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CONTENT - ADDRESSABLE PROCESSING 
ENGINE 

GOVERNMENT SUPPORT 

[ 0001 ] This invention was made with government funds 
under Agreement No. HR0011-18-3-0004 awarded by The 
Defense Advanced Research Projects 
[ 0002 ] Agency ( DARPA ) . The U.S. Government has cer 
tain rights in this invention . 

FIELD OF THE DISCLOSURE 

[ 0003 ] The present disclosure relates to processing - in 
memory ( PIM ) architectures for general purpose computing . a 

BACKGROUND 

[ 0004 ] Processing - in - memory ( PIM ) architecture propos 
als attempt to overcome the von Neumann bottleneck by 
combining computation and storage logic into a single 
component . In particular , in - situ PIM architectures leverage 
low - level computational abilities in a memory array . Con 
tent - addressable memories ( CAMs ) arguably constitute the 
first in - situ PIM architectures , as they have been around for 
more than 60 years . CAMs are equipped with additional 
logic per bitcell to perform searches to many cells simulta 
neously . 
[ 0005 ] Content - addressable parallel processor ( CAPP ) 
designs from the 1970s extend CAMs with the ability to 
search and update multiple rows in parallel . By sequencing 
such search / update operations , CAPP designs can also per 
form a variety of arithmetic and logic operations ( referred to 
as associative algorithms ) in a massively parallel and bit 
serial fashion . 
[ 0006 ] Recently , some interesting proposals have emerged 
that advocate for leveraging the foundations of CAPP in 
modern microarchitectures . However , the proposed solu 
tions require emerging memory technology or expensive 
12T memory bitcells . In addition , these proposals require 
either low - level programming or a restrictive programming 
language with a custom compilation flow . 

integrated in a tiled multicore chip alongside other types of 
compute engines . Certain embodiments of CAPE achieve 
average speedups of 14x ( up to 254x ) over an area - equiva 
lent out - of - order processor core tile with three levels of 
caches across a diverse set of representative applications . 
[ 0009 ] An exemplary embodiment provides a CAPE con 
figured to execute a program having scalar operations and 
vector operations . The CAPE includes a control processor 
configured to execute the scalar operations . The CAPE 
further includes a compute - storage block ( CSB ) configured 
to execute the vector operations in situ by an array of 
content - addressable parallel processing memories . 
[ 0010 ] Another exemplary embodiment provides an inte 
grated circuit . The integrated circuit includes a CAPE com 
prising an array of content - addressable parallel processing 
memories . The CAPE is configured to execute processing 
instructions comprising instructions for executing vector 
operations . The CAPE executes the vector operations in situ 
by the array of content - addressable parallel processing 
memories . 
[ 0011 ] Another exemplary embodiment provides a method 
for executing a program using parallel processing in a 
CAPE . The method includes receiving , at the CAPE , a set of 
processing instructions described by a general instruction 
set . The method further includes executing scalar operations 
from the set of processing instructions . The method further 
includes executing vector operations from the set of pro 
cessing instructions in situ by an array of content - address 
able parallel processing memories . 
[ 0012 ] Those skilled in the art will appreciate the scope of 
the present disclosure and realize additional aspects thereof 
after reading the following detailed description of the pre 
ferred embodiments in association with the accompanying 
drawing figures . 

BRIEF DESCRIPTION OF THE DRAWING 
FIGURES 

SUMMARY 

[ 0007 ] A content - addressable processing engine , also 
referred to herein as CAPE , is provided . Processing - in 
memory ( PIM ) architectures attempt to overcome the von 
Neumann bottleneck by combining computation and storage 
logic into a single component . For example , the content 
addressable parallel processing ( CAPP ) paradigm from the 
1970s is an in - situ PIM architecture that leverages content 
addressable memories to realize bit - serial arithmetic and 
logic operations via sequences of search and update opera 
tions over multiple memory rows in parallel . Embodiments 
described herein apply the concepts behind classic CAPP to 
build an entirely complementary metal - oxide - semiconduc 
tor ( CMOS ) -based , general - purpose microarchitecture that 
can deliver manifold speedups while remaining highly pro 
grammable . 
[ 0008 ] CAPE provides a general - purpose PIM microarchi 
tecture that provides acceleration of vector operations while 
being programmable with a general instruction set ( e.g. , 
standard reduced instruction set computing ( RISC ) instruc 
tions , such as RISC - V instructions with standard vector 
extensions ) . CAPE can be implemented as a standalone core 
that specializes in associative computing , and that can be 

[ 0013 ] The accompanying drawing figures incorporated in 
and forming a part of this specification illustrate several 
aspects of the disclosure , and together with the description 
serve to explain the principles of the disclosure . 
[ 0014 ] FIG . 1 is a block diagram of an example associative 
increment algorithm . 
[ 0015 ] FIG . 2 is a schematic block diagram of an embodi 
ment of a content - addressable processing engine ( CAPE ) . 
[ 0016 ] FIG . 3A is a schematic diagram of an exemplary 
three - by - three six transistor ( 6T ) static random - access 
memory ( SRAM ) array performing a search operation . 
[ 0017 ] FIG . 3B is a schematic diagram of the memory 
array of FIG . 3A performing an update operation . 
[ 0018 ] FIG . 4A is a block schematic diagram of bit - vector 
active operands for bit - serial search on an exemplary com 
pute - storage block ( CSB ) . 
[ 0019 ] FIG . 4B is a block schematic diagram of bit - vector 
active operands for bit - parallel search on the CSB . 
[ 0020 ] FIG . 4C is a block schematic diagram of bit - vector 
active operands for bit - serial update on the CSB . 
[ 0021 ] FIG . 4D is a block schematic diagram of bit - vector 
active operands for bit - parallel update on the CSB . 
[ 0022 ] FIG . 5A is a block diagram of an exemplary search 
path for subarrays of the CSB . 
[ 0023 ] FIG . 5B is a block diagram of an exemplary update 
path for subarrays of the CSB . 

a 

a 

a 

a 
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[ 0024 ] FIG . 6 is a block diagram of a reduction sum 
operation of a four - element two - bit vector according to 
embodiments described herein . 
[ 0025 ] FIG . 7 is a schematic diagram of an exemplary 
vector control unit ( VCU ) . 
[ 0026 ] FIG . 8 is a graphical representation of performance 
microbenchmarks for different CSB capacities . 
[ 0027 ] FIG . 9A is a graphical representation of roofline 
plots of microbenchmarks for CAPE at various CSB capaci 
ties . 
[ 0028 ] FIG . 9B is a graphical representation of roofline 
plots of Phoenix applications for CAPE at various CSB 
capacities . 
[ 0029 ] FIG . 10 is a graphical representation of perfor 
mance of the Phoenix benchmarks for two- and three - core 
central processing units ( CPUs ) , CAPE32k and CAPE131k , 
normalized to a single CPU core . 
[ 0030 ] FIG . 11 is a graphical representation of speedups of 
the Phoenix benchmarks for advanced reduced instruction 
set computing ( RISC ) machine 
( 0031 ) ( ARM ) scalable vector extension ( SVE ) single 
instruction multiple - data ( SIMD ) implementations of 128- , 
256- , and 512 - bit vectors normalized to a single - core run 
ning ARM scalar code . 

> 

DETAILED DESCRIPTION 

contrast , when an element is referred to as being " directly 
connected ” or “ directly coupled ” to another element , there 
are no intervening elements present . 
[ 0035 ] Relative terms such as “ below ” or “ above ” or 
“ upper ” or “ lower ” or “ horizontal ” or “ vertical ” may be used 
herein to describe a relationship of one element , layer , or 
region to another element , layer , or region as illustrated in 
the 
[ 0036 ] Figures . It will be understood that these terms and 
those discussed above are intended to encompass different 
orientations of the device in addition to the orientation 
depicted in the Figures . 
[ 0037 ] The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting of the disclosure . As used herein , the singular 
forms “ a , " " an , ” and “ the ” are intended to include the plural 
forms as well , unless the context clearly indicates otherwise . 
It will be further understood that the terms “ comprises , ” 
“ comprising , ” “ includes , " and / or “ including " when used 
herein specify the presence of stated features , integers , steps , 
operations , elements , and / or components , but do not pre 
clude the presence or addition of one or more other features , 
integers , steps , operations , elements , components , and / or 
groups thereof . 
[ 0038 ] Unless otherwise defined , all terms ( including tech 
nical and scientific terms ) used herein have the same mean 
ing as commonly understood by one of ordinary skill in the 
art to which this disclosure belongs . It will be further 
understood that terms used herein should be interpreted as 
having a meaning that is consistent with their meaning in the 
context of this specification and the relevant art and will not 
be interpreted in an idealized or overly formal sense unless 
expressly so defined herein . 
[ 0039 ] A content - addressable processing engine , also 
referred to herein as CAPE , is provided . Processing - in 
memory ( PIM ) architectures attempt to overcome the von 
Neumann bottleneck by combining computation and storage 
logic into a single component . For example , the content 
addressable parallel processing ( CAPP ) paradigm from the 
1970s is an in - situ PIM architecture that leverages content 
addressable memories to realize bit - serial arithmetic and 
logic operations via sequences of search and update opera 
tions over multiple memory rows in parallel . Embodiments 
described herein apply the concepts behind classic CAPP to 
build an entirely complementary metal - oxide - semiconduc 
tor ( CMOS ) -based , general - purpose microarchitecture that 
can deliver manifold speedups while remaining highly pro 
grammable . 
[ 0040 ) CAPE provides a general - purpose PIM microarchi 
tecture that provides acceleration of vector operations while 
being programmable with a general instruction set ( e.g. , 
standard reduced instruction set computing ( RISC ) instruc 
tions , such as RISC - V instructions with standard vector 
extensions ) . CAPE can be implemented as a standalone core 
that specializes in associative computing , and that can be 
integrated in a tiled multicore chip alongside other types of 
compute engines . Certain embodiments of CAPE achieve 
average speedups of 14x ( up to 254x ) over an area - equiva 
lent out - of - order processor core tile with three levels of 
caches across a diverse set of representative applications . 

