
US 20220229663A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0229663 A1

Martínez et al . (43) Pub . Date : Jul . 21 , 2022

(54) CONTENT - ADDRESSABLE PROCESSING
ENGINE

(71) Applicant : Cornell University , Ithaca , NY (US)

(72) Inventors : José F. Martínez , Ithaca , NY (US) ;
Helena Caminal , Ithaca , NY (US) ;
Kailin Yang , Ithaca , NY (US) ; Khalid
Al - Hawaj , Ithaca , NY (US) ;
Christopher Batten , Ithaca , NY (US)

(52) U.S. Cl .
CPC G06F 9/30036 (2013.01) ; G06F 9/3004

(2013.01) ; G06F 9/3001 (2013.01)
(57) ABSTRACT
A content - addressable processing engine , also referred to
herein as CAPE , is provided . Processing - in - memory (PIM)
architectures attempt to overcome the von Neumann bottle
neck by combining computation and storage logic into a
single component . CAPE provides a general - purpose PIM
microarchitecture that provides acceleration of vector opera
tions while being programmable with standard reduced
instruction set computing (RISC) instructions , such as
RISC - V instructions with standard vector extensions . CAPE
can be implemented as a standalone core that specializes in
associative computing , and that can be integrated in a tiled
multicore chip alongside other types of compute engines .
Certain embodiments of CAPE achieve average speedups of
14x (up to 254x) over an area - equivalent out - of - order pro
cessor core tile with three levels of caches across a diverse
set of representative applications .

(21) Appl . No .: 17 / 149,936

(22) Filed : Jan. 15 , 2021

Publication Classification

(51) Int . Ci .
G06F 9/30 (2006.01)

Increment a
by one a = { 0 , 1 , 2) = a = { 1 , 2 , 3 } =

a1a0 Match ? a1 ao Match

0 0 0 0 1

C
bit i = 0

Search Update 1 1
Ci aj Ci + 1 a ; [+ 1

t
01 1

0 1 1 0 1

1 10 0 1 1

1 0 0 1
1 1 1 0

?
10 11 X 0 i Search X 1 Update

C 21 ao Match ? a1 ao Match

0 1 0 1 0 0 1

ill1 0 1 11 0 0

bit i = 0
Search Update
C¡ a ; Ci + 1 aj
0 0 0 0 0-0
0 1 04
1 0 0 1
1 1 1 0

0 1 1 0 1 1

4
11 X 0 Update 11 X 1 Search

?? ? ?? Match ? a1 ao Match

0 0 1 0 0 1

bit i = 1
Search Update
Ci a Ci + 1 a
0 0 0 0 00
A 110 1 0 o

1 0 0 0 1 0
0 1 1 0 1 1 10 All carry

1 0 0 1 bits are o
(op . done) 1 1 AA

i 10 X Search ??
10 10 1 x Update

Patent Application Publication Jul . 21 , 2022 Sheet 1 of 10 US 2022/0229663 A1

Increment a
by one a = { 0 , 1 , 2 } a = { 1 , 2 , 3 } >)

? a1 ao Match

0 0 1 1

| 1 0 1

? a1 ao Match
bit i = 0

Search Update 1 1 ! 1 0 0 10
Ci ai Ci + 1 aj 0 1
-00 0
0 1 1. O 0
1 0 0 1
1 1 1 0

11 1 X 0 X 0 Search
1

0 1 1 1

10 X 1 Update

? ?t ao Match ? ?t ao Match

0 0 0 0 1 0
bit i = 0

Search Update
Ci ai Ci + 1 a ;

00
0

0 1
0 1 1 1 0 0 1

0 1 0 1 1

1 0 0 1
1 1 1 0

X 1 Search 11 X Update

Match ? a1 ao Match i c a1 ao
0 1 0 0 | 0 0 1

bit i = 1
Search Update
Ci ai Ci + 1 a ;
ho 0-0

A 1

1 . 0 0 1 0

0 1 1 0 0 i All carry
10 0 1

1 1
bits are 0
(op . done) 1 x Update

1 1 10
i i10 X Search XL 10

FIG . 1

Main Memory 14

Patent Application Publication

CAPE

10

Heterogeneous Architecture

L2 $

1

FPGA 18

L11 $

L1D $

Core 1 16

CAPE 10

Resp .

VMU

Control Processor 20

24

Core 2 16

Fore 3

VMem Cmd

16

VArith /
| VLogic Cmd

11
Resp .

VLoad Data

VStore
1 1

Data 1

Integrated GPU / Accel . 12

Resp .

VCU 26

CSB 22

Jul . 21 , 2022 Sheet 2 of 10

|

Assoc . pops

I

-
L

FIG . 2

US 2022/0229663 A1

Patent Application Publication Jul 21 , 2022 Sheet 3 of 10 US 2022/0229663 A1

28

Pre - charge to VDD / 2

BLBO BLO BLB1 BL1 | BLB2 BL2
VDD WLRO 0

1
0

WLLO GND

WLR 1 0 GND Search for " 10X "
0 0

WLL 1 4 VDD

WLR2 1 1 GND
X

WLL2 ??? GND

?? M1 IM3 X = “ Don't care ") () 1 0 1

FIG . 3A

28
BL ; = VDD = BLB ; = GND

BLBO BLO BLB1 BL1 || BLB2 BL .
WLRO GND

X

WLLO GND

WLR 1 1 VDD Update with “ X1X " ? 1
10

WLL 1 VDD

WLR 12 GND
EX

10 ? WLL2 GND

(X = " Masked Row ") -

FIG . 3B

Patent Application Publication Jul . 21 , 2022 Sheet 4 of 10 US 2022/0229663 A1

30 30

Bit - Sliced Vector Elements Bit - Sliced Vector Elements

1 ISF O - WA - 1
419) * 100

(03191 ,
* 1) 165

:

)

Bit - Parallel 1980)
4) ** (?)

** (9) fe +

47 (9) 51 N - NONE CO) 142) 14 ,

orto .
0 .. # vect . elements

FIG . 4B

32

0001 C 0 .. # vect . elements
FIG . 4D

+9306) ?
8169) 16 ,

942) HOME ????? ?? 110) 32 (TO) 1951
(276

16 .
II .

(167 FOR
9142) E91 (334

? V30 V2 ; ? V2i + 1 ; V3i + 1 V231) V3311 V40 V4 ; V4j + 1 V4311 32 32

30 30

Bit - Sliced Vector Elements Bit - Sliced Vector Elements

o 9 * () 16 ODOO J - 001
J - 00 O

:

* (?) 09 . Bit - Serial 0 0
OOOO

0 .. # vect . elements
FIG . 4A

32

FIG . 4C O
O000 C

0 .. # vect . elements

97) . 32 ?? t ? € ; ? II

1916 . (15 .

Ci + 1

32 32
Search Update

Search Datapath

Update Datapath

Patent Application Publication

DO
D

Col Seli DO

MD Drivi

30

30

Subarray

Row Drivi

Subarray .

Row Drivi

FB Loopi

SA ;

JO

000

PIE
Match + ACC1 Tag Bits 1

Tag Bits ;

DO
o

B --------

MD Drivi + 1

30

30

Propagation Bus

Subaray

Jul . 21 , 2022 Sheet 5 of 10

Comparand Bus

Subarray : i + 1

Propagation Bus
Comparand Bus

Data Bus

DO

DO "

FIG . 5A

FIG . 5B

US 2022/0229663 A1

Patent Application Publication

s + = e [k] , k = 0 , ... , 3

Reduce e into a scalar valuer

-

e = { 0 , 1 , 2 , 3 }

r = 6

bit i = 1 :

bit i = 0 :

Match

Match

e 1 eo

Pop

eneo

Pop

Count

Count

0 0

0 0

0

1

2

0 1

2

6

10

1

+

0

1 1

0

1 1

4

* 2

* | * 2

* 2 1

Jul . 21 , 2022 Sheet 6 of 10

_X_Search

ix_1_Search
FIG . 6

US 2022/0229663 A1

Sequencer 40 FSM

TT Decoder 44

IIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIII

idxo

CSB 22

* com

GRedo
Redo

Red2

Chain Groupo

Chain Group 2

Patent Application Publication

Idle

Read TT

??

36

ino

I Value | Mask

36

OR

idx 3

1

VO..v31

90)
III

Search

Update
Reduce

in 3

??
TT Memory 42

Ctrlo 34

Ctrl 4 34

1

Chain Ctrl 34

Red

val

False
False

TT Decoder 44

val ino

VO..v31

chain 38

chain 38

chain 38

chain 38

chain 38

Update

chain 38

False 0 : 1
True 0 : 1

:

Jul . 21 , 2022 Sheet 7 of 10

Sequencer 40

in 3

Chain Group 1

TT Memory 42

True True

Chain Group 3 Red 3

36

Red 1

36

Search

val acc ino : in 3
True False 0 : 1 .

Vect Inst .

Chain Cmds

1
: 0

GRed
1

III

From CP

To chains

*

FIG . 7

US 2022/0229663 A1

Speedup w.rit . Seq.Code

45

vld

40

Patent Application Publication

35 30 25

IIII
Vst

Hy + wadd * mom wmul
dotpro redsum idxsrch srch

20 15

Jul . 21 , 2022 Sheet 8 of 10

10 5 0
25

26

27 28 29 210 211

22

213

24

215 216

217

218

219

MAX_VL

US 2022/0229663 A1

FIG . 8

105 .

Microbenchmarks

Peak Throughput for MAX_VL = 16384
vimul

dotpro

4096

104

Memory BW (128GB / s)

Idxsich

Patent Application Publication

1024

.

redsum

Wadd

103

sich

" T

101

102

103

Throughput (109 Vector Element Microops / s)

FIG . 9A

Phoenix Apps

Peak Throughput for MAX_VL = 131072

Memory BW (128GB / s)

treg

Jul . 21 , 2022 Sheet 9 of 10

kmeans hist

105 .

