US 20190179730A1

a2y Patent Application Publication o) Pub. No.: US 2019/0179730 A1

a9y United States

Geller et al.

43) Pub. Date: Jun. 13, 2019

(54) DEBUGGING QUANTUM PROGRAMS

(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(72) Inventors: Alan Geller, Redmond, WA (US);
Krysta Svore, Seattle, WA (US)

(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(21) Appl. No.: 16/215,235
(22) Filed: Dec. 10, 2018

Related U.S. Application Data

(60) Provisional application No. 62/596,719, filed on Dec.
8, 2017.

1100

N

Publication Classification

(51) Int. CL
GOGF 11/36

(52) US.CL
CPC ... GOGF 11/3664 (2013.01); GOGF 11/3688
(2013.01); GOGF 11/3648 (2013.01); GO6F
11/3624 (2013.01)

(2006.01)

(57) ABSTRACT

This disclosure concerns tools and techniques for debugging
a quantum program (e.g., a program used to configure and
control a quantum computing device). Because the state
space of a quantum program is so much larger and less
structured than the state space for a classical program, new
techniques are required to help the program developer and
coder determine whether or not their program is working
correctly and to identify errors if not. The disclosed tech-
nology provides tools and techniques for debugging quan-
tum programs using a classical computer.
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700

operation AmpAmpByOracleTest () : Unit {

using {(qubits = Qubitfi]) {
ResetAll({qubits);

for (nIterations in @ .. 5) {

for (idx in 1 .. 20) {

let lambda = ToDouble(idx) / 28.0;

let rotAngle = ArcSin(lambda);

let idxFlag = @;

let startQubits = qubits;

let stateOracle = ExampleStatePrep(lambda);

(AmpAmpByOracle{nIterations, stateOracle, idxFlag
Y)Y (startQubits);

let successAmplitude = Sin(ToDouble(2 * nIteratic
ns + 1) * rotAngle);

let successProbability = successAmplitude * succe

B4

ssAmplitude;
AssertProb([Pauliz], [startQubits[idxFlagl], One,
successProbability, $"Error: Success probability doss net match
theory™, 1E-10);
ResetAll(qubits);
}

710

Figure 7
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DEBUGGING QUANTUM PROGRAMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/596,719, entitled “DEBUGGING
SIMULATED QUANTUM PROGRAMS” and filed on Dec.
8, 2017, which is hereby incorporated herein by reference in
its entirety.

SUMMARY

[0002] This disclosure concerns tools and techniques for
debugging a quantum program (e.g., a program used to
configure and control a quantum computing device).
Because the state space of a quantum program is so much
larger and less structured than the state space for a classical
program, new techniques are required to help the program
developer and coder determine whether or not their program
is working correctly and to identify errors if not. Past
approaches rely on the developer to look at the entire
unstructured quantum state without any assistance. The
disclosed technology provides tools and techniques for
debugging quantum programs using a classical computer.
[0003] In one example embodiment, a quantum program
written in a quantum computer language that is synthesiz-
able into quantum-computer-executable instructions for
operating a quantum computer is input (e.g., buffered into
memory, loaded, or otherwise prepare for further process-
ing); a command is received to set a breakpoint in the
quantum program; execution of the quantum program is
simulated, on the classical computer, as if it were being
executed by the quantum computing device; the simulating
is halted when the breakpoint in the quantum program is
reached; a command to examine a current state of one or
more qubits being simulated by the classical computer is
implemented; and data describing the outcome of the com-
mand is displayed on a graphical user interface.

[0004] In another example embodiment, a quantum pro-
gram written in a quantum computer language that is syn-
thesizable into quantum-computer-executable instructions
for operating a quantum computer is input (e.g., buffered
into memory, loaded, or otherwise prepared for further
processing); one or more statements or function invocations
are included in the quantum program, where the one or more
statements or function invocations comprise an assertion
that asserts that a probability of the current state of the one
or more qubits has an expected value; execution of the
quantum program is simulated, on the classical computer, as
if it were being executed by the quantum computing device;
the assertion included in the quantum program is verified, on
the classical computer, as being either true or not true; and
data identifying whether the assertion is true or not true is
displayed on a graphical user interface.

[0005] In a further example embodiment, a quantum pro-
gram written in a quantum computer language that is syn-
thesizable into quantum-computer-executable instructions
for operating a quantum computer is input (e.g., buffered
into memory, loaded, or otherwise prepare for further pro-
cessing); one or more statements or function invocations are
included in the quantum program, where the one or more
statements or function invocations comprise a command to
derive and display quantum states of a subset of two or more
qubits being simulated; execution of the quantum program is
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simulated, on the classical computer, as if it were being
executed by the quantum computing device; and the quan-
tum states of the specified qubits are derived and displayed
on the classical computer.

[0006] Any of the above disclosed methods can be imple-
mented as computer-readable media storing computer-ex-
ecutable instructions which when executed by a classical
computer processor cause the classical computer processor
to perform any of the disclosed methods. Further, any of the
above disclosed methods can be implemented as part of a
quantum computing system. For example, any of the above
disclosed methods can be implemented by a system com-
prising a quantum computing device, and a classical com-
puting device in communication with the quantum comput-
ing device and configured to perform any of the disclosed
methods.

[0007] The foregoing and other objects, features, and
advantages of the disclosed technology will become more
apparent from the following detailed description, which
proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 illustrates a generalized example of a suit-
able classical computing environment in which several of
the described embodiments can be implemented.

[0009] FIG. 2 illustrates an example of a possible network
topology (e.g., a client-server network) for implementing a
system according to the disclosed technology.

[0010] FIG. 3 illustrates another example of a possible
network topology (e.g., a distributed computing environ-
ment) for implementing a system according to the disclosed
technology.

[0011] FIG. 4 illustrates an exemplary system for imple-
menting the disclosed technology.

[0012] FIG. 5 is a screen shot showing an example of a
breakpoint set for an example quantum program.

[0013] FIG. 6 is an example screen shot showing a graphic
user interface that allows a developer to inspect various
properties of the qubits currently be simulated.

[0014] FIG. 7 shows example code that uses an example
assertion for determining a probability of a particular qubit.
[0015] FIG. 8 shows an example definition of code for an
example assertion for determining a probability of a par-
ticular qubit.

