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APPARATUS AND METHOD FOR ADDRESS
PRE-TRANSLATION TO ENHANCE DIRECT
MEMORY ACCESS BY HARDWARE
SUBSYSTEMS

TECHNICAL FIELD

[0001] Embodiments of the invention described herein
relate generally to the efficient memory accesses in a com-
puter processing system. In particular, the disclosure relates
to architecture extension for performing low-latency address
translations used in direct memory accesses made by hard-
ware subsystems.

BACKGROUND ART

[0002] Incomputing, accelerators are specialized comput-
ing devices designed to perform certain functions more
efficiently than is possible by software running on a general-
purpose central processing unit (CPU). For example, visu-
alization processes may be offloaded from the CPU onto a
graphics card to enable faster, higher-quality playback of
videos and games. Similarly, compression and decompres-
sion workloads that are computationally intensive may be
better suited for specialized encoders and decoders rather
than a CPU. Efficient use of accelerators can decrease
latency, increase throughput, and free up CPU utilization.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The invention may best be understood by referring
to the following description and accompanying drawings
that are used to illustrate embodiments of the invention. In
the drawings:

[0004] FIG. 1 is a block diagram illustrating a serialized
datapath pipeline associated with DMA access according to
an embodiment;

[0005] FIG. 2 is a block diagram illustrating a parallel
pipeline associated with DMA access according to an
embodiment;

[0006] FIG. 3 is a block diagram illustrating a computer
systems platform on which various embodiments of the
present invention may be implemented;

[0007] FIG. 4 illustrates an exemplary processor on which
embodiments of the invention may be implemented;
[0008] FIG. 5 is a diagram illustrating an exemplary job
descriptor according to an embodiment;

[0009] FIG. 6 illustrates an Input-Output Memory Man-
agement Unit (IOMMU) process address space identifier
(PASID) table structure according to an embodiment;
[0010] FIG. 7 is a flow diagram illustrating operations
associated with the execution of an enqueue instruction
according to an embodiment;

[0011] FIG. 8 is a flow diagram illustrating the operations
associated with the execution of a pre-translation request
according to an embodiment;

[0012] FIG. 9 is a flow diagram illustrating the operations
for processing a job descriptor from the job queue according
to an embodiment;

[0013] FIG. 10 is a flow diagram illustrating a method
according to an embodiment of the present invention;
[0014] FIG. 11 illustrates the operations for translating a
guest PASID to a host PASID using a PASID translation
table structure according to an embodiment;

[0015] FIG. 12 illustrates an exemplary flow of a PASID
reset control command according to an embodiment;

Jan. 18, 2024

[0016] FIG. 13 is a diagram illustrating the flow of using
an enqueue command instruction to submit a control com-
mand according to an embodiment;

[0017] FIG. 14 illustrates an entry of the job queue accord-
ing to an embodiment;

[0018] FIG. 15 is a block diagram illustrating an embodi-
ment of a computer system on which various aspects of the
present invention may be implemented;

[0019] FIG. 16 is a flow diagram illustrating a method for
submitting a common control command using an enqueue
command instruction according to an embodiment;

[0020] FIG. 17 is a flow diagram illustrate a method for
processing job descriptors from the job queue according to
an embodiment;

[0021] FIG. 18A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention;

[0022] FIG. 18B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the invention;

[0023] FIG. 19 is a block diagram of a single core pro-
cessor and a multicore processor with integrated memory
controller and graphics according to embodiments of the
invention;

[0024] FIG. 20 illustrates a block diagram of a system in
accordance with one embodiment of the present invention;
[0025] FIG. 21 illustrates a block diagram of a second
system in accordance with an embodiment of the present
invention;

[0026] FIG. 22 illustrates a block diagram of a third
system in accordance with an embodiment of the present
invention;

[0027] FIG. 23 illustrates a block diagram of a system on
a chip (SoC) in accordance with an embodiment of the
present invention; and

[0028] FIG. 24 illustrates a block diagram contrasting the
use of a software instruction converter to convert binary
instructions in a source instruction set to binary instructions
in a target instruction set according to embodiments of the
invention.

DETAILED DESCRIPTION

[0029] Embodiments of apparatus and method for reduc-
ing memory access latency by hardware subsystems are
described herein. In the following description, numerous
specific details are set forth to provide a thorough under-
standing of embodiments of the invention. One skilled in the
relevant art will recognize, however, that the invention can
be practiced without one or more of the specific details, or
with other methods, components, materials, etc. In other
instances, well-known structures, materials, or operations
are not shown or described in detail to avoid obscuring
aspects of the invention.

[0030] Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment” in
various places throughout this specification are not neces-
sarily all referring to the same embodiment. Furthermore,
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the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodi-
ments. For clarity, individual components in the Figures
herein may be referred to by their labels in the Figures,
rather than by a particular reference number.

[0031] In computing, hardware subsystems such as 1/O
devices, accelerators, graphics cards, and encoder/decoders
are specialized computer devices designed to perform cer-
tain functions more efficiently than is possibly by software
alone on a general-purpose central processing unit (CPU).
CPU and software submit jobs to hardware subsystems via
special instructions. For example, the enqueue command
instruction, part of the Intel® instruction architecture,
enables user or kernel space software applications to submit
jobs to hardware subsystems via abstracted job descriptors
(descriptors). The use of job descriptors hides hardware
semantics from software applications which, in turn, helps
simplify the job submission process.

[0032] To submit a job, a software application first con-
structs a standardized job descriptor in memory. The infor-
mation in the job descriptor may include, for example, the
job (i.e. command or workload) to be performed, the process
address space identifier (PASID) of the software application
or thread, the privilege level (e.g., user or supervisor), and
the data required by hardware subsystem to perform the job.
Once the job descriptor is constructed, the application sub-
mits the job descriptor to the hardware subsystem by invok-
ing or calling an enqueue command instruction. The
enqueue command instruction may include one or more
operands for specifying information such as the location of
the job descriptor in memory and the target hardware
subsystem to perform the job (e.g., an identifier of the
hardware subsystem or its job queue). In one embodiment,
a memory-mapped I/O (MMIO) address is used to identify
the target hardware subsystem or the job queue.

[0033] When the enqueue command instruction is
executed by the CPU, the job in the job descriptor is copied
from the memory to the job queue of the target hardware
subsystem. The queue may be a register or a local cache
associated the target hardware subsystem. The jobs in the job
queue are then processed by the hardware subsystem. As
part of the performance of the job, the hardware subsystem
requests data from system memory, usually through the
input-output memory management unit (IOMMU).

Pre-Translation of Memory Addresses in a Job Descriptor

[0034] Extended IOMMU with PASID support offers
Shared Virtual Memory (SVM) function which allows hard-
ware subsystems to access the memory by direct memory
access (DMA) using virtual addresses. The use of SVM
allows software applications to submit jobs to hardware
subsystems without having to convert virtual addresses into
physical addresses before submission. The overhead asso-
ciated with address translations, however, is passed onto the
IOMMU during DMA.

[0035] In host mode, the degradation in DMA perfor-
mance can usually be attributed to the need to translation 1O
Virtual Addresses (IOVA) and/or Host Virtual Addresses
into physical addresses. In either case, costly page table
walks are often required. In virtual machine environments
where Guest Virtual Addresses (GVA) are used, the degra-
dation in DMA performance in SVM mode is even more
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severe due to nested translations. In some cases, the trans-
lation task can consume up to 80 CPU cycles per DMA
request.

