
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0159949 A1

DA et al.

US 2013 O159949A1

(43) Pub. Date: Jun. 20, 2013

(54)

(71)

(72)

(73)

(21)

(22)

(62)

HIGH PERFORMANCE DESIGN RULE
CHECKING TECHNIOUE

Applicants:Zuo DAI, Ontario (CA); Dick LIU,
Saratoga, CA (US); Ming SU, Nepean
(CA)

Inventors: Zuo DAI, Ontario (CA); Dick LIU,
Saratoga, CA (US); Ming SU, Nepean
(CA)

SYNOPSYS, INC., Mountain View, CA
(US)

Assignee:

Appl. No.: 13/718,527

Filed: Dec. 18, 2012

Related U.S. Application Data
Division of application No. 12/960,086, filed on Dec.
3, 2010, now Pat. No. 8,352,887.

BUILD RELATIONSHIP
MASTER

AWAIT LAYOUT EDITING COMMAND

COLLECTEDITING SHAPES
FROMLAYOUT COMMAND

COLLECTSURROUNDING
STATIC SHAPES

BUILD HORIZONTAL AND VERTICAL
SCAN LINE TREES FROMALL

EDGES OF ALL COLLECTED SHAPES

Publication Classification

(51) Int. Cl.
G06F 17/50 (2006.01)

(52) U.S. Cl.
CPC G06F 17/5081 (2013.01)
USPC .. 71.6/112

(57) ABSTRACT
Roughly described, a design rule data set is developed offline
from the design rules of a target fabrication process. A design
rule checking method involves traversing the corners of
shapes in a layout region, and for each corner, populating a
layout topology database with values that depend on respec
tive corner locations. After the layout topology database is
populated, the values are compared to values in the design
rule data set to detect any design rule violations. Violations
can be reported in real time, while the user is manually editing
the layout. Preferably corner traversal is performed using
scan lines oriented perpendicularly to edge orientations, and
scanning in the direction of the edge orientations. Scans stop
only at corner positions and populate the layout topology
database with what information can be gleaned based on the
current scan line. The different scans need not reach each
corner simultaneously.

310

312

314

316

318

EXTRACT TOPOGRAPHICAL
RELATIONSHIPS BETWEEN EDITING
SHAPES AND SURROUNDING SHAPES 320

COMPARE TO DESIGN

OUTPUT MARKERS FROM
DRC CHECK

322

324

US 2013/0159949 A1 2013 Sheet 1 of 24 Jun. 20 Patent Application Publication

Patent Application Publication Jun. 20, 2013 Sheet 2 of 24 US 2013/0159949 A1

USER.EXPERIENCE

USER DEVELOPS PRELIMINARY
LAYOUT FROM CIRCUIT DESIGN

USERVIEWS LAYOUT REGION ON
MONITOR

USER SELECTS AND DRAGS GROUP
OF SHAPES

SYSTEM SHOWS DESIGN RULE VOLATIONS
ONMONITOR IN REAL TIME

USERADJUSTS POSITION OF

210

212

214

216

218

GROUP OF SHAPES UNTILDESIGN
RULEVIOLATION DISAPPEARS

Patent Application Publication Jun. 20, 2013 Sheet 3 of 24 US 2013/0159949 A1

310

BUILD RELATIONSHIP
MASTER

AWAT LAYOUT EDITING COMMAND

COLLECTEDITING SHAPES
FROMLAYOUT COMMAND

COLLECT SURROUNDING
STATIC SHAPES

BUILD HORIZONTAL AND VERTICAL
SCAN LINE TREES FROMALL

EDGES OF ALL COLLECTED SHAPES

312

314

316

318

EXTRACT TOPOGRAPHICAL
RELATIONSHIPS BETWEEN EDITING
SHAPES AND SURROUNDING SHAPES 320

COMPARE TO DESIGN
RULES

OUTPUT MARKERS FROM
DRC CHECK

322

324

Patent Application Publication Jun. 20, 2013 Sheet 4 of 24 US 2013/0159949 A1

/ 318
BUILD SCAN LINE TREES

410

BUILD SWEEP X (HORIZONTAL
SCAN TREE FOR HORIZONTAL

SCANNING)

412

BUILD SWEEP Y (VERTICAL SCAN
TREE FORVERTICAL SCANNING)

Patent Application Publication Jun. 20, 2013 Sheet 5 of 24 US 2013/0159949 A1

510

514

520

Edge start (x,y)
Edge end (x,y)

Edge against Scanline? (YIN)
Quadrant depth vector (, , ,)

Neighbor map

Patent Application Publication Jun. 20, 2013 Sheet 6 of 24 US 2013/0159949 A1

610

612 Exit tree
614

620

VN- 622 se??e I as a
xpos edge

Quadrant depth Vector (, , ,)

...

Patent Application Publication Jun. 20, 2013 Sheet 7 of 24 US 2013/0159949 A1

410

BUILD SWEEP X /
710

BUILD LIST OF ALL HORIZONTAL EDGES OF
ALL SHAPES IN REGION 712

SORT LIST BYX POS OF LHENDPOINTS

CREATE ENTER TREE, AMAP OF VERTICAL SCANLINE
MULTIMAPS, ATEACH UNIQUE X-POSITION IN THE LIST:

716

ATEACHUNIQUEXPOSITION IN THE LIST:

wn 718 CREATE ASCAN LINE MULTIMAP FOR A
VERTICAL SCAN LINEATX POS

720

SORT LIST BYX POS OFRHENDPOINTS 722

CREATE EXIT TREE, AMAP OF VERTICAL SCANLINE MULTIMAPS
ATEACHUNIOUEX-POSITION IN THE LIST:

714.

POPULATE MULTIMAP WITH ALLEDGES
HAVINGLHENDPOINTSAT CURRENT

X POS

726

ATEACH UNIQUEXPOSITION IN THE LIST:
728

CREATE A SCAN LINE MULTIMAPFOR A
VERTICAL SCAN LINEATX POS

730

724

POPULATE MULTIMAP WITH ALLEDGES
HAVING RHENDPOINTSAT CURRENT

X POS

Patent Application Publication Jun. 20, 2013 Sheet 8 of 24 US 2013/0159949 A1

412

BUILD SWEEP Y ./
810

BUILD LIST OF ALL VERTICAL EDGES OF
ALL SHAPES IN REGION

812

SORT LISTBYY POS OF LOWERENDPOINTS

CREATE ENTER TREE, AMAP OF HORIZONTAL SCANLINE
MULTIMAPS, ATEACH UNIQUE Y-POSITION IN THE LIST:

816

ATEACHUNIQUE Y POSITION IN THE LIST:

818
CREATE ASCAN LINE MULTIMAP FORA
HORIZONTAL SCAN LINEATY POS

820

SORT LIST BY Y POS OF UPPERENDPOINTS 822

CREATE EXIT TREE, AMAP OF HORIZONTAL SCANLINE
MULTIMAPS, ATEACHUNIQUE Y-POSITION IN THE LIST

814

POPULATE MULTIMAP WITH ALLEDGES
HAVINGLOWERENDPOINTSAT

CURRENTY POS

826

ATEACH UNIQUEY POSITION IN THE LIST

828
CREATE ASCAN LINE MULTIMAP FORA
HORIZONTAL SCAN LINEATY POS

POPULATE MULTIMAP WITH ALLEDGES
HAVING UPPERENDPOINTSAT

CURRENTYPOS

824

830

Patent Application Publication Jun. 20, 2013 Sheet 9 of 24 US 2013/0159949 A1

320

EXTRACT TOPOGRAPHICAL /
RELATIONSHIPS

910

SCAN HORIZONTAL SCAN TREE

912

SCAN VERTICAL SCAN TREE

Patent Application Publication Jun. 20, 2013 Sheet 10 of 24 US 2013/0159949 A1

/ 910
SCAN HORIZONTAL SCAN TREE

1010

CREATE VERTICAL SCAN LINE MULTIMAP 1008
Current SCan line

SCAN Current Scan line LTOR THROUGHVERTICAL
SCAN LINE MULTIMAPSIN BOTHENTER TREE AND DONE

EXIT TREE. FOREACH SCAN POSITION:

UPDATE Current SCan line BY ADDING ALL HORIZONTAL 1012
EDGES HAVINGLHENDPOINT LOCATED AT THE CURRENT

HORIZONTAL SCAN POSITION

UPDATE DEPTH INFORMATION FOREACHEDGE IN 1014
CURRENT VERTICAL SCAN LINE MULTIMAP

1016
FOREACHENTERING EDGE IN CURRENT VERTICAL
SCAN LINE, PROCESSENTERING EDGE CORNER

FOREACHEXITING EDGE IN CURRENT VERTICAL 1018
SCAN LINE, PROCESS EXITING EDGE CORNER

POPULATE OR UPDATE INFORMATIONABOUT ANY 1020
ISLANDS

COPY DEPTH INFORMATION FROM RH 1022
QUADRANTS TOLH QUADRANTS

UPDATE current Scan line BY REMOVING ALL HORIZONTAL
EDGES HAVINGRHENDPOINT LOCATED AT THE CURRENTI/ 1024

HORIZONTAL SCAN POSITION

Patent Application Publication Jun. 20, 2013 Sheet 11 of 24 US 2013/0159949 A1

II 1120 T

1112

d ray X

1122

1116

FIG. 11A

Patent Application Publication Jun. 20, 2013 Sheet 12 of 24 US 2013/0159949 A1

1136

X FIG. 11B

Patent Application Publication Jun. 20, 2013 Sheet 13 of 24 US 2013/0159949 A1

FOREACHENTERING EDGE IN CURRENT
VERTICAL SCAN LINE PROCESSENTERING EDGE

CORNER / 1016

FOREACHENTERING EDGE IN
CURRENT VERTICAL SCAN LINE.

SLHENDPOINTA
CORNER2

CREATE ACORNER IN
SYNCRONIZED CORNER MAPIF NOT

ALREADY EXISTING

1218
CHECKEDGE-BASED RULES FOR HORIZONTAL
EDGES ABOVE 8 BELOW CURRENT HORIZONTAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATIONAS LEARNED

Patent Application Publication Jun. 20, 2013 Sheet 14 of 24 US 2013/0159949 A1

FOREACHEXITING EDGE IN CURRENT VERTICAL
SCAN LINE PROCESS EXITING EDGE CORNER / 1018

1310

FOREACHEXITING EDGE IN
CURRENT VERTICAL SCAN LINE.

SRHENDPOINTA
CORNER2

CREATE ACORNER IN
SYNCRONIZED CORNER MAPIF NOT

ALREADY EXISTING

1318
CHECKEDGE-BASED RULES FOR HORIZONTAL
EDGES ABOVE 8 BELOW CURRENT HORIZONTAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATIONAS LEARNED

Patent Application Publication Jun. 20, 2013 Sheet 15 of 24 US 2013/0159949 A1

/ 912
SCAN VERTICAL SCAN TREE

1410

1408
CREATE HORIZONTAL SCAN LINE MULWMAP

Current SCan line

ANCurrent Scan line B HROUGH
HORIZONTAL SCAN LINE MULTIMAPS IN BOTH DONE
ENTER TREE AND EXIT TREE. FOREACH SCAN

POSITION:

UPDATE Current SCan line BY ADDING ALL VERTICAL 1412
EDGES HAVINGLOWERENDPOINT LOCATED AT THE

CURRENT VERTICAL SCAN POSITION

UPDATE DEPTH INFORMATION FOREACHEDGE IN 1414
CURRENT HORIZONTAL SCAN LINE MULTIMAP

1416
FOREACHENTERING EDGE IN CURRENT HORIZONTAL

SCAN LINE, PROCESSENTERING EDGE CORNER

FOREACHEXITING EDGE IN CURRENT 1418
HORIZONTAL SCAN LINE, PROCESSEXITING EDGE

CORNER

COPY DEPTH INFORMATION FROMUPPER 1422
QUADRANTS TO LOWER QUADRANTS

UPDATE Current Scan line BY REMOVING ALL VERTICAL
EDGES HAVING UPPERENDPOINT LOCATED AT THE 1424

CURRENT VERTICAL SCAN POSITION

Patent Application Publication Jun. 20, 2013 Sheet 16 of 24 US 2013/0159949 A1

FOREACHENTERING EDGE IN CURRENT
HORIZONTAL SCAN LINE PROCESSENTERING

EDGE CORNER / 1416

FOREACHENTERING EDGE IN
CURRENT HORIZONTAL SCAN LINE

IS
LOWERENDPOINTA

CORNER7)

CREATE ACORNER IN
SYNCRONIZED CORNER MAPIF NOT

ALREADY EXISTING

1518
CHECKEDGE-BASED RULES FORVERTICAL
EDGES LEFT 8. RIGHT OF CURRENT VERTICAL
EDGE, POPULATINGAVAILABLE CORNER

INFORMATIONAS LEARNED

Patent Application Publication Jun. 20, 2013 Sheet 17 of 24 US 2013/0159949 A1

FOREACHEXITING EDGE IN CURRENT
HORIZONTAL SCAN LINE PROCESS EXITING EDGE

CORNER / 1418

1610

FOREACHEXITING EDGE IN
CURRENT HORIZONTAL SCAN LINE

IS
UPPERENDPOINTA

CORNER2

CREATE ACORNER IN
SYNCRONIZED CORNER MAPIF NOT

ALREADY EXISTING

1618
CHECKEDGE-BASED RULES FORVERTICAL
EDGES LEFT 8. RIGHT OF CURRENT VERTICAL
EDGE, POPULATING AVAILABLE CORNER

INFORMATIONAS LEARNED

Patent Application Publication Jun. 20, 2013 Sheet 18 of 24 US 2013/0159949 A1

322
COMPARE TO DESIGN RULES /

1710

CHECK CORNER-TO
CORNERRULES

1712
CHECK OTHER
CORNER-BASED

RULES

1714

CHECK ISLAND
BASED RULES

1716

CHECK OTHER
RULES

Patent Application Publication Jun. 20, 2013 Sheet 19 of 24 US 2013/0159949 A1

1710

CHECK CORNER-TO-CORNER as/

BUILDRAY MAP OF SPACE RAYS FROM 1810
CONVEXCORNERS AND DIMENSION RAYS

FROM CONCAVE CORNERS

SCAN RAY MAPLEFT-TO-RIGHT
FOR INTERSECTING RAYS

BOTH ARE CHECK CORNER
PACE RAYS2 CORNER SPACING

BOTH ARE CHECK CORNER
CORNER DIMENSION

ANDD RAY, CHECK MINIMUM
DIFFERENT EXTENSION RULES

Patent Application Publication Jun. 20, 2013 Sheet 20 of 24 US 2013/0159949 A1

1924 1928

Patent Application Publication Jun. 20, 2013 Sheet 21 of 24 US 2013/0159949 A1

CHECK OTHER CORNER-BASED RULES

2010 / 1712

SCANSYNCHRONIZED DONE
CORNER MAP

CHECKEDGE
LENGTH RULE FROM
CURRENT CORNER

2014

CONVEX ONCAVE OR
CONVEX?