[0016] FIG. 9 shows example code that includes an asser-
tion that checks the expected state of a particular qubit.
[0017] FIG. 10 shows an example definition of code that
checks the expected state of a particular qubit.

[0018] FIG. 11 is a flowchart showing an example
embodiment of the disclosed technology.

[0019] FIG. 12 is a flowchart showing another example
embodiment of the disclosed technology.

[0020] FIG. 13 is a flowchart showing a further example
embodiment of the disclosed technology.

DETAILED DESCRIPTION

1. General Considerations

[TPNE)

[0021] As used in this application, the singular forms “a,

“an,” and “the” include the plural forms unless the context
clearly dictates otherwise. Additionally, the term “includes”
means “comprises.” Further, the term “coupled” does not
exclude the presence of intermediate elements between the
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coupled items. Further, as used herein, the term “and/or”
means any one item or combination of any items in the
phrase.

[0022] Although the operations of some of the disclosed
methods are described in a particular, sequential order for
convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless a
particular ordering is required by specific language set forth
below. For example, operations described sequentially may
in some cases be rearranged or performed concurrently.
Moreover, for the sake of simplicity, the attached figures
may not show the various ways in which the disclosed
systems, methods, and apparatus can be used in conjunction
with other systems, methods, and apparatus. Additionally,
the description sometimes uses terms like “produce” and
“provide” to describe the disclosed methods. These terms
are high-level abstractions of the actual operations that are
performed. The actual operations that correspond to these
terms will vary depending on the particular implementation
and are readily discernible by one of ordinary skill in the art.

II. Detailed Examples

[0023] Embodiments of the disclosed technology com-
prise user interface elements and actions that allow the
developer of quantum program to interact with and under-
stand the simulated quantum state in a useful way. There can
also be mathematical algorithms used to detect and describe
characteristics of the quantum state or how one quantum
state differs from another used during the debugging pro-
cess. Aspects of the disclosed technology involve allowing
a developer of a quantum program (to be implemented on a
quantum computing device) to interact with and visualize
the current (simulated) quantum state in a wide variety of
ways. While no one way may work for all debugging
scenarios, embodiments of the disclosed technology offer a
variety of options that can allow a developer to find way(s)
that work for her problem.

[0024] The examples below describe example interactions
and/or user interface experiences that disclose various
actions and/or interfaces for analyzing and verifying quan-
tum programs for implementation on a quantum computing
device. Any one or more of the examples below can be
implemented in a quantum program debugging tool alone or
in any combination or subcombination with one another.
Some of the disclosed features refer to particular implemen-
tations, but those implementations are by way of example
only, as they are adaptable to other formats, programming
languages, and underlying operating systems.

[0025] A. Allowing the Developer to Set a Breakpoint in
their Quantum Code and Step Through their Quantum Code
[0026] The user interface experience, in this example
embodiment, is to allow a programmer to select a line in
their quantum source file and hit a key or key combination
(e.g., F9 or other function key) to set a breakpoint, or to clear
an existing breakpoint. When the program is running in the
debugger, if it is about to execute a line of code that has a
breakpoint set, it will first pause execution and pass control
to the developer, allowing them to inspect the state of the
program. When they are ready, the developer can hit another
key or key combination (e.g., F5 or other function key) to
continue execution until the program ends or the next
breakpoint is reached.

[0027] When the program is paused at a line of code
(because of a breakpoint, for instance), the developer can hit
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a certain key or key combination (e.g., F10) to execute the
current line of quantum code and then pause before the next
line of quantum code.

[0028] FIG. 5 is a screen shot 500 showing an example of
a breakpoint 510 set for an example quantum program (here,
a Q# program, though the program can be in any suitable
quantum programming language). In the illustrated screen
shot 500, the breakpoint indicator appears as a red dot in the
left margin. During debugging, execution of the quantum
program pauses at the breakpoint before the code on that line
is executed. Further, in certain embodiments, the breakpoint
indicator can change to a different indicator (e.g., a red dot
with an arrow) to flag for the developer that the indicated
breakpoint is currently triggered. Still further the relevant
line(s) of the quantum program can be highlighted to draw
the developer’s attention to the breakpoint.

[0029] B. Allowing the Developer, at a Breakpoint or after
a Step, to Interact with the Quantum State

[0030] Embodiments of the disclosed technology allow a
developer to perform numerous quantum-specific interac-
tions or functions when the simulated execution of the
quantum code is paused. In a standard program, the devel-
oper can look at the values stored in variables and look at the
call chain that shows how the current statement was reached.
In a quantum program, while the simulated quantum state is
represented in some set of variables, the representation is
exponentially large in the number of qubits (2n complex
numbers for n qubits) and not in a form that makes it easy
for the developer to glean any useful information from the
classical variable contents.

[0031] In embodiments of the disclosed technology, the
developer is able to view and interact with the quantum state
in a way that reflects what would be the actual information
content of the quantum state but does not disturb the
quantum state. In more detail, the interaction is not actually
performed in the physical quantum device, so the quantum
state is not modified. Instead, the interaction can be com-
puted within a classical computer without disentangling or
otherwise modifying an actual quantum state.

[0032] An example of this interaction is illustrated in
example screen shot 600 of FIG. 6. In particular, the
example screen shot 600 shows a graphic user interface that
allows a developer to inspect various properties of the qubits
currently being simulated (sometimes referred to as qubit
objects). In particular, in screen shot 600, the graphic user
interface shows a hierarchical display through which a
developer can inspect the current state of qubits being
simulated (e.g., using a suitable quantum computing simu-
lator, such as the Q# simulator available from Microsoft®
Corporation). In particular, the screen shot 600 shows, for
example, a register object 610 for “register2” in the simu-
lated quantum program being displayed; the register object
610 is expanded to show four qubit objects 612, 614, 616,
618; still further, each qubit object is further expanded to
display further information regarding the respective qubit—
in this example, an “ID” 620 of the qubit and a “probability”
622 of the qubit (representing the quantum state vector of the
qubit) for an example representative qubit. In some
examples, for instance, the probability 622 is the value that,
if one were to measure the qubit, one would get “One” (as
opposed to “Zero”). For ease of illustration, only one
example ID and probability are shown in FIG. 6. In this
example, the qubits are in the 10> state. (Note that, in this
example, the ID of a qubit is assigned at runtime and it is not
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necessarily aligned with the order in which the qubit was
allocated or its position within a qubit register.)

