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(57) ABSTRACT 
Roughly described, a design rule data set is developed offline 
from the design rules of a target fabrication process. A design 
rule checking method involves traversing the corners of 
shapes in a layout region, and for each corner, populating a 
layout topology database with values that depend on respec 
tive corner locations. After the layout topology database is 
populated, the values are compared to values in the design 
rule data set to detect any design rule violations. Violations 
can be reported in real time, while the user is manually editing 
the layout. Preferably corner traversal is performed using 
scan lines oriented perpendicularly to edge orientations, and 
scanning in the direction of the edge orientations. Scans stop 
only at corner positions and populate the layout topology 
database with what information can be gleaned based on the 
current scan line. The different scans need not reach each 
corner simultaneously. 
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HGH PERFORMANCE DESIGN RULE 
CHECKING TECHNIOUE 

BACKGROUND 

0001. The invention relates to electronic design automa 
tion, and more particularly, to methods and apparatuses for 
rapid checking of design rules in a circuit layout. 
0002 Advancements in process technology have 
impacted integrated circuit manufacturing in at least two key 
ways. First, Scaling of device geometry achieved through 
Sub-wavelength lithography has facilitated packing more 
devices on a chip. Second, different process recipes have 
enabled manufacturing of heterogeneous devices with differ 
ent threshold and Supply Voltages on the same die. A conse 
quence of these improvements, however, has been an explo 
sion in the number of design rules that need to be obeyed in 
the layout. Instead of simple width and spacing rules, modern 
fabrication technologies prescribe complex contextual rules 
that have to be obeyed for manufacturability. 
0003. The increase in the number of rules has complicated 
the task of creating design rule clean layouts, i.e., layouts that 
do not have design rule violations. Creating design rule clean 
layouts for digital circuit designs can be facilitated by the use 
ofstandard cell layouts as building blocks, and placement and 
routing tools that are extended to address the design rules. 
0004. Unfortunately, this approach usually does not work 
for analog, RF and custom circuit designs. Layouts for Such 
designs are typically created manually using layout editors, 
and because of the number and complexity of the design 
rules, checking them was a laborious process. 
0005. A conventional design rule check (DRC) system 
requires a powerful two-dimensional geometry engine which 
Supports geometric operations such as Boolean operations 
like AND, OR, NOT, XOR; sizing operations like grow/ 
shrink horizontal/vertical/diagonal; other operations like 
merge, shift, flip, cut, Smooth; as well as all-angle geometry 
for true Euclidean distance calculations. Individual rules are 
typically checked individually over an entire layout region. 
This is also true of individual rule values of same rule (e.g. a 
check against the minimum value for a rule, and another 
check against a preferred value for the same rule). Each check 
basically runs an independent sequence of geometry opera 
tions, and numerous passes through the layout region are 
required. 
0006 For example, a conventional series of operations to 
check a minimum spacing rule in a Manhattan only layout, 
might include steps of 

0007 Merge all same layer shapes into separate islands; 
0008 Grow all islands by half the minimum spacing 
value; 

0009 Perform an AND (intersection) operation among 
the islands; and 

0010 Draw DRC violation markers based on the result 
ing shapes of the AND operation. 

0011. As another example, a conventional series of opera 
tions to check a minimum width rule in a Manhattan only 
layout, might include steps of 

0012 Merge all same layer shapes into separate islands; 
0013 Shrink all islands by (half the minimum width 
value--epsilon) 

0014 Eliminate all resulting islands of Zero area; 
0015 Grow back the resulting islands by (half the mini 
mum width value--epsilon); 
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0016 Perform a NOT operation between the original 
merged islands and grown back islands; and 

0017 Draw DRC violation markers based on the shapes 
resulting from the NOT operation. 

0018 So long as a good geometry engine is available, the 
conventional DRC techniques are simple to code, at least for 
simple rules. They are also flexible and powerful if the geom 
etry engine has a scripting API for relevant geometry opera 
tions, and it is relatively straightforward to massively paral 
lelize the DRC process among numerous CPUs. 
0019. On the other hand, it can be seen that checking even 
simple design rules like those above is extremely expensive 
computationally. Massive parallelization usually is possible 
only for offline checks, which typically are performed only 
between layout iterations. Even then they often can require 
hours to complete. The conventional approach also suffers 
from roughly linear growth of the total run time with respect 
to the number of rules to be checked, with multiple values for 
a rule counted as separate rules. This makes it very hard to 
reduce the total run time without turning off selected rules. 
The conventional approach also suffers from linear growth of 
run time for individual rule checks, with respect to the length 
of the geometry operation sequence, i.e., the complexity of 
the rule. The conventional approach also involves separate 
checks for Euclidean measurements, and also requires exten 
sive education and training in order to optimize the perfor 
mance of the customer Scripts. 
0020. The manual layout editing process could be drasti 
cally facilitated if design rule checking could be performed in 
real time, that is, immediately after each geometric manipu 
lation made by the designer. While some layout editors are 
able to do this, the checking can be sluggish and usually 
works only when some of the design rules are turned off. 

SUMMARY 

0021. A need therefore exists for a robust solution to the 
problem of rapid checking of design rules during a layout 
editing process. 
0022 Roughly described, a design rule data set is devel 
oped offline based on the design rules of a target fabrication 
process. A design rule checking method then involves travers 
ing the corners of shapes in a subject layout region, and for 
each corner, populating a layout topology database with Val 
ues that depend on the respective corner locations. After the 
layout topology database has been populated, the values are 
compared to values in the design rule data set to detect any 
violations of design rules. Any violations can be reported to a 
user in real time, while the user is manually editing the layout. 
0023 Preferably corner traversal is performed using scan 
lines oriented perpendicularly to edge orientations, and scan 
ning in the direction of the edge orientations. Scans stop only 
at corner positions and populate the layout topology database 
with what information can be gleaned based on the current 
scan line. The different scans need not reach each corner 
simultaneously. 
0024. The above summary of the invention is provided in 
order to provide a basic understanding of some aspects of the 
invention. This Summary is not intended to identify key or 
critical elements of the invention or to delineate the scope of 
the invention. Its sole purpose is to present some concepts of 
the invention in a simplified form as a prelude to the more 
detailed description that is presented later. Particular aspects 
of the invention are described in the claims, specification and 
drawings. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

0025. The invention will be described with respect to spe 
cific embodiments thereof, and reference will be made to the 
drawings, in which: 
0026 FIG. 1 shows a simplified representation of an illus 

trative digital integrated circuit design flow. 
0027 FIG. 2 is a flow chart illustrating an example user 
experience when using an embodiment of the system as 
described herein. 
0028 FIG. 3 is a flow chart of the overall system flow for 
an embodiment of the invention. 
0029 FIG.4, FIG.7, FIG.8, FIG.9, FIG. 10, FIG. 12, FIG. 
13, FIG. 14, FIG. 15, FIG. 17, FIG. 18, FIG. 20 and FIG. 23 
are flow chart details of the overall system flow in FIG. 3. 
0030 FIG. 5 illustrates part of a sweep X data structure 
referred to in FIG. 4. 
0031 FIG. 6 illustrates part of a sweep y data structure 
referred to in FIG. 4. 
0032 FIG. 11A and FIG. 11B illustrate simple portions of 
a layout, highlighting convex and concave corners of a layout 
shape, respectively. 
0033 FIG. 19A, FIG. 19B and FIG. 19C illustrate certain 
corner relationships between layout shapes. 
0034 FIG. 19D illustrates two layout shapes for the pur 
pose of a particular design rule check. 
0035 FIG. 19E illustrates three layout shapes together 
forming an island. 
0036 FIG.21A, FIG.21B, FIG. 21C, FIG.21D, and FIG. 
21E illustrate example visual indications of design rule vio 
lations and near-violations. 
0037 FIG.22 is a simplified block diagram of a computer 
system that can be used to implement software incorporating 
aspects of the present invention. 

DETAILED DESCRIPTION 

0038. The following description is presented to enable any 
person skilled in the art to make and use the invention, and is 
provided in the context of a particular application and its 
requirements. Various modifications to the disclosed embodi 
ments will be readily apparent to those skilled in the art, and 
the general principles defined herein may be applied to other 
embodiments and applications without departing from the 
spirit and scope of the present invention. Thus, the present 
invention is not intended to be limited to the embodiments 
shown, but is to be accorded the widest scope consistent with 
the principles and features disclosed herein. 

Overall Design Process Flow 
0039 FIG. 1 shows a simplified representation of an illus 

trative digital integrated circuit design flow. At a high level. 
the process starts with the product idea (step 100) and is 
realized in an EDA (Electronic Design Automation) software 
design process (step 110). When the design is finalized, it can 
be taped-out (step 127). At some point after tape out, the 
fabrication process (step 150) and packaging and assembly 
processes (step 160) occur resulting, ultimately, in finished 
integrated circuit chips (result 170). 
0040. The EDA software design process (step 110) is itself 
composed of a number of steps 112-130, shown in linear 
fashion for simplicity. In an actual integrated circuit design 
process, the particular design might have to go back through 
steps until certain tests are passed. Similarly, in any actual 
design process, these steps may occur in different orders and 
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combinations. This description is therefore provided by way 
of context and general explanation rather than as a specific, or 
recommended, design flow for a particular integrated circuit. 
0041. A brief description of the component steps of the 
EDA software design process (step 110) will now be pro 
vided. 
0042 System design (step 112): The designers describe 
the functionality that they want to implement, they can per 
form what-if planning to refine functionality, check costs, etc. 
Hardware-Software architecture partitioning can occur at this 
stage. Example EDA Software products from Synopsys, Inc. 
that can be used at this step include Model Architect, Saber, 
System Studio, and DesignWare R products. 
0043 Logic design and functional verification (step 114): 
At this stage, the VHDL or Verilog code for modules in the 
system is written and the design is checked for functional 
accuracy. More specifically, the design is checked to ensure 
that it produces correct outputs in response to particular input 
stimuli. Example EDA software products from Synopsys, 
Inc. that can be used at this step include VCS, VERA, Design 
Ware(R), Magellan, Formality, ESP and LEDA products. 
0044 Synthesis and design for test (step 116): Here, the 
VHDL/Verilog is translated to a netlist. The netlist can be 
optimized for the target technology. Additionally, the design 
and implementation of tests to permit checking of the finished 
chip occurs. Example EDA software products from Synop 
Sys, Inc. that can be used at this step include Design Com 
piler(R), Physical Compiler, DFT Compiler, Power Compiler, 
FPGA Compiler, TetraMAX, and DesignWare(R) products. 
0045 Netlist verification (step 118): At this step, the 
netlist is checked for compliance with timing constraints and 
for correspondence with the VHDL/Verilog source code. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include Formality, PrimeTime, and 
VCS products. 
0046. Design planning (step 120): Here, an overall floor 
plan for the chip is constructed and analyzed for timing and 
top-level routing. Example EDA software products from Syn 
opsys, Inc. that can be used at this step include Astro and 
Custom Designer products. 
0047 Physical implementation (step 122): The placement 
(positioning of circuit elements) and routing (connection of 
the same) occurs at this step. Example EDA software prod 
ucts from Synopsys, Inc. that can be used at this step include 
the Astro, IC Compiler, and Custom Designer products. 
Aspects of the invention can be performed during this step 
122. 

0048 Analysis and extraction (step 124). At this step, the 
circuit function is verified at a transistor level, this in turn 
permits what-ifrefinement. Example EDA software products 
from Synopsys, Inc. that can be used at this step include 
AstroRail, PrimeRail, PrimeTime, and Star-RCXT products. 
0049 Physical verification (step 126): At this step various 
checking functions are performed to ensure correctness for: 
manufacturing, electrical issues, lithographic issues, and cir 
cuitry. Example EDA software products from Synopsys, Inc. 
that can be used at this step include the Hercules product. 
Aspects of the invention can be performed during this step 
126 as well. 

0050 Tape-out (step 127): This step provides the “tape 
out' data to be used (after lithographic enhancements are 
applied if appropriate) for production of masks for litho 
graphic use to produce finished chips. Example EDA Soft 
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ware products from Synopsys, Inc. that can be used at this 
step include the IC Compiler and Custom Designer families 
of products. 
0051 Resolution enhancement (step 128): This step 
involves geometric manipulations of the layout to improve 
manufacturability of the design. Example EDA software 
products from Synopsys, Inc. that can be used at this step 
include Proteus, ProteusAF, and PSMGen products. 
0052 Mask data preparation (step 130): This step pro 
vides mask-making-ready "tape-out' data for production of 
masks for lithographic use to produce finished chips. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include the CATSR) family of prod 
uctS. 

