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( 57 ) ABSTRACT 

Systems and methods for automatically generating search 
list rankings of software components are provided . An 
exemplary method includes generating a list of software 
components in response to a request , generating ranking 
parameters , determining first weight values correlating with 
each of the ranking parameters , generating an index corre 
lating each of the software components with each of the 
ranking parameters , parsing web data to populate the index , 
determining , via the ranking parameters , scores for each of 
the software components , storing the scores on the index , 
applying the first weight values to the scores on the index , 
and generating , for each of the software components , a 
combined score , wherein the combined score is a combina 
tion of each of the scores that are associated with each of the 
software components . 
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METHODS AND SYSTEMS FOR DYNAMIC 
SEARCH LISTING RANKING OF 
SOFTWARE COMPONENTS 

CROSS - REFERENCE TO RELATED PATENT 
APPLICATION 

[ 0001 ] This application claims the benefit of and priority 
to U.S. Provisional Patent Application No. 63 / 153,210 filed 
Feb. 24 , 2021 , the entire disclosure of which is incorporated 
by reference herein . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure relates generally to methods 
and systems for sorting software components based on their 
ecosystem activity and can be used in conjunction with a 
search engine for software components . 

BACKGROUND 

a 

[ 0003 ] As the availability of open - source technologies , 
cloud - based public code repositories , and cloud - based appli 
cations increases exponentially , there is a need for software 
developers to efficiently find such software components for 
use in their software development . Today there are more 
than 30 million public code repositories and 100,000 public 
application - programming interfaces ( APIs ) . Moreover , there 
are over 100 million articles that provide knowledge and 
review of such software components . 
[ 0004 ] Even with a dedicated software search engine that 
produces a search similarity score , in order to make an 
informed choice on whether to use a software component , 
the developer may need to know information on how other 
developers are using the software component , whether the 
software component has positive reviews , whether the soft 
ware component is supported , whether the software com 
ponent is free of bugs , whether the software component have 
recent releases , and whether the software component has any 
security vulnerabilities . 

retrieved information , wherein the fork and download score 
indicates about user rating of the software component . 
Furthermore , a defect and quality score of the software 
component is computed based on the retrieved information . 
The retrieved information is also used to compute a support 
score of the software components and a security and vul 
nerability score of the software components . The support 
score indicates about quality of provided support for a 
software component and the security and vulnerability score 
indicates about security of a software component . The 
software components list is sorted based on the scores of the 
ranking parameters and the weight assigned to the ranking 
parameters . Finally , the list of the ranked software compo 
nents is transmitted to the search system . 
[ 0006 ] In some embodiments , the method may comprise 
processing the list of software components from the search 
or similar listing system and requesting for parameters for 
which ranking information is requested and based on the 
parameters and calling all or some of the services from one 
of repository stars rating service , releases rating service , 
forks rating service , defect rating service , Q & A rating 
service , vulnerability rating service and collating the ranking 
score from these services and returning a pair value along 
with the respective parameter . In further embodiments , the 
method comprises comprising leveraging machine learning 
technologies to compute the weights or priority of the 
different ranking parameters and computing weights based 
on a ranking request of the user , the software component , 
and the user preferences using similar software components . 
In further embodiments , the method comprises leveraging 
machine learning technologies to calculate the popularity of 
the software components and processing ranking of the 
software components across different provider metrics as 
well as third party software component rating services and 
normalizing the ratings across various sources for the same 
or multiple components to determine popularity of the 
software component . 
[ 0007 ] In yet further embodiments , the release score is 
computed based on the release frequency of the software 
components and a frequency of recent updates of the soft 
ware components . 
[ 0008 ] In one embodiment , the method comprises com 
puting a usage rating for the software components based on 
number of user downloads and number of forks in a software 
code repository like GitHub or GitLab or consumption of 
services metrics or download of software components met 
rics . 
[ 0009 ] In some embodiments , the defect and quality score 
of the software components is computed by leveraging a 
combination of code scanning to identify defects , listed 
issues and defects from the software components provider 
site as well as public forums and using machine learning to 
normalize reviews of the software components number of 
reported defects . 
[ 0010 ] In an embodiment , the support score is computed 
based on number of questions raised in public forums and a 
time period of answering the questions by a provider of the 
software component . 
[ 0011 ] In some embodiments , the security and vulnerabil 
ity score are computed based on code scanning to identify 
security bugs , vulnerabilities listed in sites such as CVE and 
using machine learning to normalize the number of reviews 
of the software component and number of reported vulner 
abilities of the software component . 

SUMMARY 

a 

a 

[ 0005 ] There is provided , in accordance with an embodi 
ment of the present invention a method of dynamic search 
listing ranking of software components . According to the 
method a list of software components is determined based 
on a user input received from a search system . Thereafter , 
the weights for the different ranking parameters based on 
which the ranking of the list of the software components is 
to be determined is computed . The ranking parameters 
include a popularity score of a software component , a 
release score of the software component , a fork and down 
load score of the software component , a release score of the 
software component , a defect and quality score of a software 
component , a support score of a software component , a 
security and vulnerability score of a software component . 
Further , the information about the ranking parameters of the 
software component is retrieved by crawling the various 
sources on the interne . Based on the retrieved information , 
a popularity score of the software components is computed 
that indicates how popular a software component is . Simi 
larly , a release score of the software components is com 
puted based on the retrieved information , wherein the 
release score indicates about frequency of release of updates 
of the software component . Also , a fork and download score 
of the software components is commuted based on the 

