
US 20210044528A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0044528 A1

Paduvalli et al . (43) Pub . Date : Feb. 11 , 2021

(54) GENERATING ENTRIES IN A CONTENT
ADDRESSABLE MEMORY OF A NETWORK
DEVICE

(52) U.S. CI .
CPC H04L 45/7457 (2013.01) ; H04L 45/50

(2013.01) ; H04L 47/2483 (2013.01) ; H04L
47/2441 (2013.01)

(71) Applicant : Arista Networks , Inc. , Santa Clara , CA
(US) (57) ABSTRACT

(72) Inventors : Ramakrishna Shivaramaiah
Paduvalli , San Jose , CA (US) ;
Xuanran Zong , Sunnyvale , CA (US)

(21) Appl . No .: 16 / 984,912
(22) Filed : Aug. 4 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 884,077 , filed on Aug.

7 , 2019 .

In some implementations , a method is provided . The method
includes determining a plurality of field sets and a plurality
of field set groups . Each field set of the plurality of field sets
comprises one or more packet characteristics . Each field set
group of the plurality of field set groups comprises one or
more field sets from the plurality of field sets . Each field set
group is associated with one or more packet classifier rules .
The method also includes determining a set of encoded
labels for the plurality of field sets based on a set of rule
costs and intersections between field set groups . Each
encoded label of the set of encoded labels is associated with
a respective field set of the plurality of field sets . The method
further includes generating a plurality of entries in a memory
based on the set of encoded labels . At least one entry
comprises an encoded label from the set of encoded labels
and at least a portion of a packet classifier rule .

Publication Classification
(51) Int . Ci .

H04L 12/743 (2006.01)
H04L 12/851 (2006.01)
H04L 12/723 (2006.01)

600

START

605 DETERMINE PLURALITY OF FIELD SETS
AND PLURALITY OF FIELD SET GROUPS

610 DETERMINE SET OF RULE COSTS FOR
FIELD SET GROUPS

DETERMINE SET OF ENCODED LABELS
FOR PLURALITY OF FIELD SETS 615

GENERATE TCAM ENTRIES BASED ON SET
OF ENCODED LABELS 620

FORWARD DATA PACKETS BASED ON
TCAM ENTRIES 625

END

Patent Application Publication Feb. 11. 2021 Sheet 1 of 9 US 2021/0044528 A1

UPLINK 1100

PORT 1160

NETWORK DEVICE 102

PORT 116A PORT 116C

LINK 110A

LINK 110B

DEVICE DEVICE

FIG . 1

DATA PLANE 202

CONTROL PLANE 204

} { }

{ } 1

INTERFACE DEVICE 206A

Patent Application Publication

216A

} {

POLICY ENGINE 211

HWFE 212A

} } {

}

PROCESSING DEVICE 208

216A

TCAM 218A

} { }

{

DMA 218

PROCESSING DEVICE 214A

216A

MEMORY 209

} { } }

{ { { {

INTERFACE DEVICE 206C

INTERFACE DEVICE 2068

{ }

Feb. 11 , 2021 Sheet 2 of 9

216B

216C

HWFE 212C

HWFE 212B

{

I 1

216B

216C

{ CAMW 2180

TCAM 218B

1 f

1 { {

PROCESSING DEVICE 214B

2163

PROCESSING DEVICE 214C

216C
1 1

{ }

1 {

}

1

US 2021/0044528 A1

NETWORK DEVICE 102 FIG . 2

FORWARDING PIPELINE

Patent Application Publication

TRAFFIC POLICY 310

INTERFACE

mm

Y

L3 DATA

VLAN TRAFFIC POLICY 323

EGRESS TRAFFIC POLICY 324

INGRESS TRAFFIC POLICY 327

FABRIC 322

Feb. 11 , 2021 Sheet 3 of 9

EGRESS DATA PIPELINE

342 w

US 2021/0044528 A1

FIG . 3

Packet Characteristics (Field Values) 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16

Field Sets
A wy [1 , 4 , 5

B ? [3]

C > [10 , 12 , 13]
D > (2 , 6 , 8 , 9 , 10]

E ? [7 , 11]

F [14 , 15 , 16)

Patent Application Publication

Encoded Label
A = 0000 B = 0001 C = 0010 D = 0011 E = 0100 F = 0101

SO ? (00001

S1 - > 10001 , 0010 , 0011 , 0100 , 0101]
S2 ? 10000 , 0010 , 0011 , 01001

Field Set Groups SO [A]
51 ? [B , C , D , E , F)

S2 - [A , C , D , E

Feb. 11 , 2021 Sheet 4 of 9

SO - > [0000]
$ 1 [0001 , 010X]

S2 - > 10000 , 001X , 0100)

Rule Associations SO -- > 1 rule S1 may 5 rules S2 ? 3 rules

US 2021/0044528 A1

FIG . 4

Packet Characteristics (Field Values) 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16

Field Sets
A wy [1 , 4 , 5

B ? [3]

C > [10 , 12 , 13]
D > (2 , 6 , 8 , 9 , 10]

E ? [7 , 11]

F [14 , 15 , 16)

Patent Application Publication

Encoded Label
A = 1000 B = 0100 C = 0000 D = 0001 E = 0010 F = 0101

SO ? (1000)

S1 - 10100 , 0000 , 0001 , 0010 , 0101]

S2 ? (1000 , 0000 , 0001 , 00101

Field Set Groups SO [A]
51 ? [B , C , D , E , F)

S2 - [A , C , D , E

Feb. 11 , 2021 Sheet 5 of 9

SO - > (1000) $ 1 ? [OXXX]

S2- > (1000 , 00XX]

Rule Associations SO -- > 1 rule S1 may 5 rules S2 ? 3 rules

US 2021/0044528 A1

FIG . 5

Patent Application Publication Feb. 11 , 2021 Sheet 6 of 9 US 2021/0044528 A1

600

START

605 DETERMINE PLURALITY OF FIELD SETS
AND PLURALITY OF FIELD SET GROUPS

610 DETERMINE SET OF RULE COSTS FOR
FIELD SET GROUPS

DETERMINE SET OF ENCODED LABELS
FOR PLURALITY OF FIELD SETS 615

GENERATE TCAM ENTRIES BASED ON SET
OF ENCODED LABELS 620

FORWARD DATA PACKETS BASED ON
TCAM ENTRIES 625

END

FIG . 6

Patent Application Publication Feb. 11 , 2021 Sheet 7 of 9 US 2021/0044528 A1

700 START

AT LEAST
TWO FIELD SET GROUPS

REMAINING ?
705

NO

YES

IDENTIFY FIELD SET GROUP WITH
HIGHEST RULE COST 710

711

745
UNPROCESSED
OVERLAPPING
FIELD SETS ?

?
NO YES 12

IDENTIFY FIELD SET
GROUP WITH NEXT
HIGHEST RULE COST

712
DETERMINE ENCODED
LABELS FOR REMAINING
FIELD SETS IN FIRST
FIELD SET GROUP

DETERMINE
ENCODED
LABELS
FOR LAST
REMAINING
FIELD SET
GROUP

725

IDENTIFY OVERLAPPING
FIELD SETS

715
MERGE ENCODED

LABELS
730

DETERMINE ENCODED
LABELS FOR

OVERLAPPING FIELD
SETS

MARK FIRST FIELD SET
GROUP AS PROCESSED

720
735

MARK OVERLAPPING
FIELD SETS IN SECOND
GROUP AS PROCESSED

740

END

FIG . 7

Patent Application Publication Feb. 11 , 2021 Sheet 8 of 9 US 2021/0044528 A1

804 800

Cache

805 807 809 811

Microprocessor ROM Volatile
RAM

Nonvolatile
Memory

Bus (es)

803
813

Display Controller
& Display Device

1/0
Controller (s)

817

815
I / O

Device (s)

FIG . 8

Patent Application Publication Feb. 11 , 2021 Sheet 9 of 9 US 2021/0044528 A1

LINE
CARD
902A

LINE
CARD
902B

LINE
CARD
902N

CNTRL
CARD
904A

CNTRL
CARD
904B

:

MIDPLANE
906

FIG . 9

US 2021/0044528 A1 Feb. 11 , 2021
1

GENERATING ENTRIES IN A CONTENT
ADDRESSABLE MEMORY OF A NETWORK

DEVICE

BACKGROUND

[0001] A network device may be a device (e.g. , a com
puting device , an electronic device etc.) capable of commu
nicating data with other devices through a wired or wireless
connection or set of connections . For example , a network
device may receive data from a first device (e.g. , a comput
ing device , a switch , a router , etc.) and may forward the data
to a second device (e.g. , a computing device , a switch , a
router , etc.) . A network device may include various types of
hardware that may be used to transmit and / or receive data .
For example , a network device may include line cards and
each line card may include one or more processing devices
(e.g. , application specific integrated circuits (ASICs) , field
programmable gate arrays (FPGAs) , processors , central pro
cessing units , forwarding engines , etc.) to transmit and / or
receive data (e.g. , network packets) .

a plurality of field set groups . Each field set of the plurality
of field sets comprises one or more packet characteristics .
Each field set group of the plurality of field set groups
comprises one or more field sets from the plurality of field
sets . Each field set group is associated with one or more
packet classifier rules . The method also includes determin
ing a set of encoded labels for the plurality of field sets based
on a set of rule costs and intersections between field set
groups . Each encoded label of the set of encoded labels is
associated with a respective field set of the plurality of field
sets . The method further includes generating a plurality of
entries in a memory based on the set of encoded labels . At
least one entry comprises an encoded label from the set of
encoded labels and at least a portion of a packet classifier
rule .
[0005] Other aspects and advantages of the embodiments
will become apparent from the following detailed descrip
tion taken in conjunction with the accompanying drawings
which illustrate , by way of example , the principles of the
described embodiments .

