a2 United States Patent
Park et al.

US011876960B2

US 11,876,960 B2
*Jan. 16, 2024

(10) Patent No.:
45) Date of Patent:

(54) VIDEO OR IMAGE CODING FOR INDUCING
WEIGHT INDEX INFORMATION FOR
BI-PREDICTION

(71) Applicant: LG Electronics Inc., Seoul (KR)

(72) Inventors: Naeri Park, Seoul (KR); Junghak
Nam, Seoul (KR); Hyeongmoon Jang,
Seoul (KR)

(73) Assignee: LG Electronics Inc., Seoul (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 18/100,267
(22) Filed: Jan. 23, 2023

(65) Prior Publication Data
US 2023/0164307 Al May 25, 2023

Related U.S. Application Data

(63) Continuation of application No. 17/472,101, filed on
Sep. 10, 2021, now Pat. No. 11,595,640, which is a

(Continued)
(51) Imt.CL
HO4N 19/132 (2014.01)
HO4N 19/105 (2014.01)
HO4N 19/137 (2014.01)
HO4N 19/159 (2014.01)
HO4N 19/176 (2014.01)
(52) US. CL
CPC ... HO4N 19/105 (2014.11); HO4N 19/132

(2014.11); HO4N 19/137 (2014.11); HO4N
19/159 (2014.11); HO4N 19/176 (2014.11)

SOURCE
DEVICE

VIDEO
SOURCE

ENCODING
APPARATUS

(58) Field of Classification Search
CPC .. HO4N 19/105; HO4N 19/132; HO4N 19/137,
HO4N 19/159; HO4N 19/176
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2013/0188720 Al
2015/0296218 Al

7/2013 Wang et al.
10/2015 Pasupuleti et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101610413 12/2009
CN 102131094 7/2011
(Continued)

OTHER PUBLICATIONS

Chen et al., “Algorithm description for Versatile Video Coding and
Test Model 3 (VIM 3),” JVET-L1002-v1, Presented at Joint Video
Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 12th Meeting: Macao, CN, Oct. 3-12, 2018, 37 pages.

(Continued)

Primary Examiner — Hesham K Abouzahra
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

According to the disclosure of the present document, when
the inter prediction type of a current block indicates
biprediction, weight index information for candidates in a
merge candidate list or a sub-block merge candidate list can
be induced or derived, and coding efficiency can be
increased.

10 Claims, 15 Drawing Sheets

RECEIVE
DEVICE

RENDERER

DECODING
APPARATUS

TRANSMITTER

RECEIVER

US 11,876,960 B2
Page 2

Related U.S. Application Data

continuation of application No. PCT/KR2020/

003323, filed on Mar. 10, 2020.

(60) Provisional application No. 62/817,513, filed on Mar.
12, 2019.

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0304679 Al
2018/0205965 Al
2018/0359483 Al
2019/0028731 Al
2020/0244978 Al*
2020/0296415 Al*
2021/0274208 Al*

10/2015 Pasupuleti et al.
7/2018 Chen et al.

12/2018 Chen et al.
1/2019 Chuang et al.
7/2020 Li
9/2020
9/2021

HO4N 19/52
... HO4N 19/52
HO4N 19/513

FOREIGN PATENT DOCUMENTS

CN 107071404 8/2017
KR 20140011477 1/2014
KR 10-2018-0135092 12/2018
WO WO 2014/083492 6/2014
WO WO 2018/066867 4/2018
WO WO 2019/002215 1/2019

OTHER PUBLICATIONS

Chen et al., “CE4: Common base for affine merge mode (Test
4.2.1),” JVET-L0366-v1, Presented at Joint Video Experts Team

(JVET) of of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 12th Meeting: Macao, CN, Oct. 3-12, 2018, 5 pages.
Extended European Search Report in European Application No.
20770096 4, dated Mar. 25, 2022, 8 pages.

JVET, “Test Model 3 of Versatile Video Coding (VIM3),” Joint
Video Experts Team (JVET of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/SC 29/WG 11), JVET-L1002-v1, Macao, CN, Oct. 3-12, 2018, 48
pages.

Office Action in Indian Application No. 202117043188, dated Mar.
25, 2022, 6 pages.

Office Action in Japanese Appln. No. 2021-554683, dated Sep. 20,
2022, 9 pages (with English translation).

Park et al., “Non-CE4 : Simplifications on BCW index derivation
process,” JVET-00366-r1, Presented at Joint Video Experts Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
15th Meeting: Gothenburg, SE, Jul. 3-12, 2019, 5 pages.

Su et al., “CE4-related: Generalized bi-prediction improvements
combined from JVET-L0197 and JVET-L0296,” JVET-L0646-vS,
Presented at Joint Video Experts Team (JVET) of ITU-T SG 16 WP
3 and ISO/IEC JTC 1/SC 29/WG 11, 12th Meeting: Macao, CN,
Oct. 3-12, 2018, 17 pages.

JVET, “Versatile Video Coding (Draft 3),” Joint Video Experts
Team (JVET of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11), IVET-L1001-v8, Macao, CN, Oct. 3-12, 2018, 227 pages.
Office Action in Chinese Appln. No. 202080026756.7, dated Apr.
15, 2023, 11 pages.

Office Action in European Appln. No. 20770096 4, dated May 11,
2023, 7 pages.

Office Action in Korean Appln. No. 10-2021-7029421, dated May
24, 2023, 8 pages.

Shen et al., “High Efficiency Video Coding,” Nov. 2013, 25(11):2340-
2355 (with English abstract).

* cited by examiner

U.S. Patent Jan. 16, 2024 Sheet 1 of 15 US 11,876,960 B2

FIG. 1

SOURCE RECEIVE
DEVICE DEVICE
VIDEO EAEDE
COURCE RENDERER
ENCODING DECODING

APPARATUS APPARATUS

TRANSMITTER RECEIVER

US 11,876,960 B2

Sheet 2 of 15

Jan. 16, 2024

U.S. Patent

))
: i 052
]
,,..,%NE,“.%EQ%é%m%ﬂwi @ L e
022
b 1T] AdONIA
/./—
o
/A\
o da | 4002
m; L L
PR S—) :
it m
HIQOONT “ RN HANOILILYY ERIYIE)
_ HINYOISNY +) . .
AdCUINT HIZINYND dANHOISNEL N NN 199 LMdNI
) M) Lee -
/ 7 7 ; SNLYYYddY DNIGODNT
L L | / N
0re €67 1434 4
082 007

US 11,876,960 B2

Sheet 3 of 15

Jan. 16, 2024

U.S. Patent

/

¢
00t

R
09 08 e
w NV wv
HOLIGRA [T T——
aad HIINI Oy
mx\
ONTA MO | |
] m
T |
L6 \h owm
@10 HINHOISNAL H30003G e
3OV GALNY SN S - ISUIAN HZINTNOA rdowing [T N
tlad i Y
M T j SLYSYdY
/ ;] / ONIGOIIG
/ A \
\ ¢

[
o
s3]}
s3]}

<
o\
(ap]

¢ Ol

U.S. Patent

Jan. 16, 2024 Sheet 4 of 15

FIG. 4

Bo

US 11,876,960 B2

U.S. Patent Jan. 16, 2024 Sheet 5 of 15 US 11,876,960 B2

FIG. 5A

'~

Current block

U.S. Patent Jan. 16, 2024 Sheet 6 of 15 US 11,876,960 B2

FIG. 5B

'~

Current block

U.S. Patent Jan. 16, 2024 Sheet 7 of 15 US 11,876,960 B2

FIG. 6

e
1

U.S. Patent Jan. 16, 2024 Sheet 8 of 15

FIG. 7

US 11,876,960 B2

{X¢, ¥o) i, ¥9)
— —
Yy Vi
Current block
0o, ye) X3, ¥3) -
— i
Vo v
—
Vi

U.S. Patent Jan. 16, 2024 Sheet 9 of 15 US 11,876,960 B2

FIG. 8

Current block

1
Ao T
-

US 11,876,960 B2

Sheet 10 of 15

aimpid usUny aimaid pRYEoeD

R N I A

e

e

e,

N

e,

e |

A N SRS UoNOW s 1Y 0] 188

5| S UORO

Jan. 16, 2024

U.S. Patent

6 Dl

U.S. Patent Jan. 16, 2024 Sheet 11 of 15 US 11,876,960 B2

FIG. 10

Determine inter prediction mode of current block
o o 51000
and generate inter prediction mode
information indicating inter prediction mode
¥
Generate merge candidate list of
—— ; s - : - 51010
current block based on inter prediction mode
¥
Select one of candidates included in $1020
. . . . — [V
merge candidate list and generate selection
information indicating selected candidate
1
Generate inter prediction type information .
e -~ 51030
indicating inter prediction type of
current block as bi-prediction
¥
Encode image information including inter
o g 2 e 51040
prediction maode information, selection information
and inter prediction type information

US 11,876,960 B2

Sheet 12 of 15

Jan. 16, 2024

U.S. Patent

{007y smeiedde Buiposud

UOIBULIOIU

Da12j21-LoIDIpalY

WEans)g

(0v2)
J13posue AdoiuT

(0z2)
J0pIpRlg

UORRULLIONH

enpisay

(0£2)
JOssanoid [enpisay

(sajdiues LoIpasd)
42019 pR1sipaid

(seduses jeubuo)
301G jBUIBUD

LL Ol

U.S. Patent Jan. 16, 2024 Sheet 13 of 15 US 11,876,960 B2

FIG. 12

Recelve image information including
inter prediction mode information and
inter prediction type information through bitstream
¥
Generate merge candidate list of current block
based on inter prediction mode information

¥

Select one of candidates included in
merge candidate list

—~- 51220

¥
Derive inter prediction type of

current block as bi-prediction based on
inter prediction type information

¥
Derive motion information of
current block based on selected candidate
¥
Generate LO prediction samples
and L1 prediction samples of current block
based on motion information

- §1240

51250

¥

Generate prediction samples of current block
based on LO prediction samples,

L1 prediction samples and weight information

- 51260

US 11,876,960 B2

Sheet 14 of 15

(oo¢) smeledde Buiponaqg
(v
ainpid oy 20P sajduues 10121p3Ud
PEIDNISUC0DY uomipa.d
S3|GWIES UOHBULIOMI
{ENDISSY N1e|R1-UDIDIDaId
(02¢) (oie)
10539001C [BNOISY | yopeusop 13podep Adonus Wies sy
[ENpisaY

Jan. 16, 2024

U.S. Patent

¢l Dl

US 11,876,960 B2

Sheet 15 of 15

Jan. 16, 2024

U.S. Patent

A9VH0LS YIGIN

A NOILYDINNININGD
L SSTRIM/OTHIM

$EE,

dINGS M

NOILYIINAWA ou
SSTIRIM/ARIM

9550

SALVHYddY 580

vl Dl4

HAALES ONINVIELS HIAYIS

vy

-
o
at

YD

L]
®
%

/4ICHOINYD

US 11,876,960 B2

1
VIDEO OR IMAGE CODING FOR INDUCING
WEIGHT INDEX INFORMATION FOR
BI-PREDICTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 17/472,101, filed on Sep. 10, 2021, which is a continu-
ation pursuant to 35 U.S.C. § 119(e) of international Appli-
cation PCT/KR2020/003323, with an international filing
date of Mar. 10, 2020, which claims the benefit of U.S.
Provisional Patent Application No. 62/817,513, filed on
Mar. 12, 2019, the contents of which are hereby incorporated
by reference herein in their entirety.

BACKGROUND OF THE DISCLOSURE
Field of the Disclosure

The present technology relates to video or image coding
for deriving weight index information for bi-prediction.

Related Art

Recently, the demand for high resolution, high quality
image/video such as 4K or 8K Ultra High Definition (UHD)
image/video is increasing in various fields. As the image/
video resolution or quality becomes higher, relatively more
amount of information or bits are transmitted than for
conventional image/video data. Therefore, if image/video
data are transmitted via a medium such as an existing
wired/wireless broadband line or stored in a legacy storage
medium, costs for transmission and storage are readily
increased.

Moreover, interests and demand are growing for virtual
reality (VR) and artificial reality (AR) contents, and immer-
sive media such as hologram; and broadcasting of images/
videos exhibiting image/video characteristics different from
those of an actual image/video, such as game images/videos,
are also growing.

Therefore, a highly efficient image/video compression
technique is required to effectively compress and transmit,
store, or play high resolution, high quality images/videos
showing various characteristics as described above.

SUMMARY

According to an embodiment of this document, a method
and apparatus for improving image/video coding efficiency
are provided.

According to an embodiment of this document, a method
and apparatus using bi-prediction based on a weight upon
image coding are provided.

According to an embodiment of this document, method
and apparatus for deriving weight index information for
bi-prediction in inter prediction are provided.

According to an embodiment of this document, a method
and apparatus for deriving weight index information for a
candidate within a merge candidate list or an affine, merge
candidate list upon bi-prediction are provided.

According to an embodiment of this document, a video/
image decoding method performed by a decoding apparatus
is provided.

According to an embodiment of this document, a decod-
ing apparatus performing video/image decoding is provided.

10

15

20

25

30

35

40

45

55

60

65

2

According to an embodiment of this document, a video/
image encoding method performed by an encoding appara-
tus is provided.

According to an embodiment of this document, an encod-
ing apparatus performing video/image performs encoding is
provided.

According to an embodiment of this document, there is
provided a computer-readable digital storage medium in
which encoded video/image information generated accord-
ing to a video/image encoding method disclosed in at least
one of embodiments of this document has been stored.

According to an embodiment of this document, there is
provided a computer-readable digital storage medium in
which encoded information or encoded video image infor-
mation causing the decoding apparatus to perform a video/
image decoding method disclosed in at least one of embodi-
ments of this document has been stored.

According to an embodiment of this document, overall
image/video compression efficiency can be improved.

According to an embodiment of this document, upon inter
prediction, a motion vector candidate can be efficiently
constructed.

According to an embodiment of this document, weight-
based bi-prediction can be efficiently performed.

BRIEF DESCRIPTION OF TILE DRAWINGS

FIG. 1 schematically illustrates an example of a video/
image coding system to which an embodiment of this
document may be applied.

FIG. 2 is a diagram schematically describing a construc-
tion of a video/image encoding apparatus to which an
embodiment of this document may be applied.

FIG. 3 is a diagram schematically describing a construc-
tion of a video/image decoding apparatus to which an
embodiment of this document may be applied.

FIG. 4 is a diagram for describing a merge mode in inter
prediction.

FIGS. 5a and 55 exemplarily illustrate a CPMYV for affine
motion prediction.

FIG. 6 exemplarily illustrates a case where an affine MVF
is determined in a sub-block unit.

FIG. 7 is a diagram for describing an affine merge mode
in inter prediction.

FIG. 8 is a diagram for describing the locations of
candidates in the affine merge mode.

FIG. 9 is a diagram for describing an SbTMVP in inter
prediction.

FIGS. 10 and 11 schematically illustrate examples of a
video/image encoding method and related components
according to an embodiment(s) of this document.

FIGS. 12 and 13 schematically illustrate examples of an
image/video decoding method and related components
according to an embodiment(s) of this document.

FIG. 14 illustrates an example of a content streaming
system to which embodiments disclosed in this document
may be applied.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

A disclosure of this document may be modified in various
ways and may have various embodiments, and specific
embodiments will be illustrated in the drawings and
described in detail. However, it is not intended to limit the
present disclosure to the specific embodiments. Terms com-
monly used in this document are used to describe a specific

US 11,876,960 B2

3

embodiment and is not used to limit the technical spirit of
this document. An expression of the singular number
includes plural expressions unless evidently expressed oth-
erwise in the context. A term, such as “include” or “have” in
this document, should be understood to indicate the exis-
tence of a characteristic, number, step, operation, element,
part, or a combination of them described in the specification
and not to exclude the existence or the possibility of the
addition of one or more other characteristics, numbers,
steps, operations, elements, parts or a combination of them.

Meanwhile, elements in the drawings described in this
document are independently illustrated for convenience of
description related to different characteristic functions. This
does not mean that each of the elements is implemented as
separate hardware or separate software. For example, at least
two of elements may be combined to form a single element,
or a single element may be divided into a plurality of
elements. An embodiment in which elements are combined
and/or separated is also included in the scope of rights of this
document unless it deviates from the essence of this docu-
ment.

Hereinafter, preferred embodiments of this document are
described more specifically with reference to the accompa-
nying drawings. Hereinafter, in the drawings, the same
reference numeral is used in the same element, and a
redundant description of the same element may be omitted.

FIG. 1 is schematically illustrating a video/image coding
system to which embodiments of the present document may
be applied.

Referring to FIG. 1, a video/image coding system may
include a first apparatus (a source device) and a second
apparatus (a receiving device). The source device may
deliver encoded video/image information or data in the form
of a file or streaming to the receiving device via a digital
storage medium or network.

The source device may include a video source, an encod-
ing apparatus, and a transmitter. The receiving device may
include a receiver, a decoding apparatus, and a renderer. The
encoding apparatus may be called a video/image encoding
apparatus, and the decoding apparatus may be called a
video/image decoding apparatus. The transmitter may be
included in the encoding apparatus. The receiver may be
included in the decoding apparatus. The renderer may
include a display, and the display may be configured as a
separate device or an external component.

The video source may acquire video/image through a
process of capturing, synthesizing, or generating the video/
image. The video source may include a video/image capture
device and/or a video/image generating device. The video/
image capture device may include, for example, one or more
cameras, video/image archives including previously cap-
tured video/images, and the like. The video/image generat-
ing device may include, for example, computers, tablets and
smartphones, and may (electronically) generate video/im-
ages. For example, a virtual video/image may be generated
through a computer or the like. In this case, the video/image
capturing process may be replaced by a process of gener-
ating related data.

The encoding apparatus may encode input video/image.
The encoding apparatus may perform a series of procedures
such as prediction, transform, and quantization for compres-
sion and coding efficiency. The encoded data (encoded
video/image information) may be output in the form of a
bitstream.

The transmitter may transmit the encoded image/image
information or data output in the form of a bitstream to the
receiver of the receiving device through a digital storage

10

15

20

25

30

35

40

45

50

55

60

65

4

medium or a network in the form of a file or streaming. The
digital storage medium may include various storage medi-
ums such as USB, SD, CD, DVD, Blu-ray, HDD, SSD, and
the like. The transmitter may include an element for gener-
ating a media file through a predetermined file format and
may include an element for transmission through a broad-
cast/communication network. The receiver may receive/
extract the bitstream and transmit the received bitstream to
the decoding apparatus.

The decoding apparatus may decode the video/image by
performing a series of procedures such as dequantization,
inverse transform, and prediction corresponding to the
operation of the encoding apparatus.

The renderer may render the decoded video/image. The
rendered video/image may be displayed through the display.

This document relates to video/image coding. For
example, a method/embodiment disclosed in this document
may be applied to a method disclosed in the versatile video
coding (VVC) standard. Furthermore, the method/embodi-
ment disclosed in this document may be applied to methods
disclosed in the essential video coding (EVC) standard, the
AOMedia Video 1 (AV1) standard, the 2"¢ generation of
audio video coding standard (AVS2) or the next-generation
video/image coding standard (e.g., H.267 or H.).

In this document, various embodiments about video/
image coding are presented. The embodiments may be
combined and performed unless described otherwise.

In this document, video may mean a set of a series of
image over time. In general, a picture means a unit indicat-
ing one image in a specific time zone. A slice/tile is a unit
that constitutes some of a picture in coding. A slice/tile may
include one or more coding tree units (CTUs). One picture
may consist of one or more slices/tiles. A tile is a rectangular
region of CTUs within a particular tile column and a
particular tile row in a picture. The tile column is a rectan-
gular region of CTUs having the same height as a picture
and a width specified by syntax elements in the picture
parameter set. The tile row is a rectangular region of CTUs
having a height specified by syntax elements in the picture
parameter set and a width equal to the width of the picture.
A tile scan is a specific sequential ordering of CTUs parti-
tioning a picture in which the CTUs are ordered consecu-
tively in CTU raster scan in a tile whereas tiles in a picture
are ordered consecutively in a raster scan of the tiles of the
picture. A slice includes an integer number of complete tiles
or an integer number of consecutive complete CTU rows
within a tile of a picture that may be exclusively contained
in a single NAL unit.

Meanwhile, one picture may be divided into two or more
subpictures. The subpicture may be a rectangular region of
one or more slices within a picture.

A pixel or a pel may mean a smallest unit constituting one
picture or image). Also, ‘sample’ may be used as a term
corresponding to a pixel. A sample may generally represent
a pixel or a value of a pixel, and may represent only a
pixel/pixel value of a luma component or only a pixel/pixel
value of a chroma component.

A unit may represent a basic unit of image processing. The
unit may include at least one of a specific region of the
picture and information related to the region. One unit may
include one luma block and two chroma (e.g., Cb, Cr)
blocks. The unit may be used interchangeably with terms
such as block or area in some cases. In a general case, an
MxN block may include samples (or sample arrays) or a set
(or array) of transform coefficients of M columns and N
rOws.

US 11,876,960 B2

5

In this document, “A or B” may mean both “only A”,
“only B” or “both A and B.” In other words, in this
document, “A or B” may be interpreted as “A and/or B.” For
example, in this document, “A, B or C” may mean “only A”,
“only B”, “only C”, or “any combination of B and C.”

A slash “/” or a comma used in this document may mean
“and/or.” For example, “A/B” may mean “A and/or B.”
Accordingly, “A/B” may mean “only A”, “only B”, or “both
A and B.” For example, “A, B, C” may mean “A, B or C.”

In this document, “at least one of A and B” may mean
“only A”, “only B” or “both A and B.” Furthermore, in this
document, an expression, such as “at least one of A or B” or
“at least one of A and/or B”, may be interpreted identically
with “at least one of A and B.”

Furthermore, in this document, “at least one of A, B and
C” may mean “only A”, “only B”, “only C”, or “any
combination of A, B and C.” Furthermore, “at least one of
A, B or C” or “at least one of A, B and/or C” may mean “at
least one of A, B and C.”

Furthermore, parentheses used in this document may
mean “for example.” Specifically, if “prediction (intra pre-
diction)” is indicated, it may mean that “intra prediction”
may have been suggested as an example of “prediction.” In
other words in this document, “prediction” is not limited to
“intra prediction”, and “intra prediction” may be proposed as
an example of “prediction.” Furthermore, if “prediction (i.e.,
intra prediction)” is indicated, “intra prediction” may have
been suggested as an example of “prediction.”

In this document, a technical characteristic individually
described within one drawing may be individually imple-
mented or may be simultaneously implemented.

FIG. 2 is a diagram schematically describing a construc-
tion of a video/image encoding apparatus to which an
embodiment of this document may be applied.

Referring to FIG. 2, the encoding apparatus 200 includes
an image partitioner 210, a predictor 220, a residual pro-
cessor 230, and an entropy encoder 240, an adder 250, a
filter 260, and a memory 270. The predictor 220 may include
an inter predictor 221 and an intra predictor 222. The
residual processor 230 may include a transformer 232, a
quantizer 233, a dequantizer 234, and an inverse transformer
235. The residual processor 230 may further include a
subtractor 231. The adder 250 may be called a reconstructor
or a reconstructed block generator. The image partitioner
210, the predictor 220, the residual processor 230, the
entropy encoder 240, the adder 250, and the filter 260 may
be configured by at least one hardware component (ex. An
encoder chipset or processor) according to an embodiment.
In addition, the memory 270 may include a decoded picture
buffer (DPB) or may be configured by a digital storage
medium. The hardware component may further include the
memory 270 as an internal/external component.

The image partitioner 210 may partition an input image
(or a picture or a frame) input to the encoding apparatus 200
into one or more processors. For example, the processor may
be called a coding unit (CU). In this case, the coding unit
may be recursively partitioned according to a quad-tree
binary-tree ternary-tree (QTBTTT) structure from a coding
tree unit (CTU) or a largest coding unit (LCU). For example,
one coding unit may be partitioned into a plurality of coding
units of a deeper depth based on a quad tree structure, a
binary tree structure, and/or a ternary structure. In this case,
for example, the quad tree structure may be applied first and
the binary tree structure and/or ternary structure may be
applied later. Alternatively, the binary tree structure may be
applied first. The coding procedure according to this disclo-
sure may be performed based on the final coding unit that is

20

35

40

45

50

55

6

no longer partitioned. In this case, the largest coding unit
may be used as the final coding unit based on coding
efficiency according to image characteristics, or if necessary,
the coding unit may be recursively partitioned into coding
units of deeper depth and a coding unit having an optimal
size may be used as the final coding unit. Here, the coding
procedure may include a procedure of prediction, transform,
and reconstruction, which will be described later. As another
example, the processor may further include a prediction unit
(PU) or a transform unit (TU). In this case, the prediction
unit and the transform unit may be split or partitioned from
the aforementioned final coding unit. The prediction unit
may be a unit of sample prediction, and the transform unit
may be a unit for deriving a transform coefficient and/or a
unit for deriving a residual signal from the transform coef-
ficient.

The unit may be used interchangeably with terms such as
block or area in some cases. In a general case, an MxN block
may represent a set of samples or transform coeflicients
composed of M columns and N rows. A sample may
generally represent a pixel or a value of a pixel, may
represent only a pixel/pixel value of a luma component or
represent only a pixel/pixel value of a chroma component. A
sample may be used as a term corresponding to one picture
(or image) for a pixel or a pel.

In the encoding apparatus 200, a prediction signal (pre-
dicted block, prediction sample array) output from the inter
predictor 221 or the intra predictor 222 is subtracted from an
input image signal (original block, original sample array) to
generate a residual signal residual block, residual sample
array), and the generated residual signal is transmitted to the
transformer 232. In this case, as shown, a unit for subtracting
a prediction signal (predicted block, prediction sample
array) from the input image signal (original block, original
sample array) in the encoder 200 may be called a subtractor
231. The predictor may perform prediction on a block to be
processed (hereinafter, referred to as a current block) and
generate a predicted block including prediction samples for
the current block. The predictor may determine whether
intra prediction or inter prediction is applied on a current
block or CU basis. As described later in the description of
each prediction mode, the predictor may generate various
kinds of information related to prediction, such as prediction
mode information, and transmit the generated information to
the entropy encoder 240. The information on the prediction
may be encoded in the entropy encoder 240 and output in the
form of a bitstream.

The intra predictor 222 may predict the current block by
referring to the samples in the current picture. The referred
samples may be located in the neighborhood of the current
block or may be located apart according to the prediction
mode. In the intra prediction, prediction modes may include
a plurality of non-directional modes and a plurality of
directional modes. The non-directional mode may include,
for example, a DC mode and a planar mode. The directional
mode may include, for example, 33 directional prediction
modes or 65 directional prediction modes according to the
degree of detail of the prediction direction. However, this is
merely an example, more or less directional prediction
modes may be used depending on a setting. The intra
predictor 222 may determine the prediction mode applied to
the current block by using a prediction mode applied to a
neighboring block.

The inter predictor 221 may derive a predicted block for
the current block based on a reference block (reference
sample array) specified by a motion vector on a reference
picture. Here, in order to reduce the amount of motion

US 11,876,960 B2

7

information transmitted in the inter prediction mode, the
motion information may be predicted in units of blocks,
sub-blocks, or samples based on correlation of motion
information between the neighboring block and the current
block. The motion information may include a motion vector
and a reference picture index. The motion information may
further include inter prediction direction (LO prediction, [.1
prediction, Bi prediction, etc.) information. In the case of
inter prediction, the neighboring block may include a spatial
neighboring block present in the current picture and a
temporal neighboring block present in the reference picture.
The reference picture including the reference block and the
reference picture including the temporal neighboring block
may be the same or different. The temporal neighboring
block may be called a collocated reference block, a co-
located CU (colCU), and the like, and the reference picture
including the temporal neighboring block may be called a
collocated picture (colPic). For example, the inter predictor
221 may configure a motion information candidate list based
on neighboring blocks and generate information indicating
which candidate is used to derive a motion vector and/or a
reference picture index of the current block. Inter prediction
may be performed based on various prediction modes. For
example, in the case of a skip mode and a merge mode, the
inter predictor 221 may use motion information of the
neighboring block as motion information of the current
block. In the skip mode, unlike the merge mode, the residual
signal may not be transmitted. In the case of the motion
vector prediction (MVP) mode, the motion vector of the
neighboring block may be used as a motion vector predictor
and the motion vector of the current block may be indicated
by signaling a motion vector difference.