[0036] FIG. 1 is a block diagram illustrating a serialized
datapath pipeline associated with DMA access according to
an embodiment. At block 102, an enqueue command instruc-
tion is executed by a CPU. The enqueue command instruc-
tion may include a source operand to specify a job descriptor
and a destination operand to specify the recipient of the job
descriptor. For example, the source operand may include an
address of where the job descriptor is stored, and the
destination operand may include an address (e.g., memory
mapped input/output (MMIO)) associated with the hardware
subsystem. An embodiment of the enqueue command
instruction 120 includes an opcode 122, a destination oper-
and 124, and a source operand 126. The destination and
source operands may identify registers storing, in some
embodiments, an offset and in others, an address. In par-
ticular, the source operand 126 may specify a memory
location storing a 64B command or job descriptor. At block
104, the job descriptor, or the information contained therein,
is stored into the target identified by the destination operand.
The job descriptor may be stored into a queue, register, or
local cache associated with the hardware subsystem. Next, at
block 106, the hardware subsystem processes the stored job
descriptor to identify the virtual addresses of required data
and responsively generates one or more DMA requests for
these data using the virtual addresses. These virtual
addresses maybe referenced directly or indirectly in the job
descriptor. At block 108, the IOMMU receives the DMA
requests and translates the virtual addresses in the DMA
requests into the corresponding physical addresses. Once
translated, the IOMMU uses the physical addresses to access
the memory and retrieves the requested data at block 110.
The IOMMU then provides the retrieved data to the hard-
ware subsystem which, in turn, performs the job. Block 120
represents the bulk of the overhead associated with DMA.
The latency incurred can be as high as 80 CPU cycles and
is reoccurring for all hardware subsystems.

[0037] Aspects of the present disclosure help reduce the
latency associated with address translation in the IOMMU.
According to embodiments of the present invention, the
serialized datapath pipeline is restructured into two parallel
pipelines—a modified datapath pipeline and a separate
translation (pre-translation) pipeline. This allows the
IOMMU to pre-translate and warm up the translation cache
prior to receiving DMA requests from the hardware subsys-
tem. In doing so, the impact of address translation on latency
is minimized which, in turn, improves the overall system
performance.

[0038] FIG. 2 is a block diagram illustrating a parallel
pipeline associated with DMA according to an embodiment
of the present invention. Initially, a software application
prepares a job descriptor in memory then calls or invokes an
enqueue command instruction. At block 202, the CPU
executes the enqueue command instruction (e.g., instruction
120 of FIG. 1) which includes an opcode identifying the
enqueue command instruction, a source operand specifying
a job descriptor and a destination operand identifying the
target hardware subsystem for performing the job in the job
descriptor. The source and destination operands may iden-
tify registers storing an offset or an address. The source
operand 126, in some embodiments, may specify a memory
location storing a 64B command or job descriptor. At block
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204, the job descriptor, or the information contained therein,
is stored into the target identified by the destination operand,
such as a queue, register, or local cache associated with the
target hardware subsystem. Concurrently, at block 222, the
CPU processes the job descriptor and retrieves one or more
the virtual addresses referenced by the job descriptor.
According to an embodiment, this includes virtual addresses
that are referenced directly in the job descriptor as well as
those referenced indirectly. In addition, the CPU may deter-
mine, or retrieve from the job descriptor, other information
such as the bus/device/function (BDF) of the target hard-
ware subsystem and the PASID associated with the software
application or thread. The PASID may be obtained from the
job descriptor itself or from another location such as a
specialized register. At block 224, the CPU provides the
retrieved virtual addresses directly to the IOMMU. This may
be accomplished by the CPU submitting a pre-translation
request through a sideband channel established between the
CPU and IOMMU. In response, at block 226, the IOMMU
obtains the virtual-to-physical translations for each of the
virtual addresses and stores the translations locally, such as
in an IOTLB, for later access.

[0039] Returning to the datapath pipeline, at block 206, as
the hardware subsystem processes the job descriptor from its
job queue, it identifies the data required for performing the
job and responsively generates one or more DMA requests
using the virtual addresses of the data. At block 208, the
IOMMU receives and processes the DMA requests using the
address translations that are already in the IOTLB to obtain
the corresponding physical address for each virtual address
in the DMA request. Next, at block 210, the IOMMU access
the memory using the physical addresses and provides the
retrieved data to the hardware subsystem to performs the
job. Since address translations typically take much less time
than job submissions to the hardware subsystem, due to the
latency in the PCI MMIO/bus, it is fair to assume that when
the DMA requests from the hardware subsystem reach the
IOMMU, the relevant address translations are already pres-
ent in the IOTLB. This allows the IOMMU to access
memory without the latency of page table walks associated
with address translation.

[0040] Benefits provided by aspects of the present inven-
tion include eliminating the delay of IOMMU address
translation from DMA operation by performing address
translations in parallel with the job submission to the hard-
ware subsystem. This is especially useful in virtualized
environments where address translations are often nested
and involve multiple page tables. Aspects of the present
invention also increase the performance (~80 cycles per
DMA) of various hardware subsystems/devices including
graphics accelerators, ethernet accelerators, crypto accelera-
tors, data accelerators. Features of the present invention may
be configurable by hypervisor software via an IOMMU
interface.

[0041] FIG. 3 is a block diagram illustrating a computer
systems platform on which various embodiments of the
present invention may be implemented. System 300 includes
CPU 310, system memory 320, hardware subsystem 330,
and IOMMU 340. The CPU may additionally include an
enqueue engine 312 to perform enqueue tasks. In some
embodiments, the function of enqueue engine 312 is per-
formed by an execution unit executing an enqueue command
instruction. The function of the enqueue engine 312 may
include storing a job or job descriptor into the job queue 332
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of the hardware subsystem 332. The job queue 332 may be
accessed by a hardware interface 334 which retrieves jobs to
be performed by processor 336. The IOMMU 340 may
include a pre-translation or parallel translation interface 342
for receiving pre-translation requests from the CPU 310, an
IOTLB 344 for storing address translations, a page table
walk engine 346 for obtaining address translations from
page tables, and a DMA remapping engine 348 for accessing
the system memory 320 using the translated addresses.

[0042] In operation, a software application or thread sub-
mits a job by calling an enqueue command instruction which
specifies a job descriptor 322 stored in the system memory
320. The enqueue engine 312 in the CPU, in response to the
execution of the enqueue command instruction, initiates a
pre-translation pipeline along with a data path pipeline. The
pre-translation pipeline begins by the CPU 310 evoking the
pre/parallel translation interface 342 provided by IOMMU
340 to submit a pre-translation request. The interface pro-
vided by IOMMU may be implemented as a register set or
a hidden channel (i.e. side channel). Information provided in
the pre-translation request may include the BDF of the
hardware subsystem, PASID of the software application/
thread, and/or one or more virtual addresses to be translated.
The BDF and PASID may be used by the page table walk
engine 346 to identify the page table from which address
translations are obtained. Next, The IOMMU 340, upon
receiving pre-translation request from the pre-translation
pipeline, begins translating the virtual addresses. If a trans-
lation is not available locally (i.e. missing in IOTLB 344),
the page table walk engine 346 searches one or more page
tables to find the address translation. For example, depend-
ing on the translation mode configured for the hardware
subsystem and/or the PASID, the page table walk engine
may access the translation table of the hardware subsystem
(i.e. second level page table) and/or the host page table (i.e.
first level page table) to retrieve the desired physical address
translation. Next, upon successful completion of the page
table walk, the page table walk engine 346 inserts the
virtual-to-physical translation into the IOTLB 344.

[0043] Concurrently with the translation pipeline, the
datapath pipeline begins with the enqueue engine 312 stor-
ing the job descriptor into the job queue 332 of the hardware
subsystem 330. From the job queue 332, jobs are dispatched
to the hardware interface 334 to be processed by the pro-
cessor 336. During the processing, one or more DMA
requests containing host virtual addresses or 1/O virtual
addresses (IOVA) are submitted to the IOMMU or root
complex to access data. Since the translations for the virtual
addresses or IOVAs are likely available in IOTLB already
from the pre-translation pipeline, the DMA remapping
engine can quickly perform memory operations using the
cached address translations without costly page table walks.
It is reasonable to assume that the pre-translation pipeline
will complete before the datapath pipeline because memory
transactions performed in the pre-translation pipeline are
inherently faster than the PCI MMIO transactions in the
datapath pipeline.