a 
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[ 0012 ] In further embodiments , the rank for each of the 
software component is determined based on the information 
from the repository stars rating service , the releases rating 
service , the forks rating service , the defect rating service , the 
Q & A rating service , the vulnerability rating service and 
using machine learning techniques to apply the user prefer 
ences to generate the ranking of the software components . 
[ 0013 ] In some embodiments , crawling the internet 
sources further comprising crawling public repositories , 
cloud providers , Q & A , review sites , vulnerability databases 
to parse and store information on popularity , releases , forks , 
quality , support , and security information of the software 
components into the File Storage . 
[ 0014 ] One implementation of the present disclosure is a 
system to for automatically generating search list rankings 
of software components . The system includes one or more 
processors and memory storing instructions that , when 
executed by the one or more processors , cause the one or 
more processors to perform operations . The operations 
include generating a list of software components in response 
to a request , generating a number of ranking parameters , 
determining a first number of weight values correlating with 
each of the number of ranking parameters , generating an 
index correlating each of the number of software compo 
nents with each of the number of ranking parameters , 
parsing web data to populate the index , determining , via the 
ranking parameters , a number of scores for each of the 
number of software components , storing the scores on the 
index , applying the first number of weight values to the 
number of scores on the index , and generating , for each of 
the software components , a combined score , wherein the 
combined score is a combination of each of the number of 
scores that are associated with each of the number of 
software components . 
[ 0015 ] In some embodiments , the ranking parameters 
include a popularity score , a release score , a detect and 
quality score , a support score , a fork and download score , a 
Q & A score and a security and vulnerability score . The 
release score is a standardized measurement relative to a 
frequency of updates of a software component . The popu 
larity score is a standardized measurement relative to a 
popularity of a software component . The fork and download 
score is a standardized measurement relative to a number of 
downloads associated with a software component over a 
fixed period of time . The defect and quality score is a 
standardized measurement relative to an amount of defects 
logged in association with a software component . The Q & A 
score is a standardized measurement relative to the amount 
of activity logged in association with a provision of cus 
tomer support associated with a software component . 
[ 0016 ] In some embodiments , the popularity score , the 
release score , the detect and quality score , the support score , 
the fork and download score , the Q & A score and the security 
and vulnerability score are normalized across provider data 
and third party data by a machine learning model . 
[ 0017 ] In some embodiments , the fork and download 
score is determined based on a number of user downloads of 
a software component across different providers of the 
software component , the different providers of the software 
component including a number of code repositories . 
[ 0018 ] In some embodiments , the Q & A score is based on 
a number of questions raised in public forums regarding a 
software component and a time period elapsed before a 
service provider provides a response . 

[ 0019 ] In some embodiments , the operations include 
monitoring one or more test software components , periodi 
cally determining , via the number of ranking parameters , a 
number of test scores associated with the one or more test 
software components , extracting circumstantial web data 
regarding the number of test scores , generating training data 
including interpreted correlations between the extracted 
circumstantial data and the number of test scores , and 
training a machine learning model using the training data , 
wherein the trained machine learning model is configured to 
update the weight values . 
[ 0020 ] In some embodiments , the circumstantial web data 
includes data collected from news media , social media , and 
economic forecasts . 
[ 0021 ] In some embodiments , the web data includes scan 
ning , by a data - crawler , public repositories , cloud providers , 
Q & A , review sites , vulnerability databases to retrieve infor 
mation on popularity , releases , forks , quality , support , and 
security information regarding a software component , and 
storing , by the data - crawler , the information to the index , 
wherein the index is configured to operate as file storage . 
[ 0022 ] Another implementation of the present disclosure 
relates to a method for automatically generating search list 
rankings of software components . The method includes 
generating a list of software components in response to a 
request , generating a number of ranking parameters , deter 
mining a first number of weight values correlating with each 
of the number of ranking parameters , generating an index 
correlating each of the number of software components with 
each of the number of ranking parameters , parsing web data 
to populate the index , determining , via the ranking param 
eters , a number of scores for each of the number of software 
components , storing the scores on the index , applying the 
first number of weight values to the number of scores on the 
index , and generating , for each of the software components , 
a combined score , wherein the combined score is a combi 
nation of each of the number of scores that are associated 
with each of the number of software components . 
[ 0023 ] In some embodiments , the method includes moni 
toring one or more test software components , periodically 
determining , via the number of ranking parameters , a num 
ber of test scores associated with the one or more test 
software components , extracting circumstantial web data 
regarding the number of test scores , generating training data 
including interpreted correlations between the extracted 
circumstantial data and the number of test scores , and 
training a machine learning model using the training data , 
wherein the trained machine learning model is configured to 
update the weight values . 
[ 0024 ] In some embodiments , the web data includes scan 
ning , by a data - crawler , public repositories , cloud providers , 
Q & A , review sites , vulnerability databases to retrieve infor 
mation on popularity , releases , forks , quality , support , and 
security information regarding a software component , and 
storing , by the data - crawler , the information to the index , 
wherein the index is configured to operate as file storage . 
[ 0025 ] In some embodiments , the circumstantial web data 
includes data collected from news media , social media , and 
economic forecasts . 
[ 0026 ] Another implementation of the present disclosure 
relates to one or more non - transitory computer - readable 
media storing instructions thereon . The instructions , when 
executed by one or more processors , cause the one or more 
processors to generate a list of software components in 
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ponent , and storing , by the data - crawler , the information to 
the index , wherein the index is configured to operate as file 
storage . 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

