a2 United States Patent

Khedr et al.

US011843687B2

US 11,843,687 B2
*Dec. 12, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SYSTEMS, DEVICES, AND PROCESSES FOR
HOMOMORPHIC ENCRYPTION

Applicant: LORICA CYBERSECURITY INC.,
Toronto (CA)

Inventors: Alhassan Khedr, Toronto (CA); Glenn
Gulak, Toronto (CA); Vinod
Vaikuntanathan, Boston, MA (US)

Assignee: LORICA CYBERSECURITY INC.,
Toronto (CA)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 179 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 16/990,431
Filed: Aug. 11, 2020
Prior Publication Data

US 2021/0075588 Al Mar. 11, 2021

Related U.S. Application Data

Continuation of application No. 16/053,870, filed on
Aug. 3, 2018, now Pat. No. 10,778,408, which is a

(Continued)
Int. CL.
GO6F 21/00 (2013.01)
HO4L 9/00 (2022.01)
HO4L 9/30 (2006.01)
U.S. CL
CPC ..o HO4L 9/008 (2013.01); HO4L 9/30

(2013.01); HO4L 2209/24 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,208,858 A * 5/1993 Vollertccocene. HO4L 63/12
380/42
7,929,704 B2* 4/2011 Haugecc....... HO4L 9/0869
713/180

(Continued)

OTHER PUBLICATIONS

Peng, Ningduo et al. A fast additively symmetric homomorphic
encryption scheme for vector data. Proceedings 2013 International
Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC). https:/ieeexplore.icee.org/stamp/stamp jsp?tp=
&arnumber=6885469 (Year: 2013).*

(Continued)

Primary Examiner — Jeremiah L Avery
(74) Attorney, Agent, or Firm — HEER LAW;
Christopher D. Heer; Larissa Leong

(57) ABSTRACT

Remote terminals are configured to generate ciphertexts
from plaintext polynomials. Each ciphertext corresponds to
a plaintext polynomial bound to a message space of a
polynomial-based fully homomorphic cryptographic
scheme. At least one server is configured to receive cipher-
texts via a network from the plurality of remote terminals.
The server performs a multiplication operation and an
addition operation on the ciphertexts to obtain resultant
ciphertexts. The multiplication operation includes perform-
ing a bitwise decomposition function on a ciphertext to
obtain a bitwise decomposed ciphertext. The bitwise decom-
position function maps a multi-bit data type to a sequence of
bits. The multiplication operation further includes perform-
ing matrix multiplication on the bitwise decomposed cipher-
text and a data element belonging to a set of data elements.
Message filters, data search engines, and other applications
are discussed.

27 Claims, 21 Drawing Sheets

PLAINTEXT INPUT Pg&‘mgﬁh ENCRYPTION CIPHERTEXT
BUFFER ENGINE CUTPUT BUFFER
GENERATOR
52 54 56 58
INVERSE BITWISE SOURCE OF
DECOMPOSITION |- IDENTITY MATRIX RANDOMNESS
84 88
PUBLIC KEYS
86
KEY GENERATOR
1)
> SECRET KEY
20
50
PLAINTEXT PLAINTEXT DECRYPTION CIPHERTEXT
OUTPUT BUFFER EXTRACTOR ENGINE INPUT BUFFER
&8 86 64 62

US 11,843,687 B2

Page 2
Related U.S. Application Data 2013/0329883 Al* 12/2013 Tamayo-Rios HO4L 9/008
380/28
continuation of application No. 14/634,787, filed on 2013/0339722 Al* 12/2013 Krendelev HO041., 9/008
Feb. 28, 2015, now Pat. No. 10,075,288. 713/150
(60) Provisional application No. 61/946,557, filed on Feb. 2014/0177828 Al* 6/2014 Loflus .o HO4L 9/0852
28, 2014. 380/44
’ 2014/0189792 Al* 7/2014 Lesavich HO04W 4/60
. 726/3
56 Refi Cited
(56) clerenices Lite 2014/0215222 Al* 72014 Sakumoto HO4L 9/3093
U.S. PATENT DOCUMENTS _ 713/176
2015/0154406 Al* 6/2015 Naehrig GOG6F 21/602
9,281,941 B2* 3/2016 Gentryccooo....... HO4L 9/0618 713/165
2006/0140401 Al* 6/2006 Johnson GO6F 21/14
380/44
2009/0304179 Al* 12/2009 Gressel HOA4L 9/0643 OTHER PUBLICATIONS
380/268 . . .
2010/0111296 Al* 5/2010 BIrOWN wevevoveveeeinnn, HO041. 9/3066 Plantard’ Thomas. et al. Fully HOITIOmOI'pth EIlCI'?’pthIl USl.Ilg
380/28 Hidden Ideal Lattice. IEEE Transactions on Information Forensics
2011/0145593 Al* 6/2011 Auradkar HO04L 9/0833 and Security, vol. 8, Issue: 12. https://ieeexplore.icee.org/stamp/
713/189 stamp.jsp?tp=&arnumber=6650119 (Year: 2013).*
2012/0039463 AL™ 2/2012 Gentry ... HO4L 9/0816 Aguilar-Melchor, Carlos et al. Recent Advances in Homomorphic
N . 380728 Encryption: A Possible Future for Signal Processing in the Encrypted
2012/0278622 Al* 1172012 Lesavich G06F7}gﬁ2§ Domain. IEEE Signal Processing Magazine, vol. 30, Issue: 2.
2013/0170640 AL* 7/2013 Gentry oo HO4L 9/008 https://ieeexplore.iee*e.org/stamp/stamp.jsp?tp:&arnumber:
%030 6461628 (Year: 2013).
2013/0216044 Al* 82013 Gentryccceeeee. HO4L 9/008 . .
380/277 * cited by examiner

US 11,843,687 B2

Sheet 1 of 21

Dec. 12,2023

U.S. Patent

(114
4344N8 1Nd1No
LX3HFHLD

A

0l

h 4

T "'91I4
¥C had
W3NG LNANT feeee NO01
NOLLYY3dO JOMLINOD
A
87
WYOLVHIO fe—i
NOLLIaaV
Vil
INIONI LIN
1@|—. “ “mlul
d40Lvdido = zoﬂmmwmmu_umo N
NOLLY DTN S

4]
W344N9d LNdNI
1X3LYIHLID

US 11,843,687 B2

Sheet 2 of 21

Dec. 12,2023

U.S. Patent

¢ 'OId

¥

A

4

9 ¥9
Y3d4Ng LNdNI > INIDONI
IX3LYIHCID NOLLdAYD3d
06
AN LFHDIS
98
SAI Oand
88
SSINWOGNYY
40 ID¥NOS
89 9s
d344N8 1NdLNO [INIDN3
LX3HFHLD NOILdAYONT

99 89
HOLOVYLXE > ¥3ddNd 1NdiNOo
LIXIINIVd LXILINIVd
0§
(4
HOLVHINID AP
78 ¥8
..... NOLLISOdWOD3d

XPNLVIW ALLINGAI

JSIMLIG ISUIANI

A

YOLVYHINID
TVIWONATOd
LXILINIVd

(49

d3dd4nd

1NdNT LXIINIVd

U.S. Patent Dec. 12,2023 Sheet 3 of 21 US 11,843,687 B2

s

FIG. 3

Present invention

M

E33Rssssssaia s stisins i

U.S. Patent Dec. 12,2023 Sheet 4 of 21 US 11,843,687 B2

trents Funothon

FIG. 5

EXAMPLE SELECTION

U.S. Patent

Dec. 12, 2023 Sheet 5 of 21 US 11,843,687 B2
MESSAGE SERVER
100 104

HIM

1i4

P‘T TRIGGER WORD
e DATABASE

.....

PUBLIC KEY
cT RCT SERVER
122 | 124 120

REMOTE TERMINALS
02

HiM
114

FIG. 7

U.S. Patent Dec. 12,2023 Sheet 6 of 21 US 11,843,687 B2

Funetion 1 Word Lis
Inpub
Orabpa

FIG. 8

U.S. Patent Dec. 12,2023 Sheet 7 of 21 US 11,843,687 B2

%

g3

FIG. 9

Fuswiion

SERETEL Rty

FIG. 11

U.S. Patent Dec. 12,2023 Sheet 8 of 21 US 11,843,687 B2

START

PARSE WORD FROM
——= ORIGINAL MESSAGE
150

Y

COMPUTE PLAINTEXT
POLYNOMIAL
152

Y

ENCRYPT PLAINTEXT
POLYNOMIAL
154

Y

WRITE CIPHERTEXT TO
OUTBOUND MESSAGE
156

ORIGINAL MESSAGE!?

SEND ENCRYPTED
OUTBOUND MESSAGE
160

END

FIG. 12

U.S. Patent

Dec. 12,2023

CIPHERTEXT BIT
176

YES

Sheet 9 of 21

START

GET CIPHERTEXT
170

Y

GET TRIGGER WORD
172

BITWISE
MATCH?
174

US 11,843,687 B2

NO

ACCUMULATE ENCRYPTED
SPAM PROBABILITY
180

TRIGGER
WORDS DONE?

1 - CIPHERTEXT
BIT
178

NO

182

MESSAGE

DONE?
184

RETURN ENCRYPTED
SPAM PROBABILITY
186

END

FIG. 13

U.S. Patent Dec. 12,2023 Sheet 10 of 21 US 11,843,687 B2

START

GET TRAINING MESSAGE
200

'

PARSE WORD FROM
E— MESSAGE
202

MATCH IN
DATABASE?
204

NO CREATE NEW
DATABASE ENTRY
208

INCREMENT SPAM/HAM
COUNTER -
206

END OF
MESSAGE?
210

ANOTHER
TRAINING
MESSAGE?
212

FIG. 14

U.S. Patent Dec. 12,2023 Sheet 11 of 21 US 11,843,687 B2

DATA SERVER
300 304

DATABASE
326

PUBLIC KEY
RCT SERVER
| 324 320

o
5N
(&%)
(o

|

REMOTE TERMINALS
302

FIG. 15

U.S. Patent Dec. 12,2023 Sheet 12 of 21 US 11,843,687 B2

Fanction

3

3
i
¥

peeeery

Return

FIG. 16

US 11,843,687 B2

Sheet 13 of 21

Dec. 12,2023

U.S. Patent

17

FI.