BRIEF DESCRIPTION OF THE DRAWINGS
SUMMARY

[0002] In some implementations , a method is provided .
The method includes determining a plurality of field sets and
a plurality of field set groups . Each field set of the plurality
of field sets comprises one or more packet characteristics .
Each field set group of the plurality of field set groups
comprises one or more field sets from the plurality of field
sets . Each field set group is associated with one or more
packet classifier rules . The method also includes determin
ing a set of encoded labels for the plurality of field sets based
on a set of rule costs and intersections between field set
groups . Each encoded label of the set of encoded labels is
associated with a respective field set of the plurality of field
sets . The method further includes generating a plurality of
entries in a memory based on the set of encoded labels . At
least one entry comprises an encoded label from the set of
encoded labels and at least a portion of a packet classifier
rule .
[0003] In some implementations , a network device is
provided . The network device includes a memory config
ured to store a data and a processing device coupled to the
memory . The processing device is to determine a plurality of
field sets and a plurality of field set groups . Each field set of
the plurality of field sets comprises one or more packet
characteristics . Each field set group of the plurality of field
set groups comprises one or more field sets from the
plurality of field sets . Each field set group is associated with
one or more packet classifier rules . The processing device is
also to determine a set of encoded labels for the plurality of
field sets based on a set of rule costs and intersections
between field set groups . Each encoded label of the set of
encoded labels is associated with a respective field set of the
plurality of field sets . The processing device is further to
generate a plurality of entries in a memory based on the set
of encoded labels . At least one entry comprises an encoded
label from the set of encoded labels and at least a portion of
a packet classifier rule .
[0004] In some implementations , a non - transitory
machine - readable medium is provided . The non - transitory
machine - readable medium has executable instructions to
cause one or more processing devices to perform a method .
The method includes determining a plurality of field sets and

[0006] The described embodiments and the advantages
thereof may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings . These drawings in no way limit any changes in
form and detail that may be made to the described embodi
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments .
[0007] FIG . 1 is a block diagram of an example system
that includes a network device communicating network data
between a network and a number of devices , in accordance
with some embodiments .
[0008] FIG . 2 is a block diagram of an example network
device including a data plane coupled to a control plane and
several interface devices , in accordance with some embodi
ments .
[0009] FIG . 3 is a block diagram of an example forward
ing pipeline a network device , in accordance with some
embodiments .
[0010] FIG . 4 is a diagram illustrating example packet
characteristics , field sets , and field set groups , according to
one or more embodiments .
[0011] FIG . 5 is a diagram illustrating example packet
characteristics , field sets , and field set groups , according to
one or more embodiments .
[0012] FIG . 6 is a flow diagram of a method of generating
entries in a TCAM , in accordance with some embodiments .
[0013] FIG . 7 is a flow diagram of a method of determin
ing encoded labels , in accordance with some embodiments .
[0014] FIG . 8 shows an example a computing device , in
accordance with some embodiments .
[0015] FIG.9 is a block diagram of one embodiment of an
exemplary network device , in accordance with some
embodiments .

DETAILED DESCRIPTION

[0016] As discussed above , a network device may be a
device (e.g. , a computing device , an electronic device , etc.)
that may communicate data with other devices (e.g. , may
receive data from a first device and may forward the data to
a second device . A network device may include a control
plane and a data plane . A control plane may process control

US 2021/0044528 A1 Feb. 11 , 2021
2

information and write configuration data used to manage
and / or configure the data plane . The control plane may also
perform control management updates and / or respond with
control message responses (e.g. , routing decisions , protocol
updates , traffic resolutions , etc.) . The data plane receives ,
processes , and forwards network data (e.g. , packets) based
on the configuration data , as discussed in more detail below .
[0017] A network device may use one or more traffic
policies to determine whether , when , and / or how to forward
a packet (e.g. , a unit of network data) . One example of a
traffic policy may be an access control list (ACL) . A traffic
policy may be a list of packet classifier rules . For example ,
a traffic policy may be a prioritized list of packet classifier
rules , which classifier rules that are higher in the list have
higher priority . Each packet classifier rule in the policy may
be associated with a set of actions . Examples of actions are
permit , deny , log , set a field in the packet to a value , set a
next hop or next destination for a packet , etc. A packet
classifier rule may include and / or indicate one or more fields
of a packet . A field may be a portion of a packet , such as a
portion of a header , a portion of the footer , etc. For example
a field , may be an Internet Protocol (IP) source address , an
IP destination address , a time to live , a medium access
control (MAC) address , etc. A field may also be other data
(e.g. , metadata) that is derived based on a packet . For
example , a field may be the port on which the packet arrived ,
a virtual local - area - network identifier (VLAN ID) , etc. A
packet classifier rule may also include one or more values
for a field . For example , a packet classifier rule may include
a value for a source IP address (e.g. , the packet classifier rule
may match a specific IP address) . In another example , a
packet classifier rule may include a range of IP addresses . A
field and value for the field may be referred to as a
field - value . Each packet classifier rule may include multiple
field - values .
[0018] A traffic policy may be stored in and / or imple
mented using a TCAM . Each packet classifier rule in the
traffic policy may be stored in one or more TCAM entries .
For example , if a packet classifier rule indicates a two IP
source addresses and a MAC address , the packet classifier
rule may be stored on two TCAM entries . The first TCAM
entry may include the first IP address , the MAC address and
one or more actions . The second TCAM entry may include
the second IP address , the MAC address and one or more
actions . Each TCAM entry may include a key , mask and a
result . Thus , each entry in the TCAM may include a portion
of packet classifier rule . For example , an entry may include
one of the two IP address , the MAC address , and one or
more actions .
[0019] Because each packet classifier rule may be
expressed as a set of field - values , the total number of TCAM
entries used to represent a packet classifier rule may be a
cross product of the field - values . For example , if a packet
classifier rule indicates two source IP addresses (e.g. , A and
B) and two destination IP addresses (e.g. , X and Y) , then a
total of four TCAM entries may be used to represent the
packet classifier rule (e.g. , a rule for A and X , a rule for A
and Y , a rule for B and X , and a rule for B and Y) .
[0020] As discussed above , network devices may use
TCAMs to receive , process , and / or forward data packets . A
TCAM may be a content addressable memory that allows
for faster access to data stored in the TCAM using a key . The
TCAM may return data for one or more entries in the TCAM
that match a key . For example , a TCAM may return an entry

that has the highest priority if there are multiple matches . A
TCAM may be a more expensive component than other
types of memory (e.g. , may be more expensive that dynamic
random access memory (DRAM)) . A TCAM may also use
more power than other types of memory (e.g. , may use more
power than DRAM) to operate . Because TCAM may be
more expensive and may use more power , the amount of
space (e.g. , storage space , storage size , etc.) in a TCAM may
be smaller than the amount of space in other types of
memory (e.g. , in DRAM of flash memory) . Less data may be
stored in a TCAM due to the smaller size of the TCAM .
Thus , it may be useful to reduce the number of entries that
may be used to represent packet classifier rules . This may
allow the TCAM to store more packet classifier rules and / or
may allow smaller TCAMs to be used .
[0021] Field summarization may be used by a network
device to reduce the number of TCAM entries for a packet
classifier rule . Field summarization may help reduce the
number of TCAM entries by reducing the cross product of
the field - values in the packet classifier rules . For example , a
network device may determine the field - values that are used
in one or more packet classifier rules . The network device
may group , partition , divide , etc. , the field - values into sets or
groups of sets . These groups of field - values may be referred
to as field sets . The field sets may be disjoint or non
overlapping field sets . For example , the field sets may be
disjoint when each field - value is allocated to only one field
set (e.g. , the field sets to not share common field values) .
Each field set may be mapped or associated with a summa
rized value . The summarized value may be a number , an
alphanumeric string , or some other identifier that may be
used to indicate / identify a field set . The summarized value
may also be referred to as a label , as discussed in more detail
below . Generally , the size or number of field sets may be
smaller than the namespace or possible values of the field .
The labels (e.g. , summarized values) which represent the
field sets (e.g. , disjoint or non - overlapping field sets) may be
used in the TCAM entries instead of the field values . For
example , if there are 65536 possible field - values (e.g. , for a
16 - bit field) , rather than using 65536 entries in the TCAM ,
the field - values may be divided into group and the groups
may be represented using a label , such as a number . The
number of groups may be smaller (e.g. , much smaller) than
the number of possible field - values . For example , the total
number of field - values may be 65536 and the number of
labels may be 6 .
[0022] Although the number of TCAM entries used by the
packet classifier rules may be reduced using field summa
rization , it may be useful to further reduce the number of
TCAM entries . The number of TCAM entries may be further
reduced by translating the summarized values to generate
encoded labels (e.g. , by encoding the labels to generated
encoded labels) . By using the encoded labels in the TCAM
entries , the number of TCAM entries used can be further
reduced .
[0023] In other embodiments , the rules may not be stored
in a TCAM , which is generally more costly , consumes board
space , and consumes more power . For example , rules can be
stored in memory that is less costly than TCAMs such as , for
instance , SRAMs . In some use cases , for example , speed of
operation may not be so important as to merit the cost of a
TCAM , and instead SRAMs can be employed along with a
suitable search algorithm to provide the same rule searching
functionality . The present disclosure may refer to TCAMs as