[ 0032 ] The embodiments set forth below represent the 
necessary information to enable those skilled in the art to 
practice the embodiments and illustrate the best mode of 
practicing the embodiments . Upon reading the following 
description in light of the accompanying drawing figures , 
those skilled in the art will understand the concepts of the 
disclosure and will recognize applications of these concepts 
not particularly addressed herein . It should be understood 
that these concepts and applications fall within the scope of 
the disclosure and the accompanying claims . 
[ 0033 ] It will be understood that , although the terms first , 
second , etc. may be used herein to describe various ele 
ments , these elements should not be limited by these terms . 
?? terms are only to distinguish one element fr 
another . For example , a first element could be termed a 
second element , and , similarly , a second element could be 
termed a first element , without departing from the scope of 
the present disclosure . As used herein , the term “ and / or ” 
includes any and all combinations of one or more of the 
associated listed items . 
[ 0034 ] It will be understood that when an element such as 
a layer , region , or substrate is referred to as being “ on ” or 
extending “ onto ” another element , it can be directly on or 
extend directly onto the other element or intervening ele 
ments may also be present . In contrast , when an element is 
referred to as being directly on ” or extending “ directly 
onto ” another element , there are no intervening elements 
present . Likewise , it will be understood that when an ele 
ment such as a layer , region , or substrate is referred to as 
being “ over ” or extending " over ” another element , it can be 
directly over or extend directly over the other element or 
intervening elements may also be present . In contrast , when 
an element is referred to as being “ directly over ” or extend 
ing “ directly over ” another element , there are no intervening 
elements present . It will also be understood that when an 
element is referred to as being “ connected ” or “ coupled ” to 
another element , it can be directly connected or coupled to 
the other element or intervening elements may be present . In 

a 

I. Introduction 

[ 0041 ] Embodiments described herein apply the concepts 
behind classic CAPP architectures to build an entirely 
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CMOS - based , general - purpose microarchitecture that can 
deliver manifold speedups while remaining highly program 
mable . An exemplary full - stack design of CAPE , built out of 
dense push - rule six - transistor ( 6T ) static random - access 
memory ( SRAM ) arrays , is described . This embodiment of 
CAPE is programmable using RISC - V instruction set archi 
tecture ( ISA ) with standard vector extensions . It should be 
understood that embodiments described herein are program 
mable with any general instruction set , i.e. an instruction set 
for performing many types of computer instructions rather 
than a parallel processing - specific instruction set ( e.g. , a 
RISC instruction set or complex instruction set computing 
( CISC ) instruction set ) . 
[ 0042 ] The contributions of this disclosure include : 

[ 0043 ] A CMOS - based implementation of an associa 
tive - compute - capable engine based on dense 6T 

two cases where carry is 0. This is because the output in each 
case is the same as the input - neither the element's bit nor 
the running carry flip as a result of applying the half adder 
truth table ( crossed - out entries in the truth tables of FIG . 1 ) . 
Note also that some additional support beyond search / update 
would be needed , namely : 1 ) Two bits of additional storage 
per vector element are needed . One bit serves as the running 
carry ( initialized to 1 at the beginning of the instruction with 
a single bulk - update ) , and one bit serves to “ tag ” matching 
elements ( Match ) in each of the two searches . Fortunately , 
these extra bits can be reused across a vector element's bits 
in fact , they can be reused across instructions , even if the 
vector names change ) . 2 ) In order to constrain searches and 
updates to the ith bit of each element , embodiments may be 
able to mask out the other bits . 3 ) The sequence of opera 
tions that implements the increment instruction needs to be 
" stored ” somewhere ( e.g. , the micro - memory of a 
sequencer ) . 
[ 0051 ] This procedure seems painfully slow : for each bit 
multiple search and update operations are required . Already 
for a relatively simple increment instruction on a 32 - bit 
value this would represent over one hundred such opera 
tions . However , this is done simultaneously on tens of 
thousands of vector elements , and therein lies the power of 
associative computing . As the results below will show , such 
vector - level parallelism more than makes up for the bit 
serial nature of these operations . 

SRAM arrays . 
[ 0044 ] An optimized data layout on these SRAM arrays 

that maximizes operand locality . 
[ 0045 ] A microarchitecture organization that can per 
form data - parallel computations on tens of thousands of 
vector elements . 

[ 0046 ] A system organization able to perform efficient 
data transfers to maintain the benefits of its inherent 
massively parallel computational power . 

[ 0047 ] A mapping of the standard RISC - V ISA to this 
microarchitecture , which allows for generality , high 
programmability , and compatibility with existing com 
pilation flows . III . Overview of CAPE 

II . Associative Computing [ 0052 ] One goal of this disclosure is to leverage associa 
tive computing to deliver manifold speedups while remain 
ing highly programmable and general . Accordingly , CAPE 
provides an implementation of associative computing as an 
in - situ PIM core that uses state - of - the - art CMOS technol 
ogy , adopts a contemporary ISA abstraction , and can be 
readily integrated into a tiled architecture . 
[ 0053 ] FIG . 2 is a schematic block diagram of an embodi 
ment of CAPE 10. In the illustrated embodiment , CAPE 10 
is deployed in a heterogeneous multi - core processor 12 in 
communication with a main memory 14. In this regard , the 
multi - core processor 12 may be any appropriate general 
purpose processor , such as a central processing unit ( CPU ) 
or a graphic processing unit ( GPU ) , generally comprising an 
integrated circuit with a common semiconductor substrate 
( e.g. , wafer ) . Other cores 16 of the multi - core processor 12 
can therefore include one or more of a CPU core , a GPU 
core , or another general purpose or specialized processing 

[ 0048 ] An associative computing engine 1 ) stores data in 
vector form , 2 ) can compare a key against all vector ele 
ments in parallel ( search ) , and 3 ) can update all matching 
elements in bulk with a new value ( update ) . These opera 
tions are typically arranged in search - update pairs , and they 
are bit - serial , element - parallel — i.e . , a search - update pair 
operates on the same bit of all the elements of a vector , the 
next pair on the next bit , and so forth . The sequence of 
search - update pairs that operate sequentially on all the bits 
of each vector value constitute basically an instruction in 
this associative computing paradigm . Associative algo 
rithms are thus simply sequences of such instructions , much 
like a regular program . 
[ 0049 ] FIG . 1 is a block diagram of an example associative 
increment algorithm . In the associative increment algorithm , 
all vector elements go up in value by one . An associative 
computing engine would first add 1 to the least significant bit 
of all vector elements and remember any carry . Then , for 
each element , it would add the corresponding carry to the 
next bit ; and so forth . However , an associative computing 
engine generally does not “ add ” bits per se . Instead , it 
implements bitwise addition through a sequence of search 
update pairs that essentially follow the truth tables for a half 
adder , one bit combination at a time : 1 ) Search vector 
elements for which the ith bit is O and the running carry for 
that element ( an additional bit of storage ) is 1 , then bulk 
update the ith bit of matching elements to 1 and their running 
carry to 0. 2 ) Search vector elements whose ith bit is 1 and 
the running carry for that element is also 1 , then bulk - update 
the ith bit of matching elements to 0 and the running carry 
to 1 . 
[ 0050 ] Note that , in the example of FIG . 1 , the increment 
algorithm does not bother with search - update pairs for the 

core . 

