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TECHNIQUES FOR PREDICTING 
COLLISION CROSS - SECTION VALUES 

[ 0011 ] FIG . 7 illustrates an embodiment of a computing 
architecture . 
[ 0012 ] FIG . 8 depicts several graphs showing how model 
drift time correlates to empirical CCS ( and other param 
eters ) , according to one case study . 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

DETAILED DESCRIPTION 
[ 0001 ] This application claims the benefit of and priority 
to U.S. Provisional Patent Application No. 62 / 834,084 , filed 
on Apr. 15 , 2019 , the entire contents of which is hereby 
incorporated by reference . 

TECHNICAL FIELD 

[ 0002 ] Embodiments herein generally relate to processing 
analytical data and , more specifically , to predicting collision 
cross - section values based on analytical information derived 
from ion mobility analysis of a sample . 

BACKGROUND 

[ 0003 ] Ion mobility spectrometry or separation ( IMS ) is a 
widely used technique for identifying and quantifying com 
pounds within a sample . In general , IMS operates by sepa 
rating gas - phase ions based on their shape , size , and charge 
by subjecting the ions to a weak electric field in the presence 
of an inert buffer gas , such as nitrogen or helium . Ions of 
different sizes and shapes will have different collision fre 
quencies with the inert buffer gas as the ions flow through a 
separation or mobility cell of an IMS device . Collisions 
between the ions and the inert buffer gas under the influence 
of the electric field produce differences in drift time of ions 
( i.e. , ions with a higher collision frequency will have a 
higher drift time compared with ions with a lower collision 
frequency ) . Properties associated with IMS include the drift 
time , ion mobility , collision cross - section ( CCS ) or ( 2 ) , 
and / or reduced CCS ( 22 ' ) . Ions separated by IMS may be 
introduced into a mass analyzer ( e.g. , a mass spectrometer 
( MS ) ) to determine further physiochemical properties , such 
as mass - to - charge ( m / z ) ratios . 
[ 0004 ] The use of CCS for identification and confirmation 
of compound identity in sample experiments may provide 
orthogonal compound characteristics , under given experi 
mental conditions , to retention time and tandem MS infor 
mation . However , conventional approaches are deficient for 
widespread use due to , among other things , a lack of CCS 
measurements in compound libraries and the availability of 
computational tools to rapidly generate theoretical CCS 
values . Accordingly , analysts using CCS to evaluate sample 
components may benefit from methods of obtaining CCS 
values that are more efficient and effective than conventional 
systems . 