[0044] FIG. 4 illustrates an exemplary processor on which
embodiments of the invention may be implemented. CPU
455 may include one or more processor cores. The details of
a single processor core (“Core 0”) are illustrated in FIG. 4
for simplicity. It will be understood, however, that each core
shown in FIG. 4 may have the same or similar set of
components as Core 0. For example, each core may include
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dedicated Level 1 (L.1) cache 412 and Level 2 (L2) cache
411 for caching instructions and data according to a speci-
fied cache management policy. The L1 cache 412 may
additionally include an instruction cache 420 for storing
instructions and a data cache 421 for storing data. The
instructions and data stored within the various processor
caches are managed at the granularity of cache lines which
may be a fixed size (e.g., 64, 128, 512 Bytes in length). Data
may be stored temporarily in register file 452 during the
execution of instructions. Register file 452 may include
general purpose registers (GPRs), vector registers, mask
registers, etc. Each processor core further includes an
instruction fetch unit 410 for fetching instructions from main
memory 400 and/or a shared Level 3 (L3) cache 416; a
decoder or decode unit 430 for decoding the instructions
(e.g., decoding program instructions into micro-operatons or
“uops™); an execution unit 440 for executing the instruc-
tions; and a writeback unit 450 for retiring instructions and
writing back results.

[0045] The instruction fetch unit 410 may include various
well known components including a next instruction pointer
403 for storing the address of the next instruction to be
fetched from memory 400 (or one of the caches); an instruc-
tion translation look-aside buffer (ITLB) 404 for storing a
map of recently used virtual-to-physical instruction
addresses to improve the speed of address translation; a
branch prediction unit 402 for speculatively predicting
instruction branch addresses; and branch target buffers
(BTBs) 401 for storing branch addresses and target
addresses. Once fetched, instructions are streamed to the
remaining stages of the instruction pipeline including the
decode unit 430, the execution unit 440, and the writeback
unit 450. The structure and function of each of these units is
well understood by those of ordinary skill in the art and will
not be described here in detail to avoid obscuring the
pertinent aspects of the different embodiments of the inven-
tion.

[0046] In one embodiment, the decode unit 430 includes
an enqueue command instruction decoder 431 for decoding
the enqueue command instructions described herein (e.g.,
into sequences of micro-operations in one embodiment) and
the execution unit 440 includes an enqueue command
instruction execution unit 441 for executing the decoded
enqueue command instructions.

[0047] FIG. 5 is a diagram illustrating an exemplary job
descriptor according to an embodiment. Job descriptor 500
may include control fields 510 and command fields 520. The
control fields 510 store information such as the PASID
associated with the software application/thread that created
the job descriptor, the privilege level associated with the job
descriptor, and a prefetch mode to indicate whether address
pre-translation should be performed for the addresses refer-
enced in job descriptor. The command field 520 may include
pointers (e.g., 522 and 524) to other descriptors such as the
request buffer descriptor 530 and response buffer descriptor
550. The pointers may be virtual addresses or physical
addresses of memory locations. In some embodiments, all of
the pointers are virtual addresses and need to be translated
to corresponding physical addresses before they can be used
to access memory.

[0048] The request buffer 530 pointed to by pointer 522
may store command and parameters 532 for specifying the
action(s) to be taken by the target hardware subsystem. In
addition, the request buffer 530 may store pointers to scat-
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tered payloads that need to be processed by the hardware
subsystem. For example, request buffer 530 may store
pointers 534 and 536 which are the memory addresses of
where payloads 536 and 540 are stored, respectively. The
CPU, as part of the translation pipeline, parses the job
descriptor 500 and locates all of the addresses that require
translation. For example, the CPU may determine from the
job descriptor:

[0049] Virtual address of the request buffer descriptor
522
[0050] Virtual address of the response buffer descriptor
524
[0051] Virtual addresses of the payloads 534, 538
[0052] According to an embodiment, the virtual address of

the request buffer descriptor 522 and response buffer
descriptor 524 are stored in the job descriptor 500 and are
thus referenced directly in the job descriptor 500. On the
other hand, the virtual addresses of payloads 534 and 538 are
stored in secondary descriptors (request buffer 530) and are
thus indirectly referenced in job descriptor 500. According
to an embodiment, all of these virtual addresses will be
retrieved by the CPU and provided to the IOMMU via a
sideband channel to be pre-translated. In order to parse the
job descriptor for different types of hardware subsystems
and devices, a standardized format may be defined for the
job descriptor to be used with the enqueue command instruc-
tion. The standardized format may enable the CPU to
identify both directly-referenced and indirectly-referenced
virtual addresses more efficiently and accurately.

[0053] FIG. 6 illustrates an IOMMU PASID table struc-
ture according to an embodiment. The IOMMU PASID
Table Structure 600 includes root table 602, lower context
table 604, and PASID table 606. As part of the pre-transla-
tion request, the CPU provides the IOMMU with the BDF
of the hardware subsystem and the PASID of the software
application/thread. To look up the appropriate page table
containing the relevant address translations, the IOMMU
uses the BDF to look up, in the root table 602 and the lower
context table 604, the appropriate PASID table 606 for the
hardware subsystem. Then, using the PASID, the IOMMU
locates PASID table entry 608 containing the pointers (e.g.,
first level page table pointer 610 and second level page table
pointer 612) to the appropriate page table(s).

[0054] FIG. 7 is a flow diagram illustrating operations
associated with the execution of an enqueue instruction
according to an embodiment. The illustrated operations may
be performed by a processor, such as CPU 310 of FIG. 3. At
block 702, an enqueue instruction is executed by the execu-
tion unit of a processor. The enqueue instruction may
include source and destination operands. The source oper-
and may be used to identify a job descriptor and the
destination operand may be used to identify a hardware
subsystem. At block 704, a determination is made on
whether addresses referenced by the job descriptor should be
pre-translated. The determination may be made based on a
pre-translation indicator (i.e. prefetch mode) of the job
descriptor. According to an embodiment, if the pre-transla-
tion indicator is of a first value (e.g., “0”) indicating that no
pre-translation should be performed, then the job descriptor
is simply stored to a location identified by the destination
operand at block 710. On the other hand, if the pre-
translation indicator is of a second value (e.g., “1”) indicat-
ing that pre-translation should be performed, then at block
706, one or more virtual addresses are determined from the



US 2024/0020241 Al

job descriptor. As explained above, the virtual addresses
may include both directly-referenced addresses as well as
indirectly-referenced addresses. At block 708, these virtual
addresses are submitted to the IOMMU via a pre-translation
request. In addition to the virtual addresses, the pre-trans-
lation request may also include information such as the
PASID and BFD associated with the hardware subsystem.
This information may be determined from the job descriptor
directly or obtained from elsewhere (e.g., a specific register).
At block 710, the job descriptor is stored into the location
identified by the destination operand.

[0055] FIG. 8 is a flow diagram illustrating the operations
associated with the execution of a pre-translation request
according to an embodiment. The illustrated operations may
be performed by a memory management unit, such as the
IOMMU 340 of FIG. 3. At block 802, a pre-translation
request is received from a processor. The pre-translation
request may include one or more virtual addresses to be
translated to corresponding physical addresses. The pre-
translation request may also include information such as the
PASID of a software application/thread and the BFD of a
hardware subsystem for locating the appropriate page table.
At block 804, virtual-to-physical address translation is
obtained for the virtual addresses in the pre-translation
request. The address translation may be obtained through
page walks through one or more page tables. For example,
the BDF and the PASID in the pre-translation request may
be used to determine the appropriate page table(s) from
which address translations are obtained as described in FIG.
6. At block 806, the address translations are stored in a local
cache or an IOTLB to allow for quick future access. There-
after, a memory access request is received from a hardware
subsystem at block 808. The memory access request may be
a DMA request and may include one or more virtual
addresses. At block 810, the address translations stored in
the local cache or the IOTLB are used to translate at least
some of the virtual addresses in the memory access request
into corresponding physical addresses. Then data in the
memory hierarchy is accessed based on these physical
addresses at block 812 and the accessed data is provided to
the hardware subsystem at block 814.