The predictor 220 may generate a prediction signal based
on various prediction methods described below. For
example, the predictor may not only apply intra prediction
or inter prediction to predict one block but also simultane-
ously apply both intra prediction and inter prediction. This
may be called combined inter and intra prediction (CIIP). In
addition, the predictor may be based on an intra block copy
(IBC) prediction mode or a palette mode for prediction of a
block. The IBC prediction mode or palette mode may be
used for content image/video coding of a game or the like,
for example, screen content coding (SCC). The IBC basi-
cally performs prediction in the current picture but may be
performed similarly to inter prediction in that a reference
block is derived in the current picture. That is, the IBC may
use at least one of the inter prediction techniques described
in this document. The palette mode may be considered as an
example of intra coding or intra prediction. When the palette
mode is applied, a sample value within a picture may be
signaled based on information on the palette table and the
palette index.

A prediction signal generated through the predictor (in-
cluding the inter predictor 221 and/or the intra predictor
222) may be used to generated a reconstruction signal or
may be used to generate a residual signal. The transformer
232 may generate transform coefficients by applying a
transform scheme to a residual signal. For example, the
transform scheme may include at least one of a discrete
cosine transform (DCT), a discrete sine transform (DST), a
graph-based transform (GBT), or a conditionally non-linear
transform (CNT). In this case, the GBT means a transform
obtained from a graph when relation information between
pixels is represented as the graph. The CNT means a
transform obtained based on a prediction signal after the
prediction signal is generated using all previously recon-
structed pixels. Furthermore, a transform process may be

10

15

20

25

30

35

40

45

50

55

60

65

8

applied to a pixel block, which is a square and has the same
size, and may be applied to a block which is not a square and
has a variable size.

The quantizer 233 may quantize the transform coeflicients
and transmit them to the entropy encoder 240 and the
entropy encoder 240 may encode the quantized signal (infor-
mation on the quantized transform coefficients) and output a
bitstream. The information on the quantized transform coef-
ficients may be referred to as residual information. The
quantizer 233 may rearrange block type quantized transform
coeflicients into a one-dimensional vector form based on a
coeflicient scanning order and generate information on the
quantized transform coefficients based on the quantized
transform coefficients in the one-dimensional vector form.
Information on transform coefficients may be generated. The
entropy encoder 240 may perform various encoding meth-
ods such as, for example, exponential Golomb, context-
adaptive variable length coding (CAVLC), context-adaptive
binary arithmetic coding (CABAC), and the like. The
entropy encoder 240 may encode information necessary for
video/image reconstruction other than quantized transform
coeflicients (ex. values of syntax elements, etc.) together or
separately. Encoded information (ex. Encoded video/image
information) may be transmitted or stored in units of NALs
(network abstraction layer) in the form of a bitstream. The
video/image information may further include information on
various parameter sets such as an adaptation parameter set
(APS), a picture parameter set (PPS), a sequence parameter
set (SPS), or a video parameter set (VPS). In addition, the
video/image information may further include general con-
straint information. In this document, information and/or
syntax elements transmitted/signaled from the encoding
apparatus to the decoding apparatus may be included in
video/picture information. The video/image information
may be encoded through the above-described encoding
procedure and included in the bitstream. The bitstream may
be transmitted over a network or may be stored in a digital
storage medium. The network may include a broadcasting
network and/or a communication network, and the digital
storage medium may include various storage media such as
USB, SD, CD, DVD, Blu-ray, HDD, SSD, and the like. A
transmitter (not shown) transmitting a signal output from the
entropy encoder 240 and/or a storage unit (not shown)
storing the signal may be included as internal/external
element of the encoding apparatus 200, and alternatively, the
transmitter may be included in the entropy encoder 240.

The quantized transform coefficients output from the
quantizer 233 may be used to generate a prediction signal.
For example, the residual signal (residual block or residual
samples) may be reconstructed by applying dequantization
and inverse transform to the quantized transform coefficients
through the dequantizer 234 and the inverse transformer
235. The adder 250 adds the reconstructed residual signal to
the prediction signal output from the inter predictor 221 or
the intra predictor 222 to generate a reconstructed signal
(reconstructed picture, reconstructed block, reconstructed
sample array). If there is no residual for the block to be
processed, such as a case where the skip mode is applied, the
predicted block may be used as the reconstructed block. The
adder 250 may be called a reconstructor or a reconstructed
block generator. The generated reconstructed signal may be
used for intra prediction of a next block to be processed in
the current picture and may be used for inter prediction of a
next picture through filtering as described below.

Meanwhile, luma mapping with chroma scaling (LMCS)
may be applied during picture encoding and/or reconstruc-
tion.

US 11,876,960 B2

9

The filter 260 may improve subjective/objective image
quality by applying filtering to the reconstructed signal. For
example, the filter 260 may generate a modified recon-
structed picture by applying various filtering methods to the
reconstructed picture and store the modified reconstructed
picture in the memory 270, specifically, a DPB of the
memory 270. The various filtering methods may include, for
example, deblocking filtering, a sample adaptive offset, an
adaptive loop filter, a bilateral filter, and the like. The filter
260 may generate various kinds of information related to the
filtering and transmit the generated information to the
entropy encoder 240 as described later in the description of
each filtering method. The information related to the filtering
may be encoded by the entropy encoder 240 and output in
the form of a bitstream.

The modified reconstructed picture transmitted to the
memory 270 may be used as the reference picture in the inter
predictor 221. When the inter prediction is applied through
the encoding apparatus, prediction mismatch between the
encoding apparatus 200 and the decoding apparatus may be
avoided and encoding efficiency may be improved.

The DPB of the memory 270 DPB may store the modified
reconstructed picture for use as a reference picture in the
inter predictor 221. The memory 270 may store the motion
information of the block from which the motion information
in the current picture is derived (or encoded) and/or the
motion information of the blocks in the picture that have
already been reconstructed. The stored motion information
may be transmitted to the inter predictor 221 and used as the
motion information of the spatial neighboring block or the
motion information of the temporal neighboring block. The
memory 270 may store reconstructed samples of recon-
structed blocks in the current picture and may transfer the
reconstructed samples to the intra predictor 222.

FIG. 3 is a diagram schematically describing a construc-
tion of a video/image decoding apparatus to which an
embodiment of this document may be applied. Hereinafter,
the decoding apparatus may include an image decoding
apparatus and/or a video decoding apparatus.

Referring to FIG. 3, the decoding apparatus 300 may
include an entropy decoder 310, a residual processor 320, a
predictor 330, an adder 340, a filter 350, and a memory 360.
The predictor 330 may include an inter predictor 331 and an
intra predictor 332. The residual processor 320 may include
a dequantizer 321 and an inverse transformer 321. The
entropy decoder 310, the residual processor 320, the pre-
dictor 330, the adder 340, and the filter 350 may be config-
ured by a hardware component (ex. A decoder chipset or a
processor) according to an embodiment. In addition, the
memory 360 may include a decoded picture buffer (DPB) or
may be configured by a digital storage medium. The hard-
ware component may further include the memory 360 as an
internal/external component.

When a bitstream including video/image information is
input, the decoding apparatus 300 may reconstruct an image
corresponding to a process in which the video/image infor-
mation is processed in the encoding apparatus of FIG. 2. For
example, the decoding apparatus 300 may derive units/
blocks based on block partition related information obtained
from the bitstream. The decoding apparatus 300 may per-
form decoding using a processor applied in the encoding
apparatus. Thus, the processor of decoding may be a coding
unit, for example, and the coding unit may be partitioned
according to a quad tree structure, binary tree structure
and/or ternary tree structure from the coding tree unit or the
largest coding unit. One or more transform units may be
derived from the coding unit. The reconstructed image

10

15

20

25

30

35

40

45

50

55

60

65

10

signal decoded and output through the decoding apparatus
300 may be reproduced through a reproducing apparatus.

The decoding apparatus 300 may receive a signal output
from the encoding apparatus of FIG. 2 in the form of a
bitstream, and the received signal may be decoded through
the entropy decoder 310. For example, the entropy decoder
310 may parse the bitstream to derive information ex.
video/image information) necessary for image reconstruc-
tion (or picture reconstruction). The video/image informa-
tion may further include information on various parameter
sets such as an adaptation parameter set (APS), a picture
parameter set (PPS), a sequence parameter set (SPS), or a
video parameter set (VPS). In addition, the video/image
information may further include general constraint informa-
tion. The decoding apparatus may further decode picture
based on the information on the parameter set and/or the
general constraint information. Signaled/received informa-
tion and/or syntax elements described later in this document
may be decoded may decode the decoding procedure and
obtained from the bitstream. For example, the entropy
decoder 310 decodes the information in the bitstream based
on a coding method such as exponential Golomb coding,
CAVLC, or CABAC, and output syntax elements required
for image reconstruction and quantized values of transform
coeflicients for residual, More specifically, the CABAC
entropy decoding method may receive a bin corresponding
to each syntax element in the bitstream, determine a context
model using a decoding target syntax element information,
decoding information of a decoding target block or infor-
mation of a symbol/bin decoded in a previous stage, and
perform an arithmetic decoding on the bin by predicting a
probability of occurrence of a bin according to the deter-
mined context model, and generate a symbol corresponding
to the value of each syntax element. In this case, the CABAC
entropy decoding method may update the context model by
using the information of the decoded symbol/bin for a
context model of a next symbol/bin after determining the
context model. The information related to the prediction
among the information decoded by the entropy decoder 310
may be provided to the predictor (the inter predictor 332 and
the intra predictor 331), and the residual value on which the
entropy decoding was performed in the entropy decoder
310, that is, the quantized transform coefficients and related
parameter information, may be input to the residual proces-
sor 320. The residual processor 320 may derive the residual
signal (the residual block, the residual samples, the residual
sample array). In addition, information on filtering among
information decoded by the entropy decoder 310 may be
provided to the filter 350. Meanwhile, a receiver (not shown)
for receiving a signal output from the encoding apparatus
may be further configured as an internal/external element of
the decoding apparatus 300, or the receiver may be a
component of the entropy decoder 310. Meanwhile, the
decoding apparatus according to this document may be
referred to as a video/image/picture decoding apparatus, and
the decoding apparatus may be classified into an information
decoder (video/image/picture information decoder) and a
sample decoder (video/image/picture sample decoder). The
information decoder may include the entropy decoder 310,
and the sample decoder may include at least one of the
dequantizer 321, the inverse transformer 322, the adder 340,
the filter 350, the memory 360, the inter predictor 332, and
the intra predictor 331.

The dequantizer 321 may dequantize the quantized trans-
form coefficients and output the transform coefficients. The
dequantizer 321 may rearrange the quantized transform
coeflicients in the form of a two-dimensional block form. In

US 11,876,960 B2

11

this case, the rearrangement may be performed based on the
coeflicient scanning order performed in the encoding appa-
ratus. The dequantizer 321 may perform dequantization on
the quantized transform coefficients by using a quantization
parameter (ex. quantization step size information) and
obtain transform coefficients.

The inverse transformer 322 inversely transforms the
transform coefficients to obtain a residual signal (residual
block, residual sample array).

The predictor may perform prediction on the current
block and generate a predicted block including prediction
samples for the current block. The predictor may determine
whether intra prediction or inter prediction is applied to the
current block based on the information on the prediction
output from the entropy decoder 310 and may determine a
specific intra/inter prediction mode.

The predictor 320 may generate a prediction signal based
on various prediction methods described below. For
example, the predictor may not only apply intra prediction
or inter prediction to predict one block but also simultane-
ously apply intra prediction and inter prediction. This may
be called combined inter and intra prediction (CIIP). In
addition, the predictor may be based on an intra block copy
(IBC) prediction mode or a palette mode for prediction of a
block. The IBC prediction mode or palette mode may be
used for content image/video coding of a game or the like,
for example, screen content coding (SCC). The IBC basi-
cally performs prediction in the current picture but may be
performed similarly to inter prediction in that a reference
block is derived in the current picture. That is, the IBC may
use at least one of the inter prediction techniques described
in this document. The palette mode may be considered as an
example of intra coding or intra prediction. When the palette
mode is applied, a sample value within a picture may be
signaled based on information on the palette table and the
palette index.

The intra predictor 331 may predict the current block by
referring to the samples in the current picture. The referred
samples may be located in the neighborhood of the current
block or may be located apart according to the prediction
mode. In the intra prediction, prediction modes may include
a plurality of non-directional modes and a plurality of
directional modes. The intra predictor 331 may determine
the prediction mode applied to the current block by using a
prediction mode applied to a neighboring block. The intra
predictor 331 may predict the current block by referring to
the samples in the current picture. The referenced samples
may be located in the neighborhood of the current block or
may be located apart according to the prediction mode. In
intra prediction, prediction modes may include a plurality of
non-directional modes and a plurality of directional modes.
The intra predictor 331 may determine the prediction mode
applied to the current block by using the prediction mode
applied to the neighboring block.

The inter predictor 332 may derive a predicted block for
the current block based on a reference block (reference
sample array) specified by a motion vector on a reference
picture. In this case, in order to reduce the amount of motion
information transmitted in the inter prediction mode, motion
information may be predicted in units of blocks, sub-blocks,
or samples based on correlation of motion information
between the neighboring block and the current block. The
motion information may include a motion vector and a
reference picture index. The motion information may further
include inter prediction direction (L.O prediction, L1 predic-
tion, Bi prediction, etc.) information. In the case of inter
prediction, the neighboring block may include a spatial

25

30

40

45

50

12

neighboring block present in the current picture and a
temporal neighboring block present in the reference picture.
For example, the inter predictor 332 may configure a motion
information candidate list based on neighboring blocks and
derive a motion vector of the current block and/or a refer-
ence picture index based on the received candidate selection
information. Inter prediction may be performed based on
various prediction modes, and the information on the pre-
diction may include information indicating a mode of inter
prediction for the current block.

The adder 340 may generate a reconstructed signal (re-
constructed picture, reconstructed block, reconstructed
sample array) by adding the obtained residual signal to the
prediction signal (predicted block, prediction sample array)
output from the predictor (including the inter predictor 332
and/or the intra predictor 331). If there is no residual for the
block to be processed, such as when the skip mode is
applied, the predicted block may be used as the recon-
structed block.

The adder 340 may be called reconstructor or a recon-
structed block generator. The generated reconstructed signal
may be used for intra prediction of a next block to be
processed in the current picture, may be output through
filtering as described below, or may be used for inter
prediction of a next picture.

Meanwhile, lama mapping with chroma scaling (LMCS)
may be applied in the picture decoding process.

The filter 350 may improve subjective/objective image
quality by applying filtering to the reconstructed signal. For
example, the filter 350 may generate a modified recon-
structed picture by applying various filtering methods to the
reconstructed picture and store the modified reconstructed
picture in the memory 360, specifically, a DPB of the
memory 360. The various filtering methods may include, for
example, blocking filtering, a sample adaptive offset, an
adaptive loop filter, a bilateral filter, and the like.

The (modified) reconstructed picture stored in the DPB of
the memory 360 may be used as a reference picture in the
inter predictor 332. The memory 360 may store the motion
information of the block from which the motion information
in the current picture is derived (or decoded) and/or the
motion information of the blocks in the picture that have
already been reconstructed. The stored motion information
may be transmitted to the inter predictor 260 so as to be
utilized as the motion information of the spatial neighboring
block or the motion information of the temporal neighboring
block. The memory 360 may store reconstructed samples of
reconstructed blocks in the current picture and transfer the
reconstructed samples to the intra predictor 331.

In the present document, the embodiments described in
the filter 260, the inter predictor 221, and the intra predictor
222 of the encoding apparatus 200 may be the same as or
respectively applied to correspond to the filter 350, the inter
predictor 332, and the intra predictor 331 of the decoding
apparatus 300. The same may also apply to the unit 332 and
the intra predictor 331.

When inter prediction is applied, the predictor of the
encoding apparatus/decoding apparatus may derive a pre-
diction sample by performing inter prediction in a block
unit. The inter prediction can be a prediction derived in a
manner that is dependent on data elements (e.g., sample
values or motion information) of picture(s) other than the
current picture). When inter prediction is applied to a current
block, a predicted block (prediction sample array) for the
current block may be derived based on a reference block
(reference sample array) specified by a motion vector in a
reference picture indicated by a reference picture index. In

US 11,876,960 B2

13

this case, in order to reduce the amount of motion informa-
tion transmitted in the inter prediction mode, motion infor-
mation of the current block may be predicted based in a
block, sub-block or a sample unit based on a correlation of
motion information between a neighboring block and the
current block. The motion information may include a motion
vector and a reference picture index. The motion informa-
tion may further include inter prediction type (LO prediction,
L1 prediction, Bi prediction, etc.) information. When inter
prediction is applied, a neighboring block may include a
spatial neighboring block present within a current picture
and a temporal neighboring block present within a reference
picture. The reference picture including the reference block
and the reference picture including the temporal neighboring
block may be the same or different. The temporal neighbor-
ing block may be called a collocated reference block, a
colCU (CU), etc. The reference picture including the tem-
poral neighboring block may be called a collocated picture
(colPic). For example, a motion information candidate list
may be constructed based on neighboring blocks of a current
block. In order to derive a motion vector and/or reference
picture index of a current block, a flag or index information
indicating which candidate is selected (used) may be sig-
naled. Inter prediction may be performed based on various
prediction modes. For example, in the case of a skip mode
and a merge mode, motion information of a current block
may be the same as motion information of a selected
neighboring block. In the case of the skip mode, unlike in the
merge mode, a residual signal may not be transmitted. In the
case of a motion vector prediction (MVP) mode, a motion
vector of a selected neighboring block may be used as a
motion vector predictor, and a motion vector difference may
be signaled. In this case, a motion vector of a current block
may be derived using the sum of the motion vector predictor
and the motion vector difference.

The motion information may include [.O motion informa-
tion and/or L.1 motion information depending on an inter
prediction type (LO prediction, [.1 prediction, Bi prediction,
etc.). Amotion vector in an L0 direction may be called an [.O
motion vector or MVLO0. A motion vector in an L1 direction
may be called an [.1 motion vector or MVL1. Prediction
based on the LO motion vector may be called LO prediction.
Prediction based on the .1 motion vector may be called [.1
prediction. Prediction based on both the L.O motion vector
and the L1 motion vector may be called bi-prediction. In this
case, the L.O motion vector may indicate a motion vector
associated with a reference picture list LO (L0). The L1
motion vector may indicate a motion vector associated with
a reference picture list L1 (L1). The reference picture list O
may include, as reference pictures, pictures before a current
picture in their output order. The reference picture list L1
may include pictures after the current picture in their output
order. The previous pictures may be called a forward (ref-
erence) picture. The subsequent pictures may be called a
backward (reference) picture. The reference picture list O
may further include, as reference pictures, pictures after a
current picture in their output order. In this case, the previous
pictures may be first indexed within the reference picture list
L0, and the subsequent pictures may be then indexed. The
reference picture list .1 may further include, as reference
pictures, pictures prior to a current picture in their output
order. In this case, the subsequent pictures may be first
indexed within the reference picture list1, and the previous
pictures may be then indexed. In this case, the output order
may correspond to a picture order count (POC) order.

In order to predict a current block within a picture, various
inter prediction modes may be used. For example, various

25

30

35

40

45

14

modes, such as a merge mode, a skip mode, a motion vector
prediction (MVP) mode, an affine mode, a sub-block merge
mode, a merge with MVD (MMVD) mode, etc. may be
used. A decoder side motion vector refinement (DMVR)
mode, an adaptive motion vector resolution (AMVR) mode,
a Bi-prediction with CU-level weight (BCW), a bi-direc-
tional optical flow (BDOF), etc. may be further or instead
used as additional modes. The affine mode may be called an
affine motion prediction mode. The MVP mode may be
called an advanced motion vector prediction (AMVP) mode.
In this document, some mode and/or a motion information
candidate derived by some mode may be also included as
one of motion information-related candidates of another
mode. For example, the HMVP candidate may be added as
a merge candidate of the merge/skip mode or may be added
as an mvp candidate of the MVP mode. When the HMVP
candidate is used as a motion information candidate of the
merge mode or the skip mode, the HMVP candidate may be
called an HMVP merge candidate.

Prediction mode information indicating an inter predic-
tion mode of a current block may be signaled from the
encoding apparatus to the decoding apparatus. The predic-
tion mode information may be included in a bitstream and
received by the decoding apparatus. The prediction mode
information may include index information indicating one of
multiple candidate modes. Alternatively, an inter prediction
mode may be indicated through hierarchical signaling of flag
information. In this case, the prediction mode information
may include one or more flags. For example, whether the
skip mode is applied may be indicated by signaling a skip
flag. When the skip mode is not applied, whether the merge
mode is applied may be indicated by signaling a merge flag.
When the merge mode is not applied, a flag for indicating or
additionally identifying that the MVP mode is applied may
be further signaled. The affine mode may be signaled as an
independent mode or may be signaled as a mode dependent
on the merge mode, the MVP mode, etc. For example, the
affine mode may include an affine merge mode and an affine
MVP mode.

Meanwhile, information indicating Whether the afore-
mentioned list0 (LO) prediction, listl (L1) prediction, or
bi-prediction is used in a current block (current coding unit)
may be signaled. The information may be called motion
prediction direction information, inter prediction direction
information or inter prediction indication information, and
may be constructed/encoded/signaled in the form of an
inter_pred_idc syntax element, for example. That is, the
inter_pred_idc syntax element may indicate whether the
aforementioned LO prediction, .1 prediction, or the bi-
prediction is used in a current block (current coding unit). In
this document, for convenience of description, an inter
prediction type (LO prediction, L1 prediction, or BI predic-
tion) indicated by the inter_pred_idc syntax element may be
indicated as a motion prediction direction. For example, the
LO prediction may be indicated as pred_L0O, the L1 predic-
tion may be indicated as pred_I.1, and the bi-prediction may
be indicated as pred_BI.

As described above, one picture may include one or more
slices. A slice may have one of slice types, including an intra
slice (I slice), a predictive slice (P slice) and a bi-predictive
slice (B slice). The slice type may be indicated based on slice
type information. With respect to blocks within the I slice,
inter prediction is not used for prediction, and only intra
prediction may be used. Even in this case, signaling may be
performed by coding the original sample value without
prediction. Intra prediction or inter prediction may be used
for blocks within the P slice. When inter prediction is used,

US 11,876,960 B2

15

only uni prediction may be used. Meanwhile, intra predic-
tion or inter prediction may be used for blocks within the B
slice. When inter prediction is used, up maximum bi-
prediction may be used. That is, if inter prediction is used for
blocks within the B slice, single prediction or bi-prediction
may be used.

LO and L1 may include reference pictures encoded/
decoded prior to a current picture. In this case, LO may
indicate a reference picture list 0, and .1 may indicate a
reference picture list 1. For example, LO may include
reference pictures prior to and/or posterior to a current
picture in a picture order count (POC) order. [.1 may include
reference pictures posterior to auditor prior to a current
picture in the POC order. In this case, in L0, a relatively
lower reference picture index may be assigned to previous
reference pictures than to a current picture in the POC order.
In L1, a relatively lower reference picture index may be
assigned to subsequent reference pictures than to the current
picture in the POC order. Bi-prediction may be applied to the
B slice. Even in this case, unidirectional bi-prediction may
be applied or bi-directional bi-prediction may be applied.
The bi-directional bi-prediction may be called true bi-
prediction.

Meanwhile, inter prediction may be performed using
motion information of a current block. The encoding appa-
ratus may derive the best motion information for a current
block through a motion estimation procedure. For example,
the encoding apparatus may search a predetermined search
range within a reference picture for a similar reference block
having a high correlation in a fraction pixel unit by using an
original block within an original picture for a current block,
and may derive motion information based on the similar
reference block. The similarity of a block may be derived
based on a difference between phase-based sample values.
For example, the similarity of a block may be calculated
based on the sum of absolute differences (SAD) between a
current block (or a template of a current block) and a
reference block (or a template of a reference block). In this
case, motion information may be derived based on a refer-
ence block having the smallest SAD within the search
region. The derived motion information may be signaled to
the decoding apparatus according to several methods based
on the inter prediction mode.

FIG. 4 is a diagram for describing a merge mode in inter
prediction.

When the merge mode is applied, motion information of
a current prediction block is not directly transmitted, and
motion information of the current prediction block is derived
using motion information of a neighboring prediction block.
Accordingly, motion information of the current prediction
block may be indicated by transmitting flag information
providing notification that the merge mode has been used
and a merge index providing notification of whether which
neighboring prediction block has been used. The merge
mode may be called a regular merge mode. For example, the
merge mode may be applied when a value of a regu-
lar_merge_flag syntax element is 1.

The encoding apparatus needs to search for a merge
candidate block used to derive motion information of a
current prediction block in order to perform the merge mode.
For example, a maximum of five merge candidate blocks
may be used, but an embodiment(s) of this document is not
limited thereto. Furthermore, a maximum number of merge
candidate blocks may be transmitted in a slice header or a
tile group header, but an embodiment(s) of this document is
not limited thereto. After searching for the merge candidate
blocks, the encoding apparatus may generate a merge can-

10

15

20

25

30

35

40

45

50

55

60

65

16

didate list, and may select, as the final merge candidate
block, a merge candidate block having the smallest cost in
the merge candidate list.

This document may provide various embodiments of a
merge candidate block constituting a merge candidate list.

For example, the merge candidate list may use five merge
candidate blocks. For example, the merge candidate list may
use four spatial merge candidates and one temporal merge
candidate. As a detailed example, in the case of a spatial
merge candidate, blocks illustrated in FIG. 4 may be used as
spatial merge candidates. Hereinafter, the spatial merge
candidate or a spatial MVP candidate to be described later
may be called as an SMVP, and a temporal merge candidate
or a temporal MVP candidate to be described later may be
called a TMVP.

A merge candidate list for the current block may be
constructed based on the following procedure, for example.

The coding apparatus (encoding apparatus/decoding
apparatus) may search for spatial neighboring blocks of a
current block and insert derived spatial merge candidates
into a merge candidate list. For example, the spatial neigh-
boring blocks may include a bottom-left corner neighboring
block, a left neighboring block, a top-right corner neighbor-
ing block, a top neighboring block, and a top-left corner
neighboring blocks of the current block. However, this is an
example, in addition to the aforementioned spatial neigh-
boring blocks, additional neighboring blocks, such as a right
neighboring block, a bottom neighboring block, a bottom-
right neighboring block, etc. may be further used as the
spatial neighboring blocks. The coding apparatus may detect
available blocks by searching for the spatial neighboring
blocks based on priority, and may derive motion information
of detected blocks as the spatial merge candidates. For
example, the encoding apparatus or the decoding apparatus
may sequentially search for five blocks illustrated in FIG. 4
like A1—-B1—-=B0—A0—-B2, and may construct available
candidates as a merge candidate list by sequentially indexing
the available candidates.

The coding apparatus may search for a temporal neigh-
boring block of the current block, and may insert the derived
temporal merge candidate into the merge candidate list. The
temporal neighboring block may be located in a reference
picture, that is, a picture different from a current picture in
which the current block is located. The reference picture in
which the temporal neighboring block is located may be
called a collocated picture or a col picture. The temporal
neighboring block may be searched for in order of a bottom-
right corner neighboring block and bottom-right center
block of a co-located block for the current block in the col
picture. Meanwhile, when motion data compression is
applied, specific motion information may be stored in the col
picture as representative motion information for each given
storage unit. In this case, it is not necessary to store motion
information of all blocks within the given storage unit, so
that a motion data compression effect can be obtained. In
this case, the given storage unit may be previously deter-
mined as a 16x16 sample unit, an 8x8 sample unit, etc, or
size information for the given storage unit may be signaled
from the encoding apparatus to the decoding apparatus. If
the motion data compression (motion data compression) is
applied, motion information of the temporal neighboring
block may be replaced with representative motion informa-
tion of the given storage unit in which the temporal neigh-
boring block is located. That is, in this case, from a view-
point of an implementation, the temporal merge candidate
may be derived based on motion information of a prediction
block that covers a location that is arithmetically shifted to

US 11,876,960 B2

17

the right and then shifted to the left by a given value based
on coordinates (top-left sample location) of the temporal
neighboring block, not a prediction block located in the
coordinates of the temporal neighboring block. For example,
when the given storage unit is a 2nx2n sample unit, assum-
ing that the coordinates of the temporal neighboring block is
(xTnb, yTnb), motion information of a prediction block
located in ((xXTnb>>n)<<n), (yTnb>>n)<<n)), that is, a
modified location, may be used for the temporal merge
candidate. Specifically, for example, if the given storage unit
is a 16x16 sample unit, assuming that coordinates of the
temporal neighboring block are (xTnb, yTnb), motion infor-
mation of a prediction block located in ((xTnb>>4)<<4),
(yTnb>>4)<<4)), that is, a modified location, may be used
for the temporal merge candidate. Alternatively, for
example, if the given storage unit is an 8x8 sample unit,
assuming that coordinates of the temporal neighboring block
are (xTnb, yTnb), motion information of a prediction block
located in ((xXTnb>>3)<<3), (yTnb>>3)<<3)), that is, a
modified location, may be used for the temporal merge
candidate.