response to a request , generate a number of ranking param 
eters , determine a first number of weight values correlating 
with each of the number of ranking parameters , generate an 
index correlating each of the number of software compo 
nents with each of the number of ranking parameters , parse 
web data to populate the index , determine , via the ranking 
parameters , a number of scores for each of the number of 
software components , store the scores on the index , apply 
the first number of weight values to the number of scores on 
the index , and generate , for each of the software compo 
nents , a combined score , wherein the combined score is a 
combination of each of the number of scores that are 
associated with each of the number of software components . 
[ 0027 ] In some embodiments , the ranking parameters 
include a popularity score , a release score , a detect and 
quality score , a support score , a fork and download score , a 
Q & A score and a security and vulnerability score . The 
release score is a standardized measurement relative to a 
frequency of updates of a software component . The popu 
larity score is a standardized measurement relative to a 
popularity of a software component . The fork and download 
score is a standardized measurement relative to a number of 
downloads associated with a software component over a 
fixed period of time . The defect and quality score is a 
standardized measurement relative to an amount of defects 
logged in association with a software component . The Q & A 
score is a standardized measurement relative to the amount 
of activity logged in association with a provision of cus 
tomer support associated with a software component . 
[ 0028 ] In some embodiments , the popularity score , the 
release score , the detect and quality score , the support score , 
the fork and download score , the Q & A score and the security 
and vulnerability score are normalized across provider data 
and third party data by a machine learning model . 
[ 0029 ] In some embodiments , the fork and download 
score is determined based on a number of user downloads of 
a software component across different providers of the 
software component , the different providers of the software 
component including a number of code repositories . 
[ 0030 ] In some embodiments , the Q & A score is based on 
a number of questions raised in public forums regarding a 
software component and a time period elapsed before a 
service provider provides a response . 
[ 0031 ] In some embodiments , the instructions cause the 
processor to monitor one or more test software components , 
periodically determine , via the number of ranking param 
eters , a number of test scores associated with the one or more 
test software components , extract circumstantial web data 
regarding the number of test scores , generate training data 
including interpreted correlations between the extracted 
circumstantial data and the number of test scores ; and train 
a machine learning model using the training data , wherein 
the trained machine learning model is configured to update 
the weight values . 
[ 0032 ] In some embodiments , the circumstantial web data 
includes data collected from news media , social media , and 
economic forecasts . 

[ 0033 ] In some embodiments , parsing the web data 
includes scanning , by a data - crawler , public repositories , 
cloud providers , Q & A , review sites , vulnerability databases 
to retrieve information on popularity , releases , forks , quality , 
support , and security information regarding a software com 

[ 0034 ] The following drawings are illustrative of particu 
lar examples for enabling systems and methods of the 
present disclosure , are descriptive of some of the methods 
and mechanism , and are not intended to limit the scope of 
the invention . The drawings are not to scale ( unless so 
stated ) and are intended for use in conjunction with the 
explanations in the following detailed description . 
[ 0035 ] FIG . 1 shows an example high - level architecture of 
a system to perform dynamic search listing ranking of 
software components , according to some embodiments . 
[ 0036 ] FIG . 2 shows a block view of a computer system 
implementation performing dynamic search listing ranking 
of software components , according to some embodiments . 
[ 0037 ] FIG . 3 shows a process for generating dynamic 
search listing ranking of software components , according to 
some embodiments . 
[ 0038 ] FIG . 4 shows a process of using ranking param 
eters for dynamic search listing ranking of software com 
ponents , according to some embodiments . 
[ 0039 ] FIG . 5 shows a process for implementing a sorting 
method for dynamic search listing ranking of software 
components , according to some embodiments . 
[ 0040 ] FIG . 6 shows a process for summarizing dynamic 
search listing ranking of software components , according to 
some embodiments . 
[ 0041 ] FIGS . 7A - 7B show a high - level process for 
dynamic search listing ranking of software components , 
according to some embodiments . 
[ 0042 ] Persons skilled in the art will appreciate that ele 
ments in the figures are illustrated for simplicity and clarity 
and may represent both hardware and software components 
of the system . Further , the dimensions of some of the 
elements in the figure may be exaggerated relative to other 
elements to help to improve understanding of various exem 
plary embodiments of the present disclosure . Throughout 
the drawings , it should be noted that like reference numbers 
are used to depict the same or similar elements , features , and 
structures . 

a 

DETAILED DESCRIPTION 

[ 0043 ] Exemplary embodiments now will be described . 
The disclosure may , however , be embodied in many differ 
ent forms and should not be construed as limited to the 
embodiments set forth herein ; rather , these embodiments are 
provided so that this disclosure will be thorough and com 
plete , and will fully convey its scope to those skilled in the 
art . The terminology used in the detailed description of the 
particular exemplary embodiments illustrated in the accom 
panying drawings is not intended to be limiting . In the 
drawings , like numbers refer to like elements . 
[ 0044 ] In the current state of the art , to select a software 
component , a developer relies on ratings on user information 
of the software component . The developer must check 
various websites and manually scan through the user 
reviews to determine if the software component is good to 
use . At a point in time , there may be plurality of software 
components available for a particular project the developer 
is working on . The developer must go through all the 
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available information for all the possible software compo 
nent to select the most appropriate software component . 
Thus , the entire processes become tiresome and time inef 
ficient . 
[ 0045 ] The present subject matter discloses a method and 
system for generating a dynamic search listing ranking of 
software components . In some embodiments , to help the 
developer choose a right software component based on its 
ecosystem activity , a system of the present subject matter 
will compute scores for popularity , release frequency , usage 
by others , defects , questions answered and support and 
security vulnerabilities of the software component . The 
computed score is then used to prioritize and rank the 
software components based on the developer preferences , 
thereby eliminating significant search effort across multiple 
sites for Q & A , reviews , security , defects , and popularity . 
This will also reduce any manual and / or interpretation errors 
and help the developer choose the right software component 
every time . 