[0056] FIG. 9 is a flow diagram illustrating the operations
for processing a job descriptor from the job queue according
to an embodiment. The illustrated operations may be per-
formed by any suitable hardware subsystem (e.g., 330 of
FIG. 3), including accelerators and PCI devices. At block
902, a job descriptor is detected in the job queue. At block
904, one or more virtual addresses is determined from the
job descriptor. The virtual addresses reference the memory
location of where data needed to perform a job or workload
are stored. At block 906, one or more memory access
requests are submitted to a memory management unit to
access data stored at these virtual addresses. Responsive to
the memory access requests, data is received from the
memory management unit at block 908. Then, at block 910,
the job or workload described in the job descriptor is
performed using the received data.

[0057] FIG. 10 is a flow diagram illustrating a method
according to an embodiment of the present invention. The
method 1000 may be performed by any system described
herein. At block 1002, an enqueue command instruction is
executed by a CPU to submit a job descriptor to a hardware
subsystem. The job descriptor describes a job to be per-
formed and references a memory location associated with a
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first memory address in a first address space. At block 1004,
an address translation for the first memory address is
obtained by the IOMMU responsive to a pre-translation
request from the CPU. The address translation may include
a mapping of the first memory address in the first address
space to a second memory address in a second address
space. The address translation is obtained prior to the
IOMMU receiving a memory access request from the hard-
ware subsystem requesting data stored at the memory loca-
tion. At block 1006, responsive to the memory access
request, the IOMMU is to access the memory location using
the address translation and to provide data from the memory
location to the hardware subsystem to fulfill the memory
access request. The hardware subsystem, in turn, uses the
data returned from the IOMMU to perform the job described
in the job descriptor.

Submitting Common Control Command to Hardware
Subsystem Using Enqueue Command Instruction

[0058] There are several benefits for using enqueue com-
mand instructions and job descriptors to submit jobs to
hardware subsystems. Besides simplifying the job submis-
sion process by hiding hardware semantics from software
applications as mentioned above, another benefit of using
the enqueue command instruction is the automatic transla-
tion of process address space identifiers (PASIDs).

[0059] PASIDs are used to share a single hardware sub-
system across multiple software threads or processes while
providing each thread or process with a corresponding
address space. PASID can be extended to virtualized envi-
ronments through the concept of guest PASIDs (gPASID)
and host PASIDs (hPASID). Virtual machines in the virtu-
alized environment operate using guest PASIDs while the
hypervisor and/or the underlying hardware operate using
host PASIDs. Each task submitted by a software thread in
the VM is associated with a guest PASID which must be
translated into a corresponding host PASID. This translation
task is typically performed by the hypervisor.

[0060] With an enqueue command instruction, the trans-
lation of guest PASID into host PASID is handled by
hardware via virtual machine extensions and PASID trans-
lation tables. FIG. 11 illustrates the operations for translating
a guest PASID to a host PASID using a PASID translation
table structure according to an embodiment. To translate a
guest PASID 1102, a PASID directory indicator 1104 is used
to identify a PASID directory pointer (e.g., 1114 or 1116)
from a virtual machine control structure (VMCS) field 1112
to locate a PASID directory (e.g., 1122 or 1124). A second
portion 1106 of the guest PASID is then used to identify a
particular entry (e.g., 1126 or 1128) in the PASID directory
to locate a PASID table (e.g., 1132 or 1134). Finally, a third
portion 1108 of the guest PASID 1102 is used to locate an
entry in the PASID table containing the corresponding host
PASID (e.g., 1136 or 1138) of the guest PASID.

[0061] Using an enqueue command instruction means that
fewer PASID translations need to be performed by the
hypervisor. However, enqueue command instructions are
currently used mainly for submitting device-specific work-
loads/commands and do not support the submission of
control commands, which are commands for controlling
common operations shared between hardware subsystems.
[0062] In a VM environment, control commands are fre-
quently used during VM transitions. For example, the con-
trol command PASID reset is typically triggered each time
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when a guest application shuts down. The purpose of the
PASID reset command is to inform the hardware subsystem
to go through the pending queue and remove all inflight
requests associated with an application-assigned host PASID
to release resources. The PASID drain command is another
control command often used during live migration to
instruct the hardware subsystem to gracefully process all
inflight requests of a specific application-assigned host
PASID. Each time a control command is issued by a
software application or thread, the guest PASID in the
command must be translated by the hypervisor into a
corresponding host PASID, incurring high overhead in the
process.

[0063] FIG. 12 illustrates an exemplary flow of a PASID
reset control command according to an embodiment. At
1202, a guest application running in a virtual machine
terminates. At 1204, a guest device driver notifies the host
device driver to instruct the hardware device to perform a
PASID reset command. The guest PASID associated with
the guest application is provided with the command. At
1206, the hypervisor triggers a VM exit. At 1208, the host
device driver of the hypervisor translates the guest PASID to
host PASID. The translation may be performed using the
PASID table structure and the guest PASID as detailed
above. At 1210, the host device driver sends the command
and the host PASID (e.g., “PASID_RESET(host PASID)”)
to the hardware device. Box 1220 illustrate the bulk of the
overhead for the hypervisor.

[0064] Embodiments of the present invention extends the
enqueue command instruction to include the ability to
submit control commands. This helps eliminate hypervisor
context switch for common command submission in a VM,
thereby reduces the burden on the hypervisor software and
increases performance. In one embodiment, the format of
the job descriptor includes a command type field to indicate
whether the command in the job descriptor is a control
command. When the job descriptor is enqueued into the job
queue of the hardware subsystem, the command type field is
copied over to the job queue. In another embodiment, the
control type field is added to the entries in the job queue.
When a special form of the enqueue command instruction is
executed by the CPU, the job descriptor is stored or copied
to the entry in the job queue, and the command type field of
the entry is automatically updated to indicate that the job
descriptor contains a control command. In some embodi-
ments, the job queue is comprised of one or more registers.

[0065] FIG. 13 is a diagram illustrating the flow of using
an enqueue command instruction to submit a control com-
mand according to an embodiment. As illustrated, a CPU
executes an enqueue command instruction 1302 and pro-
cesses the job descriptor 1304 referenced by the instruction.
The job descriptor 1304 contains a common control com-
mand 1310, the guest PASID 1306 associated with the
software thread submitting the job descriptor, and a com-
mand type indicator 1306 set to a particular value (e.g., “1”)
to indicate that the job descriptor contains a common control
command. As the enqueue command instruction is executed,
the job descriptor 1304 is enqueued to a target hardware
subsystem via an enqueue register interface 1314, such as a
job queue or shared queue. Next, the job descriptor is parsed
and the control command 1310 is launched with the host
PASID. The control command 1314 may be stored in the
device register space 1316 and associated with the host
PASID.
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[0066] FIG. 14 illustrates an entry of the job queue accord-
ing to an embodiment. Entry 1400 includes a command 1402
which can be a common control command, such as the
PASID reset command or the PASID drain command
described above, or a device-specific command. Entry 1400
also includes fields such as privilege mode 1404 and PASID
1410. The PASID 1410 in entry 1400 is a host PASID
translated from a corresponding guest PASID during the
execution of an enqueue command instruction by the CPU.
One or more bits in a reserved section 1406 of the entry 1400
is used to create a new command type field 1408 to indicate
the type of command that is in the command field 1402. For
example, if the command type field 1408 is set to a first
value (e.g., 0), the command in the command field 1402 is
a device-specific command. If the command type field 1408
is set to a second value (e.g., 1), the command in the
command field 1402 is a common control command. While
the job queue entry 1400, as illustrated, contains 8 bytes. It
will be apparent to one in skill in the art that the job queue
entry may be of any suitable size (8, 16, 32 bytes, etc.).
According to an embodiment, the job descriptor contains the
same or similar fields as the job queue entry 14, with the
exception that the PASID field in the job descriptor contains
a guest PASID instead of a host PASID.