Overview of the Technique 
0053 While DRC layout rules are becoming more and 
more complex at Smaller and Smaller technology nodes, most 
if not all of them still can be decomposed into a combination 
of the relationships among the edges, the corners, and the 
contours of shapes in the layout. Relationships "among 
shapes as used herein includes relationships about a single 
shape as well. In embodiments herein, multiple perpendicular 
Scanlines are used to collect all the required data in one pass, 
so that the combinatorial checking on the data is virtually 
free. The pass speed is improved even further by stopping the 
Scanlines only at corner positions. Note that scans in multiple 
directions can also be combined an a particular embodiment, 
so that the algorithm effectively jumps from corner to corner, 
considering each corner only once. 
0054. In a Manhattan layout, all edges of all shapes are 
oriented either horizontally or vertically. In this case two scan 
lines would be used, one vertical (scanning horizontally) and 
one horizontal (scanning vertically). In each case the Scanline 
stops only at endpoints that it encounters of the edges that are 
oriented perpendicularly to the scan line. The vertical scan 
line, for example, stops only at endpoints of horizontally 
oriented edges, and the horizontal scan line stops only at 
endpoints of vertically oriented edges. In 45 degree layouts, 
edges can also be oriented at a 45 degree angle or a 135 degree 
angle. In this case four scan lines can be used, each scanning 
in a direction perpendicular to a respective one of the orien 
tations in which edges are included in the layout. While 
scanning the layout region in each particular direction, "cor 
ner data structures are populated for each corner, with what 
ever information is easily obtainable from the edge endpoints 
at the corner, and from other edges that intersect the same 
scan line. The combined information collected from all the 
scan lines as they encounter the corner, is sufficient to fully 
populate the corner data structure. 
0055. Other data structures are also populated during a 
Scan, Such as information about an island (such as its area), 
and information about vias. 
0056. Once all the data is collected into a layout topology 
database, design rule checking is accomplished merely by 
comparing the numeric values in the layout topology database 
with the constraint values in the design rule data set. Unlike 
geometry engine approaches, the approach described herein 
can be performed extremely quickly, often within millisec 
onds, allowing for design rule checking in real time, imme 
diately as the layout designer makes each alteration in the 
layout. 
0057 Moreover, since most if not all of the design rules 
can be framed in terms of topological relationships among 
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edges and corners, it can be seen that the same basic infor 
mation, collected during the Scan, can be used in checking 
most if not all of the design rules. In most embodiments, there 
is no need to re-scan the layout region in order to check 
different design rules; one scan is Sufficient for collecting all 
the needed data. Still further, since the number of topological 
relationships that can be involved in checking design rules is 
itself limited, there is little if any additional data collection 
needed during the scan in order to check new and ever more 
complex rules. The time required to perform DRC increases 
less than linearly with increasing numbers of rules, and tapers 
off to nearly Zero. 
0.058 For example, if minSpacing is supported already, 
then minSameNetSpacing and minNotchSpacing can be Sup 
ported for free (no runtime overhead). If minArea is sup 
ported already, then minRectArea can be supported for free 
(no runtime overhead). If 1D spacing is supported already, 
then 1D extension can be supported easily regardless of 
whether they share the same “width. It can be seen that the 
more rules that are to be checked, the greater the likelihood 
that the next “new rule' can be supported for free or with a 
little extra overhead. 

Example Implementation 
0059 FIG. 2 illustrates an example user experience when 
using an embodiment of the system as described herein. The 
flow chart of FIG. 2 occurs within step 122 (FIG. 1). 
0060. In step 210, the user develops a preliminary layout 
from a circuit design. As used herein, the term “circuit 
design refers to the gate or transistor level design, before 
layout. The circuit design is often represented internally to the 
system in a netlist file. The layout is represented internally to 
the system in a geometry file which defines, among other 
things, all the shapes to be formed on each mask that will be 
used to expose the wafer during fabrication. The geometry file 
can have any of several standard formats, such as GDSII, 
OASIS, CREF, and so on, or it can have a non-standard 
format. The file describes the layout of the circuit design in 
the form of a mask definition for each of the masks to be 
generated. Each mask definition defines a plurality of poly 
gons. At the time if FIG. 2, no resolution enhancement (RET) 
has yet been performed. Thus the layout geometries with 
which the user is working in FIG. 2 are in a sense idealized, 
since they do not yet take into account the imperfections of 
lithographic printing using optical wavelengths comparable 
or larger in size than the size of the geometries in the layout. 
For example, rectangles are rectangular, and are not yet pre 
corrected for diffractive effects. 
0061. In step 212, the user views the layout on a computer 
monitor. The user typically selects a region of the layout for 
magnified viewing, so that only that region is visible on the 
monitor. 
0062. In step 214, the user, using a mouse or other pointing 
device, selects a group of one or more shapes from the visible 
layout region and drags them to a different location. In step 
216, as the user drags the shapes, the system shows on the 
monitor any design rule violations in real time. In step 218, 
the user continues to drag the selected shapes until a position 
is foundat which all design rule violations disappear. The user 
then performs the next desired editing step, which could be 
another drag-and-drop as in steps 214-218. 
0063. It can be seen how useful real time immediate design 
rule checking, enabled by the system herein, can be in manual 
layout or layout modification efforts. 
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Relationship Master 
0064. Before discussing the methods used by an imple 
mentation of the system, it will be useful to discuss design 
rules in general, and how they can be represented within the 
system. Design rules are a set of rules that are provided by a 
semiconductor manufacturer, which specify minimum or 
maximum geometric relationships among the features of a 
layout. A semiconductor manufacturing process always has 
Some variability, and the purpose of design rules is to ensure 
that sufficient margin is included in the layout geometries to 
minimize the likelihood that the variability will result in loss 
of yield. A set of design rules is specific to a particular semi 
conductor manufacturing process, so new rules are provided 
to designers or EDA vendors for each new process or signifi 
cant process change. Despite their specificity to a particular 
process, there are many design rules which are similar, except 
for one or more numeric values, across many processes. 
0065 Design rules range from very simple to very com 
plex. Most, however, can be framed as a set of one or more 
constraint parameters, and a set of one or more constraint 
values for the constraint parameters. (AS used herein, a 
“parameter is merely a slot or container for one or more 
values. It is not itself a value.) For example, a simple design 
rule is minimum edge-to-edge spacing (sometimes called 
minSpacing). This rule has one parameter (edge-to-edge 
spacing), and one value which is the minimum spacing 
allowed by the rule between edges in a single layer of the 
layout. Many design rules specify more than one value for a 
particular parameter, such as an “absolute minimum value 
and a “preferred minimum value. 
0066. More complex rules can have multiple parameters. 
An End-of-line spacing rule, for example, specifies the mini 
mum spacing between the end of a line and its neighboring 
geometry. The constraint applies only if the width of the wire 
is less than a specified value, eolWidth. The constraint applies 
when any geometry occurs within a region defined by the 
minimum spacing, where the region includes the distance 
from each side of the wire. This distance is referred to as a 
lateral verification distance eolWithin. The constraint applies 
only if one parallel edge is within a specified rectangular 
region from the corners of the wire, or it applies only if two 
parallel edges are within a specified rectangular region from 
the corners of the wire. These parameters are referred to as 
parWithin and parSpace. The constraint applies when no par 
allel edges occur within the region defined by the minimum 
spacing, or one paralleledge occurs within the region defined 
by the minimum spacing, or two parallel edges. This rule has 
the spacing parameter itself, eolSpacing, as well as the fol 
lowing parameters: eolWidth, eolWithin, parWithin and 
parSpace. 
0067. Design rules can also specify constraints on edges in 
different layers. The MinDualExtension layer pair constraint, 
for example, specifies the minimum distance a shape on one 
layer must extend pasta shape on a second layer. This rule has 
one parameter for extensions in the horizontal direction and 
another parameter for extensions in the vertical directions. 
This rule can also specify additional pairs of parameters, 
keyed by wire width. Other more complex parameters are also 
available for this rule, including optional parameters to 
qualify when the rule applies. 
0068. Design rule sets also often include area rules, such 
as the minimum area of an island or a hole in a layer. They can 
also include via rules, which specify constraints on geometric 
dimensions in the “cut” layer (also sometimes called the via 
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layer), the island in the “cover layer above the via, and the 
island in the “cover layer below the via. 
0069. In an embodiment of the invention, all of the values 
specified by the design rules are provided to the system in the 
form of a design rule data set. As used herein, the term “data 
set does not imply any particular organization. For example, 
it includes maps, multimaps, trees, as well as ordinary tables, 
and other data organizations as well. The term also does not 
necessarily imply any unity or regularity of structure. For 
example, two or more separate data sets, when considered 
together, still constitute a “data set as that term is used 
herein. The terms “database' and “data structure' are also 
intended to have the same meaning as “data set. 
0070. In the present embodiment, the design rule data set 

is sometimes referred to herein as the relationship master. A 
class definition for an example relationship master, in pseudo 
C++, is as follows. In order to simplify the discussion, only 
Some of the parameters are shown. 

class relationship master 
{ 

layer number m layer; layer number for this instantiation 
stol::setslayer numbers m layers above; if identification of layers 

above current layer 
std::set-layer numbers m layers below; if identification of layers 

below current layer 
if the worst case value for spacing relationship on the 
if same layer, 0 if there is no design rule asking for 
?t min spacing relationship 
intm spacing: 
if the worst case value for dimension relationship on the 
if same layer, 0 if not applicable (minimum line width) 
intm dimension; 
if the worst case value for neighbor spacing relationship on 
if the same layer, 0 if not applicable 
if (also called parallel spacing) 
intm neighbor spacing: 
if the worst case value for neighbor within relationship on 
if the same layer, 0 if not applicable 
intm neighbor within; 
if the worst case value for neighbor dimension relationship on 
if the same layer 
intm neighbor width: 
intm area; minimum island area 
inthole area; 
intm common run length; 
stod::mapslayer number, int 
m common run clearance vector map: 
// extensions from this layer to other layers 
stod::mapslayer number, int- m cover layers; 
// extensions from other layers to this layer 
stod::mapslayer number, int- m cut layers; 
// worst case different layer clearance, from this layer to other layers 
stod::mapslayer number, int-m clearance layers; 
if for via rules 
stol::setslayer numbers m overlap layers; 
stol::setslayer numbers m dual cover layers; 

Design Rule Checking Flow 

(0071 FIG. 3 is a flow chart of the overall system flow for 
real time visual layout design rule checking The reader will 
recognize that the flow can be easily modified for use as a 
batch job instead. As with all flowcharts herein, it will be 
appreciated that many of the steps in FIG.3 can be combined, 
performed in parallel or performed in a different sequence 
without affecting the functions achieved. In some cases a 
re-arrangement of steps will achieve the same results only if 
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certain other changes are made as well, and in other cases a 
re-arrangement of steps will achieve the same results only if 
certain conditions are satisfied. However, as described in 
detail hereinafter, there are certain steps which are performed 
prior to other steps, in order to obtain benefits of the invention. 
0072. In step 310, the relationship master data set is built 
from a set of design rules for the target fabrication process. 
This can be done manually, or in Some embodiments it can be 
automated. It is provided to the DRC system either electroni 
cally or via a computer readable medium, and it is stored 
accessibly to the system on a computer readable medium. As 
used herein, a computer readable medium is one on which 
information can be stored and read by a computer system. 
Examples include a floppy disk, a hard disk drive, a RAM, a 
CD, a DVD, flash memory, a USB drive, and so on. The 
computer readable medium may store information in coded 
formats that are decoded for actual use in a particular data 
processing system. A single computer readable medium, as 
the term is used herein, may also include more than one 
physical item, such as a plurality of CD ROMs or a plurality 
of segments of RAM, or a combination of several different 
kinds of media. 