109 , the Q & A rating service 110 , and the vulnerability rating 
service 111. The above mentioned repository stars rating 
service 106 , releases rating service 107 , forks rating service 
108 , defect rating service 109 , Q & A rating service 110 , and 
vulnerability rating service 111 may be referred to as “ ser 
vices ” , hereinafter . The services may generate scores for 
ranking parameters of the software components . The sort 
rank processor 104 then collates the ranking score from 
these services and returns a pair value along with the 
respective parameter . The generation of ranking score is 
described further in detail herein . 
[ 0050 ] The rank weight assigner 105 leverages machine 
learning technologies to compute weights or priorities of the 
different ranking parameters including , but not limited to a 
popularity score of a software component , a release score of 
the software component , a fork and download score of the 
software component , a release score of the software com 
ponent , a defect and quality score of a software component , 
a support score of a software component , a security and 
vulnerability score of a software component . The score of 
ranking parameters are computed based on the ranking 
request , the component , and the user preferences of this user 
and / or all other users using similar software components . 
For example , equal weight may be assigned to all the 
ranking parameters while in another example , some ranking 
parameters may be assigned more weight than the other 
ranking parameters . In an example , the ranking weight 
assigner 105 may assign weight based on a predetermined 
criteria or as indicated in case - to - case basis . 
[ 0051 ] In some embodiments , a software ecosystem 
crawler 113 crawls the internet sources including , but not 
limited to , public repositories , cloud providers , Q & A , 
review sites , and vulnerability databases to parse and store 
information on popularity , releases , forks , quality , support , 
and security information into the file storage 114. The 
information stored in the file storage 114 may be used by the 
services to determine scores of various ranking parameters . 
[ 0052 ] In some embodiments , the repository stars rating 
service 106 leverages machine learning technologies to 
calculate the popularity score of software components from 
the list of the software components based on the information 
saved in the file storage 114. The repository stars rating 
service 106 determines ratings , such as number of stars or 
other forms of popularity ranking of the software component 
across different provider metrics as well as third party 
software component rating services to determine the popu 
larity score of the software components . Thereafter the 
ratings across diverse sources for the software components 
are utilized . 
[ 0053 ] In some embodiments , the releases rating service 
107 computes a release score of the software components 
based on the release frequency of the software component 
and frequency of release of updates of the software compo 
nents . The releases rating service 107 access the information 
stored in the file storage 114 to determine the release 
frequency of the software component or the frequency of 
release of updates . The release frequency of the software 
components and the frequency of release of updated of the 
software components signifies that the software component 
is being supported well with multiple releases . 
[ 0054 ] In some embodiments , the forks rating service 108 
computes a fork and download score of the software com 
ponents based on the information stored in the file storage 
114. The fork and download score indicates the usage rating 
for a software component based on number of downloads of 
the software components across different providers . This is 
signified by the number of forks in a software code reposi 
tory , such as GitHub or GitLab . Other providers may track 

[ 0046 ] FIG . 1 shows an example high - level architecture of system 100 to perform dynamic search listing ranking of 
software components , according to some embodiments . The 
system 100 includes an application programming interface 
( API ) hub 102 , a messaging bus 103 , a sort rank processor 
104 , a rank weight assigner 105 , a repository stars rating 
service 106 , a releases rating service 107 , a forks rating 
service 108 , a defect rating service 109 , a Q & A rating 
service 110 , a vulnerability rating service 111 , a dynamic 
rank generator 112 , a software ecosystem crawler 113 , a file 
storage 114 , a database 115 and a search system 101 to 
perform the task of dynamic search listing ranking of 
software components given the list of software components 
that is potentially generated from the search system 101 . 
[ 0047 ] In some embodiments , the search system 101 cap 
tures and transmits a search request , ranking needs , and user 
preferences to the system 100. For example , the search 
system 101 may capture the search request , ranking needs , 
and user preferences inputted by a user . After processing of 
the request , the search system 101 will incorporate and 
display the listing that it receives . 
[ 0048 ] The request from search system 101 is transmitted 
to the API hub 102 , which acts as a gateway for accepting 
and transmitting all requests . The API hub 102 hosts web 
services for receiving the requests and creating request 
messages to provide to the messaging bus 103. The mes 
saging bus 103 is used to generate a filter based on the search 
request , ranking needs , and user preferences . The filter may 
be used to pull out an initial list of software components . The 
messaging bus 103 supports event driven architecture , thereby enabling long running processes to be decoupled 
from requesting system's calls . This decoupling will help the 
system to service the request and notify calling system once 
the entire process of generating a filter is completed . The 
messaging bus 103 includes job listeners configured to listen 
to the messages in the messaging bus 103 . 
[ 0049 ] Based on the filter generated by the messaging bus 
103 , the sort rank processor 104 processes a list of software 
components from the search or a similar listing system and 
a request for ranking parameters for which ranking infor 
mation is requested . For example , ranking parameters may 
be inputted by the user and captured by the search system 
101. The ranking parameters may then be captured by the 
messaging hub and further the messaging hub 101 may 
transmit the ranking parameters to the sort rank processor 
104. Based on the ranking parameters , the sort rank proces 
sor 104 calls all or some of a number of services such as the 
repository stars rating service 106 , the releases rating service 
107 , the forks rating service 108 , the defect rating service 