[0067] FIG. 15 is a block diagram illustrating an embodi-
ment of a computer system on which various aspects of the
present invention may be implemented. System 1500
includes a CPU 1510, system memory 1520, hardware
subsystem or device 1530, and IOMMU 1540. One or more
virtual machines 1504 may be executed on the CPU 1510.
The virtual machines 1504 may communicate with the
underlying hardware via a hypervisor or virtual machine
manager 1502. To submit a job or workload to the hardware
subsystem, a software application running on the virtual
machine creates a job descriptor 1522 in system memory
1520 and calls an enqueue command instruction referencing
the job descriptor 1522. Responsive to the enqueue com-
mand instruction, an enqueue engine 1512 stores or copies
the job descriptor 1522 into the job queue 1532. An execu-
tion unit (not shown) configured to execute the enqueue
command instruction may perform the functions of the
enqueue engine 1512. As part of the execution of the
enqueue command instruction, a guest PASID in, or asso-
ciated with, the job descriptor 1522 is automatically trans-
lated to a corresponding host PASID by the PASID translator
1514. One or more page tables 1516 may be accessed by the
PASID translator 1514 to perform the translation. According
to an embodiment, the guest PASID in the job descriptor is
replaced by the translated host PASID when the job descrip-
tor, or information contained therein, is stored into the job
queue 1532. The job descriptors in the job queue 1532 are
retrieved by hardware interface 1534 to be processed by the
processor 1536 of the hardware subsystem 1530. Processor
1536 may determine, based on a command type field in the
job descriptor, whether the job or command to be performed
is a device-specific command or a common control com-
mand. By using the enqueue command instruction, the
translation from guest PASID to host PASID is performed by
PASID translator 1514 without the assistance of the hyper-
visor 1502.

[0068] FIG. 16 is a flow diagram illustrating a method for
submitting a common control command using an enqueue
command instruction according to an embodiment. At 1602,
a software prepares a job descriptor (e.g., a 64-byte descrip-
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tor) in system memory. The software may optionally, at
1604, set a command type field in the job descriptor to a
specific value (e.g., “1”) to indicate that the command in the
job descriptor is a common control command. At 1606, the
enqueue command instruction is executed. As part of
executing the enqueue command instruction, a guest PASID
is extracted from the job descriptor at 1608 and translated to
a corresponding host PASID at 1610. At 1612, the job
descriptor is copied or stored into an entry of the job queue
of the hardware subsystem. The guest PASID in the job
descriptor is replaced with the translated host PASID. At
1614, the command type field in the job queue entry is
optionally set to a specific value (e.g., “17) to indicate that
the command in the entry is a common control command as
opposed to a device-specific command. The command type
field in the entry may be set, according to an embodiment,
if a specialized version of the enqueue command instruction
is executed. The specialized version of the enqueue com-
mand instruction may be an instruction used only for
enqueueing common control commands. Thus, instead of
setting the control command type field when preparing the
job descriptor, the software needs only to call this special-
ized enqueue command instruction after constructing the job
descriptor as normal.

[0069] FIG. 17 is a flow diagram illustrate a method for
processing job descriptors from the job queue according to
an embodiment. Method 1700 may be implemented by any
system described herein. In particular, method 1700 may be
performed by a hardware system or device. At 1702, job
descriptor in a job queue is detected. The command type
field in the job descriptor is checked at 1704. If the command
type field indicates that the job descriptor does not contain
a common control command, the command is processed as
a device-specific command at 1708. On the other hand, if the
command type field indicates that the job descriptor contains
a common control command, the command is processed as
a common control command. Examples of common control
commands include, but not limited to:

[0070] PASID Reset: Cleanup all inflight requests and
resource in the hardware device associate with a soft-
ware application.

[0071] PASID Drain: Graceful processing of all inflight
requests (e.g. due to a device migration).

[0072] PASID Abort: Ungraceful termination of all
inflight requests in case of a PASID drain timeout.

[0073] User Level Interrupt (ULI) Enable: Subscribe a
software application to the User Level Interrupt

[0074] User Level Interrupt (ULI) Disable: Unsubscribe
an application from the User Level Interrupt

[0075] The use of enqueue command instructions to sub-
mit common control commands increases CPU performance
because the virtual machines do not need to trap into the
hypervisor for translating guest PASID. This also provides a
generic and simple way that all device manufacturers can
adopt for common control commands so that they no longer
need to define their own interface/format for common con-
trol commands. Moreover, since embodiments of the present
invention is an extension to the enqueue command instruc-
tion, it is compatible with the existing instruction set archi-
tecture (ISA). The common format is also generic across
various types of hardware or PCI devices, including network
adapters, graphics accelerators, data accelerators, etc.
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EXAMPLES

[0076] The following are example implementations of
different embodiments of the invention.

[0077] Example 1. An apparatus that includes a processor
to execute an enqueue instruction to submit, to a hardware
subsystem, a job descriptor describing a job to be performed.
The job descriptor references a memory location in which
data required to perform the job is stored. The memory
location is referenced by a first memory address in a first
address space. The apparatus further includes an input-
output memory management unit (IOMMU) to obtain an
address translation for the memory location responsive to a
pre-translation request from the processor. The address
translation is obtained by the IOMMU prior to receiving a
request for the data from the hardware subsystem to perform
the job. The address translation includes a mapping of the
first address in the first address space to a second address in
a second address space. Responsive to the memory access
request, the IOMMU is to retrieve the data from the memory
location based on the address translation and to provide the
data to the hardware subsystem to fulfill the request.

[0078] Example 2. The apparatus of Example 1, wherein
the hardware subsystem is to perform the job using the data
received from the IOMMU.

[0079] Example 3. The apparatus of Example 1, wherein
the request is a direct memory access (DMA) request to
access the memory.

[0080] Example 4. The apparatus of Example 1, further
including a local cache of the IOMMU to store the address
translation.

[0081] Example 5. The apparatus of Example 1, wherein
enqueue instruction is to specify a memory address of the
job descriptor and an identifier of the hardware subsystem.

[0082] Example 6. The apparatus of Example 1, wherein
the job descriptor includes a pre-translation indicator to
indicate whether the processor is to send the pre-translation
request to the IOMMU.

[0083] Example 7. The apparatus of Example 6, wherein
the processor is to determine the first address from the job
descriptor and provide the first address to the [OMMU when
the pre-translation indicator is set to a first value.

[0084] Example 8. The apparatus of Example 7, wherein
the processor is further to provide information to the
IOMMU to identify one or more page tables from which the
IOMMU is to obtain the address translation.

[0085] Example 9. The apparatus of Example 7, wherein
the processor is not to determine the first address from the
job descriptor and/or not to provide the first address to the
IOMMU when the pre-translation indicator is set to a second
value.

[0086] Example 10. The apparatus of Example 6, wherein
the first address space is a virtual address space and the
second address space is a physical address space, and
wherein the address translation comprises a virtual-to-physi-
cal address translation for the first address.

[0087] Example 11. The apparatus of Example 1, wherein
the memory location is referenced directly by the job
descriptor.
[0088] Example 12. The apparatus of Example 1, wherein
the memory location is referenced indirectly by the job
descriptor.



US 2024/0020241 Al

[0089] Example 13. The apparatus of Example 1, wherein
the processor is to store the job descriptor into a job queue
of the hardware subsystem responsive to an execution of the
enqueue instruction.