[0033] C. Allowing the Developer to Assert the Probabil-
ity of a Specified Measurement Outcome on the Current
State

[0034] Embodiments of the disclosed technology include
an “assert” statement or function that allows the developer
to assert that some quantum-computing-specific statement is
true, and that will cause the program to fail if the statement
is false. This is very useful for testing. In the quantum
context, an example assert statement (e.g., the “AssertProb”
statement in Q#) asserts that the result of a given measure-
ment, if it were to be performed, would be “Zero” with a
developer-specified probability (quantum measurements
result in “Zero” (false) or “One” (true) in, e.g., Q#).
[0035] The measurement is not actually performed in the
physical quantum device, so the quantum state is not modi-
fied. Instead, the measurement probability can be computed
within a classical computer without disentangling or other-
wise modifying an actual quantum state. There is no ana-
logue in other languages simply because it only makes sense
in a quantum or other probabilistic setting. In this regard,
and in certain examples, while one can directly perform a
measurement that is guaranteed to return “Zero” if the state
is correct in a real physical quantum device, one cannot
create a measurement in a real physical quantum device that
is guaranteed to return “One” if the state is wrong. In more
detail, with a real quantum computer, one prepares the state
over and over, and measures over and over, to gain confi-
dence that one is in the correct state, but one can never know
with certainty. With a simulator, by contrast, one can be
completely certain.

[0036] Examples of a probability assertion statement are
described in the paragraphs below.

[0037] In afirst example, the statement is termed “Assert-
Prob”, but this is by way of example only. To help explain
the probability assertion statement, suppose that “P:
Qubit=>Unit” is an operation intended to prepare the state
lp) when its input is in the state 10) . Let ly') be the actual
state prepared by “P”. Then, ly)=I}") if and only if mea-
suring 1y") in the axis described by Iv) always returns
“Zero”. That is: hp) =ly") if and only if {l') =1.

[0038] Using known primitive operations (including, for
example, those described at https://docs.microsoft.com/en-
us/quantum), one can directly perform a measurement that
returns “Zero” if 1y} is an eigenstate of one of the Pauli
operators.

[0039] In the case that the target machine is a simulator,
however, various unique advantages can be realized in
accordance with embodiments of the disclosed technology.
For example, one can use the classical information used by
a simulator to represent the internal state of a qubit that is
amenable to copying, such that one does not need to actually
perform a measurement to test the assertion. In particular,
this allows one to reason about incompatible measurements
that would be impossible on actual hardware (e.g., because
of the disentangling or other modification of the actual
quantum state that would otherwise occur).

[0040] FIG. 7 shows example unit test code 700 that uses
the example “AssertProb” operation at 710. In one example,
the “AssertProb” operation asserts that measuring the given
qubits in the given Pauli basis will have the given result with
the given probability, within some tolerance.
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[0041] A definition of the example “AssertProb” operation
is illustrated by the example code 800 in FIG. 8. In this
example, the input is the Pauli basis (“bases”) which is a
measurement effect to assert the probability of, expressed as
a multi-qubit Pauli operator, the identification of a qubit
(“qubits™) on which to make the assertion, an expected result
of a measurement operation on the qubit (“result”), the
probability (“prob”) with which the given result is expected,
a message (“msg”) to be reported if the assertion fails,
and/or a tolerance value (“tol”). In this example, the asser-
tion (or assert operation) either continues if no error is
found, or aborts the computation with an error message if an
error is found.
[0042] In a further example operation, “AssertQubit”
(which again is by way of example only) is used to test the
assertion ) =I0) . This is common, for instance, when one
has uncomputed to return ancilla qubits to 10) before releas-
ing them. Asserting against 10) is also useful when, by way
of example and as illustrated by the example code 900
shown in FIG. 9, one wishes to assert that two state
preparation operations (here, for example, “P” and “Q”
operations) both prepare the same state, and when “Q”
supports an “Adjoint” operation (where the “Adjoint” opera-
tion is complex conjugate transpose of the operation, and
where, for operations that implement a unitary operator, the
adjoint is the inverse of the operation.)
[0043] In one example, the “AssertQubit” operation
asserts that the qubit “Q” is in the expected eigenstate of the
Pauli Z operator. The example operation has as input the
expected result (“expected”) (e.g., which state the qubit is
expected to be in: “Zero” or “One”) and the identification
“Q” of the qubit (e.g., the qubit whose state is asserted). In
this example, the assertion (or assert operation) either con-
tinues if no error is found, or aborts the computation with an
error message if an error is found. A definition of the
example “AssertQubit” operation is illustrated by the
example code 1000 in FIG. 10.
[0044] A similar operation can allow for asserting arbi-
trary qubit states rather than only 7 eigenstates. In one
example, the operation is termed the “AssertQubitState”
operation, which is by way of example only. More generally,
one may not have access to assertions about states that do
not coincide with eigenstates of Pauli operators. For
example, o

ERFE

hp)=(0) + & 5 1) wa)

[0045] 1is not an eigenstate of any Pauli operator, such that
one cannot use the AssertProb operation (or other equivalent
operation) to uniquely determine that a state |}') is equal to
lp) . Instead, one must decompose the assertion ') =y
)into assumptions that can be directly tested using the
primitives supported by a simulator.

[0046] To do so, let Iy} =c.l0) +f11) for complex numbers

a=a,+ i and B.

[0047] In this expression, f=b,+b,i. Note that this expres-
sion requires four real numbers a,, a;, b,, b, to specify, as
each complex number can be expressed as the sum of a real
and imaginary part. Due to the global phase, however, one
can choose a,=0, such that one only needs three real numbers
to uniquely specify a single-qubit state. Thus, three asser-
tions can be specified which are independent of each other
in order to assert the state that is expected. One can do so by
finding the probability of observing “Zero” for each Pauli
measurement given o and f, and asserting each indepen-
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dently. Let x, v, and z be “Result” values for Pauli X, Y, and
7 measurements respectively. Then, using the likelihood
function for quantum measurements,

1

Pr(x = Zerolw, B) = 3 +a,b, + a;b;
1

Pr(y = Zerda, ) = 3 +a,b; — a;b,

1
Pr(z = Zeroler, B) = 5(1 + af +a‘_2 + bf +b?)_

[0048] The example assertion (e.g., “AssertQubitState™)
implements these assertions given representations of o and
P as values of a complex type. This is helpful when the
expected state can be computed mathematically.