CHECK CONCAVE CHECK CONVEX 2020
CORNER EDGE CORNER EDGE
LENGTH RULE LENGTH RULE

CHECKEND-OF-LINE 2022
SPACINGRULE

CHECKNOTCH RULE

Patent Application Publication Jun. 20, 2013 Sheet 22 of 24 US 2013/0159949 A1

Patent Application Publication Jun. 20, 2013 Sheet 23 of 24 US 2013/0159949 A1

2210

STORAGE SUBSYSTEM COMPUTER SYSTEM

2228 2224

MEMORY SUBSYSTEM 2222

2230
2232 FILE

STORAGE USER INTERFACE RAM RAM SUBSYSTEM INPUT DEVICES

2212

2214 2216

PROCESSOR NETWORK USER INTERFACE
SUBSYSTEM INTERFACE OUTPUT DEVICES

COMMUNICATION
NETWORK

2220

Patent Application Publication Jun. 20, 2013 Sheet 24 of 24 US 2013/0159949 A1

102O
POPULATE OR UPDATE INFORMATIONABOUT ANY ISLANDS /

FOREACH ISLAND HAVINGA
CORNER IN CURRENT SCAN LINE

INSTANTIATE
ISLAND IN SETAREAEO

ISLAND MAP

MERGE
ISLANDS

H = DISTANCE ALONGCURRENT VERTICAL
SCAN LINE FROM BOTTOM EDGE TO TOP

EDGE OF CURRENTISLAND

SPLIT
W = XPOS OF CURRENT VERTICAL SCAN LINE ISLANDS
-m last position updated FORCURRENT

ISLAND

ADD HXW TO ACCUMULATING AREA OF
CURRENTISLAND

COPY XPOS OF CURRENT VERTICAL SCAN
LINE TO m last position updated FOR

CURRENTISLAND

US 2013/0159949 A1

HGH PERFORMANCE DESIGN RULE
CHECKING TECHNIOUE

BACKGROUND

0001. The invention relates to electronic design automa
tion, and more particularly, to methods and apparatuses for
rapid checking of design rules in a circuit layout.
0002 Advancements in process technology have
impacted integrated circuit manufacturing in at least two key
ways. First, Scaling of device geometry achieved through
Sub-wavelength lithography has facilitated packing more
devices on a chip. Second, different process recipes have
enabled manufacturing of heterogeneous devices with differ
ent threshold and Supply Voltages on the same die. A conse
quence of these improvements, however, has been an explo
sion in the number of design rules that need to be obeyed in
the layout. Instead of simple width and spacing rules, modern
fabrication technologies prescribe complex contextual rules
that have to be obeyed for manufacturability.
0003. The increase in the number of rules has complicated
the task of creating design rule clean layouts, i.e., layouts that
do not have design rule violations. Creating design rule clean
layouts for digital circuit designs can be facilitated by the use
ofstandard cell layouts as building blocks, and placement and
routing tools that are extended to address the design rules.
0004. Unfortunately, this approach usually does not work
for analog, RF and custom circuit designs. Layouts for Such
designs are typically created manually using layout editors,
and because of the number and complexity of the design
rules, checking them was a laborious process.
0005. A conventional design rule check (DRC) system
requires a powerful two-dimensional geometry engine which
Supports geometric operations such as Boolean operations
like AND, OR, NOT, XOR; sizing operations like grow/
shrink horizontal/vertical/diagonal; other operations like
merge, shift, flip, cut, Smooth; as well as all-angle geometry
for true Euclidean distance calculations. Individual rules are
typically checked individually over an entire layout region.
This is also true of individual rule values of same rule (e.g. a
check against the minimum value for a rule, and another
check against a preferred value for the same rule). Each check
basically runs an independent sequence of geometry opera
tions, and numerous passes through the layout region are
required.
0006 For example, a conventional series of operations to
check a minimum spacing rule in a Manhattan only layout,
might include steps of

0007 Merge all same layer shapes into separate islands;
0008 Grow all islands by half the minimum spacing
value;

0009 Perform an AND (intersection) operation among
the islands; and

0010 Draw DRC violation markers based on the result
ing shapes of the AND operation.

0011. As another example, a conventional series of opera
tions to check a minimum width rule in a Manhattan only
layout, might include steps of

0012 Merge all same layer shapes into separate islands;
0013 Shrink all islands by (half the minimum width
value--epsilon)

0014 Eliminate all resulting islands of Zero area;
0015 Grow back the resulting islands by (half the mini
mum width value--epsilon);

Jun. 20, 2013

0016 Perform a NOT operation between the original
merged islands and grown back islands; and

0017 Draw DRC violation markers based on the shapes
resulting from the NOT operation.

0018 So long as a good geometry engine is available, the
conventional DRC techniques are simple to code, at least for
simple rules. They are also flexible and powerful if the geom
etry engine has a scripting API for relevant geometry opera
tions, and it is relatively straightforward to massively paral
lelize the DRC process among numerous CPUs.
0019. On the other hand, it can be seen that checking even
simple design rules like those above is extremely expensive
computationally. Massive parallelization usually is possible
only for offline checks, which typically are performed only
between layout iterations. Even then they often can require
hours to complete. The conventional approach also suffers
from roughly linear growth of the total run time with respect
to the number of rules to be checked, with multiple values for
a rule counted as separate rules. This makes it very hard to
reduce the total run time without turning off selected rules.
The conventional approach also suffers from linear growth of
run time for individual rule checks, with respect to the length
of the geometry operation sequence, i.e., the complexity of
the rule. The conventional approach also involves separate
checks for Euclidean measurements, and also requires exten
sive education and training in order to optimize the perfor
mance of the customer Scripts.
0020. The manual layout editing process could be drasti
cally facilitated if design rule checking could be performed in
real time, that is, immediately after each geometric manipu
lation made by the designer. While some layout editors are
able to do this, the checking can be sluggish and usually
works only when some of the design rules are turned off.

SUMMARY

0021. A need therefore exists for a robust solution to the
problem of rapid checking of design rules during a layout
editing process.
0022 Roughly described, a design rule data set is devel
oped offline based on the design rules of a target fabrication
process. A design rule checking method then involves travers
ing the corners of shapes in a subject layout region, and for
each corner, populating a layout topology database with Val
ues that depend on the respective corner locations. After the
layout topology database has been populated, the values are
compared to values in the design rule data set to detect any
violations of design rules. Any violations can be reported to a
user in real time, while the user is manually editing the layout.
0023 Preferably corner traversal is performed using scan
lines oriented perpendicularly to edge orientations, and scan
ning in the direction of the edge orientations. Scans stop only
at corner positions and populate the layout topology database
with what information can be gleaned based on the current
scan line. The different scans need not reach each corner
simultaneously.
0024. The above summary of the invention is provided in
order to provide a basic understanding of some aspects of the
invention. This Summary is not intended to identify key or
critical elements of the invention or to delineate the scope of
the invention. Its sole purpose is to present some concepts of
the invention in a simplified form as a prelude to the more
detailed description that is presented later. Particular aspects
of the invention are described in the claims, specification and
drawings.

US 2013/0159949 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0025. The invention will be described with respect to spe
cific embodiments thereof, and reference will be made to the
drawings, in which:
0026 FIG. 1 shows a simplified representation of an illus

trative digital integrated circuit design flow.
0027 FIG. 2 is a flow chart illustrating an example user
experience when using an embodiment of the system as
described herein.
0028 FIG. 3 is a flow chart of the overall system flow for
an embodiment of the invention.
0029 FIG.4, FIG.7, FIG.8, FIG.9, FIG. 10, FIG. 12, FIG.
13, FIG. 14, FIG. 15, FIG. 17, FIG. 18, FIG. 20 and FIG. 23
are flow chart details of the overall system flow in FIG. 3.
0030 FIG. 5 illustrates part of a sweep X data structure
referred to in FIG. 4.
0031 FIG. 6 illustrates part of a sweep y data structure
referred to in FIG. 4.
0032 FIG. 11A and FIG. 11B illustrate simple portions of
a layout, highlighting convex and concave corners of a layout
shape, respectively.
0033 FIG. 19A, FIG. 19B and FIG. 19C illustrate certain
corner relationships between layout shapes.
0034 FIG. 19D illustrates two layout shapes for the pur
pose of a particular design rule check.
0035 FIG. 19E illustrates three layout shapes together
forming an island.
0036 FIG.21A, FIG.21B, FIG. 21C, FIG.21D, and FIG.
21E illustrate example visual indications of design rule vio
lations and near-violations.
0037 FIG.22 is a simplified block diagram of a computer
system that can be used to implement software incorporating
aspects of the present invention.

DETAILED DESCRIPTION

0038. The following description is presented to enable any
person skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.

Overall Design Process Flow
0039 FIG. 1 shows a simplified representation of an illus

trative digital integrated circuit design flow. At a high level.
the process starts with the product idea (step 100) and is
realized in an EDA (Electronic Design Automation) software
design process (step 110). When the design is finalized, it can
be taped-out (step 127). At some point after tape out, the
fabrication process (step 150) and packaging and assembly
processes (step 160) occur resulting, ultimately, in finished
integrated circuit chips (result 170).
0040. The EDA software design process (step 110) is itself
composed of a number of steps 112-130, shown in linear
fashion for simplicity. In an actual integrated circuit design
process, the particular design might have to go back through
steps until certain tests are passed. Similarly, in any actual
design process, these steps may occur in different orders and

Jun. 20, 2013

combinations. This description is therefore provided by way
of context and general explanation rather than as a specific, or
recommended, design flow for a particular integrated circuit.
0041. A brief description of the component steps of the
EDA software design process (step 110) will now be pro
vided.
0042 System design (step 112): The designers describe
the functionality that they want to implement, they can per
form what-if planning to refine functionality, check costs, etc.
Hardware-Software architecture partitioning can occur at this
stage. Example EDA Software products from Synopsys, Inc.
that can be used at this step include Model Architect, Saber,
System Studio, and DesignWare R products.
0043 Logic design and functional verification (step 114):
At this stage, the VHDL or Verilog code for modules in the
system is written and the design is checked for functional
accuracy. More specifically, the design is checked to ensure
that it produces correct outputs in response to particular input
stimuli. Example EDA software products from Synopsys,
Inc. that can be used at this step include VCS, VERA, Design
Ware(R), Magellan, Formality, ESP and LEDA products.
0044 Synthesis and design for test (step 116): Here, the
VHDL/Verilog is translated to a netlist. The netlist can be
optimized for the target technology. Additionally, the design
and implementation of tests to permit checking of the finished
chip occurs. Example EDA software products from Synop
Sys, Inc. that can be used at this step include Design Com
piler(R), Physical Compiler, DFT Compiler, Power Compiler,
FPGA Compiler, TetraMAX, and DesignWare(R) products.
0045 Netlist verification (step 118): At this step, the
netlist is checked for compliance with timing constraints and
for correspondence with the VHDL/Verilog source code.
Example EDA software products from Synopsys, Inc. that
can be used at this step include Formality, PrimeTime, and
VCS products.
0046. Design planning (step 120): Here, an overall floor
plan for the chip is constructed and analyzed for timing and
top-level routing. Example EDA software products from Syn
opsys, Inc. that can be used at this step include Astro and
Custom Designer products.
0047 Physical implementation (step 122): The placement
(positioning of circuit elements) and routing (connection of
the same) occurs at this step. Example EDA software prod
ucts from Synopsys, Inc. that can be used at this step include
the Astro, IC Compiler, and Custom Designer products.
Aspects of the invention can be performed during this step
122.

0048 Analysis and extraction (step 124). At this step, the
circuit function is verified at a transistor level, this in turn
permits what-ifrefinement. Example EDA software products
from Synopsys, Inc. that can be used at this step include
AstroRail, PrimeRail, PrimeTime, and Star-RCXT products.
0049 Physical verification (step 126): At this step various
checking functions are performed to ensure correctness for:
manufacturing, electrical issues, lithographic issues, and cir
cuitry. Example EDA software products from Synopsys, Inc.
that can be used at this step include the Hercules product.
Aspects of the invention can be performed during this step
126 as well.

0050 Tape-out (step 127): This step provides the “tape
out' data to be used (after lithographic enhancements are
applied if appropriate) for production of masks for litho
graphic use to produce finished chips. Example EDA Soft

US 2013/0159949 A1

ware products from Synopsys, Inc. that can be used at this
step include the IC Compiler and Custom Designer families
of products.
0051 Resolution enhancement (step 128): This step
involves geometric manipulations of the layout to improve
manufacturability of the design. Example EDA software
products from Synopsys, Inc. that can be used at this step
include Proteus, ProteusAF, and PSMGen products.
0052 Mask data preparation (step 130): This step pro
vides mask-making-ready "tape-out' data for production of
masks for lithographic use to produce finished chips.
Example EDA software products from Synopsys, Inc. that
can be used at this step include the CATSR) family of prod
uctS.