U.S. Patent Dec. 12,2023 Sheet 14 of 21 US 11,843,687 B2

U.S. Patent Dec. 12,2023 Sheet 15 of 21 US 11,843,687 B2

INPUT INTERFACE GPU OUTPUT
404 402 INTERFACE
”‘ T 406
MEMORY
408

400

FIG. 19

U.S. Patent Dec. 12,2023 Sheet 16 of 21 US 11,843,687 B2

FIG. 20

ot Multiphication Time [Seconds}

Circudt Dapth

S iBM HEHL [CPUT Present invention i Present invention
) {CPU) (GPU)

FIG. 21

U.S. Patent Dec. 12, 2023 Sheet 17 of 21

US 11,843,687 B2

Naehrig et ol.

Naehrig et al.

{time}

(speedup}

FIG. 22

Present Invention

U.S. Patent Dec. 12,2023 Sheet 18 of 21 US 11,843,687 B2

£]

Search Hme kecond

3 s s 86 e S e e MO 120 18 M0

File Size {in words)

-W-Purtiatly Secure Keveord Search (GPUT ~e-Fully Saoure Kewaord Search (GPU)

roh {HEHDeFully Reoure Yevword Search (HERR)

=i=PFartially Sevure Neyword Sea

FIG. 24

U.S. Patent Dec. 12,2023 Sheet 19 of 21 US 11,843,687 B2

Ajyz Sy =b—a-t=¢g

FIG. 25a

FIG. 25d

U.S. Patent

Dec. 12, 2023 Sheet 20 of 21 US 11,843,687 B2

Fix,,

¥t

s) = Z (ﬂ@)

;o—
- P=1

{3 o B JES

FIG. 25e

error i B.n,q) g2

FIG. 25f

s dog gl A 4 1N /T2

FIG. 25g

p=

Prigy Py

& E:"&’?:fﬁﬁﬁié‘

U.S. Patent Dec. 12,2023 Sheet 21 of 21 US 11,843,687 B2

FIG. 25k

ke N

FIG. 251

FIG. 25m

| | A
(o il - 2 <k dg

FIG. 25n

amod g = ay — ay + (g, << 17}

FIG. 250

US 11,843,687 B2

1

SYSTEMS, DEVICES, AND PROCESSES FOR
HOMOMORPHIC ENCRYPTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. 61/946,557,
filed on Feb. 28, 2014, the entirety of which is incorporated
herein by reference.

FIELD

This disclosure relates to encryption, more specifically, to
homomorphic encryption.

BACKGROUND

A fully homomorphic encryption scheme (FHE) is an
encryption scheme that allows evaluation of arbitrary func-
tions on encrypted data. Since Gentry’s mathematical break-
through constructing the first plausible FHE scheme, there
has been rapid development in the theory and implementa-
tion of homomorphic encryption (HE) schemes. HE
schemes can now be based on a variety of cryptographic
assumptions, such as approximate greatest common divi-
sors, learning with errors (LWE), and Ring-LWE (RLWE).

Known implementations RLWE-based FHE schemes
have drawbacks, such as the need to maintain a so-called
“modulus chain” which increases the size of prime numbers
and consequently increases the ring dimension for a given
security level. They also often need to perform processing
intensive modulus and key switching operations.

Searching an encrypted database is generally known, but
often has drawbacks, such as the need for a special key to aid
the server in performing a search request. In some cases,
partial information about the data access pattern is leaked. In
some cases, the same server requests would generate the
same tags.

In general, known fully homomorphic encryption systems
require a large amount of storage space and a high degree of
processing power. As such, known systems are cumbersome
and not widely used. Other drawbacks of conventional
systems are known to those skilled in the art.

SUMMARY

According to one aspect of the present invention, a
process for homomorphic encryption includes receiving a
ciphertext, the ciphertext corresponding to a plaintext poly-
nomial bound to a message space of a polynomial-based
fully homomorphic cryptographic scheme. The process fur-
ther includes performing a multiplication operation on the
ciphertext to obtain a resultant ciphertext by performing a
bitwise decomposition function on the ciphertext to obtain a
bitwise decomposed ciphertext, the bitwise decomposition
function mapping a multi-bit data type to a sequence of bits,
and by performing matrix multiplication on the bitwise
decomposed ciphertext and a data element that accords with
an inverse bitwise decomposition of the ciphertext. The
inverse bitwise decomposition maps a sequence of bits to the
multi-bit data type. The process further includes outputting
the resultant ciphertext.

The process can further include performing an addition
operation on the ciphertext by performing matrix addition on
the ciphertext and another data element.

The process can further include receiving, via a network
from a remote terminal, a plurality of ciphertexts that

10

15

20

25

30

35

40

45

50

55

60

65

2

includes the ciphertext. Each ciphertext of the plurality of
the ciphertexts is representative of a portion of a human-
intelligible electronic message. The process can further
include performing the multiplication operation on each
ciphertext of the plurality of the ciphertexts for each data
element of a set of data elements that includes the data
element. The set of data elements defines a set of message
filter trigger words.

Performing the multiplication operation on each cipher-
text and each data element can include multiplicatively
accumulating a bitwise match of each ciphertext and each
data element.

Multiplicatively accumulating the bitwise match can
include performing a homomorphic XNOR operation on
respective bits of each ciphertext and each data element.

The process can further include accumulating a ciphertext
probability by performing matrix addition to sum results of
each multiplication operation, the resultant ciphertext being
representative of the ciphertext probability. The process can
further include outputting the resultant ciphertext via the
network to a messaging server or a destination remote
terminal for the human-intelligible electronic message. The
messaging server or the destination remote terminal is
configured to decrypt the resultant ciphertext to obtain a
resultant plaintext polynomial and to interpret the resultant
plaintext polynomial as a probability that the human-intel-
ligible electronic message should be filtered.

The process can further include storing the set of data
elements as binary hashes in ascending order and skipping
redundant computations based on stored partial results for
adjacent data elements.

The process can further include performing the multipli-
cation operation for the ciphertext and each data element of
a set of data elements that includes the data element. The
process can further include performing matrix addition to
sum results of each multiplication operation. The set of data
elements defines a set of stored data and the ciphertext is
representative of a search query for the set of stored data.

The process can further include outputting the resultant
ciphertext via a network to a remote terminal. The remote
terminal is configured to decrypt the resultant ciphertext to
obtain a resultant plaintext polynomial and to compare the
resultant plaintext polynomial to an error threshold to obtain
a value for a binary flag defined by the error threshold.

The data element can be representative of another cipher-
text that corresponds to another plaintext polynomial bound
to the message space.

The multiplication operation can further include perform-
ing number theoretic transform (NTT) computations. The
process can further include distributing each number theo-
retic transform computation among a plurality of processing
cores.

The process can further include using a graphics process-
ing unit (GPU) to perform the multiplication operation.

According to another aspect of the present invention, a
process for homomorphic encryption includes computing a
plaintext polynomial bound to a message space of a poly-
nomial-based fully homomorphic cryptographic scheme and
storing an identity matrix of the polynomial-based fully
homomorphic cryptographic scheme in accordance with an
inverse bitwise decomposition. The inverse bitwise decom-
position maps a sequence of bits of the identity matrix to a
multi-bit data type. The process further includes generating
an expanded plaintext polynomial by performing matrix
multiplication on the plaintext polynomial and the represen-
tation of the identity matrix and computing a ciphertext

US 11,843,687 B2

3
corresponding to the plaintext polynomial by applying a
public key to the expanded plaintext polynomial.

The process can further include performing a multiplica-
tion operation on the ciphertext to obtain a resultant cipher-
text. The multiplication operation includes performing a
bitwise decomposition function on the ciphertext to obtain a
bitwise decomposed ciphertext, the bitwise decomposition
function mapping the multi-bit data type to a sequence of
bits. The multiplication operation further includes perform-
ing matrix multiplication on the bitwise decomposed cipher-
text and a data element.

The process can further include performing an addition
operation on the ciphertext to obtain a resultant ciphertext.
Performing the addition operation includes performing
matrix addition on the ciphertext and a data element.

The process can further include sending the ciphertext to
a remote system via a computer network, the remote system
configured to perform an operation on the ciphertext to
obtain a resultant ciphertext, and receiving the resultant
ciphertext from the remote system.

The process can further include decrypting the resultant
ciphertext to obtain a resultant plaintext polynomial by
performing a matrix multiplication on the resultant cipher-
text and a secret key that is complementary to the public key.
The secret key is not expanded by a powers-of-two expan-
sion.

The process can further include mapping a binary flag to
an error threshold, comparing the resultant plaintext poly-
nomial to the error threshold to obtain a value for the binary
flag.

According to another aspect of the present invention, a
system for homomorphic encryption includes a plurality of
remote terminals. Each remote terminal of the plurality of
remote terminals is configured to generate ciphertexts from
plaintext polynomials. Each ciphertext corresponds to a
plaintext polynomial bound to a message space of a poly-
nomial-based fully homomorphic cryptographic scheme.
The system further includes at least one server configured to
receive ciphertexts via a network from the plurality of
remote terminals. The at least one server is further config-
ured to perform a multiplication operation and an addition
operation on the ciphertexts to obtain resultant ciphertexts.
The multiplication operation includes performing a bitwise
decomposition function on a ciphertext to obtain a bitwise
decomposed ciphertext. The bitwise decomposition function
maps a multi-bit data type to a sequence of bits. The
multiplication operation further includes performing matrix
multiplication on the bitwise decomposed ciphertext and a
data element belonging to a set of data elements. The data
element is in accordance with an inverse bitwise decompo-
sition of the ciphertext. The inverse bitwise decomposition
mapping a sequence of bits to the multi-bit data type.

The at least one server can further be configured to output
the resultant ciphertexts via the network.

Sequences of ciphertexts can be representative of human-
intelligible electronic messages delivered among the plural-
ity of remote terminals and the set of data elements can be
representative of message filter trigger words. The at least
one server can further be configured to perform the multi-
plication operation on combinations of ciphertexts and data
elements and sum results of several multiplication opera-
tions to obtain resultant ciphertexts representative of prob-
abilities that the human-intelligible electronic messages
should be filtered.

