] }

Stop

FIG . 4

Patent Application Publication Aug. 25 , 2022 Sheet 5 of 8 US 2022/0269743 A1

302
Start

1 1 [{ param : " security ” , weight : " 0.8 " } , { param : " defect " , weight : " 0.6 " }]
{ ranking_parameter : [" Security ” , " Defect ”] }

504
501

Repository
Star Rating 505

Releases
Rating

Forks Rating 506
Rating Service Selector

Defects 507

Rating
Q & A Rating 508

Vulnerability 509
Rating

[{ rating_parameter : “ Security " ,
" values " : [{ name : " comp5 ” , score : 0.6 } , { name : " comp2 ” , score : 0.2 }] }

{ rating_parameter : “ Defect " ,
" values " : [{ name : " comp1 " , score : 0.5 } , { name : " comp2 " , score : 0.5 }] }

502]

3

7

Aggregating Score and
Normalizing

[{ name : " comp5 ” , score : 0.5 } , { name : " comp2 ” , score : 0.35 } ,
{ name : " comp1 " , score : 0.4 }] 503

Sorting the Score

3 1 [{ name : " comp5 ” , score : 0.5 } , { name : " comp4 " , score : 0.4 } ,
{ name : " comp2 ” , score : 0.35 } , { name : " comp3 ” , } score : 0.35] 1

Stop
FIG . 5

Patent Application Publication Aug. 25 , 2022 Sheet 6 of 8 US 2022/0269743 A1

309

Start

[{ name : " comp5 ” , score : 0.5 } , { name : " comp4 ” , score : 0.4 } ,
{ name : “ comp2 " , score : 0.35 } , { name : " comp3 " , score : 0.35 }]

603

601 User Preference

Assigning User Preference Programming Language
License
Security
Support

{
search_result_list : [{ name : " comp5 ” , score : 0.5 } , { name : " comp4 " , score : 0.4 } ,
{ name : " comp2 " , score : 0.35 } , { name : " comp3 ” , score : 0.35 }] ,
user_preference : { language : “ java " , license : " permissive " } ,
ranking_parameter_weight : [{ param : " security " , weight : " 0.8 " } ,
{ param : " defect ” , weight : “ 0.6 " }]

}
1

602

Using Ranking Algorithm to Rank the Software Components
f (search_result_item_score , user_preference)

{ search_result_list : [{ name : " comp5 " , rank_position : 1 } , { name :
" comp4 " , rank_position : 2 } , { name : " comp2 " , rank_position : 3 } ,
{ name : " comp3 ” , rank_position : 4 }] }

Stop

FIG . 6

Patent Application Publication Aug. 25 , 2022 Sheet 7 of 8 US 2022/0269743 A1

Start -700

701
Determine a list of software components based on a user input received from a search

system

7027
Compute the weights for the different ranking parameters based on which ranking of

the list of software parameters is to be determined

703

Crawl internet sources and retrieve information about the ranking parameters of the
software components

704

Compute a popularity score of a software component based on the retrieved
information , where the popularity score indicates how popular a software component is

7057
Compute a release score of a software component based on the retrieved information ,
where the release score indicates a frequency of release of updates of the software

component

706

Compute a fork and download score of a software component based on the retrieved
information , wherein the fork and download score indicates the user rating of the

software component

7073
Compute a defects and quality score of the software component based on the

retrieved information

TO FIG . 7B

FIG . 7A

Patent Application Publication Aug. 25 , 2022 Sheet 8 of 8 US 2022/0269743 A1

r 700
From FIG . 7A

708

Compute a support score of the software component based on the retrieved
information , where the support score indicates a level of provided support for a

software component

709

Compute a security and vulnerability score of the software component based on the
retrieved information , where the security and vulnerability score indicates a level of

security for a software component

7107
Rank the software components based on the scores of the ranking parameters and

the weight assigned to the ranking parameters

7117
Transmit the list of ranked software components to the search system

End

FIG . 7B

US 2022/0269743 Al Aug. 25 , 2022
1

METHODS AND SYSTEMS FOR DYNAMIC
SEARCH LISTING RANKING OF
SOFTWARE COMPONENTS

CROSS - REFERENCE TO RELATED PATENT
APPLICATION

[0001] This application claims the benefit of and priority
to U.S. Provisional Patent Application No. 63 / 153,210 filed
Feb. 24 , 2021 , the entire disclosure of which is incorporated
by reference herein .

TECHNICAL FIELD

[0002] The present disclosure relates generally to methods
and systems for sorting software components based on their
ecosystem activity and can be used in conjunction with a
search engine for software components .

BACKGROUND

a

[0003] As the availability of open - source technologies ,
cloud - based public code repositories , and cloud - based appli
cations increases exponentially , there is a need for software
developers to efficiently find such software components for
use in their software development . Today there are more
than 30 million public code repositories and 100,000 public
application - programming interfaces (APIs) . Moreover , there
are over 100 million articles that provide knowledge and
review of such software components .
[0004] Even with a dedicated software search engine that
produces a search similarity score , in order to make an
informed choice on whether to use a software component ,
the developer may need to know information on how other
developers are using the software component , whether the
software component has positive reviews , whether the soft
ware component is supported , whether the software com
ponent is free of bugs , whether the software component have
recent releases , and whether the software component has any
security vulnerabilities .