Overview of the Technique
0053 While DRC layout rules are becoming more and
more complex at Smaller and Smaller technology nodes, most
if not all of them still can be decomposed into a combination
of the relationships among the edges, the corners, and the
contours of shapes in the layout. Relationships "among
shapes as used herein includes relationships about a single
shape as well. In embodiments herein, multiple perpendicular
Scanlines are used to collect all the required data in one pass,
so that the combinatorial checking on the data is virtually
free. The pass speed is improved even further by stopping the
Scanlines only at corner positions. Note that scans in multiple
directions can also be combined an a particular embodiment,
so that the algorithm effectively jumps from corner to corner,
considering each corner only once.
0054. In a Manhattan layout, all edges of all shapes are
oriented either horizontally or vertically. In this case two scan
lines would be used, one vertical (scanning horizontally) and
one horizontal (scanning vertically). In each case the Scanline
stops only at endpoints that it encounters of the edges that are
oriented perpendicularly to the scan line. The vertical scan
line, for example, stops only at endpoints of horizontally
oriented edges, and the horizontal scan line stops only at
endpoints of vertically oriented edges. In 45 degree layouts,
edges can also be oriented at a 45 degree angle or a 135 degree
angle. In this case four scan lines can be used, each scanning
in a direction perpendicular to a respective one of the orien
tations in which edges are included in the layout. While
scanning the layout region in each particular direction, "cor
ner data structures are populated for each corner, with what
ever information is easily obtainable from the edge endpoints
at the corner, and from other edges that intersect the same
scan line. The combined information collected from all the
scan lines as they encounter the corner, is sufficient to fully
populate the corner data structure.
0055. Other data structures are also populated during a
Scan, Such as information about an island (such as its area),
and information about vias.
0056. Once all the data is collected into a layout topology
database, design rule checking is accomplished merely by
comparing the numeric values in the layout topology database
with the constraint values in the design rule data set. Unlike
geometry engine approaches, the approach described herein
can be performed extremely quickly, often within millisec
onds, allowing for design rule checking in real time, imme
diately as the layout designer makes each alteration in the
layout.
0057 Moreover, since most if not all of the design rules
can be framed in terms of topological relationships among

Jun. 20, 2013

edges and corners, it can be seen that the same basic infor
mation, collected during the Scan, can be used in checking
most if not all of the design rules. In most embodiments, there
is no need to re-scan the layout region in order to check
different design rules; one scan is Sufficient for collecting all
the needed data. Still further, since the number of topological
relationships that can be involved in checking design rules is
itself limited, there is little if any additional data collection
needed during the scan in order to check new and ever more
complex rules. The time required to perform DRC increases
less than linearly with increasing numbers of rules, and tapers
off to nearly Zero.
0.058 For example, if minSpacing is supported already,
then minSameNetSpacing and minNotchSpacing can be Sup
ported for free (no runtime overhead). If minArea is sup
ported already, then minRectArea can be supported for free
(no runtime overhead). If 1D spacing is supported already,
then 1D extension can be supported easily regardless of
whether they share the same “width. It can be seen that the
more rules that are to be checked, the greater the likelihood
that the next “new rule' can be supported for free or with a
little extra overhead.

Example Implementation
0059 FIG. 2 illustrates an example user experience when
using an embodiment of the system as described herein. The
flow chart of FIG. 2 occurs within step 122 (FIG. 1).
0060. In step 210, the user develops a preliminary layout
from a circuit design. As used herein, the term “circuit
design refers to the gate or transistor level design, before
layout. The circuit design is often represented internally to the
system in a netlist file. The layout is represented internally to
the system in a geometry file which defines, among other
things, all the shapes to be formed on each mask that will be
used to expose the wafer during fabrication. The geometry file
can have any of several standard formats, such as GDSII,
OASIS, CREF, and so on, or it can have a non-standard
format. The file describes the layout of the circuit design in
the form of a mask definition for each of the masks to be
generated. Each mask definition defines a plurality of poly
gons. At the time if FIG. 2, no resolution enhancement (RET)
has yet been performed. Thus the layout geometries with
which the user is working in FIG. 2 are in a sense idealized,
since they do not yet take into account the imperfections of
lithographic printing using optical wavelengths comparable
or larger in size than the size of the geometries in the layout.
For example, rectangles are rectangular, and are not yet pre
corrected for diffractive effects.
0061. In step 212, the user views the layout on a computer
monitor. The user typically selects a region of the layout for
magnified viewing, so that only that region is visible on the
monitor.
0062. In step 214, the user, using a mouse or other pointing
device, selects a group of one or more shapes from the visible
layout region and drags them to a different location. In step
216, as the user drags the shapes, the system shows on the
monitor any design rule violations in real time. In step 218,
the user continues to drag the selected shapes until a position
is foundat which all design rule violations disappear. The user
then performs the next desired editing step, which could be
another drag-and-drop as in steps 214-218.
0063. It can be seen how useful real time immediate design
rule checking, enabled by the system herein, can be in manual
layout or layout modification efforts.

US 2013/0159949 A1

Relationship Master
0064. Before discussing the methods used by an imple
mentation of the system, it will be useful to discuss design
rules in general, and how they can be represented within the
system. Design rules are a set of rules that are provided by a
semiconductor manufacturer, which specify minimum or
maximum geometric relationships among the features of a
layout. A semiconductor manufacturing process always has
Some variability, and the purpose of design rules is to ensure
that sufficient margin is included in the layout geometries to
minimize the likelihood that the variability will result in loss
of yield. A set of design rules is specific to a particular semi
conductor manufacturing process, so new rules are provided
to designers or EDA vendors for each new process or signifi
cant process change. Despite their specificity to a particular
process, there are many design rules which are similar, except
for one or more numeric values, across many processes.
0065 Design rules range from very simple to very com
plex. Most, however, can be framed as a set of one or more
constraint parameters, and a set of one or more constraint
values for the constraint parameters. (AS used herein, a
“parameter is merely a slot or container for one or more
values. It is not itself a value.) For example, a simple design
rule is minimum edge-to-edge spacing (sometimes called
minSpacing). This rule has one parameter (edge-to-edge
spacing), and one value which is the minimum spacing
allowed by the rule between edges in a single layer of the
layout. Many design rules specify more than one value for a
particular parameter, such as an “absolute minimum value
and a “preferred minimum value.
0066. More complex rules can have multiple parameters.
An End-of-line spacing rule, for example, specifies the mini
mum spacing between the end of a line and its neighboring
geometry. The constraint applies only if the width of the wire
is less than a specified value, eolWidth. The constraint applies
when any geometry occurs within a region defined by the
minimum spacing, where the region includes the distance
from each side of the wire. This distance is referred to as a
lateral verification distance eolWithin. The constraint applies
only if one parallel edge is within a specified rectangular
region from the corners of the wire, or it applies only if two
parallel edges are within a specified rectangular region from
the corners of the wire. These parameters are referred to as
parWithin and parSpace. The constraint applies when no par
allel edges occur within the region defined by the minimum
spacing, or one paralleledge occurs within the region defined
by the minimum spacing, or two parallel edges. This rule has
the spacing parameter itself, eolSpacing, as well as the fol
lowing parameters: eolWidth, eolWithin, parWithin and
parSpace.
0067. Design rules can also specify constraints on edges in
different layers. The MinDualExtension layer pair constraint,
for example, specifies the minimum distance a shape on one
layer must extend pasta shape on a second layer. This rule has
one parameter for extensions in the horizontal direction and
another parameter for extensions in the vertical directions.
This rule can also specify additional pairs of parameters,
keyed by wire width. Other more complex parameters are also
available for this rule, including optional parameters to
qualify when the rule applies.
0068. Design rule sets also often include area rules, such
as the minimum area of an island or a hole in a layer. They can
also include via rules, which specify constraints on geometric
dimensions in the “cut” layer (also sometimes called the via

Jun. 20, 2013

layer), the island in the “cover layer above the via, and the
island in the “cover layer below the via.
0069. In an embodiment of the invention, all of the values
specified by the design rules are provided to the system in the
form of a design rule data set. As used herein, the term “data
set does not imply any particular organization. For example,
it includes maps, multimaps, trees, as well as ordinary tables,
and other data organizations as well. The term also does not
necessarily imply any unity or regularity of structure. For
example, two or more separate data sets, when considered
together, still constitute a “data set as that term is used
herein. The terms “database' and “data structure' are also
intended to have the same meaning as “data set.
0070. In the present embodiment, the design rule data set

is sometimes referred to herein as the relationship master. A
class definition for an example relationship master, in pseudo
C++, is as follows. In order to simplify the discussion, only
Some of the parameters are shown.

class relationship master
{

layer number m layer; layer number for this instantiation
stol::setslayer numbers m layers above; if identification of layers

above current layer
std::set-layer numbers m layers below; if identification of layers

below current layer
if the worst case value for spacing relationship on the
if same layer, 0 if there is no design rule asking for
?t min spacing relationship
intm spacing:
if the worst case value for dimension relationship on the
if same layer, 0 if not applicable (minimum line width)
intm dimension;
if the worst case value for neighbor spacing relationship on
if the same layer, 0 if not applicable
if (also called parallel spacing)
intm neighbor spacing:
if the worst case value for neighbor within relationship on
if the same layer, 0 if not applicable
intm neighbor within;
if the worst case value for neighbor dimension relationship on
if the same layer
intm neighbor width:
intm area; minimum island area
inthole area;
intm common run length;
stod::mapslayer number, int
m common run clearance vector map:
// extensions from this layer to other layers
stod::mapslayer number, int- m cover layers;
// extensions from other layers to this layer
stod::mapslayer number, int- m cut layers;
// worst case different layer clearance, from this layer to other layers
stod::mapslayer number, int-m clearance layers;
if for via rules
stol::setslayer numbers m overlap layers;
stol::setslayer numbers m dual cover layers;

Design Rule Checking Flow

(0071 FIG. 3 is a flow chart of the overall system flow for
real time visual layout design rule checking The reader will
recognize that the flow can be easily modified for use as a
batch job instead. As with all flowcharts herein, it will be
appreciated that many of the steps in FIG.3 can be combined,
performed in parallel or performed in a different sequence
without affecting the functions achieved. In some cases a
re-arrangement of steps will achieve the same results only if

US 2013/0159949 A1

certain other changes are made as well, and in other cases a
re-arrangement of steps will achieve the same results only if
certain conditions are satisfied. However, as described in
detail hereinafter, there are certain steps which are performed
prior to other steps, in order to obtain benefits of the invention.
0072. In step 310, the relationship master data set is built
from a set of design rules for the target fabrication process.
This can be done manually, or in Some embodiments it can be
automated. It is provided to the DRC system either electroni
cally or via a computer readable medium, and it is stored
accessibly to the system on a computer readable medium. As
used herein, a computer readable medium is one on which
information can be stored and read by a computer system.
Examples include a floppy disk, a hard disk drive, a RAM, a
CD, a DVD, flash memory, a USB drive, and so on. The
computer readable medium may store information in coded
formats that are decoded for actual use in a particular data
processing system. A single computer readable medium, as
the term is used herein, may also include more than one
physical item, such as a plurality of CD ROMs or a plurality
of segments of RAM, or a combination of several different
kinds of media.

0073. In step 312, the system displays on a monitor the
layout or layout region selected by the user. As used herein,
the term “region” refers to a portion as viewed from above,
including whatever layers are pertinent. As a degenerate case,
the entire layout is also a “region'. The user can manipulate
(edit) objects in the layout using familiar editing commands,
such as keyboard- or mouse-based behaviors recognized by
the system. For example, the user can select a group of objects
by clicking and dragging the mouse pointer to form a rect
angle around them. The user can then move the objects as a
group by clicking within the rectangle and dragging it. Edit
ing commands are recognized by the operating system and
delivered to the application program by way of events in a
well known manner. For example, user dragging of a group of
objects might cause a series of events to be delivered to the
application program, one after each movement by Some num
ber of pixels, or some number of milliseconds. The applica
tion program receives these events and determines for itself
what the event represents. Step 312 can include a conven
tional event loop, whereby the application program repeat
edly checks for new events. When it receives an event, step
312 determines that it represents a layout editing command
Such as user dragging of a group of shapes across the layout.
0074. In step 314, the system collects all the editing
shapes, which are the ones that are being edited by the user.
For a click-and-drag command, the editing shapes are the
ones that are being moved to a different position in the layout.
For a shape re-sizing command, the editing shape is the one
being resized.
0075. In step 316, the system collects all the surrounding
shapes, which in a click-and-drag command, are the shapes
near the new position of the editing shapes. A selection algo
rithm is used here which errs on the side of collecting more
shapes than necessary, since while inclusion of additional
shapes could impact performance, the exclusion of relevant
shapes will impact accuracy. One efficient way to collect
appropriate shapes is to create a bounding box around the
editing shapes in their new position, then extend the box in all
four directions by 1.5 times the worst case minimum spacing
or the worst case minimum inter-layer clearance, whichever
is larger. All shapes at least partially overlapping with the
expanded bounding box, in any layer, are then included in the