US 2021/0044528 A1 Feb. 11 , 2021
3

examples for discussion purposes , without loss of generality
and with the understanding that the present disclosure can be
practiced in embodiments that do not use TCAMs . For
example , the examples , implementations , and / or embodi
ments disclosed here may use SRAM , DRAM , and / or dif
ferent types of memory and / or data structures that use
ternary formats / values .
[0024] FIG . 1 is a block diagram of an example network
system 100 that includes a network device 102 communi
cating network data between a network 108 and a number of
devices 106A - C , in accordance with some embodiments . In
various embodiments , network 102 is one or more of a
switch , router , hub , bridge , gateway , etc. , or any type of
device that can provide access to a network 108 (e.g. ,
physical network , virtualized network , etc.) . In one embodi
ment , network device 102 couples to network 108 via an
uplink 110U coupled to an uplink port 116U to provide
network connectivity to devices 106A - C via respective links
110A - C coupled to ports 116A - C . Uplink port 116U and
uplink 110U are generally configured for a high - speed wired
connection (e.g. , copper , fiber , etc.) that , in one embodiment ,
provides increased throughput capability relative to ports
116A - C and links 110A - C . The respective links 110A - C
between network device 102 and devices 106A - C may also
be wired connections . However , in some embodiments , links
110A - C are created over alternate connection types such as
wireless connections or a combination of wired and wireless
connections .
[0025] In one embodiment , devices 106A - C may be any
type of device that can communicate network data with
another device , such as a personal computer , laptop , or
server . Devices 106A - C can also be a mobile device (e.g. ,
phone , smartphone , personal gaming device , etc.) , or
another network device . In one embodiment , devices
106A - C can each be a virtual machine or can be a device that
hosts one or more virtual machines . In one embodiment ,
network device 102 can also be a virtual machine .
[0026] In various embodiments , different types of proto
cols can be used to communicate network data over the
connection (e.g. , Ethernet , wireless , Synchronous Optical
Networking (SONET) , Fiber channel , Infiniband , etc.) . The
network data being communicated by network device 102
can be a stream of network frames , datagrams or data
packets , or other types of discretely switched network data .
As described herein , where individual elements of network
data are referenced (e.g. , frames , datagrams , or packets , etc.)
the techniques described are applicable to any discretely
switched network data form of network data . In one embodi
ment , network device 102 communicates network data
between devices 106A - C and the network 108 or between
devices 106A - C using a variety of communicating tech
niques (e.g. , layer 2 switching , layer 3 routing , traffic
shaping , applying a quality of service (QoS) policy , etc.) .
[0027] In one embodiment , network device 102 is part of
a region within a larger network topology , where devices
106A - C are grouped within a separate network region as
other devices coupled to the network 108. Network regions
can be configured to allow the grouping of network end
points , such as specific network stations , devices , trunks ,
media gateways , or protocol groups such as Internet Proto
col groups within an enterprise network . Such regions may
be defined physically , or can be defined virtually , via virtual
networks that enable a virtual topology that differs from the
physical topology of the network . Additionally , regions can

be configured to have different parameters for processing
and forwarding network data , such as differing audio param
eters for a voice over IP network (VoIP) , differing Quality of
Service Parameters , or differing bandwidth limitations .
[0028] As described above , each of links 110A - C and
uplink 110U have an associated physical link speed , where
each physical link speed represents a maximum throughput
for that link . The physical link speed for each link is
generally deterministic and is based upon the physics of the
physical medium and the length of the link . In one embodi
ment , variability in latency generally occurs in a network
device due to the processing time involved in buffering ,
queuing , processing and forwarding network data from a
source port to a destination port in that network device .
[0029] FIG . 2 is a block diagram of an example network
device 102 that includes a data plane 202 coupled to a
control plane 204 and several interface devices 206A - C , in
accordance with some embodiments . In some network
devices , data plane 202 is referred to as the forwarding
plane . In one embodiment , the illustrated network device
102 is a variant of the network device 102 of FIG . 1. In one
embodiment , control plane 204 includes central processing
unit (CPU) 208 and memory 209 to store data . Processing
device 208 is used to process information for control plane
204 and writes configuration data for hardware forwarding
engines 212A - C in interface devices 206A - C . Processing
device 208 may also manage , configure , write to , read from ,
etc. , the TCAMs 218A - C . Additionally , processing device
208 can read data from the hardware forwarding engines
212A - C . In one embodiment , data plane 202 receives ,
processes , and forwards network data using various con
figuration data (e.g. , forwarding , security , quality of service
(QoS) , and other network traffic processing information) .
Data plane 202 includes multiple network interface devices
206A - C (e.g. , line cards , etc.) that can each receive , process ,
and / or forward network traffic . Each of interface devices
206A - C includes multiple ports 216A - C that are used to
receive and transmit network data .
[0030] In one embodiment , for each received packet (e.g. ,
unit of network data) , data plane 202 determines a destina
tion address for the network data , looks up the requisite
information for that destination in one or more tables stored
in the data plane , and forwards the data out the proper
outgoing interface , for example , one of interface devices
206A - C . In one embodiment , each interface device 206A - C
includes one or more hardware forwarding engines (HWFE
(s)) 212A - C , processing device 214A - C , and ports 216A - C ,
respectively . Each hardware forwarding engine 212A - C
forwards data for the network device 102 , performing rout
ing , switching , or other types of network forwarding . Each
processing device 214A - C can be used to accelerate various
functions of interface devices 206A - C . For example and in
one embodiment , processing devices 214A - C can be con
figured to program corresponding hardware forwarding
engines 212A - C . Processing devices 214A - C can also push
data from hardware forwarding engines 212A - C to a pro
cessing device 208 in control plane 204 .
[0031] In one embodiment , control plane 204 gathers the
configuration data for hardware forwarding engines 212A - C
from different sources (e.g. , locally stored configuration
data , via a command line interface , or other management
channel (e.g. , SNMP (Simple Network Management Proto
col) , Simple Object Access Protocol (SOAP) , Representa
tional State Transfer type Application Programming Inter

US 2021/0044528 A1 Feb. 11 , 2021
4

forwarding pipeline 300. However , the embodiments , imple
mentations , examples , etc. , described herein may also be
used separately or in conjunction with the egress aspects of
the forwarding pipeline (e.g. , egress data pipeline 330) . As
illustrated , the forwarding pipeline 300 includes an ingress
network interface 302 , an ingress parser 304 , a data - link
layer lookup (e.g. , L2 lookup 306) , a network layer lookup
(e.g. , L3 lookup 308) , an traffic policy processing block 310 ,
and a scheduler 320 .

face (RESTful API) , Hypertext Transfer Protocol (HTTP) ,
HTTP over Secure Sockets layer (HTTPs) , Network Con
figuration Protocol (NetConf) , Secure Shell (SSH) , and / or
another management protocol) and pushes this configuration
data to hardware forwarding engines 212A - C .
[0032] In one embodiment , the memory 209 that is used to
store data for control plane 204 is shared with data plane
202. In such embodiment a direct memory access (DMA)
controller 218 is coupled to memory 209 to allow processing
devices 214A - C direct access to memory 209. In one
embodiment , DMA controller 218 allows processing devices
214A - C to directly access the memory 209 without requiring
processing device 208 in control plane 204 to send data to
each processing device 214A - C . In one embodiment , control
plane 204 includes a policy engine 211 to apply a QoS policy
to network traffic flowing through network device 102 .
Policy engine 211 can be configured to minimize the latency
of some type of network traffic , or to apply traffic shaping
policies on the overall flow of traffic through the network
device , or within a larger network topology . Proper deter
mination of real - time latency data within the network can be
key to the implementation of effective QoS policy . In one
embodiment , logic to perform the timing of network data
flow is consolidated into the hardware of data plane 202 of
each network device 102 .
[0033] As illustrated in FIG . 2 , interface device 206A
includes TCAM 218A , interface device 206B includes
TCAM 218B , and interface device 206C includes TCAM
218C . A TCAM may be a content addressable memory that
allows for faster access to data stored in the TCAM using a
key . The TCAM may return data for all entries in the TCAM
that match a key . The key may include an encoded label
and / or a merged encoded label . For example , the key may
include multiple portions , fields , etc. , and the encoded label
and / or the merged encoded label may be one of the portions /
fields . Encoded labels and merged encoded labels are dis
cussed in more detail below . A TCAM may be a more
expensive component than other types of memory (e.g. , may
be more expensive that dynamic random access memory
(DRAM)) . A TCAM may also use more power than other
types of memory (e.g. , may use more power than DRAM) to
operate . Because a TCAM may be more expensive and
operate (e.g. , may use more power) , the amount of space
(e.g. , storage space , storage size , etc.) in a TCAM may be
smaller than the amount of space in other types of memory
(e.g. , in DRAM of flash memory) . Thus , it may be useful to
decrease and / or minimize the number of entries that are used
in a TCAM where possible . Decreasing and / or minimizing
the number of entries that are used by the network device
102 may allow the network device 102 to store additional
entries in TCAMS 218A - C without increasing the size of
TCAMS 218A - C . For example , if TCAM 218A can store
100 entries and the network device can reduce the number
of entries that are used to check for certain packet charac
teristics from 25 to 10 , then the number of available entries
in TCAM 218A can be increased without increasing the size
of TCAM 218A .
[0034] FIG . 3 is a block diagram of an example forward
ing pipeline 300 within a network device , in accordance with
some embodiments . In one embodiment , the forwarding
pipeline 300 resides in a hardware forwarding engine (e.g. ,
HWFE 212) , which includes logic from one or more of
HWFE (s) 212 within each interface 206 shown in FIG . 2 .
FIG . 3 focuses primarily on the ingress aspects of the