retrieved information , wherein the fork and download score
indicates about user rating of the software component .
Furthermore , a defect and quality score of the software
component is computed based on the retrieved information .
The retrieved information is also used to compute a support
score of the software components and a security and vul
nerability score of the software components . The support
score indicates about quality of provided support for a
software component and the security and vulnerability score
indicates about security of a software component . The
software components list is sorted based on the scores of the
ranking parameters and the weight assigned to the ranking
parameters . Finally , the list of the ranked software compo
nents is transmitted to the search system .
[0006] In some embodiments , the method may comprise
processing the list of software components from the search
or similar listing system and requesting for parameters for
which ranking information is requested and based on the
parameters and calling all or some of the services from one
of repository stars rating service , releases rating service ,
forks rating service , defect rating service , Q & A rating
service , vulnerability rating service and collating the ranking
score from these services and returning a pair value along
with the respective parameter . In further embodiments , the
method comprises comprising leveraging machine learning
technologies to compute the weights or priority of the
different ranking parameters and computing weights based
on a ranking request of the user , the software component ,
and the user preferences using similar software components .
In further embodiments , the method comprises leveraging
machine learning technologies to calculate the popularity of
the software components and processing ranking of the
software components across different provider metrics as
well as third party software component rating services and
normalizing the ratings across various sources for the same
or multiple components to determine popularity of the
software component .
[0007] In yet further embodiments , the release score is
computed based on the release frequency of the software
components and a frequency of recent updates of the soft
ware components .
[0008] In one embodiment , the method comprises com
puting a usage rating for the software components based on
number of user downloads and number of forks in a software
code repository like GitHub or GitLab or consumption of
services metrics or download of software components met
rics .
[0009] In some embodiments , the defect and quality score
of the software components is computed by leveraging a
combination of code scanning to identify defects , listed
issues and defects from the software components provider
site as well as public forums and using machine learning to
normalize reviews of the software components number of
reported defects .
[0010] In an embodiment , the support score is computed
based on number of questions raised in public forums and a
time period of answering the questions by a provider of the
software component .
[0011] In some embodiments , the security and vulnerabil
ity score are computed based on code scanning to identify
security bugs , vulnerabilities listed in sites such as CVE and
using machine learning to normalize the number of reviews
of the software component and number of reported vulner
abilities of the software component .

SUMMARY

a

a

[0005] There is provided , in accordance with an embodi
ment of the present invention a method of dynamic search
listing ranking of software components . According to the
method a list of software components is determined based
on a user input received from a search system . Thereafter ,
the weights for the different ranking parameters based on
which the ranking of the list of the software components is
to be determined is computed . The ranking parameters
include a popularity score of a software component , a
release score of the software component , a fork and down
load score of the software component , a release score of the
software component , a defect and quality score of a software
component , a support score of a software component , a
security and vulnerability score of a software component .
Further , the information about the ranking parameters of the
software component is retrieved by crawling the various
sources on the interne . Based on the retrieved information ,
a popularity score of the software components is computed
that indicates how popular a software component is . Simi
larly , a release score of the software components is com
puted based on the retrieved information , wherein the
release score indicates about frequency of release of updates
of the software component . Also , a fork and download score
of the software components is commuted based on the

a

US 2022/0269743 A1 Aug. 25 , 2022
2

[0012] In further embodiments , the rank for each of the
software component is determined based on the information
from the repository stars rating service , the releases rating
service , the forks rating service , the defect rating service , the
Q & A rating service , the vulnerability rating service and
using machine learning techniques to apply the user prefer
ences to generate the ranking of the software components .
[0013] In some embodiments , crawling the internet
sources further comprising crawling public repositories ,
cloud providers , Q & A , review sites , vulnerability databases
to parse and store information on popularity , releases , forks ,
quality , support , and security information of the software
components into the File Storage .
[0014] One implementation of the present disclosure is a
system to for automatically generating search list rankings
of software components . The system includes one or more
processors and memory storing instructions that , when
executed by the one or more processors , cause the one or
more processors to perform operations . The operations
include generating a list of software components in response
to a request , generating a number of ranking parameters ,
determining a first number of weight values correlating with
each of the number of ranking parameters , generating an
index correlating each of the number of software compo
nents with each of the number of ranking parameters ,
parsing web data to populate the index , determining , via the
ranking parameters , a number of scores for each of the
number of software components , storing the scores on the
index , applying the first number of weight values to the
number of scores on the index , and generating , for each of
the software components , a combined score , wherein the
combined score is a combination of each of the number of
scores that are associated with each of the number of
software components .
[0015] In some embodiments , the ranking parameters
include a popularity score , a release score , a detect and
quality score , a support score , a fork and download score , a
Q & A score and a security and vulnerability score . The
release score is a standardized measurement relative to a
frequency of updates of a software component . The popu
larity score is a standardized measurement relative to a
popularity of a software component . The fork and download
score is a standardized measurement relative to a number of
downloads associated with a software component over a
fixed period of time . The defect and quality score is a
standardized measurement relative to an amount of defects
logged in association with a software component . The Q & A
score is a standardized measurement relative to the amount
of activity logged in association with a provision of cus
tomer support associated with a software component .
[0016] In some embodiments , the popularity score , the
release score , the detect and quality score , the support score ,
the fork and download score , the Q & A score and the security
and vulnerability score are normalized across provider data
and third party data by a machine learning model .
[0017] In some embodiments , the fork and download
score is determined based on a number of user downloads of
a software component across different providers of the
software component , the different providers of the software
component including a number of code repositories .
[0018] In some embodiments , the Q & A score is based on
a number of questions raised in public forums regarding a
software component and a time period elapsed before a
service provider provides a response .