0073. In step 312, the system displays on a monitor the 
layout or layout region selected by the user. As used herein, 
the term “region” refers to a portion as viewed from above, 
including whatever layers are pertinent. As a degenerate case, 
the entire layout is also a “region'. The user can manipulate 
(edit) objects in the layout using familiar editing commands, 
such as keyboard- or mouse-based behaviors recognized by 
the system. For example, the user can select a group of objects 
by clicking and dragging the mouse pointer to form a rect 
angle around them. The user can then move the objects as a 
group by clicking within the rectangle and dragging it. Edit 
ing commands are recognized by the operating system and 
delivered to the application program by way of events in a 
well known manner. For example, user dragging of a group of 
objects might cause a series of events to be delivered to the 
application program, one after each movement by Some num 
ber of pixels, or some number of milliseconds. The applica 
tion program receives these events and determines for itself 
what the event represents. Step 312 can include a conven 
tional event loop, whereby the application program repeat 
edly checks for new events. When it receives an event, step 
312 determines that it represents a layout editing command 
Such as user dragging of a group of shapes across the layout. 
0074. In step 314, the system collects all the editing 
shapes, which are the ones that are being edited by the user. 
For a click-and-drag command, the editing shapes are the 
ones that are being moved to a different position in the layout. 
For a shape re-sizing command, the editing shape is the one 
being resized. 
0075. In step 316, the system collects all the surrounding 
shapes, which in a click-and-drag command, are the shapes 
near the new position of the editing shapes. A selection algo 
rithm is used here which errs on the side of collecting more 
shapes than necessary, since while inclusion of additional 
shapes could impact performance, the exclusion of relevant 
shapes will impact accuracy. One efficient way to collect 
appropriate shapes is to create a bounding box around the 
editing shapes in their new position, then extend the box in all 
four directions by 1.5 times the worst case minimum spacing 
or the worst case minimum inter-layer clearance, whichever 
is larger. All shapes at least partially overlapping with the 
expanded bounding box, in any layer, are then included in the 
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result. A conventional range search engine can be used for this 
step. Geometry processing is not needed. 
0076. In step 318, horizontal and vertical scan line trees 
sweep X and sweep y are built from all of the collected 
shapes, including both the editing shapes and the static 
shapes. The horizontal scan line tree Sweep X is a map of 
particular vertical Scanlines, and will be scanned horizontally 
across the selected layout region, from left to right. The 
Vertical scan line tree Sweep y is a map of particular horizon 
tal scan lines, and will be scanned vertically across the 
selected layout region, from bottom to top. 
(0077 FIG. 4 is a flow chart of step 318, and as can be seen, 
it includes a step 410 of building Sweep X and another step 
412 of building Sweep y. 
0078 FIG. 5 illustrates pertinent parts of the sweep X data 
structure 510. It contains two tree data structures, called 
enter tree 512 and exit tree 514. Enter-tree is a map of the 
Vertical scan lines, and the vertical position on Such scan 
lines, of the left-hand endpoints of the horizontal edges. Exit 
tree is a map of the vertical Scanlines, and the vertical position 
on Such scan lines, of the right-hand endpoints of the hori 
Zontal edges. 
(0079 Map 516 is an expansion of exit tree 514; enter tree 
512 has the same structure and is therefore not shown in FIG. 
5. It comprises key-value pairs, in which all the keys indicate 
horizontal positions and all the values are structures of class 
edge-tree, and represent vertical scan lines. A 'map' is a 
standard structure which allows only one entry for each 
unique key. Thus exit tree organizes all the vertical scan 
lines, and there is one vertical scan line for each horizontal 
position included. Note that by representing only specific 
Vertical scan lines, the horizontal scanning algorithm will be 
able to jump over all horizontal positions that do not contain 
any corners. 
0080 Multimap 518 is an expansion of one of the edge 
tree structures 520. The other edge trees have the same struc 
ture and therefore are not shown in FIG.5. Edge tree 520 also 
comprises key-value pairs, except that as a “multimap', mul 
tiple entries are allowed having the same key. In edge tree 
520 the keys indicate vertical positions, and all the values are 
structures of class edge, representing an edge having an 
endpoint on the current vertical scan line. Since this is part of 
the exit tree 514, only those horizontal edges having right 
hand endpoints at this horizontal position are included in 
edge tree 520. (In the enter tree 512, only edges having 
left-hand endpoints at a given horizontal position are included 
in the edge tree for the vertical scan line at the given hori 
Zontal position.) A multimap is used here rather thana map, in 
order to accommodate multiple edges having a right-hand 
endpoint at the same X and y position in the layout region. 
Multiple edges are possible because some could be on differ 
ent layers in the layout, or some could even be Superimposed 
on each other in a single layer. 
I0081 Block 522 is an expansion of one of the edge struc 
tures 524. The other edges have the same structure and there 
fore are not shown in FIG. 5. Edge 524 contains information 
about a particular horizontal edge of one of the shapes in the 
layout region, and also acts as a holding area for certain 
information developed during the scan as described herein 
after. At least the following information is included: 

0082 
0.083 layer ID: an indication of the layer number on 
which the edge lies: 

edge ID: an identifying value for the edge; 
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I0084 edge start (x,y): the X and y coordinates of the 
left-hand endpoint of the edge; 

I0085 edge end (x,y): the X and y coordinates of the 
right-hand endpoint of the edge; 

I0086 edge against scan line? (T/F): a Boolean indicat 
ing whether the edge is the bottom edge of a shape (True 
if it is a bottom edge, False otherwise): 

I0087 quadrant depth vector: four slots indicating how 
many shapes overlap each other in the current layer at the 
right-hand endpoint of the edge (for exiting edges) or the 
left-hand endpoint (for entering edges) or the intersec 
tion point of the edge and the vertical scan line (for all 
other edges in the current scan line), in each of the four 
quadrants centered at that point (for an embodiment that 
Supports 45 degree geometries, this is an octant depth 
vector containing eight slots); 

I0088 neighbor map: a map of neighboring edges 
0089 FIG. 6 illustrates pertinent parts of the sweep y data 
structure 610. Like Sweep X, Sweep y contains two tree data 
structures, called enter tree 612 and exit tree 614. In sweep 
y, enter-tree is a map of the horizontal scan lines, and the 
horizontal position on Such scan lines, of the lower endpoints 
of the vertical edges. Exit tree is a map of the horizontal scan 
lines, and the horizontal position on Such scan lines, of the 
upper endpoints of the vertical edges. 
0090 Map 616 is an expansion of exit tree 614; enter tree 
612 has the same structure and is therefore not shown in FIG. 
6. It comprises key-value pairs, in which all the keys indicate 
vertical positions and all the values are structures of class 
edge-tree, and represent horizontal scan lines. Thus exit 
tree organizes all the vertical scan lines, and since exit tree is 
a map, there is only one horizontal scan line for each vertical 
position included. Note that by representing only specific 
horizontal scan lines, the vertical scanning algorithm, like the 
horizontal scanning algorithm, will be able to jump over all 
Vertical positions that do not contain any corners. 
0091 Multimap 618 is an expansion of one of the edge 
tree structures 620. The other edge trees have the same struc 
ture and therefore are not shown in FIG. 6. Edge tree 620 also 
comprises key-value pairs, except that as a “multimap', mul 
tiple entries are allowed having the same key. In edge tree 
620 the keys indicate horizontal positions, and all the values 
are structures of class 'edge, representing an edge having an 
endpoint on the current horizontal Scanline. Since this is part 
of the exit tree 614, only those horizontal edges having upper 
endpoints at this vertical position are included in edge tree 
620. (In the enter tree 612, only edges having lower end 
points at a given vertical position are included in the edge 
tree for the horizontal scan line at the given vertical position.) 
0092 Block 622 is an expansion of one of the edge struc 
tures 624. The other edges have the same structure and there 
fore are not shown in FIG. 6. Edge 624 contains information 
about a particular vertical edge of one of the shapes in the 
layout region, and also acts as a holding area for certain 
information developed during the scan as described herein 
after. At least the following information is included: 

0093 edge ID: an identifying value for the edge; 
0094) layer ID: an indication of the layer number on 
which the edge lies: 

0.095 edge start (x,y): the X and y coordinates of the 
lower endpoint of the edge; 

0096 edge end (x,y): the X and y coordinates of the 
upper endpoint of the edge; 
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0097 edge against scan line? (T/F): a Boolean indicat 
ing whether the edge is the left edge of a shape (it will be 
True if it is a left edge, False otherwise): 

0.098 quadrant depth vector: four slots indicating how 
many shapes overlap each other in the current layer at the 
lower endpoint of the edge (for exiting edges) or the 
upper endpoint (for entering edges) or the intersection 
point of the edge and the horizontal scan line (for all 
other edges in the current Scan line), in each of the four 
quadrants centered at that point (for an embodiment that 
Supports 45 degree geometries, this is an octant depth 
vector containing eight slots); 

0099 neighbor map: a map of neighboring edges 
0100. As can be seen, Sweep X contains only horizontal 
edges and Sweep y contains only vertical edges. Thus the 
Scanlines in each data structure are perpendicular to the edges 
that will be encountered during a traversal of the structure. In 
an embodiment Supporting diagonal edges as well, two more 
Sweep data structures are present as well: one containing scan 
lines oriented parallel to one diagonal and the other contain 
ing scan lines oriented parallel to the other diagonal. Each 
data structure includes only edges oriented perpendicularly to 
its scan lines, so again, a scan line Sweep of the scan lines in 
each structure will encounter only those edges oriented per 
pendicularly to the scan line. 
0101 FIG. 7 is a flow chart detail of a method 410 for 
building the horizontal scan line tree sweep X. In step 710, a 
list is formed of all the horizontal edges of all shapes in the 
selected region, including editing shapes. In step 712, the list 
is sorted by the horizontal position of all the left-hand end 
points of the edges. There may be multiple edges whose 
left-hand endpoints have the same horizontal position, and 
these would be grouped together in the sort. 
0102. In step 714, enter tree is created for sweep X. This 

is accomplished by, at each unique horizontal position repre 
sented in the sorted list (step 716), creating a scan line mul 
timap (of class edge tree') for a vertical scan line at that 
horizontal position (step 718). In step 720, the scan line 
multimap at that horizontal position is populated with all the 
edges (structures of class edge) in the list having left-hand 
endpoints at the current horizontal position. 
0103. After enter tree has been created and populated for 
sweep X, the list from step 710 is re-sorted by horizontal 
position of all the right-hand endpoints of the edges. Again, 
there may be multiple edges whose right-hand endpoints have 
the same horizontal position. In step 724, exit tree is created 
for sweep X. Similarly to the creation of enter tree, this is 
accomplished by, at each unique horizontal position repre 
sented in the sorted list (step 726), creating a scan line mul 
timap (of class edge tree') for a vertical scan line at that 
horizontal position (step 718). In step 720, the scan line 
multimap at that horizontal position is populated with all the 
edges (structures of class edge) in the list having right-hand 
endpoints at the current horizontal position. 
0104 FIG. 8 is a flow chart detail of a method 412 for 
building the horizontal scan line tree sweep y. In step 810, a 
list is formed of all the vertical edges of all shapes in the 
selected region, including editing shapes. In step 812, the list 
is sorted by the vertical position of all the lower endpoints of 
the edges. Again, there may be multiple edges whose lower 
endpoints have the same vertical position, and these would be 
grouped together in the sort. 
0105. In step 814, enter tree is created for sweep y. This 

is accomplished by, at each unique vertical position repre 
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sented in the sorted list (step 812), creating a scan line mul 
timap (of class 'edge tree') for a horizontal scan line at that 
vertical position (step 818). In step 820, the scan line multi 
map at that Vertical position is populated with all the edges 
(structures of class 'edge) in the list having lower endpoints 
at the current vertical position. 
0106. After enter tree has been created and populated for 
sweep y, the list from step 810 is re-sorted by horizontal 
position of all the upper endpoints of the edges. Again, there 
may be multiple edges whose upper endpoints have the same 
Vertical position. In step 824, exit tree is created for Sweep y. 
AS before, this is accomplished by, at each unique vertical 
position represented in the Sorted list (step 822), creating a 
Scanline multimap (of class 'edge tree) for a horizontal scan 
line at that vertical position (step 818). In step 820, the scan 
line multimap at that vertical position is populated with all the 
edges (structures of class 'edge) in the list having upper 
endpoints at the current vertical position. 
0107 Returning now to FIG. 3, after the horizontal and 
vertical scan line trees have been built (step 318), all of the 
required topographical relationships among the shapes in the 
layout region are now extracted (step 320). 
0108 FIG.9 is a flow chart of step 320, and as can be seen, 