[ 0013 ] Various embodiments may generally be directed 
toward systems , methods , and / or apparatus for predicting 
collision cross - section ( CCS ) or ( 22 ) . In some embodiments , 
predicted CCS or reduced CCS values ( pCCS ) may be 
determined using a CCS prediction ( hybrid modeling or 
hybrid CCS prediction ) process that combines molecular 
modeling techniques with machine learning techniques , 
including , without limitation , artificial intelligence pro 
cesses , neural networks , and / or the like . In various embodi 
ments , the CCS prediction process may include generating 
one or more pCCS values for various forms of a compound , 
such as different charge states , conformers , isomers , isobars , 
and / or the like . 
[ 0014 ] In some embodiments , analytical information asso 
ciated with a sample or a portion thereof may be obtained . 
In various embodiments , the sample may include a plurality 
of components or a single component , such as a single 
molecule of interest . The analytical information may include 
various properties , characteristics , descriptors , elements , 
and / or the like of a component . For example , the properties 
may include a description of a molecule ( for instance , a 2D 
or connectedness description ) alone or in combination with 
known and / or theoretical physicochemical properties of the 
molecule . 
[ 0015 ] In some embodiments , the properties may be theo 
retical , determined via analytical analysis , or a combination 
thereof . For example , in exemplary embodiments , analytical 
information may include data obtained via mass analysis 
( i.e. , IMS , MS , IM - MS , CCS analyses ( i.e. , derived from 
drift time ) , and / or the like ) of a sample that may be used to 
form an approximate molecular model of a compound of 
interest . In various embodiments , the approximate molecu 
lar model may be or may include pseudo 3D molecular 
descriptors , for instance , that may be provided to a machine 
learning process to generate pCCS values . In some embodi 
ments , the approximate molecular model may include 2D 
descriptions , connectedness descriptions , and / or the like of 
a molecule . The approximate molecular model may be 
generated by performing an approximate , rough , abbrevi 
ated , and / or the like molecular modeling process to deter 
mine a set of conformations of the molecule in substantially 
reduced time ( e.g. , on a scale of seconds to minutes ) than 
required to form a full model using conventional techniques 
( on the scale of hours to days ) . For example , the approxi 
mate molecular modeling process may only perform a 
limited number of modeling cycles , may only determine a 
limited number of properties , may determine relative values , 
descriptors , factors , or other distinguishing elements , and / or 
the like . In some embodiments , the approximate molecular 
model may include possible energy states , ionization states 
or vibrational states of the molecule . The approximate 
molecular model may be provided to a CCS computational 
model ( e.g. , machine learning process , neural network , 
artificial intelligence processes , and / or the like ) operative to 
generate pCCS values based on ( 2D ) molecular descriptors 
and properties ( including approximate molecular models 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1 illustrates an embodiment of a first operat 
ing environment . 
[ 0006 ] FIG . 2 illustrates an embodiment of a second 
operating environment . 
[ 0007 ] FIG . 3 illustrates an embodiment of a first logic 
flow . 
[ 0008 ] FIG . 4 illustrates experimental collision cross - sec 
tion ( CCS ) vs. predicted CCS for various processes . 
[ 0009 ] FIG . 5 illustrates error percentages for various CCS 
prediction processes . 
[ 0010 ] FIG . 6 illustrates CCS prediction results for a CCS 
prediction process according to some embodiments . 
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generated according to some embodiments ) to complement 
measured data in order to build a prediction model . 
[ 0016 ] IMS and / or IM - MS may be applied in various 
fields , including , without limitation , drug development ( i.e. , 
drug metabolism and pharmacokinetics ( DMPK ) ) , food and 
environment ( F & E ) studies , toxicology , metabolomics and 
other “ omics ” studies , and / or the like . For example , the use 
of CCS ( for example , rotationally averaged CCS ) for iden 
tification and confirmation of compound identity may pro 
vide an orthogonal physicochemical supplement to retention 
time and MS information . At least one limiting factor in 
conventional systems is a lack of CCS measurements in 
compound libraries and the availability of computational 
tools to rapidly generate theoretical CCS values , either 
calculated using molecular modeling approaches or pre 
dicted with machine learning ( i.e. , neural networks , artificial 
intelligence processes , and / or the like ) based tools , from 
structure . Accordingly , some embodiments provide a hybrid 
model that incorporates molecular modeling principles into 
a machine learning based approach , which can take advan 
tage of the strengths of both methods . 
[ 0017 ] In some embodiments , the approximate molecular 
models may be used to “ train " a CCS calculation or deter 
mination algorithm , process , model , and / or the like . In 
various embodiments , training a CCS calculation algorithm 
may include experimental information . In exemplary 
embodiments , training a CCS calculation algorithm not 
require actual experimental information or may use a com 
bination of experimental and non - experimental ( for 
instance , library or theoretical information ) information . For 
example , the CCS values may be derived from a library of 
known or previously determined CCS values , from a sophis 
ticated ab initio molecular modelling and CCS calculation 
workflow , and / or the like . 
[ 0018 ] In various embodiments , a CCS prediction process 
may include using approximate molecular models ( alone or 
in combination with other known physicochemical informa 
tion ) for a set of first components having known CCS values 
to configure a CCS calculation algorithm , and using the CCS 
calculation algorithm to calculate CCS values for one or 
more second components , which may not have known CCS 
values . In general , there may not be a need to measure the 
CCS values for the second components experimentally . The 
calculated CCS values for the second components may be 
used to optimize or plan possible future experiments . 
[ 0019 ] In this description , numerous specific details , such 
as component and system configurations , may be set forth in 
order to provide a more thorough understanding of the 
described embodiments . It will be appreciated , however , by 
one skilled in the art , that the described embodiments may 
be practiced without such specific details . Additionally , 
some well - known structures , elements , and other features 
have not been shown in detail , to avoid unnecessarily 
obscuring the described embodiments . 
[ 0020 ] In the following description , references to " one 
embodiment , " " an embodiment , " " example embodiment , " 
“ various embodiments , " etc. , indicate that the embodiment 
( s ) of the technology so described may include particular 
features , structures , or characteristics , but more than one 
embodiment may and not every embodiment necessarily 
does include the particular features , structures , or charac 
teristics . Further , some embodiments may have some , all , or 
none of the features described for other embodiments . 