32768

?
1

I

strmatch

matmul

wrecnt

104

reviax

pca 103

104

105

Operational Intensity (Vector Element Microops / byte)
FIG . 9B

US 2022/0229663 A1

Speedups w.r.t. Single Out - of - Order Core

103 .

-761

2 - Core 3 - Core

254 225

102 .

CAPE32K

88

55

Patent Application Publication

44

CAPE131k

31

26

20
15

13

Lud
101 .

4.33.9

3.61

2.52.5
.9

2.8K
.9

2.7)

3.3
2.2

2.3
1.6

2 .

2.22.52.0 1.8

2.3
1.7

2.6
1.8

1.51

100

pca

wrdcnt

revidx

strmatch
matmul

Ireg

hist

kmeans
geomean

FIG . 10

Jul . 21 , 2022 Sheet 10 of 10

Speedups w.r.t. Single ARM Scalar Core
14

1.3

93641
@ 304

SVE - 128

12

SVE - 256

8 : 9

16 14 12 10 8 6 4 2 0

SVE - 512

7 : 3

1 ...

6.51
4.2

38 4.5

3.5 .

3.8

3 : 1

-2.5
82 : 1.5

.3 6.9

.1 .2 .3

134431

.01.07.14 wrdcnt

- * www .

US 2022/0229663 A1

pca

revidx
strmatch
matmul

Treg

hist

kmeans
geomean

FIG . 11

US 2022/0229663 Al Jul . 21 , 2022
1

CONTENT - ADDRESSABLE PROCESSING
ENGINE

GOVERNMENT SUPPORT

[0001] This invention was made with government funds
under Agreement No. HR0011-18-3-0004 awarded by The
Defense Advanced Research Projects
[0002] Agency (DARPA) . The U.S. Government has cer
tain rights in this invention .

FIELD OF THE DISCLOSURE

[0003] The present disclosure relates to processing - in
memory (PIM) architectures for general purpose computing . a

BACKGROUND

[0004] Processing - in - memory (PIM) architecture propos
als attempt to overcome the von Neumann bottleneck by
combining computation and storage logic into a single
component . In particular , in - situ PIM architectures leverage
low - level computational abilities in a memory array . Con
tent - addressable memories (CAMs) arguably constitute the
first in - situ PIM architectures , as they have been around for
more than 60 years . CAMs are equipped with additional
logic per bitcell to perform searches to many cells simulta
neously .
[0005] Content - addressable parallel processor (CAPP)
designs from the 1970s extend CAMs with the ability to
search and update multiple rows in parallel . By sequencing
such search / update operations , CAPP designs can also per
form a variety of arithmetic and logic operations (referred to
as associative algorithms) in a massively parallel and bit
serial fashion .
[0006] Recently , some interesting proposals have emerged
that advocate for leveraging the foundations of CAPP in
modern microarchitectures . However , the proposed solu
tions require emerging memory technology or expensive
12T memory bitcells . In addition , these proposals require
either low - level programming or a restrictive programming
language with a custom compilation flow .

integrated in a tiled multicore chip alongside other types of
compute engines . Certain embodiments of CAPE achieve
average speedups of 14x (up to 254x) over an area - equiva
lent out - of - order processor core tile with three levels of
caches across a diverse set of representative applications .
[0009] An exemplary embodiment provides a CAPE con
figured to execute a program having scalar operations and
vector operations . The CAPE includes a control processor
configured to execute the scalar operations . The CAPE
further includes a compute - storage block (CSB) configured
to execute the vector operations in situ by an array of
content - addressable parallel processing memories .
[0010] Another exemplary embodiment provides an inte
grated circuit . The integrated circuit includes a CAPE com
prising an array of content - addressable parallel processing
memories . The CAPE is configured to execute processing
instructions comprising instructions for executing vector
operations . The CAPE executes the vector operations in situ
by the array of content - addressable parallel processing
memories .
[0011] Another exemplary embodiment provides a method
for executing a program using parallel processing in a
CAPE . The method includes receiving , at the CAPE , a set of
processing instructions described by a general instruction
set . The method further includes executing scalar operations
from the set of processing instructions . The method further
includes executing vector operations from the set of pro
cessing instructions in situ by an array of content - address
able parallel processing memories .
[0012] Those skilled in the art will appreciate the scope of
the present disclosure and realize additional aspects thereof
after reading the following detailed description of the pre
ferred embodiments in association with the accompanying
drawing figures .

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

SUMMARY

[0007] A content - addressable processing engine , also
referred to herein as CAPE , is provided . Processing - in
memory (PIM) architectures attempt to overcome the von
Neumann bottleneck by combining computation and storage
logic into a single component . For example , the content
addressable parallel processing (CAPP) paradigm from the
1970s is an in - situ PIM architecture that leverages content
addressable memories to realize bit - serial arithmetic and
logic operations via sequences of search and update opera
tions over multiple memory rows in parallel . Embodiments
described herein apply the concepts behind classic CAPP to
build an entirely complementary metal - oxide - semiconduc
tor (CMOS) -based , general - purpose microarchitecture that
can deliver manifold speedups while remaining highly pro
grammable .
[0008] CAPE provides a general - purpose PIM microarchi
tecture that provides acceleration of vector operations while
being programmable with a general instruction set (e.g. ,
standard reduced instruction set computing (RISC) instruc
tions , such as RISC - V instructions with standard vector
extensions) . CAPE can be implemented as a standalone core
that specializes in associative computing , and that can be

[0013] The accompanying drawing figures incorporated in
and forming a part of this specification illustrate several
aspects of the disclosure , and together with the description
serve to explain the principles of the disclosure .
[0014] FIG . 1 is a block diagram of an example associative
increment algorithm .
[0015] FIG . 2 is a schematic block diagram of an embodi
ment of a content - addressable processing engine (CAPE) .
[0016] FIG . 3A is a schematic diagram of an exemplary
three - by - three six transistor (6T) static random - access
memory (SRAM) array performing a search operation .
[0017] FIG . 3B is a schematic diagram of the memory
array of FIG . 3A performing an update operation .
[0018] FIG . 4A is a block schematic diagram of bit - vector
active operands for bit - serial search on an exemplary com
pute - storage block (CSB) .
[0019] FIG . 4B is a block schematic diagram of bit - vector
active operands for bit - parallel search on the CSB .
[0020] FIG . 4C is a block schematic diagram of bit - vector
active operands for bit - serial update on the CSB .
[0021] FIG . 4D is a block schematic diagram of bit - vector
active operands for bit - parallel update on the CSB .
[0022] FIG . 5A is a block diagram of an exemplary search
path for subarrays of the CSB .
[0023] FIG . 5B is a block diagram of an exemplary update
path for subarrays of the CSB .

a

a

a

a

US 2022/0229663 A1 Jul . 21 , 2022
2

a

[0024] FIG . 6 is a block diagram of a reduction sum
operation of a four - element two - bit vector according to
embodiments described herein .
[0025] FIG . 7 is a schematic diagram of an exemplary
vector control unit (VCU) .
[0026] FIG . 8 is a graphical representation of performance
microbenchmarks for different CSB capacities .
[0027] FIG . 9A is a graphical representation of roofline
plots of microbenchmarks for CAPE at various CSB capaci
ties .
[0028] FIG . 9B is a graphical representation of roofline
plots of Phoenix applications for CAPE at various CSB
capacities .
[0029] FIG . 10 is a graphical representation of perfor
mance of the Phoenix benchmarks for two- and three - core
central processing units (CPUs) , CAPE32k and CAPE131k ,
normalized to a single CPU core .
[0030] FIG . 11 is a graphical representation of speedups of
the Phoenix benchmarks for advanced reduced instruction
set computing (RISC) machine
(0031) (ARM) scalable vector extension (SVE) single
instruction multiple - data (SIMD) implementations of 128- ,
256- , and 512 - bit vectors normalized to a single - core run
ning ARM scalar code .

>

DETAILED DESCRIPTION

contrast , when an element is referred to as being " directly
connected ” or “ directly coupled ” to another element , there
are no intervening elements present .
[0035] Relative terms such as “ below ” or “ above ” or
“ upper ” or “ lower ” or “ horizontal ” or “ vertical ” may be used
herein to describe a relationship of one element , layer , or
region to another element , layer , or region as illustrated in
the
[0036] Figures . It will be understood that these terms and
those discussed above are intended to encompass different
orientations of the device in addition to the orientation
depicted in the Figures .
[0037] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the disclosure . As used herein , the singular
forms “ a , " " an , ” and “ the ” are intended to include the plural
forms as well , unless the context clearly indicates otherwise .
It will be further understood that the terms “ comprises , ”
“ comprising , ” “ includes , " and / or “ including " when used
herein specify the presence of stated features , integers , steps ,
operations , elements , and / or components , but do not pre
clude the presence or addition of one or more other features ,
integers , steps , operations , elements , components , and / or
groups thereof .
[0038] Unless otherwise defined , all terms (including tech
nical and scientific terms) used herein have the same mean
ing as commonly understood by one of ordinary skill in the
art to which this disclosure belongs . It will be further
understood that terms used herein should be interpreted as
having a meaning that is consistent with their meaning in the
context of this specification and the relevant art and will not
be interpreted in an idealized or overly formal sense unless
expressly so defined herein .
[0039] A content - addressable processing engine , also
referred to herein as CAPE , is provided . Processing - in
memory (PIM) architectures attempt to overcome the von
Neumann bottleneck by combining computation and storage
logic into a single component . For example , the content
addressable parallel processing (CAPP) paradigm from the
1970s is an in - situ PIM architecture that leverages content
addressable memories to realize bit - serial arithmetic and
logic operations via sequences of search and update opera
tions over multiple memory rows in parallel . Embodiments
described herein apply the concepts behind classic CAPP to
build an entirely complementary metal - oxide - semiconduc
tor (CMOS) -based , general - purpose microarchitecture that
can deliver manifold speedups while remaining highly pro
grammable .
[0040) CAPE provides a general - purpose PIM microarchi
tecture that provides acceleration of vector operations while
being programmable with a general instruction set (e.g. ,
standard reduced instruction set computing (RISC) instruc
tions , such as RISC - V instructions with standard vector
extensions) . CAPE can be implemented as a standalone core
that specializes in associative computing , and that can be
integrated in a tiled multicore chip alongside other types of
compute engines . Certain embodiments of CAPE achieve
average speedups of 14x (up to 254x) over an area - equiva
lent out - of - order processor core tile with three levels of
caches across a diverse set of representative applications .