it includes a step 910 of scanning the horizontal scan tree 
Sweep X and another step 912 of Scanning the vertical scan 
tree sweep y. Note that in another embodiment the vertical 
scan can be performed first and the horizontal scan thereafter. 
In yet another embodiment, the two scans can be performed in 
an alternating manner. In a particularly advantageous 
embodiment, since the two scans are independent of each 
other, and discover different items of information for popu 
lating the corner data structures, the two scans are performed 
simultaneously on two different processor cores. In yet 
another embodiment, the two scans are coordinated with each 
other so that they proceed from corner to corner, with all data 
for a given corner populated before jumping to the next cor 
ner. As used herein, the two scans are said to be performed 
“concurrently' with each other if they overlap in time in such 
a way that corner data is extracted from at least one endpoint 
of at least one horizontal edge before corner data is extracted 
from at least one endpoint of at least one vertical edge, and 
corner data is extracted from at least one endpoint of at least 
one vertical edge before corner data is extracted from at least 
one endpoint of at least one horizontal edge. 
0109 FIG. 10 is a flow chart of step 910, for scanning the 
horizontal scan tree sweep X. In step 1008, the vertical scan 
line edge-tree multimap object current Scan line is created. 
In step 1010, current scan line traverses both enter tree and 
the exit tree together so that the vertical scan lines from both 
trees are considered in monotonically varying sequence, left 
to right. Since these two trees contain only those vertical scan 
lines on which an endpoint of a horizontal edge lies, inter 
vening vertical scan lines are skipped during this scan. The 
current vertical scan line is maintained in a multimap object 
of class edge tree, having the structure of edge tree 520 
(FIG. 5). It has a current horizontal scanning position, and 
stores the information shown in block 522 for each horizontal 
edge that intersects a vertical line at the current horizontal 
Scanning position. 
0110. In step 1012, current scan line is updated by add 
ing all horizontal edges having a left-hand endpoint located at 
the current horizontal scan position. In step 1014, the quad 
rant depth vector (FIG.5) for each edge in the current vertical 
scan line multimap is updated. In order to illustrate this step, 
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reference is made to FIGS. 11A and 11B, which illustrate 
simple portions of a layout. FIG. 11A highlights a convex 
corner 1114, whereas FIG. 11B highlights a concave corner 
1134. In FIG. 11A, 1110 is the current vertical scan line and 
1112 is a particular edge being considered. Edge 1112 is 
represented in the enter tree and in current Scan line, and 
has a left-hand endpoint 1114 located on vertical scan line 
1110. Edge 1112 also forms the upper edge of a rectangle 
1116. Four other rectangles are also shown in the figure, 1118, 
1120, 1122 and 1124. Four quadrants, centered at endpoint 
1114 and numbered I, II, III and IV for purposes of the present 
discussion, are also shown in FIG. 11 A. Similarly, in FIG. 
11B, 1130 is the current vertical scan line and 1132 is a 
particular edge being considered. Edge 1132 is represented in 
the enter tree, and has a left-hand endpoint 1134 located on 
vertical scan line 1110. Edge 1132 also forms the upper edge 
of a rectangle 1136. Four other rectangles are also shown in 
the figure, 1138, 1140, 1142 and 1144. The four quadrants I, 
II, III and IV. centered at endpoint 1134, are also shown in 
FIG 11B. 

0111. The quadrant depth vector indicates the number of 
shapes in a particular layer that border a particular edge 
endpoint in each of the four quadrants centered at that end 
point. In FIG. 11A, quadrants I, II and III contain no shapes 
that border endpoint 1114, and quadrant IV contains one such 
shape 1116. Thus the quadrant depth vector at endpoint 1114 
is (0,0,0,1). On the other hand, in FIG. 11B, quadrant II 
contains no shapes that border endpoint 1134, whereas quad 
rants I, III and IV each contain one such shape. Thus the 
quadrant depth vector at endpoint 1134 is (1,0,1,1). It can be 
seen that if exactly one quadrant depth is Zero, then the point 
represents a concave corner of an island, as in FIG. 11B. If 
exactly two values are Zero, and they are in adjacent quad 
rants, then the endpoint is not on a corner of an island. If the 
two Zeros are in diagonally opposite quadrants, then the end 
point is a corner of two diagonally adjacent islands, sharing 
the one corner. If exactly three values are Zero, as in FIG.11A, 
then the endpoint represents a convex corner of an island, 
island 1116 in FIG. 11A. If none of the values are Zero, then 
the endpoint is inside an island and does not representa corner 
of an island. The quadrant depth vector is used in later steps, 
as described hereinafter. 

0112. In step 1014, the updating of the quadrant depth 
vector for an edge in the enter tree (i.e. an edge whose left 
hand endpoint lies on the current vertical scan line), involves 
incrementing the value for either quadrant I or quadrant IV by 
one. The value for quadrant I is incremented if the "edge 
against scan line?' Boolean for the edge 1112 indicates True 
(i.e. the edge is the bottom edge of a shape), or the value for 
quadrant IV is incremented if the "edge against Scan line?” 
Boolean for the edge 1112 indicates False (i.e. the edge is the 
top edge of a shape). Similarly, the updating of the quadrant 
depth vector for an edge in the exit tree (i.e. an edge whose 
right-hand endpoint lies on the current vertical scan line), 
involves decrementing the value for either quadrant I or quad 
rant IV by one. The value for quadrant I is decremented if the 
"edge against Scan line?' Boolean for the exiting edge indi 
cates True (i.e. the edge is the bottom edge of a shape), or the 
value for quadrant IV is decremented if the "edge against Scan 
line?' Boolean for the exiting edge indicates False (i.e. the 
edge is the top edge of a shape). It can be seen that the 
quadrant depth vector increments quantities as the Vertical 
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Scanline encounters shapes while moving left-to-right across 
the region. It decrements quantities as the scan line moves 
past shapes. 
0113. In step 1016, each of the edges whose left-hand 
endpoint lies on the current scan line are processed. These are 
the edges represented in enter tree. As they are processed, a 
“corner data structure for the endpoint is populated. The 
corner data structure stores the information illustrated in 
FIGS. 11A and 11B, and can be described in a C++ like 
pseudocode class definition as follows: 

class corner 
{ 

if ori X vertical edge meeting at the 
corner. Of the edge endpoints, only 
the x-coordinates are populated. 
if ori y horizontal edge meeting at 
the corner. Of the edge endpoints, 
only the y-coordinates are populated. 
if tar X nearest vertical edge, 
walking horizontally along shape 
contour from corner 
if tar y nearesthorizontal edge, 
walking vertically along shape 
contour from corner 
is ray x nearest vertical facing 
edge, walking horizontally from 
corner, away from shape 
is ray y nearest horizontal facing 
edge, walking vertically from corner, 
away from shape 

edge* m dimension ray X; if d ray X last vertical edge 
walking horizontally into shape, 
before exiting shape 

edge* m dimension ray y; if d ray y last horizontal edge 
walking vertically into shape, before 
exiting shape 

std::list<corner'> m neighbor list; // list of nearest neighbor 
COile:S 

if whether the corner is convex or 
COC8We 

ray create space ray X() { 
ray p ray = new ray (this); 

if the first point is the corner position, i.e., the tail of the arrow 
p ray->m p1.x = m origin X->m point1.x: 
p ray->m p1..y = m origin y->m point1.y; 

if the second point is the X position of them space ray X, i.e., the 
head of the arrow 

p ray->m p2.X = m space ray X->m pointl.X; 
p ray->m p2.y = m origin y->m point1.y; 
return p ray; 

}: 
ray create space ray y() { 

ray p ray = new ray (this); 
if the first point is the corner position, i.e., the tail of the arrow 
p ray->m p1.x = m origin X->m point1.x: 
p ray->m p1..y = m origin y->m point1.y; 

if the second point is they position of them space ray y, i.e., the 
head of the arrow 

p ray->m p2.x = m origin X->m point1.x: 
p ray->m p2.y = m space ray y->m point1.y; 
return p ray; 

}: 
ray create dimension ray X() { 

ray p ray = new ray (this); 
if the first point is the corner position, i.e., the tail of the arrow 
p ray->m p1.x = m origin X->m point1.x: 
p ray->m p1..y = m origin y->m point1.y; 

if the second point is the X position of them dimension ray X, 
i.e., the head of the arrow 

p ray->m p2.x = m space dimension X->m point1.x: 
p ray->m p2.y = m origin y->m point1.y; 
return p ray; 

edge* m origin X; 

edge* m origin y; 

edge m target X; 

edge m target y; 

edge m space ray X; 

edge m space ray y; 

boolm is convex: 
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-continued 

ray create dimension ray y() { 
ray p ray = new ray (this); 

if the first point is the corner position, i.e., the tail of the arrow 
p ray->m p1.x = m origin X->m point1.x: 
p ray->m p1..y = m origin y->m point1.y; 

if the second point is they position of them dimension ray y, 
i.e., the head of the arrow 

p ray->m p2.x = m origin X->m point1.x: 
p ray->m p2.y = m space dimension y->m point1.y; 
return p ray; 

0114. A ray object represents essentially an arrow with a 
head point and tail point. All the tail points coincide with the 
current corner. For Manhattan layouts the rays are either 
horizontal or vertical, though in 45 degree layouts it can also 
have either of the two diagonal orientations. The ray class is 
described in a C++ like pseudocode class definition as fol 
lows: 

class ray 

corner m parent corner; 
bool is S. ray; 
pointm p1; 
pointm p2; 

0115 The corner data structures developed during the 
scan are maintained as entries in a synchronized corner map 
structure. This structure is a map, in which the keys identify a 
layer number and an X and y position on that layer, and the 
values are objects of class corner. 
0116 FIG. 12 is a flow chart detail of step 1016, for pro 
cessing the entering edges. In step 1210, each of the entering 
edges represented in the current vertical scan line are consid 
ered. In FIG. 11A, this will be only edge 1112. In FIG. 11B, 
this will be edge 1132, as well as the top and bottom edges of 
rectangle 1138. In step 1214, it is determined whether the 
left-hand endpoint of the current edge is a corner of an island. 
This is determined by reference to the current quadrant vec 
tor, as described previously. If it is not a corner of an island, 
then the edge is skipped. 
0117. In step 1216, a corner data structure for the left-hand 
endpoint of the current edge is instantiated in Synchronized 
corner map if it does not already exist. The corner data struc 
ture might already exist in synchronized corner map if, for 
example, the corner had already been encountered because of 
a different horizontal edge on the same layer that starts at the 
same point (such as the bottom edge of rectangle 1138 in FIG. 
11B), or as part of the vertical scan in an embodiment in 
which the vertical scan precedes or operates concurrently 
with the horizontal scan. In step 1218, the system walks 
upward and downward along the current vertical scan line 
from the current horizontal edge, populating the available 
corner information as it is learned. In particular, referring to 
the corner data structure definition above and the illustrations 
in FIGS. 11A and 11B, the edges s ray y, tar y and d ray y, 
as well as any others required by the design rules, are popu 
lated. Note that these values identify the shape edges at the 
head of the respective ray. The ray itself is identified sepa 
rately in the corner data structure, as previously mentioned. 
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0118. In one embodiment, all design rule checks are per 
formed only after all scans are complete. However, the 
present embodiment incorporates a feature in which the sys 
temperforms certain simple edge-based rule checks as part of 
step 1218. For example, if the current edge is a top edge and 
the walk upwards along the current vertical scan line meets 
the bottom edge of a shape in the same layer, then S ray y is 
populated in the corner data structure and the minimum spac 
ing rule is checked as well. This check involves comparing the 
length of S ray y with the minimum spacing value in the 
relationship master. If the current edge is a top edge and the 
walk upwards along the current vertical scan line meets the 
top edge of a shape in a different layer, then the minimum 
extension rule is checked by comparing the distance walked 
to the minimum extension value for the appropriate layer pair 
in the relationship master. If the current edge is a bottom 
edge and the walk upwards along the current vertical Scanline 
meets the top edge of a shape in the same layer, thend ray y 
is populated, and also the minimum dimension rule is 
checked. This check involves comparing the value of d ray y 
with the minimum dimension value in the relationship mas 
ter. If the current edge is a bottom edge and the walk upwards 
along the current vertical scan line meets the top edge of a 
shape in a different layer, then the minimum overlap rule is 
checked. Similar checks are performed during the walk 
downward from the current edge. If during the walks up and 
down the current vertical scan line, the distance walked 
exceeds the worst case limit from the relationship master, 
there is no design rule violation encountered and it is not 
necessary to populate further items in the corner data struc 
ture that would be encountered in the current walking direc 
tion. 