[ 0021 ] As used in this description and the claims and 
unless otherwise specified , the use of the ordinal adjectives 
" first , " " second , " " third , ” etc. to describe an element merely 
indicate that a particular instance of an element or different 
instances of like elements are being referred to , and is not 
intended to imply that the elements so described must be in 
a particular sequence , either temporally , spatially , in rank 
ing , or in any other manner . 
[ 0022 ] FIG . 1 illustrates an example of an operating envi 
ronment 100 that may be representative of some embodi 
ments . As shown in FIG . 1 , a mass analysis device 105 ( for 
instance , an IM - MS device ) may include an ion source 130 , 
with a first ion transfer region 135 arranged downstream of 
ion source 130. An IMS device 160 may be arranged 
downstream of ion source 130 and first transfer region 135 . 
IMS device 160 may include an IMS trap region 140 and an 
IMS separation region 145. An optional second transfer 
region 150 may be arranged downstream of IMS device 160 . 
[ 0023 ] In some embodiments , one or more downstream 
devices or stages 155 may optionally be arranged down 
stream of second transfer region 150. Downstream devices 
155 may include various devices such as , without limitation , 
a mass analyzer , a mass filter , and / or one or more other 
analytical devices . For example , downstream devices 155 
may include a Time of Flight ( “ ToF ’ ) mass analyzer , one or 
more quadrupole mass filters , one or more ion traps , and / or 
the like . According , in some embodiments , IMS device 160 
may be coupled between ion source 130 and the one or more 
downstream devices 155. Embodiments are not limited in 
this context . 
[ 0024 ] In various embodiments , mass analysis device 105 
and / or portions thereof , may be operably coupled to a 
computing device 110 ( see , for example , FIGS . 2 and 7 ) . In 
some embodiments , computing device 110 may operate to 
control various functions of mass analysis device and / or data 
processing functions associated with analytical information 
obtained from mass analysis device 105. For example , 
computing device 110 may operate to determine various 
physicochemical properties of sample components analyzed 
via mass analysis device . 
[ 0025 ] FIG . 2 illustrates an example of an operating envi 
ronment 200 that may be representative of some embodi 
ments . As shown in FIG . 2 , operating environment 200 may 
include an analysis system 205 operative to manage ana 
lytical information 232 , for example , associated with ion 
mobility spectrometry instrument 270. In some embodi 
ments , ion mobility spectrometry instrument 270 may be or 
may include an IMS device , an IM - MS device , and / or the 
like ( see , for example , FIG . 1 ) . In various embodiments , ion 
mobility spectrometry instrument 270 may include certain 
other components , including , without limitation , a chroma 
tography system , a liquid chromatography ( LC ) system , a 
gas chromatography ( GC ) system , a mass analyzer system , 
a mass detector system , a high - performance liquid chroma 
tography ( HPLC ) system , a ultra - performance liquid chro 
matography ( UPLC® ) system , a ultra - high performance 
liquid chromatography ( UHPLC ) system , an ultraviolet 
( UV ) detector , a visible light detector , a solid - phase extrac 
tion system , a sample preparation system , a sample intro 
duction system , a pump system , a capillary electrophoresis 
instrument , combinations thereof , components thereof , 
variations thereof , and / or the like . 
[ 0026 ] In some embodiments , ion mobility spectrometry 
instrument 270 may operate to perform an analysis and 
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generate analytical information 232. In various embodi 
ments , analytical information 232 may include information , 
data , files , charts , graphs , images , spectra , peak lists , mass 
values , retention time values , concentration values , com 
pound identification information , and / or the like generated 
by an analytical instrument as a result of performing an 
analysis method . For example , ion mobility spectrometry 
instrument 270 may generate analytical information 232 in 
the form of mass - to - charge ( m / z ) information , drift time ( ta ) 
information , ion mobility information , CCS information , 
and / or the like . 
[ 0027 ] In various embodiments , analytical information 
232 may include non - experimental information , including , 
without limitation , theoretical information , library informa 
tion of known data , and / or the like . The analytical informa 
tion may include various properties , characteristics , descrip 
tors , elements , and / or the like of a component . For example , 
the properties may include a description of a molecule ( for 
instance , a 2D or connectedness description ) alone or in 
combination with known and / or theoretical physicochemical 
properties of the molecule . In some embodiments , the prop 
erties may be theoretical , determined via analytical analysis , 
or a combination thereof 
[ 0028 ] In various embodiments , analysis system 205 may 
include computing device 210 communicatively coupled to 
ion mobility spectrometry instrument 270 or otherwise con 
figured to receive and store analytical information 232 
associated with analytical device 215. In some embodi 
ments , computing device 210 may receive at least a portion 
of analytical information 232 from ion mobility spectrom 
etry instrument 270. In various embodiments , computing 
device 210 may receive at least a portion of analytical 
information 232 from data sources 254a - n via network 250 . 
For example , ion mobility spectrometry instrument 270 may 
operate to provide analytical information 232 directly to 
computing device 210 and / or to a location on a network 250 
( for instance , a cloud computing environment ) accessible to 
computing device 210 . 
[ 0029 ] In some embodiments , computing device 210 may 
be operative to control , monitor , manage , or otherwise 
process various operational functions of ion mobility spec 
trometry instrument 270. In some embodiments , computing 
device 210 may be operative to provide analytical informa 
tion 232 to a location on a network 250 through a secure or 
authenticated connection . In some embodiments , computing 
device 210 may be or may include a stand - alone computing 
device , such as a personal computer ( PC ) , server , tablet 
computing device , cloud computing device , mobile comput 
ing device ( for instance , a smart phone , tablet computing 
device , and / or the like ) , data appliance , and / or the like . In 
various embodiments , computing device 210 may be or may 
include a controller or control system integrated into ion 
mobility spectrometry instrument 270 to control operational 
aspects thereof . 
[ 0030 ] Although only one computing device 210 is 
depicted in FIG . 2 , embodiments are not so limited . In 
various embodiments , the functions , operations , configura 
tions , data storage functions , applications , logic , and / or the 
like described with respect to computing device 210 may be 
performed by and / or stored in one or more other computing 
devices . A single computing device 210 is depicted for 
illustrative purposes only to simplify the figure . 
[ 0031 ] As shown in FIG . 2 , computing device 210 may 
include processor circuitry 220 , a memory unit 230 , and a 