The coding apparatus may check whether the number of
current merge candidates is smaller than a maximum num-
ber of merge candidates. The maximum number of merge
candidates may be pre-defined or may be signaled from the
encoding apparatus to the decoding apparatus. For example,
the encoding apparatus may generate information on a
maximum number of merge candidates, may encode the
information, and may deliver the encoded information to the
decoder in a bitstream form. When the maximum number of
merge candidates is fully filled, a subsequent candidate
addition process may not be performed.

If, as a result of the check, the number of current merge
candidates is smaller than the maximum number of merge
candidates, the coding apparatus may insert an additional
merge candidate into the merge candidate list. For example,
the additional merge candidate may include at least one of
a history based merge candidate(s), a pair-wise average
merge candidate(s), an ATMVP, a combined bi-predictive
merge candidate (when a current slice/slice of a tile group/
tile group type is a B type) and/or a zero vector merge
candidate to be described later.

If, as a result of the check, the number of current merge
candidates is not smaller than the maximum number of
merge candidates, the coding apparatus may terminate the
construction of the merge candidate list. In this case, the
encoding apparatus may select the best merge candidate
among merge candidates constituting the merge candidate
list based on a rate-distortion (RD) cost, and may signal, to
the decoding apparatus, selection information (e.g., merge
index) indicating the selected merge candidate. The decod-
ing apparatus may select the best merge candidate based on
the merge candidate list and the selection information.

Motion information of the selected merge candidate may
be used as motion information of the current block. As
described above, prediction samples of the current block
may be derived based on motion information of the current
block. The encoding apparatus may derive residual samples
of the current block based on the prediction samples, and
may signal, to the decoding apparatus, the residual infor-
mation about the residual samples. As described above, the
decoding apparatus may generate reconstruction samples
based on the residual samples derived based on the residual
information and the prediction samples, and may generate a
reconstruction picture based on the reconstruction samples.

When the skip mode is applied, motion information of a
current block may be derived using the same method as that

20

25

30

35

40

45

50

55

60

65

18

the merge mode is applied. However, when the skip mode is
applied, a residual signal for a corresponding block may be
omitted, so that prediction samples may be directly used as
reconstruction samples. The skip mode may be applied when
a value of a cu_skip_flag syntax element is 1, for example.

Meanwhile, the pair-wise average merge candidate may
be called a pair-wise average candidate or a pair-wise
candidate. The pair-wise average candidate(s) may be gen-
erated by averaging pairs of pre-defined candidates in the
existing merge candidate list. Furthermore, the pre-defined
pairs may be defined like {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3),
(2, 3)}. In this case, the numbers may indicate merge indices
for a merge candidate list. An averaged motion vector may
be separately calculated with respect to each reference list.
For example, if two motion vectors are available within one
list, the two motion vectors may be averaged although they
indicate different reference pictures. For example, if only
one motion vector is available, only the one motion vector
may be directly used. For example, if an available motion
vector is not present, a list may maintain an invalid state.

For example, even after pair-wise average merge candi-
dates are added, if a merge candidate list is fully filled, that
is, when the number of current merge candidates within the
merge candidate list is smaller than a maximum number of
merge candidates, a zero vector (zero MVP) may be inserted
up to the final until a maximum merge candidate number
appears. That is, a zero vector may be inserted until the
number of current merge candidates within the merge can-
didate list becomes a maximum number of merge candi-
dates.

Meanwhile, in a conventional technology, in order to
represent a motion of a coding block, only one motion vector
can be used. That is, a translation motion model may be
used. However, such a method may represent the best
motion in a block unit, but the best motion is actually not for
each sample. If the best motion vector can be determined in
a sample unit, coding efficiency can be improved. To this
end, the affine motion model may be used. An affine motion
prediction method for performing coding using the affine
motion model may be as follows.

The affine motion prediction method may represent a
motion vector in each sample unit of a block by using two,
three or four motion vectors. For example, the affine motion
model may represent four motions. An affine motion model
that represents three motions (translation, scale, and rotate)
among motions which may be represented by the affine
motion model may be called a similarity (or simplified)
affine motion model. A description will be given based on
the affine motion model, but the present disclosure is not
limited to the aforementioned motion model.

FIGS. 5a and 5b exemplarily illustrate a CPMV for affine
motion prediction.

Affine motion prediction may determine a motion vector
at the location of a sample included in a block by using two
or more control point motion vectors (CPMVs). In this case,
a set of motion vectors may be indicated as an affine motion
vector field (MVF).

For example, FIG. 5a may indicate a case where two
CPMVs are used, which may be called as a 4-parameter
affine model. In this case, a motion vector at an (X, y) sample
location may be determined as in Equation 1, for example.

MV, — MVox mvy, = mvg,
W W
mvy, = mvg, MV, — MVox

X
W W

[Equation 1]

Y+ mvo,

y+mvg,

US 11,876,960 B2

19

For example, FIG. 5/ may indicate a case where three
CPMVs are used, and may be called a 6-parameter affine
model. In this case, a motion vector at a (X, y) sample
location may be determined as in Equation 2, for example.

MV, — MVoy MV, — MVoy
mvy, = o X+ 7

mvy, = mvo, . mvy, — mvoy
X
H

[Equation 2]

Y+ mvoy

my, = ¥+ mvg,

w

In Equations 1 and 2, {v,, v, } may indicate motion vector
at an (x, y) location. Furthermore, {v,, vo,} may indicate
the CPMV of a control point (CP) at the top-left corner
location of a coding block. {v,,, v,,} may indicate the
CPMYV of a CP at a top-right corner location. {v,,, v, } may
indicate the CPMV of a CP at a bottom-left corner location.
Furthermore, W may indicate the width of a current block.
H may indicate the height of the current block.

FIG. 6 exemplarily illustrates a case where an affine MVF
is determined in a sub-block unit.

In an encoding decoding process, an affine MVF may be
determined in a sample unit or an already defined sub-block
unit. For example, if the affine MVF is determined in the
sample unit, a motion vector may be obtained based on each
sample value. Alternatively, for example, if the affine MVF
is determined in the sub-block unit, a motion vector of a
corresponding block may be obtained based on the center (a
center bottom-right, that is, a bottom-right sample of center
four samples) sample value of a sub-block. That is, in affine
motion prediction, a motion vector of a current block may be
derived in a sample unit or in a sub-block unit.

In an embodiment, a case where an affine MVF is
determined in a 4x4 sub-block unit may be assured and
described, but this is for convenience of description. The
size of a sub-block may be variously changed.

That is, if affine prediction is available, a motion model
which may be applied to a current block may include three
types (a translation motion model, a 4-parameter affine
motion model, and a 6-parameter affine, motion model). In
this case, the translation motion model may indicate a model
in which the existing block unit motion vector is used. The
4-parameter affine motion model may indicate a model in
which two CPMVs are used. The 6-parameter affine motion
model may indicate a model in which three CPMVs are
used.

Meanwhile, affine motion prediction may include an
affine MVP (or affine inter) mode or an affine merge mode.

FIG. 7 is a diagram for describing the affine merge mode
in inter prediction.

For example, in the affine merge mode, a CPMV may be
determined based on an affine motion model of a neighbor-
ing block coded by affine motion prediction. For example, a
neighboring block coded by affine motion prediction in the
search order may be used for an affine merge mode. That is,
if at least one of neighboring blocks is coded by affine
motion prediction, a current block may be coded in the affine
merge mode. In this case, the affine merge mode may be
called AF_MERGE.

When the affine merge mode is applied, CPMVs of a
current block may be derived using CPMVs of a neighbor-
ing block. In this case, the CPMVs of the neighboring block
may be used as the CPMVs of the current block without any
change, or the CPMVs of the neighboring block may be
modified based on the size of the neighboring block, the size
of the current block, etc. and may be used as the CPMVs of
the current block.

20

25

30

35

40

45

50

55

60

65

20

Meanwhile, in the case of the affine merge mode in which
a motion vector (MV) is derived in a sub-block unit, this
may be called a sub-block merge mode. This may be
indicated based on a sub-block merge flag (or merge_sub-
block_flag syntax element). Alternatively, when a value of
the merge_sub-block_flag syntax element is 1, it may indi-
cate that the sub-block merge mode is applied. In this case,
an affine merge candidate list to be described later may be
called a sub-block merge candidate list. In this case, the
sub-block merge candidate list may further include a can-
didate derived as an SbTMVP to be described later. In this
case, the candidate derived as the STMVP may be used as
a candidate having a No. 0 index in the sub-block merge
candidate list. In other words, the candidate derived as the
SPTMVP may be located ahead of an inherited affine
candidate or a constructed affine candidate to be described in
the sub-block merge candidate list.

When the affine merge mode is applied, an affine merge
candidate list may be constructed in order to derive CPMVs
of a current block. For example, the affine merge candidate
list may include at least one of the following candidates. 1)
an inherited affine merge candidate. 2) a constructed affine
merge candidate. 3) a zero motion vector candidate (or a
zero vector). In this case, when a neighboring block is coded
in the affine mode the inherited affine merge candidate is a
candidate derived based on CPMVs of a neighboring block.
The constructed affine merge candidate is a candidate
derived by constructing CPMVs based on the MV of a
neighboring block of a corresponding CP in each CPMV
unit. The zero motion vector candidate may indicate a
candidate consisting of CPMVs whose values are 0.

The affine merge candidate list may be constructed as
follows, for example.

A maximum of two inherited affine candidates may be the
same. An inherited affine candidate may be derived from an
affine motion model of neighboring blocks. The neighboring
blocks may include one left neighboring block and the above
neighboring block. Candidate blocks may be located as in
FIG. 4. A scan order for a left predictor may be A1—>A0. A
scan order for the above predictor may be B1>B0—B2.
Only one inherited candidate from each of the left and the
above may be selected. A pruning check may not be per-
formed between two inherited candidates.

If a neighboring affine block is confirmed, control point
motion vectors of the confirmed block may be used to derive
a CPMVP candidate within the affine merge list of a current
block. In this case, the neighboring affine block may indicate
a block coded in the affine prediction mode among neigh-
boring blocks of the current block. For example, referring to
FIG. 7, if the bottom-left neighboring block A is coded in the
affine prediction mode, motion vectors v,, v; and v, at the
top-left corner, top-right corner and bottom-left corner of the
neighboring block A may be obtained. If the neighboring
block A is coded as a 4-parameter affine motion model, two
CPMVs of the current block may be calculated based on v,
and vj. If the neighboring block A is coded as a 6-parameter
affine motion model, three CPMVs v,, v; and v, of the
current block may be calculated.

FIG. 8 is a diagram for describing the locations of
candidates in the affine merge mode.

A constructed affine candidate max mean a candidate
constructed by combining neighboring translational motion
information of respective control points. Motion information
of the control points may be derived from specific spatial
neighbors and temporal neighbors. CPMV,_; » 5 4 may
indicate a k-th control point.

US 11,876,960 B2

21

Referring to FIG. 8, for CPMV1, blocks may be checked
in order of B2—=B3—=A2. A motion vector a block that may
be first available may be used. For CPMV2, blocks may be
checked in order of B1—+B0. For CPMV3, blocks may be
checked in order of A1—=A0. A temporal motion vector
predictor (TMVP) may be used as CPMV4 if it is available.

After motion vectors of the four control points are
obtained, affine merge candidates may be constructed based
on the pieces of obtained motion information. Combinations

of the control point motion vectors may be constructed like
{CPMV1, CPMV2, CPMV3}, {CPMV1, CPMV2,
CPMV4}, {CPMV1, CPMV3, CPMV4}, {CPMV2,

CPMV3, CPMV4}, {CPMV1, CPMV2} and {CPMVI,
CPMV3}, and may be constructed in a listed order.

A combination of three CPMVs may construct a 6-pa-
rameter affine merge candidate. A combination of two
CPMVs may construct a 4-parameter affine merge candi-
date. In order to avoid a motion scaling process, if reference
indices of control points are different, related combinations
of control point motion vectors may be discarded.

FIG. 9 is a diagram for describing an SbTMVP in inter
prediction.

Meanwhile, a sub-block-based temporal motion vector
prediction (SbTMVP) method may be used. For example,
the SbTMVP may be called advanced temporal motion
vector prediction (ATMVP). The SbTMVP may use a
motion field within a collocated picture in order to improve
motion vector prediction and the merge mode for CUs
within a current picture. In this case, the collocated picture
may be called a col picture.

For example, the ShTMVP may predict a motion in a
sub-block (or sub CU) level. Furthermore, the SbTMVP may
apply a motion shift before fetching temporal motion infor-
mation from a col picture. In this case, the motion shift may
be obtained from one of spatial neighboring blocks of a
current block.

The SbTMVP may predict a motion vector of a sub-block
(or a sub CU) within a current block (or CU) according to
two steps.

In the first step, spatial neighboring blocks may be tested
in order of Al, B1, BO and AO in FIG. 4. The first spatial
neighboring block having a motion vector using a col picture
as its reference picture may be confirmed. The motion vector
may be selected as a motion shift to be applied. If such a
motion is not confirmed from a spatial neighboring block, a
motion shift may be set to (0, 0).

In the second step, a motion shift confirmed in the first
step may be applied to obtain sub-block level motion
information (a motion vector and reference indices) from a
collocated picture. For example, a motion shift may be
added to the coordinates of a current block. For example, a
motion shift may be set as a motion of Al in FIG. 4. In this
case, motion information of a corresponding block within a
collocated picture with respect to each sub-blocks may be
used to derive motion information of a sub-block. Temporal
motion scaling may be applied to arrange reference pictures
of temporal motion vectors and reference pictures of a
current block.

A combined sub-block-based merge list including both an
SbTVMP candidate and affine merge candidates may be
used for the signaling of an affine merge mode. In this case,
the affine merge mode may be called a sub-block-based
merge mode. The ShTVMP mode may be available or
unavailable based on a flag included in a sequence parameter
set (SPS). If the SPTMVP mode is available, an SbTMVP
predictor may be added as the first entry of a list of
sub-block-based merge candidates 2|, and affine merge can-

20

25

30

35

40

45

50

55

60

65

22

didates may follow. A maximum permitted size of the affine
merge candidate list may be five.

The size of a sub CU (or a sub-block) used in the
SbTMVP may be fixed to 8x8. As in the affine merge mode,
the SbTMVP mode may be applied to only a block whose
width and height are 8 or more. Encoding logic of an
additional SbTMVP merge candidate may be the same as
other merge candidates. That is, an RD check using an
additional rate-distortion (RD) cost may be performed
whether to use an SbTMVP candidate with respect to each
CU within a P or B slice.

Meanwhile, a predicted block of a current block may be
derived based on motion information derived in the predic-
tion mode. The predicted block may include prediction
samples (a prediction sample array) of a current block. If a
motion vector of the current block indicates a faction sample
unit, an interpolation procedure may be performed, so that
prediction samples of the current block may be derived
based on reference samples of a faction sample unit within
a reference picture. If affine inter prediction (affine predic-
tion mode) is applied to a current block, prediction samples
may be generated based on a sample/sub-block unit MV If
bi-prediction is applied, prediction samples derived based on
a weighted sum or weighted average (according to a phase)
of prediction samples derived based on LO prediction (i.e.,
prediction using a reference picture within a reference
picture list LO and MVLO) and prediction samples derived
based on L1 prediction (i.e., prediction using a reference
picture within a reference picture list .1 and MVL1) may be
used as prediction samples of a current block. In this case,
a motion vector in an L0 direction may be called an LO
motion vector or MVL0. A motion vector in an L1 direction
may be called an L1 motion vector or MVLI1. If Bi-
prediction is applied, when a reference picture used for L.O
prediction and a reference picture used for L1 prediction are
located at different temporal directions on the basis of a
current picture (i.e., if the reference pictures are bi-predic-
tion and correspond to bi-directional prediction), this may be
called true bi-prediction.

Furthermore, reconstruction samples and a reconstruction
picture may be generated based on derived prediction
samples. Thereafter, a procedure, such as in-loop filtering,
may be performed as described above.

Meanwhile, if bi-prediction is applied to a current block,
prediction samples may be derived based on a weighted
average. For example, bi-prediction using a weighted aver-
age may be called a bi-prediction with CU-level weight
(BCW), a bi-prediction with weighted average (BWA) or
weighted averaging bi-prediction.

In a conventional technology, a bi-prediction signal (i.e.,
bi-prediction samples) was derived through a simple average
of'an LO prediction signal (LO prediction samples) and an [.1
prediction signal (L1 prediction samples). That is, bi-pre-
diction samples were derived as an average of LO prediction
samples based on an [0 reference picture and MVLO and .1
prediction samples based on an L1 reference picture and
MVLI1. However, if bi-prediction is applied, a bi-prediction
signal (bi-prediction samples) may be derived through a
weighted average of an LO prediction signal and an L1
prediction signal as follows. For example, a bi-prediction
signal (bi-prediction samples) may be derived as in Equation

Py prea=(8=W)*Potw*P +4 [Equation 3]

In Bquation 3, P, ., may indicate a value of a bi-
prediction signal, that is, a prediction sample value derived
by applying bi-prediction, w may indicate a weight. Fur-

US 11,876,960 B2

23

thermore, P, may indicate a value of an [.O prediction signal,
that is, a prediction sample value derived by applying L.O
prediction. P, may indicate a value of an L1 prediction
signal, that is, a prediction sample value derived by applying
L1 prediction.

For example, in weighted average bi-prediction, five
weights may be permitted. For example, the five weights w
may include -2, 3, 4, 5 or 10. That is, the weight w may be
determined as one of weight candidates including -2, 3, 4,
5 or 10. The weight w may be determined by one of two
methods with respect to each CU to which bi-prediction is
applied. In the first method, a weight index may be signaled
after a motion vector difference with respect to a not-merged
CU. In the second method, a weight index may be inferred
from neighboring blocks based on a merge candidate index
with respect to a merged CU.

For example, weighted average bi-prediction may be
applied to a CU having 256 or more luma samples. That is,
when the product of the width and height of the CU is greater
than or equal to 256, weighted average bi-prediction may be
applied. In the case of a low-delay picture, five weights may
be used. In the case of a non-low-delay picture, three
weights may be used. For example, the three weights may
include 3, 4 or 5.

For example, in the encoding apparatus, a fast search
algorithm may be applied to find a weight index while not
greatly increasing the complexity of the encoding apparatus.
Such an algorithm may be summarized as follows. For
example, when being combined with adaptive motion vector
resolution (AMVR) (when AMVR is used in the inter
prediction mode), if a current picture is a low-delay picture,
an inequal weight may be checked conditionally with
respect to the precision of a 1-pel and 4-pel motion vector.
For example, when being combined with affine (when the

10

15

20

25

30

24

affine prediction mode is used as an inter prediction mode),
if the affine prediction mode is selected as a current best
mode, affine motion estimation (ME) may be performed on
inequal weights. For example, when two reference pictures
of bi-prediction are not identical, inequal weights may be
conditionally checked. For example, when a specific con-
dition is satisfied based on a POC distance between a current
picture and a reference picture, a coding quantization param-
eter (QP) and a temporal level, inequal weights may not be
searched for.

For example, a BCW weight index, (or weight index) may
be coded using one context coded bin and a following
bypass coded bin. The first context coded bin may indicate
whether the same weight is used. If an inequal weight is used
based on the first context coded bin, an additional bin may
be signaled using bypass coding in order to indicate an
inequal weight to be used.

Meanwhile, according to an embodiment of this docu-
ment, when a motion vector candidate for the merge mode
is constructed, if a temporal motion vector candidate is used
for bi-prediction, a weight index for a weighted average may
be induced or derived. That is, if an inter prediction type is
bi-prediction, weight index information for a temporal
merge candidate (or temporal motion vector candidate)
within a merge candidate list may be induced or derived.

For example, a weight index for a weighted average may
be always derived as 0 with respect to a temporal motion
vector candidate. In this case, what the weight index is O
may mean that weights in respective reference directions
(i.e., the LO prediction direction and the L1 prediction
direction in bi-prediction) are the same. For example, in this
case, a procedure of deriving a motion vector of a luma
component for a merge mode may be the same as the
following tables.

TABLE 1

8.4.2.2 Derivation process for luma motion vectors for merge mode

This process is only invoked when merge flag[xCb][yPb] is equal to 1,
where (XCb, yCb) specifiy the top-left sample of the current luma coding
block relative to the top-left luma sample of the current picture.

Inputs to this process are:

- a luma location (XCb, yCb) of the top-left sample of the current luma
coding block relative to the top-left sample of the current picture.

- a variable cbWidth specifying the width of the current block in luma samples.
- a variable cbHeight specifying the height of the current coding block in

luma samples.
Outputs of this process are:

- the luma motion vectors in %1s fractional-sample accuracy mvLO[0][0]

and mvL1[0][O].

- the reference indices refldxL0 and refIdxL1.

- the prediction list utilization flags prefFlagl.O[O][0] and predFladL.1[0][O].
- the bi-prediction weight index gbildx.

The bi-prediction weight index gbildx is set equal to 0.

The motion vectors mvLO[O][0] and mvL1[O][0], the reference indices
refldxL0 and refldxL.1 and the prediction utilization flags predFlagl.O[0][0]
and prefFLagL.1[0][O] are derived by the following ordered steps:

1. The derivation process for merging candidates from neighbouring coding

units as specified in clause 8.4.2.3 is invoked with the luma coding block
location (XCb, yCb). the luma coding block width cbWidth, and the luma
coding block heigh cbHeight as inputs, and the output being the availability

flags availableFlagA,. available FlagA, availableFlagB,, availableFlagB, and
availableFlagB,. the reference indices refldxLXA,, refldXLXA |, refldxLXB,,
refldxLXB, and refldxLXB,. the prediction list utilization flags predFlaglL.XA,,
predFlagl XAl, prefFlagl. XBy, predFlagl. XB,; and predFlagl.XB,, and the
motion vectors mvLXA,, mvLXA,;, mvLXB,, mvLXB,; and mvLXB,. with

X being 0 or 1, and the bi-prediction weight indices gbildxA,, gbIdxA,, gbldxB,,
gbiIDXB,, gbIdxB,.

2. The reference indices, refldxL.XCol, with X being 0 or 1, and the bi-prediction
weight index gbldxCol for the temporal merging candidate Col are set equal to 0.
3. The derivation process for temporal luma motion vector prediction as specified
in in clause 8.4.2.11 is invoked with the luma location (xCb, yCb), the luma
coding block width cbWidth, the luma coding block height cbHeight and the
variable refldxLOCol as inputs, and the output being the availability flag

US 11,876,960 B2

25
TABLE 1-continued

availableFlagl.0Col and the temporal motion vector mvLOCol. The variables

availableFlagCol, predFlagl.0Col and predFlagl.1Col are derived as follows:

availableFlagCol = availableFlagl.0Col (8-283)
predFlagl.0Col = availableFlagl.0Col (8-284)
predFlagl.1Col = 0 (8-285)
gbildxCol = 0

(8-xxx)

4. When tile_group_type is equal to B, the derivation process for temporal luma
motion vector prediction as specified in clause 8.4.2.11 is invoked with the luma
location (XCb, yCb), the luma coding block width cbWidth, the luma coding block
height cbHeight and the variable refldxL.1Col as inputs, and the output being the
availability flag availableFlagl.1Col and the temporal motion vector mvL1Col.

The variables availableFlagCol and predFlagl.1Col are derived as follows:
availableFlagCol = availableFlagl.0Col || availableFlagl.1Col (8-286)
predFlagl.1Col = availableFlagl.1Col (8-287)

TABLE 2

w

. The merding candidate list, mergeCandList, is constructed as follows:
i=0
if(availableFlagA,)
mergeCandList[i++] = A,
if(availableFlagB,)
mergeCandList[i++] = B,
if(availableFlagB,)
mergeCandList[i++] = B,
if(availableFlagAg)
mergeCandList[i++] = Ay
if(availableFlagB,)
mergeCandList[i++] = B,
if(availableFlagCol)
mergeCandList[i++] = Col
. The variable numCurrMergeCand and numOrigMergeCand are set
equal to the number of merging candidates in the mergeCandList.
7. When numCurrMergeCand is less than (MaxNumMergeCand - 1)
and NumHmvpCand is greater than 0, the following applies:
- The derivation process of history-based merging candidates as
specified in 8.4.2.6 is invoked with mergeCandList, and numCurrMergeCand
as inputs and modified mergCandList and numCurrMergeCand as outputs.
- numOrigMergeCand is set equal to numCurrMergeCand.
8. The derivation process for pariwise average merging candidates specified
in clause 8.4.2.4 is invoked with mergeCandList, the rference indices
refldxLON and refldxL1N. the prediction list utilization flags predFlagON
and predFlagl.1N. the motion vectors mvLON and mvL1N of every candidate
N in mergeCandList, numCurrMergeCand and numOrigMergeCand as inputs,
and the output is assigned to mergeCandList, numCurrMergeCand, the
reference indices refldxLOavgCandk and refldxL1lavgCandk, the prediction
list utilization flags predFlagl.0avgCandk and predFlagl.1avgCandk
and the motion vectors mvLOavgCandk and mvLlavgCandk of every new
candidate avgCandk being added into mergeCandList. The bi-prediction
weight index gbildx of every new candidate avgCandk being added into
mergeCandList is set equal to 0. The number of candidates beign added,
numAvgMergeCand, is set equal to (numCurrMergeCand —
numOrigMergeCand). When numAvgMergeCand is greater than 0, k ranges
from O to numAvgMergeCand — 1, inclusive.
9. The derivation process for zero motion vector merging candidates specified
in clause 8.4.2.5 is invoked with the mergeCandList, the reference indices
refldxLON and refldxL1N, the prediction list utilization flags predFlagl.ON
and predFlagl.1N, the motion vectors mvLON and mvL1N of every candidate
N in mergeCandList and numCurrMergeCand as inputs, and the output is
assigned to mergeCandList, numCurrMergeCand. the reference indices
refldxLOzeroCandm and refldxL1zeroCandm the prediction list utilization
flags predFlagl.0zeroCandm and predFlagl.1zeroCandm and the motion vectors
vmvLOzeroCandm and mvL1zeroCandm of every new candidate zeroCandm
being added into mergeCandList. The bi-prediction weight index gbildx of
every new candidate zeroCandm being added into mergeCandList is set equal to
0. The number of candidates being added, numZeroMergeCand, is set equal to
(numCurrMergeCand — numOrigMergeCand — numAvgMergeCand). When
numZeroMergeCand is greater than 0, m ranges from 0 to numZeroMergeCand —
1, inclusive.
10. The variable mergeldxOffset is set equal to 0.

[

26

US 11,876,960 B2

27
TABLE 2-continued

28

11. When mmvd_flag[xCb][yCb] is equal to 1. the variable mmvdCnt is set

equal to 0 and The following applies until mmvdCnt is greater than (merge_idx
[XCb][yCb] — mergeldxOffset) or mmvdCnt is equal to MaxNumMergeCand:

- When candidate mergeCandList] mmvdCnt] uses the current decoded picture

as its reference picture, mergeldxOffset is incremented by 1.
- The variable mmvdCnt is incremented by 1.

TABLE 3

12. The following assignments are made with N being the candidate at position

merge_Idx[xCb][yCb] + mergeldxOffset in the merging candidate list mergeCandList
(N = mergeCandList[merge_Idx[xCb][yCb] + mergeldxOffset]) and X being replaced by 0 or 1:

refldxLX = refldxLXN
predFlagL.X[0][0] = predFlagL XN
mvLX[0][0][0]=mvLXN[0]
mvLX[0][0][1]=mLXN[1]
gbildx = gbildxN

13. When mmvd_flag[xCb][yCb] is equal to 1, the following applies:

(8-289)
(8-290)
(8-291)
(8-292)
(8-293)

- The derivation process for merge motion vector difference as specified in 8.4.2.7 is invoked with
the luma location (xCb, yCb), the luma motion vectors mvLO[0][0], mvL1[O][O] the
reference indices refldxL0, refldxL1 and the prediction list utilization flags predFlagl.O[0][0]
and predFlagl.1[0][0] as inputs, and the motion vector differences mMvdLO and mMvdL1 as

outputs.