[0035] In one embodiment , traffic policies including a
VLAN traffic policy 323 , Ingress routed traffic policy and
QOS traffic policy or policy based routing 327 , and Egress
traffic policy 324 allow policy and filtering actions to be
performed on network data at multiple stages within the
forwarding pipeline 300. The traffic policies store an ordered
list of rules that define access restrictions for entities of the
network device , including a specified network interface
(e.g. , ingress network interface 302 , egress network inter
face 342) . In one embodiment , network data may be for
warded to the control plane of the network device , and a
traffic policy can be configured to specify access restrictions
to the control plane . The traffic policy rules (e.g. , packet
classifier rules) specify the data to which fields of network
data are compared . A traffic policy may also be referred to
as a packet classifier . For example , a traffic policy may
classify a packet (e.g. , may classify a packet in a type ,
category , group , etc.) based on a field (e.g. , whether a field
is present or included in a packet etc.) , a value of a field , etc.
[0036] In one embodiment forwarding pipeline 300 is
configured to forward packets (e.g. , units of network data)
that match all conditions in a permit rule and to packets that
match all conditions in a deny rule . For some traffic policies
(e.g. , packet classifiers) , the forwarding pipeline is config
ured to implicitly deny (e.g. , drop) packets that do not match
at least one rule . Upon arrival at ingress network interface
302 , a packet is processed based one or more ingress traffic
policies associated with network interface 302 (e.g. , VLAN
traffic policy 323 , Ingress traffic policy 327) . In one embodi
ment , the network data can be additionally processed based
on egress traffic policy 324 before being forwarded via
egress network interface 342. In one embodiment , the traffic
policies can be used to perform actions other than permit and
deny . For example , an access control entry may be specified
which sets a traffic class for a packet or sets a next hop for
a packet or a policer to be applied to the networks data .
[0037] If a packet is permitted through traffic policy
processing , a forwarding decision can be made for the data .
The L2 data 325 and L3 data 326 modules store various
tables used to perform data - link layer (layer 2) and network
layer (layer 3) forwarding of network data by the forwarding
pipeline 300. In one embodiment , after processing and
forwarding operations are performed by ingress elements of
the forwarding pipeline , scheduler 320 forwards ingress
network data to a fabric module 322 , which provides data
plane connectivity between multiple packet processors in the
network device . In one embodiment , a single chip solution
is used for the ingress and egress pipelines of forwarding
pipeline 300 , omitting fabric module 322. Either through
fabric module 322 or via a scheduling engine , scheduler 320
can forward the ingress network data to egress data pipeline
330 for egress processing once the set of forwarding deci
sions have been made . The egress data , after processing by
egress data pipeline 330 , is re - transmitted via an egress

US 2021/0044528 A1 Feb. 11 , 2021
5

network interface 342. Egress data pipeline 330 can operate
in parallel with other elements of the forwarding pipeline
300 described herein .
[0038] In one embodiment , forwarding operations for a
packet proceeds as follows . First , the network data is
received by an ingress network interface 302. For embodi
ments including Ethernet interfaces , network interface 302
includes a physical layer (PHY) and a media access control
(MAC) layer . The PHY layer is responsible for transmission
and reception of bit streams across physical connections
including encoding , multiplexing , synchronization , clock
recovery and serialization of the data on the wire for
whatever speed / type of Ethernet interface is configured .
Operation of the PHY complies with the IEEE 802.3 stan
dard . The PHY layer transmits / receives the electrical signal
to / from the transceiver where the signal is converted to light
in the case of an optical port / transceiver . In the case of a
copper (electrical) interface , e.g. , Direct Attach Cable
(DAC) , the signals are converted into differential pairs .
[0039] If a valid bit stream is received at the PHY , the data
is sent to the MAC layer . On input , the MAC layer is
responsible for turning the bit stream into frames , packets , or
another division of network data based on the supported and
implemented protocols and standards of the network device .
This operation can include performing error checking and
finding the start and end delimiters for the packet . In one
embodiment , while the entire packet is received at the
MAC / PHY layer only header data is sent through to the
remainder of forwarding pipeline 300 .
[0040] In one embodiment , headers for the packet are
parsed at an ingress parser 304 , which extracts key fields
used to make forwarding decisions . For a typical Internet
Protocol version 4 (IPv4) packet , the ingress parser 304 can
extract a variety of layer 2 , layer 3 , and layer 4 headers ,
including source and destination MAC addresses , source
and destination IP addresses , and source and destination port
numbers . In one embodiment , the ingress parser 304 also
determines the VLAN ID of the packet . Where the packet
has arrived via a trunk port , the VLAN ID can be determined
based on a VLAN header . When the packet arrives via an
access port or arrived untagged , the VLAN ID may be
determined based on the port configuration .
[0041] In one embodiment , once ingress parser 304 is
aware of the VLAN ID and ingress interface ingress parser
304 verifies the spanning tree protocol (STP) port state for
the receiving VLAN . In one embodiment , the network
device supports the rapid spanning tree protocol (RSTP) . If
the port STP / RSTP state indicates that the packet should be
forwarded (e.g. , blocking , listening , discarding , learning ,
etc.) the packet is dropped . If the STP / state is learn
ing , the MAC address table is populated with information
from the packet and the packet is dropped . If the port STP
state is forwarding , then the headers for the packet are
allowed to proceed down the pipeline .
[0042] In one embodiment , ingress parser 304 can perform
a further comparison for the packet against any configured
Port traffic policies by performing a lookup in the VLAN
traffic policy 323. If the packet matches a DENY statement ,
the p will be dropped . If the packet matches a PERMIT
statement , or no port traffic policy is enabled , the packet is
passed to the next block of the pipeline . Successive stages
include L2 lookup 306 and a L3 lookup 308 stages . L2
lookup 306 stage will reference L2 data 325 , which may be
a MAC address table , which is an exact - match table . L3

lookup 308 will reference L3 data 326 , which includes an
exact - match table that contains / 32 IPv4 and / 128 IPv6 host
routes , and a longest - prefix match (LPM) table that contains
IPv4 and IPv6 routes that are not host routes .
[0043] FIG . 4 is a diagram illustrating example packet
characteristics (e.g. , fields) , field sets , and field set groups ,
according to one or more embodiments . A packet charac
teristic may be a field and / or value of data packets that are
communicated by a network device . For example , a packet
characteristic may be a source address (IPv4 , IPv6 , Ethernet ,
or some other type of address) , destination address (IPv4 ,
IPv6 , Ethernet , or some other type of address) , source layer
4 port number , destination layer 4 port number , differenti
ated services code point (DSCP) , Transmission Control
Protocol / User Datagram Protocol (UDP) ports , a type of the
packet , a timeout value , and / or other types of packet char
acteristics . Packet characteristics may be obtained from a
packet header , a packet footer , and / or the payload of a
packet . Packet characteristics may also be referred to as
fields , field values , values , etc. As illustrated in FIG . 4 , there
may be sixteen packet characteristics (e.g. , values for one or
more fields) 1 through 16 that a network device (e.g. ,
network device 102 illustrated in FIGS . 1 and 2) may be
interested in . In one embodiment , a processing device of the
network device (e.g. , processing device 208 illustrated in
FIG . 2 , a processor , an ASIC , a FPGA , etc.) may determine
(e.g. , compute , identify , obtain , etc.) a plurality of field sets
A through F. The identifiers for the field sets (e.g. , the
identifiers A - F) may be summarized values , as discussed
above . Each field set A through F includes one or more
packet characteristics . For example , field set A includes
packet characteristics 1 , 4 , and 5 , field set B includes packet
characteristic 3 , etc. The fields sets A through F may be
disjoint sets (e.g. , may be disjoint , may not intersect , may
not overlap , etc.) . Two or more sets may be disjoint sets of
the sets have no elements in common . For example , field sets
A through F may be disjoint sets because field sets A through
F have no packet characteristics in common (e.g. , no packet
characteristic is included in more than one field set) . Field
sets A through F may also be referred to as disjoint field sets ,
non - overlapping field sets , non - intersecting field sets , etc.
[0044] Field sets A through F may be organized into field
sets groups SO through S2 . Each field set group SO through
S2 includes one or more of field sets A through F. For
example , field set group SO includes field set A , field set
group Si includes field sets B , C , D , E , and F , and field set
group S2 includes field sets A , C , D , and E. Each of field set
groups S1 through S3 is associated with one or more ternary
content addressable memory (TCAM) rules . For example ,
SO is associated with one packet classifier rule , Si is
associated with five packet classifier rules , and S2 is asso
ciated with three packet classifier rules .
[0045] Encoded labels may be generated for field sets A
through F. An encoded label may also be referred to as a
label , an encoding , a key , etc. An encoded label (e.g. , a label)
may be a bit string (e.g. , a series of bits , a binary string , a
bit string , a sequence of bits , etc.) that may be used to
represent , indicate , etc. , a field set . For example , field set A
may be represented using the bit string 0000 (e.g. , an
encoded label) , field set B may be represented using the bit
string 0001 , field set C may be represented using the bit
string 0010 , field set D may be represented using the bit
string 0011 , field set E may be represented using the bit
string 0100 , and field set F may be represented using the bit