transceiver 260. Processor circuitry 220 may be communi 
catively coupled to memory unit 230 and / or transceiver 260 . 
[ 0032 ] Processor circuitry 220 may include and / or may 
access various logics for performing processes according to 
some embodiments . For instance , processor circuitry 220 
may include and / or may access compound identification 
logic 222 and / or CCS prediction logic 224. Processing 
circuitry 220 and / or compound identification logic 222 
and / or CCS prediction logic 224 , and / or portions thereof , 
may be implemented in hardware , software , or a combina 
tion thereof . As used in this application , the terms “ logic , 
" component , ” “ layer , ” “ system , ” “ circuitry , " " decoder , " 
" encoder , " and / or “ module ” are intended to refer to a 
computer - related entity , either hardware , a combination of 
hardware and software , software , or software in execution , 
examples of which are provided by the exemplary comput 
ing architecture 400. For example , a logic , circuitry , or a 
layer may be and / or may include , but are not limited to , a 
process running on a processor , a processor , a hard disk 
drive , multiple storage drives ( of optical and / or magnetic 
storage medium ) , an object , an executable , a thread of 
execution , a program , a computer , hardware circuitry , inte 
grated circuits , application specific integrated circuits 
( ASIC ) , programmable logic devices ( PLD ) , digital signal 
processors ( DSP ) , field programmable gate array ( FPGA ) , a 
system - on - a - chip ( SOC ) , memory units , logic gates , regis 
ters , semiconductor device , chips , microchips , chip sets , 
software components , programs , applications , firmware , 
software modules , computer code , combinations of any of 
the foregoing , and / or the like . 
[ 0033 ] Although compound identification logic 222 is 
depicted in FIG . 2 as being within processor circuitry 220 , 
embodiments are not so limited . In addition , although CCS 
prediction logic 224 is depicted as being a logic of processor 
circuitry 220 , embodiments are not so limited , as data 
processing logic 224 may be a standalone logic . For 
example , compound identification logic 222 , and / or any 
component thereof , may be located within an accelerator , a 
processor core , an interface , an individual processor die , 
implemented entirely as a software application ( for instance , 
compound identification application 240 ) and / or the like . 
[ 0034 ] Memory unit 230 may include various types of 
computer - readable storage media and / or systems in the form 
of one or more higher speed memory units , such as read 
only memory ( ROM ) , random - access memory ( RAM ) , 
dynamic RAM ( DRAM ) , Double - Data - Rate DRAM 
( DDRAM ) , synchronous DRAM ( SDRAM ) , static RAM 
( SRAM ) , programmable ROM ( PROM ) , erasable program 
mable ROM ( EPROM ) , electrically erasable programmable 
ROM ( EEPROM ) , flash memory , polymer memory such as 
ferroelectric polymer memory , ovonic memory , phase 
change or ferroelectric memory , silicon - oxide - nitride - oxide 
silicon ( SONOS ) memory , magnetic or optical cards , an 
array of devices such as Redundant Array of Independent 
Disks ( RAID ) drives , solid state memory devices ( e.g. , USB 
memory , solid state drives ( SSD ) and any other type of 
storage media suitable for storing information . In addition , 
memory unit 230 may include various types of computer 
readable storage media in the form of one or more lower 
speed memory units , including an internal ( or external ) hard 
disk drive ( HDD ) , a magnetic floppy disk drive ( FDD ) , and 
an optical disk drive to read from or write to a removable 
optical disk ( e.g. , a CD - ROM or DVD ) , a solid state drive 
( SSD ) , and / or the like . 
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[ 0035 ] Memory unit 230 may store a compound identifi 
cation application 240 that may operate , alone or in com 
bination with compound identification logic 222 , to perform 
various analytical services according to some embodiments . 
For example , compound identification application 240 may 
operate to identify compounds in a sample . In another 
example , compound identification application 240 may 
operate to perform a hybrid CCS prediction processes to 
generate pCCS values according to some embodiments , for 
instance , via CCS prediction logic 224. In exemplary 
embodiments , compound identification application 240 may 
generate pCCS values as part of a process for identifying 
compounds in a sample . In various embodiments , identify 
ing compounds may include identifying “ known knowns ” 
( i.e. , known compounds anticipated as being a part of the 
sample ) , “ known unknowns ” ( i.e. , known compounds not 
anticipated as being a part of the sample ) , and / or “ unknown 
unknowns ” ( i.e. , unknown compounds within the sample ) . 
[ 0036 ] In various embodiments , compound identification 
application 240 may use computational model information 
234 to identify compounds and / or generate PCCS informa 
tion ( see , for example , FIG . 3 ) . In some embodiments , 
computational model information 234 may include molecu 
lar modeling information , process , and / or the like operative 
to model a molecule based on analytical information . Non 
limiting examples of modeling processes may include a 
structural calculation step followed by a CCS calculation 
step for one or more of the structures thus identified . The 
structural calculation step may include generating initial 3D 
structures from 2D coordinates , identifying a set of one or 
more possible conformers ( for instance , about five conform 
ers ) from these initial 3D structures , obtaining an optimized 
structure for each conformer . The step of calculating a CCS 
value from a structure may include one or more of the 
trajectory method , the exact hard sphere scattering method , 
the projection approximation , scattering from electron den 
sity isosurfaces ( SEDI ) , the projection superposition 
approximation ( PSA ) and many other methods of CCS 
calculation . The step of generating an optimized structure 
may include energy minimization . Examples of software 
that may be used to calculate structures and carry out energy 
minimization may include Avogadro , Gaussian , GAMESS , 
and / or the like . Examples of software that may be used to 
calculate CCS values given structures include MobCal , 
IMOS , CCScalc , and / or the like . Embodiments are not 
limited to these example modeling processes , as any 
molecular modeling process capable of operating according 
to some embodiments is contemplated herein . 
[ 0037 ] In various embodiments , molecular modeling pro 
cesses may be configured to model at least a portion of a 
molecule or other compound being analyzed . In some 
embodiments , a molecular model may include various fac 
tors , elements , descriptors ( e.g. , pseudo or relative 3D 
geometry ) , and / or the like associated with a molecule . 
Non - limiting examples of descriptors may include charge , 
size , shape , and / or the like . In various embodiments , the 
descriptors may include all or substantially all of the 
descriptors associated with a particular molecular modeling 
process . In exemplary embodiments , the descriptors may 
include a subset of the descriptors associated with a par 
ticular modeling process . In some embodiments , the subset 
of descriptors may be selected based on their contribution to 
the determination of CCS ( or PCCS ) . 