[ 0054 ] In other embodiments , the CAPE 10 is deployed in 
a single or multi - core processing device , which may be a 
microprocessor , field programmable gate array ( FPGA ) , a 
digital signal processor ( DSP ) , an application - specific inte 
grated circuit ( ASIC ) , or other programmable logic device , 
a discrete gate or transistor logic , discrete hardware com 
ponents , or any combination thereof designed to perform the 
functions described herein . Furthermore , the processing 
device incorporating the CAPE 10 may be implemented as 
a combination of computing devices ( e.g. , the multi - core 
processor 12 and an FPGA 18 , a combination of a DSP and 
a microprocessor , a plurality of microprocessors , one or 
more microprocessors in conjunction with a DSP core , or 
any other such configuration ) . 
[ 0055 ] The architecture of CAPE 10 comprises four main 
blocks . A control processor 20 is a small in - order core that a 
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runs standard RISC - V code with vector extensions . The 
control processor 20 processes scalar operations locally , and 
offloads vector operations to a compute - storage block ( CSB ) 
22 , which acts as a coprocessor and is the associative 
computing engine of CAPE 10. A vector operation commits 
in the control processor 20 only after it completes in the CSB 
22. In the shadow of an outstanding vector operation , 
subsequent scalar logic / arithmetic operations may issue and 
execute ( if not data - dependent with the vector instruction ) , 
but not commit . Subsequent vector operations , however , 
stall at issue until the outstanding vector operation commits . 
In some embodiments , the CAPE 10 hardware provides for 
bit - serial pipelining and / or chaining across vector opera 
tions . 
[ 0056 ] Load and store vector operations en route to the 
CSB 22 pass through a vector memory unit ( VMU ) 24 . 
Other vector operations go through a vector control unit 
( VCU ) 26 , which generates microcode sequences to drive 
the CSB 22 and carry out the appropriate operations . The 
VMU 24 and the VCU 26 generate and transfer control and 
data signals to the CSB 22. The RISC - V vector register 
names in each instruction are used to index appropriate 
vector operands within the CSB 22. These ultra - long vectors 
( order of 104 vector elements ) are a primary source of 
parallelism in CAPE 10 . 
[ 0057 ] The CSB 22 is composed of tens of thousands of 
associative subarrays which can perform massively parallel 
operations . In an exemplary aspect , each subarray is made 
up of 6T bitcells that can readily support the four microop 
erations used in the computational model of CAPE 10 : 
single - element reads and writes , as well as highly - efficient 
multi - element ( vector ) searches and updates . 

split wordlines for performing search and update operations 
( read and write work as expected for a conventional SRAM ) . 
For a particular vector , embodiments of CAPE 10 store 
vector elements across columns ; thus , different rows mean 
different bits of a vector element . 
[ 0061 ] A search operation will look for matches in every 
column at the same time . In order to search for a 1 , the 
illustrated example of FIG . 3A sets WLR to a logic high 
( e.g. , VDD ) and WLL to a logic low ( e.g. , GND ) . To search 
for a 0 , WLR is set to GND and WLL is set to VDD . To 
exclude a row from a search ( “ don't care ” ) , both WLR and 
WLL are set to GND . At each column , ANDing bitlines BL 
and BLB yields the outcome of the search for each column : 
1 for a full match , or 0 for at least one bit mismatch . 
[ 0062 ] To perform a bulk update across all columns , the 
illustrated example of FIG . 3B asserts both WLR and WLL 
of the active rows to be updated . In order to write a 1 , all BL 
are set to VDD and all BLB are set to GND . In order to write 
a 0 , all BL are set to GND and all BLB are set to VDD . 

2 

B. Data Layout 

IV . CAPE's Compute - Storage Block ( CSB ) 
[ 0058 ] This section describes the low - level organization 
of an exemplary embodiment of the CSB 22 of CAPE 10 . 
First , a memory cell of the CSB 22 is described , the memory 
cell being a binary content - addressable memory ( CAM ) 
which leverages a dense push - rule 6T SRAM design . Then , 
an approach is described for arranging these cells and data 
to optimize for the in - situ searches and updates that consti 
tute the basis of associative computing . Finally , support for 
reduction operations in the CSB 22 , which are a staple of any 
vector ISA , are described . 

a 

[ 0063 ] In an exemplary embodiment ( e.g. , a 32 - bit 
embodiment ) , the CSB 22 is laid out in subarrays of 32 by 
32 cells ( plus some peripheral logic , as described below ) . 
Further , each vector element is bit - sliced across subarrays of 
the same column , such that subarray i will store the ith bit 
of the vector elements of all 32 RISC - V vector names for 
that column . Thus , each 32x32 subarray contains the ith bit 
for 32 contiguous vector elements of all vector names . For 
example , subarray Ski contains the ith bit of v0-31 [ 32 • k ] , 
v0-31 [ 32.k + 1 ] , ... , v0-31 [ 32k + 31 ] . The total number of 
subarrays in the CSB 22 is the number of vector elements in 
a vector , times the bit width of each vector element , divided 
by 32. In some embodiments , the CSB 22 includes multiple 
banks of this size , where vectors are dynamically renamed 
across banks . 
[ 0064 ] This 32 by 32 geometry , combined with the bit 
sliced data layout , allows CAPE 10 to be clocked fast and 
minimize data movement : 1 ) The access latency of a sub 
array is kept low . 2 ) Further , a search - update pair that is part 
of a bit - serial instruction can be performed locally by the 
subarrays that contain the ith bit of all the vector elements 
involved , and the other subarrays can be in sleep mode . 
Some examples instead support bit - serial pipelining across 
instructions . 3 ) Finally , logic instructions ( e.g. , bitwise 
XOR ) can be carried out in a bit - parallel fashion , thus 
involving all subarrays simultaneously . 
[ 0065 ] FIG . 4A is a block schematic diagram of bit - vector 
active operands for bit - serial search on an exemplary CSB 
22. FIG . 4B is a block schematic diagram of bit - vector active 
operands for bit - parallel search on the CSB 22. FIG . 4C is 
a block schematic diagram of bit - vector active operands for 
bit - serial update on the CSB 22. FIG . 4D is a block sche 
matic diagram of bit - vector active operands for bit - parallel 
update on the CSB 22 . 
[ 0066 ] FIGS . 4A - 4D illustrate a simplified example of the 
CSB 22 structure , showing one subarray 30. FIGS . 4A and 
4C perform a search - update pair as part of the increment 
instruction example of Section II . Each vector element is 
laid out vertically in a bit - sliced fashion , and for each vector 
its vector elements reside in different bit columns 32 ( some 
in different bit columns 32 of the same subarray 30 , and 
some in different subarrays ( not shown ) ) . In FIG . 4A , the 
search operation looks for a particular combination of bits 

A. Cell and Subarray 
a [ 0059 ] Compared to standard 6T SRAM cells , traditional 

CAM cells require extra transistors and wires to enable 
content search . However , a binary CAM ( BCAM ) based on 
push - rule 6T SRAM cells is able to perform reads , writes , 
and searches while maintaining the density of conventional 
SRAM . A key difference between this design and a conven 
tional SRAM cell is that each row has two separate word 
lines — wordline right ( WLR ) and wordline left ( WLL ) 
each connected to one of the access transistors of a cell . This 
design reuses the already existing wordlines as searchlines , 
and the bitlines as matchlines ( the latter requires an AND 
gate per column ) . 
[ 0060 ] FIG . 3A is a schematic diagram of an exemplary 
three - by - three 6T SRAM memory array 28 performing a 
search operation . FIG . 3B is a schematic diagram of the 
memory array 28 of FIG . 3A performing an update opera 
tion . The memory array 28 of FIGS . 3A and 3B includes 

a 
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a register to store the scalar result . Section VI gives details 
on a specific redsum logic implementation used on a system 
made up of thousands of chains . 

V. CAPE Architecture 

VO ; ( data ) and c ; ( carry ) on every vector element of v0 and 
c , respectively . Once the matching vector elements have 
been identified ( which is recorded using tag bits , not shown ) , 
a bulk update ( FIG . 4C ) simultaneously updates bits vo ; and 
Ci + 1 of every matching vector element . At each step , the 
subarrays 30 not involved in the operation can potentially be 
placed in sleep mode . 
[ 0067 ] FIGS . 4B and 4D show another example involving 
a logic operation ( e.g. , v4 = v2 / v3 ) . As indicated before , 
logic operations can be carried out in a bit - parallel fashion , 
and thus all subarrays 30 are involved . 

[ 0072 ] This section describes an exemplary mapping of 
the RISC - V vector abstraction to the CSB 22 ( Section IV ) . 
This section further describes the micro - architecture of the 
VCU 26 ( Section V - C ) and VMU 24 ( Section V - D ) , which 
generate control commands for the CSB 22 and enable 
efficient data transfers to / from the CSB 22 , respectively . 

C. Peripheral Logic 
A. Instruction Set Architecture ( ISA ) 

a 

a 

a 

[ 0068 ] FIG . 5A is a block diagram of an exemplary search 
path for subarrays 30 of the CSB 22. FIG . 5B is a block 
diagram of an exemplary update path for subarrays 30 of the 
CSB 22. Each subarray 30 contains peripheral logic , which 
can include a match generator ( Match ) with one AND gate 
per column to generate a match / mismatch signal . The 
peripheral logic can further include tag bits with one flip 
flop per column to store the output of the match generator . 
The peripheral logic can further include a tag bit accumu 
lator ( Accum ) with one OR gate per column to accumulate 
searches that update with the same values . A feedback loop 
( FB Loop ) is used during updates to transfer the match / 
mismatch mask generated by searches to the input of its own 
column driver ( BL / BLB ) . 