US 2021/0044528 A1 Feb. 11 , 2021
6

string 0101. Assigning a bit string to a field set may also be
referred to as encoding a label or generating an encoded
label . The encoded labels illustrated in the figures may be
four bits long , but the encoded labels may be different
lengths (e.g. , may be eight bits long , sixteen bits long , or any
appropriate length) in other embodiments .
[0046] After generating encoded labels for field sets A
through F , the field sets in each of field set groups SO through
S2 may be represented using the encoded labels . For
example , field A in field set groups SO and S2 may be
represented as 0000 , field set B in field set group S1 may be
represented as 0001 , field set C in field set groups S1 and S2
may be represented as 0010 , etc. One or more of the encoded
labels may be merged into a merged encoded label (e.g. , a
merged encoded label , a merged bit string , a merged bit
sequence , etc.) A merged encoded label may include the
values 0 , 1 , or X at each position in the label . The value X
at a particular position in a merged encoded label may
indicate that either the value 0 or 1 may be at the particular
position . For example , encoded label 0010 (which represents
field set C) and the encoded label 0011 (which represents
field set D) may be merged into a merged encoded label
001X , which represents both field set C and field set D.
[0047] After merging the encoded labels that are capable
of being merged , so includes encoded label 0000 , S1
includes encoded label 0001 , merged encoded label 001X ,
and merged encoded label 010X , and S2 includes encoded
label 0000 , merged encoded label 001X , and encoded label
0100. As discussed above , SO is associated with one packet
classifier rule , Si is associated with five packet classifier
rules , and S2 is associated with 3 packet classifier rules .
Field set group SO will use one entry in the TCAM (e.g. , one
encoded label multiplied by one rule associated with field set
group SO) to process packets that have packet characteristics
which match the packet characteristics in field set A. Field
set group S1 may use fifteen entries in the TCAM (e.g. , three
encoded labels multiplied by five rules associated with field
set group Si) to process packets that have packet charac
teristics which match the packet characteristics in field sets
B , C , D , E , and F. Field set group S2 may use nine entries
in the TCAM (e.g. , three encoded labels multiplied by three
rules associated with field set group S2) to process packets
that have packet characteristics which match the packet
characteristics in field sets A , C , D , and E. Thus , a total of
twenty - five entries in the TCAM (e.g. , twenty - five TCAM
entries) may be used .
[0048] As discussed above , a TCAM may be a more
expensive component than other types of memory (e.g. , may
be more expensive that dynamic random access memory
(DRAM)) . A TCAM may also use more power than other
types of memory (e.g. , may use more power than DRAM) to
operate . Because TCAM may be more expensive and may
use more power , the amount of space (e.g. , storage space ,
storage size , etc.) in a TCAM may be smaller than the
amount of space in other types of memory (e.g. , in DRAM
of flash memory) . Thus , it may be useful to decrease the
number of entries that are used in the TCAM where possible .
Decreasing the number of entries that are used to process
data packets may increase the number of available entries in
a TCAM without increase the size , the cost , and / or the
power usage of the TCAM .
[0049] As illustrated in FIG . 4 , the encoded labels for the
field sets may have been determined in an arbitrary order .
For example , field set A was assigned the first available bit

string 0000 (e.g. , was encoded as 0000) , field set B was
assigned the next available bit string 0001 , field set C was
assigned the next available bit string 0010 , etc. Arbitrarily
encoding may result in the usage of more TCAM entries , as
discussed in more detail below .
[0050] FIG . 5 is a diagram illustrating example packet
characteristics , field sets , and field set groups , according to
one or more embodiments . As discussed above , a packet
characteristic may be a field and / or value of data packets that
are communicated by a network device . Packet character
istics may also be referred to as fields , field values , values ,
etc. Similar to FIG . 4 , there may be sixteen packet charac
teristics 1 through 16 that a network device (e.g. , network
device 102 illustrated in FIGS . 1 and 2) may be interested in .
In one embodiment , a processing device of the network
device (e.g. , processing device 208 illustrated in FIG . 2 , a
processor , an ASIC , a FPGA , etc.) may determine (e.g. ,
compute , identify , obtain , etc.) a plurality of field sets A
through F and each field set A through F includes one or
more packet characteristics , as illustrated in block 605 of
FIG . 6. The fields sets A through F may be disjoint sets . The
identifiers for the field sets (e.g. , the identifiers A - F) may be
summarized values , as discussed above . Field sets A through
F may be organized into field sets groups SO through S2 .
Each field set group SO through S2 includes one or more of
field sets A through F. Each of field set groups S1 through S3
is associated with one or more packet classifier rules .
Encoded labels may be generated for field sets A through F.
An encoded label may also be referred to as a label , an
encoding , etc. An encoded label (e.g. , a label) may be a bit
string (e.g. , a series of bits , a binary string , a bit string , a
sequence of bits , etc.) that may be used to represent ,
indicate , etc. , a field set .
[0051] As discussed above , arbitrarily encoded labels
(e.g. , arbitrarily assigned bit strings to different field sets)
may result in using a larger number of encoded labels to
represent the field sets in a field set group . Reducing the
number of encoded labels used to represent the field sets in
a field set group may reduce the number of entries used in
a TCAM , as discussed above .
[0052] In one embodiment , a processing device (e.g. ,
processing device 208 illustrated in FIG . 2 , a CPU , a
processor , an ASIC , an FPGA , etc.) may determine a set of
encoded labels (e.g. , one or more encoded labels) for field
sets A through F based on a set of rule costs and intersections
between field set groups , as illustrated in block 610-615 of
FIG . 6. The processing device may determine a rule cost for
each field set group SO , S1 , and S2 , as illustrated in block
610-615 of FIG . 6. The rule cost for a field set group may
be determine by multiplying the number of field sets in a
field set group with the number of packet classifier rules
associated with the field set group . For example , the rule cost
for field set group So may be 1 (e.g. , one packet classifier
rule associated with field set group S multiplied by one field
set in field set group So) . The rule costs for field set group
S1 may be 25 (e.g. , five packet classifier rules associated
with field set group S1 multiplied by five field sets in field
set group S1) . The rule cost for field set group S2 may be 12
(e.g. , three packet classifier rules associated with field set
group S1 multiplied by four field sets in field set group S2) .
The processing device may select a first field set group with
the highest (e.g. , largest) rule cost , as illustrated in block 710
of FIG . 7. For example , the processing device may select
field set group S1 because field set group Si has the highest

US 2021/0044528 A1 Feb. 11 , 2021
7

rule cost (e.g. , a rule cost of 25) . If there are multiple field
set groups that have the same , highest rule cost , the pro
cessing device may randomly select one of the multiple field
set groups .
[0053] In one embodiment , the processing device may
determine one or more ranges of encoded labels that may be
used to represent the field sets in the first field set group SO .
The range of encoded labels may be greater than or equal to
the number of field sets in the first field set group So. For
example , field set group So includes five field sets . The
processing device may select a range of eight encoded labels
starting from 0000 through 0111 that may be used to
represent the field sets in the first field set group So. The
range of encoded labels may be aligned at the nearest power
of two that is greater than or equal to the number of field sets
in the first field set group SO . For example , the nearest power
of two that is greater than five is eight . Thus , the range of
encoded labels is selected such that the range includes eight
continuous bit sequences 0000 through 0111 .
[0054] In some embodiments , if the available ranges of
encoded labels are not enough for the number of field sets in
a field set group , field set groups may be divided or
distributed across multiple ranges of encoded labels . For
example , the processing device may determine multiple
separate ranges of encoded labels that may be used to
represent the field sets in the first field set group SO . Each of
multiple separate ranges may also be aligned at the powers
of two . For example , if there are six labels to be encoded , a
single range of eight labels (e.g. , 2 to the power of 3) may
be allocated to the six labels . In another example , if there are
six labels to be encoded , a first range of four labels (e.g. , 2
to the power of 2) and a second range of two labels (e.g. , 2
to the power of 1) may be allocated to the six labels .
[0055] In one embodiment , the processing device may
also select a second field set group . The second field set
group may have the next highest rule cost or may have a rule
cost equal to the rule cost for the first field set group (e.g. ,
equal to the highest rule cost) . For example , the processing
device may select field set group S2 because field set group
S2 has the next highest rule cost (e.g. , a rule cost of 12) .
[0056] In one embodiment , the processing device may
identify overlapping field sets that are in both the first field
set group S1 and the second field set group S2 , as illustrated
in block 715 of FIG . 7. An overlapping field set may be a
field set that is in both field set group Sl and field set group
S2 . For example , field sets C , D , and E may be overlapping
field sets . An overlapping field set may also be referred to as
common field sets , shared field sets , intersecting field sets ,
etc.