[0032] The embodiments set forth below represent the
necessary information to enable those skilled in the art to
practice the embodiments and illustrate the best mode of
practicing the embodiments . Upon reading the following
description in light of the accompanying drawing figures ,
those skilled in the art will understand the concepts of the
disclosure and will recognize applications of these concepts
not particularly addressed herein . It should be understood
that these concepts and applications fall within the scope of
the disclosure and the accompanying claims .
[0033] It will be understood that , although the terms first ,
second , etc. may be used herein to describe various ele
ments , these elements should not be limited by these terms .
?? terms are only to distinguish one element fr
another . For example , a first element could be termed a
second element , and , similarly , a second element could be
termed a first element , without departing from the scope of
the present disclosure . As used herein , the term “ and / or ”
includes any and all combinations of one or more of the
associated listed items .
[0034] It will be understood that when an element such as
a layer , region , or substrate is referred to as being “ on ” or
extending “ onto ” another element , it can be directly on or
extend directly onto the other element or intervening ele
ments may also be present . In contrast , when an element is
referred to as being directly on ” or extending “ directly
onto ” another element , there are no intervening elements
present . Likewise , it will be understood that when an ele
ment such as a layer , region , or substrate is referred to as
being “ over ” or extending " over ” another element , it can be
directly over or extend directly over the other element or
intervening elements may also be present . In contrast , when
an element is referred to as being “ directly over ” or extend
ing “ directly over ” another element , there are no intervening
elements present . It will also be understood that when an
element is referred to as being “ connected ” or “ coupled ” to
another element , it can be directly connected or coupled to
the other element or intervening elements may be present . In

a

I. Introduction

[0041] Embodiments described herein apply the concepts
behind classic CAPP architectures to build an entirely

US 2022/0229663 A1 Jul . 21 , 2022
3

CMOS - based , general - purpose microarchitecture that can
deliver manifold speedups while remaining highly program
mable . An exemplary full - stack design of CAPE , built out of
dense push - rule six - transistor (6T) static random - access
memory (SRAM) arrays , is described . This embodiment of
CAPE is programmable using RISC - V instruction set archi
tecture (ISA) with standard vector extensions . It should be
understood that embodiments described herein are program
mable with any general instruction set , i.e. an instruction set
for performing many types of computer instructions rather
than a parallel processing - specific instruction set (e.g. , a
RISC instruction set or complex instruction set computing
(CISC) instruction set) .
[0042] The contributions of this disclosure include :

[0043] A CMOS - based implementation of an associa
tive - compute - capable engine based on dense 6T

two cases where carry is 0. This is because the output in each
case is the same as the input - neither the element's bit nor
the running carry flip as a result of applying the half adder
truth table (crossed - out entries in the truth tables of FIG . 1) .
Note also that some additional support beyond search / update
would be needed , namely : 1) Two bits of additional storage
per vector element are needed . One bit serves as the running
carry (initialized to 1 at the beginning of the instruction with
a single bulk - update) , and one bit serves to “ tag ” matching
elements (Match) in each of the two searches . Fortunately ,
these extra bits can be reused across a vector element's bits
in fact , they can be reused across instructions , even if the
vector names change) . 2) In order to constrain searches and
updates to the ith bit of each element , embodiments may be
able to mask out the other bits . 3) The sequence of opera
tions that implements the increment instruction needs to be
" stored ” somewhere (e.g. , the micro - memory of a
sequencer) .
[0051] This procedure seems painfully slow : for each bit
multiple search and update operations are required . Already
for a relatively simple increment instruction on a 32 - bit
value this would represent over one hundred such opera
tions . However , this is done simultaneously on tens of
thousands of vector elements , and therein lies the power of
associative computing . As the results below will show , such
vector - level parallelism more than makes up for the bit
serial nature of these operations .

SRAM arrays .
[0044] An optimized data layout on these SRAM arrays

that maximizes operand locality .
[0045] A microarchitecture organization that can per
form data - parallel computations on tens of thousands of
vector elements .

[0046] A system organization able to perform efficient
data transfers to maintain the benefits of its inherent
massively parallel computational power .

[0047] A mapping of the standard RISC - V ISA to this
microarchitecture , which allows for generality , high
programmability , and compatibility with existing com
pilation flows . III . Overview of CAPE

II . Associative Computing [0052] One goal of this disclosure is to leverage associa
tive computing to deliver manifold speedups while remain
ing highly programmable and general . Accordingly , CAPE
provides an implementation of associative computing as an
in - situ PIM core that uses state - of - the - art CMOS technol
ogy , adopts a contemporary ISA abstraction , and can be
readily integrated into a tiled architecture .
[0053] FIG . 2 is a schematic block diagram of an embodi
ment of CAPE 10. In the illustrated embodiment , CAPE 10
is deployed in a heterogeneous multi - core processor 12 in
communication with a main memory 14. In this regard , the
multi - core processor 12 may be any appropriate general
purpose processor , such as a central processing unit (CPU)
or a graphic processing unit (GPU) , generally comprising an
integrated circuit with a common semiconductor substrate
(e.g. , wafer) . Other cores 16 of the multi - core processor 12
can therefore include one or more of a CPU core , a GPU
core , or another general purpose or specialized processing

[0048] An associative computing engine 1) stores data in
vector form , 2) can compare a key against all vector ele
ments in parallel (search) , and 3) can update all matching
elements in bulk with a new value (update) . These opera
tions are typically arranged in search - update pairs , and they
are bit - serial , element - parallel — i.e . , a search - update pair
operates on the same bit of all the elements of a vector , the
next pair on the next bit , and so forth . The sequence of
search - update pairs that operate sequentially on all the bits
of each vector value constitute basically an instruction in
this associative computing paradigm . Associative algo
rithms are thus simply sequences of such instructions , much
like a regular program .
[0049] FIG . 1 is a block diagram of an example associative
increment algorithm . In the associative increment algorithm ,
all vector elements go up in value by one . An associative
computing engine would first add 1 to the least significant bit
of all vector elements and remember any carry . Then , for
each element , it would add the corresponding carry to the
next bit ; and so forth . However , an associative computing
engine generally does not “ add ” bits per se . Instead , it
implements bitwise addition through a sequence of search
update pairs that essentially follow the truth tables for a half
adder , one bit combination at a time : 1) Search vector
elements for which the ith bit is O and the running carry for
that element (an additional bit of storage) is 1 , then bulk
update the ith bit of matching elements to 1 and their running
carry to 0. 2) Search vector elements whose ith bit is 1 and
the running carry for that element is also 1 , then bulk - update
the ith bit of matching elements to 0 and the running carry
to 1 .
[0050] Note that , in the example of FIG . 1 , the increment
algorithm does not bother with search - update pairs for the

core .

[0054] In other embodiments , the CAPE 10 is deployed in
a single or multi - core processing device , which may be a
microprocessor , field programmable gate array (FPGA) , a
digital signal processor (DSP) , an application - specific inte
grated circuit (ASIC) , or other programmable logic device ,
a discrete gate or transistor logic , discrete hardware com
ponents , or any combination thereof designed to perform the
functions described herein . Furthermore , the processing
device incorporating the CAPE 10 may be implemented as
a combination of computing devices (e.g. , the multi - core
processor 12 and an FPGA 18 , a combination of a DSP and
a microprocessor , a plurality of microprocessors , one or
more microprocessors in conjunction with a DSP core , or
any other such configuration) .
[0055] The architecture of CAPE 10 comprises four main
blocks . A control processor 20 is a small in - order core that a

US 2022/0229663 A1 Jul . 21 , 2022
4

runs standard RISC - V code with vector extensions . The
control processor 20 processes scalar operations locally , and
offloads vector operations to a compute - storage block (CSB)
22 , which acts as a coprocessor and is the associative
computing engine of CAPE 10. A vector operation commits
in the control processor 20 only after it completes in the CSB
22. In the shadow of an outstanding vector operation ,
subsequent scalar logic / arithmetic operations may issue and
execute (if not data - dependent with the vector instruction) ,
but not commit . Subsequent vector operations , however ,
stall at issue until the outstanding vector operation commits .
In some embodiments , the CAPE 10 hardware provides for
bit - serial pipelining and / or chaining across vector opera
tions .
[0056] Load and store vector operations en route to the
CSB 22 pass through a vector memory unit (VMU) 24 .
Other vector operations go through a vector control unit
(VCU) 26 , which generates microcode sequences to drive
the CSB 22 and carry out the appropriate operations . The
VMU 24 and the VCU 26 generate and transfer control and
data signals to the CSB 22. The RISC - V vector register
names in each instruction are used to index appropriate
vector operands within the CSB 22. These ultra - long vectors
(order of 104 vector elements) are a primary source of
parallelism in CAPE 10 .
[0057] The CSB 22 is composed of tens of thousands of
associative subarrays which can perform massively parallel
operations . In an exemplary aspect , each subarray is made
up of 6T bitcells that can readily support the four microop
erations used in the computational model of CAPE 10 :
single - element reads and writes , as well as highly - efficient
multi - element (vector) searches and updates .

split wordlines for performing search and update operations
(read and write work as expected for a conventional SRAM) .
For a particular vector , embodiments of CAPE 10 store
vector elements across columns ; thus , different rows mean
different bits of a vector element .
[0061] A search operation will look for matches in every
column at the same time . In order to search for a 1 , the
illustrated example of FIG . 3A sets WLR to a logic high
(e.g. , VDD) and WLL to a logic low (e.g. , GND) . To search
for a 0 , WLR is set to GND and WLL is set to VDD . To
exclude a row from a search (“ don't care ”) , both WLR and
WLL are set to GND . At each column , ANDing bitlines BL
and BLB yields the outcome of the search for each column :
1 for a full match , or 0 for at least one bit mismatch .
[0062] To perform a bulk update across all columns , the
illustrated example of FIG . 3B asserts both WLR and WLL
of the active rows to be updated . In order to write a 1 , all BL
are set to VDD and all BLB are set to GND . In order to write
a 0 , all BL are set to GND and all BLB are set to VDD .