[0049] In one example, the “AssertQubitState” operation
asserts that a qubit in the expected state (“expected”) rep-
resents a complex vector, ) =[a b]”. The first element of
the tuples representing each of a, b is the real part of the
complex number, while the second one is the imaginary part.
In certain examples, an argument also defines the tolerance
with which assertion is made.

[0050] In one example, the input is the expected complex
amplitudes for 10) and |1}, respectively, the identification of
the qubit (“register””) whose state is to be asserted (note that
this qubit is assumed to be separable from other allocated
qubits, and not entangled), and an additive tolerance value
(“tolerance”) by which amplitudes are allowed to deviate
from the “expected” value. A definition of this example
“AssertQubit” operation is illustrated by the example code
1000 in FIG. 10.

[0051] D. Allowing the Developer to View the Detailed
Quantum State, Projected Down to a Small Number of
Qubits, by Taking a Partial Trace Over the Other Qubits
[0052] In certain embodiments, the disclosed debugging
technology includes an operation/function to have the simu-
lation system derive the implied quantum state on a subset
of the qubits and display that derived state. This is useful for
debugging because it allows the developer to focus on a
critical subsystem. As above, the measurement is not actu-
ally performed in the physical quantum device, so the
quantum state is not modified. Instead, the measurement can
be computed within a classical computer without disentan-
gling or otherwise modifying an actual quantum state.
[0053] Inone example, the function is termed “DumpReg-
ister”. In this example, the DumpRegister function dumps
the current target machine’s status associated with the given
qubits. The input of this example function comprises a
“location” field, which provides information on where to
generate the state’s dump; and/or a “qubits” field (e.g.,
“Qubit[ |”) that provides a list of qubits to report.

[0054] This function allows one to output (dump) the
information associated with the state of the given qubits into
a file or some other location. The actual information gener-
ated and the semantics of the “location” field are specific to
each target machine. However, in some examples, providing
an empty location (“( )”) typically means to generate the
output to the console. This method expects a string with the
path to a file in which it will write the state of the given
qubits (e.g., the wavefunction of the corresponding subsys-
tem) as a one-dimensional array of complex numbers, in
which each element represents the amplitude of the prob-
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ability of measuring the corresponding state. If the given
qubits are entangled with some other qubit and their state
cannot be separated, the example function just reports that
the qubits are entangled.

[0055] E. Allowing the Developer to Assert that Two
Qubits or Two Sets of Qubits are or are not Entangled

[0056] A further example assertion/function, similar to the
“AssertProb” introduced above, is one that allows the devel-
oper to assert that two qubits are or are not entangled. The
check is not actually performed in the physical quantum
device, so the quantum state is not modified. Instead, the
check can be computed within a classical computer without
disentangling or otherwise modifying an actual quantum
state.

[0057] F. Allowing the Developer to View the Degree of
Entanglement Between Two Qubits or Two Sets of Qubits

[0058] This further example operation/function is another
way of interacting with the quantum state. This example
operation/function feature is related to the prior feature, but
allows the developer to query for entanglement while debug-
ging rather than assert that entanglement should or should
not exist. The check is not actually performed in the physical
quantum device, so the quantum state is not modified.
Instead, the check can be computed within a classical
computer without disentangling or otherwise modifying an
actual quantum state.

[0059] G. Allowing the Developer to Save the Current
State as a Reference State

[0060] This further example operation/function is another
way of interacting with the quantum state. There are several
reasons the developer might want to save the current quan-
tum state for later retrieval; some of them are covered in
later items, and others include running custom off-line state
analysis routines on a saved quantum state. Again, the
operation is not actually performed in the physical quantum
device, so the quantum state is not modified. Instead, the
operation can be computed within a classical computer
without disentangling or otherwise modifying an actual
quantum state.

[0061] H. Allowing the Developer to Determine Whether
the Current State is Logically Equivalent to a Reference
State.

[0062] This further example operation/function is another
way of interacting with the quantum state. In many situa-
tions, it is desirable to determine if the code being developed
is successfully getting to an expected, known state. For
instance, if one is trying to optimize an algorithm, one might
prepare and save a reference state using a known working
program, and then run the optimized version and verify that
the state that is produced is equivalent. It can be helpful to
do this at multiple steps through a long algorithm, for
instance to determine where a calculation is going wrong.

[0063] Note that for quantum states, this can be compli-
cated because the simulated representation of a quantum
state is in general not unique, and so the system needs to
check for logical equivalence rather than just checking that
the numbers in the representations are identical. This check
is not actually performed in the physical quantum device, so
the quantum state is not modified. Instead, the check can be
computed within a classical computer without disentangling
or otherwise modifying an actual quantum state.
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[0064] 1. Allowing the Developer to Determine What the
Difference is Between the Current State and a Reference
State

[0065] This further example operation/function is another
way of interacting with the quantum state. In particular, this
operation/function can perform one of a number of differ-
ence operations that can be helpful in determining the
difference between two states. For instance, the difference
computed can be the distance between two states, using any
number of interesting distance measurements (e.g., [.2 dis-
tance, fidelity, overlap, and other such distance measure-
ments), or the difference can be the simplest sequence of
simple operations that would transform one state into the
other. As above, the measurement is not actually performed
in the physical quantum device, so the quantum state is not
modified. Instead, the measurement can be computed within
a classical computer without disentangling or otherwise
modifying an actual quantum state.

[0066] J. Allowing the Developer to Apply a Simple
Operation to the Current State and View the Result

[0067] This further example operation/function is another
way of interacting with the quantum state. It is useful
sometimes to be able to say “what would the state be if [
added this gate to the algorithm here?”, without actually
changing the algorithm. This functionality provides that
capability. Further, the operation is not actually performed in
the physical quantum device, so the quantum state is not
modified. Instead, the operation can be computed within a
classical computer without disentangling or otherwise modi-
fying an actual quantum state.