a 
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this as a consumption of services or download of software 
components . All this information is used by the forks rating 
service 108 to compute the fork and download score of the 
respective software components . 
[ 0055 ] In some embodiments , the defect rating service 109 
computes a defect and quality score of the software com 
ponents by leveraging a combination of code scanning to 
identify defects , listed issues and defects from the software 
components provider site as well as public forums . The 
computation may be processed based on the information 
stored in the file storage 114. The defect rating service 109 
uses machine learning to normalize the fact that more 
popular software components are reviewed more and hence 
have higher defects reported whereas rarely used software 
components may have no defects reported though they may 
contain some . Thus , based on the number of reviews and 
number of defects reported , the defects rating service 109 
may compute the defect and quality score of the software 
components . 
[ 0056 ] In some embodiments , the Q & A rating service 110 
computes a support score for the software components based 
on how many questions are raised in public forums about the 
software components and how soon and how well the 
questions are answered by the provider of the software 
components or other users . To compute the support score , 
the Q & A rating service 110 access the file storage 114 and 
analyzes the data to determine the support score of the 
software component . 
[ 0057 ] In some embodiments , the vulnerability rating ser 
vice 111 computes a security and vulnerability score of the 
software components based on code scanning and based on 
the information stored in the file storage 114. The security 
and vulnerability score is used to identify security bugs , or 
vulnerabilities listed in sites such as CVE . The security and 
vulnerability score use machine learning to normalize the 
fact that more popular software components are reviewed 
more and hence have higher vulnerabilities reported whereas 
rarely used software components may have no vulnerability 
reported though they may contain some . 
[ 0058 ] In some embodiments , based on the scores gener 
ated by the different services as described above and the 
weights assigned to each of the ranking parameter scores , 
the dynamic rank generator 112 computes the rank for each 
software component . The dynamic rank generator 112 may 
analyze the scores of each of the ranking parameters to 
determine a rank of the software components . Based on the 
score of the ranking parameters , the dynamic rank generator 
112 may determine the rank of the software components . 
The top ranked software component may be presented as the 
best software component for the user . In an example , it is 
possible that multiple components might have the same rank 
based on the score of the ranking parameters . In such cases , 
the dynamic rank generator 112 uses machine learning 
techniques to apply the user preferences to generate the 
ranking . In an example , after it is determined that the 
two - software component has same rank , the system 100 may 
prompt the user to input the user preference and , based on 
the user preference , the dynamic rank generator 112 may 
decide the rank of the software components that would 
otherwise have identical ranks . 
[ 0059 ] In some embodiment , and as explained above , the 
file storage 114 stores the information retrieved by the 
software ecosystem crawler 112. Further , the file storage 114 
is used to store document type of data , source code files , 
documents , readme files , installation guides , user guides , 
neural network models etc. 
[ 0060 ] Further , in some embodiments , the database 115 is 
a relational database management system RDBS database , 

such as MySQL , and functions to store all meta - data per 
taining to the requests received from the search system , 
messaging bus , request processor and from other system 
components described above . The meta - data includes details 
of every request to identify the user submitting the request , 
and other details to track the progress as the system pro 
cesses the request through its different tasks . The status of 
each execution step of complete process is stored in this 
database to track and notify the system on completion . 
[ 0061 ] FIG . 2 shows a block view of a computer system 
implementation 200 performing dynamic search listing 
ranking of software components , according to some embodi 
ments . This may include a processor 201 , memory 202 , 
display 203 , network bus 204 , and other input / output like a 
mic , speaker , wireless card etc. The dynamic search listing 
ranking of software components modules 100 , file storage 
114 , database 115 , software ecosystem crawler 116 are 
stored in the memory 202 which provides the necessary 
machine instructions to the processor 201 to perform the 
executions for dynamic search listing ranking of software 
components . In embodiments , the processor 201 controls the 
overall operation of the system and manages the communi 
cation between the components through the network bus 
204. The memory 202 holds the dynamic search listing 
ranking of software components system code , data , and 
instructions of the system processing modules 100 and 
several types of the non - volatile memory and volatile 
memory . The external search system 101 interacts with the 
computer system via the network bus 204 . 
[ 0062 ] FIG . 3 shows a process for dynamic search listing 
ranking of software components , according to some embodi 
ments . It should be understood that the method steps are 
shown as a reference only and sequence of the method steps 
should not be construed as limiting . The method steps can 
include any additional steps in any order . Although the 
process 300 may be implemented in any system , the process 
300 as shown is provided in reference to the system 100 for 
ease of explanation . 
[ 0063 ] In step 301 , the input component list as well as user 
preferences and the ranking parameters are captured from 
the search system and weights are assigned to the ranking 
parameters based on the user preferences , software compo 
nent list and ranking request . In step 302 , the process of 
sorting of rank of the software components is done . To 
perform step 302 , different rating services are called based 
on non - zero weighted ranking parameters . In step 303 the 
popularity score is computed . In step 304 , the release score 
is computed . In step 305 , the fork and download score is 
computed based on forks or downloads . In step 306 , the 
defect and quality score are computed . In step 307 , the 
support score based on Q & A information is computed . In 
step 308 , the security and vulnerability score are computed . 
In step 309 , based on all the scores and the individual 
weights , the ranking for each software component is com 
puted . In step 310 , the list of software components is sorted 
and ranked based on the dynamic sort ranking scores and is 
transmitted to the search system . 
[ 0064 ] FIG . 4 illustrates step 301 of process 300 in greater 
detail and can be performed to assign ranking weights used 
in dynamic search listing ranking of software components , 
according to some embodiments . It should be understood 
that the method steps are shown as a reference only and 
sequence of the method steps should not be construed as 
limitation . The method steps can include any additional 
steps in any order . 
[ 0065 ] In some embodiments , in step 401 , the input search 
request and search result list are captured from the search 
system . The input search text is used to determine ranking 
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{ 
" query ” : “ less vulnerable frontend libraries ” , 
" ranking parameter " : [ " Security ” , " Defect ” ] 