Ciphertexts can be representative of search queries and
the set of data elements can be representative of stored data
to be searched. The at least one server can be further

20

25

30

35

40

45

50

55

65

4

configured to perform the multiplication operation on com-
binations of ciphertexts and data elements and to sum results
of several multiplication operations to obtain resultant
ciphertexts representative of resultant plaintext polynomials
that are comparable to an error threshold to obtain values for
a binary search-hit flag defined by the error threshold.

The at least one server can further include a plurality of
processing cores. The at least one server can be further
configured to distribute a number theoretic transform (NTT)
computation among the plurality of processing cores as part
of the multiplication operation.

The at least one server can further include a graphics
processing unit (GPU) configured to perform the multipli-
cation operation and the addition operation.

According to another aspect of the present invention, a
process for message filtering with homomorphic encryption
includes receiving, via a network from a remote terminal, a
plurality of ciphertexts corresponding to a plurality of plain-
text polynomials bound to a message space of a polynomial-
based fully homomorphic cryptographic scheme. Each
ciphertext of the plurality of the ciphertexts is representative
of a portion of a human-intelligible electronic message
originating from the remote terminal. The process further
includes performing multiplication operations on each
ciphertext of the plurality of the ciphertexts for each data
element of a set of data elements. The set of data elements
defines a set of message filter trigger words. Each multipli-
cation operation includes multiplicatively accumulating a
bitwise match of each ciphertext and each data element. The
process further includes outputting at least one resultant
ciphertext resulting from the multiplication operations.

Multiplicatively accumulating the bitwise match can
include performing a homomorphic XNOR operation on
respective bits of each ciphertext and each data element.

The process can further include accumulating a ciphertext
probability by performing matrix addition to sum results of
each multiplication operation, the resultant ciphertext being
representative of the ciphertext probability, and outputting
the resultant ciphertext for decryption to obtain a resultant
plaintext polynomial representative of a probability that the
human-intelligible electronic message should be filtered.

The message filter trigger words can be spam trigger
words and the resultant ciphertext can be representative of a
probability that the human-intelligible electronic message is
spam.

The message filter trigger words can be security trigger
words and the resultant ciphertext can be representative of a
probability that the human-intelligible electronic message is
a security concern.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate, by way of example only, embodi-
ments of the present disclosure.

FIG. 1 is a block diagram of a device configured to
implement operation processes for homomorphic encryp-
tion.

FIG. 2 is a block diagram of a device configured to
encrypt and decrypt data.

FIG. 3 is a chart showing secret key size reduction.

FIG. 4 is a chart showing ciphertext size reduction and
obviating a flatten function.

FIG. 5 shows pseudocode for a ciphertext multiplication
operation.

FIG. 6 is a table of example parameter selection.

FIG. 7 is a schematic diagram of a messaging system.

FIG. 8 shows pseudocode for an encryption process.

US 11,843,687 B2

5

FIG. 9 shows pseudocode for a message filtering process.

FIG. 10 shows pseudocode for a word matching process.

FIG. 11 shows pseudocode for an encrypted word match-
ing process.

FIG. 12 is a flowchart of a process for encrypting and
sending a message.

FIG. 13 is a flowchart of a process for determining spam
probability for an encrypted message.

FIG. 14 is a flowchart of a process for training a message
filter.

FIG. 15 is a schematic diagram of an encrypted data
search system.

FIG. 16 shows pseudocode for a multiple keyword search
function.

FIG. 17 is schematic diagram of a binary tree.

FIG. 18 is a diagram of a number theoretic transform.

FIG. 19 is a block diagram of device including a graphics
processing unit (GPU) for performing the present tech-
niques.

FIGS. 20-24 show example results of the present inven-
tion.

FIGS. 25a-250 show expressions/equations according to
the present invention.

DETAILED DESCRIPTION

The techniques of the present invention are described with
reference components such as systems, devices, terminals,
servers, functions, as well as other components such as data
structures and equations. It should be understood that a
component described in terms of hardware may include
some programmatic code, and that a component described in
terms of code, processes, or functions may include hardware
elements. The specific examples described herein are not
intended to be limiting.

Discussed herein are techniques for homomorphic
encryption and decryption, key generation, secure email
spam filters, secure keyword searches, binary decision trees,
and among others. The principles of Gentry-Sahai-Waters
(GSW) homomorphic encryption are leveraged where prac-
tical. However, the present techniques offer distinct
improvements over GSW homomorphic encryption.

FIG. 1 shows a block diagram of a device 10 configured
to implement operation processes for homomorphic encryp-
tion as described herein. The device 10 can be included as
part of a server that communicates with remote terminals via
a network and performs computations on encrypted data
received from such remote terminals. The device 10 can be
included as part of a terminal or other computer to perform
computations on encrypted data at such terminal. The device
10 can be realized as code executable on a processing
machine, such as a graphics processing unit (GPU), as logic
gates and other blocks of an application-specific integrated
circuit (ASIC), as a combination of such, or similar. It is
noted that the blocks shown in FIG. 1 are examples, and the
structure and functionality of various blocks can be com-
bined, separated, or implemented in ways different from
shown.

The examples described herein employ a ring learning
with errors (RLWE) cryptographic scheme. However, this is
merely one example, and any suitable polynomial-based
fully homomorphic cryptographic scheme can be used.

The device 10 includes a ciphertext input buffer 12, a
bitwise decomposition function 14, a multiplication operator
16, a number theoretic transform (NTT) engine 17, an
addition operator 18, a ciphertext output buffer 20, and
control logic 22. The device 10 may further include an

10

15

20

25

30

35

40

45

50

55

60

65

6

operation input buffer 24. A ciphertext as discussed herein
corresponds to a plaintext polynomial that is bound to a
message space of the polynomial-based fully homomorphic
cryptographic scheme.

The ciphertext input buffer 12 is a memory space that
stores input ciphertext to undergo computation. The cipher-
text input buffer 12 can store one or more ciphertexts. The
ciphertext input buffer 12 may be a sequential buffer, such
as a first-in first-out (FIFO) buffer or may have a different
structure. Input to the ciphertext input buffer 12 may be from
a network interface coupled to a remote terminal via a
network (e.g., the Internet) or may be from a storage device
local to the device 10. Input via the network may be the case
when the device 10 is implemented at a server. Additionally,
input to the ciphertext input buffer 12 may include feedback
from the ciphertext output buffer 20. The ciphertext input
buffer 12 and ciphertext output buffer 20 may share memory
space or may designate a common memory space, with reads
and writes being controlled by the control logic 22.

The bitwise decomposition function 14 is configured to
process an input ciphertext to obtain a bitwise decomposed
ciphertext. The bitwise decomposition function maps a
multi-bit data type (e.g., integer) to a sequence of bits.
Ciphertext contains data representative of vectors and the
bitwise decomposition function 14 is configured to obtain
binary representations of such vectors. The bitwise decom-
position function 14 can be considered to expand ciphertext
stored in accordance with the multi-bit data type into bits
that may then readily undergo matrix multiplication. The
bitwise decomposition function 14 will be discussed in
further detail below.

The multiplication operator 16 is configured to perform a
matrix multiplication computation on bitwise decomposed
ciphertext and a data element received from the operation
input buffer 24. The data element is in accordance with an
inverse bitwise decomposition of the ciphertext. The inverse
bitwise decomposition maps a sequence of bits to the
multi-bit data type. The multiplication operator 16 uses the
NTT engine 17. Matrix multiplication and the NTT engine
17 will be discussed in further detail below.

The addition operator 18 is configured to perform a matrix
addition computation on input ciphertext and a data element
received from the operation input buffer 24. Matrix addition
will be discussed in further detail below.

The ciphertext output buffer 20 stores one or more resul-
tant ciphertexts resulting from computations performed by
the operators 16, 18. The ciphertext output buffer 20 is
otherwise generally the same as the ciphertext input buffer
12. Output of the ciphertext output buffer 20 can be fed back
for further computations. Output may also be sent to long-
term memory of the device 10 or transmitted to a remote
terminal on the network. Routing of the output of the
ciphertext output buffer 20 is governed by the control logic
22.

The control logic 22 is configured to manage operations
of the device 10 based on the application of the device 10.
The control logic 22 can be configured to forward data
elements and respective operation commands (e.g., multiply,
add) from the operation input buffer 24 and advances
ciphertext from the ciphertext input buffer 12 to the respec-
tive operator 16, 18. Additionally or alternatively, the control
logic 22 can be configured to feedback resultant ciphertext
from the ciphertext output buffer 20, as well as respective
operation commands, to the respective operator 16, 18. The
control logic 22 can be programmable to execute program
code to facilitate a sequence of operations based on one or
more elementary operations (e.g., multiply, add) capable of

US 11,843,687 B2

7

being performed by the device 10. Alternatively or addi-
tionally, the control logic 22 can be based on fixed logic
gates or other blocks.

The operation input buffer 24 is a memory space that
stores input data elements to facilitate computation. The
operation input buffer 24 can store one or more of such input
data elements. Input to the operation input buffer 24 may be
from a database, which may be available locally to the
device 10 or through the network interface via a network
(e.g., the Internet). Input to the operation input buffer 24 may
additionally or alternatively include data from a remote
terminal. The operation input buffer 24 is otherwise gener-
ally the same as the ciphertext input buffer 12. Further, it is
contemplated that input data elements may be plaintext,
ciphertext, or a combination of such.

In operation, the device 10 receives ciphertexts at the
ciphertext input buffer 12 and performs multiplication and/
or addition operations on the received ciphertexts to obtain
resultant ciphertexts. The multiplication operation includes
performing the bitwise decomposition function 14 on input
ciphertexts and performing matrix multiplication on bitwise
decomposed ciphertexts and input data elements at the
multiplication operator 16. The addition operation includes
performing matrix addition on input ciphertexts and input
data elements at the addition operator 18. Resultant cipher-
texts at the ciphertext output buffer 20 can be stored,
transmitted, fed back into computations, or any combination
of such.