[0019] In some embodiments , the operations include
monitoring one or more test software components , periodi
cally determining , via the number of ranking parameters , a
number of test scores associated with the one or more test
software components , extracting circumstantial web data
regarding the number of test scores , generating training data
including interpreted correlations between the extracted
circumstantial data and the number of test scores , and
training a machine learning model using the training data ,
wherein the trained machine learning model is configured to
update the weight values .
[0020] In some embodiments , the circumstantial web data
includes data collected from news media , social media , and
economic forecasts .
[0021] In some embodiments , the web data includes scan
ning , by a data - crawler , public repositories , cloud providers ,
Q & A , review sites , vulnerability databases to retrieve infor
mation on popularity , releases , forks , quality , support , and
security information regarding a software component , and
storing , by the data - crawler , the information to the index ,
wherein the index is configured to operate as file storage .
[0022] Another implementation of the present disclosure
relates to a method for automatically generating search list
rankings of software components . The method includes
generating a list of software components in response to a
request , generating a number of ranking parameters , deter
mining a first number of weight values correlating with each
of the number of ranking parameters , generating an index
correlating each of the number of software components with
each of the number of ranking parameters , parsing web data
to populate the index , determining , via the ranking param
eters , a number of scores for each of the number of software
components , storing the scores on the index , applying the
first number of weight values to the number of scores on the
index , and generating , for each of the software components ,
a combined score , wherein the combined score is a combi
nation of each of the number of scores that are associated
with each of the number of software components .
[0023] In some embodiments , the method includes moni
toring one or more test software components , periodically
determining , via the number of ranking parameters , a num
ber of test scores associated with the one or more test
software components , extracting circumstantial web data
regarding the number of test scores , generating training data
including interpreted correlations between the extracted
circumstantial data and the number of test scores , and
training a machine learning model using the training data ,
wherein the trained machine learning model is configured to
update the weight values .
[0024] In some embodiments , the web data includes scan
ning , by a data - crawler , public repositories , cloud providers ,
Q & A , review sites , vulnerability databases to retrieve infor
mation on popularity , releases , forks , quality , support , and
security information regarding a software component , and
storing , by the data - crawler , the information to the index ,
wherein the index is configured to operate as file storage .
[0025] In some embodiments , the circumstantial web data
includes data collected from news media , social media , and
economic forecasts .
[0026] Another implementation of the present disclosure
relates to one or more non - transitory computer - readable
media storing instructions thereon . The instructions , when
executed by one or more processors , cause the one or more
processors to generate a list of software components in

>

a

US 2022/0269743 A1 Aug. 25 , 2022
3

ponent , and storing , by the data - crawler , the information to
the index , wherein the index is configured to operate as file
storage .

BRIEF DESCRIPTION OF THE DRAWINGS

a

response to a request , generate a number of ranking param
eters , determine a first number of weight values correlating
with each of the number of ranking parameters , generate an
index correlating each of the number of software compo
nents with each of the number of ranking parameters , parse
web data to populate the index , determine , via the ranking
parameters , a number of scores for each of the number of
software components , store the scores on the index , apply
the first number of weight values to the number of scores on
the index , and generate , for each of the software compo
nents , a combined score , wherein the combined score is a
combination of each of the number of scores that are
associated with each of the number of software components .
[0027] In some embodiments , the ranking parameters
include a popularity score , a release score , a detect and
quality score , a support score , a fork and download score , a
Q & A score and a security and vulnerability score . The
release score is a standardized measurement relative to a
frequency of updates of a software component . The popu
larity score is a standardized measurement relative to a
popularity of a software component . The fork and download
score is a standardized measurement relative to a number of
downloads associated with a software component over a
fixed period of time . The defect and quality score is a
standardized measurement relative to an amount of defects
logged in association with a software component . The Q & A
score is a standardized measurement relative to the amount
of activity logged in association with a provision of cus
tomer support associated with a software component .
[0028] In some embodiments , the popularity score , the
release score , the detect and quality score , the support score ,
the fork and download score , the Q & A score and the security
and vulnerability score are normalized across provider data
and third party data by a machine learning model .
[0029] In some embodiments , the fork and download
score is determined based on a number of user downloads of
a software component across different providers of the
software component , the different providers of the software
component including a number of code repositories .
[0030] In some embodiments , the Q & A score is based on
a number of questions raised in public forums regarding a
software component and a time period elapsed before a
service provider provides a response .
[0031] In some embodiments , the instructions cause the
processor to monitor one or more test software components ,
periodically determine , via the number of ranking param
eters , a number of test scores associated with the one or more
test software components , extract circumstantial web data
regarding the number of test scores , generate training data
including interpreted correlations between the extracted
circumstantial data and the number of test scores ; and train
a machine learning model using the training data , wherein
the trained machine learning model is configured to update
the weight values .
[0032] In some embodiments , the circumstantial web data
includes data collected from news media , social media , and
economic forecasts .

[0033] In some embodiments , parsing the web data
includes scanning , by a data - crawler , public repositories ,
cloud providers , Q & A , review sites , vulnerability databases
to retrieve information on popularity , releases , forks , quality ,
support , and security information regarding a software com

[0034] The following drawings are illustrative of particu
lar examples for enabling systems and methods of the
present disclosure , are descriptive of some of the methods
and mechanism , and are not intended to limit the scope of
the invention . The drawings are not to scale (unless so
stated) and are intended for use in conjunction with the
explanations in the following detailed description .
[0035] FIG . 1 shows an example high - level architecture of
a system to perform dynamic search listing ranking of
software components , according to some embodiments .
[0036] FIG . 2 shows a block view of a computer system
implementation performing dynamic search listing ranking
of software components , according to some embodiments .
[0037] FIG . 3 shows a process for generating dynamic
search listing ranking of software components , according to
some embodiments .
[0038] FIG . 4 shows a process of using ranking param
eters for dynamic search listing ranking of software com
ponents , according to some embodiments .
[0039] FIG . 5 shows a process for implementing a sorting
method for dynamic search listing ranking of software
components , according to some embodiments .
[0040] FIG . 6 shows a process for summarizing dynamic
search listing ranking of software components , according to
some embodiments .
[0041] FIGS . 7A - 7B show a high - level process for
dynamic search listing ranking of software components ,
according to some embodiments .
[0042] Persons skilled in the art will appreciate that ele
ments in the figures are illustrated for simplicity and clarity
and may represent both hardware and software components
of the system . Further , the dimensions of some of the
elements in the figure may be exaggerated relative to other
elements to help to improve understanding of various exem
plary embodiments of the present disclosure . Throughout
the drawings , it should be noted that like reference numbers
are used to depict the same or similar elements , features , and
structures .