} 

parameters . The ranking parameters include a popularity 
score of a software component , a release score of the 
software component , a fork and download score of the 
software component , a defect and quality score of a software 
component , a support score of a software component , a 
security and vulnerability score of a software component . In 
step 402 the ranking parameters are identified based on the 
received input search request . The step 402 uses a multi label 
classification machine learning model trained on historical 
search query dataset as well as human annotated dataset . The 
multi label classification model tries to classify the search 
query into any of the categories such as popularity , release , 
fork , defect , support , security , etc. These categories are set 
to ranking parameters . For example , for the search query 
“ less vulnerable frontend libraries ” the ranking parameters 
are set as “ Security ” and “ Defect . ” The sample json output 
structure from step 402 is shown below : 

[ 0066 ] In some embodiments , in step 403 , the ranking 
parameters which were identified in the step 401 are 
assigned with weights . These weights may assist in identi 
fying the right ranking option to the input query . Higher 
weight is assigned to first item of ranking parameter list 
retrieved from step 402. Subsequent weights in a gradual 
decreasing order are assigned to the subsequent items in the 
ranking parameter list . For example , for the search query 
" less vulnerable frontend libraries , ” the following is the 
output from the step 403 : 

{ 
ranking parameter : [ " Security " , " Defect " ] , 
" ranking param_weight " : [ { param : ” security ” , weight : “ 0.8 " } , { param : " defect ” , 
weight : “ 0.6 " } ] 

. 

} 

[ 0067 ] FIG . 5 illustrates step 302 of process 300 in greater 
detail and can be performed to process the sort ranking used 
in dynamic search listing ranking of software components , 
according to some embodiments . It should be understood 
that the process steps are shown as a reference only and 
sequence of the method steps should not be construed as 
limitation . The method steps can include any additional 
steps in any order . In an example , a one processor may 
execute a stored program comprising a sequence of program 
instructions that enables the processor to perform the 
method of the present subject matter . The computer program 
may be stored in a computer readable medium . 
[ 0068 ] In some embodiments , in step 501 , a rating service 
selector selects different rating services such as repository 
star rating 504 , release rating 505 , forks rating 506 , defects 
rating 507 , Q & A rating 508 , and vulnerability rating 509 
based on the ranking parameter categories identified . Step 
501 provides the search result list with rating scores to an 
appropriate ranking parameter category list . Any search 
result items which are not part of the rating selector are 
placed under an “ other ” category . For example , for the 
search query “ less vulnerable frontend libraries ” and ranking 
parameter “ Security ” and “ Defect , ” the sample rating ser 
vice selector output will be given below . as 

[ 
{ 
“ rating_parameter ” : “ Security ” , 

" values " : [ { name : " comp5 ” , score : 0.6 } , { name : " comp2 ” , score : 0.2 } ... ] 
} ; 
{ 
“ rating_parameter ” : “ Defect ” , 

" values " : [ { name : " compl ” , score : 0.5 } , { name : " comp2 ” , score : 0.5 } ... ] 
} 
{ 
" rating parameter " : " Others ” , 
" values " : [ { name : " comp7 ” , score : 0.3 } , { name : " comp8 ” , score : 0.2 } ... ] 
} 

] 
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[ 0069 ] In some embodiments , in step 502 , the rating 
scores produced by step 501 are aggregated against the name 
field , and the scores are added and normalized to unit 
normalization . After the data is processed , the sample output 
may appear as shown below . In this example , rating scores 
associated with a name " comp2 ” are combined together with 
a single score of 0.35 . 

[ 
{ " name " : " comp5 ” , score : 0.5 } , { " name " : " comp2 ” , score : 0.35 } , 
{ " name " : " compl ” , score : 0.4 } , { " name " : " comp7 ” , score : 0.3 } , { " name " : 
" comp8 ” , score : 0.2 } ... 

] 

[ 0070 ] In some embodiments , in step 503 , the scores are 
sorted in descending order to provide the ranking to search 
listing of software components . For example , the following 
may be an output of step 503 . 

[ 
{ " name " : " comp5 ” , score : 0.5 } , { " name " : " comp1 ” , score : 0.4 } , 
{ " name " : " comp2 ” , score : 0.35 } , { " name " : " comp7 ” , score : 0.3 } , { " name " : 
“ comp8 ” , score : 0.2 } ... 

. 

] 

[ 0071 ] FIG . 6 illustrates step 309 of process 300 in greater 
detail and can be performed to summarize dynamic search 
listing ranking of software components , according to some 
embodiments . It should be understood that the method steps 
are shown as a reference only and sequence of the method 
steps should not be construed as limitation . The method 
steps can include any additional steps in any order . 
[ 0072 ] In some embodiments , in step 601 , user prefer 
ences such as programming language , license , security and 
support are taken into account for search list ranking . A user 
preference is collected from a user directly during the user's 
sign up to the search system . The user preference is also built 
indirectly when the user selects a search result item from the 
search result page . For example , if the user selects a software 
component from search result page then the component's 
attributes such as programming language , security , license 
and support are added to user preference . If the user is 
anonymous , then an anonymous user preference profile may 
be created . A sample output from step 601 is shown below . 
As shown , the search_result_list field is the output from 
process step 302 ( e.g. , step 503 ) and ranking parameter_ 
weight is the output from process step 301 ( e.g. , step 403 ) . 
The field “ user_preference ” holds the preferences set by the 
use either directly or indirectly . 

a 

a 

{ 
" search_result_list " : [ { name : " comp5 ” , score : 0.5 } , { name : " comp4 " , 
score : 0.4 } , { name : " comp2 ” , score : 0.35 } , { name : " comp3 ” , score : 0.35 } ] , 
" user_preference " : { language : “ java ” , license ; " permissive " } , 
" ranking_parameter_weight " : [ { param : “ security " , weight : " 0.8 " } , { param : " defect ” , 
weight : “ 0.6 " } ] 