[ 0038 ] In exemplary embodiments , computational model 
information 234 may include various machine learning 
processes , algorithms , and / or the like . In some embodi 
ments , the machine learning processes may be trained using 
training data , such as actual CCS values experimentally 
determined for known molecules . Non - limiting examples of 
machine learning processes may include MetCCS ( see , for 
example , Zhou et al . , “ MetCCS Predictor : A Web Server for 
Predicting Collision Cross - Section Values of Metabolite in 
Metabolomics ” , Bioinformatics , 2017 , 33 , 2235-2237 ) , 
DeepCCS ( see , for example , Plante et al . , “ Predicting Ion 
Mobility Collision Cross - Sections Using a Deep Neural 
Network : DeepCCS , " Analytical Chemistry ( April 2019 ) ) . 
In some embodiments , machine learning processes may be 
or may include cross - validation ( CV ) processes . Embodi 
ments are not limited to these example machine learning 
processes , as any machine learning process capable of 
operating according to some embodiments is contemplated 
herein . 
[ 0039 ] In some embodiments , compound identification 
application 240 may generate analytical information 232 in 
the form of experimental information . In various embodi 
ments , experimental information may include compound 
information for known compounds , such as drift time , CCS , 
m / z , and / or the like . Experimental information of known 
compounds may be used as part of a modeling process 
and / or machine learning process according to some embodi 
ments to determine certain characteristics of unknown com 
pounds . For example , experimental CCS data may be 
obtained from calibrated travelling wave based IMS mea 
surements acquired with IMS - Q - oaToF and Q - IMS - oaToF 
configurations . In general , the experimental data may rep 
resent the average of the measurement of at least three 
technical replicates . In total , here , 4,100 CCS values from 
close to 3,000 different compounds , representing various 
adducted forms of the compounds and ten chemical classes , 
may be used for training , validation , and / or testing of 
models according to some embodiments . 
[ 0040 ] Included herein are one or more logic flows rep 
resentative of exemplary methodologies for performing 
novel aspects of the disclosed architecture . While , for pur 
poses of simplicity of explanation , the one or more meth 
odologies shown herein are shown and described as a series 
of acts , those skilled in the art will understand and appreciate 
that the methodologies are not limited by the order of acts . 
Some acts may , in accordance therewith , occur in a different 
order and / or concurrently with other acts from that shown 
and described herein . For example , those skilled in the art 
will understand and appreciate that a methodology could 
alternatively be represented as a series of interrelated states 
or events , such as in a state diagram . Moreover , not all acts 
illustrated in a methodology may be required for a novel 
implementation . Blocks designated with dotted lines may be 
optional blocks of a logic flow . 
[ 0041 ] A logic flow may be implemented in software , 
firmware , hardware , or any combination thereof . In software 
and firmware embodiments , a logic flow may be imple 
mented by computer executable instructions stored on a 
non - transitory computer readable medium or machine read 
able medium . Embodiments are not limited in this context . 
[ 0042 ] FIG . 3 illustrates an embodiment of a logic flow 
300. Logic flow 300 may be representative of some or all of 
the operations executed by one or more embodiments 
described herein , such as by computing devices 110 and / or 
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[ 0047 ] Logic flow 300 may provide the approximate 
molecular model to a CCS computational model at block 
306. For example , computational model information 234 
may include various machine learning processes operative to 
determine a PCCS based a molecular model . Compound 
identification application 240 may provide the approximate 
molecular model to a machine learning process of compu 
tational model information 234. At block 308 , PCCS may be 
generated by logic flow . For example , the machine learning 
process may generate pCCS information 236 including at 
least one pCCS value . In various embodiments , a plurality of 
PCCS values may be generated for one molecule , one 
approximate molecular model , and / or the like . For example , 
a plurality of PCCS values may be generated for different 
conformations , charge states , and / or the like of a molecule . 
In some embodiments , a rough model may be used to predict 
CCS more efficiently and with improved accuracy over 
conventional processes . In various embodiments , a CCS 
prediction process ( for instance , via a machine learning or 
artificial intelligence process ) may operate to generate a 
PCCS value based on pseudo molecular descriptors of an 
approximate molecular model generated according to some 
embodiments . 
[ 0048 ] At block 310 , logic flow 310 may determine com 
pound information . For example , compound identification 
application 240 may use pCCS information 236 to determine 
or estimate the identify of a molecule of interest based on a 
PCCS value . 