FIG. 2 shows a block diagram of a device 50 configured
to implement encryption/decryption processes for homo-
morphic encryption as described herein. The device 50 can
be included as part of a terminal or other computer. The
device 50 can be configured to communicate with a server
that performs computations on encrypted data received from
the device 50. Alternatively, the device 50 can be located at
the same terminal at which the device 10 is located to
perform encryption, computation, and decryption locally at
the same terminal. The device 50 can be realized as code
executable on a processing machine, such as a GPU, as logic
gates and other blocks of an ASIC, as a combination of such,
or similar. It is noted that the blocks shown in FIG. 2 are
examples, and the structure and functionality of various
blocks can be combined, separated, or implemented in ways
different from shown.

The device 50 includes an encryption system that includes
a plaintext input buffer 52, a plaintext polynomial generator
54, an encryption engine 56, and a ciphertext output buffer
58. The device 50 further includes a decryption system that
includes a ciphertext input buffer 62, a decryption engine 64,
a plaintext extractor 66, and a plaintext output buffer 68. The
device 50 further includes a key generator 72. In various
implementations, other devices include one or more of the
encryption system, decryption system, and key generator.
For sake of example, the device 50 includes all of these
components. Operations of the device 50 are controlled by
a central processing unit (CPU) or similar controller oper-
ating under control of at least one process such as a user
program.

The plaintext input buffer 52 is a memory space that stores
input plaintext to be encrypted. The plaintext input buffer 52
can store one or more plaintexts. The term plaintext as used
herein denotes an arbitrary series of binary values. Sources
of plaintext include a messaging application, such as an
email client, a search application, and similar. The plaintext
input buffer 52 may be a sequential buffer, such as FIFO
buffer or may have a different structure.

10

15

20

25

30

35

40

45

50

55

60

65

8

The plaintext polynomial generator 54 is configured to
compute plaintext polynomials bound to the message space
of the polynomial-based fully homomorphic cryptographic
scheme. This is described further below. Further, the plain-
text polynomial generator 54 generates an expanded plain-
text polynomial by performing matrix multiplication on the
plaintext polynomial and an identity matrix 82 of the poly-
nomial-based fully homomorphic cryptographic scheme.
The identity matrix 82 accords with an inverse bitwise
decomposition 84 that maps a sequence of bits of the identity
matrix 82 to a multi-bit data type (e.g., integer). This can
advantageously result in smaller ciphertexts. The inverse
bitwise decomposition 84 is discussed in further detail
below.

The encryption engine 56 is configured to encrypt the
expanded plaintext polynomials based on one of any number
of public keys 86 and a source or randomness 88. The public
keys 86 may be stored in memory at the device 50 or may
be fetched from a remote source. The specific public key 86
used in a particular encryption is selected based on the
intended recipient of the plaintext, as is known. The source
of randomness 88 can be user entropy, physically based
entropy, or other source.

The ciphertext output buffer 58 receives ciphertexts from
the encryption engine 56. The device 50 may be configured
to reference the ciphertext output buffer 58 for transmitting
ciphertexts to a server, for storing ciphertexts at long-term
storage at the device 50, or for other functions.

During homomorphic encryption, the device 50 computes
plaintext polynomials at the plaintext polynomial generator
54 based on input plaintext 52 from the input buffer 52.
Expanded plaintext polynomials are generated by the plain-
text polynomial generator 54 based on the identity matrix in
accordance with the inverse bitwise decomposition 84.
Ciphertexts are computed by the encryption engine 56 by
applying a selected public key 86 and the source of ran-
domness 88 to the expanded plaintext polynomials, before
being output at the buffer 58.

Concerning decryption, the ciphertext input buffer 62 is
configured to receive incoming ciphertexts from, for
example, a server or locally from long-term memory.

The decryption engine 64 is configured to decrypt cipher-
texts using a secret key 90 that is paired with one of the
public keys 86. The secret key and public key pair is
contemplated to be controlled by the same user, as is known.

The plaintext extractor 66 is configured to extract plain-
text from plaintext polynomials resulting from the decryp-
tion engine 64.

The plaintext output buffer 68 stores extracted plaintext
68 for use by the terminal containing the device 50, such as
for responding to a user’s search query, outputting human-
intelligible electronic messages, or similar.

The buffers 52, 58, 62, 68 may be of the same or different
configurations and may share memory space or may desig-
nate a commeon memory space.

The key generator 72 is configured to generate a public
key 86 and complementary secret key 90. The secret key 90
does not use a powers-of-two expansion. This advanta-
geously results in a smaller secret key 90. This will be
discussed in further detail below.

The examples described herein employ a RLWE crypto-
graphic scheme, and the general principles of such scheme
will now be described. However, this scheme is not particu-
larly limiting and other suitable polynomial-based fully
homomorphic cryptographic scheme(s) can be used. More-
over, any gaps in the below would be well understood by
those skilled in cryptography in view of the known art.

US 11,843,687 B2

9

For an odd prime number g, the ring Z/qZ (or Z,,) with the
interval (-q/2, ¢/2)NZ is identified. The notation [x],
denotes reducing x modulo q. The examples discussed
herein use polynomial rings defined by the cyclotomic
polynomials R=7[X]/®,(X), where ®m(X)=x,+1 is the
irreducible m™ cyclotomic polynomial, in which n is a
power of 2 and m=2n. Let R ,=R/qR. Any type of multipli-
cation including matrix and polynomial multiplication is
denoted herein by the multiplication operator ‘-’. Addition,
denoted herein by ‘+°, is entry-wise. Generally, operations
are done in finite field and as ring operations. Rounding up
to the nearest integer is denoted by [a]. Matrices of rings are
defined as A, , where A,€ R, and M, N are the matrix
dimensions. I, ., represents the identity matrix of rings.
Row vectors are represented as [a b], where a and b are the
vector elements. Column vectors on the other hand are
represented as [a; b].

The RLWE problem concerns a mapping of the LWE
problem from the vectors over Z, to polynomial rings over
R, . The RLWE problem is to distinguish between the
following two distributions. The first distribution is to draw
(a, b) uniformly from qu. The second is to first draw t
uniformly from R, . Then sample (a, b) as follows. Draw a
uniformly from R, sample e from a discrete Gaussian error
distribution eeDR _» and set b=a-t+e.

The parameters ‘of the cryptographic scheme are n, the
degree of the number field; q, the modulus; o, and o, the
standard deviation of the discrete Gaussian error distribution
in the keyspace and ciphertext space, respectively; £ 2 [log
q]; and N=2£ that governs the number of ring elements in
a ciphertext. The setting of these parameters depends on the
security level A (e.g., A=80 or 128 bits) as well as the
complexity of functions contemplated to evaluate on cipher-
texts.

The bitwise decomposition function 14 (FIG. 1), also
termed a bit decompose function BD(d), is configured to
transform the polynomial d to the ¢ -dimensional vector
[d(0), . .., d(£ -1)], which are the bitwise decomposition of
d. That is, d(0), . . ., d(£ -1) are polynomials with {0-1}

coefficients such that d=Y,{Z% d(t)-2", which represents the
inverse bitwise decomposition 84 (FIG. 2) and which can be
represented as a bit decompose inverse function BDI(d).
Note that A, ,~BD(B,.»), inversely B, ,=BDI(A.), and
that BD(By,.>) BDI(A s v)= Ansr Basea-

Referring back to FIG. 2, the device 50 is configured to
generate keys, encrypt information, and decrypt informa-
tion.

The key generator 72 is configured to implement a
Keygen(1™) function as follows. A polynomial t«<—D,, _ is
chosen. The secret key 90 becomes sk=s,, ;<[1; —t]éR 2
The public key is pk=A,,.,=[b a], based on a uniform sample
aeRq eeDR op Set b=a-t+e. It is noted that the expression
in FIG. 25A Lolds.

As shown in FIG. 3, this is advantageous over a known
secret key sk=v=PO2(s) based on a powers-of-two expan-

sion such as PO2(x) defined as [x, 2x, . . ., 2t-1 x]. Hence,
the key generator 72 generates smaller secret keys by a
theoretical factor of £ times.

The encryption engine 56 is configured to implement an
Enc(pk, p) function as follows. The message space is R . A
uniform vector r,,,; is sampled where each coefficient in the
polynomials in r sampled from {0,1}, Bana<Dg, o "2 The
plalntext polyn0m1a1 MER,, is encrypted by calculatlng the
expression in FIG. 255. As shown in FIG. 4, this is advan-

10

15

20

25

30

35

40

45

50

55

60

65

10

tageous over prior techniques that use C,,,, as the encryp-
tion engine 56 results in smaller ciphertext by a theoretical
factor of ¢ times.

The decryption engine 64 is configured to implement a
Dec(sk, C) function as follows. Given the ciphertext C, the
plaintext pER,, is restored by multiplying C by the secret-
key s according to the expression in FIG. 25c¢.

This is advantageous over prior techniques that imple-
ment Dec(sk, C)=C..»Vas;, as the decryption engine 64
requires the performance of fewer operations a theoretical
factor of ¢ times.

It is noted that the first £ coeflicients in the first term of

the expression in FIG. 25¢ are in the form pu, 2y, . .., 2774 .

This means that the element at location i€[0,£ -1] is in the
form p-2"+error. That is, the most significant bit of each entry
carries a single bit from the number p assuming that
error<q/2 and there is theoretically no wrap-around mod q as
may be found in prior techniques.

Referring back to FIG. 1, the device 10 is configured to
perform operations on ciphertext without first decrypting the
ciphertext. For input ciphertexts C,,, and Dy, ERqN"2
encrypting |, and p, respectively, homomorphic operations
are implemented as follows.

The addition operator 18 implements an ADD(C, D)
function to add two ciphertexts Cy,., and D, , by perform-
ing the entry-wise addition C,,, D+,5.

The multiplication operator 16 and bitwise decomposition
function 14 implement a MULT(C, D) function to multiply
two ciphertexts C,, , and D, , by performing the bitwise
decomposition function 14 (or BD) on one ciphertext and
then executing the multiplication, as BD(Cyy.5) Do

As shown in FIG. 4, this is advantageous over prior
techniques that define MULT(C, D)=FLATTEN(C,.
D), where FLATTEN(A) is defined as BD(BDI(A)). The
present technique requires fewer operations by a theoretical
factor of at least € times. The resource-intensive flatten
operation is not required to be performed.

Correctness of the above homomorphic addition should
readily apparent to those skilled it the art. The multiplication
is asymmetric in the input ciphertexts C and D. That is, the
components of D are treated as a whole, whereas the
components of Care broken up into their bit-wise decom-
positions. The multiplication is correct, as discussed below,
and gives a slow noise-growth rate.