} 
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[ 0073 ] In some embodiments , in step 602 , a ranking model 
is used to improve the relevance ranking of the search result 
list . This model is built from a historical search query dataset 
as well as a human annotated dataset with additional features 
such as software components name , readme text , description 
and rating scores . The ranking model ranks search result list 
based on the search query relevance . Finally , a user prefer 
ence which was determined in step 601 may be used to 
re - rank the result list based on user preference , if it exists . 
The sample output from this step is provided below . 

the weight assigned to the ranking parameters . In the step 
711 , the list of ranked software components is transmitted to 
the search system . 
[ 0076 ] As will be appreciated by one of skilled in the art , 
the present disclosure may be embodied as a method and 
system . In the specification , there has been disclosed exem 
plary embodiments of the invention . Although specific terms 
are employed , they are used in a generic and descriptive 
sense only and not for purposes of limitation of the scope of 
the subject matter described herein . 

{ 
search_result_list : [ { name : " comp5 ” , rank_position : 1 } , { name : " comp4 " , 
rank_position : 2 } , { name : " comp2 ” , rank_position : 3 } , { name : " comp3 ” , 
rank_position : 4 } ] 

} 

a 

[ 0074 ] FIGS . 7A - 7B show a high - level process 700 for 
dynamic search listing ranking of software components , 
according to some embodiments . It should be understood 
that the method steps are shown as a reference only and 
sequence of the method steps should not be construed as 
limitation . The method steps can include any additional 
steps in any order . Although , the process 700 may be 
implemented in any system , the example process 700 is 
provided in reference to the system 100 for ease of expla 
nation . 

[ 0075 ] In some embodiments , in the step 701 , a list of 
software component is determined based on a user input . In 
an example , the user input as well as user preferences and 
ranking parameters are captured from a search system . At 
step 702 , the weights for the different ranking parameters 
based on which the ranking of the list of the software 
components is to be determined is computed . The ranking 
parameters include a popularity score of a software compo a 
nent , a release score of the software component , a fork and 
download score of the software component , a release score 
of the software component , a defect and quality score of a 
software component , a support score of a software compo 
nent , a security and vulnerability score of a software com 
ponent . In an example , weights are assigned based on the 
user preferences , software component list and ranking 
request . At step 703 , internet sources are crawled and 
information about the non - zero weighted ranking param 
eters are retrieved . The information may be saved in a 
storage , such as file storage 114. At step 704 , a popularity 
score for each of the software components is computed 
based on the retrieved information , wherein the popularity 
score indicates how popular a software component is . At 
step 705 , a release score of the software components is 
computed based on the retrieved information , wherein the 
release score indicates about frequency of release of updates 
of a software component . At step 706 , the fork and download 
score of a software component is determined based on the 
retrieved information . At step 707 , a defect and quality score 
of the software components is determined based on the 
retrieved information . At step 708 , a support score of the 
software components is determined based on the retrieved 
information , wherein the support score indicates about pro 
vided support for a software component . At step 709 , the 
security and vulnerability score of the software components 
computed based on the retrieved information , wherein the 
security and vulnerability score indicate about security of a 
software component . At step 710 , the software components 
are ranked based on the scores of the ranking parameters and 

What is claimed is : 
1. A system for automatically generating search list rank 

ings of software components , the system comprising : 
one or more processors and memory storing instructions 

that , when executed by the one or more processors , 
cause the one or more processors to perform operations 
comprising : 
generating a list of software components in response to 

a request ; 
generating a plurality of ranking parameters ; 
determining a first plurality of weight values correlat 

ing with each of the plurality of ranking parameters ; 
generating an index correlating each of the plurality of 

software components with each of the plurality of 
ranking parameters ; 

parsing web data to populate the index ; 
determining , via the ranking parameters , a plurality of 

scores for each of the plurality of software compo 
nents ; 

storing the scores on the index ; 
applying the first plurality of weight values to the 

plurality of scores on the index ; and 
generating , for each of the software components , a 

combined score , wherein the combined score is a 
combination of each of the plurality of scores that are 
associated with each of the plurality of software 
components . 

2. The system of claim 1 , wherein the ranking parameters 
comprise a popularity score , a release score , a detect and 
quality score , a support score , a fork and download score , a 
Q & A score and a security and vulnerability score , wherein : 

the release score is a standardized measurement relative to 
a frequency of updates of a software component ; 

the popularity score is a standardized measurement rela 
tive to popularity of a software component ; 

the fork and download score is a standardized measure 
ment relative to a number of downloads associated with 
a software component over a fixed period of time ; 

the defect and quality score is a standardized measure 
ment relative to an amount of defects logged in asso 
ciation with a software component ; and 

the Q & A score is a standardized measurement relative to 
the amount of activity logged in association with a 
provision of customer support associated with a soft 
ware component . 

3. The system of claim 2 , wherein the popularity score , the 
release score , the detect and quality score , the support score , 
the fork and download score , the Q & A score and the security 
and vulnerability score are normalized across provider data 
and third party data by a machine learning model . 

a 

a 

a 
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4. The system of claim 2 , wherein the fork and download 
score is determined based on a number of user downloads of 
a software component across different providers of the 
software component , the different providers of the software 
component comprising a plurality of code repositories . 

5. The system of claim 2 , wherein the Q & A score is based 
on a number of questions raised in public forums regarding 
a software component and a time period elapsed before a 
service provider provides a response . 

6. The system of claim 1 , the operations further compris 
ing : 

monitoring one or more test software components ; 
periodically determining , via the plurality of ranking 

parameters , a plurality of test scores associated with the 
one or more test software components ; 

extracting circumstantial web data regarding the plurality 
of test scores ; 

generating training data comprising interpreted correla 
tions between the extracted circumstantial data and the 
plurality of test scores ; and 

training a machine learning model using the training data , 
wherein the trained machine learning model is config 
ured to update the weight values . 