[0068] K. Allowing the Developer to Apply a Simple
Operation to the Current State and Continue the Algorithm
with the Modified State

[0069] This further example operation/function is another
way of interacting with the quantum state. This is similar to
the previous item, but after making the change, allowing the
algorithm to continue. Further, the operation is not actually
performed in the physical quantum device, so the quantum
state is not modified. Instead, the operation can be computed
within a classical computer without disentangling or other-
wise modifying an actual quantum state.

IV. Example General Embodiments

[0070] FIG. 11 is a flow chart showing an example method
1100 for performing debugging of a quantum program using
embodiments of the disclosed technology. The particular
embodiment should not be construed as limiting, as the
disclosed method acts can be performed alone, in different
orders, or at least partially simultaneously with one another.
Further, any of the disclosed methods or method acts can be
performed with any other methods or method acts disclosed
herein.

[0071] At 1110, a quantum program written in a quantum
computer language that is synthesizable into quantum-com-
puter-executable instructions for operating a quantum com-
puter is input (e.g., buffered into memory, loaded, or other-
wise prepare for further processing).

[0072] At 1112, a command is received to set a breakpoint
in the quantum program.

[0073] At 1114, execution of the quantum program is
simulated, on the classical computer, as if it were being
executed by the quantum computing device.

[0074] At 1116, the simulating is halted when the break-
point in the quantum program is reached.
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[0075] At 1118, a command to examine a current state of
one or more qubits being simulated by the classical com-
puter is implemented.

[0076] At 1120, data describing the outcome of the com-
mand is displayed on a graphical user interface.

[0077] In some implementations, the method further com-
prises receiving a modification to the quantum program
resulting in a modified quantum program; and outputting the
modified quantum program. In further implementations, the
method further comprises synthesizing the modified quan-
tum program into the quantum-computer-executable instruc-
tions for operating the quantum computer; and configuring
the quantum computer to execute the quantum-computer-
executable instructions for the modified quantum program.
[0078] In certain implementations, the command to exam-
ine the current state comprises an assertion to assert that two
qubits are or are not entangled. In other implementations, the
command to examine the current state comprises an asser-
tion to assert a degree to which two qubits are or are not
entangled.

[0079] In further implementations, the method also com-
prises receiving a command to set the current state as a
reference state. In such implementations, the method can
further comprise receiving a modification to the quantum
program resulting in a modified quantum program; simulat-
ing, on the classical computer, execution of the modified
quantum program as if it were being executed by the
quantum computing device; halting the simulating when the
breakpoint in the modified quantum program is reached at
the breakpoint of the modified quantum program; and deter-
mining whether a current state of the one or more qubits
resulting from the modified quantum program being simu-
lated by the classical computer.

[0080] In some embodiments, the method further com-
prises simulating addition or subtraction of one or more
quantum computer hardware elements; and updating a cur-
rent state of the one or more qubits in view of the added or
subtracted one or more quantum computer hardware ele-
ments.

[0081] FIG. 12 is a flow chart showing an example method
1200 for performing debugging of a quantum program using
embodiments of the disclosed technology. The particular
embodiment should not be construed as limiting, as the
disclosed method acts can be performed alone, in different
orders, or at least partially simultaneously with one another.
Further, any of the disclosed methods or method acts can be
performed with any other methods or method acts disclosed
herein.

[0082] At 1210, a quantum program written in a quantum
computer language that is synthesizable into quantum-com-
puter-executable instructions for operating a quantum com-
puter is input (e.g., buffered into memory, loaded, or other-
wise prepared for further processing).

[0083] At 1212, one or more statements or function invo-
cations are included in the quantum program, where the one
or more statement or function invocations comprise an
assertion that asserts that a probability of the current state of
the one or more qubits has an expected value.

[0084] At 1214, execution of the quantum program is
simulated, on the classical computer, as if it were being
executed by the quantum computing device.

[0085] At 1216, the assertion included in the quantum
program is verified, on the classical computer, as being
either true or not true.



US 2019/0179730 Al

[0086] At 1218, data identifying whether the assertion is
true or not true is displayed on a graphical user interface.
[0087] In certain implementations, the assertion asserts
that a selected qubit is in the expected eigenstate of the Pauli
Z operator. In other implementations, the assertion asserts
that a selected qubit in an expected state represents a
complex vector, [} =[a b]~.

[0088] In some implementations, the method further com-
prises: receiving a modification to the quantum program
resulting in a modified quantum program; and outputting the
modified quantum program. In such implementations, the
method can further comprise synthesizing the modified
quantum program into the quantum-computer-executable
instructions for operating the quantum computer.

[0089] In further implementations, the method further
comprises receiving a command to set a breakpoint in the
quantum program; and halting the simulating when the
breakpoint in the quantum program is reached.

[0090] FIG. 13 is a flow chart showing an example method
1300 for performing debugging of a quantum program using
embodiments of the disclosed technology. The particular
embodiment should not be construed as limiting, as the
disclosed method acts can be performed alone, in different
orders, or at least partially simultaneously with one another.
Further, any of the disclosed methods or method acts can be
performed with any other methods or method acts disclosed
herein.

[0091] At 1310, a quantum program written in a quantum
computer language that is synthesizable into quantum-com-
puter-executable instructions for operating a quantum com-
puter is input (e.g., buffered into memory, loaded, or other-
wise prepare for further processing).

[0092] At 1312, one or more statements or function invo-
cations are included in the quantum program, where the one
or more statements or function invocations comprise a
command to derive and display quantum states of a subset
of two or more qubits being simulated.

[0093] At 1314, execution of the quantum program is
simulated, on the classical computer, as if it were being
executed by the quantum computing device.