The correctness of the multiplication operation should
readily apparent to those skilled it the art in view of the
expression in FIG. 254, in which matrix dimensions are
removed for clarity. In the last line of the manipulation of
expression in FIG. 254, it is apparent that the encryption of
W=t Ly

Correct decryption depends on the ciphertext noise being
bounded. Thus, it is important to understand how homo-
morphic operations increase ciphertext noise. Taking C as a
fresh ciphertext, it is apparent that homomorphic addition of
v ciphertexts increases the noise by a factor of v in the worst
case. In various contemplated implementations, since the
coeflicients of the error polynomials are contemplated to
follow a Gaussian distribution, the factor is closer to O(V¥).

It is further apparent that homomorphic multiplication of
two ciphertexts C=Enc(y,) and D=Enc(y,) with error mag-
nitudes B, and B,, respectively, increases the error to
O(B1|u,|l,+B2n log q) in the worst case, and O(BI-||u,|, +
B2+vnlog(q)) in various contemplated implementations.
Here, |||, denotes the € | norm of the message polynomial
p. It is advantageous that error dependence on the two
ciphertexts is asymmetric, as evident from the above.

US 11,843,687 B2

11

To multiply v ciphertexts the order of multiplication is
contemplated to play a role in the error. In techniques
described herein, input p will typically be 0 or 1, meaning
that the growth is simply additive with respect to B,. Thus,
it is advantageous to multiply v ciphertexts with (the same)
error level B is through an accumulator-like function as
shown in FIG. 5, rather than using a binary tree of multi-
plications, which tends to grow error at superpolynomial
rates. The resulting error growth is O(B-vn log(q)) in the
worst case, and O(B+vnlog(q)) in various contemplated
implementations. Hence, the control logic 22 (FIG. 1) can be
configured to implement accumulative multiplications, as
shown in FIG. 5 and as required by various contemplated
implementations.

For example, reference is now made to the expression in
FIG. 25¢, in which x,, . . ., X, are v-tuples of input encrypted
bits, y,, . . ., y, are v-tuples of bits in some set S, and
operation (x; Py,) represents binary XNOR between bits X,
and y,. Since the form of the expression in FIG. 25¢
stipulates that exactly one of the terms may survive (F=1
when x,, . . ., X,E8S, otherwise F=0), the small total error
growth can result, even though the component computing
based on the expression in FIG. 25¢ may not be able to
determine precisely which term will survive.

It is apparent that noise grows to O(B-vn log q'ISI) in the
worst case, or O(BVvnlog(q)ISI) in various contemplated
implementations. This is in contrast to O(B<(

nlog(q))°#?ISI) when using the known Brakerski-Gentry-
Vaikuntanathan encryption scheme, implemented in IBM
HElib. Indeed, such expressions, as in the expression in FIG.
25e, are far from atypical, and they occur quite naturally in
evaluating decision trees and PIR-like functions as will be
discussed further below.

Another source of improvement afforded by the presently
disclosed techniques is evident from the error term B, ||, ||, +
B,n log q. When multiplication is performed using an
accumulator, as shown in FIG. 5, B, represents the smaller
error in the fresh ciphertexts C,, and B, represents the larger
error in the accumulated ciphertext C,__,.,. If C, encrypts
1,=0, then the larger error term B, disappears from the error
expression.

This error reduction is also apparent from the expression
in FIG. 25¢. When evaluating each of the products in the
expression in FIG. 25e¢, the error can be seen to grow
proportional not to v, the total number of multiplications, but
rather with k, the longest continuous chain of 1’s starting
from the end. It is contemplated that this is because the last
time a zero is encountered in the multiplication chain, the
error is reduced, by the observation above. Assuming that S
is an expected set, the expected length of a continuous chain
of trailing 1°s is ,_,"1-2'<2. In other words, the multiplica-
tive factor of v disappears from the error expression as well,
and error growth becomes close to O(B+vnlog(q)IST). This is
substantially the same effect as if IS| ciphertexts were added.

Further, when f is taken as a function to be evaluated, for
example, the expression in FIG. 25e, the errory(B,n,q)
denotes how much the error grows when evaluating the
function f on ciphertexts in R, with an initial error of
magnitude B. For correct decryption, it is expected that the
expression in FIG. 25/ holds. Since errors tend to grow
slower using the present techniques, q can be set to be
correspondingly smaller to meet a security level equivalent
to that of prior techniques. Following the analysis of Lindner
and Peikert, for a security level of A bits, it is expected that
the expression in FIG. 25g holds.

15

20

25

35

40

45

50

12

Because log q in the present techniques is smaller, n can
be set to be smaller, for the same security level A. In turn, a
smaller n can result in a errory(B,n,q) that is smaller, leading
to an even smaller g, and so on. Suitable parameters are
obtained by solving both the above inequalities in FIGS. 25/
and 25g together. FIG. 6 summarizes an example of such a
parameter selection.

With reference to FIG. 7, a human-intelligible messaging
system 100 incorporating the present techniques is shown.
The messaging system 100 can be an email system or similar
messaging system that communicates electronic messages
among users operating remote terminals 102, such as com-
puters, smartphones, tablet devices, Internet-of-things (IoT)
devices, smart-grid devices for power or other utility, medi-
cal devices, and the like. The messaging system 100 advan-
tageously operates a spam filter that directly compares
ciphertext to trigger words without decrypting ciphertext or
having access to secret keys.

A message server 104, such as an email server, is con-
figured to implement functionality of the device 10 of FIG.
1. That is, the message server 104 performs operations on
received ciphertext messages and outputs resultant cipher-
text messages. With respect to the messages that it handles,
the message server 104 operates exclusively in the cipher-
text domain.

Each of the remote terminals 102 is configured to imple-
ment functionality of the device 50 of FIG. 2. That is, a
remote terminal 102 can execute a messaging client, such as
an email application, that implements at least one of the
encryption and decryption systems described with respect to
FIG. 2. Each of the remote terminals 102 connects to the
message server 104 via a wide-area network 106, such as the
Internet.

Each of the remote terminals 102 is configured to receive
input of human-intelligible messages 114, such as human-
readable text, and segment human-intelligible messages 114
into units of plaintext 116. For instance, the remote terminal
102 can be configured to hash each word of a human-
intelligible message 114 to a unique number of uniform bit
length (e.g., 16 bits, 32 bits, or other value) to obtain a
sequence of plaintexts 116 that represent the message 114.
The remote terminal 102 is further configured to fetch, from
a public key server 120 or other source, one or more public
keys 118 belonging to the one or more intended recipients of
a particular human-intelligible message 114, and using each
such public key 118 to encrypt each of the plaintexts 116 of
the message 114 into a ciphertext 122 as discussed else-
where herein. It is contemplated that each human-intelligible
word is represented by a sequence or group of ciphertexts,
though this is not intended to be limiting. Each of the remote
terminals 102 is further configured to send all of ciphertexts
122 representative of an original human-intelligible message
114 to the message server 104.

FIG. 8 shows pseudocode of a function that can be
implemented in a remote terminal 102 to realize encryption
as described the above. Each word in the message is hashed,
and then each bit of the hash is encrypted into a ciphertext.

The message server 104 is configured to perform opera-
tions on received ciphertexts 122 forming the encrypted
message, and forward the received ciphertexts 122 to the
intended recipient(s) along with a resultant ciphertext 124
representative of a likelihood that the original message 114
is spam and thus a probability that message should be
filtered out.

The message server 104 is configured to reference a
trigger word (spam) database 126 that stores spam trigger
words in hashed form, as plaintext or ciphertext, in asso-

US 11,843,687 B2

13

ciation with corresponding trigger word probabilities that
indicate the relative contribution of the presence of a trigger
word to the total likelihood that the message is spam. With
reference back to FIG. 1, each of the spam trigger words is
a data element input at the operation input buffer 24, and the
message server 104 is configured to perform the multipli-
cation operation on combinations of ciphertexts and spam
trigger words and sum results of several multiplication
operations to obtain a resultant ciphertext representative of
spam probability.

FIGS. 9-11 show pseudocode of functions that can be
implemented at the message server 104 to realize the above.
When the device 10 is used as the basis for operation of the
message server 104, the functions can, for example, be
implemented at the control logic 22. The multiplication and
addition operators, which correspond to blocks 16, 18 of
FIG. 1 and which are described throughout this disclosure,
are shown symbolically in FIGS. 9-11 as “x” and “+”,
respectively.

Pseudocode for a homomorphic spam filter function is
shown in FIG. 9. Each ciphertext 122 representing a mes-
sage 114 is compared to each trigger word in the trigger
word database 126 by performing a word matching function,
which is shown as pseudocode in FIG. 10. The word
matching function performs a bitwise comparison of binary
representations of a hash of a ciphertext and a hash of a
trigger word, using successive multiplications to accumulate
a binary match value indicative of whether the ciphertext is
a spam word or not. Only the words that find a match in the
database will contribute towards the final probability. If it is
desired to store the trigger words in encrypted form, the
encrypted word matching function of FIG. 11 (homomor-
phic XNOR) can be used instead of the word matching
function of FIG. 10. Keeping the database encrypted may
help protect it from outside attackers, but this may add the
extra cost of two additional ciphertext multiplications to
implement the XNOR operation.

The spam filter function shown in FIG. 9 computes a
running additive total of the match value returned from the
word matching function multiplied by the corresponding
trigger word probability. The spam filter function returns the
running additive total, or probability, as the resultant cipher-
text 124 representative of the likelihood that the original
message 114 is spam and thus the probability that message
should be filtered out.

Each of the remote terminals 102 associated with the
intended recipients of the original message 114 receives the
sequence of ciphertexts 122 representative of the message
114 from the server 104. Each of such remote terminals 102
further receives the resultant ciphertext 124 representative of
the spam probability for the message 114. Each of such
remote terminals 102 is configured to decrypt the resultant
ciphertext 124 using the secret key 128 to obtain a machine-
intelligible value, such as a floating point number, repre-
senting the probability 130 that message should be filtered
out. A suitably configured threshold can be used to evaluate
the probability 130 to determine whether the ciphertexts 122
should be discarded (spam) or decrypted (ham) to obtain the
human-intelligible message 114 and present such to the
recipient.