D. Propagation Chain 
[ 0069 ] Typically , bit - serial instructions carry over infor 
mation from one step to the next ( e.g. , carry in a bit - serial 
increment ) . Because embodiments bit - slice vector elements , 
they need to support communication of such metadata 
vertically across consecutive subarrays 30 , and the subarrays 
30 of a column thus form a propagation chain . In general , a 
chain will have as many subarrays 30 as the bit width of a 
vector element . To support this , logic is added to optionally 
allow the tag bits of subarray i to select the columns of 
subarray i + 1 that should be updated ( FIG . 5B ) . This is how , 
in the increment example on FIG . 1 , the tag bits generated 
in the search can be used to select the vector elements to be 
updated for both subarray i ( to update v0 ) and subarray i + 1 
( to update ci + l ) of every chain . 

[ 0073 ] Vector architectures have been around for decades , 
and code vectorization is a well understood way to express 
data parallelism . This suggests that a vector ISA abstraction 
of the CAPE architecture is an attractive way to make CAPE 
10 highly programmable and versatile . Recently , the 
RISC - V Foundation released a specification for RISC - V 
vector extensions . Because of its increasing popularity , free 
availability , and support for vector extensions , RISC - V is 
chosen as the ISA abstraction for an exemplary embodiment 
of the CAPE 10 architecture . 
[ 0074 ] RISC - V vector names map to the appropriate 
CAPE 10 locations transparently through the VCU 26 ; the 
programmer never sees the CSB 22 as addressable memory 
( although CAPE 10 can be configured alternatively to be 
used as a memory - only tile by the chip , as described in 
Section VII ) . RISC - V's vector - length agnostic ( VLA ) sup 
port , whereby vector length is programmable , is easily 
supported in CAPE 10 by simply masking out the unused 
CSB 22 columns or turning off entire chains . The flexibility 
that VLA support provides is actually key to the ability of 
CAPE 10 to accommodate a variety of applications with 
different amounts of data - level parallelism . 
[ 0075 ] Table I shows relevant metrics of an illustrative 
subset of RISC - V instructions supported by CAPE 10. Note 
that logic instructions are very efficient , because their execu 
tion is bit - parallel . Generally , arithmetic instructions are 
bit - serial due to the need to propagate carry / borrow infor 
mation . Comparison instructions map directly to the bit 
parallel search operation of CAPE 10 ( FIG . 4B ) . However , 
since each vector element is bit - sliced , there needs to be a 
bit - serial post - processing of each of the tag bits in order to 
generate a single match / mismatch value . 
[ 0076 ] The maximum number of active rows / subarrays 30 
during update and search illustrates that the circuits need 
only be able to search to at most four rows and to update to 
one row . This also the case for the RISC - V vector instruc 
tions not shown in Table I. Note that arithmetic instructions 
( i.e. vadd.vv ) will update to two subarrays 30 simultane 
ously , but to only one row / subarray 30. The truth table entry 
count corresponds to the number of search - update pairs 
needed to execute per bit of the input operands ; it is an 
estimation of the instruction's complexity . While some 
instructions have smaller truth tables than others , they may 
traverse them multiple times ( for example , vmul.vv tra 
verses its truth table a quadratic number of times , compared 
to vadd.w ) . 

a 

E. Supporting Reduction Sum Operations 
[ 0070 ] FIG . 6 is a block diagram of a reduction sum 
operation of a four - element two - bit vector according to 
embodiments described herein . The CSB 22 supports reduc 
tion sum ( redsum ) operations , which aggregate the elements 
of a vector by adding them to produce a scalar result . This 
algorithm flows from the most to the least significant bits of 
the input , and the steps for each bit are : 1 ) search for ‘ l'on 
each bit i ( mask the rest ) ; 2 ) the tag bits are reduced into an 
integer value ; and 3 ) the output of the pop count is accu 
mulated and multiplied by 2 at each step . 
[ 0071 ] CAPE 10 supports redsum operations across 
chains , using external logic composed by : one pop count per 
chain , a left shift block ( to multiply by two ) , an adder , and 
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TABLE I 

Metrics of a subset of RISC - V vector instructions supported by CAPE 

Truth 
Table 

Active 
Rows / Sub 

Red 
Cycles 

Total 
Cycles 

Per 
lane RISC - V 

vector Inst Ent . Srch Upd ( n bits ) ( n bits ) E ( PJ ) 
Arith . 1 vadd.vv 

vsub.vv 
vmul.vv 
vredsum.vs 
vand.vv 

8n + 1 
8n + 1 1 

3 
3 
4 inint 

5 
5 
4 
1 

0 
0 
0 3n ? - n 1 

0 mn 

Logic 2 
2 WNNNNNFAWW vor.vv 

n 
0 
0 
0 

1 
1 
1 
0 
1 

??? ??? ??? 

8.4 
8.4 

99.9 
0.4 
0.4 
0.4 
0.5 
0.4 
0.5 
3.2 
0.5 

vxor . VV 
Comp . n 

2 
1 
2 
5 
4 . 

vmseq.vx 
vmseq.vv 
vmslt.vv 
vmerge.vv 

n 

0 

n + 1 
n + 1 
3n + 6 

4 
1 
1 Other 0 

B. CAPE Micro - Architecture 
[ 0077 ] As previously described above with respect to FIG . 
2 , the CAPE 10 system is organized into four blocks : the 
control processor 20 , the VCU 26 , the VMU 24 and the CSB 
22. The CSB 22 is made up of CAPE 10 chains which have 
already been described in Section IV - D . Sections V - C and 
V - D describe in detail the VCU 26 and the VMU 24 . 

and mask for update , and 5 ) reduce . The sequencer 40 is by 
default in idle state . Once the control processor 20 sends a 
new request , the sequencer 40 transitions into state 2. The 
chain controller 34 keeps track of one counter , upc , which 
helps navigate the entries in the TTM 42 , and another 
counter , bit , to keep track of the bit being operated on and 
generating the appropriate idx and subarray select signal for 
the chain controller 34. The counters are initialized appro 
priately : upc = 0 every TT - loop , and bit is set to either MSB 
or LSB , depending on the operation , given an operand size . 

3. Truth Table Decoder 

C. Vector Control Unit ( VCU ) 
[ 0078 ] FIG . 7 is a schematic diagram of an exemplary 
VCU 26. The VCU 26 breaks down each vector operation 
into a sequence of commands ( e.g. , a signal sequence ) . 
Commands include the four CAPE 10 microoperations 
( read , write , search and update ) , as well as reconfiguration 
commands ( e.g. , to reconfigure the vector length ) . The 
illustrated embodiment implements a distributed design of 
the VCU 26 , built from multiple chain controllers 34 , shared 
across chain groups 36. A global control unit maintains a 
programmable truth table memory and a set of control status 
registers ( CSRs ) . When the VCU 26 receives a vector 
operation , it propagates the truth table data of the corre 
sponding associative algorithm to each of the chain control 
lers 34 which store it in a small , dedicated CAM ( global 
command distribution ) . 

[ 0081 ] The truth table decoder 44 produces the search and 
update data and masks , from the values stored in the TTM 
42 by shifting them by the appropriate amount and ORing 
them to generate a single digital word to be used by the 
subarray 30 row and column drivers . This approach is 
similar to a vertical micro - code scheme . On a 32 - bit con 
figuration , the chain controllers 34 distribute 143 bits of 
commands through the chain command buses , as shown in 
FIG . 7 . 

a 

D. Vector Memory Unit ( VMU ) 

1. Chain Controllers 

a [ 0079 ] The chain controllers 34 then distribute the com 
mands to the appropriate subarray ( s ) 30 in a chain 38 ( local 
command distribution ) . The chain controller 34 is composed 
of a sequencer 40 , a truth table memory ( TTM ) 42 , and a 
truth table decoder 44. Each TTM 42 entry corresponds to 
one search - update - reduce data pack , encoded efficiently to 
only store values for the bits involved in the operations . The 
entries in the TTM 42 use a standard format to represent any 
associative algorithm's truth table . Four additional bits per 
TTM 42 entry ( valid bits and accumulator enable ) are used 
to indicate if a search ( with / without accumulation ) or update 
operation is active , and if the reduction logic is going to be 
used . 

[ 0082 ] CAPE 10 communicates with the main memory 14 
via the VMU 24. When receiving a vector memory instruc 
tion from the control processor 20 , the VMU 24 will break 
it into a series of sub - requests to the main memory 14. Each 
sub - request accesses a block of memory of the data bus 
packet size of the main memory 14. When the sub - request is 
served to the VMU 24 , the CSB 22 consumes it in the 
following way . Similar to the byte interleaving scheme 
across different chips of a dynamic random - access memory 
( DRAM ) dual in - line memory module ( DIMM ) for optimal 
throughput , CAPE 10 stores adjacent vector elements in 
different chains 38 , which have the ability to perform the 
transfer independently , in a single cycle . This allows for the 
vector loads and stores to complete a full sub - request 
transfer in a single cycle . 
[ 0083 ] The system is designed in order to ensure that the 
sub - request size is smaller than the total number of chains 
38 , so that sub - requests do not need to be buffered in the 
VMU 24. The VMU 24 is non - blocking , and therefore CSB 
22 reads and writes are concurrent to the main memory 14 
data transfers . 