2

B. Data Layout

IV . CAPE's Compute - Storage Block (CSB)
[0058] This section describes the low - level organization
of an exemplary embodiment of the CSB 22 of CAPE 10 .
First , a memory cell of the CSB 22 is described , the memory
cell being a binary content - addressable memory (CAM)
which leverages a dense push - rule 6T SRAM design . Then ,
an approach is described for arranging these cells and data
to optimize for the in - situ searches and updates that consti
tute the basis of associative computing . Finally , support for
reduction operations in the CSB 22 , which are a staple of any
vector ISA , are described .

a

[0063] In an exemplary embodiment (e.g. , a 32 - bit
embodiment) , the CSB 22 is laid out in subarrays of 32 by
32 cells (plus some peripheral logic , as described below) .
Further , each vector element is bit - sliced across subarrays of
the same column , such that subarray i will store the ith bit
of the vector elements of all 32 RISC - V vector names for
that column . Thus , each 32x32 subarray contains the ith bit
for 32 contiguous vector elements of all vector names . For
example , subarray Ski contains the ith bit of v0-31 [32 • k] ,
v0-31 [32.k + 1] , ... , v0-31 [32k + 31] . The total number of
subarrays in the CSB 22 is the number of vector elements in
a vector , times the bit width of each vector element , divided
by 32. In some embodiments , the CSB 22 includes multiple
banks of this size , where vectors are dynamically renamed
across banks .
[0064] This 32 by 32 geometry , combined with the bit
sliced data layout , allows CAPE 10 to be clocked fast and
minimize data movement : 1) The access latency of a sub
array is kept low . 2) Further , a search - update pair that is part
of a bit - serial instruction can be performed locally by the
subarrays that contain the ith bit of all the vector elements
involved , and the other subarrays can be in sleep mode .
Some examples instead support bit - serial pipelining across
instructions . 3) Finally , logic instructions (e.g. , bitwise
XOR) can be carried out in a bit - parallel fashion , thus
involving all subarrays simultaneously .
[0065] FIG . 4A is a block schematic diagram of bit - vector
active operands for bit - serial search on an exemplary CSB
22. FIG . 4B is a block schematic diagram of bit - vector active
operands for bit - parallel search on the CSB 22. FIG . 4C is
a block schematic diagram of bit - vector active operands for
bit - serial update on the CSB 22. FIG . 4D is a block sche
matic diagram of bit - vector active operands for bit - parallel
update on the CSB 22 .
[0066] FIGS . 4A - 4D illustrate a simplified example of the
CSB 22 structure , showing one subarray 30. FIGS . 4A and
4C perform a search - update pair as part of the increment
instruction example of Section II . Each vector element is
laid out vertically in a bit - sliced fashion , and for each vector
its vector elements reside in different bit columns 32 (some
in different bit columns 32 of the same subarray 30 , and
some in different subarrays (not shown)) . In FIG . 4A , the
search operation looks for a particular combination of bits

A. Cell and Subarray
a [0059] Compared to standard 6T SRAM cells , traditional

CAM cells require extra transistors and wires to enable
content search . However , a binary CAM (BCAM) based on
push - rule 6T SRAM cells is able to perform reads , writes ,
and searches while maintaining the density of conventional
SRAM . A key difference between this design and a conven
tional SRAM cell is that each row has two separate word
lines — wordline right (WLR) and wordline left (WLL)
each connected to one of the access transistors of a cell . This
design reuses the already existing wordlines as searchlines ,
and the bitlines as matchlines (the latter requires an AND
gate per column) .
[0060] FIG . 3A is a schematic diagram of an exemplary
three - by - three 6T SRAM memory array 28 performing a
search operation . FIG . 3B is a schematic diagram of the
memory array 28 of FIG . 3A performing an update opera
tion . The memory array 28 of FIGS . 3A and 3B includes

a

US 2022/0229663 A1 Jul . 21 , 2022
5

a register to store the scalar result . Section VI gives details
on a specific redsum logic implementation used on a system
made up of thousands of chains .

V. CAPE Architecture

VO ; (data) and c ; (carry) on every vector element of v0 and
c , respectively . Once the matching vector elements have
been identified (which is recorded using tag bits , not shown) ,
a bulk update (FIG . 4C) simultaneously updates bits vo ; and
Ci + 1 of every matching vector element . At each step , the
subarrays 30 not involved in the operation can potentially be
placed in sleep mode .
[0067] FIGS . 4B and 4D show another example involving
a logic operation (e.g. , v4 = v2 / v3) . As indicated before ,
logic operations can be carried out in a bit - parallel fashion ,
and thus all subarrays 30 are involved .

[0072] This section describes an exemplary mapping of
the RISC - V vector abstraction to the CSB 22 (Section IV) .
This section further describes the micro - architecture of the
VCU 26 (Section V - C) and VMU 24 (Section V - D) , which
generate control commands for the CSB 22 and enable
efficient data transfers to / from the CSB 22 , respectively .

C. Peripheral Logic
A. Instruction Set Architecture (ISA)

a

a

a

[0068] FIG . 5A is a block diagram of an exemplary search
path for subarrays 30 of the CSB 22. FIG . 5B is a block
diagram of an exemplary update path for subarrays 30 of the
CSB 22. Each subarray 30 contains peripheral logic , which
can include a match generator (Match) with one AND gate
per column to generate a match / mismatch signal . The
peripheral logic can further include tag bits with one flip
flop per column to store the output of the match generator .
The peripheral logic can further include a tag bit accumu
lator (Accum) with one OR gate per column to accumulate
searches that update with the same values . A feedback loop
(FB Loop) is used during updates to transfer the match /
mismatch mask generated by searches to the input of its own
column driver (BL / BLB) .

D. Propagation Chain
[0069] Typically , bit - serial instructions carry over infor
mation from one step to the next (e.g. , carry in a bit - serial
increment) . Because embodiments bit - slice vector elements ,
they need to support communication of such metadata
vertically across consecutive subarrays 30 , and the subarrays
30 of a column thus form a propagation chain . In general , a
chain will have as many subarrays 30 as the bit width of a
vector element . To support this , logic is added to optionally
allow the tag bits of subarray i to select the columns of
subarray i + 1 that should be updated (FIG . 5B) . This is how ,
in the increment example on FIG . 1 , the tag bits generated
in the search can be used to select the vector elements to be
updated for both subarray i (to update v0) and subarray i + 1
(to update ci + l) of every chain .

[0073] Vector architectures have been around for decades ,
and code vectorization is a well understood way to express
data parallelism . This suggests that a vector ISA abstraction
of the CAPE architecture is an attractive way to make CAPE
10 highly programmable and versatile . Recently , the
RISC - V Foundation released a specification for RISC - V
vector extensions . Because of its increasing popularity , free
availability , and support for vector extensions , RISC - V is
chosen as the ISA abstraction for an exemplary embodiment
of the CAPE 10 architecture .
[0074] RISC - V vector names map to the appropriate
CAPE 10 locations transparently through the VCU 26 ; the
programmer never sees the CSB 22 as addressable memory
(although CAPE 10 can be configured alternatively to be
used as a memory - only tile by the chip , as described in
Section VII) . RISC - V's vector - length agnostic (VLA) sup
port , whereby vector length is programmable , is easily
supported in CAPE 10 by simply masking out the unused
CSB 22 columns or turning off entire chains . The flexibility
that VLA support provides is actually key to the ability of
CAPE 10 to accommodate a variety of applications with
different amounts of data - level parallelism .
[0075] Table I shows relevant metrics of an illustrative
subset of RISC - V instructions supported by CAPE 10. Note
that logic instructions are very efficient , because their execu
tion is bit - parallel . Generally , arithmetic instructions are
bit - serial due to the need to propagate carry / borrow infor
mation . Comparison instructions map directly to the bit
parallel search operation of CAPE 10 (FIG . 4B) . However ,
since each vector element is bit - sliced , there needs to be a
bit - serial post - processing of each of the tag bits in order to
generate a single match / mismatch value .
[0076] The maximum number of active rows / subarrays 30
during update and search illustrates that the circuits need
only be able to search to at most four rows and to update to
one row . This also the case for the RISC - V vector instruc
tions not shown in Table I. Note that arithmetic instructions
(i.e. vadd.vv) will update to two subarrays 30 simultane
ously , but to only one row / subarray 30. The truth table entry
count corresponds to the number of search - update pairs
needed to execute per bit of the input operands ; it is an
estimation of the instruction's complexity . While some
instructions have smaller truth tables than others , they may
traverse them multiple times (for example , vmul.vv tra
verses its truth table a quadratic number of times , compared
to vadd.w) .

a

E. Supporting Reduction Sum Operations
[0070] FIG . 6 is a block diagram of a reduction sum
operation of a four - element two - bit vector according to
embodiments described herein . The CSB 22 supports reduc
tion sum (redsum) operations , which aggregate the elements
of a vector by adding them to produce a scalar result . This
algorithm flows from the most to the least significant bits of
the input , and the steps for each bit are : 1) search for ‘ l'on
each bit i (mask the rest) ; 2) the tag bits are reduced into an
integer value ; and 3) the output of the pop count is accu
mulated and multiplied by 2 at each step .
[0071] CAPE 10 supports redsum operations across
chains , using external logic composed by : one pop count per
chain , a left shift block (to multiply by two) , an adder , and

US 2022/0229663 A1 Jul . 21 , 2022
6

TABLE I

Metrics of a subset of RISC - V vector instructions supported by CAPE

Truth
Table

Active
Rows / Sub

Red
Cycles

Total
Cycles

Per
lane RISC - V

vector Inst Ent . Srch Upd (n bits) (n bits) E (PJ)
Arith . 1 vadd.vv

vsub.vv
vmul.vv
vredsum.vs
vand.vv

8n + 1
8n + 1 1

3
3
4 inint

5
5
4
1

0
0
0 3n ? - n 1

0 mn

Logic 2
2 WNNNNNFAWW vor.vv

n
0
0
0

1
1
1
0
1

??? ??? ???