0119. After the available corner structure information 
items have been populated, then the system returns to step 
1210 to consider the next entering edge in the current vertical 
scan line. 

0120 FIG. 13 is a flow chart detail of step 1018 for pro 
cessing exiting edge corners. In step 1310, each of the exiting 
edges represented in the current vertical scan line are consid 
ered. In step 1314, it is determined whether the right-hand 
endpoint of the current edge is a corner of an island. This is 
determined by reference to the current quadrant vector, as 
described previously. If it is not a corner of an island, then the 
edge is skipped. 
0121. In step 1316, a corner data structure for the right 
hand endpoint of the current edge is instantiated in synchro 
nized corner map if it does not already exist. Again, the 
corner data structure might already exist in Synchronized 
corner map if for example, the corner had already been 
encountered because of a different horizontal edge on the 
same layer that ends at the same point, or as part of the vertical 
scan in an embodiment in which the vertical scan precedes or 
operates concurrently with the horizontal scan. In step 1318, 
the system walks upward and downward along the current 
Vertical Scanline from the current horizontal edge, populating 
the available corner information as it is learned. In particular, 
referring to the corner data structure definition above and the 
illustration in FIGS. 11A and 11B, the edges s ray y, tar y 
and d ray y, as well as any others required by the design 
rules, are populated. 
0122. In addition, preferably but not essentially, the sys 
tem also in step 1318 performs the same edge-based rule 
checks for the exiting edges as performed and described 
above with respect to step 1218 for entering edges. 
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(0123. After the available corner structure information 
items have been populated, then the system returns to step 
1310 to consider the next exiting edge in the current vertical 
scan line. 

0.124 Returning to FIG. 10, after both the entering and 
exiting edges having an endpoint on the current vertical scan 
line are processed, the system populates or updates informa 
tion about islands (step 1020). Islands are represented in 
objects of class island, and maintained in a map of class 
island map. They are instantiated as the vertical scan line 
encounters them as it scans horizontally, and are updated as 
the vertical scan line moves across them horizontally, corner 
to corner. Pertinent parts of the island data structure are 
described in a C++ like pseudocode class definition as fol 
lows: 

class island 
{ 

f. For horizontal scan, this is the iterator in 
i? current Scan line of the bottom most edge of the island 
edge tree::iteratorm start iterator; 
f. For horizontal scan, this is the iterator in 
i? current scan line of the top most edge of the island 
edge tree::iterator m end iterator; 
if the unique id of the island. 
if Islands are split or merged during the horizontal scan. 
// When an island is split, the island id is not split 
if (i.e., multiple islands will share same id), so we know 
if these islands are actually Sub-islands of a larger island; 
?t When multiple islands merge together, the Smallest island 
if id is used as the shared id for all the islands merged together. 
intml island id: 
if accumulating the common run length against the same layer. 
if For efficiency, 2D spacing rules are checked during scan, 
fi not after. In another embodiment they could be checked afterwards. 
intm last valid common run position; 
if accumulating the common run length against different layers 
stod::mapslayer number, int 
m last valid top position vector; 
stod::mapslayer number, int 
m last valid bottom position vector; 
if accumulating the area of this island so far 
intm area; 
if accumulating the area of the potential hole right above this island. 
intm hole area: 
if Horizontal position that current scan line stopped last time 
intm last position updated; 

0.125 Among other things, the island data structure accu 
mulates the following information about a particular island 
during the process of the horizontal scan: area of the island, 
area of a hole just above the island, common run lengths 
against other islands in the same layer and islands in other 
layers. For clarity of illustration, the present description will 
concentrate primarily on the island area as an example of 
island-based rule checking Reference will be made to FIG. 
19E, which illustrates a sample layout region having three 
overlapping rectangles 1932, 1934 and 1936, all on a single 
layer. Because they overlap on a single layer, they form a 
single island 1930. 
0.126 Roughly described, island area is accumulated dur 
ing the horizontal scan by using the shape corners to divide 
the island into non-overlapping “island rectangles', the area 
of which are easily determined from the horizontal edges 
represented in the current vertical scan line. In the example of 
FIG. 19E, the method divides the island 1930 into five island 
rectangles bounded horizontally by the broken vertical lines 
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1938. Like for the extraction of corner data, the updating of 
island data takes place only at those vertical scan lines con 
taining a corner of the island. Horizontal scanning does not 
stop anywhere between corners. A rectangle (not shown) 
disposed entirely within rectangle 1932, for example, will not 
bear on any island design rule and does not become a stopping 
place during the scan. A high level description of the process 
is illustrated in the flow chart of FIG. 23. 
0127. Referring to FIG. 23, as mentioned, the islands are 
stored in a map called island map. The keys of island map 
identify the lower left corner of a respective island. In step 
2310, each island having a corner lying on the current vertical 
scan line is considered. In step 2312, if the corner represents 
an island being encountered for the first time during the Scan, 
a new island data structure is instantiated in island map (step 
2314). The area is set to Zero (step 2316), and in step 2324, the 
value of m last position updated for the new island is set 
equal to the X-position of the current vertical scan line. 
0128 If the current island is already represented in island 
map, then effectively a vertical slice is made through the 
current island at the current vertical Scanline; and the area of 
the left-adjacent rectangle is added to the area being accumu 
lated. Accordingly, in step 2318, the height H of the left 
adjacent rectangle is calculated as the distance along the 
current vertical scan line from the bottom edge of the current 
island to the top edge of the current island. This information 
is available in current scan line, because at least one of the 
top and bottom edges is a corner, and the y-position of the 
corner is available as the left- or right-hand endpoint of a 
horizontal edge in the current vertical scan line. The other of 
the top and bottom edges may also be a corner, or may be an 
edge that merely intersects the current vertical scan line. In 
either case its y-position is available as well in current scan 
line. In step 2320, the width W of the left-adjacent rectangle 
is calculated as the horizontal position of the current scan 
line minus the last Scanline position at which island informa 
tion was updated, which is the value in m last position 
updated. In step 2.322 the product of H and W is added to the 
area value for the current island. 
0129. In step 2324, as mentioned above, the value of 
m last position updated for the new island is set equal to the 
x-position of the current vertical scan line. The method then 
returns to step 2310 for consideration of the next island hav 
ing a corner on the current vertical scan line. 
0130. Once all islands having a corner on the current ver 

tical scan line have been considered, then any two or more of 
Such islands that are now vertically-adjacent are merged into 
a single island in step 2326 and their area values Summed. In 
step 2328, any island that is now split into two, perhaps 
separated vertically by a newly encountered hole or notch, are 
split. The details of the merging and splitting operations are 
not important for an understanding of the invention. Note that 
whereas island area information is captured during the hori 
Zontal scan, it is not compared to the design rule values in the 
present embodiment until later. 
0131 Returning to FIG. 10, after the island data has been 
updated based on the current Scanline, in step 1022, as a time 
saving technique, the quadrant depth vectors for each of the 
entering horizontal edges in the current vertical scan line are 
copied from the right-hand quadrants to the corresponding 
left-hand quadrants. In this manner the left-hand quadrant 
depth values can be incremented or decremented as the ver 
tical scan line moves rightward, and will contain accurate 
values when the Scanline reaches the right hand endpoint of 
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the edge. In step 1024, all the exiting edges are removed from 
the current vertical scan line. The routine then returns to step 
1010 for the next horizontal scan position. 
0.132. Returning to FIG. 9, after the horizontal scan tree 
has been scanned, the vertical scan tree is scanned (step 912). 
FIG. 14 is a flow chart of step 912, for scanning the vertical 
scan tree Sweep y 
0.133 FIG. 14 is a flow chart of step 912, for scanning the 
vertical scan tree sweep y. In step 1408, the horizontal scan 
line edge-tree multimap object current Scan line is created. 
In step 1410, current scan line traverses both enter tree and 
the exit tree together so that the horizontal scan lines from 
both trees are considered in monotonically varying sequence, 
bottom to top. Since these two trees contain only those hori 
Zontal scan lines on which an endpoint of a vertical edge lies, 
intervening horizontal scan lines are skipped during this scan. 
The current horizontal scan line is maintained in a multimap 
object of class edge tree, having the structure of edge tree 
620 (FIG. 6). It has a current horizontal scanning position, 
and stores the information shown in block 622 for each ver 
tical edge that intersects a horizontal line at the current ver 
tical scanning position. 
I0134. In step 1412, current scan line is updated by add 
ing all vertical edges having a lower endpoint located at the 
current horizontal scan position. In step 1414, the quadrant 
depth vector (FIG. 6) for each edge in the current horizontal 
Scanline multimap is updated. This step involves, for an edge 
in the enter tree (i.e. a vertical edge whose lower endpoint 
lies on the current horizontal scan line), incrementing the 
value for either quadrant I or quadrant II by one. The value for 
quadrant I is incremented if the "edge against Scan line?” 
Boolean for the edge 1112 indicates True (i.e. the edge is the 
left-hand edge of a shape), or the value for quadrant II is 
incremented if the "edge against scan line'?” Boolean for the 
edge 1112 indicates False (i.e. the edge is the right-hand edge 
of a shape). Similarly, the updating of the quadrant depth 
vector for an edge in the exit tree (i.e. an edge whose upper 
endpoint lies on the current horizontal scan line), involves 
decrementing the value for either quadrant I or quadrant II by 
one. The value for quadrant I is decremented if the "edge 
against Scan line?' Boolean for the exiting edge indicates 
True (i.e. the edge is the left-hand edge of a shape), or the 
value for quadrant II is decremented if the "edge against Scan 
line?' Boolean for the exiting edge indicates False (i.e. the 
edge is the right-hand edge of a shape). It can be seen that the 
quadrant depth vector increments quantities as the horizontal 
scan line encounters shapes while moving upward across the 
region. It decrements quantities as the scan line moves past 
shapes. 
I0135) In step 1416, each of the edges whose lower end 
point lies on the current Scanline are processed. These are the 
edges represented in enter tree. As they are processed, the 
“corner data structure for the endpoint is populated in syn 
chronized corner map. As mentioned, the relevant corner 
data structure may already exist from a previously encoun 
tered different vertical edge on the same layer that starts at the 
same point, or as part of the horizontal scan in an embodiment 
in which the horizontal vertical scan precedes or operates 
concurrently with the vertical scan. 
(0.136 FIG. 15 is a flow chart detail of step 1416, for pro 
cessing the entering edges. In step 1510, each of the entering 
edges represented in the current horizontal scan line are con 
sidered. In step 1514, it is determined whether the lower 
endpoint of the current edge is a corner of an island. This is 
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determined by reference to the current quadrant vector, as 
described previously. If it is not a corner of an island, then the 
edge is skipped. 
0.137 In step 1516, a corner data structure for the left-hand 
endpoint of the current edge is instantiated in Synchronized 
corner map if it does not already exist. In step 1518, the 
system walks leftward and rightward along the current hori 
Zontal scan line from the current vertical edge, populating the 
available corner information as it is learned. In particular, 
referring to the corner data structure definition above and the 
illustrations in FIGS. 11A and 11B, the edges s ray X, tar X 
and d ray X, as well as any others required by the design 
rules, are populated. 
0.138. In an embodiment, certain edge-based rule checks 
are also performed as part of step 1518, similar to those 
performed in step 1218. For example, if the current edge is a 
right-hand edge and the walk rightward along the current 
horizontal Scanline meets the left-hand edge of a shape in the 
same layer, then S ray X is populated in the corner data 
structure and the minimum spacing rule is checked as well. 
This check involves comparing the length of s ray X with the 
minimum spacing value in the relationship master. If the 
current edge is a right-hand edge and the walk rightwards 
along the current horizontal scan line meets the right-hand 
edge of a shape in a different layer, then the minimum exten 
sion rule is checked by comparing the distance walked to the 
minimum extension value for the appropriate layer pair in the 
relationship master. If the current edge is a left-hand edge 
and the walk rightwards along the current horizontal scan line 
meets the right-hand edge of a shape in the same layer, then 
d ray X is populated, and also the minimum dimension rule 
is checked. This check involves comparing the value of 
d ray X with the minimum dimension value in the relation 
ship master. If the current edge is a left-hand edge and the 
walk rightwards along the current horizontal scan line meets 
the right-hand edge of a shape in a different layer, then the 
minimum overlap rule is checked. Similar checks are per 
formed during the walk leftward from the current edge. If 
during the walks leftward and rightward along the current 
horizontal scan line, the distance walked exceeds the worst 
case limit from the relationship master, there is no design rule 
violation encountered and it is not necessary to populate 
further items in the corner data structure that would be 
encountered in the current walking direction. 
0139. After the available corner structure information 
items have been populated, then the system returns to step 
1510 to consider the next entering edge in the current hori 
Zontal scan line. 