[0094] At 1316, the quantum states of the specified qubits
are derived and displayed on the classical computer,

[0095] In certain implementations, the method further
comprises receiving a command to set a breakpoint in the
quantum program, and halting the simulating when the
breakpoint in the quantum program is reached. In some
implementations, the method further comprises receiving a
modification to the quantum program resulting in a modified
quantum program, and outputting the modified quantum
program. In such implementations, the method further com-
prises synthesizing the modified quantum program into the
quantum-computer-executable instructions for operating the
quantum computing device. In certain implementations, the
method further comprises implementing a command to
examine a current state of one or more qubits being simu-
lated by the classical computer. In such implementations, the
command to examine the current state comprises: (a) an
assertion that asserts that a probability of the current state of
the one or more qubits has an expected value; (b) an
assertion that asserts that a selected qubit is in the expected
eigenstate of the Pauli Z operator; and/or (c¢) an assertion that
asserts that a selected qubit in an expected state represents
a complex vector, ly)=[a b]”.
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[0096] Any of the above disclosed methods can be imple-
mented as computer-readable media storing computer-ex-
ecutable instructions which when executed by a classical
computer processor cause the classical computer processor
to perform any of the disclosed methods. Further, any of the
above disclosed methods can be implemented as part of a
quantum computing system. For example, any of the above
disclosed methods can be implemented by a system com-
prising a quantum computing device, and a classical com-
puting device in communication with the quantum comput-
ing device and configured to perform any of the disclosed
methods.

V. Example Computing Environments

[0097] FIG. 1 illustrates a generalized example of a suit-
able classical computing environment 100 in which several
of the described embodiments can be implemented. The
computing environment 100 is not intended to suggest any
limitation as to the scope of use or functionality of the
disclosed technology, as the techniques and tools described
herein can be implemented in diverse general-purpose or
special-purpose environments that have computing hard-
ware.

[0098] With reference to FIG. 1, the computing environ-
ment 100 includes at least one processing device 110 and
memory 120. In FIG. 1, this most basic configuration 130 is
included within a dashed line. The processing device 110
(e.g., a CPU or microprocessor) executes computer-execut-
able instructions. In a multi-processing system, multiple
processing devices execute computer-executable instruc-
tions to increase processing power. The memory 120 may be
volatile memory (e.g., registers, cache, RAM, DRAM,
SRAM), non-volatile memory (e.g., ROM, EEPROM, flash
memory), or some combination of the two. The memory 120
stores software 180 implementing tools for performing any
of the debugging or simulation techniques as described
herein. The memory 120 can also store software 180 for
debugging and simulating quantum programs as described
herein, as well as software 180 for synthesizing, generating,
or compiling quantum circuits resulting from the tested
quantum programs.

[0099] The computing environment can have additional
features. For example, the computing environment 100
includes storage 140, one or more input devices 150, one or
more output devices 160, and one or more communication
connections 170. An interconnection mechanism (not
shown), such as a bus, controller, or network, interconnects
the components of the computing environment 100. Typi-
cally, operating system software (not shown) provides an
operating environment for other software executing in the
computing environment 100, and coordinates activities of
the components of the computing environment 100.

[0100] The storage 140 can be removable or non-remov-
able, and includes one or more magnetic disks (e.g., hard
drives), solid state drives (e.g., flash drives), magnetic tapes
or cassettes, CD-ROMs, DVDs, or any other tangible non-
volatile storage medium which can be used to store infor-
mation and which can be accessed within the computing
environment 100. The storage 140 can also store instructions
for the software 180 implementing any of the disclosed
debugging and/or simulation techniques. The storage 140
can also store instructions for the software 180 for gener-
ating and/or synthesizing any of the described techniques,
systems, or reversible circuits.
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[0101] The input device(s) 150 can be a touch input device
such as a keyboard, touchscreen, mouse, pen, trackball, a
voice input device, a scanning device, or another device that
provides input to the computing environment 100. The
output device(s) 160 can be a display device (e.g., a com-
puter monitor, laptop display, smartphone display, tablet
display, netbook display, or touchscreen), printer, speaker, or
another device that provides output from the computing
environment 100.

[0102] The communication connection(s) 170 enable
communication over a communication medium to another
computing entity. The communication medium conveys
information such as computer-executable instructions or
other data in a modulated data signal. A modulated data
signal is a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, commu-
nication media include wired or wireless techniques imple-
mented with an electrical, optical, RF, infrared, acoustic, or
other carrier.

[0103] As noted, the various methods, debugging tech-
niques, circuit design techniques, or compilation/synthesis
techniques can be described in the general context of com-
puter-readable instructions stored on one or more computer-
readable media. Computer-readable media are any available
media (e.g., memory or storage device) that can be accessed
within or by a computing environment. Computer-readable
media include tangible computer-readable memory or stor-
age devices, such as memory 120 and/or storage 140, and do
not include propagating carrier waves or signals per se
(tangible computer-readable memory or storage devices do
not include propagating carrier waves or signals per se).
[0104] Various embodiments of the methods disclosed
herein can also be described in the general context of
computer-executable instructions (such as those included in
program modules) being executed in a computing environ-
ment by a processor. Generally, program modules include
routines, programs, libraries, objects, classes, components,
data structures, and so on, that perform particular tasks or
implement particular abstract data types. The functionality
of the program modules may be combined or split between
program modules as desired in various embodiments. Com-
puter-executable instructions for program modules may be
executed within a local or distributed computing environ-
ment.

[0105] An example of a possible network topology 200
(e.g., a client-server network) for implementing a system
according to the disclosed technology is depicted in FIG. 2.
Networked computing device 220 can be, for example, a
computer running a browser or other software connected to
a network 212. The computing device 220 can have a
computer architecture as shown in FIG. 2 and discussed
above. The computing device 220 is not limited to a tradi-
tional personal computer but can comprise other computing
hardware configured to connect to and communicate with a
network 212 (e.g., smart phones, laptop computers, tablet
computers, or other mobile computing devices, servers,
network devices, dedicated devices, and the like). In the
illustrated embodiment, the computing device 220 is con-
figured to communicate with a computing device 230 (e.g.,
a remote server, such as a server in a cloud computing
environment, which can comprise one or more classical
processing units, FPGAs, GPUs, or other such processing
devices) via a network 212. In the illustrated embodiment,
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the computing device 220 is configured to transmit input
data to the computing device 230, and the computing device
230 is configured to implement a quantum program debug-
ging/simulation technique according to any of the disclosed
embodiments and/or a circuit generation or compilation/
synthesis methods for generating quantum circuits based on
or in conjunction with any of the quantum program debug-
ging/simulation techniques disclosed herein. The computing
device 230 can output results to the computing device 220.
Any of the data received from the computing device 230 can
be stored or displayed on the computing device 220 (e.g.,
displayed as data on a graphical user interface or web page
at the computing devices 220). In the illustrated embodi-
ment, the illustrated network 212 can be implemented as a
Local Area Network (“LLAN”) using wired networking (e.g.,
the Ethernet IEEE standard 802.3 or other appropriate
standard) or wireless networking (e.g. one of the IEEE
standards 802.11a, 802.11b, 802.11g, or 802.11n or other
appropriate standard). Alternatively, at least part of the
network 212 can be the Internet or a similar public network
and operate using an appropriate protocol (e.g., the HTTP
protocol).