FIG. 12 is a flowchart that shows the client-side encryp-
tion process discussed above. FIG. 8 may be referenced as
well. Each individual word of an inputted message, such as
an email, is parsed at step 150, by for example a regular
expression that isolates a next word from arbitrary string of
text. The parsed word is hashed to its binary value, in which
each bit is stored into one plaintext polynomial at step 152.

10

15

20

25

30

35

40

45

50

55

60

14

Step 154 encrypts the plaintext polynomial, so that step 156
can write the resulting one or more ciphertexts to an out-
bound message. Every individual word of the message is
processed in this manner, as checked by an end-of-message
condition at step 158. Once the entire message has been
transformed into a sequence of ciphertexts, it is sent to the
intended recipient(s) at step 160.

FIG. 13 is a flowchart that shows the server-side opera-
tions for computing spam probability for a particular
received group of ciphertexts representative of a message to
be delivered to one or more recipients. At step 170, the one
or more ciphertexts representing the next word of the
message are obtained. In the examples discussed herein, it is
expected that each word of the message corresponds to k
ciphertexts. Next, at step 172, the next trigger word is
obtained and converted to its polynomial representation.
Computing polynomial representations for trigger words on
an as-needed basis can advantageously reduce total storage
space required at the trigger word database 126. Step 174
performs a bitwise match evaluation on the ciphertext and
the polynomial representation of the trigger word by mul-
tiplicatively accumulating a match value over corresponding
bits. When a match is determined, at step 176, the ciphertext
bit under consideration is multiplied into a multiplicatively
accumulated match value (FIG. 10) whose result is then, at
step 180, multiplied by a probability associated with the
current trigger word and multiplicatively accumulated into
the total probability (FIG. 9) for the current message word
represented by a sequence of ciphertexts. When a match is
not determined, the same process is performed using a value
of'1 less the ciphertext bit under consideration, as shown by
step 178. The process iterates over all trigger words, via step
182, while accumulating the total probability. The process
further iterates over all sequences of ciphertexts represen-
tative of all message words, via step 184, while accumulat-
ing the total probability, which, when outputted at step 186
represents the probability that the message is spam. It is
noteworthy that this process operates in the encrypted
domain, as far as the message is concerned, and hence the
spam probability is also encrypted. This advantageously
prevents users with privileged access to the server from
obtaining information about the message.

An example training process for the messaging system is
shown in FIG. 14. The process iterates through a set of
training messages containing human-readable words, via
steps 200, 212. For each training message, each word is
considered, via steps 202, 210. When a given message word
matches a word in a trigger word database, at step 204, the
appropriate counter for that word is incremented, at step
206. The given word is added to the database, at step 208,
if it is not present in the database before incrementing the
counter. Words may be stored in the database as hashes. The
counters can be normalized to probabilities based on the
total number of messages and words considered.

The principles underlying the messaging system of FIG.
7, the functions of FIGS. 8-11, and processes shown in
FIGS. 12-14 are described in further detail below.

The messaging system implements a homomorphic ver-
sion of Bayesian spam filter. The underlying principle of a
Bayesian classifier is that words have certain probabilities of
occurrence in authentic emails (known as ham emails) and
in spam (undesired) emails. Email training sets can be used
to estimate these probabilities. A training phase can be made
to take place on unencrypted training sets, with the results
stored a database of trigger words together with probabilities
associated to each word arising in spam email. Once this
database is created, the word probabilities are used to

US 11,843,687 B2

15

classify new emails. It is noted that email is an example of
electronic messaging that can benefit from the techniques
discussed herein.

Taking p,, to denote the probability that a word w occurs
in spam email, and given an email with key words
(Wy, . . ., Wg), there are many techniques to combine the
probabilities of each word to compute a final estimate of
whether the email should be classified as spam. One method
is to use Bayes rule. This results in the expression in FIG.
25h for p, the probability that the email will be classified as
spam. Generally, the email server will receive encrypted
words w,, and map them, homomorphically, into the num-
bers p,,. Once these numbers p,, are obtained, the expression
in FIG. 25/ can be computed to obtain probability p.

In order to overcome resource expensive integer divisions
required by the expression in FIG. 25/, the present tech-
niques include reformulating the expression in FIG. 25/ as
the expressions in FIGS. 25i and 25;. In other words, the
email training phase stores the numbers 1,, for each word w
in the dictionary (rather than the numbers p,,). The numbers
1,. are represented as binary fixed-point numbers, whose bits
are encoded into the coefficients of polynomial m,. For
example, 11, =101, is represented as the polynomial &, =x"+
x2. The addition of two binary polynomials will not generate
a carry between adjacent polynomial elements, rather poly-
nomial elements will grow individually and will be appro-
priately reconstructed after decryption (e.g. 101,+111,=212,
which will be constructed back after decryption to 1100,).
The encrypted spam filter function takes as input an
encrypted word w, maps it first into an encrypted m,, as
shown in FIG. 9, and then performs a homomorphic addition
of the m),, to get an encrypted n. This is then sent to the
remote terminal which decrypts and recovers 1 using the
secret key, and computes probability p=1/(2"+1) in the clear.

Concerning mapping encrypted words w into output
encrypted m,,, the present techniques allow for homomor-
phic computation on outputted encrypted data to obtain
useful information. This has advantages over prior tech-
niques that cannot implement data-classifiers as discussed
herein because they tend to: (a) not be able to compute with
responses, or, (b) have plaintext fields of only mod 2 (or
modulo a small prime, for efficiency purposes). Thus, such
prior techniques cannot do integer addition as required by
the expression of FIG. 25i. The techniques discussed herein
have the advantage of being able to use the full modulo-q
domain for plaintext additions.

With reference back to FIG. 7, in order to increase the
performance and efficiency of the messaging system 100,
several further techniques may be applied. Each of these
techniques may be implemented independently of the others.

First, by storing probability numbers in a single polyno-
mial entry (e.g., N=5,m=5x"), the other polynomial entries
will be unused. This will also lead to the rapid growth of the
final result. Hence, probability numbers can be stored as
binary bits in adjacent polynomial entries (e.g., n=5=101,,
7=x°+x?). Unused slots will beneficially result. When adja-
cent slots are added without a carry propagate, values in
individual slots will grow slowly and logarithmically. By
having individual polynomial slot values grow logarithmi-
cally, a logarithmic growth in ciphertext noise may result, as
discussed above.

Second, concerning the bitwise matching function of FIG.
10, the database entries for trigger words can be stored as
hashes in ascending order. Consecutive matching bits can be
inferred in adjacent entries in the database to skip redundant
computations. For example, considering two 4-bit database
entries 1001 and 1011, both entries share the left-most two

20

30

40

45

50

16

bits “10”. Instead of performing six multiplication opera-
tions to match an input encrypted word with those two
entries, partial matching results can be stored for the left-
most two bits “10”, which can result in multiplication
operations being reduced to four. Experimental results for a
database of size 10° and hash numbers of size 32-bits show
that the number of multiplications needed for matching one
word across the entire database decrease from 32-10° to
16-10° which is a reduction by a factor of about 2 in the
number of multiplications.

With reference to FIG. 14, an encrypted data search
system 300 incorporating the present techniques is shown.
The system 300 can be encrypted data store, such as
cloud-computing data repository, that receives encrypted
data from remote terminals 302, such as computers, smart-
phones, tablet devices, IoT devices, smart-grid devices,
medical devices, and the like. The system 300 is capable
performing queries on such data, advantageously without
decrypting ciphertext or having access to secret keys.

A data server 304, such as a cloud-based data server, is
configured to implement functionality of the device 10 of
FIG. 1. That is, the data server 304 performs operations on
stored ciphertext and outputs resultant ciphertexts. The data
server 304 operates exclusively in the ciphertext domain.
The data server 304 may control one or more databases 326
that actually store the encrypted data.

Each of the remote terminals 302 is configured to imple-
ment functionality of the device 50 of FIG. 2. That is, a
remote terminal 302 can implement at least one of the
encryption and decryption systems described with respect to
FIG. 2. Each of the remote terminals 302 connects to the
data server 304 via a wide-area network 306, such as the
Internet.

Encrypted data can be transmitted to the data server 304
in various ways. Each of the remote terminals 302 may be
configured to encrypt and upload data, or only a subset of
such terminals may have that privilege. Additionally or
alternatively, encrypted data may be provided to the server
304 directly as bypassing the network 306, such as via a
local terminal, memory stick, portable solid-state drive
(SSD), DVD, RFID device, or similar. Other devices
capable of providing “air gap” physical isolation are also
contemplated.

At least one of the remote terminals 302 is configured to
receive input of search query 314 for a set of data stored at
the server 304 and database 326. The search query 314 can,
for example, be a text search string composed of one or more
keywords.

The remote terminal 302 is further configured to segment
search query 314 into units of plaintext 316. For instance,
the remote terminal 302 can be configured to hash each
keyword of the query 314 to a unique number of uniform bit
length (e.g., 16 bits, 32 bits, or other value) to obtain a
sequence of plaintexts 316 that represent the query 314. The
remote terminal 302 is further configured to use its public
key 318, which may be stored locally or fetched from a
public key server 320 or other source, to encrypt each of the
plaintexts 316 of the query 314 into a ciphertext 322
according to the techniques discussed elsewhere herein. It is
contemplated that each keyword is represented by a
sequence or group of ciphertexts, though this is not intended
to be limiting. The remote terminal 302 is further configured
to send all of ciphertexts 322 representative of the search
query 314 to the data server 304. The pseudocode of FIG. 8
can be used to realize encryption described in the above.

The server 304 is configured to perform operations on
received ciphertexts 322 forming the search query and

US 11,843,687 B2

17

respond with at least one resultant ciphertext 324 represen-
tative of the search result. The operations performed can be
identical or similar to those described elsewhere herein. In
one example, the search query is a word list whose presence
in a larger word list stored at the database 326 is desired to
be determined.

FIG. 16 shows an example function for a multiple key-
word search that can be performed by the server 304. A set
of encrypted keywords are compared to words stored in a
file, where the ciphertexts of each encrypted keyword are
matched against the ciphertexts of the stored words. Match-
ing may be performed by the encrypted matching function of
FIG. 11, or alternatively the matching function of FIG. 10 if
stored words are unencrypted. The resultant ciphertext 324
is returned and transmitted to the querying remote terminal
302.