0140 FIG. 16 is a flow chart detail of step 1418 for pro 
cessing exiting edge corners. In step 1610, each of the exiting 
edges represented in the current horizontal scan line are con 
sidered. In step 1614, it is determined whether the upper 
endpoint of the current edge is a corner of an island. This is 
determined by reference to the current quadrant vector, as 
described previously. If it is not a corner of an island, then the 
edge is skipped. 
0141. In step 1616, a corner data structure for the upper 
endpoint of the current edge is instantiated in Synchronized 
corner map if it does not already exist. Again, the corner data 
structure might already exist in Synchronized corner map. 
In step 1618, the system walks leftward and rightward along 
the currenthorizontal scan line from the current vertical edge, 
populating the available corner information as it is learned. In 
particular, referring to the corner data structure definition 
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above and the illustration in FIGS. 11A and 11B, the edges 
S. ray X, tar X and d ray X, as well as any others required by 
the design rules, are populated. 
0142. In addition, preferably but not essentially, the sys 
tem also in step 1618 performs similar edge-based rule 
checks for the exiting edges as performed and described 
above with respect to step 1318. 
0143. After the available corner structure information 
items have been populated, then the system returns to step 
1610 to consider the next exiting edge in the current horizon 
tal scan line. 
0144. Returning to FIG. 14, after both the entering and 
exiting edges having an endpoint on the current horizontal 
scan line are processed, it is not necessary to populate or 
update information about islands. This was done during the 
horizontal scan (step 1020 in FIG. 10), and no additional 
information will be determined during the vertical scan. For 
example, the area of an island, determined as a vertical scan 
line scans across the island horizontally, will not be any 
different than the area determined as a horizontal scan line 
scans across the island vertically. 
0145. In step 1422, as a time saving technique, the quad 
rant depth vectors for each of the entering vertical edges in the 
current horizontal scan line are copied from the upper quad 
rants to the corresponding lower quadrants. In this manner the 
lower quadrant depth values can be incremented or decre 
mented as the horizontal scan line moves upward, and will 
contain accurate values when the scan line reaches the upper 
endpoint of the edge. In step 1424, all the exiting edges are 
removed from the current horizontal scan line. The routine 
then returns to step 1410 for the next vertical scan position. 
014.6 Returning to FIG. 3, after step 320, all the topo 
graphical relationships needed to perform the checks in the 
design rule set have been collected into a layout topology 
database. As mentioned, the term database as used herein 
does not imply any unity or regularity of structure, and in the 
present embodiment the layout topology database includes 
Synchronized corner map, island map and via map, and 
other collections of data as well. In step 322, the values in the 
layout topology database are compared to those in the rela 
tionship master, in order to check all the design rules. In one 
embodiment, all design rule violations are reported, whereas 
in another embodiment, only those violations involving edit 
ing shapes are reported. 
0147 FIG. 17 is a flow chart detail of step 322. These are 
illustrative examples of design rules that are checked in the 
present embodiment only after the scans across the layout 
region have been completed. The grouping of these checks as 
shown in FIG. 17 is only for convenience of the present 
description; it may or may not correspond to any grouping in 
any particular embodiment. For purposes of the present 
description, the design rules that are checked in FIG. 17 are 
grouped as follows. Corner-to-corner rules are checked in 
step 1710, and other corner-based rules are checked in step 
1712. Island-based rules are checked in step 1714, and other 
rules (such as via-based rules) are checked in step 1716. 
Details are provided herein regarding some of the corner-to 
corner rules, some other corner-based rules, and some island 
based rules. 
0148 FIG. 18 is a flow chart detail of step 1710, for check 
ing the corner-to-corner rules. In step 1810, the system builds 
a map of space and dimension rays from the ray information 
previously populated into the synchronized corner map. Rays 
from all layers are included, but only those space rays that 
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extend from convex corners, and only those dimension rays 
that extend from concave corners, are included in this ray 
map. In addition, instead of the rays representing the shape 
edges encountered when walking away from the corner, the 
rays in the ray map formed in step 1810 represent true rays 
from the corner to the encountered edge. 
0149. In step 1812, the ray map is scanned left-to-right to 
identify intersections of the rays. A conventional scan line 
algorithm can be used for this purpose. 
0150. In step 1814, it is determined whether the current ray 
intersection is an intersection of two space rays. The two 
corners from which these space rays extend both have to be 
convex, so the situation is as illustrated in FIG. 19A, where 
s rays 1910 and 1912 intersect. In this case the corner-to 
corner Euclidean spacing 1914 is calculated. If the two shapes 
are located on the same layer, the spacing 1914 is compared to 
the minimum corner-to-corner spacing value in relationship 
master. If they are on different layers, it is compared to the 
minimum corner-to-corner clearance in relationship master 
(step 1816). 
0151. If the intersecting rays are not both space rays, then 
in step 1818 it is determined whether they are both dimen 
sion rays in the same layer. The two corners from which these 
dimension rays extend both have to be concave, so the situ 
ation is as illustrated in FIG. 19B, where d rays 1916 and 
1918 intersect. In this case the corner-to-corner Euclidean 
dimension 1920 is again calculated and compared to the 
minimum dimension rule value in relationship master (step 
1820). 
0152. If the intersecting rays are not both dimension rays, 
then in step 1822 it is determined whether one is a space ray 
on one layer, and the other is a dimension ray on a different 
layer. Since the corner from which the space ray extends is 
convex, and the corner from which the dimension ray 
extends in concave, the situation is as illustrated in FIG. 19C. 
In this figure, s ray 1922 from a corner of shape 1921 inter 
sects d ray 1924 from a corner of shape 1923, and the two 
shapes are on different layers. In this case the distance that the 
shape on one layer extends past the edge of the shape the other 
layer is calculated in both dimensions, and compared to the 
minExtension or minDualExtension value in relationship 
master (step 1824). 
0153 Various other corner-based design rule checks can 
be performed within this loop as well, not shown in FIG. 18. 
The routine then loops back to step 1812 to continue scanning 
for more intersecting rays. 
0154 FIG.20 is a flow chart detail of step 1712, for check 
ing certain other corner-based rules. These rules are checked 
inside a loop 2010 which traverses the synchronized corner 
map. In step 2012, the edge length rule is checked from the 
current corner. For the horizontal edge meeting at this corner, 
this involves subtracting the X-position of the corner (ori X) 
from the X-position of the nearest vertical edge, walking 
horizontally along the shape contour (tar X) and comparing 
the absolute value of the difference to the minimum edge 
length value in the relationship master. For the vertical edge 
meeting at this corner, this involves Subtracting the y-position 
of the corner (ori y) from the y-position of the nearest hori 
Zontal edge, walking vertically along the shape contour (tar 
y) and comparing the absolute value of the difference to the 
minimum edge length value in the relationship master. 
(O155 In step 2014, it is determined whether the current 
corner is concave or convex. If it is concave, then in step 2016 
the concave corner edge length rule is checked. This rule 
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requires that at least one of the two adjacent edges forming a 
concave corner have at least a minimum length. This test can 
be performed using the same values from the corner data 
structure as used in step 2012 (ori X, tar X, ori y and tar y). 
The lengths determined for the two edges are compared to the 
minimum concave corner edge length value in the relation 
ship master. 
0156. In step 2018, the notch rule is checked. This rule 
requires that a notch in an island have at least a specified 
minimum width. Framed in terms of corners, the rule requires 
that two adjacent concave corners be at least a specified 
distance apart. This rule need be checked for a horizontally 
adjacent corner only of the horizontally-adjacent corner is 
concave, and need be checked for a vertically-adjacent corner 
only of the vertically-adjacent corner is concave. For 
example, in the illustration of FIG. 11B, only the horizon 
tally-adjacent corner need be checked for violation of the 
notch rule. The notch rule can be tested by subtracting the 
X-position of the current corner (ori X) from the X-position of 
the nearest vertical facing edge, walking horizontally from 
corner, away from the shape, which is already available in the 
current corner data structure as space ray X. The absolute 
value of the difference is then compared to the minimum 
notch width value in the relationship master. For a notch 
formed with a vertically-adjacent concave corner, the y-po 
sition of the current corner (ori y) is subtracted from the 
y-position of the nearesthorizontal facing edge, walking ver 
tically from the current corner, away from the shape, which is 
already available in the current corner data structure as space 
ray y. The absolute value of the difference is then compared 
to the minimum notch width value in the relationship master. 
(O157. If in step 2014, it is determined that the current 
corner is convex, then in step 2020 the convex corner edge 
length rule is checked. This rule requires that at least one of 
the two adjacent edges forming a convex corner have at least 
a minimum length. This test can be performed using the same 
values from the corner data structure as used in step 2012 
(ori X, tar X, ori y and tary). The lengths determined for the 
two edges are compared to the minimum convex corner edge 
length value in the relationship master. 
0158. In step 2022, an end-of-line spacing rule is checked. 
In its simplest form, this rule requires that at the end of a line, 
a specified minimum spacing is required to the neighboring 
geometry. Referring to FIG. 19D, where the line in question is 
line 1926, the rule requires that for an end-of-line width 
eolWidth less than one specified value, the end-of-line spac 
ing eolSpace must be at least another specified value. If the 
current corner is convex corner 1828, then the width of the 
line 1926 in the horizontal dimension is easily determined by 
Subtracting the X-position of the current corner (ori X) from 
the X-position of the last vertical edge walking horizontally 
into shape, before exiting shape, which is already available in 
the current corner data structure as d ray X. The spacing to 
the next neighboring geometry is available in the current 
corner data structure as S. ray y. Thus the absolute value of 
the subtraction is compared to the value for eolWidth in the 
relationship master, and if Small enough to invoke the rule, 
S. ray y is then compared to the value for eolSpace in the 
relationship master. For a horizontally-oriented line, the 
width of the line in the vertical dimension is determined by 
Subtracting the y-position of the current corner (ori y) from 
the y-position of the last horizontal edge walking vertically 
into shape, before exiting shape, which is already available in 
the current corner data structure as d ray y. The spacing to 
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the next neighboring geometry is available in the current 
corner data structure as S. ray X. Thus the absolute value of 
the subtraction is compared to the value for eolWidth in the 
relationship master, and if Small enough to invoke the rule, 
S. ray X is then compared to the value for eolSpace in the 
relationship master. 
0159. After all the desired rules are checked for the current 
corner, the routine returns to step 2010 to consider the next 
corner in Synchronized corner map. 
0160 Returning to FIG. 17, after the corner-based rules 
have been checked in steps 1710 and 1712, island-based rules 
are then checked in step 1714. Example island-based design 
rules that can be checked here include the minimum island 
area rule, the minimum hole area rule, minimum common run 
dependent separation against other islands in the same layer, 
and minimum common run dependent separation against 
islands in other layers. In an embodiment, these are all 
checked within a single traversal of island map, where the 
values for all required topological relationships in the layout 
region have already been populated. For example, the area of 
each island in island map has already been populated during 
the horizontal scan. The step of checking the minimum island 
area rule, therefore, is accomplished simply by comparing the 
stored island area for the current island with the minimum 
area value in the relationship master. Note that in an embodi 
ment, during the horizontal scan, accumulation of island area 
is aborted once the accumulated area exceeds the worst case 
minimum required in the relationship master. The stored area 
values will still be determined in this step 1714 to satisfy the 
minimum island area rule. 
0161. Other rules, such as via-based rules, are checked in 
step 1716. 
0162 Returning to FIG.3, step 324 involves reporting any 
design rule violations to the user or to another entity. If 
reported to the user, the report can take place promptly (e.g. 
for real time feedback) or later (e.g. if performed as a batch 
job). Where the violations are reported to the user promptly, 
this enables the user to modify the layout to correct for the 
design rule violations. Whereas any form of reporting can be 
used, preferably the design rule violations are reported by 
way of visual indications on the user's monitor, as markers on 
the layout region itself. In an embodiment, near violations are 
also indicated. Marker information can be anything that can 
be used to render a visual indicator of the violation, but 
preferably it identifies a rectangle for designating the location 
of the violation within the layout region. In an embodiment, 
the rectangle is shown in a size which indicates the magnitude 
of the primary value of the rule being violated. This informa 
tion can be very useful as it indicates graphically how much is 
needed to correct the violation. For near-violations, it can be 
a ruler indicating the current spacing. For example, if the 
violation is a minimum spacing violation, a rectangle might 
encompass the (too-small) spacing area, or a ruler disposed 
across the space might indicate actual spacing if it is larger 
than the minimum. 