a

DETAILED DESCRIPTION

[0043] Exemplary embodiments now will be described .
The disclosure may , however , be embodied in many differ
ent forms and should not be construed as limited to the
embodiments set forth herein ; rather , these embodiments are
provided so that this disclosure will be thorough and com
plete , and will fully convey its scope to those skilled in the
art . The terminology used in the detailed description of the
particular exemplary embodiments illustrated in the accom
panying drawings is not intended to be limiting . In the
drawings , like numbers refer to like elements .
[0044] In the current state of the art , to select a software
component , a developer relies on ratings on user information
of the software component . The developer must check
various websites and manually scan through the user
reviews to determine if the software component is good to
use . At a point in time , there may be plurality of software
components available for a particular project the developer
is working on . The developer must go through all the

US 2022/0269743 A1 Aug. 25 , 2022
4

a

available information for all the possible software compo
nent to select the most appropriate software component .
Thus , the entire processes become tiresome and time inef
ficient .
[0045] The present subject matter discloses a method and
system for generating a dynamic search listing ranking of
software components . In some embodiments , to help the
developer choose a right software component based on its
ecosystem activity , a system of the present subject matter
will compute scores for popularity , release frequency , usage
by others , defects , questions answered and support and
security vulnerabilities of the software component . The
computed score is then used to prioritize and rank the
software components based on the developer preferences ,
thereby eliminating significant search effort across multiple
sites for Q & A , reviews , security , defects , and popularity .
This will also reduce any manual and / or interpretation errors
and help the developer choose the right software component
every time .

109 , the Q & A rating service 110 , and the vulnerability rating
service 111. The above mentioned repository stars rating
service 106 , releases rating service 107 , forks rating service
108 , defect rating service 109 , Q & A rating service 110 , and
vulnerability rating service 111 may be referred to as “ ser
vices ” , hereinafter . The services may generate scores for
ranking parameters of the software components . The sort
rank processor 104 then collates the ranking score from
these services and returns a pair value along with the
respective parameter . The generation of ranking score is
described further in detail herein .
[0050] The rank weight assigner 105 leverages machine
learning technologies to compute weights or priorities of the
different ranking parameters including , but not limited to a
popularity score of a software component , a release score of
the software component , a fork and download score of the
software component , a release score of the software com
ponent , a defect and quality score of a software component ,
a support score of a software component , a security and
vulnerability score of a software component . The score of
ranking parameters are computed based on the ranking
request , the component , and the user preferences of this user
and / or all other users using similar software components .
For example , equal weight may be assigned to all the
ranking parameters while in another example , some ranking
parameters may be assigned more weight than the other
ranking parameters . In an example , the ranking weight
assigner 105 may assign weight based on a predetermined
criteria or as indicated in case - to - case basis .
[0051] In some embodiments , a software ecosystem
crawler 113 crawls the internet sources including , but not
limited to , public repositories , cloud providers , Q & A ,
review sites , and vulnerability databases to parse and store
information on popularity , releases , forks , quality , support ,
and security information into the file storage 114. The
information stored in the file storage 114 may be used by the
services to determine scores of various ranking parameters .
[0052] In some embodiments , the repository stars rating
service 106 leverages machine learning technologies to
calculate the popularity score of software components from
the list of the software components based on the information
saved in the file storage 114. The repository stars rating
service 106 determines ratings , such as number of stars or
other forms of popularity ranking of the software component
across different provider metrics as well as third party
software component rating services to determine the popu
larity score of the software components . Thereafter the
ratings across diverse sources for the software components
are utilized .
[0053] In some embodiments , the releases rating service
107 computes a release score of the software components
based on the release frequency of the software component
and frequency of release of updates of the software compo
nents . The releases rating service 107 access the information
stored in the file storage 114 to determine the release
frequency of the software component or the frequency of
release of updates . The release frequency of the software
components and the frequency of release of updated of the
software components signifies that the software component
is being supported well with multiple releases .
[0054] In some embodiments , the forks rating service 108
computes a fork and download score of the software com
ponents based on the information stored in the file storage
114. The fork and download score indicates the usage rating
for a software component based on number of downloads of
the software components across different providers . This is
signified by the number of forks in a software code reposi
tory , such as GitHub or GitLab . Other providers may track

[0046] FIG . 1 shows an example high - level architecture of system 100 to perform dynamic search listing ranking of
software components , according to some embodiments . The
system 100 includes an application programming interface
(API) hub 102 , a messaging bus 103 , a sort rank processor
104 , a rank weight assigner 105 , a repository stars rating
service 106 , a releases rating service 107 , a forks rating
service 108 , a defect rating service 109 , a Q & A rating
service 110 , a vulnerability rating service 111 , a dynamic
rank generator 112 , a software ecosystem crawler 113 , a file
storage 114 , a database 115 and a search system 101 to
perform the task of dynamic search listing ranking of
software components given the list of software components
that is potentially generated from the search system 101 .
[0047] In some embodiments , the search system 101 cap
tures and transmits a search request , ranking needs , and user
preferences to the system 100. For example , the search
system 101 may capture the search request , ranking needs ,
and user preferences inputted by a user . After processing of
the request , the search system 101 will incorporate and
display the listing that it receives .
[0048] The request from search system 101 is transmitted
to the API hub 102 , which acts as a gateway for accepting
and transmitting all requests . The API hub 102 hosts web
services for receiving the requests and creating request
messages to provide to the messaging bus 103. The mes
saging bus 103 is used to generate a filter based on the search
request , ranking needs , and user preferences . The filter may
be used to pull out an initial list of software components . The
messaging bus 103 supports event driven architecture , thereby enabling long running processes to be decoupled
from requesting system's calls . This decoupling will help the
system to service the request and notify calling system once
the entire process of generating a filter is completed . The
messaging bus 103 includes job listeners configured to listen
to the messages in the messaging bus 103 .
[0049] Based on the filter generated by the messaging bus
103 , the sort rank processor 104 processes a list of software
components from the search or a similar listing system and
a request for ranking parameters for which ranking infor
mation is requested . For example , ranking parameters may
be inputted by the user and captured by the search system
101. The ranking parameters may then be captured by the
messaging hub and further the messaging hub 101 may
transmit the ranking parameters to the sort rank processor
104. Based on the ranking parameters , the sort rank proces
sor 104 calls all or some of a number of services such as the
repository stars rating service 106 , the releases rating service
107 , the forks rating service 108 , the defect rating service