Jun. 20, 2013

result. A conventional range search engine can be used for this
step. Geometry processing is not needed.
0076. In step 318, horizontal and vertical scan line trees
sweep X and sweep y are built from all of the collected
shapes, including both the editing shapes and the static
shapes. The horizontal scan line tree Sweep X is a map of
particular vertical Scanlines, and will be scanned horizontally
across the selected layout region, from left to right. The
Vertical scan line tree Sweep y is a map of particular horizon
tal scan lines, and will be scanned vertically across the
selected layout region, from bottom to top.
(0077 FIG. 4 is a flow chart of step 318, and as can be seen,
it includes a step 410 of building Sweep X and another step
412 of building Sweep y.
0078 FIG. 5 illustrates pertinent parts of the sweep X data
structure 510. It contains two tree data structures, called
enter tree 512 and exit tree 514. Enter-tree is a map of the
Vertical scan lines, and the vertical position on Such scan
lines, of the left-hand endpoints of the horizontal edges. Exit
tree is a map of the vertical Scanlines, and the vertical position
on Such scan lines, of the right-hand endpoints of the hori
Zontal edges.
(0079 Map 516 is an expansion of exit tree 514; enter tree
512 has the same structure and is therefore not shown in FIG.
5. It comprises key-value pairs, in which all the keys indicate
horizontal positions and all the values are structures of class
edge-tree, and represent vertical scan lines. A 'map' is a
standard structure which allows only one entry for each
unique key. Thus exit tree organizes all the vertical scan
lines, and there is one vertical scan line for each horizontal
position included. Note that by representing only specific
Vertical scan lines, the horizontal scanning algorithm will be
able to jump over all horizontal positions that do not contain
any corners.
0080 Multimap 518 is an expansion of one of the edge
tree structures 520. The other edge trees have the same struc
ture and therefore are not shown in FIG.5. Edge tree 520 also
comprises key-value pairs, except that as a “multimap', mul
tiple entries are allowed having the same key. In edge tree
520 the keys indicate vertical positions, and all the values are
structures of class edge, representing an edge having an
endpoint on the current vertical scan line. Since this is part of
the exit tree 514, only those horizontal edges having right
hand endpoints at this horizontal position are included in
edge tree 520. (In the enter tree 512, only edges having
left-hand endpoints at a given horizontal position are included
in the edge tree for the vertical scan line at the given hori
Zontal position.) A multimap is used here rather thana map, in
order to accommodate multiple edges having a right-hand
endpoint at the same X and y position in the layout region.
Multiple edges are possible because some could be on differ
ent layers in the layout, or some could even be Superimposed
on each other in a single layer.
I0081 Block 522 is an expansion of one of the edge struc
tures 524. The other edges have the same structure and there
fore are not shown in FIG. 5. Edge 524 contains information
about a particular horizontal edge of one of the shapes in the
layout region, and also acts as a holding area for certain
information developed during the scan as described herein
after. At least the following information is included:

0082
0.083 layer ID: an indication of the layer number on
which the edge lies:

edge ID: an identifying value for the edge;

US 2013/0159949 A1

I0084 edge start (x,y): the X and y coordinates of the
left-hand endpoint of the edge;

I0085 edge end (x,y): the X and y coordinates of the
right-hand endpoint of the edge;

I0086 edge against scan line? (T/F): a Boolean indicat
ing whether the edge is the bottom edge of a shape (True
if it is a bottom edge, False otherwise):

I0087 quadrant depth vector: four slots indicating how
many shapes overlap each other in the current layer at the
right-hand endpoint of the edge (for exiting edges) or the
left-hand endpoint (for entering edges) or the intersec
tion point of the edge and the vertical scan line (for all
other edges in the current scan line), in each of the four
quadrants centered at that point (for an embodiment that
Supports 45 degree geometries, this is an octant depth
vector containing eight slots);

I0088 neighbor map: a map of neighboring edges
0089 FIG. 6 illustrates pertinent parts of the sweep y data
structure 610. Like Sweep X, Sweep y contains two tree data
structures, called enter tree 612 and exit tree 614. In sweep
y, enter-tree is a map of the horizontal scan lines, and the
horizontal position on Such scan lines, of the lower endpoints
of the vertical edges. Exit tree is a map of the horizontal scan
lines, and the horizontal position on Such scan lines, of the
upper endpoints of the vertical edges.
0090 Map 616 is an expansion of exit tree 614; enter tree
612 has the same structure and is therefore not shown in FIG.
6. It comprises key-value pairs, in which all the keys indicate
vertical positions and all the values are structures of class
edge-tree, and represent horizontal scan lines. Thus exit
tree organizes all the vertical scan lines, and since exit tree is
a map, there is only one horizontal scan line for each vertical
position included. Note that by representing only specific
horizontal scan lines, the vertical scanning algorithm, like the
horizontal scanning algorithm, will be able to jump over all
Vertical positions that do not contain any corners.
0091 Multimap 618 is an expansion of one of the edge
tree structures 620. The other edge trees have the same struc
ture and therefore are not shown in FIG. 6. Edge tree 620 also
comprises key-value pairs, except that as a “multimap', mul
tiple entries are allowed having the same key. In edge tree
620 the keys indicate horizontal positions, and all the values
are structures of class 'edge, representing an edge having an
endpoint on the current horizontal Scanline. Since this is part
of the exit tree 614, only those horizontal edges having upper
endpoints at this vertical position are included in edge tree
620. (In the enter tree 612, only edges having lower end
points at a given vertical position are included in the edge
tree for the horizontal scan line at the given vertical position.)
0092 Block 622 is an expansion of one of the edge struc
tures 624. The other edges have the same structure and there
fore are not shown in FIG. 6. Edge 624 contains information
about a particular vertical edge of one of the shapes in the
layout region, and also acts as a holding area for certain
information developed during the scan as described herein
after. At least the following information is included:

0093 edge ID: an identifying value for the edge;
0094) layer ID: an indication of the layer number on
which the edge lies:

0.095 edge start (x,y): the X and y coordinates of the
lower endpoint of the edge;

0096 edge end (x,y): the X and y coordinates of the
upper endpoint of the edge;

Jun. 20, 2013

0097 edge against scan line? (T/F): a Boolean indicat
ing whether the edge is the left edge of a shape (it will be
True if it is a left edge, False otherwise):

0.098 quadrant depth vector: four slots indicating how
many shapes overlap each other in the current layer at the
lower endpoint of the edge (for exiting edges) or the
upper endpoint (for entering edges) or the intersection
point of the edge and the horizontal scan line (for all
other edges in the current Scan line), in each of the four
quadrants centered at that point (for an embodiment that
Supports 45 degree geometries, this is an octant depth
vector containing eight slots);

0099 neighbor map: a map of neighboring edges
0100. As can be seen, Sweep X contains only horizontal
edges and Sweep y contains only vertical edges. Thus the
Scanlines in each data structure are perpendicular to the edges
that will be encountered during a traversal of the structure. In
an embodiment Supporting diagonal edges as well, two more
Sweep data structures are present as well: one containing scan
lines oriented parallel to one diagonal and the other contain
ing scan lines oriented parallel to the other diagonal. Each
data structure includes only edges oriented perpendicularly to
its scan lines, so again, a scan line Sweep of the scan lines in
each structure will encounter only those edges oriented per
pendicularly to the scan line.
0101 FIG. 7 is a flow chart detail of a method 410 for
building the horizontal scan line tree sweep X. In step 710, a
list is formed of all the horizontal edges of all shapes in the
selected region, including editing shapes. In step 712, the list
is sorted by the horizontal position of all the left-hand end
points of the edges. There may be multiple edges whose
left-hand endpoints have the same horizontal position, and
these would be grouped together in the sort.
0102. In step 714, enter tree is created for sweep X. This

is accomplished by, at each unique horizontal position repre
sented in the sorted list (step 716), creating a scan line mul
timap (of class edge tree') for a vertical scan line at that
horizontal position (step 718). In step 720, the scan line
multimap at that horizontal position is populated with all the
edges (structures of class edge) in the list having left-hand
endpoints at the current horizontal position.
0103. After enter tree has been created and populated for
sweep X, the list from step 710 is re-sorted by horizontal
position of all the right-hand endpoints of the edges. Again,
there may be multiple edges whose right-hand endpoints have
the same horizontal position. In step 724, exit tree is created
for sweep X. Similarly to the creation of enter tree, this is
accomplished by, at each unique horizontal position repre
sented in the sorted list (step 726), creating a scan line mul
timap (of class edge tree') for a vertical scan line at that
horizontal position (step 718). In step 720, the scan line
multimap at that horizontal position is populated with all the
edges (structures of class edge) in the list having right-hand
endpoints at the current horizontal position.
0104 FIG. 8 is a flow chart detail of a method 412 for
building the horizontal scan line tree sweep y. In step 810, a
list is formed of all the vertical edges of all shapes in the
selected region, including editing shapes. In step 812, the list
is sorted by the vertical position of all the lower endpoints of
the edges. Again, there may be multiple edges whose lower
endpoints have the same vertical position, and these would be
grouped together in the sort.
0105. In step 814, enter tree is created for sweep y. This

is accomplished by, at each unique vertical position repre

US 2013/0159949 A1

sented in the sorted list (step 812), creating a scan line mul
timap (of class 'edge tree') for a horizontal scan line at that
vertical position (step 818). In step 820, the scan line multi
map at that Vertical position is populated with all the edges
(structures of class 'edge) in the list having lower endpoints
at the current vertical position.
0106. After enter tree has been created and populated for
sweep y, the list from step 810 is re-sorted by horizontal
position of all the upper endpoints of the edges. Again, there
may be multiple edges whose upper endpoints have the same
Vertical position. In step 824, exit tree is created for Sweep y.
AS before, this is accomplished by, at each unique vertical
position represented in the Sorted list (step 822), creating a
Scanline multimap (of class 'edge tree) for a horizontal scan
line at that vertical position (step 818). In step 820, the scan
line multimap at that vertical position is populated with all the
edges (structures of class 'edge) in the list having upper
endpoints at the current vertical position.
0107 Returning now to FIG. 3, after the horizontal and
vertical scan line trees have been built (step 318), all of the
required topographical relationships among the shapes in the
layout region are now extracted (step 320).
0108 FIG.9 is a flow chart of step 320, and as can be seen,

it includes a step 910 of scanning the horizontal scan tree
Sweep X and another step 912 of Scanning the vertical scan
tree sweep y. Note that in another embodiment the vertical
scan can be performed first and the horizontal scan thereafter.
In yet another embodiment, the two scans can be performed in
an alternating manner. In a particularly advantageous
embodiment, since the two scans are independent of each
other, and discover different items of information for popu
lating the corner data structures, the two scans are performed
simultaneously on two different processor cores. In yet
another embodiment, the two scans are coordinated with each
other so that they proceed from corner to corner, with all data
for a given corner populated before jumping to the next cor
ner. As used herein, the two scans are said to be performed
“concurrently' with each other if they overlap in time in such
a way that corner data is extracted from at least one endpoint
of at least one horizontal edge before corner data is extracted
from at least one endpoint of at least one vertical edge, and
corner data is extracted from at least one endpoint of at least
one vertical edge before corner data is extracted from at least
one endpoint of at least one horizontal edge.
0109 FIG. 10 is a flow chart of step 910, for scanning the
horizontal scan tree sweep X. In step 1008, the vertical scan
line edge-tree multimap object current Scan line is created.
In step 1010, current scan line traverses both enter tree and
the exit tree together so that the vertical scan lines from both
trees are considered in monotonically varying sequence, left
to right. Since these two trees contain only those vertical scan
lines on which an endpoint of a horizontal edge lies, inter
vening vertical scan lines are skipped during this scan. The
current vertical scan line is maintained in a multimap object
of class edge tree, having the structure of edge tree 520
(FIG. 5). It has a current horizontal scanning position, and
stores the information shown in block 522 for each horizontal
edge that intersects a vertical line at the current horizontal
Scanning position.
0110. In step 1012, current scan line is updated by add
ing all horizontal edges having a left-hand endpoint located at
the current horizontal scan position. In step 1014, the quad
rant depth vector (FIG.5) for each edge in the current vertical
scan line multimap is updated. In order to illustrate this step,

Jun. 20, 2013

reference is made to FIGS. 11A and 11B, which illustrate
simple portions of a layout. FIG. 11A highlights a convex
corner 1114, whereas FIG. 11B highlights a concave corner
1134. In FIG. 11A, 1110 is the current vertical scan line and
1112 is a particular edge being considered. Edge 1112 is
represented in the enter tree and in current Scan line, and
has a left-hand endpoint 1114 located on vertical scan line
1110. Edge 1112 also forms the upper edge of a rectangle
1116. Four other rectangles are also shown in the figure, 1118,
1120, 1122 and 1124. Four quadrants, centered at endpoint
1114 and numbered I, II, III and IV for purposes of the present
discussion, are also shown in FIG. 11 A. Similarly, in FIG.
11B, 1130 is the current vertical scan line and 1132 is a
particular edge being considered. Edge 1132 is represented in
the enter tree, and has a left-hand endpoint 1134 located on
vertical scan line 1110. Edge 1132 also forms the upper edge
of a rectangle 1136. Four other rectangles are also shown in
the figure, 1138, 1140, 1142 and 1144. The four quadrants I,
II, III and IV. centered at endpoint 1134, are also shown in
FIG 11B.

0111. The quadrant depth vector indicates the number of
shapes in a particular layer that border a particular edge
endpoint in each of the four quadrants centered at that end
point. In FIG. 11A, quadrants I, II and III contain no shapes
that border endpoint 1114, and quadrant IV contains one such
shape 1116. Thus the quadrant depth vector at endpoint 1114
is (0,0,0,1). On the other hand, in FIG. 11B, quadrant II
contains no shapes that border endpoint 1134, whereas quad
rants I, III and IV each contain one such shape. Thus the
quadrant depth vector at endpoint 1134 is (1,0,1,1). It can be
seen that if exactly one quadrant depth is Zero, then the point
represents a concave corner of an island, as in FIG. 11B. If
exactly two values are Zero, and they are in adjacent quad
rants, then the endpoint is not on a corner of an island. If the
two Zeros are in diagonally opposite quadrants, then the end
point is a corner of two diagonally adjacent islands, sharing
the one corner. If exactly three values are Zero, as in FIG.11A,
then the endpoint represents a convex corner of an island,
island 1116 in FIG. 11A. If none of the values are Zero, then
the endpoint is inside an island and does not representa corner
of an island. The quadrant depth vector is used in later steps,
as described hereinafter.