0163 All of the design rule checks output marker infor 
mation for any violation. The marker information is collected 
in a map structure. In step 324, the marker information is 
converted to visible form on the user's monitor or provided to 
another entity. In addition, as shown in FIG. 3, once the 
markers have been output, the system returns to step 312 to 
await the next editing command. This may be as simple as 
another slight movement of the current editing shapes being 
dragged across the layout region. This event will result in 
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another traversal through steps 314-324 of FIG. 3, thus caus 
ing a change in the visual indicator as seen by the user. 
Because of the efficiency of the design rule checking tech 
niques described herein, in the embodiment herein the new 
markings will appear nearly immediately with each drag of 
the editing shapes. 
0164 FIG. 21A is an example visual indication of a vio 
lation of a minimum spacing rule. In this drawing, editing 
rectangle 2112 has been moved too close to static rectangle 
2110, and a box 2114 appears indicating how much end-of 
line spacing is required by the rule. If the minimum spacing 
value that is being violated is an absolute value, then the box 
2114 might appear in one color, whereas if it is a preferred 
value that is being violated, then the box 2114 might appear in 
another color. A third color can be used to indicate a most 
preferred value, and so on. As the user pulls the editing shape 
2112 apart from static shape 2110, the box 2114 disappears 
and a ruler appears, such as ruler 2116 in FIG. 21B. Ruler 
2116 indicates the actual distance between the end of editing 
shape 2112 and the nearest edge of static shape 2110, and 
thereby indicates how much closer shape 2112 can be brought 
to shape 2110 before the minimum spacing rule will be vio 
lated. 

0.165 FIG. 21C is an example visual indication of a vio 
lation of a corner-to-corner spacing rule. In this drawing, 
editing rectangle 2112 has been moved too close to a corner of 
static rectangle 2110, and a box 2118 appears indicating the 
violation. Again, the box 2118 can appear in either of two 
colors to indicate violation of an absolute or preferred value 
for this design rule. As the user pulls the editing shape 2112 
apart from static shape 2110, the box 2114 disappears and a 
ruler appears, such as corner-to-corner ruler 2120 in FIG. 
21D. Ruler 2020 indicates the actual corner-to-corner dis 
tance between the end of editing shape 2112 and the nearest 
edge of static shape 2110. 
0166 FIG. 21E is an example visual indication of a vio 
lation of a corner-to-corner minimum dimension rule. In this 
drawing, a corner of editing rectangle 2112 overlaps a corner 
of a same layer static rectangle 2110, but the overlap is too 
small to satisfy the minimum dimension rule. A box 2022 
appears indicating the violation. 
0.167 Similar visual indicators to indicate violations of 
other design rules will be apparent to the reader. It can be seen 
that the markings provide nearly immediate feedback to the 
user as the layout is edited, thereby greatly facilitating the 
manual layout effort. It should be noted that the absence of 
any visual indication to the user also constitutes a notification 
to the user that no design rule violation has been detected. 
(0168. In the embodiments described herein, all the corner 
data structures are completely populated before the corner 
based rules are checked. This is the most advantageous 
arrangement, but some benefits of the invention can be 
obtained even if only some (i.e. more than one; preferably 
more than two) of the corner data structures are completely 
populated before the corner-based rules are checked. Simi 
larly, all island data structures are completely populated 
before the island-based rules are checked. Again, while this is 
the most advantageous arrangement, some benefits of the 
invention can be obtained even if only some (i.e. more than 
one; preferably more than two) of the island data structures 
are completely populated before the island-based rules are 
checked. 
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Hardware 

0169 FIG.22 is a simplified block diagram of a computer 
system 2210 that can be used to implement software incor 
porating aspects of the present invention. Computer system 
2210 includes a processor subsystem 2214 which communi 
cates with a number of peripheral devices via bus subsystem 
2212. These peripheral devices may include a storage Sub 
system 2224, comprising a memory Subsystem 2226 and a file 
storage subsystem 2228, user interface input devices 2222, 
user interface output devices 2220, and a network interface 
subsystem 2216. The input and output devices allow user 
interaction with computer system 2210. Network interface 
subsystem 2216 provides an interface to outside networks, 
including an interface to communication network 2218, and 
is coupled via communication network 2218 to correspond 
ing interface devices in other computer systems. Communi 
cation network 2218 may comprise many interconnected 
computer systems and communication links. These commu 
nication links may be wireline links, optical links, wireless 
links, or any other mechanisms for communication of infor 
mation. While in one embodiment, communication network 
2218 is the Internet, in other embodiments, communication 
network 2218 may be any suitable computer network. 
0170 The physical hardware component of network inter 
faces are sometimes referred to as network interface cards 
(NICs), although they need not be in the form of cards: for 
instance they could be in the form of integrated circuits (ICs) 
and connectors fitted directly onto a motherboard, or in the 
form of macrocells fabricated on a single integrated circuit 
chip with other components of the computer system. 
0171 User interface input devices 2222 may include a 
keyboard, pointing devices such as a mouse, trackball, touch 
pad, or graphics tablet, a scanner, a touch screen incorporated 
into the display, audio input devices Such as Voice recognition 
systems, microphones, and other types of input devices. In 
general, use of the term “input device' is intended to include 
all possible types of devices and ways to input information 
into computer system 2210 or onto computer network 2218. 
0172 User interface output devices 2220 may include a 
display Subsystem, a printer, a fax machine, or non-visual 
displays Such as audio output devices. The display Subsystem 
may include a cathode ray tube (CRT), a flat-panel device 
Such as a liquid crystal display (LCD), a projection device, or 
Some other mechanism for creating a visible image. The 
display subsystem produces the images illustrated in FIGS. 
21A-21E, for example. The display subsystem may also pro 
vide non-visual display Such as via audio output devices. In 
general, use of the term “output device' is intended to include 
all possible types of devices and ways to output information 
from computer system 2210 to the user or to another machine 
or computer system. 
0173 Storage subsystem 2224 stores the basic program 
ming and data constructs that provide the functionality of 
certain embodiments of the present invention. For example, 
the various modules implementing the functionality of cer 
tain embodiments of the invention may be stored in storage 
subsystem 2224. These software modules are generally 
executed by processor subsystem 2214. 
0.174 Memory subsystem 2226 typically includes a num 
ber of memories including a main random access memory 
(RAM) 2230 for storage of instructions and data during pro 
gram execution and a read only memory (ROM) 2232 in 
which fixed instructions are stored. File storage subsystem 
2228 provides persistent storage for program and data files, 
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and may include a hard disk drive, a floppy disk drive along 
with associated removable media, a CD-ROM drive, an opti 
cal drive, or removable media cartridges. The databases and 
modules implementing the functionality of certain embodi 
ments of the invention may be stored by file storage sub 
system 2228. The host memory 2226 contains, among other 
things, computer instructions which, when executed by the 
processor Subsystem 2214, cause the computer system to 
operate or perform functions as described herein. As used 
herein, processes and Software that are said to run in or on “the 
host' or “the computer system”, execute on the processor 
Subsystem 2214 in response to computer instructions and data 
in the host memory Subsystem 2226 including any other local 
or remote storage for Such instructions and data. 
0.175 Bus subsystem 2212 provides a mechanism for let 
ting the various components and Subsystems of computer 
system 2210 communicate with each other as intended. 
Although bus Subsystem 2212 is shown Schematically as a 
single bus, alternative embodiments of the bus Subsystem 
may use multiple busses. 
0176 Computer system 2210 itself can be of varying types 
including a personal computer, a portable computer, a work 
station, a computer terminal, a network computer, a televi 
Sion, a mainframe, or any other data processing system or user 
device. Due to the ever-changing nature of computers and 
networks, the description of computer system 2210 depicted 
in FIG. 22 is intended only as a specific example for purposes 
of illustrating certain embodiments of the present invention. 
In another embodiment, the invention can be implemented 
using multiple computer systems. Such as in a server farm. 
Many other configurations of computer system 2210 are pos 
sible having more or less components than the computer 
system depicted in FIG. 22. 
0177. In an embodiment, the steps set forth in the flow 
charts and descriptions herein are performed by a computer 
system having a processor Such as processor Subsystem 2214 
and a memory Such as storage Subsystem 2224, under the 
control of software which includes instructions which are 
executable by the processor subsystem 2214 to perform the 
steps shown. The software also includes data on which the 
processor operates. The Software is stored on a computer 
readable medium, which as mentioned above and as used 
herein, is one on which information can be stored and read by 
a computer system. Examples include a floppy disk, a hard 
disk drive, a RAM, a CD, a DVD, flash memory, a USB drive, 
and so on. The computer readable medium may store infor 
mation in coded formats that are decoded for actual use in a 
particular data processing system. A single computer read 
able medium, as the term is used herein, may also include 
more than one physical item, such as a plurality of CD-ROMs 
or a plurality of segments of RAM, or a combination of 
several different kinds of media. When the computer readable 
medium storing the Software is combined with the computer 
system of FIG. 22, the combination is a machine which per 
forms the steps set forth herein. Means for performing each 
step consists of the computer system (or only those parts of it 
that are needed for the step) in combination with software 
modules for performing the step. The computer readable 
medium storing the software is also capable of being distrib 
uted separately from the computer system, and forms its own 
article of manufacture. 
0.178 Additionally, the geometry file or files storing the 
layout, the relationship master dataset, and the layout topol 
ogy database are themselves stored on computer readable 
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media. Such media can be distributable separately from the 
computer system, and form their own respective articles of 
manufacture. When combined with a computer system pro 
grammed with Software for reading, revising, and writing the 
geometry files, and for design rule checking, they form yet 
another machine which performs the steps set forth herein. 
0179. As used herein, the “identification of an item of 
information does not necessarily require the direct specifica 
tion of that item of information. Information can be “identi 
fied in a field by simply referring to the actual information 
through one or more layers of indirection, or by identifying 
one or more items of different information which are together 
sufficient to determine the actual item of information. In 
addition, the term “indicate” is used hereinto mean the same 
as “identify”. 
0180. As used herein, a given signal, event or value is 
“responsive' to a predecessor signal, event or value if the 
predecessor signal, event or value influenced the given signal, 
event or value. If there is an intervening processing element, 
step or time period, the given signal, event or value can still be 
“responsive' to the predecessor signal, event or value. If the 
intervening processing element or step combines more than 
one signal, event or value, the signal output of the processing 
element or step is considered “responsive' to each of the 
signal, event or value inputs. If the given signal, event or value 
is the same as the predecessor signal, event or value, this is 
merely a degenerate case in which the given signal, event or 
value is still considered to be “responsive' to the predecessor 
signal, event or value. “Dependency' of a given signal, event 
or value upon another signal, event or value is defined simi 
larly. 
0181. The foregoing description of preferred embodi 
ments of the present invention has been provided for the 
purposes of illustration and description. It is not intended to 
be exhaustive or to limit the invention to the precise forms 
disclosed. Obviously, many modifications and variations will 
be apparent to practitioners skilled in this art. In particular, 
and without limitation, any and all variations described, Sug 
gested or incorporated by reference in the Background sec 
tion of this patent application are specifically incorporated by 
reference into the description herein of embodiments of the 
invention. The embodiments described herein were chosen 
and described in order to best explain the principles of the 
invention and its practical application, thereby enabling oth 
ers skilled in the art to understand the invention for various 
embodiments and with various modifications as are Suited to 
the particular use contemplated. It is intended that the scope 
of the invention be defined by the following claims and their 
equivalents. 