0 and 1 as follows:
mvIX[0][0][0] += mMvdLX[0]
mvIX[0][0][1] +=mMvdLX[1]

The motion vector difference mMvdLX is added to the merge motion vectors mvLX for X being

(8-294)
(8-295)

Tables 1 to 3 may indicate one procedure, and the 30 component for a merge mode. That is, a weight index of a

procedure may be continuously performed in order of the
tables. The procedure may include a procedure (8.4.2.2) of
deriving a motion vector of a luma component for a merge
mode.

Referring to Tables 1 to 3, gbildx may indicate a bi-
prediction weight index. gbildxCol may indicate a bi-pre-
diction weight index for a temporal merge candidate (e.g., a
temporal motion vector candidate within a merge candidate
list). The gbildxCol may be derived as O in a procedure (a
third step in 8.4.2.2) of deriving a motion vector of a luma

35

temporal motion vector candidate may be derived as O.

Alternatively, for example, a weight index of a weighted
average for a temporal motion vector candidate may be
derived as a weight index of a collocated block. In this case,
the collocated block may be called a col block, a co-located
block or a collocated reference block. The col block may
indicate a block at the same location as a current block in a
reference picture. For example, in this case, a procedure of
deriving a motion vector of a luma component for a merge
mode may be the same as the following tables.

TABLE 4

8.4.2.2 Derivation process for luma motion vectors for merge mode

This process is only invoked when merge_flag[xCb][yPb] is equal to 1, where (xCb, yCb) specify the top-

left sample of the current luma coding block relative to the top-left luma sample of the current picture.

Inputs to this process are:

- a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-

left luma sample of the current picture.

- a variable cbWidth specifying the width of the current coding block in luma samples.

- a variable cbHeight specifying the height of the current coding block in luma samples.

Outputs of this process are:

- the luma motion vectors in 1/16 fractional-sample accuracy mvLO[0][0] and mvL1[0][0]

- the reference indices refIdxLO and refldxL1

- the prediction list utilization flags predFlagl.O[0][0] and predFlagL.1[0][0]

- the bi-prediction weight index gbildx.

The bi-prediction weight index gbildx is set equal to 0.

The motion vectors mvLO[0][0] and vL[O][O]. the reference indices refldxL0 and refldxL1 and the

prediction utilization flags predFlagl.O[0][0] and predFlagl.1[O][O] are derived by the following ordered

steps:

1. The derivation process for merging candidates from neighbouring coding units as specified in
clause 8.4.2.3 is invoked with the luma coding block location (XCb, yCb), the luma coding block
width. cbWidth, and the luma coding block height cbHeight as inputs, and the output being the
availability flags availableFlagA,, availableFlagA |, availableFlagB,, availableFlagB, and
availableFlagB,, the reference indices refldxLXA,, refldxLXA |, refldxLXB,, refldxLXB,; and
refldXLXB,, the prediction list utilization flags predFlagl. XA, predFlagLXA |, predFlagl. XB,,
predFlagl. XB, and predFlaglL.XB,, and the motion vectors mvLX Ay, mvLXA |, mvLXB, mvLXB;
and mvLXB,, with X being 0 or 1. and the bi-prediction weight indices gbildxA,, gbildxA;, ghildxB,,
gbildxB,, gbildxB,.
2. The reference indices, refldxLXCol, with X being 0 or 1, and the bi-prediction weight index gbildxCol

for the temporal merging candidate Col are set equal to 0.

US 11,876,960 B2

29
TABLE 4-continued

The derivation process for temporal luma motion vector prediction as specified in in clause 8.4.2.11

is invoked with the luma location (xCb, yCb), the luma coding block width cbWidth, the luma coding
block height cbHeight and the variable refldxL.OCol as inputs, and the output being the availability

flag availableFlagl.0Col and the temporal motion vector mvLOCol. The variables availableFlagCol,
predFlagl.0Col and predFlagl.1Col are derived as follows:

availableFlagCol = availableFlagl.0Col (8-283)

predFlagl.0Col = availableFlagl.0Col (8-284)

predFlagl.1Col = 0 (8-285)
gbildxCol = 0

(8-xxx)

When tile_group_type is equal to B. the derivation process for temporal luma motion vector prediction
as specified in clause 8.4.2.11 is invoked with the luma location (xCb, yCb), the luma coding block
width cbWidth, the luma coding block height cbHeight and the variable refldxL.1 Col as inputs, and
the output being the availability flag availableFlagl.1Col and the temporal motion vector mvL1Col.
The variables availableFlagCol and predFlagl.1Col are derived as follows:

5.

10.

availableFlagCol = availableFlagl.0Col | availableFlagl.1Col (8-286)
predFlagl.1Col = availableFlagl.1Col (8-287)
TABLE 5
gbildxCol = gbildxCol (X-XXX)

The merging candidate list, mergeCandList, is constructed as follows:

i=0
if(availableFlagA,)
mergeCandList[i-+] = A;
if(availableFlagB,)
mergeCandList[i-+] = B;
if(availableFlagB,)
mergeCandList[i-+] =B, (8-288)
if(availableFlagAg)
mergeCandList[i-+] = Aq
if(availableFlagB,)
mergeCandList[i-+] = B,
if(availableFlagCol)
mergeCandList[i-+] = Col

The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of merging
candidates in the mergeCandList.

When numCurrMergeCand is less than (MaxNumMergeCand - 1) and NumHmvpCand is greater
than 0, the following applies:

- The derivation process of history-based merging candidates as specified in 8.4.2.6 is invoked with

mergeCandList, and numCurrMergeCand as inputs, and modified mergeCandList and
numCurrMergeCand as outputs.

- numOrigMergeCand is set equal to numCurrMergeCand.

The derivation process for pairwise average merging candidates specified in clause 8.4.2.4 is invoked
with mergeCandList, the reference indices reflxLON and refIdxLL1N, the prediction list utilization
flags predFlaglL.ON and predFlagL.1N, the motion vectors mLON and mvL1N of every candidate N

in mergeCandList, numCurMergeCand and numOrigMergeCand as inputs, and the output is assigned
to mergeCandList, numCurrMergeCand, the reference indices refldxLOavgCand; and
refldxL1avgCandg the prediction list utilization flags predFlagl.0avgCand; and predFlagl.1avgCand;
and the motion vectors mvLOavgCand and mxvLlavgCand, of every new candidate avgCand being
added into mergeCandList. The bj-prediction weight index gbildx of every new candidate avgCand,,
being added into mergeCandList is set equal to 0. The number of candidates being added.
numAvgMergeCand, is set equal to (numCurrMergeCand - numOrigMergeCand). When
numAvgMergeCand is greater than 0, k ranges from 0 to numAvgMergeCand - 1, inclusive.

The derivation process for zero motion vector merging candidates specified in clause 8.4.2.5 is
invoked with the mergeCandList, the reference indices refIdxLON and retIdxL1N, the prediction list
utilization flags predFlagl.ON and predFlagl.1N, the motion vectors mvLON and mvL1N of every
candidate N in mergeCandList and numCurrMergeCand as inputs, and the output is assigned to
mergeCandList, numCurrMergeCand, the reference indices refldxL0zeroCand,, and
retldxL1zeroCand,,, the prediction list utilization flags predFlagl.0zeroCand,, and
predFlagl.lzeroCand,, and the motion vectors mvLOzeroCand,, and mvlzeroCand,, of every new
candidate zeroCand,, being added into mergeCandList The bi-prediction weight index gbildx of every
new candidate zeroCand,, being added into mergeCandList is set equal to 0. The number of candidates
being added, numZeroMergeCand, is set equal to

(numCurrMergeCand — numOrigMergeCand — nuivgMergeCand L When numZeroMergeCand is
greater than 0, m ranges from 0 to numZeroMergeCand - 1. inclusive.

The variable mergeldxOffset is set equal to 0.

When mmvd_flag[xCb][yCb] is equal to 1, the variable mmvdCnt is set equal to 0 and The
following applies until mmvdCnt is greater than (merge Idx[xCb][yCb] — mergeldxOffset) or
mmvdCnt is equal to MaxNumMergeCand:

- When candidate mergeCandList[mmvdCnt] uses the current decoded picture as its reference

picture, mergeldxOffset is incremented by 1.

US 11,876,960 B2

31
TABLE 6

32

- The variable mmvdCnt is incremented by 1.

12. The following assignments are made with N being the candidate at position
merge_Idx[xCb][yCb] + mergeldxOffset in the merging candidate list mergeCandList
(N = mergeCandList[merge_Idx[XCb][yCb] + mergeldxOffset]) and X being replaced by 0 or 1:
refldxLX = refldxLXN (8-289)
predFlagL.X[0][0] = predFlagL XN (8-290)
mvLX[0][0][0]=mvLXN[0] (8-291)
mvLX[0][0][1]=mvLXN[1] (8-292)
gbildx = gbildxN (8-293)
13. When mmvd_flag[xCb][yCb] is equal to 1, the following applies:

- The derivation process for merge motion vector difference as specified in 8.4.2.7 is invoked with

the luma location (XCb, yCb), the luma motion vectors mvLO[0][0], mvL1[0][0], the
reference indices refldxL0, refldxL1 and the prediction list utilization flags predFlagl.O[0][0]
and predFlagl.1[0][0] as inputs, and the motion vector differences mMvdLO and mMvdL1 as

outputs

0 and 1 as follows:
mvIX[0][0][0] += mMvdLX[0]

mvLX[0][0][1] += mMvdLX[1] (8-295)

The motion vector difference mMvdLX is added to the merge motion vectors mvLX for X being

(8-294)

Tables 4 to 6 may indicate one procedure. The procedure
may be continuously performed in order of the tables. The
procedure may include a procedure (8.4.2.2) of deriving a
motion vector of a luma component for a merge mode.

Referring to Tables 4 to 6, gbildx may indicate a bi-
prediction weight index. gbildxCol may indicate a bi-pre-
diction weight index for a temporal merge candidate (e.g., a
temporal motion vector candidate within a merge candidate
list). The gbildxCol may be derived as O in a procedure (a
third step in 8.4.2.2) of deriving a motion vector of a luma
component for a merge mode. However, when the type of
slice or the type of tile group is B (a four step in 8.4.2.2), the
gbildxCol may be derived as gbildxCol. That is, a weight
index of a temporal motion vector candidate may be derived
as a weight index of a col block.

Meanwhile, according to another embodiment of this
document, when a motion vector candidate for a merge
mode of a sub-block unit is constructed, if a temporal motion
vector candidate uses bi-prediction, a weight index for a

25

30

35

weighted average may be induced or derived. In this case,
the merge mode of a sub-block unit may be called an affine
merge mode (of a sub-block unit). The temporal motion
vector candidate may indicate a sub-block-based temporal
motion vector candidate, and may be called an ShTMVP
candidate. That is, if an inter prediction type is bi-prediction,
weight index information for an SbTMVP candidate (or a
sub-block-based temporal motion vector candidate) within
an affine merge candidate list or a sub-block merge candi-
date list may be induced or derived.

For example, a weight index for a weighted average of
sub-block-based temporal motion vector candidates may
always be derived as 0. In this case, what the weight index
is 0 may mean that weights in respective reference directions
(i.e., the LO prediction direction and the L1 prediction
direction in bi-prediction) are the same. For example, in this
case, a procedure of deriving a motion vector and a reference
index in a sub-block merge mode or a procedure of deriving
a sub-block-based temporal merge candidate may be the
same as the following tables.

TABLE 7

8.4.4.2 Derivation process for motion vectors and reference indices in sabblock merge mode

Inputs to this process are:

- a luma location (XCb, yCb) of the top-left sample of the current luma coding block relative to the top-

left luma sample of the current picture.

- two variables cbWidth and cbHeight specifying the width and the height of the tuna coding block.

Outputs of this process are:

- the number of luma coding subblocks in horizontal direction numSbX and in vertical direction numSbY,
- the reference indices refldxLO and refldxL1.
- the prediction list utilization flag arrays predFlaglLO[xSbldx][ySbldx] and

predFlagl.1[xSbldx][ySbldx].

- the luma subblock motion vector arrays in 1/16 fractional-sample accuracy mvLO[xSbldx][ySbldx] and
mv[xSbIdx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0..numSbY - 1.

- the chroma subblock motion vector arrays in 1/32 fractional-sample accuracy mvCLO[xSbldx][ySbldx]
and mCL1[xSbIdx][ySbldx] with xSbldx = 0..nmSbX - 1, ySbldx = 0..numSbY - 1.
- the bi-prediction weight index gbildx.
The variables numSbX, numSbY and the subblock merging candidate list, subblockMergeCandList are derived
by the following ordered steps:
1. When sps_sbtmvp_enabled_flag is equal to 1, the following applies:

- The derivation process for merging candidates from neighbouring coding units as specified in
clause 8.4.2.3 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width cbWidth, the luma coding block height cbHeight and the uma coding block width
as inputs, and the output being the availability flags availableFlagA, availableFlagA |,
availableFlagB,, availableFlagB,, and availableFlagB,, the reference indices refldxLXA,,
reflxLXA |, refldxLXBy, refldxLXB,; and refldxL.XB,, the prediction list utilization flags
predFlagLXA,, predFlagl. XA, predFlagL.XB,, predFlagL. XB, and predFlagl. XB,, and the
motion vectors mvLXA,, mvLXA |, mvLXB;, mvLXB,; and mvLXB,, with X being O or 1.

- The derivation process for subblock-based temporal merging candidates as specified in
clause 8.4.4.3 is invoked with the huma location (xCb, yCb), the luma coding block width
cbWidth, the luma coding block height cbHeight, the availability flags availableFlagA,,
availableFlagA , availableFlagB,, availableFlagB |, the reference indices refldxLXA,,

US 11,876,960 B2

33 34
TABLE 7-continued

refldxLXA |, refldxLXB,, refldxLXB,, the prediction list utilization flags predFlagL.XA,,
predFlagLXA |, predFlagLXB,, predFlagLXB, and the motion vectors mvLXA,, VLXA,,
mvLXB,, mvLXB, as inputs and the output being the availability flag availableFlagSbCol. the
bi-prediction weight index gbildxSbCol, the number of luma coding subblocks in horizontal
direction numSbX and in vertical direction munSbY, the reference indices refldxI.XSbCol, the
luma motion vectors mvLXSbCol[xSbldx][ySbldx] and the prediction list utilization flags
predFlaglLXSbCol[xSbldx][ySbldx] with xSbldx = 0.numSbX - 1,
ySbldx = 0 .. numSbY - 1 and X being O or 1.
2. When sps_affine_enabled_flag is equal to 1, the sample locations (xXNbAy, yNbA,),
(xNbA,, yNbA,), (XNbA,, yNbA,), (xXNbB,,, yNbB,,) (xXNbB,, yNbB,) (xXNbB,, yNbB,),
(xNbB3, yNbB;), and the variables numSbX and numSbY are derived as follows:

(XAg, YAy) = (XCb - 1, yCb + cbHeight) (8-536)
(%A}, YA) = (xCb - 1, yCb + cbHeight — 1) (8-537)
(xA5, yA,)= (xCb -1, yCb) (8-538)
(xBg, ¥Bo) = (xCb — cbWidth , yCb - 1) (8-539)
(xB;, yB,) = (xCb - cbWidth - 1, yCb - 1)) (8-540)
(xB,, yB,)= (xCb-1,yCb-1) (8-541)
(xB3, yB3) = (xCb,yCb - 1) (8-542)
numSbX = cbWidth >> 2 (8-543)
TABLE 8
numSbY = cbHeight >> 2 (8-544)

3. When sps_affine_enabled_flag is equal to 1, the variable availableFlagA is set equal to FALSE and

the following applies for (XNbA,, yNbA,) from (xXNbA,, yNbA,) to (XNbA,, yNbA,):

- The availability derivation process for a block as specified is clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring luma location (xXNbA, yNb;)
as inputs, and the output is assigned to the block availability flag availableA,

- When availableA;, is equal to TRUE and MotionModelldc[xNbA;,][yNbA,,] is greater than O
and availableFlagA is equal to FALSE, the following applies:
- The variable availableFlagA is set equal to TRUE motionModelldcA is set equal to

MotionModelldc[xNbA,][yNbA, 1,(xNb, yNb) is set equal to

(CbPosX[xNbA;][yNbA;], CbPosY[xNbA;][yNbA,]), now is set equal to

CbWidth[xNbA;,][yNbA;,], nbH is set equal to CbHeight[xNbA;][yNbA;] numCpMv

is set equal to MotionModellde[xNbA;,][yNbA,] - 1, and gbildxA is set equal to

Gbildx[xNbA,;, J[yNbA,].

- For X being replaced by either 0 or 1, the following applies:

- When PredFlagl X[xNbA;,][yNbA;] is equal to 1, the derivation process for Luma affine
control point motion vectors from a neighbouring block as specified in clause 8.4.4.5 is
invoked with the luma coding block location (XCb, yCb), the luma coding block width
and height (cbWidth, cbHeight) the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH), and the
number of control point motion vectors numCpMv as input, the control point motion
vector predictor candidates cpMVLXA[cpldx | with cpldx = 0 .. numCpMv - 1 as

output.
- The following assignments are made:
predFlagLXA = PredFlagL. X[xNbA,][yNbA,] (8-545)
refldxLXA = RefldxLX[xKbAk][yNbAk] (8-546)

4. When sps_affine_enabled_flag is equal to 1 the variable availableFlagB is set equal to FALSE and
the following applies for (xXNbBy, yNbB;,) from (xXNbB, yNbB,,) to (xXNbB,, yNbB,)
- The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring uma location (xXNbBy, yNbB;)
as inputs, and the output is assigned to the block availability flag availableB;.
- When availableB,, is equal to TRUE and MotionModelldc[xNbB,][yNbB,] is greater than O
and availableFlagB is equal to FALSE, the following applies:
- The variable availableFlagB is set equal to TRUE, motionModelldeB is set equal to
MotionModellde[xNbB;,][yNbB;], (xNb,yNb) is set equal to
(CbPosX[xXNbAB][yNbB;,], CbPosY[xNbB,,][[yNbB;.) nbW is set equal to
ChWidth[xNbB;,][yNbB;,], nbH is set equal to CbHeight[xNbB;,][yNbB;] numCpMv
is set equal to MotionModellde[xNbB;,][yNbB;,] + 1 and gbildxB is set equal to
Gbildx[xNbB,,][yNbB,].
- For X being replaced by either 0 or 1. the following applies:
- When PredFlagl X[xNbB;][yNbB;,] is equal to TRUE, the denivation process for luma
affine control point motion vectors from a neighbouring block as specified in clause
8.4.4.5 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width and height (cbWidth, cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH), and the
number of control point motion vectors numCpMv as input, the control point motion
vector predictor candidates cpMVLXB[cpldx] with ¢pldx = 0 .. numCpMv - 1 as output.
- The following assignments are made:
predFlagl. XB = PredFlaglL. X[xNbB;][yYNbB;] (8-547)

US 11,876,960 B2
35
TABLE 9

refldxLXB = RefldxLX[xNbB,][yNbB,] (8-548)
5. When sps_affine_enabled flag is equal to 1, the derivation process for constructed affine control point
motion vector merging candidates as specified in clause 8.4.4.6 is invoked with the luma coding block
location (xCb, yCb), the luma coding block width and height (cbWidth, cbHeight), the availability
flags availableA,, availableA |, availableA,, availableB,, availableB,, availableB,, availableB; as
inputs. and the availability flags availableFlagConstK, the reference indices refldxLXConstK,
prediction list utilization flags predFlagl. XConstK, motion model indices motionModelIdeConstK
and cpMvpLXConstK[cpldx] with X being 0 or 1, K = 1..6, cpldx = 0..2 as outputs and
gbildxConstK is set equal to 0 with K = 1..6..
6. The initial subblock merging candidate list, subblockMergeCandList, is constructed as follows:
i=0
if(availableFlagSbCol)
subblockMergeCandList[i++] = SbCol
if(availableFlagA && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = A
if(availableFlagB && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = B
if(availableFlagConstl && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Constl (8-549)
if(availableFlagConst2 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const2
if(availableFlagConst3 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const3
if(availableFlagConst4 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const4
if(availableFlagConst5 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const5
if(avaslableFlagConst6 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const6
7. The variable sumCurrMergeCand and numOrigMergeCand are set equal to the number of merging
candidates in the subblockMergeCandList.
8. When numCurrMergeCand is less than MaxNumSubblockMergeCand, the following is repeated until
numCurrMrgeCand is equal to MaxNumSubblockMergeCand, with mvZero[0] and mvZero[1] both
being equal to 0:
The reference indices, the prediction list utilization flags and the motion vectors of zeroCand,, with
m equal to (numCurMergeCand — nmOrigMergeCand) are derived as follows:

refldxLOZeroCand,, = 0 (8-550)
predFlagl.0ZeroCand,, = 1 (8-551)
cpMvLOZeroCand,,[0] = mvZero (8-552)
cpMvLO0ZeroCand,,[|] = mvZero (8-553)
epMvL0ZeroCand,,[2] = mvZero (8-554)
refldxL1ZetoCand,, = (tile_group_type==B)?0:-1 (8-555)
predFlagl.1ZeroCand,, = (tile_group_type ==B) ?1:0 (8-556)
c¢pMvL1ZeroCand,,[0] = mvZero (8-557)
c¢pMvL1ZeroCand,,[1] = mvZero (8-558)
c¢pMvL1ZeroCand,,[2] = mvZero (8-559)
motionModelldcZeroCand,, = 1 (8-560)
gbildxZeroCand,, = 0 (8-561)

- The candidate zeroCand,, with m equal to (numCurtMergeCand — numOrigMergeCand) is added at
the end of subblockMergeCandList and numCurrMergeCand is incremented by 1 as follows:

TABLE 10

subblockMergeCandList[numCurrMergeCand++] = zeroCand,, (8-562)
The variables refldxL0, refldxL1, predFlagL.O[xSbldx][ySbldx], predFlagl.1[xSbldx][ySbldx],
mvLO[xSbldx][ySbldx], mvL1[xSbldx][ySbldx], mvCLO[xSbldx][ySbldx], and
mvCL1[xSbIdx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0.numSbY - 1 are derived as follows:
- If subblockMergeCandList[merge_subblock _Idx[xCb][yCb]] is equal to SbCol, the bi-prediction
weight index gbildx is set equal to O and the following applies with X being 0 or 1:

refldxL.X = refldxLXSbCol (8-563)
- For xSbldx = 0.numSbX - 1, ySbldx = 0..numSbY - L the following applies:

predFlagl. X[xSbldx] ySbldx] = predFlaglL. XSbColl xSbldx I ySbldx] (8-564)

mx[xSbIdx][ySbldx][0] = mvLXSbCol[xSbIdx][ySbldx][0] (8-565)

mvLX[xSbldx][ySbldx][1] = mvLXSbCol[xSbldx][ySbldx I|] (8-566)

- When predFlagL.X[xSbldx][ySbldx], is equal to 1 the derivation process for chroma motion
vectors in clause 8.4.2.13 is invoked with mvLX[xSbIdx][ySbldx] and refldxLX as inputs, and
the output being mvCLX[xSbIdx][ySbldx].

- The following assignment is made for x=%xCb..xCb +cb Width -1 and
y = yCb..yCb + cbHeight - 1:

MotionModellde[x][y] =0 (8-567)
- Otherwise (subblockMergeCandList[merge_subblock_Idx[xCb][yCb]] is not equal to SbCol), the

following applies with X being 0 or 1:

- The following assignments are made with N being the candidate at position
merge subblock _Idx[xCb][yCb] in the subblock merging candidate list subblockMergeCandList
(N = subblockMergeCandList[merge_subblock Idx[xCb][yCb]):

US 11,876,960 B2

37
TABLE 10-continued

38

refldxLX = refldxLXN

predFlaglX[0][0] = predFlagLXN
cpMVLX[0] = cpMVvLXN][0]
cpMVLX[1] = cpMVvLXN[1]
cpMVLX[2 | = cpMVLXN][2]
numCpMv = motionModelldxN + 1
gbildx = gbildxN

(8-568)
(8-569)
(8-570)
(8-571)
(8-572)
(8-573)
(8-574)

- For xSbldx = 0..numSbX - 1. ySbldx = 0.numSbY - 1, the following applies:

predFlagl. X[xSbldx][ySbldx] = predFlagLX[0][0]

(8-575)

- When predFlagL.X[0][0] is equal to 1, the derivation process for motion vector arrays from affine
control point motion vectors as specified in subclause 8.4.4.9 is invoked with the luma coding block
location (xCb, yCb) the luma coding block width cbWidth, the luma prediction block height
cbHeight, the number of control point motion vectors numCpMy, the control point motion vectors
cpMvLX][cpldx] with cpldx being 0..2, and the number of luma coding subblocks in horizontal
direction numSbX and in vertical direction numSbY as inputs, the luma subblock motion vector array
mvLX[xSbldx][ySbldx] and the chroma subblock motion vector array mvCLX[xSbldx][ySbldx]

with xSbldx = 0.numSbX - 1, ySbldx = 0 .. numSbY - 1 as outputs.

- The following assignment is made for =x==%xCb .xCb +cbWidth-1 and
y = yCb..yCb + cbHeight - 1:
MotionModellde[x][v] = numCpMv - 1 (8-576)
TABLE 11

8.4.4.3 Derivation process for subblock-based temporal merging candidates
Inputs to this process are:

- a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-

left luma sample of the current picture.

a variable cbWidth specifying the width of the current coding block in luma samples.

- a variable cbHeight specifying the height of the current coding block in luma samples.
- the availability flags availableFlagA,, availableFlagA |, availableFlagB,, and availableFlagB, of the

neighbouring coding units.

- the reference indices refldxLXA,, refdxLXA,, refldxLXB,, and refldxLXB, of the neighbouring coding

units.

the neighbouring coding units.

the prediction list utilization flags predFlagl.XA,, predFlagl. XA |, predFlagl. XB,, and predFlagl.XB, of

- the motion vectors in 1/16 fractional- sample accuracy mvLXA,, mvLXA |, mvLXB,, and mvLXB,, of the

neighbouring coding units
Outputs of chis process are:
- the availability flag availableFlagSbCol,

- the number of luma coding subblocks in horizontal direction numSbX and in vertical direction numSbY,

- the reference indices refldxLOSbCol and refldx1.1SbCol,

- the luma motion vectors in 1/16 fractional-sample accuracy mvLOSbCol[xSbldx][ySbldx] and
mvL1SbCol[xSbldx][ySbldx] with xSbIdx = 0..numSbX - 1 ySbldx = 0.numSbY - 1,

- the prediction list utilization flags

predFlagl.OSbCol[xSbldx][ySbldx]

and

predFlagl.1SbCol[xSbldx][ySbldx] with xSbIdx = 0.numSbX - 1, ySbldx = 0 .. mSb¥Y - 1,

- the bi-prediction weight index gbildxSbCol.
The gbildxSbCol is set equal to 0.

Tables 7 to 11 may indicate two types of procedures. The
procedures may be continuously performed in order of the
tables. The procedures may include a procedure (8.4.4.2) of
deriving a motion vector and a reference index in a sub-
block merge mode or a procedure (8.4.4.3) of deriving a
sub-block-based temporal merge candidate.

Referring to Tables 7 to 11, gbildx may indicate a
bi-prediction weight index. gbildxSbCol may indicate a
bi-prediction weight index for a sub-block-based temporal
merge candidate e.g., a sub-block-based temporal motion
vector candidate within a merge candidate list). In the
procedure (8.4.4.3) of deriving a sub-block-based temporal
merge candidate, the gbildxSbCol may be derived as 0. That
is, a weight index of a sub-block-based temporal motion
vector candidate may be derived as 0.