a

2

US 2022/0269743 A1 Aug. 25 , 2022
5

this as a consumption of services or download of software
components . All this information is used by the forks rating
service 108 to compute the fork and download score of the
respective software components .
[0055] In some embodiments , the defect rating service 109
computes a defect and quality score of the software com
ponents by leveraging a combination of code scanning to
identify defects , listed issues and defects from the software
components provider site as well as public forums . The
computation may be processed based on the information
stored in the file storage 114. The defect rating service 109
uses machine learning to normalize the fact that more
popular software components are reviewed more and hence
have higher defects reported whereas rarely used software
components may have no defects reported though they may
contain some . Thus , based on the number of reviews and
number of defects reported , the defects rating service 109
may compute the defect and quality score of the software
components .
[0056] In some embodiments , the Q & A rating service 110
computes a support score for the software components based
on how many questions are raised in public forums about the
software components and how soon and how well the
questions are answered by the provider of the software
components or other users . To compute the support score ,
the Q & A rating service 110 access the file storage 114 and
analyzes the data to determine the support score of the
software component .
[0057] In some embodiments , the vulnerability rating ser
vice 111 computes a security and vulnerability score of the
software components based on code scanning and based on
the information stored in the file storage 114. The security
and vulnerability score is used to identify security bugs , or
vulnerabilities listed in sites such as CVE . The security and
vulnerability score use machine learning to normalize the
fact that more popular software components are reviewed
more and hence have higher vulnerabilities reported whereas
rarely used software components may have no vulnerability
reported though they may contain some .
[0058] In some embodiments , based on the scores gener
ated by the different services as described above and the
weights assigned to each of the ranking parameter scores ,
the dynamic rank generator 112 computes the rank for each
software component . The dynamic rank generator 112 may
analyze the scores of each of the ranking parameters to
determine a rank of the software components . Based on the
score of the ranking parameters , the dynamic rank generator
112 may determine the rank of the software components .
The top ranked software component may be presented as the
best software component for the user . In an example , it is
possible that multiple components might have the same rank
based on the score of the ranking parameters . In such cases ,
the dynamic rank generator 112 uses machine learning
techniques to apply the user preferences to generate the
ranking . In an example , after it is determined that the
two - software component has same rank , the system 100 may
prompt the user to input the user preference and , based on
the user preference , the dynamic rank generator 112 may
decide the rank of the software components that would
otherwise have identical ranks .
[0059] In some embodiment , and as explained above , the
file storage 114 stores the information retrieved by the
software ecosystem crawler 112. Further , the file storage 114
is used to store document type of data , source code files ,
documents , readme files , installation guides , user guides ,
neural network models etc.
[0060] Further , in some embodiments , the database 115 is
a relational database management system RDBS database ,

such as MySQL , and functions to store all meta - data per
taining to the requests received from the search system ,
messaging bus , request processor and from other system
components described above . The meta - data includes details
of every request to identify the user submitting the request ,
and other details to track the progress as the system pro
cesses the request through its different tasks . The status of
each execution step of complete process is stored in this
database to track and notify the system on completion .
[0061] FIG . 2 shows a block view of a computer system
implementation 200 performing dynamic search listing
ranking of software components , according to some embodi
ments . This may include a processor 201 , memory 202 ,
display 203 , network bus 204 , and other input / output like a
mic , speaker , wireless card etc. The dynamic search listing
ranking of software components modules 100 , file storage
114 , database 115 , software ecosystem crawler 116 are
stored in the memory 202 which provides the necessary
machine instructions to the processor 201 to perform the
executions for dynamic search listing ranking of software
components . In embodiments , the processor 201 controls the
overall operation of the system and manages the communi
cation between the components through the network bus
204. The memory 202 holds the dynamic search listing
ranking of software components system code , data , and
instructions of the system processing modules 100 and
several types of the non - volatile memory and volatile
memory . The external search system 101 interacts with the
computer system via the network bus 204 .
[0062] FIG . 3 shows a process for dynamic search listing
ranking of software components , according to some embodi
ments . It should be understood that the method steps are
shown as a reference only and sequence of the method steps
should not be construed as limiting . The method steps can
include any additional steps in any order . Although the
process 300 may be implemented in any system , the process
300 as shown is provided in reference to the system 100 for
ease of explanation .
[0063] In step 301 , the input component list as well as user
preferences and the ranking parameters are captured from
the search system and weights are assigned to the ranking
parameters based on the user preferences , software compo
nent list and ranking request . In step 302 , the process of
sorting of rank of the software components is done . To
perform step 302 , different rating services are called based
on non - zero weighted ranking parameters . In step 303 the
popularity score is computed . In step 304 , the release score
is computed . In step 305 , the fork and download score is
computed based on forks or downloads . In step 306 , the
defect and quality score are computed . In step 307 , the
support score based on Q & A information is computed . In
step 308 , the security and vulnerability score are computed .
In step 309 , based on all the scores and the individual
weights , the ranking for each software component is com
puted . In step 310 , the list of software components is sorted
and ranked based on the dynamic sort ranking scores and is
transmitted to the search system .
[0064] FIG . 4 illustrates step 301 of process 300 in greater
detail and can be performed to assign ranking weights used
in dynamic search listing ranking of software components ,
according to some embodiments . It should be understood
that the method steps are shown as a reference only and
sequence of the method steps should not be construed as
limitation . The method steps can include any additional
steps in any order .
[0065] In some embodiments , in step 401 , the input search
request and search result list are captured from the search
system . The input search text is used to determine ranking