0112. In step 1014, the updating of the quadrant depth
vector for an edge in the enter tree (i.e. an edge whose left
hand endpoint lies on the current vertical scan line), involves
incrementing the value for either quadrant I or quadrant IV by
one. The value for quadrant I is incremented if the "edge
against scan line?' Boolean for the edge 1112 indicates True
(i.e. the edge is the bottom edge of a shape), or the value for
quadrant IV is incremented if the "edge against Scan line?”
Boolean for the edge 1112 indicates False (i.e. the edge is the
top edge of a shape). Similarly, the updating of the quadrant
depth vector for an edge in the exit tree (i.e. an edge whose
right-hand endpoint lies on the current vertical scan line),
involves decrementing the value for either quadrant I or quad
rant IV by one. The value for quadrant I is decremented if the
"edge against Scan line?' Boolean for the exiting edge indi
cates True (i.e. the edge is the bottom edge of a shape), or the
value for quadrant IV is decremented if the "edge against Scan
line?' Boolean for the exiting edge indicates False (i.e. the
edge is the top edge of a shape). It can be seen that the
quadrant depth vector increments quantities as the Vertical

US 2013/0159949 A1

Scanline encounters shapes while moving left-to-right across
the region. It decrements quantities as the scan line moves
past shapes.
0113. In step 1016, each of the edges whose left-hand
endpoint lies on the current scan line are processed. These are
the edges represented in enter tree. As they are processed, a
“corner data structure for the endpoint is populated. The
corner data structure stores the information illustrated in
FIGS. 11A and 11B, and can be described in a C++ like
pseudocode class definition as follows:

class corner
{

if ori X vertical edge meeting at the
corner. Of the edge endpoints, only
the x-coordinates are populated.
if ori y horizontal edge meeting at
the corner. Of the edge endpoints,
only the y-coordinates are populated.
if tar X nearest vertical edge,
walking horizontally along shape
contour from corner
if tar y nearesthorizontal edge,
walking vertically along shape
contour from corner
is ray x nearest vertical facing
edge, walking horizontally from
corner, away from shape
is ray y nearest horizontal facing
edge, walking vertically from corner,
away from shape

edge* m dimension ray X; if d ray X last vertical edge
walking horizontally into shape,
before exiting shape

edge* m dimension ray y; if d ray y last horizontal edge
walking vertically into shape, before
exiting shape

std::list<corner'> m neighbor list; // list of nearest neighbor
COile:S

if whether the corner is convex or
COC8We

ray create space ray X() {
ray p ray = new ray (this);

if the first point is the corner position, i.e., the tail of the arrow
p ray->m p1.x = m origin X->m point1.x:
p ray->m p1..y = m origin y->m point1.y;

if the second point is the X position of them space ray X, i.e., the
head of the arrow

p ray->m p2.X = m space ray X->m pointl.X;
p ray->m p2.y = m origin y->m point1.y;
return p ray;

}:
ray create space ray y() {

ray p ray = new ray (this);
if the first point is the corner position, i.e., the tail of the arrow
p ray->m p1.x = m origin X->m point1.x:
p ray->m p1..y = m origin y->m point1.y;

if the second point is they position of them space ray y, i.e., the
head of the arrow

p ray->m p2.x = m origin X->m point1.x:
p ray->m p2.y = m space ray y->m point1.y;
return p ray;

}:
ray create dimension ray X() {

ray p ray = new ray (this);
if the first point is the corner position, i.e., the tail of the arrow
p ray->m p1.x = m origin X->m point1.x:
p ray->m p1..y = m origin y->m point1.y;

if the second point is the X position of them dimension ray X,
i.e., the head of the arrow

p ray->m p2.x = m space dimension X->m point1.x:
p ray->m p2.y = m origin y->m point1.y;
return p ray;

edge* m origin X;

edge* m origin y;

edge m target X;

edge m target y;

edge m space ray X;

edge m space ray y;

boolm is convex:

Jun. 20, 2013

-continued

ray create dimension ray y() {
ray p ray = new ray (this);

if the first point is the corner position, i.e., the tail of the arrow
p ray->m p1.x = m origin X->m point1.x:
p ray->m p1..y = m origin y->m point1.y;

if the second point is they position of them dimension ray y,
i.e., the head of the arrow

p ray->m p2.x = m origin X->m point1.x:
p ray->m p2.y = m space dimension y->m point1.y;
return p ray;

0114. A ray object represents essentially an arrow with a
head point and tail point. All the tail points coincide with the
current corner. For Manhattan layouts the rays are either
horizontal or vertical, though in 45 degree layouts it can also
have either of the two diagonal orientations. The ray class is
described in a C++ like pseudocode class definition as fol
lows:

class ray

corner m parent corner;
bool is S. ray;
pointm p1;
pointm p2;

0115 The corner data structures developed during the
scan are maintained as entries in a synchronized corner map
structure. This structure is a map, in which the keys identify a
layer number and an X and y position on that layer, and the
values are objects of class corner.
0116 FIG. 12 is a flow chart detail of step 1016, for pro
cessing the entering edges. In step 1210, each of the entering
edges represented in the current vertical scan line are consid
ered. In FIG. 11A, this will be only edge 1112. In FIG. 11B,
this will be edge 1132, as well as the top and bottom edges of
rectangle 1138. In step 1214, it is determined whether the
left-hand endpoint of the current edge is a corner of an island.
This is determined by reference to the current quadrant vec
tor, as described previously. If it is not a corner of an island,
then the edge is skipped.
0117. In step 1216, a corner data structure for the left-hand
endpoint of the current edge is instantiated in Synchronized
corner map if it does not already exist. The corner data struc
ture might already exist in synchronized corner map if, for
example, the corner had already been encountered because of
a different horizontal edge on the same layer that starts at the
same point (such as the bottom edge of rectangle 1138 in FIG.
11B), or as part of the vertical scan in an embodiment in
which the vertical scan precedes or operates concurrently
with the horizontal scan. In step 1218, the system walks
upward and downward along the current vertical scan line
from the current horizontal edge, populating the available
corner information as it is learned. In particular, referring to
the corner data structure definition above and the illustrations
in FIGS. 11A and 11B, the edges s ray y, tar y and d ray y,
as well as any others required by the design rules, are popu
lated. Note that these values identify the shape edges at the
head of the respective ray. The ray itself is identified sepa
rately in the corner data structure, as previously mentioned.

US 2013/0159949 A1

0118. In one embodiment, all design rule checks are per
formed only after all scans are complete. However, the
present embodiment incorporates a feature in which the sys
temperforms certain simple edge-based rule checks as part of
step 1218. For example, if the current edge is a top edge and
the walk upwards along the current vertical scan line meets
the bottom edge of a shape in the same layer, then S ray y is
populated in the corner data structure and the minimum spac
ing rule is checked as well. This check involves comparing the
length of S ray y with the minimum spacing value in the
relationship master. If the current edge is a top edge and the
walk upwards along the current vertical scan line meets the
top edge of a shape in a different layer, then the minimum
extension rule is checked by comparing the distance walked
to the minimum extension value for the appropriate layer pair
in the relationship master. If the current edge is a bottom
edge and the walk upwards along the current vertical Scanline
meets the top edge of a shape in the same layer, thend ray y
is populated, and also the minimum dimension rule is
checked. This check involves comparing the value of d ray y
with the minimum dimension value in the relationship mas
ter. If the current edge is a bottom edge and the walk upwards
along the current vertical scan line meets the top edge of a
shape in a different layer, then the minimum overlap rule is
checked. Similar checks are performed during the walk
downward from the current edge. If during the walks up and
down the current vertical scan line, the distance walked
exceeds the worst case limit from the relationship master,
there is no design rule violation encountered and it is not
necessary to populate further items in the corner data struc
ture that would be encountered in the current walking direc
tion.

0119. After the available corner structure information
items have been populated, then the system returns to step
1210 to consider the next entering edge in the current vertical
scan line.

0120 FIG. 13 is a flow chart detail of step 1018 for pro
cessing exiting edge corners. In step 1310, each of the exiting
edges represented in the current vertical scan line are consid
ered. In step 1314, it is determined whether the right-hand
endpoint of the current edge is a corner of an island. This is
determined by reference to the current quadrant vector, as
described previously. If it is not a corner of an island, then the
edge is skipped.
0121. In step 1316, a corner data structure for the right
hand endpoint of the current edge is instantiated in synchro
nized corner map if it does not already exist. Again, the
corner data structure might already exist in Synchronized
corner map if for example, the corner had already been
encountered because of a different horizontal edge on the
same layer that ends at the same point, or as part of the vertical
scan in an embodiment in which the vertical scan precedes or
operates concurrently with the horizontal scan. In step 1318,
the system walks upward and downward along the current
Vertical Scanline from the current horizontal edge, populating
the available corner information as it is learned. In particular,
referring to the corner data structure definition above and the
illustration in FIGS. 11A and 11B, the edges s ray y, tar y
and d ray y, as well as any others required by the design
rules, are populated.
0122. In addition, preferably but not essentially, the sys
tem also in step 1318 performs the same edge-based rule
checks for the exiting edges as performed and described
above with respect to step 1218 for entering edges.

Jun. 20, 2013

(0123. After the available corner structure information
items have been populated, then the system returns to step
1310 to consider the next exiting edge in the current vertical
scan line.

0.124 Returning to FIG. 10, after both the entering and
exiting edges having an endpoint on the current vertical scan
line are processed, the system populates or updates informa
tion about islands (step 1020). Islands are represented in
objects of class island, and maintained in a map of class
island map. They are instantiated as the vertical scan line
encounters them as it scans horizontally, and are updated as
the vertical scan line moves across them horizontally, corner
to corner. Pertinent parts of the island data structure are
described in a C++ like pseudocode class definition as fol
lows:

class island
{

f. For horizontal scan, this is the iterator in
i? current Scan line of the bottom most edge of the island
edge tree::iteratorm start iterator;
f. For horizontal scan, this is the iterator in
i? current scan line of the top most edge of the island
edge tree::iterator m end iterator;
if the unique id of the island.
if Islands are split or merged during the horizontal scan.
// When an island is split, the island id is not split
if (i.e., multiple islands will share same id), so we know
if these islands are actually Sub-islands of a larger island;
?t When multiple islands merge together, the Smallest island
if id is used as the shared id for all the islands merged together.
intml island id:
if accumulating the common run length against the same layer.
if For efficiency, 2D spacing rules are checked during scan,
fi not after. In another embodiment they could be checked afterwards.
intm last valid common run position;
if accumulating the common run length against different layers
stod::mapslayer number, int
m last valid top position vector;
stod::mapslayer number, int
m last valid bottom position vector;
if accumulating the area of this island so far
intm area;
if accumulating the area of the potential hole right above this island.
intm hole area:
if Horizontal position that current scan line stopped last time
intm last position updated;

0.125 Among other things, the island data structure accu
mulates the following information about a particular island
during the process of the horizontal scan: area of the island,
area of a hole just above the island, common run lengths
against other islands in the same layer and islands in other
layers. For clarity of illustration, the present description will
concentrate primarily on the island area as an example of
island-based rule checking Reference will be made to FIG.
19E, which illustrates a sample layout region having three
overlapping rectangles 1932, 1934 and 1936, all on a single
layer. Because they overlap on a single layer, they form a
single island 1930.
0.126 Roughly described, island area is accumulated dur
ing the horizontal scan by using the shape corners to divide
the island into non-overlapping “island rectangles', the area
of which are easily determined from the horizontal edges
represented in the current vertical scan line. In the example of
FIG. 19E, the method divides the island 1930 into five island
rectangles bounded horizontally by the broken vertical lines

US 2013/0159949 A1

1938. Like for the extraction of corner data, the updating of
island data takes place only at those vertical scan lines con
taining a corner of the island. Horizontal scanning does not
stop anywhere between corners. A rectangle (not shown)
disposed entirely within rectangle 1932, for example, will not
bear on any island design rule and does not become a stopping
place during the scan. A high level description of the process
is illustrated in the flow chart of FIG. 23.
0127. Referring to FIG. 23, as mentioned, the islands are
stored in a map called island map. The keys of island map
identify the lower left corner of a respective island. In step
2310, each island having a corner lying on the current vertical
scan line is considered. In step 2312, if the corner represents
an island being encountered for the first time during the Scan,
a new island data structure is instantiated in island map (step
2314). The area is set to Zero (step 2316), and in step 2324, the
value of m last position updated for the new island is set
equal to the X-position of the current vertical scan line.
0128 If the current island is already represented in island
map, then effectively a vertical slice is made through the
current island at the current vertical Scanline; and the area of
the left-adjacent rectangle is added to the area being accumu
lated. Accordingly, in step 2318, the height H of the left
adjacent rectangle is calculated as the distance along the
current vertical scan line from the bottom edge of the current
island to the top edge of the current island. This information
is available in current scan line, because at least one of the
top and bottom edges is a corner, and the y-position of the
corner is available as the left- or right-hand endpoint of a
horizontal edge in the current vertical scan line. The other of
the top and bottom edges may also be a corner, or may be an
edge that merely intersects the current vertical scan line. In
either case its y-position is available as well in current scan
line. In step 2320, the width W of the left-adjacent rectangle
is calculated as the horizontal position of the current scan
line minus the last Scanline position at which island informa
tion was updated, which is the value in m last position
updated. In step 2.322 the product of H and W is added to the
area value for the current island.
0129. In step 2324, as mentioned above, the value of
m last position updated for the new island is set equal to the
x-position of the current vertical scan line. The method then
returns to step 2310 for consideration of the next island hav
ing a corner on the current vertical scan line.
0130. Once all islands having a corner on the current ver

tical scan line have been considered, then any two or more of
Such islands that are now vertically-adjacent are merged into
a single island in step 2326 and their area values Summed. In
step 2328, any island that is now split into two, perhaps
separated vertically by a newly encountered hole or notch, are
split. The details of the merging and splitting operations are
not important for an understanding of the invention. Note that
whereas island area information is captured during the hori
Zontal scan, it is not compared to the design rule values in the
present embodiment until later.
0131 Returning to FIG. 10, after the island data has been
updated based on the current Scanline, in step 1022, as a time
saving technique, the quadrant depth vectors for each of the
entering horizontal edges in the current vertical scan line are
copied from the right-hand quadrants to the corresponding
left-hand quadrants. In this manner the left-hand quadrant
depth values can be incremented or decremented as the ver
tical scan line moves rightward, and will contain accurate
values when the Scanline reaches the right hand endpoint of