1-24. (canceled) 
25. A method for checking a set of layout design rules on a 

region of an integrated circuit layout, the layout including a 
plurality of shapes each including edges in a plurality of 
different orientations, each of the edges having endpoints at 
respective locations in the layout, endpoints of edges in a first 
one of the orientations being first endpoints and endpoints of 
edges in a second one of the orientations being second end 
points, 

for use by a computer system having access to a design rule 
data set indicating constraint values of design rules in the 
data set, the method comprising the steps of 
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the computer system scanning the layout region in a first 
dimension which is perpendicular to the first edge ori 
entation, so as to encounter first endpoints of the edges 
having the first orientation; 

in response to encountering each of at least a first Subset of 
at least two of the first endpoints, the computer system 
populating a layout topology database with values in 
dependence upon the respective first endpoint location; 

the computer system scanning the layout region in a second 
dimension which is perpendicular to the second edge 
orientation, so as to encounter second endpoints of the 
edges having the second orientation; 

in response to encountering each of at least a second Subset 
of at least two of the second endpoints, the computer 
system populating the layout topology database with 
values in dependence upon the respective second end 
point location; 

after the layout topology database has been populated with 
values in dependence upon the first endpoint location of 
all endpoints in the first Subset of endpoints, and values 
in dependence upon the second endpoint location of all 
endpoints in the second Subset of endpoints, the com 
puter system comparing values in the layout topology 
database to values in the design rule data set to detect any 
violations of design rules in the set of design rules; and 

where a design rule violation is detected, reporting it to a 
USC. 

26. A method according to claim 25, wherein the step of the 
computer system scanning the layout region in a first dimen 
sion comprises the step of the computer system Scanning the 
layout region so as to encounter the first endpoints in a mono 
tonically varying position in the first dimension. 

27. A method according to claim 26, wherein the step of the 
computer system scanning the layout region in a second 
dimension comprises the step of the computer system scan 
ning the layout region so as to encounter the second endpoints 
in a monotonically varying position in the second dimension. 

28. A method according to claim 25, wherein each of the 
first endpoints has a position in the first dimension, 

and wherein the step of the computer system Scanning the 
layout region in a first dimension comprises the step of 
the computer system jumping only among positions in 
the first dimension which match positions in the first 
dimension of first endpoints. 

29. A method according to claim 28, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands. 

30. A method according to claim 28, wherein the second 
endpoints each have a position in the second dimension, 

and wherein the step of the computer system Scanning the 
layout region in a second dimension comprises the step 
of the computer system jumping only among positions 
in the second dimension which match positions in the 
second dimension of second endpoints. 

31. A method according to claim 30, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 
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wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands 

and wherein the second Subset of second endpoints 
includes all endpoints of the second edges which end 
points coincide with corners of the islands. 

32. A method according to claim 31, wherein the step of the 
computer system jumping only among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, comprises the step of the computer system 
jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, 

and wherein the step of the computer system jumping only 
among positions in the second dimension which match 
positions in the second dimension of second endpoints, 
comprises the step of the computer system jumping only 
monotonically among positions in the second dimension 
which match positions in the second dimension of sec 
ond endpoints. 

33. A method according to claim 28, wherein the step of the 
computer system jumping only among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, comprises the step of the computer system 
jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints. 

34. A method according to claim 25, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

and wherein the step of the computer system Scanning the 
layout region in a first dimension avoids first endpoints 
which do not lie on an island contour. 

35. A method according to claim 25, wherein the step of the 
computer system scanning the layout region in a first dimen 
Sion, completes before the step of the computer system scan 
ning the layout region in a second dimension, begins. 

36. A method according to claim 25, wherein the step of the 
computer system scanning the layout region in a first dimen 
Sion, and the step of the computer system Scanning the layout 
region in a second dimension, are performed concurrently. 

37. A method according to claim 25, wherein the plurality 
of orientations consists of first and second orientations which 
are perpendicular to each other. 

38. A method according to claim 25, wherein a design rule 
violation is detected in the step of the computer system com 
paring values. 

39. (canceled) 
40. A system for checking a set of layout design rules on a 

region of an integrated circuit layout, the layout including a 
plurality of shapes each having shape corners at respective 
locations in the layout, comprising: 

a computer system having access to a design rule data set 
indicating constraint values of design rules in the data 
set, the computer system further having access to com 
puter instructions and data which, when applied to the 
computer system, perform the steps of 

Scanning the layout region in a first dimension which is 
perpendicular to the first edge orientation, so as to 
encounter first endpoints of the edges having the first 
orientation; 
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in response to encountering each of at least a first Subset of 
at least two of the first endpoints, the computer system 
populating a layout topology database with values in 
dependence upon the respective first endpoint location; 

scanning the layout region in a second dimension which is 
perpendicular to the second edge orientation, so as to 
encounter second endpoints of the edges having the 
second orientation; 

in response to encountering each of at least a second Subset 
of at least two of the second endpoints, the computer 
system populating the layout topology database with 
values in dependence upon the respective second end 
point location; 

after the layout topology database has been populated with 
values in dependence upon the first endpoint location of 
all endpoints in the first Subset of endpoints, and values 
in dependence upon the second endpoint location of all 
endpoints in the second Subset of endpoints, comparing 
values in the layout topology database to values in the 
design rule data set to detect any violations of design 
rules in the set of design rules; and 

where a design rule violation is detected, reporting it to a 
USC. 

41. (canceled) 
42. A computer program product for checking a set of 

layout design rules on a region of an integrated circuit layout, 
the layout including a plurality of shapes each having shape 
corners at respective locations in the layout, for use by a 
computer system having access to a design rule data set 
indicating constraint values of design rules in the data set, the 
computer program product comprising 

a computer readable medium having stored thereon a plu 
rality of software code portions and data which when 
executed by the computer system perform the steps of 

scanning the layout region in a first dimension which is 
perpendicular to the first edge orientation, so as to 
encounter first endpoints of the edges having the first 
orientation; 

in response to encountering each of at least a first Subset of 
at least two of the first endpoints, populating a layout 
topology database with values in dependence upon the 
respective first endpoint location; 

scanning the layout region in a second dimension which is 
perpendicular to the second edge orientation, so as to 
encounter second endpoints of the edges having the 
second orientation; 

in response to encountering each of at least a second Subset 
of at least two of the second endpoints, populating the 
layout topology database with values in dependence 
upon the respective second endpoint location; 

after the layout topology database has been populated with 
values in dependence upon the first endpoint location of 
all endpoints in the first Subset of endpoints, and values 
in dependence upon the second endpoint location of all 
endpoints in the second Subset of endpoints, comparing 
values in the layout topology database to values in the 
design rule data set to detect any violations of design 
rules in the set of design rules; and 

where a design rule violation is detected, reporting it to a 
USC. 

43. A system according to claim 40, wherein the step of the 
computer system scanning the layout region in a first dimen 
sion comprises the step of the computer system Scanning the 
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layout region so as to encounter the first endpoints in a mono 
tonically varying position in the first dimension. 

44. A system according to claim 43, wherein the step of the 
computer system scanning the layout region in a second 
dimension comprises the step of the computer system scan 
ning the layout region so as to encounter the second endpoints 
in a monotonically varying position in the second dimension. 

45. A system according to claim 40, wherein each of the 
first endpoints has a position in the first dimension, 

and wherein the step of the computer system Scanning the 
layout region in a first dimension comprises the step of 
the computer system jumping only among positions in 
the first dimension which match positions in the first 
dimension of first endpoints. 

46. A system according to claim 45, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands. 

47. A system according to claim 45, wherein the second 
endpoints each have a position in the second dimension, 

and wherein the step of the computer system Scanning the 
layout region in a second dimension comprises the step 
of the computer system jumping only among positions 
in the second dimension which match positions in the 
second dimension of second endpoints. 

48. A system according to claim 47, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands 

and wherein the second Subset of second endpoints 
includes all endpoints of the second edges which end 
points coincide with corners of the islands. 

49. A system according to claim 48, wherein the step of the 
computer system jumping only among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, comprises the step of the computer system 
jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, 

and wherein the step of the computer system jumping only 
among positions in the second dimension which match 
positions in the second dimension of second endpoints, 
comprises the step of the computer system jumping only 
monotonically among positions in the second dimension 
which match positions in the second dimension of sec 
ond endpoints. 

50. A system according to claim 45, wherein the step of the 
computer system jumping only among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, comprises the step of the computer system 
jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints. 

51. A system according to claim 40, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
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single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

and wherein the step of the computer system Scanning the 
layout region in a first dimension avoids first endpoints 
Which do not lie on an island contour. 

52. A system according to claim 40, wherein the step of the 
computer system scanning the layout region in a first dimen 
Sion, completes before the step of the computer system scan 
ning the layout region in a second dimension, begins. 

53. A system according to claim 40, wherein the step of the 
computer system scanning the layout region in a first dimen 
Sion, and the step of the computer system scanning the layout 
region in a second dimension, are performed concurrently. 

54. A system according to claim 40, wherein the plurality 
of orientations consists of first and second orientations which 
are perpendicular to each other. 

55. A product according to claim 42, wherein the code 
portions and data which when executed by the computer 
system perform the step of scanning the layout regionina first 
dimension comprise code portions and data which when 
executed by the computer system perform the step of scan 
ning the layout region so as to encounter the first endpoints in 
a monotonically varying position in the first dimension. 

56. A product according to claim 55, wherein the code 
portions and data which when executed by the computer 
system perform the step of scanning the layout region in a 
second dimension comprise code portions and data which 
when executed by the computer system perform the step of 
scanning the layout region so as to encounter the second 
endpoints in a monotonically varying position in the second 
dimension. 

57. A product according to claim 42, wherein each of the 
first endpoints has a position in the first dimension, 

and wherein the code portions and data which when 
executed by the computer system perform the step of 
Scanning the layout region in a first dimension comprise 
code portions and data which when executed by the 
computer system perform the step of jumping only 
among positions in the first dimension which match 
positions in the first dimension of first endpoints. 

58. A product according to claim 57, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands. 

59. A product according to claim 57, wherein the second 
endpoints each have a position in the second dimension, 

and wherein the code portions and data which when 
executed by the computer system perform the step of 
Scanning the layout region in a second dimension com 
prise code portions and data which when executed by the 
computer system perform the step of jumping only 
among positions in the second dimension which match 
positions in the second dimension of second endpoints. 

60. A product according to claim 59, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 
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wherein the first subset of first endpoints includes all end 
points of the first edges which endpoints coincide with 
corners of the islands 

and wherein the second Subset of second endpoints 
includes all endpoints of the second edges which end 
points coincide with corners of the islands. 

61. A product according to claim 60, wherein the code 
portions and data which when executed by the computer 
system perform the step of jumping only among positions in 
the first dimension which match positions in the first dimen 
sion of first endpoints, comprise codeportions and data which 
when executed by the computer system perform the step of 
jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints, 

and wherein the code portions and data which when 
executed by the computer system perform the step of 
jumping only among positions in the second dimension 
which match positions in the second dimension of sec 
ond endpoints, comprise code portions and data which 
when executed by the computer system perform the step 
of jumping only monotonically among positions in the 
second dimension which match positions in the second 
dimension of second endpoints. 

62. A product according to claim 57, wherein the code 
portions and data which when executed by the computer 
system perform the step of jumping only among positions in 
the first dimension which match positions in the first dimen 
sion of first endpoints, comprise codeportions and data which 
when executed by the computer system perform the step of 
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jumping only monotonically among positions in the first 
dimension which match positions in the first dimension of 
first endpoints. 

63. A product according to claim 42, wherein each of the 
shapes in the plurality of shapes is specific to a layer, the 
single layer geometric union of the shapes in the plurality of 
shapes forming a plurality of islands, the islands each having 
a contour, 

and wherein the code portions and data which when 
executed by the computer system perform the step of 
Scanning the layout region in a first dimension avoid first 
endpoints which do not lie on an island contour. 

64. A product according to claim 42, wherein the code 
portions and data which when executed by the computer 
system perform the step of scanning the layout regionina first 
dimension, complete before the code portions and data which 
when executed by the computer system perform the step of 
scanning the layout region in a second dimension, begin. 

65. A product according to claim 42, wherein the code 
portions and data which when executed by the computer 
system perform the step of scanning the layout regionina first 
dimension, and the code portions and data which when 
executed by the computer system perform the step of scan 
ning the layout region in a second dimension, execute con 
currently. 

66. A product according to claim 42, wherein the plurality 
of orientations consists of first and second orientations which 
are perpendicular to each other. 
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