US 2022/0269743 A1 Aug. 25 , 2022
6

{
" query ” : “ less vulnerable frontend libraries ” ,
" ranking parameter " : [" Security ” , " Defect ”]

}

parameters . The ranking parameters include a popularity
score of a software component , a release score of the
software component , a fork and download score of the
software component , a defect and quality score of a software
component , a support score of a software component , a
security and vulnerability score of a software component . In
step 402 the ranking parameters are identified based on the
received input search request . The step 402 uses a multi label
classification machine learning model trained on historical
search query dataset as well as human annotated dataset . The
multi label classification model tries to classify the search
query into any of the categories such as popularity , release ,
fork , defect , support , security , etc. These categories are set
to ranking parameters . For example , for the search query
“ less vulnerable frontend libraries ” the ranking parameters
are set as “ Security ” and “ Defect . ” The sample json output
structure from step 402 is shown below :

[0066] In some embodiments , in step 403 , the ranking
parameters which were identified in the step 401 are
assigned with weights . These weights may assist in identi
fying the right ranking option to the input query . Higher
weight is assigned to first item of ranking parameter list
retrieved from step 402. Subsequent weights in a gradual
decreasing order are assigned to the subsequent items in the
ranking parameter list . For example , for the search query
" less vulnerable frontend libraries , ” the following is the
output from the step 403 :

{
ranking parameter : [" Security " , " Defect "] ,
" ranking param_weight " : [{ param : ” security ” , weight : “ 0.8 " } , { param : " defect ” ,
weight : “ 0.6 " }]

.

}

[0067] FIG . 5 illustrates step 302 of process 300 in greater
detail and can be performed to process the sort ranking used
in dynamic search listing ranking of software components ,
according to some embodiments . It should be understood
that the process steps are shown as a reference only and
sequence of the method steps should not be construed as
limitation . The method steps can include any additional
steps in any order . In an example , a one processor may
execute a stored program comprising a sequence of program
instructions that enables the processor to perform the
method of the present subject matter . The computer program
may be stored in a computer readable medium .
[0068] In some embodiments , in step 501 , a rating service
selector selects different rating services such as repository
star rating 504 , release rating 505 , forks rating 506 , defects
rating 507 , Q & A rating 508 , and vulnerability rating 509
based on the ranking parameter categories identified . Step
501 provides the search result list with rating scores to an
appropriate ranking parameter category list . Any search
result items which are not part of the rating selector are
placed under an “ other ” category . For example , for the
search query “ less vulnerable frontend libraries ” and ranking
parameter “ Security ” and “ Defect , ” the sample rating ser
vice selector output will be given below . as

[
{
“ rating_parameter ” : “ Security ” ,

" values " : [{ name : " comp5 ” , score : 0.6 } , { name : " comp2 ” , score : 0.2 } ...]
} ;
{
“ rating_parameter ” : “ Defect ” ,

" values " : [{ name : " compl ” , score : 0.5 } , { name : " comp2 ” , score : 0.5 } ...]
}
{
" rating parameter " : " Others ” ,
" values " : [{ name : " comp7 ” , score : 0.3 } , { name : " comp8 ” , score : 0.2 } ...]
}

]

US 2022/0269743 A1 Aug. 25 , 2022
7

[0069] In some embodiments , in step 502 , the rating
scores produced by step 501 are aggregated against the name
field , and the scores are added and normalized to unit
normalization . After the data is processed , the sample output
may appear as shown below . In this example , rating scores
associated with a name " comp2 ” are combined together with
a single score of 0.35 .

[
{ " name " : " comp5 ” , score : 0.5 } , { " name " : " comp2 ” , score : 0.35 } ,
{ " name " : " compl ” , score : 0.4 } , { " name " : " comp7 ” , score : 0.3 } , { " name " :
" comp8 ” , score : 0.2 } ...

]

[0070] In some embodiments , in step 503 , the scores are
sorted in descending order to provide the ranking to search
listing of software components . For example , the following
may be an output of step 503 .

[
{ " name " : " comp5 ” , score : 0.5 } , { " name " : " comp1 ” , score : 0.4 } ,
{ " name " : " comp2 ” , score : 0.35 } , { " name " : " comp7 ” , score : 0.3 } , { " name " :
“ comp8 ” , score : 0.2 } ...

.