Jun. 20, 2013

the edge. In step 1024, all the exiting edges are removed from
the current vertical scan line. The routine then returns to step
1010 for the next horizontal scan position.
0.132. Returning to FIG. 9, after the horizontal scan tree
has been scanned, the vertical scan tree is scanned (step 912).
FIG. 14 is a flow chart of step 912, for scanning the vertical
scan tree Sweep y
0.133 FIG. 14 is a flow chart of step 912, for scanning the
vertical scan tree sweep y. In step 1408, the horizontal scan
line edge-tree multimap object current Scan line is created.
In step 1410, current scan line traverses both enter tree and
the exit tree together so that the horizontal scan lines from
both trees are considered in monotonically varying sequence,
bottom to top. Since these two trees contain only those hori
Zontal scan lines on which an endpoint of a vertical edge lies,
intervening horizontal scan lines are skipped during this scan.
The current horizontal scan line is maintained in a multimap
object of class edge tree, having the structure of edge tree
620 (FIG. 6). It has a current horizontal scanning position,
and stores the information shown in block 622 for each ver
tical edge that intersects a horizontal line at the current ver
tical scanning position.
I0134. In step 1412, current scan line is updated by add
ing all vertical edges having a lower endpoint located at the
current horizontal scan position. In step 1414, the quadrant
depth vector (FIG. 6) for each edge in the current horizontal
Scanline multimap is updated. This step involves, for an edge
in the enter tree (i.e. a vertical edge whose lower endpoint
lies on the current horizontal scan line), incrementing the
value for either quadrant I or quadrant II by one. The value for
quadrant I is incremented if the "edge against Scan line?”
Boolean for the edge 1112 indicates True (i.e. the edge is the
left-hand edge of a shape), or the value for quadrant II is
incremented if the "edge against scan line'?” Boolean for the
edge 1112 indicates False (i.e. the edge is the right-hand edge
of a shape). Similarly, the updating of the quadrant depth
vector for an edge in the exit tree (i.e. an edge whose upper
endpoint lies on the current horizontal scan line), involves
decrementing the value for either quadrant I or quadrant II by
one. The value for quadrant I is decremented if the "edge
against Scan line?' Boolean for the exiting edge indicates
True (i.e. the edge is the left-hand edge of a shape), or the
value for quadrant II is decremented if the "edge against Scan
line?' Boolean for the exiting edge indicates False (i.e. the
edge is the right-hand edge of a shape). It can be seen that the
quadrant depth vector increments quantities as the horizontal
scan line encounters shapes while moving upward across the
region. It decrements quantities as the scan line moves past
shapes.
I0135) In step 1416, each of the edges whose lower end
point lies on the current Scanline are processed. These are the
edges represented in enter tree. As they are processed, the
“corner data structure for the endpoint is populated in syn
chronized corner map. As mentioned, the relevant corner
data structure may already exist from a previously encoun
tered different vertical edge on the same layer that starts at the
same point, or as part of the horizontal scan in an embodiment
in which the horizontal vertical scan precedes or operates
concurrently with the vertical scan.
(0.136 FIG. 15 is a flow chart detail of step 1416, for pro
cessing the entering edges. In step 1510, each of the entering
edges represented in the current horizontal scan line are con
sidered. In step 1514, it is determined whether the lower
endpoint of the current edge is a corner of an island. This is

US 2013/0159949 A1

determined by reference to the current quadrant vector, as
described previously. If it is not a corner of an island, then the
edge is skipped.
0.137 In step 1516, a corner data structure for the left-hand
endpoint of the current edge is instantiated in Synchronized
corner map if it does not already exist. In step 1518, the
system walks leftward and rightward along the current hori
Zontal scan line from the current vertical edge, populating the
available corner information as it is learned. In particular,
referring to the corner data structure definition above and the
illustrations in FIGS. 11A and 11B, the edges s ray X, tar X
and d ray X, as well as any others required by the design
rules, are populated.
0.138. In an embodiment, certain edge-based rule checks
are also performed as part of step 1518, similar to those
performed in step 1218. For example, if the current edge is a
right-hand edge and the walk rightward along the current
horizontal Scanline meets the left-hand edge of a shape in the
same layer, then S ray X is populated in the corner data
structure and the minimum spacing rule is checked as well.
This check involves comparing the length of s ray X with the
minimum spacing value in the relationship master. If the
current edge is a right-hand edge and the walk rightwards
along the current horizontal scan line meets the right-hand
edge of a shape in a different layer, then the minimum exten
sion rule is checked by comparing the distance walked to the
minimum extension value for the appropriate layer pair in the
relationship master. If the current edge is a left-hand edge
and the walk rightwards along the current horizontal scan line
meets the right-hand edge of a shape in the same layer, then
d ray X is populated, and also the minimum dimension rule
is checked. This check involves comparing the value of
d ray X with the minimum dimension value in the relation
ship master. If the current edge is a left-hand edge and the
walk rightwards along the current horizontal scan line meets
the right-hand edge of a shape in a different layer, then the
minimum overlap rule is checked. Similar checks are per
formed during the walk leftward from the current edge. If
during the walks leftward and rightward along the current
horizontal scan line, the distance walked exceeds the worst
case limit from the relationship master, there is no design rule
violation encountered and it is not necessary to populate
further items in the corner data structure that would be
encountered in the current walking direction.
0139. After the available corner structure information
items have been populated, then the system returns to step
1510 to consider the next entering edge in the current hori
Zontal scan line.

0140 FIG. 16 is a flow chart detail of step 1418 for pro
cessing exiting edge corners. In step 1610, each of the exiting
edges represented in the current horizontal scan line are con
sidered. In step 1614, it is determined whether the upper
endpoint of the current edge is a corner of an island. This is
determined by reference to the current quadrant vector, as
described previously. If it is not a corner of an island, then the
edge is skipped.
0141. In step 1616, a corner data structure for the upper
endpoint of the current edge is instantiated in Synchronized
corner map if it does not already exist. Again, the corner data
structure might already exist in Synchronized corner map.
In step 1618, the system walks leftward and rightward along
the currenthorizontal scan line from the current vertical edge,
populating the available corner information as it is learned. In
particular, referring to the corner data structure definition

Jun. 20, 2013

above and the illustration in FIGS. 11A and 11B, the edges
S. ray X, tar X and d ray X, as well as any others required by
the design rules, are populated.
0142. In addition, preferably but not essentially, the sys
tem also in step 1618 performs similar edge-based rule
checks for the exiting edges as performed and described
above with respect to step 1318.
0143. After the available corner structure information
items have been populated, then the system returns to step
1610 to consider the next exiting edge in the current horizon
tal scan line.
0144. Returning to FIG. 14, after both the entering and
exiting edges having an endpoint on the current horizontal
scan line are processed, it is not necessary to populate or
update information about islands. This was done during the
horizontal scan (step 1020 in FIG. 10), and no additional
information will be determined during the vertical scan. For
example, the area of an island, determined as a vertical scan
line scans across the island horizontally, will not be any
different than the area determined as a horizontal scan line
scans across the island vertically.
0145. In step 1422, as a time saving technique, the quad
rant depth vectors for each of the entering vertical edges in the
current horizontal scan line are copied from the upper quad
rants to the corresponding lower quadrants. In this manner the
lower quadrant depth values can be incremented or decre
mented as the horizontal scan line moves upward, and will
contain accurate values when the scan line reaches the upper
endpoint of the edge. In step 1424, all the exiting edges are
removed from the current horizontal scan line. The routine
then returns to step 1410 for the next vertical scan position.
014.6 Returning to FIG. 3, after step 320, all the topo
graphical relationships needed to perform the checks in the
design rule set have been collected into a layout topology
database. As mentioned, the term database as used herein
does not imply any unity or regularity of structure, and in the
present embodiment the layout topology database includes
Synchronized corner map, island map and via map, and
other collections of data as well. In step 322, the values in the
layout topology database are compared to those in the rela
tionship master, in order to check all the design rules. In one
embodiment, all design rule violations are reported, whereas
in another embodiment, only those violations involving edit
ing shapes are reported.
0147 FIG. 17 is a flow chart detail of step 322. These are
illustrative examples of design rules that are checked in the
present embodiment only after the scans across the layout
region have been completed. The grouping of these checks as
shown in FIG. 17 is only for convenience of the present
description; it may or may not correspond to any grouping in
any particular embodiment. For purposes of the present
description, the design rules that are checked in FIG. 17 are
grouped as follows. Corner-to-corner rules are checked in
step 1710, and other corner-based rules are checked in step
1712. Island-based rules are checked in step 1714, and other
rules (such as via-based rules) are checked in step 1716.
Details are provided herein regarding some of the corner-to
corner rules, some other corner-based rules, and some island
based rules.
0148 FIG. 18 is a flow chart detail of step 1710, for check
ing the corner-to-corner rules. In step 1810, the system builds
a map of space and dimension rays from the ray information
previously populated into the synchronized corner map. Rays
from all layers are included, but only those space rays that

US 2013/0159949 A1

extend from convex corners, and only those dimension rays
that extend from concave corners, are included in this ray
map. In addition, instead of the rays representing the shape
edges encountered when walking away from the corner, the
rays in the ray map formed in step 1810 represent true rays
from the corner to the encountered edge.
0149. In step 1812, the ray map is scanned left-to-right to
identify intersections of the rays. A conventional scan line
algorithm can be used for this purpose.
0150. In step 1814, it is determined whether the current ray
intersection is an intersection of two space rays. The two
corners from which these space rays extend both have to be
convex, so the situation is as illustrated in FIG. 19A, where
s rays 1910 and 1912 intersect. In this case the corner-to
corner Euclidean spacing 1914 is calculated. If the two shapes
are located on the same layer, the spacing 1914 is compared to
the minimum corner-to-corner spacing value in relationship
master. If they are on different layers, it is compared to the
minimum corner-to-corner clearance in relationship master
(step 1816).
0151. If the intersecting rays are not both space rays, then
in step 1818 it is determined whether they are both dimen
sion rays in the same layer. The two corners from which these
dimension rays extend both have to be concave, so the situ
ation is as illustrated in FIG. 19B, where d rays 1916 and
1918 intersect. In this case the corner-to-corner Euclidean
dimension 1920 is again calculated and compared to the
minimum dimension rule value in relationship master (step
1820).
0152. If the intersecting rays are not both dimension rays,
then in step 1822 it is determined whether one is a space ray
on one layer, and the other is a dimension ray on a different
layer. Since the corner from which the space ray extends is
convex, and the corner from which the dimension ray
extends in concave, the situation is as illustrated in FIG. 19C.
In this figure, s ray 1922 from a corner of shape 1921 inter
sects d ray 1924 from a corner of shape 1923, and the two
shapes are on different layers. In this case the distance that the
shape on one layer extends past the edge of the shape the other
layer is calculated in both dimensions, and compared to the
minExtension or minDualExtension value in relationship
master (step 1824).
0153 Various other corner-based design rule checks can
be performed within this loop as well, not shown in FIG. 18.
The routine then loops back to step 1812 to continue scanning
for more intersecting rays.
0154 FIG.20 is a flow chart detail of step 1712, for check
ing certain other corner-based rules. These rules are checked
inside a loop 2010 which traverses the synchronized corner
map. In step 2012, the edge length rule is checked from the
current corner. For the horizontal edge meeting at this corner,
this involves subtracting the X-position of the corner (ori X)
from the X-position of the nearest vertical edge, walking
horizontally along the shape contour (tar X) and comparing
the absolute value of the difference to the minimum edge
length value in the relationship master. For the vertical edge
meeting at this corner, this involves Subtracting the y-position
of the corner (ori y) from the y-position of the nearest hori
Zontal edge, walking vertically along the shape contour (tar
y) and comparing the absolute value of the difference to the
minimum edge length value in the relationship master.
(O155 In step 2014, it is determined whether the current
corner is concave or convex. If it is concave, then in step 2016
the concave corner edge length rule is checked. This rule