45

50

55

Alternatively, for example, a weight index for a weighted
average of sub-block-based temporal motion vector candi-
dates may be derived as a weight index of a temporal
(center) block. For example, the temporal center block may
indicate a col block or a sub-block or sample located at the
center of the col block. Specifically, the temporal center
block may indicate a sub-block or sample located at the
bottom-right side among center four sub-blocks or samples
of the col block. For example, in this case, the procedure of
deriving a motion vector and a reference index in a sub-
block merge mode, the procedure of deriving a sub-block-
based temporal merge candidate or the procedure of deriving
base motion information for a sub-block-based temporal
merge may be the same as the following tables.

TABLE 12

8.4.4.2 Derivation process for motion vectors and reference indices in subblock merge mode

inputs to this process are:

- aluma location (XCb, yCb) of the top-left sample of the current luma coding block relative to the top-

left luma sample of the current picture.
- two variables cbWidth and cbHeight specifying the width and the height of the luma coding block.

US 11,876,960 B2

39 40
TABLE 12-continued

Outputs of this process are:

the number of luma coding subblocks in horizontal direction numSbX and in vertical direction numSbY.
the reference indices retIdxL0 and refIdxL1.

the prediction list utilization flag arrays predFlaglO[xSbldx][ySbldx] and
predFlagl.1[xSbldx][ySbldx]

the luma subblock motion vector arrays in 1/16 fractional-sample accuracy mvLO[xSbIdx][ySbldx] and
mvL1[xSbIdx][ySbldx] with xSbIdx = 0.numSbX - 1, ySbldx = 0.. numSbY - 1,

the chroma subblock motion vector arrays in 1/32 fractional-sample accuracy mvCLO[xSbIdx][ySbldx]
and mvCL1 [xSbldx][ySbldx] with xSbldx = 0.numSbX - 1, ySbldx = 0.numSbY - 1,

the bi-prediction weight index gbildx.

The variables numSbX, numSbY and the subblock merging candidate list subblockMergeCandList are derived
by the following ordered steps:

1. When sps_sbtmvp_enabled_flag is equal to 1, the following applies:

- The derivation process for merging candidates from neighbouring coding units as specified in
clause 8.4.2.3 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width cbWidth, the luma coding block height cbHeight and the luma coding block width
as inputs, and the output being the availability flags availableFlagA,, availableFlagA |,
availableFlagB,, availableFlagB, and availableFlagB,, the reference indices refldxLXA,,
refdxLXA |, refldXLXB,, refldxLXB, and refldxL.XB,, the prediction list utilization flags
predFlagl. XAy, predFlaglL.X A, predFlagl. XBy, predFlaglL.XB,; and predFlagL.XB,, and the
motion vectors mvLXA,, mvLXA,;, mvLXB;, mvLXB,; and mvLXB,, with X being O or 1.

- The derivation process for subblock-based temporal merging candidates as specified in
clause 8.4.4.3 is invoked with the luma location (xCb, yCb), the luma coding block width
cbWidth, the luma coding block height cbHeight , the availability flags availableFlagA,,
availableFlagA |, availableFlagB,, availableFlagB,, the reference indices reflxLXA,,
refdxLXA |, refldxLXB,, refldxLXB,, the prediction list utilization flags predFlaglL.XA,,
predFlagl.XA |, predFlagl.XB,, predFlaglL.XB, and the motion vectors mvLX Ay, mvLXA |,
mvLXB,, mvLXB, as inputs and the output being the availability Flag availableFlagSbCol, the
bi-prediction weight index gbildxSbCol, the number of luma coding subblocks in horizontal
direction numsbX and in vertical direction numSbY, the reference indices refldxI.XSbCol, the
loma motion vectors mvLXSbCol[xSbldx][ySbldx] and the prediction list utilization flags
predFlaglLXSbCol[xSbldx][ySbldx] with xSbldx = 0.numSbX - 1.
ySbldx = 0 .. numSbY - 1 and X being O or 1.

2. When sps affine enabled flag is equal to 1, the sample locations (xXNbA,, yNbA,),
(xNbA,, yYNbA,), (xNbA,, yNbA,), (xNbB,, yNbB,), (xNbB,, yNbB,), (xNbB,, yNbB,),
(xNbB3, yNB;), and the variables numSbX and mmSbY are derived as follows:

3.

(xAg, VAo) = (XCb - 1, yCb + cbHeight) (8-536)
(%A}, YA) = (xCb - 1, yCb + cbHeight — 1) (8-537)
(xA5, yA,) = (xCb - 1, yCb) (8-538)
(xBg, ¥Bo) = (xCb — cbWidth , yCb - 1) (8-539)
(xB, yB;) = (xCb - cbWidth - 1, yCb - 1) (8-540)
(xB,, yB,)= (xCb-1,yCb-1) (8-541)
(xB3, yB3) = (xCb, yCb - 1) (8-542)
numSbX = cbWidth >> 2 (8-543)
TABLE 13
mmSbY = cbHeight >> 2 (8-544)

When sps_affine_enabled_flag is equal to 1, the variable availableFlagA is set equal to FALSE and

the following applies for (xXNbA;, yNbA;) from (XNbA,, yNbA,) to (xNbA,, yNbA,):

- The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process rbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (XCb, yCb) and the neighbouring luma location (XNbA,, yNbA,)
as inputs, and the output is assigned to the block availability flag availableA;.

- When availableA;, is equal to TRUE and MotionModelldc[xNbA;,][yNbA,,] is greater than O
and availableFlagA is equal to FALSE, the following applies:
- The variable availableFlagA is set equal to TRUE, motionModelldcA is set equal to

MotionModellde[xXNbA;][yNbA;], (xNb,yNb) is set equal to

(CbPosX[xNbA;][yYNbA;], CbPosY[xNbA;][yNbA,]), nbW is set equal to

CbWidth[xNbA,,][yNbA,], nbH is set equal to CbHeight[xNbA,][yNbA,], numCpMv

is set equal to MotionModellde[xNbA,,][yNbA;] - 1, and gbildxA is set equal to

Gbildx[xNbA,,][yNbA,].

- For X being replaced by either 0 or 1, the following applies:

- When PredFlagL.X[xNbA,][yNbA,,] is equal to 1, the derivation process for luma affine
control point motion vectors from a neighbouring block as specified in clause 8.4.4.5 is
invoked with the luma coding block location (XCb, yCb), the luma coding block width
and height (cbWidth, cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH), and the
number of control point motion vectors numCpMv as input, the control point motion
vector predictor candidates cpMVLXA[cpldx | with cpldx = 0 .. numCpMv - 1 as
output.

US 11,876,960 B2

41 42
TABLE 13-continued

- The following assignments are made:
predFlagl. XA = PredFlaglL. X[xNbA;,][yNbA;] (8-545)
refIdxLXA = RefldxLX[xNbAk] [yNbAk] (8-546)
4. When sps_affine_enabled_flag is equal to 1, the variable availableFlagB is set equal to FALSE and
the following applies for (XNbB,, yNbB,) from { xNbB,, yNbB,) to (xNbB,, yNbB,)
- The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (XCb, yCb) and the neighbouring luma location (xXNbB,, yNbB,)
as inputs, and the output is assigned to the block availability flag availableB;.
- When availableB; is equal to TRUE and MotionModellde [xNbBy,][yNbB;,] is greater than 0
and availableFlagB is equal to FALSE, the following applies:
- The variable availableFlagB is set equal to TRUE, motionModelldeB is set equal to
MotionModellde[xNbB;,][yNbB;], (xNb,yNb) is set equal to
(CbPosX[xNbAB][yNbB;], CbPosY[xNbB;,][yNbB;]) nbW is set equal to
CbWidth[xNbB;,][yNbB;,] nbH is set equal to CbHeigh[xNbB;,][yNbB;], numCpMv
is set equal to MotionModelldc[xXNbB,,][yNbB,] + 1, and gbildxB is set equal to
Gbildx[xNbBy,][yNbB; 1.
- For X being replaced by either O or 1 the following applies:
- When PredFlagl X[xNbB;][yNbB;,] is equal to TRUE, the derivation process for luma
affine control point motion vectors from a neighbouring block as specified in clause
8.4.4.5 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width and height (cbWidth, cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH), and the
number of control point motion vectors numCpMv as input, the control point motion
vector predictor candidates cpMvLXB[cpldx] with ¢pldx = 0 .. nmCpMv - 1 as output.
- The following assignments are made:

predFlagl. XB = PredFlaglL. X[xNbB;][yYNbB;] (8-547)
TABLE 14
refldxLXB = RefldxLX[xNbB,][yNbB,] (8-548)

5. When sps_affine_enabled flag is equal to 1, the derivation process for constructed affine control point
motion vector merging candidates as specified in clause 8.4.4.6 is invoked with the Ima coding block
location (xCb, yCb), the luma coding block width and height (cbWidth, cbHeight), the availability
flags availableA,, availableA |, availableA,, availableB,, availableB,, availableB,, availableB; as
inputs, and the availability flags availableFlagConstK the reference indices refdxLXConstK,
prediction list utilization flags predFlagl. XConstk, motion model indices motionModelIdcConstK
and cpMvpLXCoustK[cpldx] with X being 0 or 1, K = 1..6, cpldx = 0..2 as outputs and
gbildxConstK is set equal to 0 with K = 1..6..

6. The initial subblock merging candidate list, subblockMergeCandList, is constructed as follows:

i=0

if(availableFlagSbCol)
subblockMergeCandList[i++] = SbCol

if(availableFlagA && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = A

if(availableFlagB && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = B

if(availableFlagConstl && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Constl (8-549)

if(availableFlagConst2 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const2

if(availableFlagConst3 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const3

if(availableFlagConst4 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const4

if(availableFlagConst5 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const5

if(avaslableFlagConst6 && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = Const6

7. The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of merging
candidates in the subblockMergeCandList.

8. When numCurrMergeCand is less than MaxNumSubblockMergeCand, the following is repeated until
numCurrMrgeCand as equal to MaxNumSubblockMergeCand, with mvZero[0] and mvZero[1] both
being equal to 0:

- The reference indices, the prediction list utilization flags and the motion vectors of zeroCand,, with

m equal to (numCurrMergeCand — numOrigMergeCand) are derived as follows:

refldxLOZeroCand,, = 0 (8-550)
predFlagl.0ZeroCand,, = 1 (8-551)
cpMvLOZeroCand,,[0] = mvZero (8-552)
cpMvLO0ZeroCand,,[|] = mvZero (8-553)
epMvL0ZeroCand,,[2] = mvZero (8-554)
refldxL1ZetoCand,, = (tile_group_type==B)?0:-1 (8-555)
predFlagl.1ZeroCand,, = (tile_group_type ==B) ?1:0 (8-556)
c¢pMvL1ZeroCand,,[0] = mvZero (8-557)
c¢pMvL1ZeroCand,,[1] = mvZero (8-558)
c¢pMvL1ZeroCand,,[2] = mvZero (8-559)

US 11,876,960 B2

43
TABLE 14-continued

motionModelldeZeroCand,, = 1 (8-560)
gbildxZeroCand,, = 0 (8-561)
- The candidate zeroCand,, with m equal to (numCurrMergeCand - numOrigMergeCand) is added at
the end of subblockMergeCandList and numCurrMergeCand is incremented by 1 as follows:

TABLE 15

subblockMergeCandList[numCurrMergeCand++] = zeroCand,, (8-562)
The variables refldxL0, refldxL1, predFlagl.O[xSbIdx][ySbldx], predFlagl.l [xSbldx][ySbIdx],
mvLO[xSbldx][ySbldx], mvL1[xSbldx][ySbldx], mvCLO[xSbldx][ySbldx], and
mvCL1[xSbIdx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0.numSbY - 1 are derived as follows:
- If subblockMergeCandList[merge_subblock _Idx[xCb][yCb]] is equal to SbCol, the bi-prediction
weight index gbildx is set equal to O and the following applies with X being 0 or 1:

refldxL.X = refldxLXSbCol (8-563)
- For xSbldx = 0.numSbX - 1, ySbldx = 0..numSbY - L the following applies:

predFlagl. X[xSbldx] ySbldx] = predFlagl. XSbCol[xSbIldx][ySbldx] (8-564)

mx[xSbIdx][ySbldx][0] = mvLXSbCol[xSbIdx][ySbldx][0] (8-565)

mvLX[xSbldx][ySbIdx][1] = mvLXSbCol[xSbldx][ySbldx][1] (8-566)

- When predFlagL.X[xSbldx][ySbldx], is equal to 1 the derivation process for chroma motion
vectors in clause 8.4.2.13 is invoked with mvLX[xSbIdx][ySbldx] and refldxLX as inputs, and
the output being mvCLX[xSbIdx][ySbldx].

- The following assignment is made for x=%xCb..xCb +cb Width -1 and
y = yCb..yCb + cbHeight - 1:

MotionModellde[x][y] =0 (8-567)
- Otherwise (subblockMergeCandList[merge_subblock_Idx[xCb][yCb]] is not equal to SbCol), the

following applies with X being 0 or 1:

- The following assignments are made with N being the candidate at position
merge subblock _Idx[xCb][yCb] in the subblock merging candidate list subblockMergeCandList
(N = subblockMergeCandList[merge_subblock Idx[xCb][yCb]):

refldxLX = refldxLXN (8-568)
predFlaglX[0][0] = predFlagLXN (8-569)
cpMVLX[0] = ¢pMvLXN[0] (8-570)
cpMVLX[1]=cpMvLXN[1] (8-571)
cpMVLX[2] = ¢pMVLXN][2] (8-572)
numCpMv = motionModelldxN + 1 (8-573)
gbildx = gbildxN (8-574)
- For xSbldx = 0..numSbX - 1. ySbldx = 0.numSbY - 1, the following applies:
predFlagl. X[xSbldx][ySbldx] = predFlagLX[0][0] (8-575)

- When predFlagL.X[0][0] is equal to 1, the derivation process for motion vector arrays from affine
control point motion vectors as specified in subclause 8.4.4.9 is invoked with the luma coding block
location (xCb, yCb) the luma coding block width cbWidth, the luma prediction block height
cbHeight, the number of control point motion vectors numCpMy, the control point motion vectors
cpMvLX][cpldx] with cpldx being 0..2, and the number of luma coding subblocks in horizontal
direction numSbX and in vertical direction numSbY as inputs, the luma subblock motion vector array
mvLX[xSbldx][ySbldx] and the chroma subblock motion vector array mvCLX[xSbldx][ySbldx]
with xSbldx = 0.numSbX - 1, ySbldx = 0 .. numSbY - 1 as outputs.
The following assignment is made for =x=3%xCb.xCb +cbWidth-1 and
y = yCb..yCb + cbHeight - 1:

MotionModellde[x][v] = numCpMv - 1 (8-576)

TABLE 16

8.4.4.3 Derivation process for subblock-based temporal merging candidates

Inputs to this process are.

- a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-
left luma sample of the current picture.

- a variable cbWidth specifying the width of the current coding block in luma samples.

a variable cbHeight specifying the height of the current coding block in luma samples.

the availability flags availableFlagA,, availableFlagA |, availableFlagB,, and availableFlagB, of the

neighbouring coding units.

- the reference indices refldxLXA,, refldxLXA |, refldXLXB,,, and refldxLXB, of the neighbouring coding

units.

the prediction list utilization flags predFlagl.XA,, predFlagl. XA |, predFlagl. XB,, and predFlagl.XB, of

the neighbouring coding units.

- the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, and mvLXB,; of the
neighbouring coding units.

Outputs of this process are;

- the availability flag availableFlagSbCol.

- the number of luma coding subblocks in horizontal direction numSbX and is vertical direction mmSbY,

- the reference indices refldxLOSbCol and refdxL1SbCol.

- the luma motion vectors in 1/16 fractional-sample accuracy mvLOSbCol[xSbldx][ySbldx] and

mvL1SbCol[xSbldx][ySbldx] with xSbIdx = 0..numSbx - 1, ySbldx = 0 .. numSbY - 1,

thepredictionlist utilizationRagspredF lagLOSbCol[xSbIdx]{ ySbldx Jand

predFlagl.1SbCol[xSblx][ySbldx] with xSbldx = 0. numSbX - 1, ySbldx = 0 .. sumSb¥ - 1,

- the bi-prediction weight index gbildxSbCol.

US 11,876,960 B2

45 46
TABLE 16-continued

The availability flag availableFlagSbCol is derived as follows

If one or more of the following conditions is true, availableFlagSbCol is set equal to 0.

- tile_group_temporal_mvp_enable_flag is equal to 0.

- sps_sbrmvp_flag is equal to 0.

- cbWidth is less than 8.

- cbHeight is less than 8.

Otherwise, the following ordered steps apply

1. The location (xCtb, yCtb) of the top-left sample of the luma coding tree block that contains the

current coding block and the location (xCtr, yCtr) of the below-right center sample of the current
luma coding block are derived as follows:

xCtb = (xCb >> CtuLog2Size) << CtuLog2Size (8-577)
yCtb = (yCb >> CtuLog2Size) << CtuLog2Size (8-578)
xCtr = xCb + (cbWidth / 2) (8-579)
yCtr = yCb + (cbHeight / 2) (8-580)

2. The luma location (xColCtrCb, yColCtrCb) is set equal to the top-left sample of rhe collocated luma

coding block covering the location given by (xCtr, yCtr) inside ColPic relative to the top-left luma
sample of the collocated picture specified by ColPic.

3. The derivation process for subblock-based temporal merging base motion data as specified in
clause 8.4.4.4 is invoked with the location (XCtb, yCtb) the location (xColCtrCb, yColCtrCb).

TABLE 17

the availability flags availableFlagA,, availableFlagA,, availableFlagB, and availableFlagB,, and
the prediction list utilization flags predFlagl. XA, predFlagLXA |, predFlagl. XB,, and
predFlaglL.XB,, and the reference indices refldxLXA,, refldxLXA |, refldxLXB, and refldxLXB,,
and the motion vectors mvLXA, mvLXA,, mvLXB, and mvLXB,, with X being 0 and 1 as inputs
and the motion vectors ctrMvLX, the prediction list utilization flags ctrPredFlagl. X and the reference
indices ctrRefldxLX of the collocated block, with X being 0 and 1, the bi-prediction weight index
gbildxSbCol, and the temporal motion vector tempMV as outputs.

4. The variable availableFlagSbCol is derived as follows:
- If both ctrPredFlagl.0 and ctrPredFlagl are equal to 0, availableFlagSbCol is set equal to 0.
- Otherwise, availableFlagSbCol is set equal to 1.

When availableFlagSbCol is equal to 1, the following applies:

The variables numSX, numSbY, sbWidth, sbHeight and refldxLXSbCol are derived as follows:

numSbx = cbWidth >> 3 (8-581)
numSbY = cbHeight >> 3 (8-582)
sbWidth = cbWidth / numSbX (8-583)
sbHeight = cbHeight / numSbY (8-584)
refIdxLXSbCol = 0 (8-585)

For xSbldx = 0.numSbX - 1 and ySbldx = 0 .. numSbY - 1, the motion vectors

mvLXSbCol[xSbIdx][ySbldx] and prediction list utilization flags

predFlaglL. XSbCol[xSbldx][ySbldx] are derived as follows:

-- The luma location (xSb, ySb) specifying the top-left sample of the current coding subblock relative
to the top-left luma sample of the current picture is derived as follows:

xSb = xCb — xSbldx * sbWidth (8-586)
ySb = yCb — ySbldx * sbHeight (8-587)
-- The location (xColSb, yColSb) of the collocated subblock inside ColPic is derived as follows.

xColSb = Clip3(xCtb,

Min(CurPicWidthInSamplesY - 1, xCtb + (1 << CtbLog2SizeY) + 3),(8-58
8)

xSb + (rempMv[0] >>4))
yColSb = Clip3(yCtb,

Min(CurPicHeightInSamplesY — 1, yCtb + (1 << CtbLog28SizeY) - 1) (8-5
89)

ySb + (tempMv[i] >>4))

-- The variable currCb specifies the luma coding block covering the current coding subblock inside the
current picture.

-- The variable colCb specifies the luma coding block covering the modified location given by
((xColSb >> 3) << 3, (yColSb >> 3) << 3) inside the ColPic.

-- The luma location (XColCb, yColCb) is set equal to the top-left sample of the collocated luma
coding block specified by colCb relative to the top-left luma sample of the collocated picture
specified by ColPic.

-- The derivation process for collocated motion vectors as specified in clause 8.4.2.12 is invoked with
currCb, colCb, (xColCb, yColCb), refldxL0 set equal to O and sbFlag set equal to 1 as inputs and
the output being assigned to the motion vector of the subblock mvLOSbCol[xSbldx][ySbldx] and
availableFlagl.0SbCol.

US 11,876,960 B2

47 48
TABLE 18

-- The derivation process for collocated motion vectors as specified in clause 8.4.2.12 is invoked with
currCb, colCb, (xColCb, yColCb), refldxL1 set equal to O and sbFlag set equal to 1 as inputs and
the output being assigned to the motion vector of the subblock mvL1SbCol[xSbldx][ySbIdx] and
availableFlagl.1SbCol.

-- When availableFlagl.0SbCol and availableFlagl.1SbCol are both equal to 0, the following applies
for X being 0 and 1:

mvLXSbCol[xSbldx][ySbldx] = ctrtMvLX (8-590)
predFlagl. XSbCol[xSbldx][ySbldx] = ctrPredFlagl. X (8-591)
8.4.4.4 Derivation process for subblock-based temporal merging base motion data
Inputs to this process are:
-- the location (xCtb, yCtb) of the top-left sample of the luma coding tree block that contains the current
coding block.
-- the location (xColCrCb, yColCtrCb) of the top-left sample of the collocated luma coding block that

covers the below-right center sample.

-- the availability flags availableFlagA,, availableFlagA |, availableFlagB,, and availableFlagB, of the
neighbouring coding units.

-- the reference indices refldxLX Ay, refldxLXA |, refldxLXB,, and refldxLXB,; of the neighbouring coding
units,

-- the prediction list utilization flags predFlagl. XA, predFlagl. XA, predFlagl. XB,, and predFlagl. XB, of

the neighbouring coding units,

-~ the motion vectors in %1s fractional-sample accuracy mvLXA,, mvLXA |, mvLXB,, and mLXB, of the

neighbouring coding units.

Outputs of this process are:

-- the motion vectors ctrMvLO and ctrMvL1.

-- the prediction list utilization flags ctrPredFlagl.0 and ctrPredFlagl.1.

-- the reference indices ctrRefdxLO and ctrRefdxL1.

-- the temporal motion vector tempMV.

-- the bi-prediction weight index gbildxSbCol.

The variable tempMv is set as follows:
tempMv[0] =0 (8-592)
tempMv[1]=0 (8-593)

The variable currPic specifies the current picture.

The variable availableFlagN is set equal to FALSE, and the following applies:

-- When availableFlagA is equal to 1, the following applies:

-- availableFlagN is set equal to TRUE.

-- refldxLXN is set equal to refldxLXA, and mvLXN is set equal to mLXA,, for X being replaced by
0 and 1.

-- When availableFlagN is equal to FALSE and availableFlagl.B, is equal to 1, the following applies:

-- availableFlagN is set equal to TRUE.

-- refldxLXN is set equal to refldxLXB, and mvLXN is set equal to mvLXB,, for X being replaced by
0 and 1.

TABLE 19

-- When availableFlagN is equal to FALSE and availableFlagB,, is equal to 1, the following applies:
-- availableFlagN is set equal to TRUE.
-- refldxLXN is set equal to refldxLXB; and mvLXN is set equal to mvLXB,, for X being replaced by
0 and 1.
-- When availableFlagN is equal to FALSE and availableFlagA,is equal to 1, the following applies:
-- availableFlagN is set equal to TRUE.
-- refldxLXN is set equal to refldxLXA; and mvLXN is set equal to mvLXA,, for X being replaced by
0 and 1.
When availableFlagN is equal to TRUE, the following applies:
-- If all of the following conditions are true, tempMV is set equal to mvLIN:
- predFlagl.IN is equal to 1.
- DifPicOrderCn(ColPic, RefPicList[refIdxLIN]) is equal to O,
- DiffPicOrdermt(aPic, currPic) is less than or equal to 0 for every picture aPic in every reference
picture list of the current tile group.
- tile_group_type is equal to B.
- collocated_from_l0_flag is equal to 0.
-- Otherwise if all of the following conditions are true, tempMV is set equal. to mvLON:
- predFlagl.ON is equal to 1.
- DiffPicOrderCnt(ColPic, RefPicListO[refldxLON]) is equal to 0.
The location (xColCb, yColCb) of the collocated block inssde ColPic is derived as follows.
xColCb = Clip3(xCtb,
Min(CurPicWidthInSamplesY - 1, xCtb + (1 << CtbLog2SizeY) + 3) (8-594)
XColCtCh + (tempMv[0] >>4))
yColCb = Clip3(yCtb,
Min(CurrPicHeightInSamplesY - 1, yCtb + (1 << CtbLog2SizeY) — 1), (8-595)
yColCtrCb + (tempMv[1] >>4))
The array colPredMode is set equal to the prediction mode array CuPredMode of the collocated picture
specified by ColPic.

US 11,876,960 B2

49
TABLE 19-continued

50

The motion vectors ¢tMvLO and ctrMvL1, the prediction list utilization flags ctrPredFlagl.0 and
ctrPredFlagl.l, and the reference indices ctrRefdxLO and ctrRefdxL1 are derived as follows:
-- If colPredMode[xColCb][yColCb] is equal to MODE_INTER the following applies:
-~ The variable currCb specifies the luma coding block covering (xCtrCb, yCtrCb) inside the current

picture.

- The variable colCb specifies the luma coding block covering the modified location given by
((xColCb >> 3) << 3, (yColCb >> 3) << 3) inside the ColPic.

- The luma location (xColCb, yColCb) is set equal to the top-left sample of the collocated luma
coding block specified by colCb relative to the top-left luma sample of the collocated picture

specified by ColPic.
- The gbildxSbCol is set equal to gbildxcolCb.

- The derivation process for temporal motion vector prediction in subclause 8.4.2.12 is invoked with
currCh, colCb, (xColCb, yColCb), centerRefIdxL0, and sbFlag set equal to 1 as inputs and the

output being assigned to ctrMvLO and ctrPredFlagl.0.

- The derivation process for temporal motion vector prediction in subclause 8.4.2.12 is invoked with
currCh, colCb, (xColCb, yColCb), centerRefldxL1, and sbFlag set equal to 1 as inputs and the

output being assigned to ctrMvL1 and ctrPredFlagl.1.

TABLE 20
-- Otherwise, the following applies:
ctrPredFlagl0 = 0 (8-596)
ctrPredFlagl.l =0 (8-597)

Tables 12 to 20 may indicate three types of procedures.
The procedures may be continuously performed in order of
the tables. The procedures may include the procedure
(8.4.4.2) of deriving a motion vector and a reference index
in a sub-block merge mode, the procedure (8.4.4.3) of
deriving a sub-block-based temporal merge candidate or a
procedure (8.4.4.4) of deriving base motion information for
a sub-block-based temporal merge.

Referring to Tables 12 to 20, gbildx may indicate a
bi-prediction weight index. gbildxSbCol may indicate a
bi-prediction weight index for a sub-block-based temporal
merge candidate (e.g., a sub-block-based temporal motion
vector candidate within a merge candidate list). In the
procedure (8.4.4.4) of deriving base motion information for
a sub-block-based temporal merge, the gbildxShCol may be
derived as gbildxcolCb. That is, a weight index of a sub-
block-based temporal motion vector candidate may be
derived as a temporal center block. For example, the tem-

20

poral center block may indicate a col block or a sub-block
or sample located at the center of the col bloc. Specifically,
the temporal center block may indicate a sub-block or
sample located at the bottom-right side among center four
sub-blocks or samples of the col block.

Alternatively, for example, a weight index for a weighted
average of sub-block-based temporal motion vector candi-
dates may be derived as a weight index of each sub-block
unit. When a sub-block is not available, a weight index for
a weighted average of sub-block-based temporal motion
vector candidates may be derived as a weight index of a
temporal (center) block. For example, the temporal center
block may indicate a col block or a sub-block or sample
located at the center of the col bloc. Specifically, the
temporal center block may indicate a sub-block or sample
located at the bottom-right side among center four sub-
blocks or samples of the col block. For example, in this case,
the procedure of deriving a motion vector and a reference
index in a sub-block merge mode, the procedure of deriving
a sub-block-based temporal merge candidate or the proce-
dure of deriving base motion information for a sub-block-
based temporal merge may be the same as the following
tables.