[0106] Another example of a possible network topology
300 (e.g., a distributed computing environment) for imple-
menting a system according to the disclosed technology is
depicted in FIG. 3. Networked computing device 320 can be,
for example, a computer running a browser or other software
connected to a network 312. The computing device 320 can
have a computer architecture as shown in FIG. 1 and
discussed above. In the illustrated embodiment, the com-
puting device 320 is configured to communicate with mul-
tiple computing devices 330, 331, 332 (e.g., remote servers
or other distributed computing devices, such as one or more
servers in a cloud computing environment, which can com-
prise one or more classical processing units, FPGAs, GPUs,
or other such processing devices) via the network 312. In the
illustrated embodiment, each of the computing devices 330,
331, 332 in the computing environment 300 is used to
perform at least a portion of a quantum program debugging
and/or simulation technique (as disclosed herein) and/or a
synthesis/compilation process. In other words, the comput-
ing devices 330, 331, 332 form a distributed computing
environment in which the quantum program debugging
and/or simulation technique (as disclosed herein) and/or
generation/compilation/synthesis processes are shared
across multiple computing devices. The computing device
320 is configured to transmit input data to the computing
devices 330, 331, 332, which are configured to distributively
implement such as process, including performance of any of
the disclosed debugging/simulation methods, and to provide
results to the computing device 320. Any of the data
received from the computing devices 330, 331, 332 can be
stored or displayed on the computing device 320 (e.g.,
displayed as data on a graphical user interface or web page
at the computing devices 320). The illustrated network 312
can be any of the networks discussed above with respect to
FIG. 2.

[0107] With reference to FIG. 4, an exemplary system for
implementing the disclosed technology includes computing
environment 400. In computing environment 400, a com-
piled quantum computer circuit description (including quan-
tum circuits resulting from and/or supported by any of the
quantum program debugging/simulation techniques as dis-
closed herein) can be used to program (or configure) one or
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more quantum processing units such that the quantum
processing unit(s) implement the circuit described by the
quantum computer circuit description.

[0108] The environment 400 includes one or more quan-
tum processing units 402 and one or more readout device(s)
408. The quantum processing unit(s) execute quantum cir-
cuits that are precompiled and described by the quantum
computer circuit description. The quantum processing unit
(s) can be one or more of, but are not limited to: (a) a
superconducting quantum computer; (b) an ion trap quantum
computer; (¢) a fault-tolerant architecture for quantum com-
puting; and/or (d) a topological quantum architecture (e.g.,
a topological quantum computing device using Majorana
zero modes). The precompiled quantum circuits, including
any of the disclosed circuits, can be sent into (or otherwise
applied to) the quantum processing unit(s) via control lines
406 at the control of quantum processor controller 420. The
quantum processor controller (QP controller) 420 can oper-
ate in conjunction with a classical processor 410 (e.g.,
having an architecture as described above with respect to
FIG. 1) to implement the desired quantum computing pro-
cess. In the illustrated example, the QP controller 420 further
implements the desired quantum computing process via one
or more QP subcontrollers 404 that are specially adapted to
control a corresponding one of the quantum processor(s)
402. For instance, in one example, the quantum controller
420 facilitates implementation of the compiled quantum
circuit by sending instructions to one or more memories
(e.g., lower-temperature memories), which then pass the
instructions to low-temperature control unit(s) (e.g., QP
subcontroller(s) 404) that transmit, for instance, pulse
sequences representing the gates to the quantum processing
unit(s) 402 for implementation. In other examples, the QP
controller(s) 420 and QP subcontroller(s) 404 operate to
provide appropriate magnetic fields, encoded operations, or
other such control signals to the quantum processor(s) to
implement the operations of the compiled quantum com-
puter circuit description. The quantum controller(s) can
further interact with readout devices 408 to help control and
implement the desired quantum computing process (e.g., by
reading or measuring out data results from the quantum
processing units once available, etc.)

[0109] With reference to FIG. 4, compilation is the process
of translating a high-level description of a quantum algo-
rithm into a quantum computer circuit description compris-
ing a sequence of quantum operations or gates, which can
include the circuits as disclosed herein. The compilation can
be performed by a compiler 422 using a classical processor
410 (e.g., as shown in FIG. 1) of the environment 400 which
loads the high-level description from memory or storage
devices 412 and stores the resulting quantum computer
circuit description in the memory or storage devices 412.
Additionally, a debugger/simulator 421 can be used to
develop a quantum program and evaluate the quantum
program using any of the disclosed debugging techniques.

[0110] In other embodiments, compilation and/or quantum
program debugging can be performed remotely by a remote
computer 460 (e.g., a computer having a computing envi-
ronment as described above with respect to FIG. 1) which
stores the resulting quantum computer circuit description in
one or more memory or storage devices 462 and transmits
the quantum computer circuit description to the computing
environment 400 for implementation in the quantum pro-
cessing unit(s) 402. For instance, with reference to FIG. 4,
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remote computer 460 includes a quantum program debug-
ger/simulator 464 that can be perform any of the debugging
and/or simulation techniques disclosed herein. Still further,
the remote computer 400 can store the high-level description
in the memory or storage devices 462 and transmit the
high-level description to the computing environment 400 for
compilation and use with the quantum processor(s).