Jun. 20, 2013

requires that at least one of the two adjacent edges forming a
concave corner have at least a minimum length. This test can
be performed using the same values from the corner data
structure as used in step 2012 (ori X, tar X, ori y and tar y).
The lengths determined for the two edges are compared to the
minimum concave corner edge length value in the relation
ship master.
0156. In step 2018, the notch rule is checked. This rule
requires that a notch in an island have at least a specified
minimum width. Framed in terms of corners, the rule requires
that two adjacent concave corners be at least a specified
distance apart. This rule need be checked for a horizontally
adjacent corner only of the horizontally-adjacent corner is
concave, and need be checked for a vertically-adjacent corner
only of the vertically-adjacent corner is concave. For
example, in the illustration of FIG. 11B, only the horizon
tally-adjacent corner need be checked for violation of the
notch rule. The notch rule can be tested by subtracting the
X-position of the current corner (ori X) from the X-position of
the nearest vertical facing edge, walking horizontally from
corner, away from the shape, which is already available in the
current corner data structure as space ray X. The absolute
value of the difference is then compared to the minimum
notch width value in the relationship master. For a notch
formed with a vertically-adjacent concave corner, the y-po
sition of the current corner (ori y) is subtracted from the
y-position of the nearesthorizontal facing edge, walking ver
tically from the current corner, away from the shape, which is
already available in the current corner data structure as space
ray y. The absolute value of the difference is then compared
to the minimum notch width value in the relationship master.
(O157. If in step 2014, it is determined that the current
corner is convex, then in step 2020 the convex corner edge
length rule is checked. This rule requires that at least one of
the two adjacent edges forming a convex corner have at least
a minimum length. This test can be performed using the same
values from the corner data structure as used in step 2012
(ori X, tar X, ori y and tary). The lengths determined for the
two edges are compared to the minimum convex corner edge
length value in the relationship master.
0158. In step 2022, an end-of-line spacing rule is checked.
In its simplest form, this rule requires that at the end of a line,
a specified minimum spacing is required to the neighboring
geometry. Referring to FIG. 19D, where the line in question is
line 1926, the rule requires that for an end-of-line width
eolWidth less than one specified value, the end-of-line spac
ing eolSpace must be at least another specified value. If the
current corner is convex corner 1828, then the width of the
line 1926 in the horizontal dimension is easily determined by
Subtracting the X-position of the current corner (ori X) from
the X-position of the last vertical edge walking horizontally
into shape, before exiting shape, which is already available in
the current corner data structure as d ray X. The spacing to
the next neighboring geometry is available in the current
corner data structure as S. ray y. Thus the absolute value of
the subtraction is compared to the value for eolWidth in the
relationship master, and if Small enough to invoke the rule,
S. ray y is then compared to the value for eolSpace in the
relationship master. For a horizontally-oriented line, the
width of the line in the vertical dimension is determined by
Subtracting the y-position of the current corner (ori y) from
the y-position of the last horizontal edge walking vertically
into shape, before exiting shape, which is already available in
the current corner data structure as d ray y. The spacing to

US 2013/0159949 A1

the next neighboring geometry is available in the current
corner data structure as S. ray X. Thus the absolute value of
the subtraction is compared to the value for eolWidth in the
relationship master, and if Small enough to invoke the rule,
S. ray X is then compared to the value for eolSpace in the
relationship master.
0159. After all the desired rules are checked for the current
corner, the routine returns to step 2010 to consider the next
corner in Synchronized corner map.
0160 Returning to FIG. 17, after the corner-based rules
have been checked in steps 1710 and 1712, island-based rules
are then checked in step 1714. Example island-based design
rules that can be checked here include the minimum island
area rule, the minimum hole area rule, minimum common run
dependent separation against other islands in the same layer,
and minimum common run dependent separation against
islands in other layers. In an embodiment, these are all
checked within a single traversal of island map, where the
values for all required topological relationships in the layout
region have already been populated. For example, the area of
each island in island map has already been populated during
the horizontal scan. The step of checking the minimum island
area rule, therefore, is accomplished simply by comparing the
stored island area for the current island with the minimum
area value in the relationship master. Note that in an embodi
ment, during the horizontal scan, accumulation of island area
is aborted once the accumulated area exceeds the worst case
minimum required in the relationship master. The stored area
values will still be determined in this step 1714 to satisfy the
minimum island area rule.
0161. Other rules, such as via-based rules, are checked in
step 1716.
0162 Returning to FIG.3, step 324 involves reporting any
design rule violations to the user or to another entity. If
reported to the user, the report can take place promptly (e.g.
for real time feedback) or later (e.g. if performed as a batch
job). Where the violations are reported to the user promptly,
this enables the user to modify the layout to correct for the
design rule violations. Whereas any form of reporting can be
used, preferably the design rule violations are reported by
way of visual indications on the user's monitor, as markers on
the layout region itself. In an embodiment, near violations are
also indicated. Marker information can be anything that can
be used to render a visual indicator of the violation, but
preferably it identifies a rectangle for designating the location
of the violation within the layout region. In an embodiment,
the rectangle is shown in a size which indicates the magnitude
of the primary value of the rule being violated. This informa
tion can be very useful as it indicates graphically how much is
needed to correct the violation. For near-violations, it can be
a ruler indicating the current spacing. For example, if the
violation is a minimum spacing violation, a rectangle might
encompass the (too-small) spacing area, or a ruler disposed
across the space might indicate actual spacing if it is larger
than the minimum.

0163 All of the design rule checks output marker infor
mation for any violation. The marker information is collected
in a map structure. In step 324, the marker information is
converted to visible form on the user's monitor or provided to
another entity. In addition, as shown in FIG. 3, once the
markers have been output, the system returns to step 312 to
await the next editing command. This may be as simple as
another slight movement of the current editing shapes being
dragged across the layout region. This event will result in

Jun. 20, 2013

another traversal through steps 314-324 of FIG. 3, thus caus
ing a change in the visual indicator as seen by the user.
Because of the efficiency of the design rule checking tech
niques described herein, in the embodiment herein the new
markings will appear nearly immediately with each drag of
the editing shapes.
0164 FIG. 21A is an example visual indication of a vio
lation of a minimum spacing rule. In this drawing, editing
rectangle 2112 has been moved too close to static rectangle
2110, and a box 2114 appears indicating how much end-of
line spacing is required by the rule. If the minimum spacing
value that is being violated is an absolute value, then the box
2114 might appear in one color, whereas if it is a preferred
value that is being violated, then the box 2114 might appear in
another color. A third color can be used to indicate a most
preferred value, and so on. As the user pulls the editing shape
2112 apart from static shape 2110, the box 2114 disappears
and a ruler appears, such as ruler 2116 in FIG. 21B. Ruler
2116 indicates the actual distance between the end of editing
shape 2112 and the nearest edge of static shape 2110, and
thereby indicates how much closer shape 2112 can be brought
to shape 2110 before the minimum spacing rule will be vio
lated.

0.165 FIG. 21C is an example visual indication of a vio
lation of a corner-to-corner spacing rule. In this drawing,
editing rectangle 2112 has been moved too close to a corner of
static rectangle 2110, and a box 2118 appears indicating the
violation. Again, the box 2118 can appear in either of two
colors to indicate violation of an absolute or preferred value
for this design rule. As the user pulls the editing shape 2112
apart from static shape 2110, the box 2114 disappears and a
ruler appears, such as corner-to-corner ruler 2120 in FIG.
21D. Ruler 2020 indicates the actual corner-to-corner dis
tance between the end of editing shape 2112 and the nearest
edge of static shape 2110.
0166 FIG. 21E is an example visual indication of a vio
lation of a corner-to-corner minimum dimension rule. In this
drawing, a corner of editing rectangle 2112 overlaps a corner
of a same layer static rectangle 2110, but the overlap is too
small to satisfy the minimum dimension rule. A box 2022
appears indicating the violation.
0.167 Similar visual indicators to indicate violations of
other design rules will be apparent to the reader. It can be seen
that the markings provide nearly immediate feedback to the
user as the layout is edited, thereby greatly facilitating the
manual layout effort. It should be noted that the absence of
any visual indication to the user also constitutes a notification
to the user that no design rule violation has been detected.
(0168. In the embodiments described herein, all the corner
data structures are completely populated before the corner
based rules are checked. This is the most advantageous
arrangement, but some benefits of the invention can be
obtained even if only some (i.e. more than one; preferably
more than two) of the corner data structures are completely
populated before the corner-based rules are checked. Simi
larly, all island data structures are completely populated
before the island-based rules are checked. Again, while this is
the most advantageous arrangement, some benefits of the
invention can be obtained even if only some (i.e. more than
one; preferably more than two) of the island data structures
are completely populated before the island-based rules are
checked.

US 2013/0159949 A1

Hardware

0169 FIG.22 is a simplified block diagram of a computer
system 2210 that can be used to implement software incor
porating aspects of the present invention. Computer system
2210 includes a processor subsystem 2214 which communi
cates with a number of peripheral devices via bus subsystem
2212. These peripheral devices may include a storage Sub
system 2224, comprising a memory Subsystem 2226 and a file
storage subsystem 2228, user interface input devices 2222,
user interface output devices 2220, and a network interface
subsystem 2216. The input and output devices allow user
interaction with computer system 2210. Network interface
subsystem 2216 provides an interface to outside networks,
including an interface to communication network 2218, and
is coupled via communication network 2218 to correspond
ing interface devices in other computer systems. Communi
cation network 2218 may comprise many interconnected
computer systems and communication links. These commu
nication links may be wireline links, optical links, wireless
links, or any other mechanisms for communication of infor
mation. While in one embodiment, communication network
2218 is the Internet, in other embodiments, communication
network 2218 may be any suitable computer network.
0170 The physical hardware component of network inter
faces are sometimes referred to as network interface cards
(NICs), although they need not be in the form of cards: for
instance they could be in the form of integrated circuits (ICs)
and connectors fitted directly onto a motherboard, or in the
form of macrocells fabricated on a single integrated circuit
chip with other components of the computer system.
0171 User interface input devices 2222 may include a
keyboard, pointing devices such as a mouse, trackball, touch
pad, or graphics tablet, a scanner, a touch screen incorporated
into the display, audio input devices Such as Voice recognition
systems, microphones, and other types of input devices. In
general, use of the term “input device' is intended to include
all possible types of devices and ways to input information
into computer system 2210 or onto computer network 2218.
0172 User interface output devices 2220 may include a
display Subsystem, a printer, a fax machine, or non-visual
displays Such as audio output devices. The display Subsystem
may include a cathode ray tube (CRT), a flat-panel device
Such as a liquid crystal display (LCD), a projection device, or
Some other mechanism for creating a visible image. The
display subsystem produces the images illustrated in FIGS.
21A-21E, for example. The display subsystem may also pro
vide non-visual display Such as via audio output devices. In
general, use of the term “output device' is intended to include
all possible types of devices and ways to output information
from computer system 2210 to the user or to another machine
or computer system.
0173 Storage subsystem 2224 stores the basic program
ming and data constructs that provide the functionality of
certain embodiments of the present invention. For example,
the various modules implementing the functionality of cer
tain embodiments of the invention may be stored in storage
subsystem 2224. These software modules are generally
executed by processor subsystem 2214.
0.174 Memory subsystem 2226 typically includes a num
ber of memories including a main random access memory
(RAM) 2230 for storage of instructions and data during pro
gram execution and a read only memory (ROM) 2232 in
which fixed instructions are stored. File storage subsystem
2228 provides persistent storage for program and data files,

Jun. 20, 2013

and may include a hard disk drive, a floppy disk drive along
with associated removable media, a CD-ROM drive, an opti
cal drive, or removable media cartridges. The databases and
modules implementing the functionality of certain embodi
ments of the invention may be stored by file storage sub
system 2228. The host memory 2226 contains, among other
things, computer instructions which, when executed by the
processor Subsystem 2214, cause the computer system to
operate or perform functions as described herein. As used
herein, processes and Software that are said to run in or on “the
host' or “the computer system”, execute on the processor
Subsystem 2214 in response to computer instructions and data
in the host memory Subsystem 2226 including any other local
or remote storage for Such instructions and data.
0.175 Bus subsystem 2212 provides a mechanism for let
ting the various components and Subsystems of computer
system 2210 communicate with each other as intended.
Although bus Subsystem 2212 is shown Schematically as a
single bus, alternative embodiments of the bus Subsystem
may use multiple busses.
0176 Computer system 2210 itself can be of varying types
including a personal computer, a portable computer, a work
station, a computer terminal, a network computer, a televi
Sion, a mainframe, or any other data processing system or user
device. Due to the ever-changing nature of computers and
networks, the description of computer system 2210 depicted
in FIG. 22 is intended only as a specific example for purposes
of illustrating certain embodiments of the present invention.
In another embodiment, the invention can be implemented
using multiple computer systems. Such as in a server farm.
Many other configurations of computer system 2210 are pos
sible having more or less components than the computer
system depicted in FIG. 22.
0177. In an embodiment, the steps set forth in the flow
charts and descriptions herein are performed by a computer
system having a processor Such as processor Subsystem 2214
and a memory Such as storage Subsystem 2224, under the
control of software which includes instructions which are
executable by the processor subsystem 2214 to perform the
steps shown. The software also includes data on which the
processor operates. The Software is stored on a computer
readable medium, which as mentioned above and as used
herein, is one on which information can be stored and read by
a computer system. Examples include a floppy disk, a hard
disk drive, a RAM, a CD, a DVD, flash memory, a USB drive,
and so on. The computer readable medium may store infor
mation in coded formats that are decoded for actual use in a
particular data processing system. A single computer read
able medium, as the term is used herein, may also include
more than one physical item, such as a plurality of CD-ROMs
or a plurality of segments of RAM, or a combination of
several different kinds of media. When the computer readable
medium storing the Software is combined with the computer
system of FIG. 22, the combination is a machine which per
forms the steps set forth herein. Means for performing each
step consists of the computer system (or only those parts of it
that are needed for the step) in combination with software
modules for performing the step. The computer readable
medium storing the software is also capable of being distrib
uted separately from the computer system, and forms its own
article of manufacture.
0.178 Additionally, the geometry file or files storing the
layout, the relationship master dataset, and the layout topol
ogy database are themselves stored on computer readable

US 2013/0159949 A1

media. Such media can be distributable separately from the
computer system, and form their own respective articles of
manufacture. When combined with a computer system pro
grammed with Software for reading, revising, and writing the
geometry files, and for design rule checking, they form yet
another machine which performs the steps set forth herein.
0179. As used herein, the “identification of an item of
information does not necessarily require the direct specifica
tion of that item of information. Information can be “identi
fied in a field by simply referring to the actual information
through one or more layers of indirection, or by identifying
one or more items of different information which are together
sufficient to determine the actual item of information. In
addition, the term “indicate” is used hereinto mean the same
as “identify”.
0180. As used herein, a given signal, event or value is
“responsive' to a predecessor signal, event or value if the
predecessor signal, event or value influenced the given signal,
event or value. If there is an intervening processing element,
step or time period, the given signal, event or value can still be
“responsive' to the predecessor signal, event or value. If the
intervening processing element or step combines more than
one signal, event or value, the signal output of the processing
element or step is considered “responsive' to each of the
signal, event or value inputs. If the given signal, event or value
is the same as the predecessor signal, event or value, this is
merely a degenerate case in which the given signal, event or
value is still considered to be “responsive' to the predecessor
signal, event or value. “Dependency' of a given signal, event
or value upon another signal, event or value is defined simi
larly.
0181. The foregoing description of preferred embodi
ments of the present invention has been provided for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations will
be apparent to practitioners skilled in this art. In particular,
and without limitation, any and all variations described, Sug
gested or incorporated by reference in the Background sec
tion of this patent application are specifically incorporated by
reference into the description herein of embodiments of the
invention. The embodiments described herein were chosen
and described in order to best explain the principles of the
invention and its practical application, thereby enabling oth
ers skilled in the art to understand the invention for various
embodiments and with various modifications as are Suited to
the particular use contemplated. It is intended that the scope
of the invention be defined by the following claims and their
equivalents.