]

[0071] FIG . 6 illustrates step 309 of process 300 in greater
detail and can be performed to summarize dynamic search
listing ranking of software components , according to some
embodiments . It should be understood that the method steps
are shown as a reference only and sequence of the method
steps should not be construed as limitation . The method
steps can include any additional steps in any order .
[0072] In some embodiments , in step 601 , user prefer
ences such as programming language , license , security and
support are taken into account for search list ranking . A user
preference is collected from a user directly during the user's
sign up to the search system . The user preference is also built
indirectly when the user selects a search result item from the
search result page . For example , if the user selects a software
component from search result page then the component's
attributes such as programming language , security , license
and support are added to user preference . If the user is
anonymous , then an anonymous user preference profile may
be created . A sample output from step 601 is shown below .
As shown , the search_result_list field is the output from
process step 302 (e.g. , step 503) and ranking parameter_
weight is the output from process step 301 (e.g. , step 403) .
The field “ user_preference ” holds the preferences set by the
use either directly or indirectly .

a

a

{
" search_result_list " : [{ name : " comp5 ” , score : 0.5 } , { name : " comp4 " ,
score : 0.4 } , { name : " comp2 ” , score : 0.35 } , { name : " comp3 ” , score : 0.35 }] ,
" user_preference " : { language : “ java ” , license ; " permissive " } ,
" ranking_parameter_weight " : [{ param : “ security " , weight : " 0.8 " } , { param : " defect ” ,
weight : “ 0.6 " }]

}

US 2022/0269743 A1 Aug. 25 , 2022
8

a

[0073] In some embodiments , in step 602 , a ranking model
is used to improve the relevance ranking of the search result
list . This model is built from a historical search query dataset
as well as a human annotated dataset with additional features
such as software components name , readme text , description
and rating scores . The ranking model ranks search result list
based on the search query relevance . Finally , a user prefer
ence which was determined in step 601 may be used to
re - rank the result list based on user preference , if it exists .
The sample output from this step is provided below .

the weight assigned to the ranking parameters . In the step
711 , the list of ranked software components is transmitted to
the search system .
[0076] As will be appreciated by one of skilled in the art ,
the present disclosure may be embodied as a method and
system . In the specification , there has been disclosed exem
plary embodiments of the invention . Although specific terms
are employed , they are used in a generic and descriptive
sense only and not for purposes of limitation of the scope of
the subject matter described herein .

{
search_result_list : [{ name : " comp5 ” , rank_position : 1 } , { name : " comp4 " ,
rank_position : 2 } , { name : " comp2 ” , rank_position : 3 } , { name : " comp3 ” ,
rank_position : 4 }]

}

a

[0074] FIGS . 7A - 7B show a high - level process 700 for
dynamic search listing ranking of software components ,
according to some embodiments . It should be understood
that the method steps are shown as a reference only and
sequence of the method steps should not be construed as
limitation . The method steps can include any additional
steps in any order . Although , the process 700 may be
implemented in any system , the example process 700 is
provided in reference to the system 100 for ease of expla
nation .

[0075] In some embodiments , in the step 701 , a list of
software component is determined based on a user input . In
an example , the user input as well as user preferences and
ranking parameters are captured from a search system . At
step 702 , the weights for the different ranking parameters
based on which the ranking of the list of the software
components is to be determined is computed . The ranking
parameters include a popularity score of a software compo a
nent , a release score of the software component , a fork and
download score of the software component , a release score
of the software component , a defect and quality score of a
software component , a support score of a software compo
nent , a security and vulnerability score of a software com
ponent . In an example , weights are assigned based on the
user preferences , software component list and ranking
request . At step 703 , internet sources are crawled and
information about the non - zero weighted ranking param
eters are retrieved . The information may be saved in a
storage , such as file storage 114. At step 704 , a popularity
score for each of the software components is computed
based on the retrieved information , wherein the popularity
score indicates how popular a software component is . At
step 705 , a release score of the software components is
computed based on the retrieved information , wherein the
release score indicates about frequency of release of updates
of a software component . At step 706 , the fork and download
score of a software component is determined based on the
retrieved information . At step 707 , a defect and quality score
of the software components is determined based on the
retrieved information . At step 708 , a support score of the
software components is determined based on the retrieved
information , wherein the support score indicates about pro
vided support for a software component . At step 709 , the
security and vulnerability score of the software components
computed based on the retrieved information , wherein the
security and vulnerability score indicate about security of a
software component . At step 710 , the software components
are ranked based on the scores of the ranking parameters and

What is claimed is :
1. A system for automatically generating search list rank

ings of software components , the system comprising :
one or more processors and memory storing instructions

that , when executed by the one or more processors ,
cause the one or more processors to perform operations
comprising :
generating a list of software components in response to

a request ;
generating a plurality of ranking parameters ;
determining a first plurality of weight values correlat

ing with each of the plurality of ranking parameters ;
generating an index correlating each of the plurality of

software components with each of the plurality of
ranking parameters ;

parsing web data to populate the index ;
determining , via the ranking parameters , a plurality of

scores for each of the plurality of software compo
nents ;

storing the scores on the index ;
applying the first plurality of weight values to the

plurality of scores on the index ; and
generating , for each of the software components , a

combined score , wherein the combined score is a
combination of each of the plurality of scores that are
associated with each of the plurality of software
components .

2. The system of claim 1 , wherein the ranking parameters
comprise a popularity score , a release score , a detect and
quality score , a support score , a fork and download score , a
Q & A score and a security and vulnerability score , wherein :

the release score is a standardized measurement relative to
a frequency of updates of a software component ;

the popularity score is a standardized measurement rela
tive to popularity of a software component ;

the fork and download score is a standardized measure
ment relative to a number of downloads associated with
a software component over a fixed period of time ;

the defect and quality score is a standardized measure
ment relative to an amount of defects logged in asso
ciation with a software component ; and

the Q & A score is a standardized measurement relative to
the amount of activity logged in association with a
provision of customer support associated with a soft
ware component .

3. The system of claim 2 , wherein the popularity score , the
release score , the detect and quality score , the support score ,
the fork and download score , the Q & A score and the security
and vulnerability score are normalized across provider data
and third party data by a machine learning model .

a

a

a

US 2022/0269743 A1 Aug. 25 , 2022
9

4. The system of claim 2 , wherein the fork and download
score is determined based on a number of user downloads of
a software component across different providers of the
software component , the different providers of the software
component comprising a plurality of code repositories .

5. The system of claim 2 , wherein the Q & A score is based
on a number of questions raised in public forums regarding
a software component and a time period elapsed before a
service provider provides a response .