[0111] In any of these scenarios, results from the compu-
tation performed by the quantum processor(s) can be com-
municated to the remote computer after and/or during the
computation process. Still further, the remote computer can
communicate with the QP controller(s) 420 such that the
quantum computing process (including any debugging,
simulation, compilation, and QP control procedures) can be
remotely controlled by the remote computer 460. In general,
the remote computer 460 communicates with the QP con-
troller(s) 420, compiler/synthesizer 422, quantum program
debugger/simulator 421, via communication connections
450.

[0112] In particular embodiments, the environment 400
can be a cloud computing environment, which provides the
quantum processing resources of the environment 400 to one
or more remote computers (such as remote computer 460)
over a suitable network (which can include the internet).

V1. Concluding Remarks

[0113] Having described and illustrated the principles of
the disclosed technology with reference to the illustrated
embodiments, it will be recognized that the illustrated
embodiments can be modified in arrangement and detail
without departing from such principles. For instance, ele-
ments of the illustrated embodiments shown in software may
be implemented in hardware and vice-versa. Also, the tech-
nologies from any example can be combined with the
technologies described in any one or more of the other
examples. It will be appreciated that procedures and func-
tions such as those described with reference to the illustrated
examples can be implemented in a single hardware or
software module, or separate modules can be provided. The
particular arrangements above are provided for convenient
illustration, and other arrangements can be used.

What is claimed is:

1. A method for debugging a quantum program on a
classical computer for implementation on a quantum com-
puting device, comprising:

inputting a quantum program written in a quantum com-

puter language that is synthesizable into quantum-
computer-executable instructions for operating a quan-
tum computer;

receiving a command to set a breakpoint in the quantum
program;

simulating, on the classical computer, execution of the
quantum program as if it were being executed by the
quantum computing device;

halting the simulating when the breakpoint in the quantum
program is reached;

implementing a command to examine a current state of
one or more qubits being simulated by the classical
computer; and

displaying data describing the outcome of the command
on a graphical user interface.
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2. The method of claim 1, further comprising:

receiving a modification to the quantum program resulting

in a modified quantum program; and

outputting the modified quantum program.

3. The method of claim 2, further comprising:

synthesizing the modified quantum program into the

quantum-computer-executable instructions for operat-
ing the quantum computer; and

configuring the quantum computer to execute the quan-

tum-computer-executable instructions for the modified
quantum program.

4. The method of claim 1, wherein the command to
examine the current state comprises an assertion to assert
that two qubits are or are not entangled.

5. The method of claim 1, wherein the command to
examine the current state comprises an assertion to assert a
degree to which two qubits are or are not entangled.

6. The method of claim 1, further comprising

receiving a command to set the current state as a reference

state.

7. The method of claim 6, further comprising:

receiving a modification to the quantum program resulting

in a modified quantum program;

simulating, on the classical computer, execution of the

modified quantum program as if it were being executed
by the quantum computing device;

halting the simulating when the breakpoint in the modi-

fied quantum program is reached at the breakpoint of
the modified quantum program;

determining whether a current state of the one or more

qubits resulting from the modified quantum program
being simulated by the classical computer.

8. The method of claim 1, further comprising:

simulating addition or subtraction of one or more quan-

tum computer hardware elements; and

updating a current state of the one or more qubits in view

of the added or subtracted one or more quantum
computer hardware elements.

9. One or more computer-readable media storing com-
puter-executable instructions which when executed by a
classical computer processor cause the classical computer
processor to perform a method, the method comprising:

inputting a quantum program written in a quantum com-

puter language that is synthesizable into quantum-
computer-executable instructions for operating a quan-
tum computer;

including in the quantum program one or more statements

or function invocations that comprise an assertion that
asserts that a probability of the current state of the one
or more qubits has an expected value;

simulating, on the classical computer, execution of the

quantum program as if it were being executed by the
quantum computing device;

verifying, on the classical computer, whether the assertion

included in the quantum program is true or not true; and
displaying, on a graphical user interface, data identifying
whether the assertion is true or not true.

10. The one or more computer-readable media of claim 9,
wherein the assertion asserts that a selected qubit is in the
expected eigenstate of the Pauli Z operator.

11. The one or more computer-readable media of claim 9,
wherein the assertion asserts that a selected qubit in an
expected state represents a complex vector, ) =[a b]%.
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12. The one or more computer-readable media of claim 9,
wherein the method further comprises:

receiving a modification to the quantum program resulting

in a modified quantum program; and

outputting the modified quantum program.

13. The one or more computer-readable media of claim
12, wherein the method further comprises synthesizing the
modified quantum program into the quantum-computer-
executable instructions for operating the quantum computer.

14. The one or more computer-readable media of claim 9,
wherein the method further comprises:

receiving a command to set a breakpoint in the quantum

program; and

halting the simulating when the breakpoint in the quantum

program is reached.

15. A system, comprising:

a quantum computing device; and

a classical computing device in communication with the

quantum computing device and configured to perform

a method, the method comprising:

inputting a quantum program written in a quantum
computer language that is synthesizable into quan-
tum-computer-executable instructions for operating
a quantum computer,

including in the quantum program one or more state-
ments or function invocations that comprise a com-
mand to derive and display quantum states of a
subset of two or more qubits being simulated;

simulating, on the classical computer, execution of the
quantum program as if it were being executed by the
quantum computing device;

deriving and displaying, on the classical computer, the
quantum states of the specified qubits.

16. The system of claim 15, wherein the method further
comprises:

receiving a command to set a breakpoint in the quantum

program;

halting the simulating when the breakpoint in the quantum

program is reached.

17. The system of claim 15, wherein the method further
comprising:

receiving a modification to the quantum program resulting

in a modified quantum program; and

outputting the modified quantum program.

18. The system of claim 17, wherein the method further
comprises:

synthesizing the modified quantum program into the

quantum-computer-executable instructions for operat-
ing the quantum computing device.

19. The system of claim 15, wherein the method further
comprises implementing a command to examine a current
state of one or more qubits being simulated by the classical
computer.

20. The system of claim 19, wherein the command to
examine the current state comprises: (a) an assertion that
asserts that a probability of the current state of the one or
more qubits has an expected value; (b) an assertion that
asserts that a selected qubit is in the expected eigenstate of
the Pauli Z operator; or (c) an assertion that asserts that a
selected qubit in an expected state represents a complex
vector, hp) =[a b]”.