1-24. (canceled)
25. A method for checking a set of layout design rules on a

region of an integrated circuit layout, the layout including a
plurality of shapes each including edges in a plurality of
different orientations, each of the edges having endpoints at
respective locations in the layout, endpoints of edges in a first
one of the orientations being first endpoints and endpoints of
edges in a second one of the orientations being second end
points,

for use by a computer system having access to a design rule
data set indicating constraint values of design rules in the
data set, the method comprising the steps of

Jun. 20, 2013

the computer system scanning the layout region in a first
dimension which is perpendicular to the first edge ori
entation, so as to encounter first endpoints of the edges
having the first orientation;

in response to encountering each of at least a first Subset of
at least two of the first endpoints, the computer system
populating a layout topology database with values in
dependence upon the respective first endpoint location;

the computer system scanning the layout region in a second
dimension which is perpendicular to the second edge
orientation, so as to encounter second endpoints of the
edges having the second orientation;

in response to encountering each of at least a second Subset
of at least two of the second endpoints, the computer
system populating the layout topology database with
values in dependence upon the respective second end
point location;

after the layout topology database has been populated with
values in dependence upon the first endpoint location of
all endpoints in the first Subset of endpoints, and values
in dependence upon the second endpoint location of all
endpoints in the second Subset of endpoints, the com
puter system comparing values in the layout topology
database to values in the design rule data set to detect any
violations of design rules in the set of design rules; and

where a design rule violation is detected, reporting it to a
USC.

26. A method according to claim 25, wherein the step of the
computer system scanning the layout region in a first dimen
sion comprises the step of the computer system Scanning the
layout region so as to encounter the first endpoints in a mono
tonically varying position in the first dimension.

27. A method according to claim 26, wherein the step of the
computer system scanning the layout region in a second
dimension comprises the step of the computer system scan
ning the layout region so as to encounter the second endpoints
in a monotonically varying position in the second dimension.

28. A method according to claim 25, wherein each of the
first endpoints has a position in the first dimension,

and wherein the step of the computer system Scanning the
layout region in a first dimension comprises the step of
the computer system jumping only among positions in
the first dimension which match positions in the first
dimension of first endpoints.

29. A method according to claim 28, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands.

30. A method according to claim 28, wherein the second
endpoints each have a position in the second dimension,

and wherein the step of the computer system Scanning the
layout region in a second dimension comprises the step
of the computer system jumping only among positions
in the second dimension which match positions in the
second dimension of second endpoints.

31. A method according to claim 30, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

US 2013/0159949 A1

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands

and wherein the second Subset of second endpoints
includes all endpoints of the second edges which end
points coincide with corners of the islands.

32. A method according to claim 31, wherein the step of the
computer system jumping only among positions in the first
dimension which match positions in the first dimension of
first endpoints, comprises the step of the computer system
jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints,

and wherein the step of the computer system jumping only
among positions in the second dimension which match
positions in the second dimension of second endpoints,
comprises the step of the computer system jumping only
monotonically among positions in the second dimension
which match positions in the second dimension of sec
ond endpoints.

33. A method according to claim 28, wherein the step of the
computer system jumping only among positions in the first
dimension which match positions in the first dimension of
first endpoints, comprises the step of the computer system
jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints.

34. A method according to claim 25, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

and wherein the step of the computer system Scanning the
layout region in a first dimension avoids first endpoints
which do not lie on an island contour.

35. A method according to claim 25, wherein the step of the
computer system scanning the layout region in a first dimen
Sion, completes before the step of the computer system scan
ning the layout region in a second dimension, begins.

36. A method according to claim 25, wherein the step of the
computer system scanning the layout region in a first dimen
Sion, and the step of the computer system Scanning the layout
region in a second dimension, are performed concurrently.

37. A method according to claim 25, wherein the plurality
of orientations consists of first and second orientations which
are perpendicular to each other.

38. A method according to claim 25, wherein a design rule
violation is detected in the step of the computer system com
paring values.

39. (canceled)
40. A system for checking a set of layout design rules on a

region of an integrated circuit layout, the layout including a
plurality of shapes each having shape corners at respective
locations in the layout, comprising:

a computer system having access to a design rule data set
indicating constraint values of design rules in the data
set, the computer system further having access to com
puter instructions and data which, when applied to the
computer system, perform the steps of

Scanning the layout region in a first dimension which is
perpendicular to the first edge orientation, so as to
encounter first endpoints of the edges having the first
orientation;

Jun. 20, 2013

in response to encountering each of at least a first Subset of
at least two of the first endpoints, the computer system
populating a layout topology database with values in
dependence upon the respective first endpoint location;

scanning the layout region in a second dimension which is
perpendicular to the second edge orientation, so as to
encounter second endpoints of the edges having the
second orientation;

in response to encountering each of at least a second Subset
of at least two of the second endpoints, the computer
system populating the layout topology database with
values in dependence upon the respective second end
point location;

after the layout topology database has been populated with
values in dependence upon the first endpoint location of
all endpoints in the first Subset of endpoints, and values
in dependence upon the second endpoint location of all
endpoints in the second Subset of endpoints, comparing
values in the layout topology database to values in the
design rule data set to detect any violations of design
rules in the set of design rules; and

where a design rule violation is detected, reporting it to a
USC.

41. (canceled)
42. A computer program product for checking a set of

layout design rules on a region of an integrated circuit layout,
the layout including a plurality of shapes each having shape
corners at respective locations in the layout, for use by a
computer system having access to a design rule data set
indicating constraint values of design rules in the data set, the
computer program product comprising

a computer readable medium having stored thereon a plu
rality of software code portions and data which when
executed by the computer system perform the steps of

scanning the layout region in a first dimension which is
perpendicular to the first edge orientation, so as to
encounter first endpoints of the edges having the first
orientation;

in response to encountering each of at least a first Subset of
at least two of the first endpoints, populating a layout
topology database with values in dependence upon the
respective first endpoint location;

scanning the layout region in a second dimension which is
perpendicular to the second edge orientation, so as to
encounter second endpoints of the edges having the
second orientation;

in response to encountering each of at least a second Subset
of at least two of the second endpoints, populating the
layout topology database with values in dependence
upon the respective second endpoint location;

after the layout topology database has been populated with
values in dependence upon the first endpoint location of
all endpoints in the first Subset of endpoints, and values
in dependence upon the second endpoint location of all
endpoints in the second Subset of endpoints, comparing
values in the layout topology database to values in the
design rule data set to detect any violations of design
rules in the set of design rules; and

where a design rule violation is detected, reporting it to a
USC.

43. A system according to claim 40, wherein the step of the
computer system scanning the layout region in a first dimen
sion comprises the step of the computer system Scanning the

US 2013/0159949 A1

layout region so as to encounter the first endpoints in a mono
tonically varying position in the first dimension.

44. A system according to claim 43, wherein the step of the
computer system scanning the layout region in a second
dimension comprises the step of the computer system scan
ning the layout region so as to encounter the second endpoints
in a monotonically varying position in the second dimension.

45. A system according to claim 40, wherein each of the
first endpoints has a position in the first dimension,

and wherein the step of the computer system Scanning the
layout region in a first dimension comprises the step of
the computer system jumping only among positions in
the first dimension which match positions in the first
dimension of first endpoints.

46. A system according to claim 45, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands.

47. A system according to claim 45, wherein the second
endpoints each have a position in the second dimension,

and wherein the step of the computer system Scanning the
layout region in a second dimension comprises the step
of the computer system jumping only among positions
in the second dimension which match positions in the
second dimension of second endpoints.

48. A system according to claim 47, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands

and wherein the second Subset of second endpoints
includes all endpoints of the second edges which end
points coincide with corners of the islands.

49. A system according to claim 48, wherein the step of the
computer system jumping only among positions in the first
dimension which match positions in the first dimension of
first endpoints, comprises the step of the computer system
jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints,

and wherein the step of the computer system jumping only
among positions in the second dimension which match
positions in the second dimension of second endpoints,
comprises the step of the computer system jumping only
monotonically among positions in the second dimension
which match positions in the second dimension of sec
ond endpoints.

50. A system according to claim 45, wherein the step of the
computer system jumping only among positions in the first
dimension which match positions in the first dimension of
first endpoints, comprises the step of the computer system
jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints.

51. A system according to claim 40, wherein each of the
shapes in the plurality of shapes is specific to a layer, the

Jun. 20, 2013

single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

and wherein the step of the computer system Scanning the
layout region in a first dimension avoids first endpoints
Which do not lie on an island contour.

52. A system according to claim 40, wherein the step of the
computer system scanning the layout region in a first dimen
Sion, completes before the step of the computer system scan
ning the layout region in a second dimension, begins.

53. A system according to claim 40, wherein the step of the
computer system scanning the layout region in a first dimen
Sion, and the step of the computer system scanning the layout
region in a second dimension, are performed concurrently.

54. A system according to claim 40, wherein the plurality
of orientations consists of first and second orientations which
are perpendicular to each other.

55. A product according to claim 42, wherein the code
portions and data which when executed by the computer
system perform the step of scanning the layout regionina first
dimension comprise code portions and data which when
executed by the computer system perform the step of scan
ning the layout region so as to encounter the first endpoints in
a monotonically varying position in the first dimension.

56. A product according to claim 55, wherein the code
portions and data which when executed by the computer
system perform the step of scanning the layout region in a
second dimension comprise code portions and data which
when executed by the computer system perform the step of
scanning the layout region so as to encounter the second
endpoints in a monotonically varying position in the second
dimension.

57. A product according to claim 42, wherein each of the
first endpoints has a position in the first dimension,

and wherein the code portions and data which when
executed by the computer system perform the step of
Scanning the layout region in a first dimension comprise
code portions and data which when executed by the
computer system perform the step of jumping only
among positions in the first dimension which match
positions in the first dimension of first endpoints.

58. A product according to claim 57, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands.

59. A product according to claim 57, wherein the second
endpoints each have a position in the second dimension,

and wherein the code portions and data which when
executed by the computer system perform the step of
Scanning the layout region in a second dimension com
prise code portions and data which when executed by the
computer system perform the step of jumping only
among positions in the second dimension which match
positions in the second dimension of second endpoints.

60. A product according to claim 59, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

US 2013/0159949 A1

wherein the first subset of first endpoints includes all end
points of the first edges which endpoints coincide with
corners of the islands

and wherein the second Subset of second endpoints
includes all endpoints of the second edges which end
points coincide with corners of the islands.

61. A product according to claim 60, wherein the code
portions and data which when executed by the computer
system perform the step of jumping only among positions in
the first dimension which match positions in the first dimen
sion of first endpoints, comprise codeportions and data which
when executed by the computer system perform the step of
jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints,

and wherein the code portions and data which when
executed by the computer system perform the step of
jumping only among positions in the second dimension
which match positions in the second dimension of sec
ond endpoints, comprise code portions and data which
when executed by the computer system perform the step
of jumping only monotonically among positions in the
second dimension which match positions in the second
dimension of second endpoints.

62. A product according to claim 57, wherein the code
portions and data which when executed by the computer
system perform the step of jumping only among positions in
the first dimension which match positions in the first dimen
sion of first endpoints, comprise codeportions and data which
when executed by the computer system perform the step of

Jun. 20, 2013

jumping only monotonically among positions in the first
dimension which match positions in the first dimension of
first endpoints.

63. A product according to claim 42, wherein each of the
shapes in the plurality of shapes is specific to a layer, the
single layer geometric union of the shapes in the plurality of
shapes forming a plurality of islands, the islands each having
a contour,

and wherein the code portions and data which when
executed by the computer system perform the step of
Scanning the layout region in a first dimension avoid first
endpoints which do not lie on an island contour.

64. A product according to claim 42, wherein the code
portions and data which when executed by the computer
system perform the step of scanning the layout regionina first
dimension, complete before the code portions and data which
when executed by the computer system perform the step of
scanning the layout region in a second dimension, begin.

65. A product according to claim 42, wherein the code
portions and data which when executed by the computer
system perform the step of scanning the layout regionina first
dimension, and the code portions and data which when
executed by the computer system perform the step of scan
ning the layout region in a second dimension, execute con
currently.

66. A product according to claim 42, wherein the plurality
of orientations consists of first and second orientations which
are perpendicular to each other.

k k k k k