[0057] In one embodiment , the processing device may
compute (e.g. , determine , calculate , generate , etc.) a set of
encoded labels for the overlapping field sets from the range
of encoded labels that was previously determined , as illus
trated in block 720 of FIG . 7. For example , the processing
device may determine a set of encoded labels (for the
overlapping field sets) from the range of encoded labels that
includes bit sequences 0000 through 0111. As illustrated in
FIG . 5 , the processing device determines encoded label 0000
(for field set C) , encoded label 0001 (for field set D) , and
encoded label 0010 (for field set E) because field sets C , D ,
and E are overlapping field sets between field set groups S1
and S2 . The processing device may use various criteria for
assigning encoded labels to different field sets . For example ,
the processing device may find the largest continuous set of

labels that can fit the encoded labels for the largest group of
overlapping field sets . The processing device may also
assign the encoded labels such that the use of “ X ” values or
don't care values may be maximized or increased . For
example , the processing device may select encoded values
that vary in the lowest two bits , so that the lowest two bits
can be replaced by X values . The processing device may also
select ranges of encoded labels using powers of two , as
discussed above . For example , if there are six encoded
labels , the processing device may select a range of eight
consecutive labels . Although two of the labels in the range
of eight labels may not be used , assigning a larger range of
labels may allow the processing device to maximize the use
of X values by selectively assigning encoded labels that vary
in selected bit positions . For example , by assigning encoded
labels that vary in the lowest 3 bits , the processing device
may be able to use X values in the lowest 3 bits to represent
the six encoded labels .
[0058] In one embodiment , the processing device may
identify non - overlapping field sets that are in the first field
set group S1 . For example , field sets B and F are not in field
set group S2 but are in field set group Sl . The non
overlapping field sets may be the remaining field sets that are
in the first field set group S1 after the overlapping field sets
have been assigned an encoded label . The processing device
may determine (e.g. , calculate , generate , etc.) a set of
encoded labels for the non - overlapping field sets from the
range of encoded labels that was previously determined . For
example , the processing device may determine a set of
encoded labels (for the overlapping field set groups) from
the range of encoded labels that includes bit sequences 0000
through 0111 which have not already been used to represent
other field sets . As illustrated in FIG . 5 , the processing
device determines encoded label 0100 (for field set B) and
encoded label 0101 (for field set F) because field sets B and
F are not in field set group S2 .
[0059] After generating encoded labels for field sets in the
field set group S1 , the processing device may merge multiple
encoded labels to determine one or more merged encoded
labels , as illustrated in block 730 of FIG . 7. As discussed
above the range of encoded labels from 0000 to 0111 may
be allocated to the field sets in the field set group Si .
Because the encoded label 0011 is allocated but not used
(e.g. , due to the range of encoded labels being larger than the
number of field sets in the field set group S1) , the processing
device may merge the encoded labels , 0100 , 0000 , 0001 ,
0010 , and 0101 , and the unused encoded label 0011 into a
single merged encoded label OXXX .
[0060] In one embodiment , the processing device may
iteratively determine ranges of encoded labels that may be
used to represent fields sets , identify overlapping and / or
non - overlapping field sets between two field set groups (e.g. ,
the next two field set groups with the highest cost) , deter
mine which encoded labels from the ranges of encoded
labels should be assigned to which field sets , and merge
encoded labels , as illustrated in blocks 705-745 of FIG . 7 .
For example , after the processing device has determined
(e.g. , assigned) encoded labels for all of the field sets in field
set group Si , the processing device may determine whether
there are at least two field set groups left (as illustrated in
block 705 of FIG . 7) and identify a first field set group with
highest rules cost (as illustrated in block 710 of FIG . 7) . For
example , the processing device may identify field set group
S2 . The processing device may determine whether there are

US 2021/0044528 A1 Feb. 11 , 2021
8

overlapping field sets in the field set group S2 (e.g. , whether
there are field sets in S2 that are also in other field sets) , as
illustrated in block 711 of FIG . 7. As illustrated in FIG . 5 ,
field set group A is in both S2 and SO . The processing device
may identify a second field set that has the next highest rule
cost (e.g. , field set So) , as illustrated in block 712 of FIG . 7 .
The processing device may determine a range of encoded
labels (e.g. , the range of encoded labels from 1000 to 1111) .
Field set group S2 includes field sets C , D , and E which have
already been assigned encoded labels . Because field sets C ,
D , and E are not in field set group So , the encoded label for
field sets C , D , and E are not used . In addition , field sets C ,
D , and E were previously assigned encoded labels so they
are not re - assigned encoded labels . However , field set A is in
field set groups SO and S2 (e.g. , field set A is an overlapping
field set) . The processing device may determine an encoded
label for field set A from the range of encoded labels that
goes from 1000 to 1111 , as illustrated in block 720 of FIG .
7. As illustrated in FIG . 5 , the processing device may use the
encoded label 1000 to represent the field set A. The pro
cessing device may mark the overlapping field sets in the
second field set group as processed (as illustrate in block 740
of FIG . 7) , and may continue to check if there are at least two
field set groups remaining (as illustrated in block 705 of
FIG . 7) .
[0061] If there are no overlapping field sets in the first and
second field sets , the processing device may determine
encoded labels for the remaining field sets in the first field
set group , as illustrated in block 725 of FIG . 7. The pro
cessing device may also merged the encoded labels which
represent field sets C , D , and E (e.g. , 0000 , 0001 , and 0010)
into the merged encoded label 00XX , as illustrated in block
730 of FIG . 7. After the field sets in field set groups S1 and
S2 have been assigned encoded labels , the processing device
may proceed with the last field set group SO . However , field
set group SO has one field set A , and field set A has already
been assigned an encoded label so field set group SO has also
been processed .
[0062] After computing (e.g. , determining) an encoded
label for each of the field sets and merging the encoded field
sets are capable of being merged , the processing device may
generate TCAM entries based on the encoded labels . For
example , for the field set group So , the processing device
may generate one TCAM entry for encoded label 1000 (e.g. ,
one TCAM entry that includes the encoded label 1000 and
the one rule associated with field set group So) . For the field
set group Si , the processing device may generate five
TCAM entries for the merged encoded label OXXX (e.g. ,
each of the five entries includes the merged encoded label
OXXX and one of the five packet classifier rules associated
with the field set group S1) . For the field set group S2 , the
processing device may generate six TCAM entries (e.g. ,
three of the six entries include the merged encoded label
00XX and three of the six entries include the encoded label
1000) .
[0063] As discussed above , a TCAM may be a more
expensive component than other types of memory and may
also use more power than other types of memory (e.g. , may
use more power than DRAM) to operate . Because TCAM
may be more expensive and may use more power , the
amount of space in a TCAM may be smaller than the amount
of space in other types of memory (e.g. , in DRAM of flash
memory) . Thus , it may be useful to decrease the number of
entries used to store the rules for different field set groups .

Decreasing the number of entries used to store the rules for
field set groups allows the other entries to be used to store
rules for other field set groups .
[0064] After merging the encoded labels that can be
merged , so includes encoded label 1000 , si includes
merged encoded label OXXX , and S2 includes encoded label
1000 and 00XX . As discussed above , SO is associated with
one packet classifier rule , Si is associated with five packet
classifier rules , and S2 is associated with 3 packet classifier
rules . Field set group SO will use one entry in the TCAM
(e.g. , one encoded label multiplied by one rule associated
with field set group SO) to process packets that have packet
characteristics which match the packet characteristics in
field set A. Field set group S1 may use five entries in the
TCAM (e.g. , one merged encoded label multiplied by five
rules associated with field set group Sl) to process packets
that have packet characteristics which match the packet
characteristics in field sets B , C , D , E , and F. Field set group
S2 may use six entries in the TCAM (e.g. , two encoded
labels multiplied by three rules associated with field set
group S2) to process packets that have packet characteristics
which match the packet characteristics in field sets A , C , D ,
and E. Thus , a total of twelve entries in the TCAM (e.g. ,
twelve TCAM entries) may be used . The encoding of the
field sets results illustrated in FIG . 5 results in a reduction in
the number of TCAM entries that are used when compared
to the number of TCAM entries used in FIG . 4 (e.g. , 25
TCAM entries) . Because fewer TCAM entries are used in
the example illustrated in FIG . 5 , more TCAM entries are
available for store packet classifier rules for other field set
groups , which increases the efficiency of the TCAM . For
example , the TCAM can store more packet classifier rules
without increasing the size of the TCAM .
[0065] FIG . 6 is a flow diagram of a method of generating
entries in a TCAM , in accordance with some embodiments .
Method 600 may be performed by processing logic that may
comprise hardware (e.g. , circuitry , dedicated logic , program
mable logic , a processor , a processing device , a central
processing unit (CPU) , a system - on - chip (SOC) , an ASIC ,
and FPGA , etc.) , software (e.g. , instructions running / execut
ing on a processing device) , firmware (e.g. , microcode) , or
a combination thereof . In some embodiments , method 600
may be performed by a network device (e.g. , network device
102 illustrated in FIGS . 1 and 2) or a processing device (e.g. ,
processing device 208 illustrated in FIG . 2) . It should be
appreciated that the actions of method 600 in FIG . 6 can be
performed in differing orders , groupings , or subsets than
shown in FIG . 6 , for various purposes or user preferences .
[0066] Method 600 begins at block 605 where the network
device determines a plurality of field sets and a plurality of
field set groups . As discussed above , a field set may include
one or more packet characteristics and the plurality of field
sets groups may be disjoint sets . Each field set group may
include one or more field sets . Each field set group may be
associated with one or more packet classifier rules . At block
610 , the network device may determine a set of rule costs for
the field set groups . For example , the network device may
determine a rule cost for each field set group , as discussed
above . At block 615 , the network device may determine a set
of encoded labels for the plurality of field sets based on one
or more rule costs and / or intersections between field set
groups . For example , the network device may iteratively
determine ranges of encoded labels that may be used to
represent fields sets , identify overlapping and non - overlap