2. Sequencer 
[ 0080 ] The sequencer 40 implements a simple finite - state 
machine ( FSM ) with five states : 1 ) idle , 2 ) read TTM , 3 ) 
generate comparand and mask for search , 4 ) generate data 
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[ 0084 ] The CSB 22 of CAPE 10 is cache - less . Due to the 
large footprint of the vector memory request and the limited 
temporal locality , it is not beneficial to have a data cache 
between CAPE 10 and the main memory 14. As a result , the 
VMU 24 is directly connected to the memory bus , and 
follows the same cache coherence protocol as the caches in 
the control processor 20. Nonetheless , cache coherence 
introduces very trivial performance overhead , since the CSB 
22 and the control processor 20 share small amounts of data . 
Moreover , vectorization reduces the temporal locality of the 
code negating the potential benefits of having a cache . 

( implementation details of the reduction tree for a system of 
1,024 chains 38 are given in Section VI - C ) . A vector 
reduction sum instruction is thus ? 8x faster than an ele 
ment - wise vector addition . This trade - off opens new algo 
rithmic optimizations which favor using vector reduction 
sum instructions when possible . 

E. Reconfigurable Active Window 

1. Set Vector Length 2 

2. Replica Vector Load 
[ 0090 ] It can be challenging to fully utilize the long vector 
registers of CAPE 10 when applications operate over matri 
ces with a modest number of elements in each dimension . 
CAPE 10 includes a new replica vector load instruction 
( vlrw.v v1 , r1 , r2 ) which loads a chunk of r2 contiguous 
values , starting from the address in r1 , and replicates them 
along the vector register vl . Replica vector loads are par 
ticularly useful when vectorizing dense matrix multiplica 
tion in three steps : ( 1 ) a unit - stride vector load reads multiple 
rows from the first matrix into one vector register ; ( 2 ) a 
replica vector load reads a single row from the ( transposed ) 
second matrix and replicates this row into a second vector 
register , and ( 3 ) iterate over the rows and use vmul and 
vredsum to efficiently calculate the partial product . 

[ 0085 ] Variable - length vectors allow for applications to 
request a desired amount of data parallelism . In order to 
modify the vector length ( vl ) , programmers can use the 
standard RISC - V instructions vsetvl or vsetvli , which will 
return the maximum amount of lanes supported by the 
hardware ( MAX_VL ) or the exact amount requested , if it is 
smaller than MAX_VL . In CAPE 10 , that translates into 
using more or fewer columns , or even full chains 38 . 
Following the RISC - V standard documentation , the ele 
ments in any destination vector register with indices zvl 
remain unchanged . 

VI . Evaluation 

2. Set Vector Start 

[ 0086 ] Similarly to MAX_VL , RISC - V's standard CSR 
vstart is used to specify the index of the first active element 
in a vector instruction . 

[ 0091 ] This section discusses circuit , instruction , and sys 
tem modeling . Microoperation modeling provides delay and 
energy estimates for each CAPE 10 microoperation on one 
chain 38. Instruction modeling combines these circuit - level 
estimates with an associative behavioral emulator to esti 
mate the delay and energy for each vector instruction . 
System modeling integrates these instruction - level estimates 
into a gem5 - based cycle - approximate simulation model 
capable of executing binaries for both micro - benchmarks 
and complete applications . This multi - level modeling 
approach is used to explore system - level trade - offs . 

3. CAPE Support for the Active Window 
[ 0087 ] Setting a vl smaller than its hardware limit MAX_ 
VL , will mask columns that are stored in different chains 38 . 
To implement that , each chain controller 34 locally com 
putes a mask given its chain ID , the vstart value , the vl value , 
that is used in updates to generate the column signal : the 
address bus signals will contain Os on the masked columns . 
If all elements in a chain 38 are masked , the chain controller 
34 can power gate its peripherals while still maintaining the 
data stored unchanged . 

F. Vectorizing for CAPE 
[ 0088 ] Programmers can use vector intrinsics or a vector 
izing compiler to map well - structured data - parallel code to 
the CAPE 10 instruction set . Many classic vector optimiza 
tion techniques will directly apply to CAPE 10 , including 
loop reordering , loop restructuring , and memory access 
transformations . This section discusses two CAPE - specific 
optimizations that can improve performance when com 
pared to traditional vector architectures . 

A. Microoperation Modeling 
[ 0092 ] Amemory subarray 30 of 32 columnsx36 rows ( 32 
rows - 1 row / vector name , and 4 additional rows for meta 
data ) is simulated based on the 6T bitcell design with split 
wordlines of FIG . 3. A CAPE 10 subarray 30 consists of 
SRAM bitcells , precharge circuitry , write drivers , search 
AND gates , tag bit accumulator and tag bits . All of these are 
designed using ASAP 7 nanometer ( nm ) PDK circuit simu 
lation libraries . The latency and energy results incorporate 
wordline , bitline resistance and capacitances . 
[ 0093 ] This subarray 30 is then modeled as a black box 
and instantiated in the synthesized chain 38 design using 
Synopsys DC compiler . Synthesis results are further fed into 
an auto - place and route tool for floorplan and placement to 
generate a chain 38 layout . The control signals are routed to 
all the subarrays 30 which are driven by wire repeaters to 
reduce the overall delay . 

1. Vector vs. Horizontal Operations 
1. Delay of CAPE Primitives [ 0089 ] Traditional vector architectures discourage hori 

zontal ( i.e. , cross - lane ) operations since they are usually 
implemented using expensive and slow reduction trees . The 
horizontal operations of CAPE 10 use a combination of an 
intra - chain 38 redsum primitive and a modest global bit 
serial reduction tree ( see Section IV - E ) . The ability to 
bit - serially reduce all rows of all chains 38 simultaneously 
results in performance roughly proportional to the bitwidth 

[ 0094 ] Conventional wisdom might suggest that parallel 
microoperations ( i.e. search and update ) should be signifi 
cantly slower ( perhaps 32x since they might operate on 32 
elements per chain 38 ) than reads or writes . In CAPE 10 , 
both the circuit design and data layout enable very efficient 
searches and updates , since they are done across columns 
( with their own independent circuitry ) and not rows . 
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2. Energy of CAPE Instructions 
[ 0101 ] The associative emulator's microoperation statis 
tics are combined with the microoperation energy modeling 
in Table II to estimate the energy of each CAPE 10 instruc 
tion executing on a single chain 38 . 

Searches are only done to at most four rows simultaneously , 
which speeds up the sensing of the search outcome . 
[ 0095 ] Updates write to at most one row per subarray 30 , 
which essentially turns them into single - row conventional 
writes . In addition , updates do not use a ( priority ) encoder or 
address decoder , but rather re - use the outcome of searches 
( stored in the tag bits ) to conditionally update columns . 
Overall , the microoperation delays of CAPE 10 are balanced 
and range between 181 and 237 picoseconds ( ps ) ( Table II ) . 
[ 0096 ] The reduced size of the SRAM arrays enables very 
fast accesses ( 90 ps ) . For that reason , microoperation delays 
are largely dominated by the peripheral logic ( i.e. AND 
gates , OR gates , flip - flop ) and the local command distribu 
tion delay of the control signals ( 55 ps ) . Read is the slowest 
microoperation ( Table II ) , explained by the round - trip wire 
delay : once to transfer the control signals to all subarrays 30 , 
and another one to transfer back the data read to the 
controller . 

3. Dynamic Energy of the Chain 
[ 0102 ] Table I shows the energy spent for each vector 
instruction per scalar operation ( that is , per vector lane ) . As 
expected , arithmetic instructions are the most energy con 
suming explained by their large cycle count . Vector multi 
plication is clearly the most energy expensive instruction , it 
performs more than 3,000 searches and updates , combined . 
Logic instructions ( vand , vor , vxor ) are very efficient , since 
they perform very few ( bit - parallel ) microoperations . vred 
sum includes the energy consumed in doing the bit - parallel 
search , 3.0 picojoules ( PJ ) , as well as the energy consumed 
by the reduction logic , 8.9 PJ . 

2 

TABLE II 

Delay ( D ) and dynamic energy of bit - serial ( BS E ) and bit 
parallel ( BP E ) microoperations executed by one chain 

4. CAPE Cycle Time 
[ 0103 ] The system's critical path is 237 ps ( 4.22 gigahertz 
( GHz ) ) , which corresponds to the slowest microoperation 
( read ) . The maximum CAPE 10 frequency is conservatively 
reduced by 65 % to 2.7 GHz to account for clock skew and 
uncertainty . 