TABLE 21

8.4.4.2 Derivation process for motion vectors and reference indices in subblock merge mode

Inputs in this process are:

-- a luma location (XCb, yCb) of the top-left sample of the current luma coding block relative to the top-
left luma sample of the current picture.
-- two variables cbWidth and cbHeight specifying the width and the height of the luma coding block.

Outputs of this process are:

-- the number of luma coding subblocks in horizontal direction numSbX and in vertical direction numSbY.

-- the reference indices refldxLO and refldxL1.

-- the prediction list utilization flag arrays predFlagl.O[xSbIdx][ySbldx] and
predFlagl.1[xSbldx][ySbldx].

-- the luma subblock motion vector arrays in %is fractional-sample accuracy mvLO[xSbIdx][ySbldx] and
mvL1[xSbldx][ySbldx] with xSbldx = 0.numSbX - 1, ySbldx = 0..numSbY - 1.

-~ the chroma subblock motion vector arrays in %42 fractional-sample accuracy mvCLO[xSbldx][ySbldx]
and mvCL1[xSbldx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0.numSb¥ - 1,

- the bi-prediction weight index gbildx.

The
by the following ordered steps:

variables sumSbX, numSbY and the subblock merging candidate list, subblockMergeCandList are derived

1. When sps_sbtmvp_enabled_flag is equal to 1, the following applies:

- The derivation process for merging candidates from neighbouring coding units as specified in
clause 8.4.2.3 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width cbWidth, the luma coding block height cbHeight and the luma coding block width
as inputs. and the output being the availability flags availableFlagA,, availableFlagA |,
availableFlagB,, availableFlagB,, and availableFlagB,, the reference indices refldxLXA,,
refIdxLXA |, refldxLXB,, refldxLXB, and refldxLXB,, the prediction list utilization flags
predFlagl. XAy, predFlagL.XA, predFlagl. XBy, predFlagl.XB,; and predFlaglL.XB,, and the
motion vectors mvLXA,, mvLXA,;, mvLXB,, mvLXB,; and mvLXB,, with X being O or 1.

US 11,876,960 B2
51 52
TABLE 21-continued

- The derivation process for subblock-based temporal merging candidates as specified in
clause 8.4.4.3 is invoked with the luma location (xCb, yCb), the luma coding block width
cbWidth. the luma coding block height cbHeight , the availability flags availableFlagA,,
availableFlagA |, availableFlagB,, availableFlagB, the reference indices refldxLXA,,
refldxLX |, refldxLXB,, refldxLXB, the prediction list utilization flags predFlaglL.XA,,
predFlagl.X,, predFlagl. XB,, predFlagl. XB,, and the motion vectors mvLXAy, mvLXA |,
mLXB,, mvLXB,; as inputs and the output being the availability flag availableFlagSbCol, the
number of luma coding subblocks in horizontal direction numSbX and in vertical direction
numSbY, the reference indices refldxLXSbCol, the bi-prediction weight index
gbildxSbCol[xSbldx][ySblIdx] the luma motion vectors mvLXSbCol[xSbldx][ySbldx] and
the prediction list utilization flags predFlagL.XSbCol[xSbIdx][ySbldx] with
xSbldx = 0.numSbX - 1, ySbldx = 0.numSbY - 1 and X being 0 or 1.

2. When sps_affine_enabled_flag is equal to 1, the sample locations (XNbA,, yNbA,),
(xXNbA |, yYNbA |), (xXNbA,, yNbA,), (xNbB,, yNbBy), (xNbB,, yNbB,), (xNbB,, yNbB,)
(XNbB,, yNbB;) and the variables numSbX and numSbY are derived as follows:

(xAg, VAo) = (XCb - 1, yCb + cbHeight) (8-536)
(%A}, YA) = (xCb - 1, yCb + cbHeight — 1) (8-537)
(xA5, yA,) = (xCb - 1, yCb) (8-538)
(xBg, ¥Bo) = (xCb - cbWidth, yCb - 1) (8-539)
(xB;, yB,) = (xCb - cbWidth - 1, yCb - 1) (8-540)
(xBy, yBy,)= x®Cb-1,yCb-1) (8-541)
(xB3, yB3) = (xCb, yCb - 1) (8-542)
numSbX = cbWidth >> 2 (8-543)
TABLE 22
numSbY = cbHeight >> 2 (8-544)

When sps_affine_enabled_flag is equal to 1 the variable availableFlagA is set equal to FALSE and

the following applies for (XNbA;, yNbA;) from (xNbA,, yNbA,) to (xNbA;, yNbA,)

-- The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring luma location (xNbA;, yNbA;)
as inputs, and the output is assigned to the block availability flag availableA;.

-- When availableA, is equal to TRUE and MotionModelldc[xXNbA,][yNbA,] is greater than 0
and availableFlagA is equal to FALSE, the following applies:
-~ The variable availableFlagA is set equal to TRUE, MotionModelldcA is set equal to

MotionModelldc[xNbA;][yYNbA;], (xNb, yNb) is set equal to

(CbPosX[xNbA;][yNbA;]. CbPosY[xNbA;][yNbA,]), nbW is set equal to

CbWidth[xNbA;,][yNbA;,]. nbH is set equal to CbHeight[xXNbA;,][yNbA;,], numCpMv

is set equal to MotionModellde[xNbA;,][yYNbA;] + 1, and gbildxA is set equal to

Gbildx[xNbA,][yNbA,].

- For X being replaced by either 0 or 1, the following applies:

-- When PredFlagL.X[xNbA;][yNbA;,] is equal to 1, the derivation process for luma affine
control point motion vectors from a neighbouring block as specified in clause 8.4.4.5 is
invoked with the luma coding block location (XCb, yCb). the luma coding block width
and height (cbWidth, cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH) and the
number of control point motion vectors numCpMv as input. the control point motion
vector predictor candidates cpMvLXA[cpldx] with cpldx = 0 .. numCpMv - 1 as

output.
-- The following assignments are made:
predFlaglL XA = PredFlagL.X[xNbA;,][yNbA;] (8-545)
refldxLXA = RefldxLX[xNbAk][yNbAk] (8-546)

When sps_affine_enabled_flag is equal to 1, the variable availableFlagB is set equal to FALSE and

the following applies for (xXNbBy, yNbB;,) from (xNbBy, yNbB,) to (xNbB,, yNbB,):
The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB):
Neighbouring blocks availability checking process tbd] is invoked with the current luma location
(xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring luma location (xNbB;, yNbB;)
as inputs, and the output is assigned to the block availability flag availableB;.

-- When availableBy is equal to TRUE and MotionModelldc[xNbBy,][yNbB;,] is greater than 0
and availableFlagB is equal to FALSE, the following applies:
- The variable availableFlagB is set equal to TRUE, motionModelIdcB is set equal to

MotionModellde[xNbB;,][yNbB;,], (xNb, yNb) is set equal to

(CbPosX[xXNbAB][yNbB,,], CbPosY[xNbB,][yNbB,]). nbW is set equal to

CbWidth[xNbB;,][yNbB;,]. nbH is set equal to CbHeight[xNbB;,][yNbB;,]. numCpMv

is set equal to MotionModellde[xNbB;,][yNbB;] — 1. and gbildxB is set equal to

Gbildx[xNbB;,][yNbB; 1.

- For X being replaced by either 0 or 1, the following applies:

-- When PredFlagL.X[xNbB;,][yNbB;,] is equal to TRUE, the derivation process for luma
affine control point motion vectors from a neighbouring block as specified in clause
8.4.4.5 is invoked with the luma coding block location (xCb, yCb), the luma coding
block width and height (cbWidth, cbHeight), the neighbouring luma coding block location
(xNb, yNb), the neighbouring luma coding block width and height (nbW, nbH), and the
number of control point motion vectors numCpMv as input, the control point motion
vector predictor candidates cpMvLXB[cpldx] with ¢pldx = 0 .. numCpMv — 1 as output.

US 11,876,960 B2
53
TABLE 22-continued

-- The following assignments are made:

predFlagl.XB = PredFlagLX[xNbB;,][yNbB;] (8-547)
TABLE 23
refldxLXB = RefldxLX[xNbB,][yNbB;,] (8-543)
5. When sps_affine_enabled_flag is equal to 1, the derivation process for constructed affine control point

motion vector merging candidates as specified in clause 8.4.4.6 is invoked with the luma coding block

location (xCb, yCb), the luma coding block width and height (cbWidth, cbHeight) the availability
flags availableA, availableA |, availableA,, availableB,, availableB,, availableB,, availableB; as
inputs, and the availability flags availableFlagConstK, the reference indices refldxLXConstK,
prediction list utilization flags predFlagl. XConstK. motion model indices motionModelIdeConstK
and cpMvpLXConstK[cpldx] with X being 0 or 1, K = 1..6. cpldx = 0..2 as outputs and
gbildxConstk is set equal to 0 with K = 1..6..
6. The initial subblock merging candidate list, subblockMergeCandList. is constructed as follows:
i=0
if{ availableFlagSbCol)
subblockMergeCandList[i++] = SbCol
if(availableFlagA && i < MaxNumSubblockMergeCand
subblockMergeCandList[i++] = A
if{ availableFlagB && i < MaxNumSubblockMergeCand)
subblockMergeCandList[i++] = B
if(availableFlagConstl && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = Constl (8
if{ availableFlagConst2 && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = Const2
if{ availableFlagConst3 && j < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = Const3
if{ availableFlagConst4 && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = Const4
if{ availableFlagConst5 && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] = Const5
if{ availableFlagConst6 && i < MaxNumsSubblockMergeCand)
subblockMergeCandList[i++] =Const6

7. The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of merging
candidates in the subblockMergeCandList.

8. When numCurrMergeCand is less than MaxNumSubblockMergeCand, the following is repeated until
numCurrMergeCand is equal to MaxNumSubblockMergeCand, with mvZero[0] and mvZero[1] both
being equal to 0:

-- The reference indices, the prediction list utilization flags and the motion vectors of zeroCand,, with
m equal to (numCurrMergeCand — numOrigMergeCand) are derived as follows:

-549)

refldxL0ZeroCand,, = 0 (8-550)
predFlagl.0ZeroCand,, = 1 (8-551)
¢pMVLO0ZeroCand,,[0] = mvZero (8-552)
cpMvLO0ZeroCand,,[1] = mZero (8-553)
cpMVLO0ZeroCand,,[2] = mvZero (8-554)
refldxL.1ZeroCand,, = (tile_group_type==B)2 0 : -1 (8-555)
predFlagl.1ZeroCand,, = (tile_group_type==B)?1:0 (8-556)
c¢pMvL1ZeroCand,,[0] = mvZero (8-557)
cpMvL1ZeroCand,,[1]= mvZero (8-558)
c¢pMvL1ZeroCand,,[2 | = mvZero (8-559)
motionModellde¢ZeroCand,, = 1 (8-560)
gbildxZeroCand,, = 0 (8-561)

-- The candidate zeroCand,, within equal to (numCurMergeCand — numOrigMergeCand) is added at
the end of subblockMergeCandList and numCurrMergeCand is incremented by 1 as follows:

TABLE 24

subblockMergeCandList[numCurrMergeCand+-] = zeroCand,,
The variables refldxL0, refldxL1, predFlagL.O[xSbIdx][ySbldx], predFlagl.1[xSbldx][ySbldx]
mvLO[xSbIdx][ySbldx], mvL1[xSbldx][ySbldx]. mvCLO[xSbldx][ySbldx] and
mvCL1[xSbIdx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0.numSb¥Y - 1 are derived as follows:
-- If subblockMergeCandList[merge_subblock_idx[xCb][yCb]] is equal to SbCol the bi-prediction
weight index gbildx is set equal to O and the following applies with X being 0 or 1:
refldLX = refldxL.XSbCol
-- For xSbldx = 0..numSbX - 1, ySbldx = 0..numSbY - 1, the following applies:
predFlagl. X[xSbldx][ySbldx] = predFlaglL.XSbCol[xSbldx][ySbldx]
mvLX[xSbldx][ySbldx][0] = mvLXSbCol[xSbldx][ySbldx][0]
mvLX[xSbldx][ySbldx][1] = mvLXSbCol[xSbldx][ySbldx][1]

(8-562)

(8-563)

(8-564)
(8-565)
(8-566)

US 11,876,960 B2

55 56
TABLE 24-continued

- When predFlagl. X[xSbldx][ySbldx] is equal to 1, the derivation process for chroma motion
vectors in clause 8.4.2.13 is invoked with mvLX[xSbIdx][ySbldx] and refldxLX as inputs, and
the output being mvCLX[xSbIdx][ySbldx].

-- The following assignment is made for x = xCb ..xCb + cbWidth - 1 and
y = yCb..yCb + cbHeight - 1:
MotionModellde[x [[y] =0 (8-567)
-- Otherwise (subblockMergeCandList] merge_subblock idx[xCb][yCb]] is not equal to SbCol), the
following applies with X being 0 or 1:
-- The following assignments are made with N being the candidate at position
merge_subblock_idx[xCb][yCb] in the subblock merging candidate list subblockMergeCandList
(N = subblockMergeCandList[merge_subblock_idx[xCb][yCb]]):

refldxLX = refldxLXN (8-568)
predFlagL.X[0][0] = predFlagL XN (8-569)
cpMVLX][0] = cpMVLXN[0] (8-570)
cpMVLX[1] =cpMvLXN[1] (8-571)
cpMVLX][2] = cpMVLXN][2] (8-572)
numCpMv = motionModelldxN + 1 (8-573)
gbildx = gbildxN (8-574)
-- For xSbldx = 0.numSbX - 1, ySbldx = 0.mumSbY - 1, the following applies:
predFlagl. X[xSbldx][ySbldx] = predFlagL.X[0][0] (8-575)

-- When predFlagl. X[0][0] is equal to 1, the derivation process for motion vector arrays from affine
control point motion vectors as specified in subclause 8.4.4.9 is invoked with the luma coding block
location (xCb, yCb). the luma coding block width cbWidth, the luma prediction block height
cbHeight, the number of control point motion vectors numCpMyv. the control point motion vectors
cpMVLX] epldx] with cpldx being 0..2. and the number of luma coding subblocks in horizontal
direction numSbX and in vertical direction numSbY as inputs, the luma subblock motion vector array
mvLX[xSbldx][ySbldx] and the chroma subblock motion vector array mvCLX[xSbIdx][ySbldx]
with xSbldx = 0.numSbX - 1, ySbldx = 0 .. numSb¥Y - 1 as outputs

-- The following assignment is made for x = xCb ..xCb + cbWidth - 1 and
y = yCb..yb + cbHeight — 1:

MotionModellde[x][y] = numCpMyv - 1 (8-576)

TABLE 25

8.4.4.3 Derivation process for subblock-based temporal merging candidates

Inputs to this process are:

-- a luma location (XCb, yCb) of the top-left sample of the current luma coding block relative to the top-
left luma sample of the current picture.

-- a variable cbWidth specifying the width of the current coding block in luma samples.

-- a variable cbHeight specifying the height of the current coding block in luma samples.

-- the availability flags availableFlagA,, availableFlagA |, availableFlagB,, and availableFlagB, of the
neighbouring coding units.

-- the reference indices refldxLX Ay, refldxLXA |, refldxLXB,, and refldxLXB,; of the neighbouring coding
units.

-- the prediction list utilization flags predFlagLXA,, predFlagLXA |, predFlagl. XB,, and predFlagLXB, of
the neighbouring coding units.

-- the motion vectors in %16 fractional-sample accuracy mvLX Ay, mvLXA |, mvLXBy, and mvLXB, of the
neighbouring coding units

Outputs of this process are:

-- the availability flag availableFlagSbCol.

-- the number of luma coding subblocks in horizontal direction numSbX and in vertical direction numSbY,
the reference indices refldx.LOSbCol and refIdxI.1SbCol,

-- the luma motion vectors in Y16 fractional-sample accuracy mvLOSbCol[xSbldx][ySblIdx] and
mvL1SbCol[xSbldx][ySbldx] with xSbldx = 0..numSbX - 1, ySbldx = 0 .. numSbY - 1,

-- the bi-prediction weight index gbildxSbCol[xSbldx][ySbldx] the prediction list utilization flags
predFlagl.OSbCol[xSbldx][ySbldx] and predFlagl.1SbCol[xSbldx][ySbldx] with
xSbldx = 0..numSbX - 1, ySbldx = 0 .. numSbY - 1.

The availability flag availableFlagSbCol is derived as follows.

-- If one or more of the following conditions is true, availableFlagSbCol is set equal to 0.
-- tile_group_temporal_mvp_enable flag is equal to 0.
-- sps_sbtmvp_flag is equal to 0.
-- cbWidth is less than 8.
-- cbHeight is less than 8.

-- Otherwise, the following ordered steps apply:
1. The Location (xCtb, yCtb) of the top-left sample of the luma coding tree block that contains the

current coding block and the location (xCtr, yCtr) of the below-right center sample of the current
luma coding block are derived as follows.

xCtb = (xCb >> CtuLog2Size) << CtuLog2Size (8-577)
yCtb = (yCb >> CtuLog2Size) << CtuLog2Size (8-578)
xCtr = xCb + (cbWidth / 2) (8-579)
yCtr = yCb + (cbHeight / 2) (8-580)

2. The luma location (xColCtrCb, yColCtrb) is set equal to the top-left sample of the collocated luma
coding block covering the location given by (xCtr, yCtr) inside ColPic relative to the top-left luma
sample of the collocated picture specified by ColPic.

US 11,876,960 B2
57
TABLE 25-continued

3. The derivation process for subblock-based temporal merging base motion data as specified in
clause 8.4.4.4 is invoked with the location (xCtb, yCtb), the location (xColCtrCb, yColCtrCb),
the availability flags availableFlagA,, availableFlagA , availableFlagB, and availableFlagB,, and

TABLE 26

the prediction list utilization flags predFlagl. XA, predFlaglLXA,, predFlagl. XB, and
predFlagLXB,, and the reference indices refldXLXA,, refldxLXA |, refxLXB,, and refldxLXB,.
and the motion vectors mvLX Ay, mvLXA |, mvLXB, and mvLXB,, with X being 0 and 1 as inputs
and the motion vectors ctrMvLX, the prediction list utilization flags ctrPredFlagl. X and the reference
indices ctrRefldxLX of the collocated block, with X being 0 and 1, the bi-prediction weight index
ctrgbildx, and the temporal motion vector tempMV as outputs.

4. The variable availableFlagSbCol is derived as follows:
- If both ctrPredFlagl.0 and ctrPredFlagl.l are equal to 0. availableFlagSbCol is set equal to 0.
- Otherwise, availableFlagSbCol is set equal to 1.

When availableFlagSbCol is equal to 1, the following applies:

The variables numSbX, numSbY, sbWidth, sbHeight and refldxL.XSbCol are derived as follows:

numSbx = cbWidth >> 3 (8-581)
numSbY = cbHeight >> 3 (8-582)
sbWidth = cbWidth / numSbX (8-583)
sbHeight = cbHeight / numSbY (8-584)
refIdxLXSbCol = 0 (8-585)

For xSbIdx=0..numSbX — 1 and ySbldx = 0 .. numSbY¥ - 1, the motion vectors

mvLXSbCol[xSbIdx][ySbldx] and prediction list utilization flags

predFlaglL. XSbCol[xSbldx][ySbldx] are derived as follows:

-- The luma location (xSb, ySb) specifying the top-left sample of the current coding subblock relative

to the top-left luma sample of the current picture is derived as follows:
xSb = xCb + xSbldx * sbWidth (8-586)
ySb = yCb + ySbldx * sbHeight (8-587)
-- The location (xColSb, yColSb) of the collocated subblock inside ColPic is derived as follows:
xColSb = Clip3(xCtb,
Min(CurPicWidthInSamplesY - 1, xCtb + (1 << CtbLog2SizeY) + 3),(8-58
8)
xSb + (tempMv[0] >> 4))
yColSb = Clip3(yCtb,
Min(CurPicHeightInSamplesY — 1, yCtb + (1 << CtbLog2SizeY) - 1),(8-5
89)
ySb + (tempMv[i]>>4))

-- The variable currCb specifies the luma coding block covering the current coding subblock inside the
current picture.

-- The variable colCb specifies the luma coding block covering the modified location given by
((xColSb >> 3) << 3. (yColSb >> 3) << 3) inside the ColPic.

-- The luma location (XColCb, yColCb) is set equal to the top-left sample of the collocated luma
coding block specified by colCb relative to the top-left luma sample of the collocated picture
specified by ColPic.

-- The gbildxSbCol[xSbldx][ySbldx] is set equal to gbildxcolCb.

-- The derivation process for collocated motion vectors as specified in clause 8.4.2.12 is invoked with
currCb, colCb, (xColCb, yColCb), refldxL0 set equal to O and sbFlag set equal to 1 as inputs and
the output being assigned to the motion vector of the subblock mvLOSbCol[xSbldx][ySbldx] and
availableFlagl.0SbCol.

TABLE 27

-- The derivation process for collocated motion vectors as specified in clause 8.4.2.12 is invoked with
currCh, colCb, (xColb, yColCb), refldxL1 set equal to O and sbFlag set equal to 1 as inputs and
the output being assigned to the motion vector of the subblock mvL1SbCol[xSbldx][ySbIdx] and
availableFlagl.1SbCol

-- When availableFlagl.0SbCol and availableFlagl.1SbCol are both equal to 0, the following applies
for X being 0 and 1:

mvLXSbCol[xSbldx][ySbldx] = ctrtMvLX (8-590)
predFlagl. XSbCol[xSbldx][ySbldx] = ctrPredFlagl. X (8-591)
gbildxSbCol[xSbldx][ySbldx] = ctrgbildx (X-XXX)

8.4.4.4 Derivation process for subblock-based temporal merging base motion data
Inputs to this process are:

the location (xCtb, yCtb) of the top-left sample of the luma coding tree block that contains the current
coding block.

the location (xColCtrCb, yColCtrCb) of the top-left sample of the collocated luma coding block that
covers the below-right center sample.

the availability flags availableFlagA,, availableFlagA |, availableFlagB,, and availableFlagB, of the
neighbouring coding units.

US 11,876,960 B2

59 60
TABLE 27-continued

-- the reference indices refldXLXA,, refldxLXA |, refldXLXB,, and refldxLXB, of the neighbouring coding
units.
-- the prediction list utilization flags predFlagl. XA, predFlagl. XA, predFlagl. XB,, and predFlagl. XB, of
the neighbouring coding units.
-- the motion vectors in %1s fractional-sample accuracy mvLXA,, mvLXA |, mvLXB,, and mvLXB, of the
neighbouring coding units.
Outputs of this process are:
-- the motion vectors ctrMvLO and ctrMvL1.
-- the prediction list utilization flags ctrPredFlagl.0 and ctrPredFlagl.1.
-- the reference indices ctrRefixLO and ctrRefIdxL1.
-- the temporal motion vector tempMV.
-- The bi-prediction weight index ctrgbildx.
The variable tempMv is set as follows:
tempMv[0] =0 (8-592)
tempMv[1]=0 (8-593)
The variable currPic specifies the current picture.
The variable availableFlagN is set equal to FALSE, and the following applies:
-- When availableFlagA is equal to 1, the following applies:
-- availableFlagN is set equal to TRUE,
-- refldxLXN is set equal to refdxLXA, and mvLXN is set equal to mLXA,, for X being replaced by
0 and 1.
-- When availableFlagN is equal to FALSE and availableFlagl.B, is equal to 1, the following applies:
-- availableFlagN is set equal to TRUE,

TABLE 28

-- refldxLXN is set equal to refldxLXB, and mvLXN is set equal to mvLXB,, for X being replaced by
0 and 1.

-- When availableFlagN is equal to FALSE and availableFlagB, is equal to 1, the following applies:

-- availableFlagN is set equal to TRUE.

-- refldxLXN is set equal to refIldxLXB, and mvLXN is set equal to mvLXB,, for X being replaced by
0 and 1.

-- When availableFlagN is equal to FALSE and availableFlagAg,is equal to |, the following applies:

-- availableFlagN is set equal to TRUE.

-- refldxLXN is set equal to refldxLXA; and mvLXN is set equal to mvLX;, for X being replaced by
0 and 1.

When availableFlagN is equal to TRUE, the following applies:
-- If all of the following conditions are true, tempMV is set equal to mvLIN:
- predFlagl.IN is equal to 1.
-~ DiffPicOrderCm(ColPic, RefPicListl[refldxL1N]) is equal to 0.
- DiffPicOrderCnt(aPic, currPic) is less than or equal to 0 for every picture aPic in every reference
picture list of the current tile group.
- tile_group_type is equal to B.
- collocated_from_l0_flag is equal to 0.
-- Otherwise if all of the following conditions are true, tempMV is set equal to mvLON:
- predFlagl.ON is equal to 1.
- DiffPicOrderCnt(ColPic, RefPicListO[refldxLON]) is equal to 0.
The location (xColCb, yColCb) of the collocated block inside ColPic is derived as follows.
xColCb = Clip3(xCtb,
Min(CurPicWidthInSamplesY - 1, xCtb — (1 << CtbLog2SizeY) + 3),(8-59
4)
xXColCtrCb + (tempMv[0] >> 4))
yColCb = Clip3(yCtb,
Min(CurPicHeightInSamplesY - 1, yCtb + (1 << CtbLog2SizeY) — 1 (8-5
95)
yColCtrCb + (tempMv[1] >>4))
The array colPredMode is set equal to the prediction mode array CuPredMode of the collocated picture
specified by ColPic.
The motion vectors ctrMvLO0 and ctrMvL1, the prediction list utilization flags ctrPredFlagl.0 and
ctrPredFlagl.1, and the reference indices ctrRefIdxLO and ctrRefIdxL1 are derived as follows:
-- If colPredMode[xColCb][yColCb] is equal to MODE_INTER, the following applies:

-- The variable currCb specifies the luma coding block covering (xCtrCb, yCtrCb) inside the current
picture.

-- The variable colCb specifies the luma coding block covering the modified location given by
((xColCb >> 3) << 3, (yColCb >> 3) << 3) inside the ColPic.

-- The luma location (XColCb, yColCb) is set equal to the top-left sample of the collocated luma
coding block specified by colCb relative to the top-left luma sample of the collocated picture
specified by ColPic.

-- The gbildxSbCol is set equal to ctrgbildx.

US 11,876,960 B2

61
TABLE 29

62

The derivation process for temporal motion vector prediction in subclause 8.4.2.12 is invoked with
currCb, colCb, (xColCb, yColCb), centerRefldxL0, and sbFlag set equal to 1 as inputs and the

output being assigned to ctrMvLO and crtPredFlagl.0.

The derivation process for temporal motion vector prediction in subclause 8.4.2.12 is invoked with
currCb, colCb, (xColCb, yColCb), centerRefldxL1, and sbFlag set equal to 1 as inputs and the

output being assigned to ctrMvL1 and ctrPredFlagl.1.
Otherwise, the following applies:

ctrPredFlagl.0 = 0

ctrPredFlagl.l = 0

(8-596)
(8-597)

Tables 21 to 29 may indicate three types of procedures.
The procedures may be continuously performed in order of
the tables. The procedures may include the procedure
(8.4.4.2) of deriving a motion vector and a reference index
in a sub-block merge mode, the procedure (8.4.4.3) of
deriving a sub-block-based temporal merge candidate or the
procedure (8.4.4.4) of deriving base motion information for
a sub-block-based temporal merge.

Referring to Tables 21 to 29, gbildx may indicate a
bi-prediction weight index. gbildxSbCol may indicate a
bi-prediction weight index for a sub-block-based temporal
merge candidate (e.g., a sub-block-based temporal motion
vector candidate within a merge candidate list). In the
procedure (8.4.4.3) of deriving base motion information for
a sub-block-based temporal merge, the gbildxShCol may be
derived as gbildxcolCb. Alternatively, in the procedure
(8.4.4.3) of deriving base motion information for a sub-
block-based temporal merge, the gbildxSbCol may be
derived as ctrgbildx depending on a condition (e.g., when
both available Flagl.OSbCol and availableFlagl.1SbCol are
0). In the procedure (8.4.4.4) of deriving base motion
information for a sub-block-based temporal merge, the
ctrgbildx may be derived as gbildxSbCol. That is, a weight
index of a sub-block-based temporal motion vector candi-
date may be derived as a weight index of each sub-block
unit. When a sub-block is not available, a weight index of a
sub-block-based temporal motion vector candidate may be
derived as a temporal center block. For example, the tem-
poral center block may indicate a col block or a sub-block
or sample located at the center of the col block. Specifically,
the temporal center block may indicate a sub-block or
sample located at the bottom-right side among center four
sub-blocks or samples of the col block.