US 2021/0044528 A1 Feb. 11 , 2021
9

ping field sets between two field set groups starting with the
field set groups with the highest rule costs and proceeding to
the field set groups with the next highest rule costs , deter
mine which encoded labels from the ranges of encoded
labels should be assigned to which field sets , and merge
encoded labels , as discussed above and in FIG . 7. At block
620 , the network device may generate TCAM entries based
on the encoded labels , as discussed above . At block 625 , the
network device may forward data packets (e.g. , network
data , frames , messages , etc.) based on the TCAM entries .
For example , the network device may process and / or for
ward data packets based on an entry in the TCAM (e.g. ,
based on a rule in the entry in the TCAM) .
[0067] FIG . 7 is a flow diagram of a method of determin
ing encoded labels , in accordance with some embodiments .
Method 700 may be performed by processing logic that may
comprise hardware (e.g. , circuitry , dedicated logic , program
mable logic , a processor , a processing device , a central
processing unit (CPU) , a system - on - chip (SOC) , an ASIC ,
and FPGA , etc.) , software (e.g. , instructions running / execut
ing on a processing device) , firmware (e.g. , microcode) , or
a combination thereof . In some embodiments , method 700
may be performed by a network device (e.g. , network device
102 illustrated in FIGS . 1 and 2) or a processing device (e.g. ,
processing device 208 illustrated in FIG . 2) . It should be
appreciated that the actions of method 700 in FIG . 7 can be
performed in differing orders , groupings , or subsets than
shown in FIG . 7 , for various purposes or user preferences .
[0068] Method 700 begins at block 705 where the network
device may determine whether there are at least two field set
groups remaining . For example , the network device may
determine whether there are at least two field set groups that
include field sets which have not been assigned encoded
labels . If there is one field set group remaining (e.g. , one
field set group that has not been processed and / or includes
a field set that has not been processed) , the network device
may determine encoded labels for the last remaining field set
group at block 745. If there are at least two field set groups
remaining , the network device may identify a first field set
group with the highest rule cost at block 710. At block 711 ,
the network device may determine whether there are one or
more unprocessed overlapping field sets (e.g. , field sets that
have not been encoded) in the field set group (identified at
block 710) . For example , the network device may determine
whether unprocessed field sets in the first field set group are
also in other field set groups . If there are one or more
unprocessed field sets in the first field set group that are also
in other field set groups the network device proceeds to
block 712 where the network device identifies a second field
set group with the next highest rule cost (e.g. , second highest
rule cost) . At block 715 , the network device may identify the
overlapping field sets in the first and second field set groups .
The network device may determine encoded labels for the
overlapping field sets at block 720. At block 740 , the
network device may mark the overlapping field sets in the
second field set group as processed . The network device then
proceeds to block 711 where the network device may
determine whether there are one or more unprocessed over
lapping field sets in the field set group .
[0069] Referring to block 711 , if there are no unprocessed
overlapping field sets in the first field set , the network device
proceeds to block 725 , where the network device may
determine encoded labels for the remaining field sets in the
first field set group (e.g. , the non - overlapping field sets) . At

block 730 , the network device may optionally merge
encoded labels . For example , the network device may merge
encoded labels if two or more encoded labels are capable of
being merged . At block 735 , the network device may mark
the first field set group as processed and / or may mark the
field sets in the field set groups as processed .
[0070] FIG . 8 shows an example computing device 800 , in
accordance with some embodiments . For example , the com
puting device 800 may be implemented including a network
device 100 as shown in FIG . 1. Note that while FIG . 8
illustrates various components of a computer system , it is
not intended to represent any particular architecture or
manner of interconnecting the components as such details
are not germane to the present invention . It will also be
appreciated that network computers and other data process
ing systems or other consumer electronic devices , which
have fewer components or perhaps more components , may
also be used with the present invention .
[0071] As shown in FIG . 8 , the computing device 800 ,
which is a form of a data processing system , includes a bus
803 which is coupled to a microprocessor (s) 805 and a ROM
(Read Only Memory) 807 and volatile RAM 809 and a
non - volatile memory 811. The microprocessor 805 may
retrieve the instructions from the memories 807 , 809 , 811
and execute the instructions to perform operations described
above . The bus 803 interconnects these various components
together and also interconnects these components 805 , 807 ,
809 , and 811 to a display controller and display device 817
and to peripheral devices such as input / output (I / O) devices
which may be mice , keyboards , modems , network inter
faces , printers and other devices which are well known in the
art . In one embodiment , the computing device 800 includes
a plurality of network interfaces of the same or different type
(e.g. , Ethernet copper interface , Ethernet fiber interfaces ,
wireless , and / or other types of network interfaces) . In this
embodiment , the computing device 800 can include a for
warding engine to forward network data received on one
interface out another interface .
[0072] Typically , the input / output devices 815 are coupled
to the system through input / output controllers 813. The
volatile RAM (Random Access Memory) 809 is typically
implemented as dynamic RAM (DRAM) , which requires
power continually in order to refresh or maintain the data in
the memory
[0073] The mass storage 811 is typically a magnetic hard
drive or a magnetic optical drive or an optical drive or a
DVD ROM / RAM or a flash memory or other types of
memory systems , which maintains data (e.g. , large amounts
of data) even after power is removed from the system .
Typically , the mass storage 811 will also be a random access
memory although this is not required . While FIG . 8 shows
that the mass storage 811 is a local device coupled directly
to the rest of the components in the data processing system ,
it will be appreciated that the present invention may utilize
a non - volatile memory which is remote from the system ,
such as a network storage device which is coupled to the
data processing system through a network interface such as
a modem , an Ethernet interface or a wireless network . The
bus 803 may include one or more buses connected to each
other through various bridges , controllers and / or adapters as
is well known in the art .
[0074] FIG . 9 is a block diagram of one embodiment of
exemplary network device 900 , in accordance with some
embodiments . In FIG . 9 , the midplane 906 couples to the

US 2021/0044528 A1 Feb. 11 , 2021
10

line cards 902A - N and controller cards 904A - B . The mid
plane 906 may also be referred to as a fabric . While in one
embodiment , the controller cards 904A - B control the pro
cessing of the traffic by the line cards 902A - N , in alternate
embodiments , the controller cards 904A - B , perform the
same and / or different functions (e.g. , updating a software
image on the network device , etc.) . In one embodiment , the
line cards 902A - N process and forward traffic according to
the network policies received from the controller cards
904A - B . In one embodiment , the controller cards 904A - B
may include containers , operating systems , and / or agents , as
discussed above . It should be understood that the architec
ture of network device 900 illustrated in FIG.9 is exemplary ,
and different combinations of cards may be used in other
embodiments .
[0075] Portions of what was described above may be
implemented with logic circuitry such as a dedicated logic
circuit or with a microcontroller or other form of processing
core that executes program code instructions . Thus pro
cesses taught by the discussion above may be performed
with program code such as machine - executable instructions
that cause a machine that executes these instructions to
perform certain functions . In this context , a “ machine ” may
be a machine that converts intermediate form (or “ abstract ”)
instructions into processor specific instructions (e.g. , an
abstract execution environment such as a " process virtual
machine ” (e.g. , a Java Virtual Machine) , an interpreter , a
Common Language Runtime , a high - level language virtual
machine , etc.) , and / or , electronic circuitry disposed on a
semiconductor chip (e.g. , “ logic circuitry ” implemented
with transistors) designed to execute instructions such as a
general - purpose processor and / or a special - purpose proces
sor . Processes taught by the discussion above may also be
performed by (in the alternative to a machine or in combi
nation with a machine) electronic circuitry designed to
perform the processes (or a portion thereof) without the
execution of program code .
[0076] Detailed illustrative embodiments are disclosed
herein . However , specific functional details disclosed herein
are merely representative for purposes of describing
embodiments . Embodiments may , however , be embodied in
many alternate forms and should not be construed as limited
to only the embodiments set forth herein . It should be
appreciated that descriptions of direction and orientation are
for convenience of interpretation , and the apparatus is not
limited as to orientation with respect to gravity . In other
words , the apparatus could be mounted upside down , right
side up , diagonally , vertically , horizontally , etc. , and the
descriptions of direction and orientation are relative to
portions of the apparatus itself , and not absolute .
[0077] It should be understood that although the terms
first , second , etc. may be used herein to describe various
steps or calculations , these steps or calculations should not
be limited by these terms . These terms are only used to
distinguish one step or calculation from another . For
example , a first calculation could be termed a second cal
culation , and , similarly , a second step could be termed a first
step , without departing from the scope of this disclosure . As
used herein , the term “ and / or ” and the “ / ” symbol includes
any and all combinations of one or more of the associated
listed items .
[0078] As used herein , the singular forms “ a ” , “ an ” and
“ the ” are intended to include the plural forms as well , unless
the context clearly indicates otherwise . It will be further