[0090] Example 14. A method that includes: executing, by
a processor, an enqueue instruction to submit, to a hardware
subsystem, a job descriptor describing a job to be performed,
the job descriptor referencing a memory location in which
data required to perform the job is stored, the memory
location referenced by a first memory address in a first
address space; obtaining, by an input-output memory man-
agement unit (IOMMU), an address translation for the
memory location responsive to a pre-translation request
from the processor and prior to the IOMMU receiving a
request for the data from the hardware subsystem to perform
the job, the address translation comprising a mapping of the
first address in the first address space to a second address in
a second address space; and responsive to the memory
access request, retrieving the data from the memory location
based on the address translation and providing the data to the
hardware subsystem to fulfill the request.

[0091] Example 15. The method of Example 14, further
including performing the job using the data received from
the IOMMU.

[0092] Example 16. The method of Example 14, wherein
the request is a direct memory access (DMA) request to
access the memory.

[0093] Example 17. The method of Example 14, further
including storing the address translation in a local cache of
the IOMMU.

[0094] Example 18. The method of Example 14, further
including specifying a memory address of the job descriptor
and an identifier of the hardware subsystem in the enqueue
instruction.

[0095] Example 19. The method of Example 14, further
including setting a pre-translation indicator of the job
descriptor to indicate whether the processor is to send the
pre-translation request to the IOMMU.

[0096] Example 20. The method of Example 19, further
including determining the first address from the job descrip-
tor and providing the first address to the IOMMU when the
pre-translation indicator is set to a first value.

[0097] Example 21. The method of Example 20, further
including providing information to the IOMMU for identi-
fying one or more page tables from which to obtain the
address translation.

[0098] Example 22. The method of Example 20, further
including not determining the first address from the job
descriptor and/or not providing the first address to the
IOMMU when the pre-translation indicator is set to a second
value.

[0099] Example 23. The method of Example 19, wherein
the first address space is a virtual address space and the
second address space is a physical address space, and
wherein the address translation comprises a virtual-to-physi-
cal address translations of the first address.

[0100] Example 24. The method of Example 14, wherein
the memory location is referenced directly by the job
descriptor.

[0101] Example 25. The method of Example 14, wherein
the memory location is referenced indirectly by the job
descriptor.
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[0102] Example 26. The method of Example 14, further
comprises storing the job descriptor into a job queue of the
hardware subsystem responsive to an execution of the
enqueue instruction.

Exemplary Processor Architectures and Data Types

[0103] FIG. 18A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention. FIG. 18B is a block
diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renam-
ing, out-of-order issue/execution architecture core to be
included in a processor according to embodiments of the
invention. The solid lined boxes in FIGS. 18A-B illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[0104] In FIG. 18A, a processor pipeline 1800 includes a
fetch stage 1802, a length decode stage 1804, a decode stage
1806, an allocation stage 1808, a renaming stage 1810, a
scheduling (also known as a dispatch or issue) stage 1812,
a register read/memory read stage 1814, an execute stage
1816, a write back/memory write stage 1818, an exception
handling stage 1822, and a commit stage 1824.

[0105] FIG. 18B shows processor core 1890 including a
front end hardware 1830 coupled to an execution engine
hardware 1850, and both are coupled to a memory hardware
1870. The core 1890 may be a reduced instruction set
computing (RISC) core, a complex instruction set comput-
ing (CISC) core, a very long instruction word (VLIW) core,
or a hybrid or alternative core type. As yet another option,
the core 1890 may be a special-purpose core, such as, for
example, a network or communication core, compression
engine, coprocessor core, general purpose computing graph-
ics processing unit (GPGPU) core, graphics core, or the like.
[0106] The front end hardware 1830 includes a branch
prediction hardware 1832 coupled to an instruction cache
hardware 1834, which is coupled to an instruction transla-
tion lookaside buffer (TLB) 1836, which is coupled to an
instruction fetch hardware 1838, which is coupled to a
decode hardware 1840. The decode hardware 1840 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control sig-
nals, which are decoded from, or which otherwise reflect, or
are derived from, the original instructions. The decode
hardware 1840 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc. In one embodiment, the core
1890 includes a microcode ROM or other medium that
stores microcode for certain macroinstructions (e.g., in
decode hardware 1840 or otherwise within the front end
hardware 1830). The decode hardware 1840 is coupled to a
rename/allocator hardware 1852 in the execution engine
hardware 1850.

[0107] The execution engine hardware 1850 includes the
rename/allocator hardware 1852 coupled to a retirement
hardware 1854 and a set of one or more scheduler hardware
1856. The scheduler hardware 1856 represents any number
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of different schedulers, including reservations stations, cen-
tral instruction window, etc. The scheduler hardware 1856 is
coupled to the physical register file(s) hardware 1858. Each
of the physical register file(s) hardware 1858 represents one
or more physical register files, different ones of which store
one or more different data types, such as scalar integer,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point, status (e.g., an instruc-
tion pointer that is the address of the next instruction to be
executed), etc. In one embodiment, the physical register
file(s) hardware 1858 comprises a vector registers hardware,
a write mask registers hardware, and a scalar registers
hardware. This register hardware may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) hardware 1858 is
overlapped by the retirement hardware 1854 to illustrate
various ways in which register renaming and out-of-order
execution may be implemented (e.g., using a reorder buffer
(s) and a retirement register file(s); using a future file(s), a
history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement
hardware 1854 and the physical register file(s) hardware
1858 are coupled to the execution cluster(s) 1860. The
execution cluster(s) 1860 includes a set of one or more
execution hardware 1862 and a set of one or more memory
access hardware 1864. The execution hardware 1862 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution hardware dedicated to
specific functions or sets of functions, other embodiments
may include only one execution hardware or multiple execu-
tion hardware that all perform all functions. The scheduler
hardware 1856, physical register file(s) hardware 1858, and
execution cluster(s) 1860 are shown as being possibly plural
because certain embodiments create separate pipelines for
certain types of data/operations (e.g., a scalar integer pipe-
line, a scalar floating point/packed integer/packed floating
point/vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
hardware, physical register file(s) hardware, and/or execu-
tion cluster—and in the case of a separate memory access
pipeline, certain embodiments are implemented in which
only the execution cluster of this pipeline has the memory
access hardware 1864). It should also be understood that
where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

[0108] The set of memory access hardware 1864 is
coupled to the memory hardware 1870, which includes a
data TLB hardware 1872 coupled to a data cache hardware
1874 coupled to a level 2 (I.2) cache hardware 1876. In one
exemplary embodiment, the memory access hardware 1864
may include a load hardware, a store address hardware, and
a store data hardware, each of which is coupled to the data
TLB hardware 1872 in the memory hardware 1870. The
instruction cache hardware 1834 is further coupled to a level
2 (L.2) cache hardware 1876 in the memory hardware 1870.
The L2 cache hardware 1876 is coupled to one or more other
levels of cache and eventually to a main memory.

[0109] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 1800 as follows: 1) the instruction
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fetch 1838 performs the fetch and length decoding stages
1802 and 1804; 2) the decode hardware 1840 performs the
decode stage 1806; 3) the rename/allocator hardware 1852
performs the allocation stage 1808 and renaming stage 1810;
4) the scheduler hardware 1856 performs the schedule stage
1812; 5) the physical register file(s) hardware 1858 and the
memory hardware 1870 perform the register read/memory
read stage 1814; the execution cluster 1860 perform the
execute stage 1816; 6) the memory hardware 1870 and the
physical register file(s) hardware 1858 perform the write
back/memory write stage 1818; 7) various hardware may be
involved in the exception handling stage 1822; and 8) the
retirement hardware 1854 and the physical register file(s)
hardware 1858 perform the commit stage 1824.