EXAMPLE 

210. For instance , logic flow 300 may be representative of 
some or all of the operations of generating pCCS values 
according to some embodiments . 
[ 0043 ] At block 302 , logic flow 300 may receive analyti 
cal data . For example , analytical information 232 resulting 
from analyzing a sample via ion mobility spectrometry 
instrument 270 may be accessed by compound identification 
application 240 . 
[ 0044 ] Logic flow 300 may perform approximate molecu 
lar modeling at block 304. For example , at least a portion of 
analytical information ( for instance , drift time , m / z , ion 
mobility , and / or the like ) may be provided to a molecular 
modeling process to perform an approximate molecular 
modeling process . Full molecular modeling processes using 
known techniques require a large amount of computing 
resources and time ( for instance , in the range of hours to 
days ) to generate a molecular model . Accordingly , some 
embodiments may perform an approximate molecular mod 
eling process in which only a subset of descriptors , cycles , 
and / or the like are determined or performed . For example , a 
conventional molecular modeling process may require X 
cycles or optimization energy steps ; however , some embodi 
ments may only perform N cycles , where N < X ( or even 
N << X ) . For example , X may be greater than 100 and N may 
be less than 100. In some embodiments , N may be 1 , 2 , 3 , 
4 , 5 , 10 , 15 , 20 , 50 , 100 , 200 , 250 , 500 , 1000 , 5000 , and / or 
any value or range between any two of these values ( includ 
ing endpoints ) . An approximate molecular modeling process 
may generate an approximate molecular model , representing 
a rough model of a molecule . In various embodiments , an 
approximate molecular model may include possible forms of 
the molecule , including charge states , conformer states , 
and / or the like . The approximate molecular model may be 
generated in less time than a full model , for instance , in the 
range of seconds or minutes . For instance , an approximate 
molecular model may be generated in about 100 millisec 
onds ( ms ) , about 1 second ( s ) , about 5 s , about 10 s , about 
30 s , about 1 minute ( m ) , about 5 m , about 10 m , about 30 
m , and / or any value or range between any two of these 
values ( including endpoints ) . 
[ 0045 ] In some embodiments , the structure ( or approxi 
mate or relative structure ) may be determined based on the 
analytical information . The number of possible conformers 
that can be generated may depend , at least partially , on the 
structure of the compound . In addition , in some embodi 
ments , the structure may determine how long it takes to 
optimize the energy / conformation ( for example , 10 s for a 
small rigid molecule , up to 5-6 min for a more flexible / larger 
molecule , and / or the like ) per conformer . 
[ 0046 ] In some embodiments , the approximate molecular 
modeling process may generate a plurality of molecular 
models , for example , each with for a different charge state 
or configuration . For example , the CCS of an ion may be 
related to the shape , size , and / or charge state of the ion . Ions 
for the same molecule may have different charge states . 
Accordingly , multiple approximate molecular models may 
be generated for a molecule , for instance , a plurality of 
models with different models for different charge states . In 
some embodiments , the approximate molecular model may 
be or may provide ( pseudo ) molecular descriptors associated 
with a sample component . In various embodiments , these 
pseudo molecular descriptors may be used by a machine 
learning process according to some embodiments to gener 
ate a pCCS value . 