8.4
8.4

99.9
0.4
0.4
0.4
0.5
0.4
0.5
3.2
0.5

vxor . VV
Comp . n

2
1
2
5
4 .

vmseq.vx
vmseq.vv
vmslt.vv
vmerge.vv

n

0

n + 1
n + 1
3n + 6

4
1
1 Other 0

B. CAPE Micro - Architecture
[0077] As previously described above with respect to FIG .
2 , the CAPE 10 system is organized into four blocks : the
control processor 20 , the VCU 26 , the VMU 24 and the CSB
22. The CSB 22 is made up of CAPE 10 chains which have
already been described in Section IV - D . Sections V - C and
V - D describe in detail the VCU 26 and the VMU 24 .

and mask for update , and 5) reduce . The sequencer 40 is by
default in idle state . Once the control processor 20 sends a
new request , the sequencer 40 transitions into state 2. The
chain controller 34 keeps track of one counter , upc , which
helps navigate the entries in the TTM 42 , and another
counter , bit , to keep track of the bit being operated on and
generating the appropriate idx and subarray select signal for
the chain controller 34. The counters are initialized appro
priately : upc = 0 every TT - loop , and bit is set to either MSB
or LSB , depending on the operation , given an operand size .

3. Truth Table Decoder

C. Vector Control Unit (VCU)
[0078] FIG . 7 is a schematic diagram of an exemplary
VCU 26. The VCU 26 breaks down each vector operation
into a sequence of commands (e.g. , a signal sequence) .
Commands include the four CAPE 10 microoperations
(read , write , search and update) , as well as reconfiguration
commands (e.g. , to reconfigure the vector length) . The
illustrated embodiment implements a distributed design of
the VCU 26 , built from multiple chain controllers 34 , shared
across chain groups 36. A global control unit maintains a
programmable truth table memory and a set of control status
registers (CSRs) . When the VCU 26 receives a vector
operation , it propagates the truth table data of the corre
sponding associative algorithm to each of the chain control
lers 34 which store it in a small , dedicated CAM (global
command distribution) .

[0081] The truth table decoder 44 produces the search and
update data and masks , from the values stored in the TTM
42 by shifting them by the appropriate amount and ORing
them to generate a single digital word to be used by the
subarray 30 row and column drivers . This approach is
similar to a vertical micro - code scheme . On a 32 - bit con
figuration , the chain controllers 34 distribute 143 bits of
commands through the chain command buses , as shown in
FIG . 7 .

a

D. Vector Memory Unit (VMU)

1. Chain Controllers

a [0079] The chain controllers 34 then distribute the com
mands to the appropriate subarray (s) 30 in a chain 38 (local
command distribution) . The chain controller 34 is composed
of a sequencer 40 , a truth table memory (TTM) 42 , and a
truth table decoder 44. Each TTM 42 entry corresponds to
one search - update - reduce data pack , encoded efficiently to
only store values for the bits involved in the operations . The
entries in the TTM 42 use a standard format to represent any
associative algorithm's truth table . Four additional bits per
TTM 42 entry (valid bits and accumulator enable) are used
to indicate if a search (with / without accumulation) or update
operation is active , and if the reduction logic is going to be
used .

[0082] CAPE 10 communicates with the main memory 14
via the VMU 24. When receiving a vector memory instruc
tion from the control processor 20 , the VMU 24 will break
it into a series of sub - requests to the main memory 14. Each
sub - request accesses a block of memory of the data bus
packet size of the main memory 14. When the sub - request is
served to the VMU 24 , the CSB 22 consumes it in the
following way . Similar to the byte interleaving scheme
across different chips of a dynamic random - access memory
(DRAM) dual in - line memory module (DIMM) for optimal
throughput , CAPE 10 stores adjacent vector elements in
different chains 38 , which have the ability to perform the
transfer independently , in a single cycle . This allows for the
vector loads and stores to complete a full sub - request
transfer in a single cycle .
[0083] The system is designed in order to ensure that the
sub - request size is smaller than the total number of chains
38 , so that sub - requests do not need to be buffered in the
VMU 24. The VMU 24 is non - blocking , and therefore CSB
22 reads and writes are concurrent to the main memory 14
data transfers .

2. Sequencer
[0080] The sequencer 40 implements a simple finite - state
machine (FSM) with five states : 1) idle , 2) read TTM , 3)
generate comparand and mask for search , 4) generate data

US 2022/0229663 A1 Jul . 21 , 2022
7

[0084] The CSB 22 of CAPE 10 is cache - less . Due to the
large footprint of the vector memory request and the limited
temporal locality , it is not beneficial to have a data cache
between CAPE 10 and the main memory 14. As a result , the
VMU 24 is directly connected to the memory bus , and
follows the same cache coherence protocol as the caches in
the control processor 20. Nonetheless , cache coherence
introduces very trivial performance overhead , since the CSB
22 and the control processor 20 share small amounts of data .
Moreover , vectorization reduces the temporal locality of the
code negating the potential benefits of having a cache .

(implementation details of the reduction tree for a system of
1,024 chains 38 are given in Section VI - C) . A vector
reduction sum instruction is thus ? 8x faster than an ele
ment - wise vector addition . This trade - off opens new algo
rithmic optimizations which favor using vector reduction
sum instructions when possible .

E. Reconfigurable Active Window

1. Set Vector Length 2

2. Replica Vector Load
[0090] It can be challenging to fully utilize the long vector
registers of CAPE 10 when applications operate over matri
ces with a modest number of elements in each dimension .
CAPE 10 includes a new replica vector load instruction
(vlrw.v v1 , r1 , r2) which loads a chunk of r2 contiguous
values , starting from the address in r1 , and replicates them
along the vector register vl . Replica vector loads are par
ticularly useful when vectorizing dense matrix multiplica
tion in three steps : (1) a unit - stride vector load reads multiple
rows from the first matrix into one vector register ; (2) a
replica vector load reads a single row from the (transposed)
second matrix and replicates this row into a second vector
register , and (3) iterate over the rows and use vmul and
vredsum to efficiently calculate the partial product .

[0085] Variable - length vectors allow for applications to
request a desired amount of data parallelism . In order to
modify the vector length (vl) , programmers can use the
standard RISC - V instructions vsetvl or vsetvli , which will
return the maximum amount of lanes supported by the
hardware (MAX_VL) or the exact amount requested , if it is
smaller than MAX_VL . In CAPE 10 , that translates into
using more or fewer columns , or even full chains 38 .
Following the RISC - V standard documentation , the ele
ments in any destination vector register with indices zvl
remain unchanged .

VI . Evaluation

2. Set Vector Start

[0086] Similarly to MAX_VL , RISC - V's standard CSR
vstart is used to specify the index of the first active element
in a vector instruction .

[0091] This section discusses circuit , instruction , and sys
tem modeling . Microoperation modeling provides delay and
energy estimates for each CAPE 10 microoperation on one
chain 38. Instruction modeling combines these circuit - level
estimates with an associative behavioral emulator to esti
mate the delay and energy for each vector instruction .
System modeling integrates these instruction - level estimates
into a gem5 - based cycle - approximate simulation model
capable of executing binaries for both micro - benchmarks
and complete applications . This multi - level modeling
approach is used to explore system - level trade - offs .

3. CAPE Support for the Active Window
[0087] Setting a vl smaller than its hardware limit MAX_
VL , will mask columns that are stored in different chains 38 .
To implement that , each chain controller 34 locally com
putes a mask given its chain ID , the vstart value , the vl value ,
that is used in updates to generate the column signal : the
address bus signals will contain Os on the masked columns .
If all elements in a chain 38 are masked , the chain controller
34 can power gate its peripherals while still maintaining the
data stored unchanged .

F. Vectorizing for CAPE
[0088] Programmers can use vector intrinsics or a vector
izing compiler to map well - structured data - parallel code to
the CAPE 10 instruction set . Many classic vector optimiza
tion techniques will directly apply to CAPE 10 , including
loop reordering , loop restructuring , and memory access
transformations . This section discusses two CAPE - specific
optimizations that can improve performance when com
pared to traditional vector architectures .

A. Microoperation Modeling
[0092] Amemory subarray 30 of 32 columnsx36 rows (32
rows - 1 row / vector name , and 4 additional rows for meta
data) is simulated based on the 6T bitcell design with split
wordlines of FIG . 3. A CAPE 10 subarray 30 consists of
SRAM bitcells , precharge circuitry , write drivers , search
AND gates , tag bit accumulator and tag bits . All of these are
designed using ASAP 7 nanometer (nm) PDK circuit simu
lation libraries . The latency and energy results incorporate
wordline , bitline resistance and capacitances .
[0093] This subarray 30 is then modeled as a black box
and instantiated in the synthesized chain 38 design using
Synopsys DC compiler . Synthesis results are further fed into
an auto - place and route tool for floorplan and placement to
generate a chain 38 layout . The control signals are routed to
all the subarrays 30 which are driven by wire repeaters to
reduce the overall delay .