7. The system of claim 6 , wherein the circumstantial web 
data comprises data collected from news media , social 
media , and economic forecasts . 

8. The system of claim 1 , wherein parsing the web data 
comprises : 

scanning , by a data - crawler , public repositories , cloud 
providers , Q & A , review sites , vulnerability databases 
to retrieve information on popularity , releases , forks , 
quality , support , and security information regarding a , 
software component ; and 

storing , by the data - crawler , the information to the index , 
wherein the index is configured to operate as file 
storage . 

9. A method for automatically generating search list 
rankings of software components , the method comprising : 

generating a list of software components in response to a 
request ; 

generating a plurality of ranking parameters ; 
determining a first plurality of weight values correlating 

with each of the plurality of ranking parameters ; 
generating an index correlating each of the plurality of 

software components with each of the plurality of 
ranking parameters ; 

parsing web data to populate the index ; 
determining , via the ranking parameters , a plurality of 

scores for each of the plurality of software components ; 
storing the scores on the index ; 
applying the first plurality of weight values to the plurality 

of scores on the index ; and 
generating , for each of the software components , a com 

bined score , wherein the combined score is a combi 
nation of each of the plurality of scores that are 
associated with each of the plurality of software com 
ponents . 

10. The method system of claim 9 , further comprising : 
monitoring one or more test software components ; 
periodically determining , via the plurality of ranking 

parameters , a plurality of test scores associated with the 
one or more test software components ; 

extracting circumstantial web data regarding the plurality 
of test scores ; 

generating training data comprising interpreted correla 
tions between the extracted circumstantial data and the 
plurality of test scores ; and 

training a machine learning model using the training data , 
wherein the trained machine learning model is config 
ured to update the weight values . 

11. The method of claim 9 , wherein parsing the web data 
comprises : 

scanning , by a data - crawler , public repositories , cloud 
providers , Q & A , review sites , vulnerability databases 
to retrieve information on popularity , releases , forks , 
quality , support , and security information regarding a 
software component ; and 

storing , by the data - crawler , the information to the index , 
wherein the index is configured to operate as file 
storage . 

12. The method system of claim 10 , wherein the circum 
stantial web data comprises data collected from news media , 
social media , and economic forecasts . 

13. One or more non - transitory computer - readable media 
storing instructions thereon , wherein the instructions , when 
executed by one or more processors , cause the one or more 
processors to : 

generate a list of software components in response to a 
request ; 

generate a plurality of ranking parameters ; 
determine a first plurality of weight values correlating 

with each of the plurality of ranking parameters ; 
generate an index correlating each of the plurality of 

software components with each of the plurality of 
ranking parameters ; 

parse web data to populate the index ; 
determine , via the ranking parameters , a plurality of 

scores for each of the plurality of software components ; 
store the scores on the index ; 
apply the first plurality of weight values to the plurality of 

scores on the index ; and 
generate , for each of the software components , a com 

bined score , wherein the combined score is a combi 
nation of each of the plurality of scores that are 
associated with each of the plurality of software com 
ponents . 

14. The non - transitory computer - readable media of claim 
13 , wherein the ranking parameters comprise a popularity 
score , a release score , a detect and quality score , a support 
score , a fork and download score , a Q & A score and a 
security and vulnerability score , wherein : 

the release score is a standardized measurement relative to 
a frequency of updates of a software component ; 

the popularity score is a standardized measurement rela 
tive to a popularity of a software component ; 

the fork and download score is a standardized measure 
ment relative to a number of downloads associated with 
a software component over a fixed period of time ; 

the defect and quality score is a standardized measure 
ment relative to an amount of defects logged in asso 
ciation with a software component ; and 

the Q & A score is a standardized measurement relative to 
the amount of activity logged in association with a 
provision of customer support associated with a soft 
ware component . 

15. The non - transitory computer - readable media of claim 
13 , wherein the popularity score , the release score , the detect 
and quality score , the support score , the fork and download 
score , the Q & A score and the security and vulnerability 
score are normalized across provider data and third party 
data by a machine learning model . 

16. The non - transitory computer - readable media of claim 
13 , wherein the fork and download score is determined 
based on a number of user downloads of a software com 
ponent across different providers of the software component , 

a 

a 

a 

a 
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the different providers of the software component compris 
ing a plurality of code repositories . 

17. The non - transitory computer - readable media of claim 
13 , wherein the Q & A score is based on a number of 
questions raised in public forums regarding a software 
component and a time period elapsed before a service 
provider provides a response . 

18. The non - transitory computer - readable media of claim 
13 , wherein the instructions further cause the processor to : 

monitor one or more test software components ; 
periodically determine , via the plurality of ranking param 

eters , a plurality of test scores associated with the one 
or more test software components ; 

extract circumstantial web data regarding the plurality of 
test scores ; 

generate training data comprising interpreted correlations 
between the extracted circumstantial data and the plu 
rality of test scores ; and 

train a machine learning model using the training data , 
wherein the trained machine learning model is config 
ured to update the weight values . 

19. The non - transitory computer - readable media of claim 
13 , wherein the circumstantial web data comprises data 
collected from news media , social media , and economic 
forecasts . 

20. The non - transitory computer - readable media of claim 
13 , wherein parsing the web data comprises : 

scanning , by a data - crawler , public repositories , cloud 
providers , Q & A , review sites , vulnerability databases 
to retrieve information on popularity , releases , forks , 
quality , support , and security information regarding a 
software component ; and 

storing , by the data - crawler , the information to the index , 
wherein the index is configured to operate as file 
storage . 