[0110] The core 1890 may support one or more instruc-
tions sets (e.g., the x86 instruction set (with some extensions
that have been added with newer versions); the MIPS
instruction set of MIPS Technologies of Sunnyvale, CA; the
ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, CA),
including the instruction(s) described herein. In one embodi-
ment, the core 1890 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2, and/or some
form of the generic vector friendly instruction format (U=0
and/or U=1), described below), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

[0111] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0112] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache hardware 1834/
1874 and a shared L2 cache hardware 1876, alternative
embodiments may have a single internal cache for both
instructions and data, such as, for example, a Level 1 (L1)
internal cache, or multiple levels of internal cache. In some
embodiments, the system may include a combination of an
internal cache and an external cache that is external to the
core and/or the processor. Alternatively, all of the cache may
be external to the core and/or the processor.

[0113] FIG. 19 is a block diagram of a processor 1900 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined
boxes in FIG. 19 illustrate a processor 1900 with a single
core 1902A, a system agent 1910, a set of one or more bus
controller hardware 1916, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1900
with multiple cores 1902A-N, a set of one or more integrated
memory controller hardware 1914 in the system agent
hardware 1910, and special purpose logic 1908.

[0114] Thus, different implementations of the processor
1900 may include: 1) a CPU with the special purpose logic
1908 being integrated graphics and/or scientific (through-
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put) logic (which may include one or more cores), and the
cores 1902A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-
of-order cores, a combination of the two); 2) a coprocessor
with the cores 1902A-N being a large number of special
purpose cores intended primarily for graphics and/or scien-
tific (throughput); and 3) a coprocessor with the cores
1902A-N being a large number of general purpose in-order
cores. Thus, the processor 1900 may be a general-purpose
processor, coprocessor or special-purpose processor, such
as, for example, a network or communication processor,
compression engine, graphics processor, GPGPU (general
purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more
cores), embedded processor, or the like. The processor may
be implemented on one or more chips. The processor 1900
may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0115] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
hardware 1906, and external memory (not shown) coupled
to the set of integrated memory controller hardware 1914.
The set of shared cache hardware 1906 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3),
level 4 (L4), or other levels of cache, a last level cache
(LLC), and/or combinations thereof. While in one embodi-
ment a ring based interconnect hardware 1912 interconnects
the integrated graphics logic 1908, the set of shared cache
hardware 1906, and the system agent hardware 1910/inte-
grated memory controller hardware 1914, alternative
embodiments may use any number of well-known tech-
niques for interconnecting such hardware. In one embodi-
ment, coherency is maintained between one or more cache
hardware 1906 and cores 1902-A-N.

[0116] In some embodiments, one or more of the cores
1902A-N are capable of multi-threading. The system agent
1910 includes those components coordinating and operating
cores 1902A-N. The system agent hardware 1910 may
include for example a power control unit (PCU) and a
display hardware. The PCU may be or include logic and
components needed for regulating the power state of the
cores 1902A-N and the integrated graphics logic 1908. The
display hardware is for driving one or more externally
connected displays.

[0117] The cores 1902A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1902A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set. In one embodiment, the cores
1902A-N are heterogeneous and include both the “small”
cores and “big” cores described below.

[0118] FIGS. 20-23 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
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capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0119] Referring now to FIG. 20, shown is a block dia-
gram of a system 2000 in accordance with one embodiment
of the present invention. The system 2000 may include one
or more processors 2010, 2015, which are coupled to a
controller hub 2020. In one embodiment the controller hub
2020 includes a graphics memory controller hub (GMCH)
2090 and an Input/Output Hub (IOH) 2050 (which may be
on separate chips); the GMCH 2090 includes memory and
graphics controllers to which are coupled memory 2040 and
a coprocessor 2045; the IOH 2050 is couples input/output
(I/0) devices 2060 to the GMCH 2090. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 2040
and the coprocessor 2045 are coupled directly to the pro-
cessor 2010, and the controller hub 2020 in a single chip
with the IOH 2050.

[0120] The optional nature of additional processors 2015
is denoted in FIG. 20 with broken lines. Each processor
2010, 2015 may include one or more of the processing cores
described herein and may be some version of the processor
1900.

[0121] The memory 2040 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 2020 communicates with
the processor(s) 2010, 2015 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface, or similar
connection 2095.

[0122] In one embodiment, the coprocessor 2045 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 2020 may include an integrated graphics accel-
erator.

[0123] There can be a variety of differences between the
physical resources 2010, 2015 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0124] In one embodiment, the processor 2010 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 2010 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 2045. Accordingly,
the processor 2010 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 2045.
Coprocessor(s) 2045 accept and execute the received copro-
cessor instructions.

[0125] Referring now to FIG. 21, shown is a block dia-
gram of a first more specific exemplary system 2100 in
accordance with an embodiment of the present invention. As
shown in FIG. 21, multiprocessor system 2100 is a point-
to-point interconnect system, and includes a first processor
2170 and a second processor 2180 coupled via a point-to-
point interconnect 2150. Each of processors 2170 and 2180
may be some version of the processor 1900. In one embodi-
ment of the invention, processors 2170 and 2180 are respec-
tively processors 2010 and 2015, while coprocessor 2138 is
coprocessor 2045. In another embodiment, processors 2170
and 2180 are respectively processor 2010 coprocessor 2045.
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[0126] Processors 2170 and 2180 are shown including
integrated memory controller (IMC) hardware 2172 and
2182, respectively. Processor 2170 also includes as part of
its bus controller hardware point-to-point (P-P) interfaces
2176 and 2178; similarly, second processor 2180 includes
P-P interfaces 2186 and 2188. Processors 2170, 2180 may
exchange information via a point-to-point (P-P) interface
2150 using P-P interface circuits 2178, 2188. As shown in
FIG. 21, IMCs 2172 and 2182 couple the processors to
respective memories, namely a memory 2132 and a memory
2134, which may be portions of main memory locally
attached to the respective processors.

[0127] Processors 2170, 2180 may each exchange infor-
mation with a chipset 2190 via individual P-P interfaces
2152, 2154 using point to point interface circuits 2176,
2194, 2186, 2198. Chipset 2190 may optionally exchange
information with the coprocessor 2138 via a high-perfor-
mance interface 2139. In one embodiment, the coprocessor
2138 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0128] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0129] Chipset 2190 may be coupled to a first bus 2116 via
an interface 2196. In one embodiment, first bus 2116 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0130] As shown in FIG. 21, various I/O devices 2114
may be coupled to first bus 2116, along with a bus bridge
2118 which couples first bus 2116 to a second bus 2120. In
one embodiment, one or more additional processor(s) 2115,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) hardware), field program-
mable gate arrays, or any other processor, are coupled to first
bus 2116. In one embodiment, second bus 2120 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 2120 including, for example, a keyboard and/or
mouse 2122, communication devices 2127 and a storage
hardware 2128 such as a disk drive or other mass storage
device which may include instructions/code and data 2130,
in one embodiment. Further, an audio I/O 2124 may be
coupled to the second bus 2120. Note that other architectures
are possible. For example, instead of the point-to-point
architecture of FIG. 21, a system may implement a multi-
drop bus or other such architecture.

[0131] Referring now to FIG. 22, shown is a block dia-
gram of a second more specific exemplary system 2200 in
accordance with an embodiment of the present invention.
Like elements in FIGS. 21 and 22 bear like reference
numerals, and certain aspects of FIG. 21 have been omitted
from FIG. 22 in order to avoid obscuring other aspects of
FIG. 22.

[0132] FIG. 22 illustrates that the processors 2170, 2180
may include integrated memory and /O control logic
(“CL”) 2172 and 2182, respectively. Thus, the CL 2172,
2182 include integrated memory controller hardware and
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include I/O control logic. FIG. 22 illustrates that not only are
the memories 2132, 2134 coupled to the CLL 2172, 2182, but
also that I/O devices 2214 are also coupled to the control
logic 2172, 2182. Legacy /O devices 2215 are coupled to
the chipset 2190.