1. Vector vs. Horizontal Operations
1. Delay of CAPE Primitives [0089] Traditional vector architectures discourage hori

zontal (i.e. , cross - lane) operations since they are usually
implemented using expensive and slow reduction trees . The
horizontal operations of CAPE 10 use a combination of an
intra - chain 38 redsum primitive and a modest global bit
serial reduction tree (see Section IV - E) . The ability to
bit - serially reduce all rows of all chains 38 simultaneously
results in performance roughly proportional to the bitwidth

[0094] Conventional wisdom might suggest that parallel
microoperations (i.e. search and update) should be signifi
cantly slower (perhaps 32x since they might operate on 32
elements per chain 38) than reads or writes . In CAPE 10 ,
both the circuit design and data layout enable very efficient
searches and updates , since they are done across columns
(with their own independent circuitry) and not rows .

US 2022/0229663 A1 Jul . 21 , 2022
8

2. Energy of CAPE Instructions
[0101] The associative emulator's microoperation statis
tics are combined with the microoperation energy modeling
in Table II to estimate the energy of each CAPE 10 instruc
tion executing on a single chain 38 .

Searches are only done to at most four rows simultaneously ,
which speeds up the sensing of the search outcome .
[0095] Updates write to at most one row per subarray 30 ,
which essentially turns them into single - row conventional
writes . In addition , updates do not use a (priority) encoder or
address decoder , but rather re - use the outcome of searches
(stored in the tag bits) to conditionally update columns .
Overall , the microoperation delays of CAPE 10 are balanced
and range between 181 and 237 picoseconds (ps) (Table II) .
[0096] The reduced size of the SRAM arrays enables very
fast accesses (90 ps) . For that reason , microoperation delays
are largely dominated by the peripheral logic (i.e. AND
gates , OR gates , flip - flop) and the local command distribu
tion delay of the control signals (55 ps) . Read is the slowest
microoperation (Table II) , explained by the round - trip wire
delay : once to transfer the control signals to all subarrays 30 ,
and another one to transfer back the data read to the
controller .

3. Dynamic Energy of the Chain
[0102] Table I shows the energy spent for each vector
instruction per scalar operation (that is , per vector lane) . As
expected , arithmetic instructions are the most energy con
suming explained by their large cycle count . Vector multi
plication is clearly the most energy expensive instruction , it
performs more than 3,000 searches and updates , combined .
Logic instructions (vand , vor , vxor) are very efficient , since
they perform very few (bit - parallel) microoperations . vred
sum includes the energy consumed in doing the bit - parallel
search , 3.0 picojoules (PJ) , as well as the energy consumed
by the reduction logic , 8.9 PJ .

2

TABLE II

Delay (D) and dynamic energy of bit - serial (BS E) and bit
parallel (BP E) microoperations executed by one chain

4. CAPE Cycle Time
[0103] The system's critical path is 237 ps (4.22 gigahertz
(GHz)) , which corresponds to the slowest microoperation
(read) . The maximum CAPE 10 frequency is conservatively
reduced by 65 % to 2.7 GHz to account for clock skew and
uncertainty .

Search 4
Rows

Update w / o Update w /
Prop Prop Read Write Red

237 181 217 D (ps)
BS E (PJ)
BP E (PJ)

227
1.0
5.7

209
1.2
3.8

209
1.2

2.8 2.4 . 8.9 C. System Modeling
[0104] The modeling from the previous sections is used to
derive global reduction logic and command distribution
models as well as a system - level simulation framework . 2. Energy of CAPE Primitives

[0097] The operand bit - slicing across the subarrays 30 in
a chain 38 forces reads and writes to access a single bitcell
(same row and column) of all subarrays 30 in a chain 38. In
turn , the same data layout allows for search and updates to
maintain most subarrays 30 in a chain 38 idle , reducing the
dynamic energy . For searches , only one subarray 30 / chain
38 will be active (because of operand locality) ; and for
update , only one or two (if propagation is needed) subarrays
30 / chains 38 will be active .
[0098] Dynamic energy estimates of a single chain 38 are
shown in Table II , which include local command distribution
of the 184 bits to all subarrays 30 , array access , as well as
peripheral logic energy consumption . Estimates are shown
for dynamic energy of the bit - serial (BS E) and bit - parallel
(BP E) flavors of each microoperation . Note that bit - parallel
microoperations are very energy efficient given the shared
control logic and command distribution .

1. Reduction Logic
[0105] The global reduction logic described in Section
IV - E is synthesized for a system of 1,024 chains 38. The
global reduction is pipelined into 5 stages with a critical path
of 217 ps . The number of stages to model different CSB 22
capacities are estimated by replicating or removing the
different pipeline stages .

a

a 2. Global Command Distribution

[0106] Global command distribution includes the delay
between the VCU 26 and each of the chain controllers 34 ,
and it is estimated using a first - order approximation of wire
delay on Metal 4 of an H - Tree that distributes the VCU 26
signals control to each of the chain controllers 34 , using wire
repeaters to improve the delay . The global command distri
bution is pipelined and is not included as part of the cycle
time : it adds a constant number of cycles of overhead per
vector instruction .

B. Instruction Modeling
[0099] The chain 38 layout , delay , and energy modeling
from the previous section are used and combined with the
associative behavioral emulator to derive detailed ISA
instruction - level energy and delay modeling for an entire
chain 38 .

3. System Methodology

1. Delay of CAPE Instructions

[0107] The CAPE 10 system is modeled by extending the
gem5 cycle - approximate simulator framework . The control
processor 20 is modeled using the RISC - V RV64G
MinorCPU (described in N. Binkert , B. Beckmann , G.
Black , S. K. Reinhardt , A. Saidi , A. Basu , J. Hestness , D. R.
Hower , T. Krishna , S. Sardashti , R. Sen , K. Sewell , M.
Shoaib , N. Vaish , M. D. Hill , and D. A. Wood , “ The gem5
Simulator , " SIGARCH Computer Architecture News , 2011)
and is configured as a dual - issue , in - order , five - stage pipe
line . The MinorCPU is modified to send commands to the

[0100] The associative emulator models the associative
behavior of subarrays 30 with read , write , search and update
capability . The associative algorithms required for each
vector instruction are implemented and microoperation mix
count is extracted for a configuration of 32 - bit operand .

US 2022/0229663 A1 Jul . 21 , 2022
9

6. Baselines VMU 24 or VCU 26. The simulator accurately models the
global reduction tree and command distribution delays .
Detailed models of the VMU 24 , VCU 26 , and CSB 22 of
CAPE 10 are developed .
[0108] The VMU 24 is connected to a high bandwidth
memory (HBM) memory system (as described in J. Kim and
Y. Kim , “ HBM : Memory solution for bandwidth - hungry
processors ”) to perform data transfers to / from the CSB 22 .
The CSB 22 delays of each vector instruction are modeled
as described in Section VI - B .

[0114] The baselines are chosen to be general - purpose ,
area comparable to CAPE32k (and CAPE131k) , processing
engines : one (and two) RISC - V RV64G out - of - order and
8 - issue cores (connected to the same HBM memory system
as CAPE 10) running sequential (and pthreads) versions of
the applications . When running a parallel (pthreads) version ,
the plots indicate how many cores are used (up to three ,
based on the area study above) . When sequential codes of
the benchmarks are run on the same multicore machine , the
extended shared cache capacity of two other (idle) cores are
used . Table III summarizes the architectural configuration . 4. Area Reference

TABLE III

Experimental setup

Baseline Core CAPE's Ctrl Processor

(0109] It is desirable to make area - equivalent compari
sons . To that end , the area of the baseline out - of - order CPU
is estimated based on a high - end Intel Skylake processor in
14 nm technology . Each Skylake tile contains a CPU core ,
more than 1 MB of private caches , and 1.375 MB of shared
LLC . To scale down the tile area to 7 nm , an estimated
scaling factor of 1.8x is applied based on the area ratio
between 14 nm and 7 nm High - Density SRAM bitcells .
Furthermore , the area is subtracted for AVX and floating
point support . (Later in the section , the impact of adding an
aggressive single - instruction multiple - data (SIMD) engine
to the baseline is assessed , using a commercial - grade model
and assuming no extra area overhead .) As a result , one tile's
area is estimated at about 8.8 square millimeters (mm) .