Hybrid CCS Prediction Processes 
[ 0049 ] A hybrid CCS prediction process was performed 
according to some embodiments . Experimental CCS data 
were obtained from travelling wave based IMS measure 
ments acquired with IMS - Q - oaToF and Q - IMS - oaToF 
geometries . In general , the experimental data may represent 
the average of the measurement of at least three technical 
replicates . In total , 4,100 CCS values from close to 3,000 
different compounds , representing various adducted forms 
of the compounds and ten chemical classes , were used for 
model training , validation and testing . For molecular mod 
eling , Avogadro ( oBabel ) and CCScalc ( included within DriftScope ) were applied to provide structural / geometrical 
information , in the form of various constants , and projection 
approximation calculations , respectively , and a gradient 
boosting algorithm to train a predictive model with features 
including relevant molecular descriptors and structural fea 
tures obtained using a molecular modeling approach , for 
instance , via an approximate molecular modeling process . 
[ 0050 ] A hybrid CCS prediction model was developed on 
and evaluated with experimental CCS data of singly charged 
compounds using a Cross - Validation ( CV ) strategy , external 
data , and multiple use - cases . The CV results showed a 
significant improvement over a baseline model that is solely 
based on molecular weight , with the relative mean absolute 
error of the baseline model improved from 4.6 % , compared 
to 1.8 % in anon - hybrid ( machine learning only ) model , and 
observed for all molecular and chemical classes , even for the 
more complex chemical super classes such as benzenoids 
and organoheterocyclic compounds , which are harder to 
predict . 
[ 0051 ] The process results were also compared to differ 
ence conventional machine learning approaches and showed 
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Modeldrift = -40.0 + 2.0 * CrossSectionalArea / z 
// The collision cross section area ( omega ) is a function of 
// the total Van der Waals volume , given by the formula : 
// W = pi * ( 3 / ( 4 * pi ) ) ( 2/3 ) * V ( 2/3 ) 1.209 * V ̂ ( 2/3 ) 
omega 1.209 * Math.Pow ( Volume , ( 2.0 / 3.0 ) ) ; 
// “ Volume " represents a sum of the " residue Volume " of each 
// amino acid , which is the Van der Waals volume in 
// cubic angstroms 

overall improved performance . In some embodiments , train 
ing several models is not required ; for example , a single 
model according to some embodiments produced high qual 
ity results as long as a sufficiently diverse training data set 
is employed . 
[ 0052 ] In the final evaluation , the predictive model was applied to the problem of CCS prediction for positional 
isomers and isobaric molecules according to some embodi 
ments . In the majority of these cases , the model was able to 
predict the rank order of analyte CCS values correctly , 
demonstrating that predicted CCS values can augment 
down - stream analysis . To further demonstrate the impact on 
down - stream analysis , an evaluation metric was used that 
reflects the model's discrimination capability for isobaric 
analytes . This metric apportions the measured CCS library 
data into isobaric bins and for each compound within the 
bin , the closest observed and predicted CCS values are 
assigned and compared to the CCS value of the actual 
compound . In the majority of the cases , the closest predicted 
and observed CCS pair was found to be the actual compound 
of interest , which suggests that incorporation of predicted 
CCS values can improve discrimination of isobaric com 
pounds . 
[ 0053 ] FIGS . 4 and 5 depict comparisons of predicted 
CCS results for certain conventional processes compared 
with the hybrid CCS prediction process according to some 
embodiments . FIG . 4 depicts experimental CCS vs. pre 
dicted CCS for various processes . In particular , graph 410 
depicts standard CCS values , graph 415 depicts a first 
conventional CCS prediction process , graph 420 depicts a 
second conventional CCS prediction process , and graph 425 
depicts a hybrid CCS prediction process according to some 
embodiments . The first conventional CCS prediction pro 
cess may include a process as described in Bijlsma , Lubertus 
et al . “ Prediction of Collision Cross - Section Values for 
Small Molecules : Application to Pesticide Residue Analy 
sis . ” Analytical chemistry 89 12 ( 2017 ) : 6583-6589 ( “ Bi 
jlsma ” ) . The second conventional CCS process may include 
MetCCS . 
[ 0054 ] FIG . 5 depicts graph 505 showing the percentage 
of compounds out of 2 % error tolerance for CCS prediction 
for a hybrid CCS prediction process according to some 
embodiments 525 , Bijlsma 520 , and MetCCS . Graph 510 
depicts information for percent error CCS experimental vs. 
Bijlsma 540 , percent error CCS experimental vs. MetCCS 
545 , and percent error CCS experimental vs. a hybrid CCS 
prediction process according to some embodiments 550 . 
[ 0055 ] As depicted in FIGS . 4 and 5 , the hybrid CCS 
prediction process generated more accurate predictions than 
conventional processes , including Bijlsma and MetCCS . 
[ 0056 ] FIG . 6 depicts CCS prediction results for tienlilic 
acid metabolites using a hybrid CCS prediction process 
according to some embodiments . As shown in FIG . 6 , the 
percent difference for pCCS and experimental CCS ( CCS ) 
is less than about 2 % . 
[ 0057 ] The results generated for FIGS . 4-6 were deter 
mined using the machine learning process without approxi 
mate modeling processes according to some embodiments . 
[ 0058 ] FIG . 8 depicts another example in which the ‘ van 
der Waals ’ radius is used to derive 3D properties . These 3D 
properties can , in turn , be used by Al - based algorithms to 
predict CCS values . In one example , a model drift time may 
be calculated based on the following logic : 