The remote terminal 302 receives the resultant ciphertext
324 and is configured to decrypt the resultant ciphertext 324
using the secret key 328 that corresponds to the public key
318. This obtains a human-intelligible query result 330 of
the search query 314.

The encrypted data search system 300 can be used to
implement stored data search functionality, such as a secure
email search, a security watchlist check, privacy-enhanced
email monitoring, financial data processing, medical record
processing, security access control, sensor signal processing,
and similar. Data that is encrypted may include text, sensor
signal levels, etc., and is not necessarily human-intelligible.

It is contemplated that a remote terminal 302 situated at
an airport can allow an agent to encrypt passenger names
and search for them in an encrypted watchlist stored at the
database 326. This may help preserve the security of the
watchlist without compromising the privacy of the passen-
gers being checked. Alternatively, the computational com-
plexity of the system 300 can be decreased if the input
keywords are not encrypted, with the data being searched
remaining encrypted. In this case, the match function of FIG.
10 can be used in place of the encrypted match function of
FIG. 11, to reduce the computations needed.

Another useful security application is monitoring
encrypted emails for keywords without unduly compromis-
ing the privacy of the senders and receivers of the emails.
This can be implemented with the message system 100
discussed above with respect to FIG. 7, in which the search
function of FIG. 16 is used instead of the filtering function
of FIG. 9, so as to compute a number of matched keywords
in a given message rather than a probability of spam. In
similar implementations, the concept of “spam filter”” can be
adapted to the concept of “security threat filter” or other
concept, with the same system 100 being used but with
different trigger words and probabilities representative of
levels of security concern. Encrypted email messages and
resultant ciphertexts representative of probabilities or
matches are stored by the message system or by another
system, such as a system operated by a security agency or its
proxy. When a security agency determines, through means
outside the scope of the present techniques, that one or more
particular email messages potentially contain information
that may be relevant to security concerns, the relevant secret
key can be used to decrypt the probability/match ciphertext
for each such message. If a decrypted probability/match
indicates that the security concern is indeed warranted, the
secret key can then be used to decrypt the associated email
message. On the other hand, if the decrypted probability
indicates insufficient security concern, then the email mes-
sage is not decrypted and privacy of the communication is
maintained. It is contemplated that a neutral third party, such

20

30

40

45

18

as a court of law, oversees use of the secret key to decrypt
the probability and, if warranted, the email message. This
two-step process advantageously allows security agencies to
decrypt only those messages that meet a probability/match
indicative of a security concern. For other messages, privacy
between correspondents is maintained. In another example,
secret keys are made available to the security agency, which
is only given access to probability/match ciphertexts in the
messaging system. The agency does not normally have
access to encrypted messages. However, the agency may
decrypt probability/match ciphertexts as needed, and then
obtain court orders or other legal instruments to obtain
messages associated with a high degree of probability/
match. In addition, the above principles also apply to a
security agency monitoring encrypted stored data, such as
provided by the system of FIG. 15.

In addition, if the search result desired is a Boolean
true/false indication or flag of the presence of the search
query in the database, then particular techniques discussed
herein can be advantageously exploited. As discussed above,
low or zero error corresponds to plaintext of zero. Many
multiplication operations to be done to match one entry, as
in the expression in FIG. 25¢, may lead to the rapid growth
of'the noise in the ciphertext, so that it may not be decrypted
correctly. On the other hand, non-matching items have
results with much less noise. This means that when the
resulting plaintext flag is “0”, it will most likely be
decrypted correctly. If an error during decryption exceeds an
error threshold, then the resulting flag can be taken as “1”.
This is contemplated to hold, even if the computation
becomes submerged in noise. Thus, in the watchlist
example, a “hit” or “miss” of a name on the watchlist can be
determined even when noise is substantial. Decryption error
yielding a meaningful bit of information is advantageous
over known lattice-based homomorphic encryption schemes
that fail when error exceeds a certain threshold.

Another application of the present techniques is binary
decision trees. Binary decision trees are classifiers consist-
ing of interior nodes and leaf nodes. Interior nodes are
decision nodes which decide which direction the tree should
follow. Leaf nodes are the final tree decision. Binary deci-
sion trees can be considered similar to the spam filter
described previously. FIG. 17 shows an example of a binary
decision tree with four nodes and five leafs.

The decision tree shown in FIG. 17 can be expressed as
polynomial equation as shown in FIG. 254, and such a
polynomial equation can be efficiently implemented in
encrypted form using the techniques discussed herein.

Turning now to FIG. 18, the number theoretic transform
(NTT) engine 17 (FIG. 1) is now discussed. The NTT engine
17 is configured to distribute NTT computations among a
plurality of processing cores of, for example, a GPU as part
of the multiplication operation. In one example, 256 CUDA
cores are used within the GPU. The NTT engine 17 can
speed up the polynomial convolution operation to O(n
log(n)) for the finite field modular polynomial multiplica-
tions. Excessive random memory access on devices imple-
menting the techniques discussed herein may hurt perfor-
mance. The NTT engine 17 is configured to exploit serial
memory accesses as may be suited for the global memory
architecture of a GPU.

Concerning the principles of operation of the NTT engine
17, converting a polynomial to its NTT representation
involves evaluating the polynomial at the roots of unity of
¢,,,- The roots of unity of ¢,,,(X)=x"+1 are in the form of odd
powers of T (i.e., roots=C**! for O<k<n), where T is the n”*
root of unity. For T to be a valid n” root of unity, it must

US 11,843,687 B2

19
satisfy both these conditions: a) £>"=1 mod q and b) T'x1
mod q for i<2n. The equation for the N-point forward NTT
transform is as shown in FIG. 25/, where W={. W is also
called the twiddle factor.

Example NTT architecture for an 8-point NTT is shown
in FIG. 18. This architecture has the same structure for each
level and supports sequential memory accesses, which is
well suited for GPU implementation. The twiddle factors are
reformatted to reduce the number of modulus operations
needed. The inverse NTT engine can be seen viewing FIG.
18 from the right side. The N-point inverse NTT equation is
as shown in FIG. 25m.

Finite field NTT is performed modulo a specific modulus
q as was described above. Modulus reduction can be per-
formed using successive addition and subtraction operations
modulo the same prime q. Solinas primes, which are known,
support high efficiency modulo reduction. It may be advan-
tageous to select the Solinas primes q=0x7FFE001 to fit the
prime number bit width € =31 bits. For example, if an input
number a is in the form shown in the expression of FIG. 25n,
then the modulus operation modulo q=0x7FFEQ01 is as
shown in FIG. 250, where “<<” is a shift left operation.

FIG. 19 shows a device 400 for implementing the tech-
niques discussed herein. The device 400 can be used to
implement any of the devices, terminals, and servers
described herein, as well as any of the other functionality
described herein. The device includes a GPU 402, an input
interface 404, an output interface 406, and memory 408. The
input interface 404 is configured to receive data and com-
mands from a user interface, a network, or similar source.
The output interface 406 is configured to output data to the
user interface, the network, or similar source. The memory
408 stores data and commands, which may include plain-
texts, ciphertexts, and sequences of operational commands
such as the functions and processes discussed herein. The
GPU 402 is connected to the input interface 404, the output
interface 406, and the memory 408 and is configured to
process one or more of encryption, decryption, multiplica-
tion, and addition, as described herein. The present tech-
niques are scalable and parallelizable. Increasing the number
of GPUs 402 can reduce running time proportionally.

Example results of tests conducted using the techniques
described above are now discussed. FIG. 20 shows the
design environment used.

FIG. 21 shows running time (log scale) results for cipher-
text multiplication for various circuit depths. The bottleneck
that tends to be caused by multiplication in prior techniques,
such as IBM HElib which was run on a single CPU core for
comparison purposes, is evident. To exploit the parallelism
discussed above, the GPU tests partitioned the polynomial
operations across GPU cores. Such parallelism is not pos-
sible with IBM HElib and the results reflect such. Multipli-
cation operations using the present techniques, when
executed on CPU and GPU, show speed improvements over
IBM HEIib. It can be noticed from FIG. 21 that CPU and
GPU implementations according to the present invention
can experience speeds that are about 10 times and about
1035 times {faster, respectively, compared to IBM HElib,
across circuit depths larger than 5.

FIG. 22 summarizes the performance results of the pres-
ent techniques compared to IBM HElib and a scheme
proposed by Naehrig, Lauter, and Vaikuntanathan at a circuit
depth equal 10. Running times are in seconds and compari-
son factors are shown.

FIG. 23 shows example ciphertexts sizes for the present
techniques and the IBM HElib library.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 24 shows performance of the keyword search sys-
tem, described above, was compared to IBM HElib for
different file sizes. An increase in speed of about 300 times
was seen in the fully secure keyword search on a GPU
compared to IBM HElib. The fully secure search has the
search query and the target data to be searched encrypted,
while the partially secure search has search query in plain
text and the target data encrypted.

Concerning binary decision trees, performance of the
decision tree depends on the tree structure and the number
of nodes and leafs, which affects parameter selection and
ciphertext operation running times. The decision tree run-
ning time depends mainly on the number of multiplications
needed. For example, the polynomial equation (16) that
describes the tree has 8 multiplication operations and each
multiplication operation takes about 3.477 milliseconds,
which results in a total running time of 27 milliseconds
compared to several seconds using prior techniques.

Many advantages of the present invention have been
described above. For instance, slower growth of noise, and
thus improved parameter selection are possible for a given
security level. Processing speed is increased and storage
space is reduced, thereby rendering the use of homomorphic
encryption more practical than in the past. Secret keys may
be smaller by a factor of log(q), the number of operations in
ciphertext multiplication may be reduced by a factor of
log(q), and ciphertext size may be reduced by a factor of
log(q), when compared to known techniques. The tech-
niques are deterministic, unlike some past attempts. More-
over, due to the growing use of cloud computing, privacy
concerns have begun to escalate. The secure systems and
processes discussed above can advantageously provide very
useful tools to address these concerns.