System
Configuration

Core
configuration

out - of - order core , 3.6 GHz in - order core , 2.7 GHz
32 kB / 32 kB / 1 MB 32 kB / 32 kB / 1 MB
L1D / L1I / L2 L1D / L1I / L2
5.5 MB L3 (shared) , 512 B L2 cache line
512 B LL cache line
8 - issue , 224 ROB , 72 LQ , 2 - issue in - order , 5 LSQ
56 SQ 4/4/4/3/1 4/1/1/1 Int / FP / Mem / Br
IntAdd / IntMul / FP / Mem / units
Br units TournamentBP , 4096 BTB ,
TournamentBP , 4096 BTB , 16 RAS
16 RAS
8 - way , LRU , MESI , 2 8 - way , LRU , 2 tag / data
tag / data latency latency
16 - way , LRU , MESI , 14 16 - way , LRY , 14 tag / data
tag / data latency latency
11 - way , LRU , 50 N.A.
tag / data latency ,
shared
4H HBM , 8 channels , 16 DBps / 512 MB per channel

L1 D / I cache
5. CAPE32k and CAPE131k

L2 cache
L3 cache

Main memory

D. Microbenchmarks

[0110] Two design points of CAPE 10 CAPE32k and
CAPE131K - are chosen , corresponding to two different
available vector length MAX_VL : 32,768 lanes and 131,072
lanes . Their CSBs 22 have 1,024 and 4,096 chains 38
respectively , with 4.5 and 18 MB of capacity . From the
microoperation modeling (Section VI - A) , one chain 38 in
CAPE 10 takes 2,434 square microns (um >) . Therefore , the
CSB 22 of CAPE32k including the pipelined reduction tree
takes 2.8 mm² , whereas the area of CAPE131k's CSB 22 is
11.3 mm
[0111] The area of the control processor 20 is then esti
mated based on an in - order advanced RISC machine (ARM)
Cortex - A53 core . One such core built in 16 nm takes 0.6
mm² whereas 512 KB L2 takes 0.7 mm2 . The area is scaled
down to 7 nm by 2.74x based on 16 nm and 7 nm HD SRAM
bitcell area . In total , the area of the control processor 20 with
1 MB L2 is around 0.73 mm2 .
[0112] The total area of micro - memory in VCU 26 is
estimated based on the truth table entry count of all the
vector instructions that CAPE 10 supports . Each entry
requires twelve 7 nm SRAM bitcells (FIG . 7) . The total area
requirement of the TT memory in the VCU 26 is merely
0.002 and 0.007 mm2 for CAPE32k and CAPE131k .
[0113] Since the total area of CAPE32k’s CSB 22 , control
processor 20 and TT memory is much smaller than one
(area - reference) tile_3.5 vs. 8.8 mm ?, it is pessimistically
assumed that the difference in area is taken up completely by
the sequencer 40 and TT decoder 44 in the VMU 24 and
VCU 26. The same area budget as in CAPE32k for the VMU
24 and VCU 26 is applied (8.8-3.5 mm) to similarly
estimate the area of CAPE131k , and is overall under the area
of two CPU tiles with caches (17.3 mm ?) . The applications
are manually vectorized using RISC - V vector intrinsics ,
which are run for different CSB 22 capacities (MAX_VL)
without any code modifications .

[0115] FIG . 8 is a graphical representation of performance
microbenchmarks for different CSB 22 capacities . The bold
vertical line corresponds to CAPE32k . CAPE 10 is first
evaluated using eight micro - benchmarks , which load one /
two vectors with 524,288 32 - bit elements each (which fits in
the baseline's L3 cache) . FIG . 8 shows the performance of
CAPE 10 for different CSB 22 capacities (MAX_VL) ,
normalized to the multicore (Table III) running a non
parallel sequential version of the micro - benchmarks . For the
baseline experiments , the caches are warmed up before
beginning to measure performance .

1. Scalability Study
[0116] Memory - intensive benchmarks (vld and vst) show
the ability of CAPE 10 to move data in and out of the CSB
22 at different capacity design points . CAPE 10 can achieve
a speedup of 6.6-10.5x by efficiently moving large blocks of
data from DRAM into the CSB 22 with a single vector
instruction , while the sequential baseline requires additional
loop overhead and address calculation . In addition , the CPU
still needs to serve requests across different levels of the
cache hierarchy , even if L3 is warmed up .
[0117] Search - based benchmarks (srch and idxsrch) are
representative operations of DBMS and text - parsing (i.e.
word count) applications . Both perform constant - vector
comparisons (vmseq.vx) to search a key in a vector . In

US 2022/0229663 A1 Jul . 21 , 2022
10

in the memory - bound region for all MAX_VL , but far from
the roofline peak throughput , indicating that it cannot fully
utilize the increasing computational capacity of CAPE 10 .
This explains the poor scalability of idxsrch at larger MAX_
VL (FIG . 9A) .

E. Phoenix Benchmarks

addition , idxsrch performs a sequential post - processing for
every matching element , with the intention to mimic the
behavior of the text - parsing Phoenix applications shown in
Section VI - E . The ability of CAPE 10 to search efficiently
enables a 42.5x for srch , whereas idxsrch's performance is
eventually dominated by the sequential part of the algorithm
for larger CSB 22 capacities , achieving a speedup of 10x at
MAX_VL = 32 k .
[0118] Arithmetic - intensive benchmarks (vvadd , vvmul ,
dotpro , and redsum) perform vector - vector addition , multi
plication , multiply - accumulate , and reduction sum , respec
tively (besides loading / storing the input / output data) . Their
performance suggests that for moderate CSB 22 capacities ,
the large data - parallelism of CAPE 10 is able to compensate
for the bit - serial latencies . For very large CSB 22 capacities
(2216) , however , global command distribution , reduction
overheads , and data transfers limit their performance .

[0123] All the applications in the Phoenix Benchmark
Suite are used to evaluate the performance of CAPE 10 .
Table IV shows the properties of each application .

TABLE IV

Statistics of the Phoenix Benchmark Suite applications

#Cyc . on One
03CPU

#Inst . of Seq .
Code Application Input Size

2. CAPE Roofline Model Linear Regression
Histogram
Kmeans
Matrix Multiply
PCA
String Match
Word Count
Reverse Index

500 MB
1.4 GB
100k

1000 x 1000
1500 x 1500
500 MB
10 MB

100 MB

4.4 billion
13.6 billion
5.0 billion
7.0 billion

16.6 billion
68.3 billion
4.9 billion
0.6 billion

3.8 billion
13.1 billion
6.6 billion

11.0 billion
15.2 billion
52.0 billion
4.1 billion
0.9 billion

1. Results

[0119] FIG . 9A is a graphical representation of roofline
plots of microbenchmarks for CAPE 10 at various CSB 22
capacities . FIG . 9B is a graphical representation of roofline
plots of Phoenix applications for CAPE 10 at various CSB
22 capacities . The star is a random reference point to help
reconcile the different axis scales across the two plots . To
characterize the computational capabilities and scalability of
CAPE 10 , a Roofline model is constructed at various CSB
22 capacities , symbolized by different MAX_VL values .
[0120] The traditional Roofline model metrics are adapted
to capture the peculiarities of CAPE 10. In the context of
CAPE 10 , a unit of work is defined as a vector element
micro - operation (either a search or an update) performed on
an element of a vector . The x - axis displays the element
micro - operational intensity in vector element microopera
tions per byte of memory traffic between DRAM and the
VMU 24 , and the y - axis displays the attainable vector
element micro - operational throughput in giga micro - opera
tions per second . Higher intensity leads to higher utilization
of data loaded into the CSB 22 , and higher throughput
suggests that the CSB 22 is able perform element micro
operations at a higher rate on average . The system's memory
bandwidth is dominated by HBM's theoretical peak (128
GB / s) . The theoretical maximum throughput of CAPE 10 is
obtained from a case that would execute 1 pop / cycle ,
without control processor 20 , VCU 26 , and global command
distribution overheads .
[0121] The microbenchmarks can be classified into two
groups : constant - intensity and increasing - intensity , with
increasing CSB 22 capacity (MAX_VL) . Most benchmarks
fall in the first category , explained by the linear decrease in
vector instructions as MAX_VL scales up . The second
category only contains idxsrch , which still performs a seri
alized post - processing of each of the matches generated by
the parallel search .
[0122] As MAX_VL increases , the constant - intensity
applications move from the compute - bound region to the
memory bound region , and their throughput approaches the
memory - bound roofline . This behavior suggests that con
stant - intensity applications are able to efficiently utilize the
increasing computational capabilities of CAPE 10. Ulti
mately , the speedup plateaus due to the limit of the peak
memory BW . This phenomenon demonstrates the need for a
high throughput memory system for large CSB 22 capaci
ties , justifying the use of HBM . In contrast , idxsrch remains

[0124] FIG . 10 is a graphical representation of perfor
mance of the Phoenix benchmarks for two- and three - core
CPUs , CAPE32k and CAPE131k , normalized to a single
CPU core . Single- and two - core CPUs are roughly area
equivalent to CAPE32k and CAPE131k , respectively . FIG .
10 shows speedup of CAPE32k and CAPE131k , which have
similar area to one and two out - of - order cores with their
caches (see baselines in Section VI - C) . The performance of
a three - core system is also shown for reference .
[0125] CAPE32k accelerates all applications by 14x on
average , compared to one core , at a similar area design
point . Both matrix multiply (matmul) and PCA (pca) are
matrix - based applications with relatively small input sizes .
However , the for - loop inter - iteration dependencies found in
PCA prevented using the CAPE - specific instruction vidr
(Section V - F) that increases the vector utilization , enabling
a significant increase in parallelism necessary to compensate
the bit - serial costly vmul.w instruction .
[0126] CAPE131k accelerates the applications by 14.4x
on average , compared to two cores , at a similar area design
point . String match (strmatch) , word count (wrdent) and
reverse index (revidx) show worse performance , compared
to CAPE32k . This scalability bottleneck is explained by the
sequential traversing of the input file , as well as the serial
ized post - processing of each match (similar to idxsrch of
Section VI - D) . In turn , the dramatic increase in performance
for Kmeans (kmeans) is due to its algorithmic nature .
[0127] For CAPE32k , Kmean's dataset does not fit in the
CSB 22 , which results in having to load it multiple times .
Instead , Kmean's dataset fits in CAPE131k's CSB 22 , which
translates into having to load it one single time and reuse it
until the solution converges . In addition , the number of
vector instructions inside the for - loops in the program is
minimized due to the possibility to fully unroll all the
iterations .