Meanwhile, according to another embodiment of this
document, when a motion vector candidate for the merge
mode is constructed, a weight index of a pair-wise candidate
may be induced or derived. In other words, the pair-wise
candidate may also be included in a merge candidate list. In
this case, a weight index for a weighted average of the
pair-wise candidates may be derived. For example, the
pair-wise candidate may be derived based on other merge
candidates within the merge candidate list. When the pair-
wise candidate uses bi-prediction, a weight index for a
weighted average may be derived. That is, when an inter
prediction type is bi-prediction, weight index information
for a pair-wise candidate within a merge candidate list may
be induced or derived.

For example, the pair-wise candidate may be derived
based on two merge candidates (e.g., cand0 and candl)
within the merge candidate list. If the pair-wise candidate
uses bi-prediction, a weight index of the pair-wise candidate
may be derived based on weight indices of the merge
candidate cand0 and/or merge candidate candl. In other
words, the weight index of the pair-wise candidate may be
derived based on the weight index of any one merge

15

20

25

30

35

40

45

50

55

60

65

candidate (e.g., merge candidate candO or merge candidate
candl) of merge candidates used to derive the pair-wise
candidate. Alternatively, for example, the weight index of
the pair-wise candidate may be derived as a specific ratio of
the weight indices of the merge candidates (e.g., merge
candidate cand0 and merge candidate candl) used to derive
the pair-wise candidate. In this case, the specific ratio may
be 1:1, but may be derived as a different ratio. For example,
the specific ratio may be determined as a default ratio or a
default value, but the present disclosure is not limited
thereto. The default ratio may be defined as a 1:1 ratio, but
may be defined as a different ratio. Alternatively, for
example, if the weight index of the pair-wise candidate is
derived based on a specific ratio of weight indices of merge
candidates, as described above, the same result as that the
weight index of the pair-wise candidate is derived as a
weight index of any one of the merge candidates may be
derived depending on a specific ratio.

Meanwhile, according to another embodiment of this
document, if a motion vector candidate for a merge mode of
a sub-block unit is constructed, when a (representative)
motion vector candidate uses bi-prediction, a weight index
for a weighted average may be induced or derived. That is,
if an inter prediction type is bi-prediction, weight index
information for a candidate (or an affine merge candidate)
within an affine merge candidate list or a sub-block merge
candidate list may be induced or derived.

For example, in the case of a constructed affine merge
candidate of affine merge candidate, a CP0, CP1, CP2 or RB
candidate may be derived based on motion information of a
block (or a spatial neighboring block) spatially adjacent to a
current block or a block (or a temporal neighboring block)
temporally adjacent to the current block, and a candidate for
deriving the affine model by using an MVF may be indi-
cated. For example, the CP0 may indicate a control point
located at the top-left sample location of a current block. The
CP1 may indicate a control point located at the top-right
sample location of a current block. The CP2 may indicate a
control point located at the bottom-left sample location of
the current block. Furthermore, the RB may indicate the
control point located at the bottom-right sample location of
the current block.

For example, if a (representative) motion vector candidate
is a constructed affine merge candidate (or a (current) affine
merge candidate)), a weight index of the (current) affine
merge candidate may be derived as a weight index of a block
determined as a motion vector at the CP0 among CP0
candidate blocks. Alternatively, the weight index of the
(current) affine merge candidate may be derived as a weight
index of a block determined as a motion vector at the CP1
among CP1 candidate blocks. Alternatively, the weight
index of the (current) affine merge candidate may be derived
as a weight index of a block determined as a motion vector
at the CP2 among CP2 candidate blocks. Alternatively, the
weight index of the (current) affine merge candidate may be

US 11,876,960 B2

63

derived as a weight index, of a block determined as a motion
vector in the RB among RB candidate blocks. Alternatively,
the weight index of the (current) affine merge candidate may
be derived based on at least one of a weight index of a block
determined as a motion vector at the CP0, a weight index of
a block determined as a motion vector at the CP1, a weight
index of a block determined as a motion vector at the CP2
or a weight index of a block determined as a motion vector
in the RB. For example, if a weight index of a (current) affine
merge candidate is derived based on a plurality of weight
indices, a specific ratio of the plurality of weight indices may
be used. In this case, the specific ratio may be 1:1, 1:1:1 or
1:1:1:1, but may be derived as a different ratio. For example,
the specific ratio may be determined as a default ratio or a
default value, but the present disclosure is not limited
thereto. The default ratio may be defined as a 1:1 ratio, but
may be defined as a different ratio.

Alternatively, for example, the weight index of the (cur-
rent) affine merge candidate may be derived as a weight
index of a candidate having the highest frequency of occur-
rence among weight indices of candidates. For example, a
weight index having the greatest redundancy, among a
weight index of a candidate block determined as a motion
vector at the CP0 among CP0 candidate blocks, a weight
index of a candidate block determined as a motion vector at
the CP1 among CP1 candidate blocks, a weight index of a
candidate block determined as a motion vector at the CP2
among CP2 candidate blocks and/or a weight index of a
candidate block determined as a motion vector in the RB
among RB candidate blocks, may be derived as the weight
index of the (current) affine merge candidate.

For example, the CP0 and the CP1 may be used as the
control points, the CP0, the CP1 and the CP2 may be used
as control points, and the RB may not be used as a control
point. However, for example, if an RB candidate of an affine
block (a block to be coded in the affine prediction mode) is
to be used, a method of inducing or deriving a weight index
in the temporal candidate block described in the aforemen-
tioned embodiments may be used. For example, the CP0, the
CP1 or the CP2 may derive candidates based on a spatial
neighboring block of a current block, and may determine a
block to be used as a motion vector (i.e., CPMV1, CPMV2
or CPMV3) at the CP0, the CP1 or the CP2 among the
candidates. Alternatively, for example, the RB may derive
candidates based on a temporal neighboring block of a
current block, and may determine a block to be used as a
motion vector in the RB among the candidates.

Alternatively, for example, if a (representative) motion
vector candidate is an SbTMVP (or ATMVP) candidate, a
weight index of the SbTMVP candidate may be derived as
a weight index of a left neighboring block of a current block.
That is, if a candidate derived as S TMVP (or ATMVP) uses
bi-prediction, a weight index of the left neighboring block of
the current block may be derived as a weight index for the
sub-block-based merge mode. That is, if an inter prediction
type is bi-prediction, weight index information for an
SbTMVP candidate within an affine merge candidate list or
a sub-block merge candidate list may be induced or derived.

For example, an SbTMVP candidate may derive a col
block based on a left block (or a left neighboring block)
spatially adjacent to a current block, so that a weight index
of the left neighboring block may be said to be trusted.
Accordingly, a weight index of the SbTMVP candidate may
be derived as the weight index of the left neighboring block.

FIGS. 10 and 11 schematically illustrate examples of a
video/image encoding method and related components
according to an embodiment(s) of this document.

5

10

15

20

25

30

35

40

45

50

55

60

65

64

The method disclosed in FIG. 10 may be performed by the
encoding apparatus disclosed in FIG. 2 or 11. Specifically,
for example, S1000 to S1030 in FIG. 10 may be performed
by a predictor 220 of an encoding apparatus 200 of FIG. 11.
S1040 in FIG. 10 may be performed by an entropy encoder
240 of the encoding apparatus 200 of FIG. 11. Furthermore,
although not illustrated in FIG. 10, prediction samples or
prediction-related information may be derived by the pre-
dictor 220 of the encoding apparatus 200 of FIG. 11.
Residual information may be derived from original samples
or prediction samples by a residual processor 230 of the
encoding apparatus 200. A bitstream may be generated from
residual information or prediction-related information by the
entropy encoder 240 of the encoding apparatus 200. The
method disclosed in FIG. 10 may include embodiments
described in this document.

Referring to FIG. 10, the encoding apparatus may deter-
mine an inter prediction mode of a current block, and may
generate inter prediction mode information indicating the
inter prediction mode (S1000). For example, the encoding
apparatus may determine a merge mode, an affine (merge)
mode or a sub-block merge mode as an inter prediction
mode to be applied to the current block, and may generate
inter prediction mode information indicating the determined
mode.

The encoding apparatus may generate a merge candidate
list of the current block based on the inter prediction mode
(S1010). For example, the encoding apparatus may generate
the merge candidate list based on the determined inter
prediction mode. In this case, when the determined inter
prediction mode is an affine merge mode or a sub-block
merge mode, the merge candidate list may be called an affine
merge candidate list or a sub-block merge candidate list, etc.,
but may be simply called a merge candidate list.

For example, a candidate may be inserted into the merge
candidate list until the number of candidates within the
merge candidate list becomes a maximum number of can-
didates. In this case, the candidate may indicate a candidate
or a candidate block for deriving motion information (or
motion vector) of the current block. For example, the
candidate block may be derived through search for a neigh-
boring block of the current block. For example, the neigh-
boring block may include a spatial neighboring block and/or
temporal neighboring block of the current block. A spatial
neighboring block may be preferentially searched for and
may be derived as a (spatial merge) candidate. Thereafter, a
temporal neighboring block may be searched for and may be
derived as a (temporal merge) candidate. The derived can-
didates may be inserted into the merge candidate list. For
example, even after the candidates are inserted, when the
number of candidates within the merge candidate list is
smaller than a maximum number of candidates, an addi-
tional candidate may be inserted into the merge candidate
list. For example, the additional candidate may include at
least one of a history based merge candidate(s), a pair-wise
average merge candidate(s), an ATMVP, a combined bi-
predictive merge candidate (when a current slice/slice of a
tile group/tile group type is the B type) and/or a zero vector
merge candidate.

Alternatively, for example, a candidate may be inserted
into the affine merge candidate list until the number of
candidates within the affine merge candidate list becomes a
maximum number of candidates. In this case, the candidate
may include a control point motion vector (CPMV) of a
current block. Alternatively, the candidate may indicate a
candidate or candidate block for deriving the CPMV. The
CPMV may indicate a motion vector at the control point

US 11,876,960 B2

65
(CP) of the current block. For example, the CP may be two,
three or four, and may be located at at least some of a top-left
(or top-left corner), a top-right (or top-right corner), a
bottom-left (or bottom-left corner) or bottom-right (or bot-
tom-right corner) of the current block. Only one CP may be
present at each location.

For example, the candidate may be derived through
search for a neighboring block of a current block (or a
neighboring block of a CP of a current block). For example,
an affine merge candidate list may include at least one of an
inherited affine merge candidate, a constructed affine merge
candidate or a zero motion vector candidate. For example,
an inherited affine merge candidate may be first inserted into
the affine merge candidate list. Thereafter, a constructed
affine merge candidate may be inserted into the affine merge
candidate list. Furthermore, although even a constructed
affine merge candidate has been inserted into the affine
merge candidate list, when the number of candidates within
the affine merge candidate list is smaller than a maximum
number of candidates, the remainder may be filled with a
zero motion vector candidate. In this case, the zero motion
vector candidate may be called a zero vector. For example,
the affine merge candidate list may be a list according to an
affine merge mode in which a motion vector is derived in a
sample unit, but may be a list according to an affine merge
mode in which a motion vector is derived in a sub-block
unit. In this case, the affine merge candidate list may be
called a sub-block merge candidate list. The sub-block
merge candidate list may also include a candidate derived as
an SbTMVP (or SbTMVP candidate). For example, if an
SbTMVP candidate is included in a sub-block merge can-
didate list, the SbTMVP candidate may be located at a
location ahead of an inherited affine merge candidate and a
constructed affine merge candidate within the sub-block
merge candidate list.

The encoding apparatus may select one of candidates
included in the merge candidate list, and may generate
selection information indicating a selected candidate
(81020). For example, the merge candidate list may include
at least some of a spatial merge candidate, a temporal merge
candidate, a pair-wise candidate or a zero vector candidate,
and may select one of the candidates for inter prediction of
the current block. Alternatively, for example, a sub-block
merge candidate list may include at least some of an
inherited affine merge candidate, a constructed affine merge
candidate, an SbTMVP candidate or a zero vector candidate,
and may select one of the candidates for inter prediction of
the current block.

For example, the selection information may include index
information indicating a selected candidate within the merge
candidate list. For example, the selection information may
be called merge index information or sub-block merge index
information.

The encoding apparatus may generate inter prediction
type information indicating an inter prediction type of the
current block as bi-prediction (S1030). For example, the
inter prediction type of the current block may be determined
as bi-prediction among [O prediction, [.1 prediction or
bi-prediction. Inter prediction type information indicating
the determined type may be generated. In this case, the L.O
prediction may indicate prediction based on a reference
picture list 0. The L1 prediction may indicate prediction
based on a reference picture list 1. The bi-prediction may
indicate prediction based on the reference picture list 0 and
the reference picture list 1. For example, the encoding
apparatus may generate the inter prediction type information

20

25

30

40

45

66

based on the inter prediction type. For example, the inter
prediction type information may include an inter_pred_idc
syntax element.

The encoding apparatus may encode image information,
including the inter prediction mode information, the selec-
tion information and the inter prediction type information
(S1040). For example, the image information may be called
video information. The image information may include
various types of information according to the aforemen-
tioned embodiment(s) of this document. For example, the
image information may include at least some of prediction-
related information or residual-related information. For
example, the prediction-related information may include at
least some of inter prediction mode information, selection
information and inter prediction type information. For
example, the encoding apparatus may generate a bitstream
or encoded information by encoding the image information
including all or some of the pieces of information (or syntax
elements). Alternatively, the encoding apparatus may output
the image information in a bitstream form. Furthermore, the
bitstream or the encoded information may be transmitted to
the decoding apparatus over a network or through a storage
medium.

Although not illustrated in FIG. 10, for example, the
encoding apparatus may generate prediction samples of a
current block. Alternatively, for example, the encoding
apparatus may generate prediction samples of a current
block based on a selected candidate. Alternatively, for
example, the encoding apparatus may derive motion infor-
mation based on a selected candidate, and may generate
prediction samples of a current block based on the motion
information. For example, the encoding apparatus may
generate 1O prediction samples and .1 prediction samples
according to bi-prediction, and may generate prediction
samples of a current block based on the LO prediction
samples and the L1 prediction samples. In this case, the
encoding apparatus may generate prediction samples of the
current block from the LO prediction samples and the L1
prediction samples by using weight index information (or
weight information) for the bi-prediction. In this case, the
weight information may be indicated based on the weight
index information.

In other words, for example, the encoding apparatus may
generate the [0 prediction samples and [.1 prediction
samples of the current block based on the selected candidate.
For example, if an inter prediction type of a current block
has been determined as bi-prediction, a reference picture list
0 and a reference picture list 1 may be used for the prediction
of'the current block. For example, the L0 prediction samples
may indicate prediction samples of the current block derived
based on the reference picture list 0. The L1 prediction
samples may indicate prediction samples of the current
block derived based on the reference picture list 1.

For example, the candidates may include a spatial merge
candidate. For example, if the selected candidate is a spatial
merge candidate, LO motion information and L1 motion
information may be derived based on the spatial merge
candidate. The L.O prediction samples and the .1 prediction
samples may be generated based on the L.O motion infor-
mation and the L1 motion information.

For example, the candidates may include a temporal
merge candidate. For example, if the selected candidate is a
temporal merge candidate, LO motion information and L1
motion information may be derived based on the temporal
merge candidate. The LO prediction samples and the L1
prediction samples may be generated based on the 1O
motion information and the L1 motion information.

US 11,876,960 B2

67

For example, the candidates may include a pair-wise
candidate. For example, if the selected candidate is a pair-
wise candidate, LO motion information and L1 motion
information may be derived based on the pair-wise candi-
date. The LO prediction samples and the L1 prediction
samples may be generated based on the L.O motion infor-
mation and the [.1 motion information. For example, the
pair-wise candidate may be derived based on different two
candidates among candidates included in the merge candi-
date list.

Alternatively, for example, the merge candidate list may
be a sub-block merge candidate list. An affine merge can-
didate, a sub-block merge candidate or an SbTMVP candi-
date may also be selected. In this case, the affine merge
candidate of a sub-block unit may be called a sub-block
merge candidate.

For example, the candidates may include a sub-block
merge candidate. For example, if a selected candidate is a
sub-block merge candidate. LO motion information and L1
motion information may be derived based on the sub-block
merge candidate. The LO prediction samples and the L1
prediction samples may be generated based on the LO
motion information and the L1 motion information. For
example, the sub-block merge candidate may include con-
trol point motion vectors (CPMVs). The 1O prediction
samples and the L1 prediction samples may be generated by
performing prediction in a sub-block unit based on the
CPMVs.

In this case, a CPMV may be indicated based on one of
neighboring blocks of a control point (CP) of a current
block. For example, the CP may be two, three or four, and
may be located at at least some of a top-left (or top-left
corner), a top-right (or top-right corner), a bottom-left (or
bottom-left corner) or a bottom-right (or bottom-right cor-
ner) of a current block. Only one CP may be present at each
location.

For example, the CP may be a CP0 located at the top-left
of the current block. In this case, neighboring blocks may
include a top-left corner neighboring block, left neighboring
block adjacent to the bottom side of the top-left corner
neighboring block and a top neighboring block adjacent to
the right side of the top-left corner neighboring block of the
current block. Alternatively, the neighboring blocks may
include the A, block, the B, block or the B; block in FIG. 8.

Alternatively, for example, the CP may be a CP1 located
at a top-right of the current block. In this case, the neigh-
boring blocks may include a top-right corner neighboring
block of the current block and a top neighboring block
adjacent to the left side of the top-right corner neighboring
block. Alternatively, the neighboring blocks may include the
B, block or the B, block in FIG. 8.

Alternatively, for example, the CP may be a CP2 located
at the bottom-left of the current block. In this case, the
neighboring blocks may include a bottom-left corner neigh-
boring block of the current block and a left neighboring
block adjacent to the top of the bottom-left corner neigh-
boring block. Alternatively, the neighboring blocks may
include the A, block or the A| block in FIG. 8.

Alternatively, for example, the CP may be a CP3 located
at the bottom-right of the current block. In this case, the CP3
may be called an RB. In this case, the neighboring blocks
may include a col block of the current block or a bottom-
right corner neighboring block of the col block. In this case,
the col block may include a collocated block of the current
block within a reference picture different from a current
picture where the current block is located. Alternatively, the
neighboring block may include the T block in FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

68

Alternatively, for example, the candidates may include an
SbTMVP candidate. For example, if a selected candidate is
an SbTMVP candidate, LO motion information and L1
motion information may be derived based on a left neigh-
boring block of the current block. The L0 prediction samples
and the L1 prediction samples may be generated based on
the LO motion information and the L1 motion information.
For example, the L.O prediction samples and the L1 predic-
tion samples may be generated by performing prediction in
a sub-block unit.

For example, L.O motion information may include an L0
reference picture index, an [.O motion vector, etc. L1 motion
information may include an .1 reference picture index, an
L1 motion vector, etc. The L0 reference picture index may
include information indicating a reference picture in a
reference picture list 0. The L.1 reference picture index may
include information indicating a reference picture in a
reference picture list 1.

For example, the encoding apparatus may generate pre-
diction samples of a current block based on LO prediction
samples, L1 prediction samples and weight information. For
example, the weight information may be indicated based on
weight index information. The weight index information
may indicate weight index information for bi-prediction. For
example, the weight information may include information
for a weighted average of LO prediction samples or L1
prediction samples. That is, the weight index information
may indicate index information for a weight used for the
weighted average. The weight index information may be
generated in a procedure of generating prediction samples
based on the weighted average. For example, the weight
index information may include information indicating any
one of three or five weights. For example, the weighted
average may indicate a weighted average in a Bi-prediction
with CU-level weight (BCW) or a bi-prediction with
weighted average (BWA).

For example, the candidates may include a temporal
merge candidate. The weight index information may be
indicated as 0. That is, weight index information for the
temporal merge candidate may be indicated as 0. In this
case, weight index information of 0 may indicate that
weights in respective reference directions (i.e., an LO pre-
diction direction and an L1 prediction direction in bi-
prediction) are the same. Alternatively, for example, the
candidates may include a temporal merge candidate. The
weight index information may be indicated based on weight
index information of a col block. That is, weight index
information for a temporal merge candidate may be indi-
cated based on weight index information of a col block. In
this case, the col block may include a collocated block of the
current block within a reference picture different from a
current picture where the current block is located.

Alternatively, for example, the candidates may include a
pair-wise candidate. The weight index information may be
indicated as weight index information of one of different two
candidates within a merge candidate list used to derive the
pair-wise candidate. That is, the weight index information
for the pair-wise candidate may be indicated as weight index
information of one of different two candidates within a
merge candidate list used to derive the pair-wise candidate.
Alternatively, for example, the weight index information
may be indicated based on weight index information of the
two candidates.

Alternatively, for example, the merge candidate list may
be a sub-block merge candidate list. An affine merge can-
didate, a sub-block merge candidate or an SbTMVP candi-

US 11,876,960 B2

69

date may be selected. In this case, the affine merge candidate
of a sub-block unit may be called a sub-block merge
candidate.

For example, the candidates may include a sub-block
merge candidate. The weight index information may be
indicated based on weight index information of a specific
block among neighboring blocks of the CP of a current
block. That is, the weight index information for the sub-
block merge candidate may be indicated based on weight
index information of a specific block among neighboring
blocks of the CP of the current block. In this case, the
specific block may be a block used to derive a CPMV for the
CP. Alternatively, the specific block may be a block having
an MV used as a CPMV among neighboring blocks of the
CP of a current block.

For example, the CP may be a CP0 located at the top-left
of the current block. In this case, the weight index informa-
tion may be indicated based on weight index information of
a top-left corner neighboring block of the current block,
weight index information of a left neighboring block adja-
cent to the bottom side of the top-left corner neighboring
block or weight index information of a top neighboring
block adjacent to the right side of the top-left corner neigh-
boring block. Alternatively, the weight index information
may be indicated based on weight index information of the
A, block, weight index information of the B, block or
weight index information of the B; block in FIG. 8.

Alternatively, for example, the CP may be a CP1 located
at the top-right of the current block. In this case, the weight
index information may be indicated based on weight index
information of a top-right corner neighboring block of the
current block or weight index information of a top neigh-
boring block adjacent to the left side of the top-right corner
neighboring block. Alternatively, the weight index informa-
tion may be indicated based on weight index information of
the B, block or weight index information of the B, block in
FIG. 8.

Alternatively, for example, the CP may be a CP2 located
at the bottom-left of the current block. In this case, the
weight index information may be indicated based on weight
index information of a bottom-left corner neighboring block
of the current block or weight index information of a left
neighboring block adjacent to the top of the bottom-left
corner neighboring block. Alternatively, the weight index
information may be indicated based on weight index infor-
mation of the A, block or weight index information of the A,
block in FIG. 8.

Alternatively, for example, the CP may be a CP3 located
at the bottom-right of the current block. In this case, the CP3
may be called an RB. In this case, the weight index infor-
mation may be indicated based on weight index information
of a col block of the current block or weight index infor-
mation of a bottom-right corner neighboring block of the col
block. In this case, the col block may include a collocated
block of the current block within a reference picture different
from a current picture where the current block is located.
Alternatively, the weight index information may be indi-
cated based on weight index information of the T block in
FIG. 8.

Alternatively, for example, the CP may include a plurality
of CPs. For example, the plurality of CPs may include at
least two of a CP0, a CP1, a CP2 or an RB. In this case, the
weight index information may be indicated based on weight
index information that is most redundant among pieces of
weight index information of specific blocks used to derive
the respective CPMVs. Alternatively, the weight index infor-
mation may be indicated based on weight index information

10

15

20

25

30

35

40

45

50

55

60

65

70

having the highest frequency of occurrence among the
pieces of weight index information of the specific blocks.
That is, the weight index information may be indicated
based on weight index information of specific blocks used to
derive the CPMVs of a plurality of CPs, respectively.

Alternatively, for example, the candidates may include an
SbTMVP candidate. The weight index information may be
indicated based on weight index information of a left
neighboring block of the current block. That is, the weight
index information for the STMVP candidate may be indi-
cated based on weight index information of the left neigh-
boring block. Alternatively, for example, the candidates may
include an SbTMVP candidate. The weight index informa-
tion may be indicated as 0. That is, the weight index
information for the SbPTMVP candidate may be indicated as
0. In this case, the weight index information of 0 may
indicate that weights in respective reference directions (i.e.,
an L0 prediction direction and an L1 prediction direction in
bi-prediction) are the same. Alternatively, for example, the
candidates may include an SbTMVP candidate. The weight
index information may be indicated based on weight index
information of a center block within a col block. That is, the
weight index information for the SHAM) candidate may be
indicated based on weight index information of a center
block within a col block. In this case, the col block may
include a collocated block of the current block within a
reference picture different from a current picture where the
current block is located. The center block may include a
bottom-right sub-block among four sub-blocks located at the
center of the col block. Alternatively, for example, the
candidates may include an SbTMVP candidate. The weight
index information may be indicated based on weight index
information of each of sub-blocks of a col block. That is, the
weight index information for the SbTMVP candidate may be
indicated based on weight index information of each of
sub-blocks of a col block.

Alternatively, although not illustrated in FIG. 10, for
example, the encoding apparatus may derive residual
samples the prediction samples and original samples. In this
case, residual-related information may be derived based on
the residual samples. The residual samples may be derived
based on the residual-related information. Reconstruction
samples may be generated based on the residual samples and
the prediction samples. A reconstruction block and a recon-
struction picture may be derived based on the reconstruction
samples. Alternatively, for example, the encoding apparatus
may encode image information including residual-related
information or prediction-related information.

For example, the encoding apparatus may generate a
bitstream or encoded information by encoding image infor-
mation including some or all of pieces of the aforementioned
information (or syntax elements). Alternatively, the encod-
ing apparatus may output the image information in a bit-
stream form. Furthermore, the bitstream or the encoded
information may be transmitted to the decoding apparatus
over a network or through a storage medium. Alternatively,
the bitstream or the encoded information may be stored in a
computer-readable storage medium. The bitstream or the
encoded information may be generated by the aforemen-
tioned image encoding method.

FIGS. 12 and 13 schematically illustrate examples of an
image/video decoding method and related components
according to an embodiment(s) of this document.

The method disclosed in FIG. 12 may be performed by the
decoding apparatus disclosed in FIG. 3 or 13. Specifically,
for example, S1200 in FIG. 12 may be performed by an
entropy decoder 310 of a decoding apparatus 300 in FIG. 13.

US 11,876,960 B2

71

S1210 to S1260 in FIG. 12 may be performed by a predictor
330 of the decoding apparatus 300 in FIG. 13. Furthermore,
although not illustrated in FIG. 12, prediction-related infor-
mation or residual information may be derived from a
bitstream by the entropy decoder 310 of the decoding
apparatus 300 in FIG. 13. Residual samples may be derived
from the residual information by a residual processor 320 of
the decoding apparatus 300. Prediction samples may be
derived from the prediction-related information by the pre-
dictor 330 of the decoding apparatus 300. A reconstruction
block or a reconstruction picture may be derived from the
residual samples or the prediction samples by an adder 340
of'the decoding apparatus 300. The method disclosed in FIG.
12 may include embodiments described in this document.

Referring to FIG. 12, the decoding apparatus may receive
image information including inter prediction mode informa-
tion and inter prediction type information through a bit-
stream (S1200). For example, the image information may be
called video information. The image information may
include various types of information according to the afore-
mentioned embodiment(s) of this document. For example,
the image information may include at least some of predic-
tion-related information or residual-related information.

For example, the prediction-related information may
include inter prediction mode information or inter prediction
type information. For example, the inter prediction mode
information may include information indicating at least
some of various inter prediction modes. For example, vari-
ous modes, such as a merge mode, a skip mode, a motion
vector prediction (MVP) mode, an affine mode, a sub-block
merge mode or a merge with MVD (MMVD) mode, may be
used. Furthermore, a decoder side motion vector refinement
(DMVR) mode, an adaptive motion vector resolution
(AMVR) mode, a Bi-prediction with CU-level weight
(BCW), a bi-directional optical flow (BDOF), etc. may be
used as additional modes additionally or instead. For
example, the inter prediction type information may include
an inter_pred_idc syntax element. Alternatively, the inter
prediction type information may include information indi-
cating any one of LO prediction, [.1 prediction or bi-
prediction.