[0133] Referring now to FIG. 23, shown is a block dia-
gram of a SoC 2300 in accordance with an embodiment of
the present invention. Similar elements in FIG. 19 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 23, an interconnect
hardware 2302 is coupled to: an application processor 2310
which includes a set of one or more cores 1902A-N and
shared cache hardware 1906; a system agent hardware 1910;
a bus controller hardware 1916; an integrated memory
controller hardware 1914; a set or one or more cCoprocessors
2320 which may include integrated graphics logic, an image
processor, an audio processor, and a video processor; an
static random access memory (SRAM) hardware 2330; a
direct memory access (DMA) hardware 2332; and a display
hardware 2340 for coupling to one or more external dis-
plays. In one embodiment, the coprocessor(s) 2320 include
a special-purpose processor, such as, for example, a network
or communication processor, compression engine, GPGPU,
a high-throughput MIC processor, embedded processor, or
the like.

[0134] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0135] Program code, such as code 2130 illustrated in
FIG. 21, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0136] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0137] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0138] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
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device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0139] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0140] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0141] FIG. 24 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 24
shows a program in a high level language 2402 may be
compiled using an x86 compiler 2404 to generate x86 binary
code 2406 that may be natively executed by a processor with
at least one x86 instruction set core 2416. The processor with
at least one x86 instruction set core 2416 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 2404
represents a compiler that is operable to generate x86 binary
code 2406 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 2416. Similarly,
FIG. 24 shows the program in the high level language 2402
may be compiled using an alternative instruction set com-
piler 2408 to generate alternative instruction set binary code
2410 that may be natively executed by a processor without
at least one x86 instruction set core 2414 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, CA and/or that execute the
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ARM instruction set of ARM Holdings of Sunnyvale, CA).
The instruction converter 2412 is used to convert the x86
binary code 2406 into code that may be natively executed by
the processor without an x86 instruction set core 2414. This
converted code is not likely to be the same as the alternative
instruction set binary code 2410 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 2412 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a pro-
cessor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 2406.

[0142] Although some embodiments have been described
in reference to particular implementations, other implemen-
tations are possible according to some embodiments. Addi-
tionally, the arrangement and/or order of elements or other
features illustrated in the drawings and/or described herein
need not be arranged in the particular way illustrated and
described. Many other arrangements are possible according
to some embodiments.

[0143] In each system shown in a figure, the elements in
some cases may each have a same reference number or a
different reference number to suggest that the elements
represented could be different and/or similar. However, an
element may be flexible enough to have different implemen-
tations and work with some or all of the systems shown or
described herein. The various elements shown in the figures
may be the same or different. Which one is referred to as a
first element and which is called a second element is
arbitrary.

[0144] In the description and claims, the terms “coupled”
and “connected,” along with their derivatives, may be used.
It should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are
in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact
with each other.

[0145] An embodiment is an implementation or example
of the inventions. Reference in the specification to “an
embodiment,” “one embodiment,” “some embodiments,” or
“other embodiments” means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiments is included in at least some embodiments, but
not necessarily all embodiments, of the inventions. The
various appearances “an embodiment,” “one embodiment,”
or “some embodiments” are not necessarily all referring to
the same embodiments.

[0146] Not all components, features, structures, character-
istics, etc. described and illustrated herein need be included
in a particular embodiment or embodiments. If the specifi-
cation states a component, feature, structure, or character-
istic “may”, “might”, “can” or “could” be included, for
example, that particular component, feature, structure, or
characteristic is not required to be included. If the specifi-

cation or claim refers to “a” or “an” element, that does not
mean there is only one of the element. If the specification or
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claims refer to “an additional” element, that does not pre-
clude there being more than one of the additional element.
[0147] The above description of illustrated embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize.

[0148] These modifications can be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the
specification and the drawings. Rather, the scope of the
invention is to be determined entirely by the following
claims, which are to be construed in accordance with estab-
lished doctrines of claim interpretation.

1. An apparatus comprising:

a processor to execute an enqueue instruction to submit,

to a hardware subsystem, a job descriptor describing a
job to be performed, the job descriptor referencing a
memory location in which data required to perform the
job is stored, the memory location referenced by a first
memory address in a first address space; and

an input-output memory management unit (IOMMU) to

obtain an address translation for the memory location
responsive to a pre-translation request from the pro-
cessor, the address translation obtained by the IOMMU
prior to receiving a request for the data from the
hardware subsystem to perform the job, the address
translation comprising a mapping of the first address in
the first address space to a second address in a second
address space,

wherein responsive to the memory access request, the

IOMMU is to retrieve the data from the memory
location based on the address translation and to provide
the data to the hardware subsystem to fulfill the request.

2. The apparatus of claim 1, wherein the hardware sub-
system is to perform the job using the data received from the
IOMMU.

3. The apparatus of claim 1, wherein the request is a direct
memory access (DMA) request to access the memory.

4. The apparatus of claim 1, further comprises a local
cache of the IOMMU to store the address translation.

5. The apparatus of claim 1, wherein enqueue instruction
is to specify a memory address of the job descriptor and an
identifier of the hardware subsystem.

6. The apparatus of claim 1, wherein the job descriptor
comprises a pre-translation indicator to indicate whether the
processor is to send the pre-translation request to the
IOMMU.

7. The apparatus of claim 6, wherein the processor is to
determine the first address from the job descriptor and
provide the first address to the IOMMU when the pre-
translation indicator is set to a first value.

8. The apparatus of claim 7, wherein the processor is
further to provide information to the IOMMU to identify one
or more page tables from which the IOMMU is to obtain the
address translation.
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9. The apparatus of claim 7, wherein the processor is not
to determine the first address from the job descriptor and/or
not to provide the first address to the IOMMU when the
pre-translation indicator is set to a second value.

10. The apparatus of claim 6, wherein the first address
space is a virtual address space and the second address space
is a physical address space, and wherein the address trans-
lation comprises a virtual-to-physical address translation for
the first address.

11. The apparatus of claim 1, wherein the memory loca-
tion is referenced directly by the job descriptor.

12. The apparatus of claim 1, wherein the memory loca-
tion is referenced indirectly by the job descriptor.

13. The apparatus of claim 1, wherein the processor is to
store the job descriptor into a job queue of the hardware
subsystem responsive to an execution of the enqueue
instruction.

14. A method comprising:

executing, by a processor, an enqueue instruction to
submit, to a hardware subsystem, a job descriptor
describing a job to be performed, the job descriptor
referencing a memory location in which data required
to perform the job is stored, the memory location
referenced by a first memory address in a first address
space;

obtaining, by an input-output memory management unit
(IOMMU), an address translation for the memory loca-
tion responsive to a pre-translation request from the
processor and prior to the IOMMU receiving a request
for the data from the hardware subsystem to perform
the job, the address translation comprising a mapping
of the first address in the first address space to a second
address in a second address space; and

responsive to the memory access request, retrieving the
data from the memory location based on the address
translation and providing the data to the hardware
subsystem to fulfill the request.

15. The method of claim 14, further comprises performing
the job using the data received from the IOMMU.

16. The method of claim 14, wherein the request is a direct
memory access (DMA) request to access the memory.

17. The method of claim 14, further comprises storing the
address translation in a local cache of the IOMMU.

18. The method of claim 14, further comprises specifying
a memory address of the job descriptor and an identifier of
the hardware subsystem in the enqueue instruction.

19. The method of claim 14, further comprises setting a
pre-translation indicator of the job descriptor to indicate
whether the processor is to send the pre-translation request
to the IOMMU.

20. The method of claim 19, further comprises determin-
ing the first address from the job descriptor and providing
the first address to the IOMMU when the pre-translation
indicator is set to a first value.

21.-25. (canceled)