2

US 2022/0229663 A1 Jul . 21 , 2022
11

putational capability to a much lesser degree . Like the
microbenchmark idxsrch , these text - based applications must
sequentially traverse through the matches of parallel
searches and perform actions that are difficult to vectorize .
As a result of Amdahl's law , any speedup from the vector
ized regions is overshadowed by the cost of sequential
regions , causing overall speedup to plateau . Coupled with
increasing command distribution , the speedup in fact
decreases as CAPE 10 scales up .

a

2. Comparison With SIMD Baseline
[0128] One could argue that CAPE 10 is a vector - first
compute core , where non - vector instructions are supported
by an adjoining scalar engine (the small control processor
20 , already included in the area estimation and the simula
tions) . In contrast , today's CPUs are typically scalar - first
compute cores , where vector instructions may be supported
by an adjoining vector engine (e.g. , Intel AVX or ARM
SVE) . To tease out whether CAPE 10 indeed constitutes an
attractive compute tile for vectorizable code , an additional
simulation experiment is conducted using a commercial
grade model of an ARM core with SVE support .
[0129] FIG . 11 is a graphical representation of speedups of
the Phoenix benchmarks for ARM scalable vector extension
(SVE) SIMD implementations of 128- , 256- , and 512 - bit
vectors normalized to a single - core running ARM scalar
code . ARM's upstream gem5 model is used for this com
parison , configured to match the RISC - V out - of - order base
line's size and latency (Table III) , is used and equipped with
four SIMD ALUs . The applications are manually vectorized
using SVE intrinsics .
[0130] Although the standalone core in the ARM configu
ration is similar to that of the baseline , direct quantitative
comparisons are tricky because of the different ISAs and
compilation flows . Nevertheless , the results in FIG . 11 show
speedups for the Phoenix Benchmarks running on the three
SIMD configurations , normalized to a scalar - only run . The
results in FIG . 10 (CAPE32k vs RISC - V baseline) and FIG .
11 (ARM + SVE vs ARM baseline) suggest that CAPE32k
can achieve , on average , more than five times as much
performance as the 512 - bit SVE configuration (comparable
to Intel's most aggressive SIMD implementation , AVX
512) .

VII . Memory - Only Mode
[0135] Although CAPE 10 is focused on implementing a
RISC - V vector ISA efficiently as an associate computing
tile , in some embodiments the CSB 22 could alternatively be
reconfigured as storage by the chip whenever it may be more
advantageous . This section outlines three examples of using
CAPE 10 as a memory - only tile . In general , some additional
support is needed to accept external requests .

A. Scratchpad
[0136] A scratchpad is simply a block of physical memory
which can be typically accessed directly using ordinary
loads and stores (i.e. , mapped into the virtual addressing
space) . In a multicore chip , a scratchpad may be useful , for
example , to store private data or to exchange noncacheable
data across cores . To support this mode , the VMU 24 is able
to take in memory requests from remote nodes through the
system interconnect and perform the appropriate physical
address indexing .

a

a 3. Roofline Study

B. Key - Value Storage
[0137] The scratchpad above can be further customized to
operate as key - value storage , which is simply a repository of
key - value pairs , where a value can be read from or written
to by first finding its unique key (or , if it is not found , by first
allocating a new key - value pair) . Because the CSB 22 is
content - addressable , it naturally supports this mode . Assum
ing , for example , that both key and value are 32 - bit wide ,
and that each CSB 22 chain 38 is made up of 32 subarrays
30 , then a chain 38 can store 16x32 = 512 key - value pairs
(that's about half a million key - value pairs in the smaller
CAPE 10 configuration of the evaluation , CAPE32k) .
Again , as in the case of the scratchpad , the VMU 24 should
be able to take in key - value requests from the system and
contain the appropriate indexing logic . To insert new key
value pairs , the VCU 26 may assist by running a micropro
gram that scans the CSB 22 looking for free entries , and / or
the control processor 20 may execute a small program that
maintains a free list .

a

[0131] Similar to the microbenchmarks section , the Phoe
nix applications are plotted using the Roofline model . By
looking at FIG . 10 and FIG . 11 , the speedups of constant
intensity applications (matmul , lreg , hist , kmeans) improve
from CAPE32k to CAPE131k . However , the speedup of
variable - intensity applications (wrdent , revidx , strmatch)
worsens ; an exception is pca , whose speedup remained
unchanged for reasons discussed in the last section and is
reflected in its fixed position on the Roofline plot .
[0132] Kmeans ' change in intensity is explained by its
algorithmic nature , previously discussed in the Results sec
tion . Unlike the other variable - intensity applications , its
throughput on CAPE131k is much larger and closer to the
compute - bound roofline , which leads to a dramatic increase
in speedup : 426x with respect to an area comparable mul
ticore system .
[0133] Although not visible for the CSB 22 capacities
shown in the Phoenix applications Roofline plot (FIG . 9B) ,
the throughput of constant - intensity applications shifts from
compute - bound towards memory bound as the CSB 22
capacity increases . This indicates that these applications are
able to effectively utilize the increased computational capa
bilities of CAPE 10 , until they are limited by the main
memory 14 , which highlights the need for a high throughput
main memory 14 like HBM .
[0134] In contrast , the throughput of variable - intensity
applications remains far from the memory - bound roofline ,
suggesting that they take advantage of the increased com

C. Cache

[0138] The CSB 22 can leverage key - value storage func
tionality to work as a shared victim cache of the L2 caches ,
an additional slice of the LLC , etc. To do this , the control
processor 20 and the VCU 26 are programmed to work
closely with the controller of the cache it is augmenting
(e.g. , on a miss , an L2 cache controller sends a message to
the CAPE 10 tile to check if the block is present in the victim
cache CAPE 10 is emulating , concurrently to initiating an
LLC access) . In one possible implementation , each cache
line (tag and data) is stored row - wise (since cache blocks can
be fairly large) ; neither tag nor data are bit - sliced . Since the
CSB 22 has 32 rows of subarrays 30 , and each subarray 30

US 2022/0229663 A1 Jul . 21 , 2022
12

the CAPE is configured to decode and carry out the
instructions for executing vector operations in situ
via sequences of content - addressable memory opera
tions without assistance from arithmetic logic units
(ALUS) .

12. The integrated circuit of claim 11 , wherein the CAPE
is programmable using reduced instruction set computing
(RISC) instructions .

13. The integrated circuit of claim 12 , wherein the CAPE
is programmable using RISC - V or later instructions .

14. The integrated circuit of claim 11 , wherein :
the integrated circuit is a multi - core processor ; and
the CAPE comprises a first core of the multi - core pro

cessor .

has 32 rows of bitcells , CAPE 10 as a cache can support up
to ten index bits in the address (1,024 rows) . An access to the
CAPE 10 cache can be carried out with a few microinstruc
tions that search for a tag match among a set of rows and ,
if a hit is found , command the VMU 24 to deliver the data a
block .
[0139] Those skilled in the art will recognize improve
ments and modifications to the preferred embodiments of the
present disclosure . All such improvements and modifica
tions are considered within the scope of the concepts dis
closed herein and the claims that follow .

1. A content - addressable processing engine (CAPE) con
figured to execute a program having scalar operations and
vector operations according to a CAPE instruction set archi
tecture (ISA) , the CAPE comprising :

a control processor configured to execute the scalar opera
tions ; and

a compute - storage block (CSB) which is a co - processor of
the control processor and comprises an array of con
tent - addressable parallel processing memories , wherein
the CSB is configured to decode and carry out the
vector instructions in situ via sequences of content
addressable memory operations without assistance
from arithmetic logic units (ALUS) ;

wherein the vector instructions reference program data
within the CSB according to a predetermined list of
available vector register identifiers specified in the
CAPE ISA .

2-4 . (canceled)
5. The CAPE of claim 1 , wherein the array of content

addressable parallel processing memories in the CSB com
prises a plurality of subarrays , each subarray comprising
rows of content - addressable memories .

6. The CAPE of claim 5 , wherein each row in one of the
plurality of subarrays corresponds to a different bit of a
vector element .

7. The CAPE of claim 1 , further comprising a vector
memory unit (VMU) configured to interface with a memory
external to the CAPE .

8. The CAPE of claim 7 , wherein load and store instruc
tions route to the CSB through the VMU .

9. The CAPE of claim 1 , further comprising a vector
control unit (VCU) configured to generate signal sequences
for the CSB to execute the vector operations .

10. The CAPE of claim 9 , wherein non memory - access
instructions route to the CSB through the VCU .

11. An integrated circuit , comprising :
a content - addressable processing engine (CAPE) com

prising an array of content - addressable parallel pro
cessing memories ;

wherein :
the CAPE is configured to execute processing instruc

tions comprising instructions for executing vector
operations according to a CAPE instruction set archi
tecture (ISA) ; and

15. The integrated circuit of claim 14 , wherein the multi
core processor is configured to cause the CAPE to operate in
a memory - only mode providing on - chip memory for other
cores of the multi - core processor .

16. The integrated circuit of claim 14 , further comprising
a central processing unit (CPU) core .

17. The integrated circuit of claim 14 , further comprising
a graphic processing unit (GPU) core .

18. The integrated circuit of claim 11 , wherein the CAPE
is configured to perform a first vector operation and a first
scalar operation in parallel if there is no data dependency
between the first vector operation and the first scalar opera
tion .

19. A method for executing a program using parallel
processing in a content - addressable processing engine
(CAPE) according to a CAPE instruction set architecture
(ISA) , the method comprising :

receiving , at the CAPE , a set of processing instructions
described by a general instruction set ;

executing scalar operations from the set of processing
instructions , and

decoding vector instructions from the set of processing
instructions and executing corresponding vector opera
tions in situ via content - addressable memory opera
tions by an array of content - addressable parallel pro
cessing memories ;

wherein the vector instructions reference program data
according to a predetermined list of available vector
register identifiers specified in the CAPE ISA .

20. The method of claim 18 , further comprising :
generating signal sequences for operating the array of

content - addressable parallel processing memories from
the vector instructions described by the general instruc
tion set ; and

performing search and update operations using the signal
sequences in a bit - parallel fashion across the array of
content - addressable parallel processing memories .

*