The decoding apparatus may generate a merge candidate
list of a current block based on the inter prediction mode
information (S1210). For example, the decoding apparatus
may determine an inter prediction mode of the current block
as a merge mode, an affine (merge) mode or a sub-block
merge mode based on the inter prediction mode information,
and may generate a merge candidate list based on the
determined inter prediction mode. In this case, when the
inter prediction mode is determined as an affine merge mode
or a sub-block merge mode, the merge candidate list may be
called an affine merge candidate list or a sub-block merge
candidate list, but may be simply called a merge candidate
list.

For example, a candidate may be inserted into a merge
candidate list until the number of candidates within the
merge candidate list becomes a maximum number of can-
didates. In this case, the candidate may indicate a candidate
or a candidate block for deriving motion information (or
motion vector) of a current block. For example, the candi-
date block may be derived through search for a neighboring
block of the current block. For example, the neighboring
block may include a spatial neighboring block and/or tem-
poral neighboring block of the current block. A spatial
neighboring block may be preferentially searched for and
may be derived as a (spatial merge) candidate. Thereafter, a
temporal neighboring block may be searched for and may be

10

15

20

25

30

35

40

45

50

55

60

65

72

derived as a (temporal merge) candidate. The derived can-
didates may be inserted into the merge candidate list. For
example, even after the candidates are inserted, when the
number of candidates within the merge candidate list is
smaller than a maximum number of candidates, an addi-
tional candidate may be inserted into the merge candidate
list. For example, the additional candidate may include at
least one of a history based merge candidate(s), a pair-wise
average merge candidate(s), an ATMVP, a combined bi-
predictive merge candidate (when a current slice/slice of a
tile group/tile group type is a B type) and/or a zero vector
merge candidate.

Alternatively, for example, a candidate may be inserted
into an affine merge candidate list until the number of
candidates within an affine merge candidate list becomes a
maximum number of candidates. In this case, the candidate
may include a control point motion vector (CPMV) of a
current block. Alternatively, the candidate may indicate a
candidate or a candidate block for deriving the CPMV. The
CPMV may indicate a motion vector at the control point
(CP) of the current block. For example, the CP may be two,
three or four, and may be located at at least some of a top-left
(or top-left corner), a top-right (or top-right corner), a
bottom-left (or bottom-left corner) or bottom-right (or bot-
tom-right corner) of the current block. Only one CP may be
present at each location.

For example, the candidate block may be derived through
search for a neighboring block of a current block (or a
neighboring block of a CP of a current block). For example,
an affine merge candidate list may include at least one of an
inherited affine merge candidate, a constructed affine merge
candidate or a zero motion vector candidate. For example,
an inherited affine merge candidate may be first inserted into
the affine merge candidate list. Thereafter, a constructed
affine merge candidate may be inserted into the affine merge
candidate list. Furthermore, although even a constructed
affine merge candidate has been inserted into the affine
merge candidate list, when the number of candidates within
the affine mere candidate list is smaller than a maximum
number of candidates, the remainder may be filled with a
zero motion vector candidate. In this case, the zero motion
vector candidate may be called a zero vector. For example,
the affine merge candidate list may be a list according to an
affine merge mode in which a motion vector is derived in a
sample unit, but may be a list according to an affine merge
mode in which a motion vector is derived in a sub-block
unit. In this case, the affine merge candidate list may be
called a sub-block merge candidate list. The sub-block
merge candidate list may also include a candidate derived as
an SbTMVP (or SbTMVP candidate). For example, if an
SbTMVP candidate is included in a sub-block merge can-
didate list, the SPTMVP candidate may be located at a
location ahead of an inherited affine mere candidate and a
constructed affine merge candidate within the sub-block
merge candidate list.

The decoding apparatus may select one of candidates
included in the merge candidate list (S1220). For example,
the merge candidate list may include at least some of a
spatial merge candidate, a temporal merge candidate, a
pair-wise candidate or a zero vector candidate. One of such
candidates may be selected for inter prediction of a current
block. Alternatively, for example, a sub-block merge candi-
date list may include at least some of an inherited affine
merge candidate, a constructed affine merge candidate, an
SbTMVP candidate or a zero vector candidate. One of such
candidates may be selected for inter prediction of a current
block. For example, the selected candidate may be selected

US 11,876,960 B2

73

in the merge candidate list based on selection information.
For example, the selection information may include index
information indicating the selected candidate within the
merge candidate list. For example, the selection information
may be called merge index information or sub-block merge
index information. For example, the selection information
may be included in the image information. Alternatively, the
selection information may be included in the inter prediction
mode information.

The decoding apparatus may derive an inter prediction
type of the current block as bi-prediction based on the inter
prediction type information (S1230). For example, the inter
prediction type of the current block may be derived as
bi-prediction among L[O prediction, [.1 prediction or bi-
prediction based on the inter prediction type information. In
this case, the LO prediction may indicate prediction based on
a reference picture list 0. The L1 prediction may indicate
prediction based on a reference picture list 1. The bi-
prediction may indicate prediction based on the reference
picture list O and the reference picture list 1. For example,
the inter prediction type information may include an inter_
pred_idc syntax element.

The decoding apparatus may derive motion information
of'the current block based on the selected candidate (S1240).
For example, the decoding apparatus may derive L.O motion
information and L1 motion information based on the
selected candidate as the inter prediction type is derived as
bi-prediction. For example, the L.O motion information may
include an LO reference picture index, an [.O motion vector,
etc. The L1 motion information may include an [.1 reference
picture index, an [.1 motion vector, etc. The LO reference
picture index may include information indicating a reference
picture in the reference picture list 0. The L1 reference
picture index may include information indicating a reference
picture in the reference picture list 1.

The decoding apparatus may generate [0 prediction
samples and L1 prediction samples of the current block
based on the motion information (S1250). For example,
when an inter prediction type of the current block is derived
as bi-prediction, a reference picture list O and a reference
picture list 1 may be used for the prediction of the current
block. For example, the 1O prediction samples may indicate
prediction samples of the current block derived based on the
reference picture list 0. The L1 prediction samples may
indicate prediction samples of the current block derived
based on the reference picture list 1.

For example, the candidates may include a spatial merge
candidate. For example, when the selected candidate is a
spatial merge candidate, 1.0 motion information and L1
motion information may be derived based on the spatial
merge candidate. The LO prediction samples and the L1
prediction samples may be generated based on the LO
motion information and the L1 motion information.

For example, the candidates may include a temporal
merge candidate. For example, when the selected candidate
is the temporal merge candidate, O motion information and
L1 motion information may be derived based on the tem-
poral merge candidate. The L.O prediction samples and the
L1 prediction samples may be generated based on the O
motion information and the L1 motion information.

For example, the candidates may include a pair-wise
candidate. For example, when the selected candidate is a
pair-wise candidate, [.O motion information and .1 motion
information may be derived based on the pair-wise candi-
date. The LO prediction samples and the L1 prediction
samples may be generated based on the L.O motion infor-
mation and [.1 motion information. For example, the pair-

5

10

20

25

30

35

40

45

50

55

60

74

wise candidate may be derived based on different two
candidates included in candidates included in the merge
candidate list.

Alternatively, for example, the merge candidate list may
be a scab-block merge candidate list. An affine merge
candidate, a sub-block merge candidate or an SbTMVP
candidate may be selected. In this case, the affine merge
candidate of a sub-block unit may be called a sub-block
merge candidate.

For example, the candidates may include a sub-block
merge candidate. For example, when the selected candidate
is the sub-block merge candidate, .LO motion information
and L1 motion information may be derived based on the
sub-block merge candidate. The LO prediction samples and
the L1 prediction samples may be generated based on the 1O
motion information and the L1 motion information. For
example, the sub-block merge candidate may include con-
trol point motion vectors (CPMVs). The LO prediction
samples and the L1 prediction samples may be generated by
performing prediction in a sub-block unit based on the
CPMVs.

In this case, the CPMV may be derived based on one of
neighboring blocks of the control point (CP) of a current
block. For example, the CP may be two, three or four, and
may be located at at least some of a top-left (or top-left
corner), top-right for top-right corner), bottom-lett (or bot-
tom-left corner) or bottom-right (or bottom-right corner) of
the current block. Only one CP may be present at each
location.

For example, the CP may be a CP0 located at the top-left
of'the current block. In this case, the neighboring blocks may
include a top-left corner neighboring block of the current
block, a left neighboring block adjacent to the bottom side
of the top-left corner neighboring block and a top neighbor-
ing block adjacent to the right side of the top-left corner
neighboring block. Alternatively, the neighboring blocks
may include the A, block, the B, block or the B; block in
FIG. 8.

Alternatively, for example, the CP may be a CP1 located
at the top-right of the current block. In this case, the
neighboring blocks may include a top-right corner neigh-
boring block of the current block and a top neighboring
block adjacent to the left side of the top-right corner neigh-
boring block. Alternatively, the neighboring blocks may
include the B, block or the B, block in FIG. 8.

Alternatively, for example, the CP may be a CP2 located
at the bottom-left of the current block. In this case, the
neighboring blocks may include a bottom-left corner neigh-
boring block of the current block and the left neighboring
block adjacent to the top of the bottom-left corner neigh-
boring block. Alternatively, the neighboring blocks may
include the A, block or the A; block in FIG. 8.

Alternatively, for example, the CP may be a CP3 located
at the bottom-right of the current block. In this case, the CP3
may be called an RB. In this case, the neighboring blocks
may include a col block of the current block or a bottom-
right corner neighboring block of the col block. In this case,
the col block may include a collocated block of the current
block within a reference picture different from a current
picture where the current block is located. Alternatively, the
neighboring block may include the T block in FIG. 8.

Alternatively, for example, the candidates may include an
SbTMVP candidate. For example, when the selected candi-
date is the SbTMVP candidate, L.O motion information and
L1 motion information may be derived based on a left
neighboring block of the current block. The O prediction
samples and the L1 prediction samples may be generated

US 11,876,960 B2

75

based on the LO motion information and the L1 motion
information. For example, the LO prediction samples and the
L1 prediction samples may be generated by performing
prediction in a sub-block unit.

The decoding apparatus may generate prediction samples
of the current block based on the L0 prediction samples, the
L1 prediction samples and weight information (S1260). For
example, the weight information may be derived based on
weight index information. For example, the weight infor-
mation may include information for a weighted average of
the L0 prediction samples or the [.1 prediction samples. That
is, the weight index information may indicate index infor-
mation for a weight used for the weighted average. The
weighted average may be performed based on the weight
index information. For example, the weight index informa-
tion may include information indicating any one of three or
five weights. For example, the weighted average may indi-
cate a weighted average in a Bi-prediction with CU-level
weight (BCW) or a bi-prediction with weighted average
(BWA).

For example, the candidates may include a temporal
merge candidate. The weight index information may be
derived as 0. That is, the weight index information for the
temporal merge candidate may be derived as 0. In this case,
the weight index information of 0 may indicate that weights
in respective reference directions (i.e., an LO prediction
direction and an .1 prediction direction in bi-prediction) are
the same. Alternatively, for example, the candidates may
include a temporal merge candidate. The weight index
information may be derived based on weight index infor-
mation of a col block. That is, the weight index information
for the temporal merge candidate may be derived based on
the weight index information of the col block. In this case,
the col block may include a collocated block of the current
block within a reference picture different from a current
picture where the current block is located.

Alternatively, for example, the candidates may include a
pair-wise candidate. The weight index information may be
derived as weight index information of one of different two
candidates within a merge candidate list used to derive the
pair-wise candidate. That is, the weight index information
for the pair-wise candidate may be derived as weight index
information of one of different two candidates within a
merge candidate list used to derive the pair-wise candidate.
Alternatively, for example, the weight index information
may be derived based on weight index information of the
two candidates.

Alternatively, for example, the merge candidate list may
be a sub-block merge candidate list. An affine merge can-
didate, a sub-block merge candidate or an SbTMVP candi-
date may be selected. In this case, the affine merge candidate
of a sub-block unit may be called a sub-block merge
candidate.

For example, the candidates may include a sub-block
merge candidate. The weight index information may be
derived based on weight index information of a specific
block among neighboring blocks of the CP of a current
block. That is, the weight index information for the sub-
block merge candidate may be derived based on weight
index information of a specific block among neighboring
blocks of the CP of the current block. In this case, the
specific block may be a block used to derive a CPMV for the
CP. Alternatively, the specific block may be a block having
an MV used as a CPMV among neighboring blocks of the
CP of a current block.

For example, the CP may be a CP0 located at the top-left
of the current block. In this case, the weight index informa-

10

15

20

25

30

35

40

45

50

55

60

65

76

tion may be derived based on weight index information of a
top-left corner neighboring block of the current block,
weight index information of a left neighboring block adja-
cent to the bottom side of the top-left corner neighboring
block or weight index information of a top neighboring
block adjacent to the right side of the top-left corner neigh-
boring block. Alternatively, the weight index information
may be derived based on weight index information of the A,
block, weight index information of the B, block or weight
index information of the B; block in FIG. 8.

Alternatively, for example, the CP may be a CP1 located
at the top-right of the current block. In this case, the weight
index information may be derived based on weight index
information of a top-right corner neighboring block of the
current block or weight index information of a top neigh-
boring block adjacent to the left side of the top-right corner
neighboring block. Alternatively, the weight index informa-
tion may be derived based on weight index information of
the B, block or weight index information of the B, block in
FIG. 8.

Alternatively, for example, the CP may be a CP2 located
at the bottom-left of the current block. In this case, the
weight index information may be derived based on weight
index information of a bottom-left corner neighboring block
of the current block or weight index information of a left
neighboring block adjacent to the top of the bottom-left
corner neighboring block. Alternatively, the weight index
information may be derived based on weight index infor-
mation of the A, block or weight index information of the A,
block in FIG. 8.

Alternatively, for example, the CP may be a CP3 located
at the bottom-right of the current block. In this case, the CP3
may be called an RB. In this case, the weight index infor-
mation may be derived based on weight index information
of a col block of the current block or weight index infor-
mation of a bottom-right corner neighboring block of the col
block. In this case, the col block may include a collocated
block of the current block within a reference picture different
from a current picture where the current block is located.
Alternatively, the weight index information may be derived
based on weight index information of the T block in FIG. 8.

Alternatively, for example, the CP may include a plurality
of CPs. For example, the plurality of CPs may include at
least two of a CP0, a CP1, a CP2 or an RB. In this case, the
weight index information may be derived based on weight
index information that is most redundant among pieces of
weight index information of specific blocks used to derive
the respective CPMVs. Alternatively, the weight index infor-
mation may be derived based on weight index information
having the highest frequency of occurrence among the
pieces of weight index information of the specific blocks.
That is, the weight index information max be derived based
on weight index information of specific blocks used to
derive a CPMV of each of a plurality of CPs.

Alternatively, for example, the candidates may include an
SbTMVP candidate. The weight index information may be
derived based on weight index information of a left neigh-
boring block of the current block. That is, the weight index
information for the SbTMVP candidate may be derived
based on weight index information of the left neighboring
block. Alternatively, for example, the candidates may
include an SbTMVP candidate. The weight index informa-
tion may be derived as 0. That is, the weight index infor-
mation for the SPTMVP candidate may be derived as 0. In
this case, the weight index information of 0 may indicate
that weights in respective reference direction (i.e., an LO
prediction direction and an L1 prediction direction in bi-

US 11,876,960 B2

77

prediction) are the same. Alternatively, for example, the
candidates may include an SbTMVP candidate. The weight
index information may be derived based on weight index
information of a center block within a col block. That is, the
weight index information for the SbTMVP candidate may be
derived based on weight index information of a center block
within a col block. In this case, the col block may include a
collocated block of the current block within a reference
picture different from a current picture where the current
block is located. The center block may include a bottom-
right sub-block among four sub-blocks located at the center
of the col block. Alternatively, for example, the candidates
may include an SbTMVP candidate. The weight index
information may be derived based on weight index infor-
mation of each of sub-blocks of a col block. That is, the
weight index information for the SbTMVP candidate may be
derived based on weight index information of each of the
sub-blocks of the col block.

Although not illustrated in FIG. 12, for example, the
decoding apparatus may derive residual samples based on
residual-related information included in the image informa-
tion. Furthermore, the decoding apparatus may generate
reconstruction samples based on the prediction samples and
the residual samples. A reconstruction block and a recon-
struction picture may be derived based on the reconstruction
samples.

For example, the decoding apparatus may obtain image
information, including all or some of the pieces of afore-
mentioned information (or syntax elements) by decoding a
bitstream or encoded information. Furthermore, the bit-
stream or the encoded information may be stored in a
computer-readable storage medium, and may cause the
aforementioned decoding method to be performed.

In the aforementioned embodiment, the methods have
been described based on the flowcharts in the form of a
series of steps or blocks, but a corresponding embodiment is
not limited to the order of steps. Any step may occur as a
step and order different from that described above or may
occur simultaneously with a different step and order. Fur-
thermore, those skilled in the art may understand that the
steps illustrated in the flowchart are not exclusive and
another step may be included or one or more step of a
flowchart may be deleted without affecting the scope of the
embodiments of this document.

A method according to the aforementioned embodiments
of this document may be implemented in a software form,
and the encoding apparatus and/or the decoding apparatus
according to this document may be included in an apparatus
for performing image processing, for example, TV, a com-
puter, a smartphone, a set-top box or a display device.

In this document, when embodiments are implemented in
a software form, the aforementioned method be imple-
mented as a module (process, function, etc) for performing
the aforementioned function. The module may be stored in
the memory and executed by the processor. The memory
may be placed inside or outside the processor and connected
to the processor by various well-known means. The proces-
sor may include application-specific integrated circuits
(ASICs), other chipsets, logic circuits and/or data processing
devices. The memory may include read-only memory
(ROM), random access memory (RAM), flash memory,
memory cards, storage media and/or other storage devices.
That is, the embodiments described in this document may be
implemented and performed on a processor, a micro pro-
cessor, a controller or a chip. For example, the function units
illustrated in the drawings may be implemented and per-
formed on a computer, a processor, a micro processor, a

10

15

20

25

30

35

40

45

50

55

60

65

78

controller or a chip. In this case, information (e.g., infor-
mation on instructions) or an algorithm for such implemen-
tation may be stored in a digital storage medium.

Furthermore, the decoding apparatus and the encoding
apparatus to which an embodiment(s) of this document is
applied may be included in a multimedia broadcasting
transmission and reception device, a mobile communication
terminal, a home cinema video device, a digital cinema
video device, a camera for monitoring, a video dialogue
device, a real-time communication device such as video
communication, a mobile streaming device, a storage
medium, a camcorder, a video on-demand (VoD) service
provision device, an over the top (OTT) video device, an
Internet streaming service provision device, a three-dimen-
sional (3D) video device, a virtual reality (VR) device, an
augmented reality (AR) device, a video telephony device,
transportation means terminal (e.g., a vehicle (including
autonomous vehicle) terminal, an aircraft terminal, and a
vessel terminal), and a medical video device, and may be
used to process a video signal or a data signal. For example,
the over the top (OTT) video device may include a game
console, a Blu-ray player, Internet access TV, a home theater
system, a smartphone, a tablet PC, and a digital video
recorder (DVR).

Furthermore, the processing method to which an embodi-
ment(s) of the present disclosure is applied may be produced
in the form of a program executed by a computer, and may
be stored in a computer-readable recording medium. Mul-
timedia data having a data structure according to an embodi-
ment(s) of the present disclosure may also be stored in a
computer-readable recording medium. The computer-read-
able recording medium includes all types of storage devices
in which computer-readable data is stored. The computer-
readable recording medium may include a Blu-ray disk
(BD), a universal serial bus (USB), a ROM, a PROM, an
EPROM, an EEPROM, a RAM, a CD-ROM, a magnetic
tape, a floppy disk, and an optical data storage device, for
example. Furthermore, the computer-readable recording
medium includes media implemented in the form of carriers
(e.g., transmission through the Internet). Furthermore, a bit
stream generated using an encoding method may be stored
in a computer-readable recording medium or may be trans-
mitted over wired and wireless communication networks.

Furthermore, an embodiment(s) of the present disclosure
may be implemented as a computer program product using
a program code. The program code may be performed by a
computer according to an embodiment of the present dis-
closure. The program code may be stored on a carrier
readable by a computer.

FIG. 14 illustrates an example of a content streaming
system to which embodiments disclosed in this document
may be applied.

Referring to FIG. 14, the content streaming system to
which embodiments of this document are applied may
basically include an encoding server, a streaming server, a
web server, a media repository, a user device and a multi-
media input device.

The encoding server functions to generate a bitstream by
compressing content received from multimedia input
devices, such as a smartphone, a camera, and a camcorder,
into digital data and to transmit the bitstream to the stream-
ing server. For another server, if multimedia input devices,
such as a smartphone, a camera, and a camcorder directly
generate a bitstream, the encoding server may be omitted.

The bitstream may be generated by an encoding method
or a bitstream generation method to which embodiments of

US 11,876,960 B2

79

this document are applied. The streaming server may tem-
porally store a bitstream in a process of transmitting or
receiving the bitstream.

The streaming server serves to transmit the multimedia
data to the user device based on the user request through the
web server, and the web server serves as a medium which
informs the user of what services are available. When the
user requests the desired service to the web server, the web
server delivers the user’s request to the streaming server, and
the streaming server transmits the multimedia data to the
user. At this time, the content streaming system may include
a separate control server, and in this case, the control server
serves to control commands/responses between the devices
within the content streaming system.

The streaming server may receive the contents from the
media storage and/or the encoding server. For example,
when receiving the contents from the encoding server, the
streaming server may receive the contents in real time. In
this case, to provide the smooth streaming service, the
streaming server may store the bitstream for a predetermined
time.

Examples of the user device may include a portable
phone, a smartphone, a laptop computer, a digital broadcast
terminal, a personal digital assistants (PDA), a portable
multimedia player (PMP), a navigation device, a slate PC, a
tablet PC, an ultrabook, a wearable device (e.g., a smart
watch, a smart glass, a head-mounted display (HMD)),
digital TV, a desktop computer, a digital signage, or the like.

The servers within the content streaming system may be
operated by a distribution server. In this case, data received
by each server may be distributed and processed.

The claims described in this specification may be com-
bined in various ways. For example, technical characteristics
of'a method claim in this specification may be combined and
implemented as an apparatus. Technical characteristics of an
apparatus claim in this specification may be combined and
implemented as a method. Furthermore, a technical charac-
teristic of a method claim and a technical characteristic of an
apparatus claim in this specification may be combined and
implemented as an apparatus. A technical characteristic of a
method claim and a technical characteristic of an apparatus
claim in this specification may be combined and imple-
mented as a method.

What is claimed is:
1. An image decoding method performed by a decoding
apparatus, the method comprising:

receiving image information comprising inter prediction
mode information through a bitstream;

generating a merge candidate list of a current block based
on the inter prediction mode information;

selecting a candidate among candidates included in the
merge candidate list;

deriving motion information of the current block based on
the selected candidate;

generating [LO prediction samples and L[.1 prediction
samples based on the derived motion information; and

generating prediction samples of the current block based
on the LO prediction samples, the L1 prediction
samples and weight information, wherein the weight
information is derived based on weight index informa-
tion for the selected candidate,

wherein the candidates include an inherited affine merge
candidate and a constructed affine merge candidate,

wherein the inherited affine merge candidate is derived
based on control point motion vectors (CPMVs) of a
neighboring block of the current block,

10

80

wherein the constructed affine merge candidate includes
CPMVs of control points (CPs),

wherein based on the constructed affine merge candidate
including a CPMYV for a CP0 and a bi-prediction being
applied to the current block, weight index information
for the constructed affine merge candidate is fixed to be
equal to weight index information of a specific block
among neighboring blocks of the CP0 of the current
block, wherein the CP0 is related to a top-left corner of
the current block,

wherein the specific block is a block used for deriving the
CPMYV for the CP0, and

wherein the constructed affine merge candidate is inserted
after the inherited affine merge candidate in the merge
candidate list.

2. The method of claim 1, wherein the neighboring blocks

include a top-left corner neighboring block of the current
block, a left neighboring block adjacent to a bottom side of
the top-left corner neighboring block, and a top neighboring

20 block adjacent to a right side of the top-left corner neigh-

25

30

40

45

55

boring block.

3. The method of claim 1, wherein:

the candidates include a pair-wise candidate,

the pair-wise candidate is derived based on different two
candidates of the candidates, and

weight index information for the pair-wise candidate is
derived based on weight index information of one of
the two candidates.

4. The method of claim 1, wherein:

the candidates include a sub-block-based temporal merge
candidate, and

weight index information for the sub-block-based tempo-
ral merge candidate is derived based on weight index
information of a left neighboring block of the current
block.

5. The method of claim 1, wherein:

the candidates include a sub-block-based temporal merge
candidate, and

weight index information for the sub-block-based tempo-
ral merge candidate is derived as O.

6. The method of claim 1, wherein:

the candidates include a sub-block-based temporal merge
candidate,

weight index information for the sub-block-based tempo-
ral merge candidate is derived based on weight index
information of a center block within a col block,

the col block includes a collocated block of the current
block within a reference picture different from a current
picture where the current block is located, and

the center block is a bottom-right sub-block among four
sub-blocks located at a center of the col block.

7. The method of claim 1, wherein:

the candidates include a sub-block-based temporal merge
candidate,

weight index information for the sub-block-based tempo-
ral merge candidate is derived based on weight index
information of each of sub-blocks of a col block, and

the col block includes a collocated block of the current
block within a reference picture different from a current
picture where the current block is located.

8. An image encoding method performed by an encoding

apparatus, comprising:

determining an inter prediction mode of a current block
and generating inter prediction mode information indi-
cating the inter prediction mode;

generating a merge candidate list of the current block
based on the inter prediction mode;

US 11,876,960 B2

81

selecting one of candidates included in the merge candi-
date list and generating selection information indicat-
ing the selected candidate; and
encoding image information comprising the inter predic-
tion mode information and the selection information,

wherein the candidates include an inherited affine merge
candidate and a constructed affine merge candidate,
wherein the constructed affine merge candidate
includes control point motion vectors (CPMVs),

wherein the inherited affine merge candidate is derived
based on control point motion vectors (CPMVs) of a
neighboring block of the current block,
wherein the constructed affine merge candidate includes
CPMVs of control points (CPs),

wherein based on the constructed affine merge candidate
including a CPMYV for a CP0 and a bi-prediction being
applied to the current block, weight index information
for the constructed affine merge candidate is fixed to be
equal to weight index information of a specific block
among neighboring blocks of the CP0 of the current
block, wherein the CP0 is related to a top-left corner of
the current block,
wherein the specific block is a block used for deriving the
CPMYV for the CP0, and

wherein the constructed affine merge candidate is inserted
after the inherited affine merge candidate in the merge
candidate list.

9. A non-transitory computer-readable storage medium
storing a bitstream of the encoded image information gen-
erated by the image encoding method of claim 8.

10. A transmission method for image data, the method
comprising:

obtaining, by a transmission apparatus, encoded image

information, wherein the encoded image information is
generated by performing determining an inter predic-

25

30

82

tion mode of a current block and generating inter
prediction mode information indicating the inter pre-
diction mode, generating a merge candidate list of the
current block based on the inter prediction mode,
selecting one of candidates included in the merge
candidate list and generating selection information
indicating the selected candidate, and encoding image
information comprising the inter prediction mode
information and the selection information; and

transmitting, by the transmission apparatus, the image
data for the encoded image information,

wherein the candidates include an inherited affine merge
candidate and a constructed affine merge candidate,
wherein the constructed affine merge candidate
includes control point motion vectors (CPMVs),

wherein the inherited affine merge candidate is derived
based on control point motion vectors (CPMVs) of a
neighboring block of the current block,

wherein the constructed affine merge candidate includes
CPMVs of control points (CPs),

wherein based on the constructed affine merge candidate
including a CPMYV for a CP0 and a bi-prediction being
applied to the current block, weight index information
for the constructed affine merge candidate is fixed to be
equal to weight index information of a specific block
among neighboring blocks of the CP0 of the current
block, wherein the CP0 is related to a top-left corner of
the current block,

wherein the specific block is a block used for deriving the
CPMYV for the CP0, and

wherein the constructed affine merge candidate is inserted
after the inherited affine merge candidate in the merge
candidate list.