Search 4 
Rows 

Update w / o Update w / 
Prop Prop Read Write Red 

237 181 217 D ( ps ) 
BS E ( PJ ) 
BP E ( PJ ) 

227 
1.0 
5.7 

209 
1.2 
3.8 

209 
1.2 

2.8 2.4 . 8.9 C. System Modeling 
[ 0104 ] The modeling from the previous sections is used to 
derive global reduction logic and command distribution 
models as well as a system - level simulation framework . 2. Energy of CAPE Primitives 

[ 0097 ] The operand bit - slicing across the subarrays 30 in 
a chain 38 forces reads and writes to access a single bitcell 
( same row and column ) of all subarrays 30 in a chain 38. In 
turn , the same data layout allows for search and updates to 
maintain most subarrays 30 in a chain 38 idle , reducing the 
dynamic energy . For searches , only one subarray 30 / chain 
38 will be active ( because of operand locality ) ; and for 
update , only one or two ( if propagation is needed ) subarrays 
30 / chains 38 will be active . 
[ 0098 ] Dynamic energy estimates of a single chain 38 are 
shown in Table II , which include local command distribution 
of the 184 bits to all subarrays 30 , array access , as well as 
peripheral logic energy consumption . Estimates are shown 
for dynamic energy of the bit - serial ( BS E ) and bit - parallel 
( BP E ) flavors of each microoperation . Note that bit - parallel 
microoperations are very energy efficient given the shared 
control logic and command distribution . 

1. Reduction Logic 
[ 0105 ] The global reduction logic described in Section 
IV - E is synthesized for a system of 1,024 chains 38. The 
global reduction is pipelined into 5 stages with a critical path 
of 217 ps . The number of stages to model different CSB 22 
capacities are estimated by replicating or removing the 
different pipeline stages . 

a 

a 2. Global Command Distribution 

[ 0106 ] Global command distribution includes the delay 
between the VCU 26 and each of the chain controllers 34 , 
and it is estimated using a first - order approximation of wire 
delay on Metal 4 of an H - Tree that distributes the VCU 26 
signals control to each of the chain controllers 34 , using wire 
repeaters to improve the delay . The global command distri 
bution is pipelined and is not included as part of the cycle 
time : it adds a constant number of cycles of overhead per 
vector instruction . 

B. Instruction Modeling 
[ 0099 ] The chain 38 layout , delay , and energy modeling 
from the previous section are used and combined with the 
associative behavioral emulator to derive detailed ISA 
instruction - level energy and delay modeling for an entire 
chain 38 . 

3. System Methodology 

1. Delay of CAPE Instructions 

[ 0107 ] The CAPE 10 system is modeled by extending the 
gem5 cycle - approximate simulator framework . The control 
processor 20 is modeled using the RISC - V RV64G 
MinorCPU ( described in N. Binkert , B. Beckmann , G. 
Black , S. K. Reinhardt , A. Saidi , A. Basu , J. Hestness , D. R. 
Hower , T. Krishna , S. Sardashti , R. Sen , K. Sewell , M. 
Shoaib , N. Vaish , M. D. Hill , and D. A. Wood , “ The gem5 
Simulator , " SIGARCH Computer Architecture News , 2011 ) 
and is configured as a dual - issue , in - order , five - stage pipe 
line . The MinorCPU is modified to send commands to the 

[ 0100 ] The associative emulator models the associative 
behavior of subarrays 30 with read , write , search and update 
capability . The associative algorithms required for each 
vector instruction are implemented and microoperation mix 
count is extracted for a configuration of 32 - bit operand . 
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6. Baselines VMU 24 or VCU 26. The simulator accurately models the 
global reduction tree and command distribution delays . 
Detailed models of the VMU 24 , VCU 26 , and CSB 22 of 
CAPE 10 are developed . 
[ 0108 ] The VMU 24 is connected to a high bandwidth 
memory ( HBM ) memory system ( as described in J. Kim and 
Y. Kim , “ HBM : Memory solution for bandwidth - hungry 
processors ” ) to perform data transfers to / from the CSB 22 . 
The CSB 22 delays of each vector instruction are modeled 
as described in Section VI - B . 

[ 0114 ] The baselines are chosen to be general - purpose , 
area comparable to CAPE32k ( and CAPE131k ) , processing 
engines : one ( and two ) RISC - V RV64G out - of - order and 
8 - issue cores ( connected to the same HBM memory system 
as CAPE 10 ) running sequential ( and pthreads ) versions of 
the applications . When running a parallel ( pthreads ) version , 
the plots indicate how many cores are used ( up to three , 
based on the area study above ) . When sequential codes of 
the benchmarks are run on the same multicore machine , the 
extended shared cache capacity of two other ( idle ) cores are 
used . Table III summarizes the architectural configuration . 4. Area Reference 

TABLE III 

Experimental setup 

Baseline Core CAPE's Ctrl Processor 

( 0109 ] It is desirable to make area - equivalent compari 
sons . To that end , the area of the baseline out - of - order CPU 
is estimated based on a high - end Intel Skylake processor in 
14 nm technology . Each Skylake tile contains a CPU core , 
more than 1 MB of private caches , and 1.375 MB of shared 
LLC . To scale down the tile area to 7 nm , an estimated 
scaling factor of 1.8x is applied based on the area ratio 
between 14 nm and 7 nm High - Density SRAM bitcells . 
Furthermore , the area is subtracted for AVX and floating 
point support . ( Later in the section , the impact of adding an 
aggressive single - instruction multiple - data ( SIMD ) engine 
to the baseline is assessed , using a commercial - grade model 
and assuming no extra area overhead . ) As a result , one tile's 
area is estimated at about 8.8 square millimeters ( mm ) . 

System 
Configuration 

Core 
configuration 

out - of - order core , 3.6 GHz in - order core , 2.7 GHz 
32 kB / 32 kB / 1 MB 32 kB / 32 kB / 1 MB 
L1D / L1I / L2 L1D / L1I / L2 
5.5 MB L3 ( shared ) , 512 B L2 cache line 
512 B LL cache line 
8 - issue , 224 ROB , 72 LQ , 2 - issue in - order , 5 LSQ 
56 SQ 4/4/4/3/1 4/1/1/1 Int / FP / Mem / Br 
IntAdd / IntMul / FP / Mem / units 
Br units TournamentBP , 4096 BTB , 
TournamentBP , 4096 BTB , 16 RAS 
16 RAS 
8 - way , LRU , MESI , 2 8 - way , LRU , 2 tag / data 
tag / data latency latency 
16 - way , LRU , MESI , 14 16 - way , LRY , 14 tag / data 
tag / data latency latency 
11 - way , LRU , 50 N.A. 
tag / data latency , 
shared 
4H HBM , 8 channels , 16 DBps / 512 MB per channel 

L1 D / I cache 
5. CAPE32k and CAPE131k 

L2 cache 
L3 cache 

Main memory 

D. Microbenchmarks 

[ 0110 ] Two design points of CAPE 10 CAPE32k and 
CAPE131K - are chosen , corresponding to two different 
available vector length MAX_VL : 32,768 lanes and 131,072 
lanes . Their CSBs 22 have 1,024 and 4,096 chains 38 
respectively , with 4.5 and 18 MB of capacity . From the 
microoperation modeling ( Section VI - A ) , one chain 38 in 
CAPE 10 takes 2,434 square microns ( um > ) . Therefore , the 
CSB 22 of CAPE32k including the pipelined reduction tree 
takes 2.8 mm² , whereas the area of CAPE131k's CSB 22 is 
11.3 mm 
[ 0111 ] The area of the control processor 20 is then esti 
mated based on an in - order advanced RISC machine ( ARM ) 
Cortex - A53 core . One such core built in 16 nm takes 0.6 
mm² whereas 512 KB L2 takes 0.7 mm2 . The area is scaled 
down to 7 nm by 2.74x based on 16 nm and 7 nm HD SRAM 
bitcell area . In total , the area of the control processor 20 with 
1 MB L2 is around 0.73 mm2 . 
[ 0112 ] The total area of micro - memory in VCU 26 is 
estimated based on the truth table entry count of all the 
vector instructions that CAPE 10 supports . Each entry 
requires twelve 7 nm SRAM bitcells ( FIG . 7 ) . The total area 
requirement of the TT memory in the VCU 26 is merely 
0.002 and 0.007 mm2 for CAPE32k and CAPE131k . 
[ 0113 ] Since the total area of CAPE32k’s CSB 22 , control 
processor 20 and TT memory is much smaller than one 
( area - reference ) tile_3.5 vs. 8.8 mm ?, it is pessimistically 
assumed that the difference in area is taken up completely by 
the sequencer 40 and TT decoder 44 in the VMU 24 and 
VCU 26. The same area budget as in CAPE32k for the VMU 
24 and VCU 26 is applied ( 8.8-3.5 mm ) to similarly 
estimate the area of CAPE131k , and is overall under the area 
of two CPU tiles with caches ( 17.3 mm ? ) . The applications 
are manually vectorized using RISC - V vector intrinsics , 
which are run for different CSB 22 capacities ( MAX_VL ) 
without any code modifications . 

[ 0115 ] FIG . 8 is a graphical representation of performance 
microbenchmarks for different CSB 22 capacities . The bold 
vertical line corresponds to CAPE32k . CAPE 10 is first 
evaluated using eight micro - benchmarks , which load one / 
two vectors with 524,288 32 - bit elements each ( which fits in 
the baseline's L3 cache ) . FIG . 8 shows the performance of 
CAPE 10 for different CSB 22 capacities ( MAX_VL ) , 
normalized to the multicore ( Table III ) running a non 
parallel sequential version of the micro - benchmarks . For the 
baseline experiments , the caches are warmed up before 
beginning to measure performance . 