While the foregoing provides certain non-limiting
example embodiments, it should be understood that combi-
nations, subsets, and variations of the foregoing are con-
templated. The monopoly sought is defined by the claims.

What is claimed is:
1. A computer-implemented system for homomorphic
encryption, the computer-implemented system comprising:
a control device configured to forward one or more data
elements to an operation device, the one or more data
elements representative of stored data to be searched,
the control device configured to forward one or more
operation commands to the operation device, the con-
trol device configured to execute program code stored
in a memory to configure the operation device to
perform a sequence of one or more homomorphic
operations on a ciphertext, using one search using the
one or more data elements and the one or more opera-
tion commands to obtain a resultant ciphertext, the
ciphertext representative of at least one search query, at
least one of the one or more homomorphic operations
being a homomorphic multiplication operation, the
homomorphic multiplication operation performed by:
performing a bitwise decomposition function on the
ciphertext to obtain a bitwise decomposed cipher-
text, the bitwise decomposition function mapping a

multi-bit data type to a sequence of bits; and

performing matrix multiplication on the bitwise
decomposed ciphertext and one of the one or more
data elements, the one of the one or more data
elements according with an inverse bitwise decom-
position of the ciphertext, the inverse bitwise decom-
position mapping a sequence of bits to the multi-bit

data type; and

US 11,843,687 B2

21

an encrypted search engine configured to execute the at

least one search query using the operation device.

2. The computer-implemented system of claim 1, the
homomorphic multiplication operation further comprising
performing number theoretic transform (NTT) computa-
tions.

3. The computer-implemented system of claim 2, each
number theoretic transform computation distributed among
a plurality of processing cores.

4. The computer-implemented system of claim 1, at least
one of the one or more homomorphic operations being a
homomorphic addition operation, the homomorphic addi-
tion operation being performed by:

performing matrix addition on the ciphertext and one of

the one or more data elements.

5. The computer-implemented system of claim 1, the
control device further configured to execute program code in
the memory to provide the resultant ciphertext to the opera-
tion device to perform a sequence of one or more homo-
morphic operations on the resultant ciphertext.

6. The computer-implemented system of claim 1, the
bitwise decomposed ciphertext being a i-dimensional vector
[d(0), ..., d(1-1)], where d(0), . . ., d(1-1) are polynomials
with {0-1} coefficients such that d=%_,"~*d(t)-2".

7. A computer-implemented process for homomorphic
encryption, the computer-implemented process comprising:

computing a plaintext polynomial of a plaintext input, the

plaintext polynomial bound to a message space of a
polynomial-based fully homomorphic cryptographic
scheme;

generating an expanded plaintext polynomial by perform-

ing matrix multiplication on the plaintext polynomial
and an identity matrix of the polynomial-based fully
homomorphic cryptographic scheme, the identity
matrix according with an inverse bitwise decomposi-
tion that maps a sequence of bits of the identity matrix
to a multi-bit data type;

encrypting the expanded plaintext polynomial by apply-

ing a public key to the expanded plaintext polynomial
to generate a ciphertext, the ciphertext representative of
at least one search query; and

executing the at least one search query using the cipher-

text.

8. The computer-implemented process of claim 7, the
public key selected based on an intended recipient of the
plaintext input.

9. The computer-implemented process of claim 7, the
public key being A,,,=[b a] based on a uniform sample
as=R, eeDR o, and set b=a-t+e, the public key having a
complementary prlvate key, the complementary secret key
being s,, ;< [1; —t]ER where polynomial teDR

10. A computer-lmplemented process for homomorphlc
encryption, the computer-implemented process comprising:

receiving a ciphertext; and

decrypting the ciphertext using a private key complemen-

tary to a public key used to encrypt an expanded
plaintext polynomial to generate the ciphertext, the
decrypting to generate a plaintext polynomial.

11. The computer-implemented process of claim 10, the
expanded plaintext polynomial generated by performing
matrix multiplication on a plaintext polynomial and an
identity matrix of a polynomial-based fully homomorphic
cryptographic scheme, the identity matrix according with an
inverse bitwise decomposition that maps a sequence of bits
of the identity matrix to a multi-bit data type, the plaintext
polynomial bound to a message space of the polynomial-
based fully homomorphic cryptographic scheme.

10

15

20

25

30

35

40

45

50

55

60

65

22

12. The computer-implemented process of claim 10, the
decrypting being by multiplying the ciphertext by the private
key, the multiplying being Cy,.»S5, =W BDI(1s) 525 +e1-
ror, where C,,, is the ciphertext, s, is the private key, and
p is the plaintext, where pER,.

13. The computer-implemented process of claim 10, the
decrypting being by multiplying the ciphertext by the private
key to generate an expression having terms, each term
having a most significant bit, each of the most significant
bits encoding a single bit from the plaintext.

14. The computer-implemented process of claim 7, the
plaintext polynomial representing a decision tree.

15. A computer-implemented process for homomorphic
encryption, the computer-implemented process comprising:

executing at least one search query, the executing com-

prising:
receiving a first ciphertext and a second ciphertext at a
computer, each of the first ciphertext and the second
ciphertext bound to a respective message space of a
respective polynomial-based fully homomorphic
cryptographic scheme, the first ciphertext represen-
tative of the at least one search query;
performing a homomorphic multiplication operation on
the first ciphertext at the computer to obtain a
resultant ciphertext by:
performing a bitwise decomposition function on the
first ciphertext to obtain a bitwise decomposed
ciphertext, the bitwise decomposition function
mapping a multi-bit data type to a sequence of
bits; and
performing matrix multiplication on the bitwise
decomposed ciphertext and the second ciphertext;
and
outputting the resultant ciphertext.

16. The computer-implemented process for homomorphic
encryption of claim 15, the matrix multiplication being
BD(Cpriz) Dasns Where BD(Cy,,,) is the bitwise decom-
posed ciphertext, C,,, is the first ciphertext, and D,,, is the
second ciphertext.

17. The computer-implemented process for homomorphic
encryption of claim 15, further comprising performing a
homomorphic addition operation on the first ciphertext by
performing entry-wise addition between the first ciphertext
and the second ciphertext.

18. The computer-implemented process for homomorphic
encryption of claim 15, the bitwise decomposed ciphertext
being the i-dimensional vector [d(0), . . . , d(I-1)], where
d(0), . . ., d(1-1) are polynomials with {0-1} coefficients
such that &=2_,'d(t)2".

19. A computer-implemented process for homomorphic
encryption, the computer-implemented process comprising:

receiving, at a computer, a plaintext derived from an

electronic message; and

receiving a ciphertext generated using the plaintext and a

public key, the ciphertext representative of at least one
search query;

the ciphertext generated by:

computing a plaintext polynomial of the plaintext, the
plaintext polynomial bound to a message space of a
polynomial-based fully homomorphic cryptographic
scheme;

generating an expanded plaintext polynomial by per-
forming matrix multiplication on the plaintext poly-
nomial and an identity matrix of the polynomial-
based fully homomorphic cryptographic scheme, the
identity matrix according with an inverse bitwise

US 11,843,687 B2

23

decomposition that maps a sequence of bits of the
identity matrix to a multi-bit data type; and

encrypting the expanded plaintext polynomial by
applying the public key to the expanded plaintext
polynomial to generate the ciphertext; and executing
at least one encrypted search query using the cipher-
text.

20. The computer-implemented process of claim 19, fur-
ther comprising:

performing a multiplication operation between:

each of one or more ciphertexts including the cipher-
text; and
a data element;

to generate a result for each of the multiplication opera-

tions;

each of the multiplication operations performed by:

performing a bitwise decomposition function on the
ciphertext to obtain a bitwise decomposed cipher-
text, the bitwise decomposition function mapping a
multi-bit data type to a sequence of bits; and

performing matrix multiplication on the bitwise
decomposed ciphertext and the data element to gen-
erate the result.

21. The computer-implemented process of claim 20, fur-
ther comprising:

for each of the results of one or more multiplication

operations including the multiplication operation, mul-
tiplying the result with a data element probability
associated with the result to generate an interim prob-
ability; and

summing the interim probabilities to generate a resultant

ciphertext representative of a probability.

22. The computer-implemented process of claim 20, the
one or more ciphertexts together representing the electronic
message, the multiplication operation performed between
each of one or more ciphertexts including the ciphertext and
each of one or more data elements including the data
element, each of the multiplication operations further com-
prising multiplicatively accumulating a bitwise comparison
of binary representations of the ciphertext and of the data
element to generate a binary match value representing a
spam indicator of the ciphertext, the binary match value
being the result.

23. The computer-implemented process of claim 20, the
one or more ciphertexts together representing the electronic
message, the multiplication operation performed between

24

each of one or more ciphertexts including the ciphertext and

each of one or more data elements including the data

element, each of the multiplication operations further com-

prising a homomorphic XNOR operation on the ciphertext
5 and the data element to generate a binary match value
representing a spam indicator of the ciphertext, the binary
match value being the result.

24. The computer-implemented process of claim 20, fur-
ther comprising multiplicatively accumulating a resultant
ciphertext of:

each of the results of one or more multiplication opera-

tions including the multiplication operation; and

each of data element probabilities associated with the data

element used to generate the result;

the resultant ciphertext representative of a probability.

25. A computer-implemented process for homomorphic
encryption, the computer-implemented process comprising:

receiving, at a computer, the resultant ciphertext gener-

ated according to claim 24 and the ciphertext; and

filtering the ciphertext based on a comparison result

generated by comparing the resultant ciphertext and a

threshold level, the ciphertext filtered based on the

comparison result generated by comparing:

resultant ciphertexts including the resultant ciphertext,
each resultant ciphertext generated according to
claim 24; and

the threshold level.

26. The computer-implemented process of claim 25, the
comparing using steps according to

20

25

30

~ Doy Py - P,
Doy Py - P + (1= Py J(L = Py} - (1=)

p

35 nElog(l=p)=logp=>"" (log(l - py,) ~logp,,), or

log(1 - py,) - logpy,,,

wherein p,,, is the resultant ciphertext of a k-th ciphertext w.

27. The computer-implemented process of claim 23, fur-
ther comprising generating a resultant ciphertext represen-
tative of a search result corresponding to the ciphertext, the
ciphertext derived from a search query, the resultant cipher-

45 fext generated based on one or more of the results.

* * * * *