6. The system of claim 1 , the operations further compris
ing :

monitoring one or more test software components ;
periodically determining , via the plurality of ranking

parameters , a plurality of test scores associated with the
one or more test software components ;

extracting circumstantial web data regarding the plurality
of test scores ;

generating training data comprising interpreted correla
tions between the extracted circumstantial data and the
plurality of test scores ; and

training a machine learning model using the training data ,
wherein the trained machine learning model is config
ured to update the weight values .

7. The system of claim 6 , wherein the circumstantial web
data comprises data collected from news media , social
media , and economic forecasts .

8. The system of claim 1 , wherein parsing the web data
comprises :

scanning , by a data - crawler , public repositories , cloud
providers , Q & A , review sites , vulnerability databases
to retrieve information on popularity , releases , forks ,
quality , support , and security information regarding a ,
software component ; and

storing , by the data - crawler , the information to the index ,
wherein the index is configured to operate as file
storage .

9. A method for automatically generating search list
rankings of software components , the method comprising :

generating a list of software components in response to a
request ;

generating a plurality of ranking parameters ;
determining a first plurality of weight values correlating

with each of the plurality of ranking parameters ;
generating an index correlating each of the plurality of

software components with each of the plurality of
ranking parameters ;

parsing web data to populate the index ;
determining , via the ranking parameters , a plurality of

scores for each of the plurality of software components ;
storing the scores on the index ;
applying the first plurality of weight values to the plurality

of scores on the index ; and
generating , for each of the software components , a com

bined score , wherein the combined score is a combi
nation of each of the plurality of scores that are
associated with each of the plurality of software com
ponents .

10. The method system of claim 9 , further comprising :
monitoring one or more test software components ;
periodically determining , via the plurality of ranking

parameters , a plurality of test scores associated with the
one or more test software components ;

extracting circumstantial web data regarding the plurality
of test scores ;

generating training data comprising interpreted correla
tions between the extracted circumstantial data and the
plurality of test scores ; and

training a machine learning model using the training data ,
wherein the trained machine learning model is config
ured to update the weight values .

11. The method of claim 9 , wherein parsing the web data
comprises :

scanning , by a data - crawler , public repositories , cloud
providers , Q & A , review sites , vulnerability databases
to retrieve information on popularity , releases , forks ,
quality , support , and security information regarding a
software component ; and

storing , by the data - crawler , the information to the index ,
wherein the index is configured to operate as file
storage .

12. The method system of claim 10 , wherein the circum
stantial web data comprises data collected from news media ,
social media , and economic forecasts .

13. One or more non - transitory computer - readable media
storing instructions thereon , wherein the instructions , when
executed by one or more processors , cause the one or more
processors to :

generate a list of software components in response to a
request ;

generate a plurality of ranking parameters ;
determine a first plurality of weight values correlating

with each of the plurality of ranking parameters ;
generate an index correlating each of the plurality of

software components with each of the plurality of
ranking parameters ;

parse web data to populate the index ;
determine , via the ranking parameters , a plurality of

scores for each of the plurality of software components ;
store the scores on the index ;
apply the first plurality of weight values to the plurality of

scores on the index ; and
generate , for each of the software components , a com

bined score , wherein the combined score is a combi
nation of each of the plurality of scores that are
associated with each of the plurality of software com
ponents .

14. The non - transitory computer - readable media of claim
13 , wherein the ranking parameters comprise a popularity
score , a release score , a detect and quality score , a support
score , a fork and download score , a Q & A score and a
security and vulnerability score , wherein :

the release score is a standardized measurement relative to
a frequency of updates of a software component ;

the popularity score is a standardized measurement rela
tive to a popularity of a software component ;

the fork and download score is a standardized measure
ment relative to a number of downloads associated with
a software component over a fixed period of time ;

the defect and quality score is a standardized measure
ment relative to an amount of defects logged in asso
ciation with a software component ; and

the Q & A score is a standardized measurement relative to
the amount of activity logged in association with a
provision of customer support associated with a soft
ware component .

15. The non - transitory computer - readable media of claim
13 , wherein the popularity score , the release score , the detect
and quality score , the support score , the fork and download
score , the Q & A score and the security and vulnerability
score are normalized across provider data and third party
data by a machine learning model .

16. The non - transitory computer - readable media of claim
13 , wherein the fork and download score is determined
based on a number of user downloads of a software com
ponent across different providers of the software component ,

a

a

a

a

US 2022/0269743 A1 Aug. 25 , 2022
10

the different providers of the software component compris
ing a plurality of code repositories .

17. The non - transitory computer - readable media of claim
13 , wherein the Q & A score is based on a number of
questions raised in public forums regarding a software
component and a time period elapsed before a service
provider provides a response .

18. The non - transitory computer - readable media of claim
13 , wherein the instructions further cause the processor to :

monitor one or more test software components ;
periodically determine , via the plurality of ranking param

eters , a plurality of test scores associated with the one
or more test software components ;

extract circumstantial web data regarding the plurality of
test scores ;

generate training data comprising interpreted correlations
between the extracted circumstantial data and the plu
rality of test scores ; and

train a machine learning model using the training data ,
wherein the trained machine learning model is config
ured to update the weight values .

19. The non - transitory computer - readable media of claim
13 , wherein the circumstantial web data comprises data
collected from news media , social media , and economic
forecasts .

20. The non - transitory computer - readable media of claim
13 , wherein parsing the web data comprises :

scanning , by a data - crawler , public repositories , cloud
providers , Q & A , review sites , vulnerability databases
to retrieve information on popularity , releases , forks ,
quality , support , and security information regarding a
software component ; and

storing , by the data - crawler , the information to the index ,
wherein the index is configured to operate as file
storage .