1. Scalability Study 
[ 0116 ] Memory - intensive benchmarks ( vld and vst ) show 
the ability of CAPE 10 to move data in and out of the CSB 
22 at different capacity design points . CAPE 10 can achieve 
a speedup of 6.6-10.5x by efficiently moving large blocks of 
data from DRAM into the CSB 22 with a single vector 
instruction , while the sequential baseline requires additional 
loop overhead and address calculation . In addition , the CPU 
still needs to serve requests across different levels of the 
cache hierarchy , even if L3 is warmed up . 
[ 0117 ] Search - based benchmarks ( srch and idxsrch ) are 
representative operations of DBMS and text - parsing ( i.e. 
word count ) applications . Both perform constant - vector 
comparisons ( vmseq.vx ) to search a key in a vector . In 
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in the memory - bound region for all MAX_VL , but far from 
the roofline peak throughput , indicating that it cannot fully 
utilize the increasing computational capacity of CAPE 10 . 
This explains the poor scalability of idxsrch at larger MAX_ 
VL ( FIG . 9A ) . 

E. Phoenix Benchmarks 

addition , idxsrch performs a sequential post - processing for 
every matching element , with the intention to mimic the 
behavior of the text - parsing Phoenix applications shown in 
Section VI - E . The ability of CAPE 10 to search efficiently 
enables a 42.5x for srch , whereas idxsrch's performance is 
eventually dominated by the sequential part of the algorithm 
for larger CSB 22 capacities , achieving a speedup of 10x at 
MAX_VL = 32 k . 
[ 0118 ] Arithmetic - intensive benchmarks ( vvadd , vvmul , 
dotpro , and redsum ) perform vector - vector addition , multi 
plication , multiply - accumulate , and reduction sum , respec 
tively ( besides loading / storing the input / output data ) . Their 
performance suggests that for moderate CSB 22 capacities , 
the large data - parallelism of CAPE 10 is able to compensate 
for the bit - serial latencies . For very large CSB 22 capacities 
( 2216 ) , however , global command distribution , reduction 
overheads , and data transfers limit their performance . 

[ 0123 ] All the applications in the Phoenix Benchmark 
Suite are used to evaluate the performance of CAPE 10 . 
Table IV shows the properties of each application . 

TABLE IV 

Statistics of the Phoenix Benchmark Suite applications 

#Cyc . on One 
03CPU 

#Inst . of Seq . 
Code Application Input Size 

2. CAPE Roofline Model Linear Regression 
Histogram 
Kmeans 
Matrix Multiply 
PCA 
String Match 
Word Count 
Reverse Index 

500 MB 
1.4 GB 
100k 

1000 x 1000 
1500 x 1500 
500 MB 
10 MB 

100 MB 

4.4 billion 
13.6 billion 
5.0 billion 
7.0 billion 

16.6 billion 
68.3 billion 
4.9 billion 
0.6 billion 

3.8 billion 
13.1 billion 
6.6 billion 

11.0 billion 
15.2 billion 
52.0 billion 
4.1 billion 
0.9 billion 

1. Results 

[ 0119 ] FIG . 9A is a graphical representation of roofline 
plots of microbenchmarks for CAPE 10 at various CSB 22 
capacities . FIG . 9B is a graphical representation of roofline 
plots of Phoenix applications for CAPE 10 at various CSB 
22 capacities . The star is a random reference point to help 
reconcile the different axis scales across the two plots . To 
characterize the computational capabilities and scalability of 
CAPE 10 , a Roofline model is constructed at various CSB 
22 capacities , symbolized by different MAX_VL values . 
[ 0120 ] The traditional Roofline model metrics are adapted 
to capture the peculiarities of CAPE 10. In the context of 
CAPE 10 , a unit of work is defined as a vector element 
micro - operation ( either a search or an update ) performed on 
an element of a vector . The x - axis displays the element 
micro - operational intensity in vector element microopera 
tions per byte of memory traffic between DRAM and the 
VMU 24 , and the y - axis displays the attainable vector 
element micro - operational throughput in giga micro - opera 
tions per second . Higher intensity leads to higher utilization 
of data loaded into the CSB 22 , and higher throughput 
suggests that the CSB 22 is able perform element micro 
operations at a higher rate on average . The system's memory 
bandwidth is dominated by HBM's theoretical peak ( 128 
GB / s ) . The theoretical maximum throughput of CAPE 10 is 
obtained from a case that would execute 1 pop / cycle , 
without control processor 20 , VCU 26 , and global command 
distribution overheads . 
[ 0121 ] The microbenchmarks can be classified into two 
groups : constant - intensity and increasing - intensity , with 
increasing CSB 22 capacity ( MAX_VL ) . Most benchmarks 
fall in the first category , explained by the linear decrease in 
vector instructions as MAX_VL scales up . The second 
category only contains idxsrch , which still performs a seri 
alized post - processing of each of the matches generated by 
the parallel search . 
[ 0122 ] As MAX_VL increases , the constant - intensity 
applications move from the compute - bound region to the 
memory bound region , and their throughput approaches the 
memory - bound roofline . This behavior suggests that con 
stant - intensity applications are able to efficiently utilize the 
increasing computational capabilities of CAPE 10. Ulti 
mately , the speedup plateaus due to the limit of the peak 
memory BW . This phenomenon demonstrates the need for a 
high throughput memory system for large CSB 22 capaci 
ties , justifying the use of HBM . In contrast , idxsrch remains 

[ 0124 ] FIG . 10 is a graphical representation of perfor 
mance of the Phoenix benchmarks for two- and three - core 
CPUs , CAPE32k and CAPE131k , normalized to a single 
CPU core . Single- and two - core CPUs are roughly area 
equivalent to CAPE32k and CAPE131k , respectively . FIG . 
10 shows speedup of CAPE32k and CAPE131k , which have 
similar area to one and two out - of - order cores with their 
caches ( see baselines in Section VI - C ) . The performance of 
a three - core system is also shown for reference . 
[ 0125 ] CAPE32k accelerates all applications by 14x on 
average , compared to one core , at a similar area design 
point . Both matrix multiply ( matmul ) and PCA ( pca ) are 
matrix - based applications with relatively small input sizes . 
However , the for - loop inter - iteration dependencies found in 
PCA prevented using the CAPE - specific instruction vidr 
( Section V - F ) that increases the vector utilization , enabling 
a significant increase in parallelism necessary to compensate 
the bit - serial costly vmul.w instruction . 
[ 0126 ] CAPE131k accelerates the applications by 14.4x 
on average , compared to two cores , at a similar area design 
point . String match ( strmatch ) , word count ( wrdent ) and 
reverse index ( revidx ) show worse performance , compared 
to CAPE32k . This scalability bottleneck is explained by the 
sequential traversing of the input file , as well as the serial 
ized post - processing of each match ( similar to idxsrch of 
Section VI - D ) . In turn , the dramatic increase in performance 
for Kmeans ( kmeans ) is due to its algorithmic nature . 
[ 0127 ] For CAPE32k , Kmean's dataset does not fit in the 
CSB 22 , which results in having to load it multiple times . 
Instead , Kmean's dataset fits in CAPE131k's CSB 22 , which 
translates into having to load it one single time and reuse it 
until the solution converges . In addition , the number of 
vector instructions inside the for - loops in the program is 
minimized due to the possibility to fully unroll all the 
iterations . 

2 
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putational capability to a much lesser degree . Like the 
microbenchmark idxsrch , these text - based applications must 
sequentially traverse through the matches of parallel 
searches and perform actions that are difficult to vectorize . 
As a result of Amdahl's law , any speedup from the vector 
ized regions is overshadowed by the cost of sequential 
regions , causing overall speedup to plateau . Coupled with 
increasing command distribution , the speedup in fact 
decreases as CAPE 10 scales up . 

a 

2. Comparison With SIMD Baseline 
[ 0128 ] One could argue that CAPE 10 is a vector - first 
compute core , where non - vector instructions are supported 
by an adjoining scalar engine ( the small control processor 
20 , already included in the area estimation and the simula 
tions ) . In contrast , today's CPUs are typically scalar - first 
compute cores , where vector instructions may be supported 
by an adjoining vector engine ( e.g. , Intel AVX or ARM 
SVE ) . To tease out whether CAPE 10 indeed constitutes an 
attractive compute tile for vectorizable code , an additional 
simulation experiment is conducted using a commercial 
grade model of an ARM core with SVE support . 
[ 0129 ] FIG . 11 is a graphical representation of speedups of 
the Phoenix benchmarks for ARM scalable vector extension 
( SVE ) SIMD implementations of 128- , 256- , and 512 - bit 
vectors normalized to a single - core running ARM scalar 
code . ARM's upstream gem5 model is used for this com 
parison , configured to match the RISC - V out - of - order base 
line's size and latency ( Table III ) , is used and equipped with 
four SIMD ALUs . The applications are manually vectorized 
using SVE intrinsics . 
[ 0130 ] Although the standalone core in the ARM configu 
ration is similar to that of the baseline , direct quantitative 
comparisons are tricky because of the different ISAs and 
compilation flows . Nevertheless , the results in FIG . 11 show 
speedups for the Phoenix Benchmarks running on the three 
SIMD configurations , normalized to a scalar - only run . The 
results in FIG . 10 ( CAPE32k vs RISC - V baseline ) and FIG . 
11 ( ARM + SVE vs ARM baseline ) suggest that CAPE32k 
can achieve , on average , more than five times as much 
performance as the 512 - bit SVE configuration ( comparable 
to Intel's most aggressive SIMD implementation , AVX 
512 ) . 