understood that the terms " comprises ” , “ comprising ” ,
" includes ” , and / or " including ” , when used herein , specify
the presence of stated features , integers , steps , operations ,
elements , and / or components , but do not preclude the pres
ence or addition of one or more other features , integers ,
steps , operations , elements , components , and / or groups
thereof . Therefore , the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting .
[0079] It should also be noted that in some alternative
implementations , the functions / acts noted may occur out of
the order noted in the figures . For example , two blocks in a
figure shown in succession may in fact be executed sub
stantially concurrently or may sometimes be executed in the
reverse order , depending upon the functionality / acts
involved .
[0080] With the above embodiments in mind , it should be
understood that the embodiments might employ various
computer - implemented operations involving data stored in
computer systems . These operations are those requiring
physical manipulation of physical quantities . Usually ,
though not necessarily , these quantities take the form of
electrical or magnetic signals capable of being stored , trans
ferred , combined , compared , and otherwise manipulated .
Further , the manipulations performed are often referred to in
terms , such as producing , identifying , determining , or com
paring . Any of the operations described herein that form part
of the embodiments are useful machine operations . The
embodiments also relate to a device or an apparatus for
performing these operations . The apparatus can be specially
constructed for the required purpose , or the apparatus can be
a general - purpose computer selectively activated or config
ured by a computer program stored in the computer . In
particular , various general - purpose machines can be used
with computer programs written in accordance with the
teachings herein , or it may be more convenient to construct
a more specialized apparatus to perform the required opera
tions .
[0081] A module , an application , a layer , an agent or other
method - operable entity could be implemented as hardware ,
firmware , or a processor executing software , or combina
tions thereof . It should be appreciated that , where a soft
ware - based embodiment is disclosed herein , the software
can be embodied in a physical machine such as a controller .
For example , a controller could include a first module and a
second module . A controller could be configured to perform
various actions , e.g. , of a method , an application , a layer or
an agent .
[0082] The embodiments can also be embodied as com
puter readable code on a tangible non - transitory computer
readable medium . The computer readable medium is any
data storage device that can store data , which can be
thereafter read by a computer system . Examples of the
computer readable medium include hard drives , network
attached storage (NAS) , read - only memory , random - access
memory , CD - ROMs , CD - Rs , CD - RWs , magnetic tapes , and
other optical and non - optical data storage devices . The
computer readable medium can also be distributed over a
network coupled computer system so that the computer
readable code is stored and executed in a distributed fashion .
Embodiments described herein may be practiced with vari
ous computer system configurations including hand - held
devices , tablets , microprocessor systems , microprocessor
based or programmable consumer electronics , minicomput

US 2021/0044528 A1 Feb. 11 , 2021
11

each field set of the plurality of field sets comprises one
or more packet characteristics ;

each field set group of the plurality of field set groups
comprises one or more field sets from the plurality of
field sets ; and

each field set group is associated with one or more
packet classifier rules ;

determining a set of encoded labels for the plurality of
field sets based on a set of rule costs and intersections
between field set groups , wherein each encoded label of
the set of encoded labels is associated with a respective
field set of the plurality of field sets ; and

generating a plurality of entries in a memory based on the
set of encoded labels , wherein at least one entry com
prises an encoded label from the set of encoded labels
and at least a portion of a packet classifier rule .

2. The method of claim 1 , further comprising :
determining the set of rule costs , wherein :

each rule cost is associated with a respective field set
group ; and

??

ers , mainframe computers and the like . The embodiments
can also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a wire - based or wireless network .
[0083] Although the method operations were described in
a specific order , it should be understood that other operations
may be performed in between described operations ,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing
[0084] Various units , circuits , or other components may be
described or claimed as " configured to ” or “ configurable to ”
perform a task or tasks . In such contexts , the phrase " con
figured to ” or “ configurable to ” is used to connote structure
by indicating that the units / circuits / components include
structure (e.g. , circuitry) that performs the task or tasks
during operation . As such , the unit / circuit / component can be
said to be configured to perform the task , or configurable to
perform the task , even when the specified unit / circuit / com
ponent is not currently operational (e.g. , is not on) . The
units / circuits / components used with the " configured to ” or
" configurable to ” language include hardware for example ,
circuits , memory storing program instructions executable to
implement the operation , etc. Reciting that a unit / circuit /
component is “ configured to ” perform one or more tasks , or
is “ configurable to ” perform one or more tasks , is expressly
intended not to invoke 35 U.S.C. 112 , sixth paragraph , for
that unit / circuit / component . Additionally , " configured to " or
" configurable to ” can include generic structure (e.g. , generic
circuitry) that is manipulated by software and / or firmware
(e.g. , an FPGA or a general - purpose processor executing
software) to operate in manner that is capable of performing
the task (s) at issue . “ Configured to ” may also include
adapting a manufacturing process (e.g. , a semiconductor
fabrication facility) to fabricate devices (e.g. , integrated
circuits) that are adapted to implement or perform one or
more tasks . “ Configurable to ” is expressly intended not to
apply to blank media , an unprogrammed processor or unpro
grammed generic computer , or an unprogrammed program
mable logic device , programmable gate array , or other
unprogrammed device , unless accompanied by programmed
media that confers the ability to the unprogrammed device
to be configured to perform the disclosed function (s) .
[0085] The foregoing description , for the purpose of
explanation , has been described with reference to specific
embodiments . However , the illustrative discussions above
are not intended to be exhaustive or to limit the invention to
the precise forms disclosed . Many modifications and varia
tions are possible in view of the above teachings . The
embodiments were chosen and described in order to best
explain the principles of the embodiments and its practical
applications , to thereby enable others skilled in the art to
best utilize the embodiments and various modifications as
may be suited to the particular use contemplated . Accord
ingly , the present embodiments are to be considered as
illustrative and not restrictive , and the invention is not to be
limited to the details given herein , but may be modified
within the scope and equivalents of the appended claims .
What is claimed is :
1. A method , comprising :
determining a plurality of field sets and a plurality of field

set groups , wherein :

each rule cost is based on a first number of rules
associated with the field set and a second number of
field sets in the respective field set group .

3. The method of claim 1 , wherein determining the set of
encoded labels comprises :

identifying a first field set group with a highest rule cost ;
identifying overlapping field sets that are in both the first

field set group and a second field set group ; and
determining a first subset of encoded labels for the

overlapping field sets .
4. The method of claim 3 , wherein the second field set

group has next highest rule cost .
5. The method of claim 3 , wherein :
the first subset of encoded labels is within a range of

encoded labels ; and
the range of encoded labels is aligned at a power of two .
6. The method of claim 3 , wherein the memory comprises

a ternary content - addressable memory (TCAM) .
7. The method of claim 3 , wherein :
the first subset of encoded labels is distributed across one

or more ranges of encoded labels ; and
each range of the one or more ranges of encoded labels is

aligned at a power of two .
8. The method of claim 3 , wherein determining the set of

encoded labels further comprises :
identifying non - overlapping field sets that are in the first

field set group and are not in the second field set group ;
and

determining a second subset of encoded labels for the
non - overlapping field sets .

9. The method of claim 3 , wherein determining the set of
encoded labels further comprises :

identifying one or more additional overlapping field sets ;
and

determining one or more additional sets of encoded
labels .

10. The method of claim 1 , wherein determining the set of
encoded labels further comprises :
merging a first encoded label of the set of encoded labels

and a second encoded label of the set of encoded labels
into a merged encoded label .

US 2021/0044528 A1 Feb. 11 , 2021
12

11. A network device , comprising :
a memory configured to store a data ; and
a processing device coupled to the memory , the process

ing device to :
determine a plurality of field sets and a plurality of field

set groups , wherein :
each field set of the plurality of field sets comprises one

or more packet characteristics ;
each field set group of the plurality of field set groups

comprises one or more field sets from the plurality of
field sets ; and

each field set group is associated with one or more
packet classifier rules ; determine a set of encoded
labels for the plurality of field sets based on a set of
rule costs and intersections between field set groups ,
wherein each encoded label of the set of encoded
labels is associated with a respective field set of the
plurality of field sets ; and

generate a plurality of entries in a memory based on the
set of encoded labels , wherein at least one entry com
prises an encoded label from the set of encoded labels
and at least a portion of a packet classifier rule .

12. The network device of claim 11 , wherein the process
ing device is further configured to :

determine the set of rule costs , wherein :
each rule cost is associated with a respective field set

16. The network device of claim 13 , wherein :
the first subset of encoded labels is distributed across one

or more ranges of encoded labels ; and
each range of the one or more ranges of encoded labels is

aligned at a power of two .
17. The network device of claim 13 , wherein to determine

the set of encoded labels the processing device is further
configured to :

identifying non - overlapping field sets that are in the first
field set group and are not in the second field set group ;
and

determining a second subset of encoded labels for the
non - overlapping field sets .

18. The network device of claim 13 , wherein to determine
the set of encoded labels the processing device is further
configured to :

identifying one or more additional overlapping field sets ;
and

determining one or more additional sets of encoded
labels .

19. The network device of claim 11 , wherein to determine
the set of encoded labels the processing device is further
configured to :

merging a first encoded label of the set of encoded labels
and a second encoded label of the set of encoded labels
into a merged encoded label .

20. A non - transitory machine - readable medium having
executable instructions to cause one or more processing
devices to perform a method comprising :

determining a plurality of field sets and a plurality of field
set groups , wherein :
each field set of the plurality of field sets comprises one

or more packet characteristics ;
each field set group of the plurality of field set groups

comprises one or more field sets from the plurality of
field sets ; and

each field set group is associated with one or more
packet classifier rules ;

determining a set of encoded labels for the plurality of
field sets based on a set of rule costs and intersections
between field set groups , wherein each encoded label of
the set of encoded labels is associated with a respective
field set of the plurality of field sets ; and

generating a plurality of entries in a memory based on the
set of encoded labels , wherein at least one entry com
prises an encoded label from the set of encoded labels
and at least a portion of a packet classifier rule .

group ; and
each rule cost is based on a first number of rules

associated with the field set and a second number of
field sets in the respective field set group .

13. The network device of claim 11 , wherein to determine
the set of encoded labels the processing device is further
configured to :

identify a first field set group with a highest rule cost ;
identify overlapping field sets that are in both the first field

set group and a second field set group ; and
determine a first subset of encoded labels for the over

lapping field sets .
14. The network device of claim 13 , wherein :
the first subset of encoded labels is within a range of

encoded labels ; and
the range of encoded labels is aligned at a power of two .
15. The network device of claim 13 , wherein a number of

encoded labels in the range of encoded labels is equal to or
greater than a number of overlapping field sets .