VII . Memory - Only Mode 
[ 0135 ] Although CAPE 10 is focused on implementing a 
RISC - V vector ISA efficiently as an associate computing 
tile , in some embodiments the CSB 22 could alternatively be 
reconfigured as storage by the chip whenever it may be more 
advantageous . This section outlines three examples of using 
CAPE 10 as a memory - only tile . In general , some additional 
support is needed to accept external requests . 

A. Scratchpad 
[ 0136 ] A scratchpad is simply a block of physical memory 
which can be typically accessed directly using ordinary 
loads and stores ( i.e. , mapped into the virtual addressing 
space ) . In a multicore chip , a scratchpad may be useful , for 
example , to store private data or to exchange noncacheable 
data across cores . To support this mode , the VMU 24 is able 
to take in memory requests from remote nodes through the 
system interconnect and perform the appropriate physical 
address indexing . 

a 

a 3. Roofline Study 

B. Key - Value Storage 
[ 0137 ] The scratchpad above can be further customized to 
operate as key - value storage , which is simply a repository of 
key - value pairs , where a value can be read from or written 
to by first finding its unique key ( or , if it is not found , by first 
allocating a new key - value pair ) . Because the CSB 22 is 
content - addressable , it naturally supports this mode . Assum 
ing , for example , that both key and value are 32 - bit wide , 
and that each CSB 22 chain 38 is made up of 32 subarrays 
30 , then a chain 38 can store 16x32 = 512 key - value pairs 
( that's about half a million key - value pairs in the smaller 
CAPE 10 configuration of the evaluation , CAPE32k ) . 
Again , as in the case of the scratchpad , the VMU 24 should 
be able to take in key - value requests from the system and 
contain the appropriate indexing logic . To insert new key 
value pairs , the VCU 26 may assist by running a micropro 
gram that scans the CSB 22 looking for free entries , and / or 
the control processor 20 may execute a small program that 
maintains a free list . 

a 

[ 0131 ] Similar to the microbenchmarks section , the Phoe 
nix applications are plotted using the Roofline model . By 
looking at FIG . 10 and FIG . 11 , the speedups of constant 
intensity applications ( matmul , lreg , hist , kmeans ) improve 
from CAPE32k to CAPE131k . However , the speedup of 
variable - intensity applications ( wrdent , revidx , strmatch ) 
worsens ; an exception is pca , whose speedup remained 
unchanged for reasons discussed in the last section and is 
reflected in its fixed position on the Roofline plot . 
[ 0132 ] Kmeans ' change in intensity is explained by its 
algorithmic nature , previously discussed in the Results sec 
tion . Unlike the other variable - intensity applications , its 
throughput on CAPE131k is much larger and closer to the 
compute - bound roofline , which leads to a dramatic increase 
in speedup : 426x with respect to an area comparable mul 
ticore system . 
[ 0133 ] Although not visible for the CSB 22 capacities 
shown in the Phoenix applications Roofline plot ( FIG . 9B ) , 
the throughput of constant - intensity applications shifts from 
compute - bound towards memory bound as the CSB 22 
capacity increases . This indicates that these applications are 
able to effectively utilize the increased computational capa 
bilities of CAPE 10 , until they are limited by the main 
memory 14 , which highlights the need for a high throughput 
main memory 14 like HBM . 
[ 0134 ] In contrast , the throughput of variable - intensity 
applications remains far from the memory - bound roofline , 
suggesting that they take advantage of the increased com 

C. Cache 

[ 0138 ] The CSB 22 can leverage key - value storage func 
tionality to work as a shared victim cache of the L2 caches , 
an additional slice of the LLC , etc. To do this , the control 
processor 20 and the VCU 26 are programmed to work 
closely with the controller of the cache it is augmenting 
( e.g. , on a miss , an L2 cache controller sends a message to 
the CAPE 10 tile to check if the block is present in the victim 
cache CAPE 10 is emulating , concurrently to initiating an 
LLC access ) . In one possible implementation , each cache 
line ( tag and data ) is stored row - wise ( since cache blocks can 
be fairly large ) ; neither tag nor data are bit - sliced . Since the 
CSB 22 has 32 rows of subarrays 30 , and each subarray 30 
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the CAPE is configured to decode and carry out the 
instructions for executing vector operations in situ 
via sequences of content - addressable memory opera 
tions without assistance from arithmetic logic units 
( ALUS ) . 

12. The integrated circuit of claim 11 , wherein the CAPE 
is programmable using reduced instruction set computing 
( RISC ) instructions . 

13. The integrated circuit of claim 12 , wherein the CAPE 
is programmable using RISC - V or later instructions . 

14. The integrated circuit of claim 11 , wherein : 
the integrated circuit is a multi - core processor ; and 
the CAPE comprises a first core of the multi - core pro 

cessor . 

has 32 rows of bitcells , CAPE 10 as a cache can support up 
to ten index bits in the address ( 1,024 rows ) . An access to the 
CAPE 10 cache can be carried out with a few microinstruc 
tions that search for a tag match among a set of rows and , 
if a hit is found , command the VMU 24 to deliver the data a 
block . 
[ 0139 ] Those skilled in the art will recognize improve 
ments and modifications to the preferred embodiments of the 
present disclosure . All such improvements and modifica 
tions are considered within the scope of the concepts dis 
closed herein and the claims that follow . 

1. A content - addressable processing engine ( CAPE ) con 
figured to execute a program having scalar operations and 
vector operations according to a CAPE instruction set archi 
tecture ( ISA ) , the CAPE comprising : 

a control processor configured to execute the scalar opera 
tions ; and 

a compute - storage block ( CSB ) which is a co - processor of 
the control processor and comprises an array of con 
tent - addressable parallel processing memories , wherein 
the CSB is configured to decode and carry out the 
vector instructions in situ via sequences of content 
addressable memory operations without assistance 
from arithmetic logic units ( ALUS ) ; 

wherein the vector instructions reference program data 
within the CSB according to a predetermined list of 
available vector register identifiers specified in the 
CAPE ISA . 

2-4 . ( canceled ) 
5. The CAPE of claim 1 , wherein the array of content 

addressable parallel processing memories in the CSB com 
prises a plurality of subarrays , each subarray comprising 
rows of content - addressable memories . 

6. The CAPE of claim 5 , wherein each row in one of the 
plurality of subarrays corresponds to a different bit of a 
vector element . 

7. The CAPE of claim 1 , further comprising a vector 
memory unit ( VMU ) configured to interface with a memory 
external to the CAPE . 

8. The CAPE of claim 7 , wherein load and store instruc 
tions route to the CSB through the VMU . 

9. The CAPE of claim 1 , further comprising a vector 
control unit ( VCU ) configured to generate signal sequences 
for the CSB to execute the vector operations . 

10. The CAPE of claim 9 , wherein non memory - access 
instructions route to the CSB through the VCU . 

11. An integrated circuit , comprising : 
a content - addressable processing engine ( CAPE ) com 

prising an array of content - addressable parallel pro 
cessing memories ; 

wherein : 
the CAPE is configured to execute processing instruc 

tions comprising instructions for executing vector 
operations according to a CAPE instruction set archi 
tecture ( ISA ) ; and 

15. The integrated circuit of claim 14 , wherein the multi 
core processor is configured to cause the CAPE to operate in 
a memory - only mode providing on - chip memory for other 
cores of the multi - core processor . 

16. The integrated circuit of claim 14 , further comprising 
a central processing unit ( CPU ) core . 

17. The integrated circuit of claim 14 , further comprising 
a graphic processing unit ( GPU ) core . 

18. The integrated circuit of claim 11 , wherein the CAPE 
is configured to perform a first vector operation and a first 
scalar operation in parallel if there is no data dependency 
between the first vector operation and the first scalar opera 
tion . 

19. A method for executing a program using parallel 
processing in a content - addressable processing engine 
( CAPE ) according to a CAPE instruction set architecture 
( ISA ) , the method comprising : 

receiving , at the CAPE , a set of processing instructions 
described by a general instruction set ; 

executing scalar operations from the set of processing 
instructions , and 

decoding vector instructions from the set of processing 
instructions and executing corresponding vector opera 
tions in situ via content - addressable memory opera 
tions by an array of content - addressable parallel pro 
cessing memories ; 

wherein the vector instructions reference program data 
according to a predetermined list of available vector 
register identifiers specified in the CAPE ISA . 

20. The method of claim 18 , further comprising : 
generating signal sequences for operating the array of 

content - addressable parallel processing memories from 
the vector instructions described by the general instruc 
tion set ; and 

performing search and update operations using the signal 
sequences in a bit - parallel fashion across the array of 
content - addressable parallel processing memories . 

* 