[ 0059 ] FIG . 8 depicts how the model drift time ( peptide . 
ModelDrift ) correlates with empirical CCS and other param 
eters . 

[ 0060 ] FIG . 7 illustrates an embodiment of an exemplary 
computing architecture 700 that may be suitable for imple 
menting various embodiments as previously described . In 
various embodiments , the computing architecture 700 may 
comprise or be implemented as part of an electronic device . 
In some embodiments , the computing architecture 700 may 
be representative , for example , of a distributed processing 
system that implements or utilizes one or more components 
described herein . In some embodiments , computing archi 
tecture 700 may be representative , for example , of a com 
pute node in a distributed processing system described 
herein that implements or utilizes one or more techniques 
described herein . The embodiments are not limited in this 
context . 
[ 0061 ] As used in this application , the terms " system ” and 
" component ” and “ module ” may be intended to refer to a 
computer - related entity , either hardware , a combination of 
hardware and software , software , or software in execution , 
examples of which may be provided by the exemplary 
computing architecture 700. For example , a component may 
be , but may be not limited to being , a process running on a 
processor , a processor , a hard disk drive , multiple storage 
drives ( of optical and / or magnetic storage medium ) , an 
object , an executable , a thread of execution , a program , 
and / or a computer . By way of illustration , both an applica 
tion running on a server and the server may be a component . 
One or more components may reside within a process and / or 
thread of execution , and a component may be localized on 
one computer and / or distributed between two or more com 
puters . Further , components may be communicatively 
coupled to each other by various types of communications 
media to coordinate operations . The coordination may 
involve the uni - directional or bi - directional exchange of 
information . For instance , the components may communi 
cate information in the form of signals communicated over 
the communications media . The information may be imple 
mented as signals allocated to various signal lines . In such 
allocations , each message may be a signal . Further embodi 
ments , however , may alternatively employ data messages . 
Such data messages may be sent across various connections . 
Exemplary connections include parallel interfaces , serial 
interfaces , and bus interfaces . 
[ 0062 ] The computing architecture 700 includes various 
common computing elements , such as one or more proces 
sors , multi - core processors , co - processors , memory units , 
chipsets , controllers , peripherals , interfaces , oscillators , tim 
ing devices , video cards , audio cards , multimedia input / 
output ( I / O ) components , power supplies , and so forth . The 
embodiments , however , may be not limited to implementa 
tion by the computing architecture 700 . 
[ 0063 ] As shown in FIG . 7 , the computing architecture 
700 comprises a processing unit 704 , a system memory 706 
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and a system bus 708. The processing unit 704 may be any 
of various commercially available processors , including 
without limitation an AMD Athlon® , Duron® and 
Opteron® processors ; ARM® application , embedded and 
secure processors ; IBM® and Motorola® DragonBall® and 
PowerPC® processors ; IBM and Sony® Cell processors ; 
Intel® Celeron® , Core ( 2 ) Duo® , Itanium® , Pentium® , 
Xeon® , and XScale® processors ; and similar processors . 
Dual microprocessors , multi - core processors , and other 
multi - processor architectures may also be employed as the 
processing unit 704 . 
[ 0064 ] The system bus 708 provides an interface for 
system components including , but not limited to , the system 
memory 706 to the processing unit 704. The system bus 708 
may be any of several types of bus structure that may further 
interconnect to a memory bus ( with or without a memory 
controller ) , a peripheral bus , and a local bus using any of a 
variety of commercially available bus architectures . Inter 
face adapters may connect to the system bus 708 via a slot 
architecture . Example slot architectures may include without 
limitation Accelerated Graphics Port ( AGP ) , Card Bus , 
( Extended ) Industry Standard Architecture ( E ) ISA ) , Micro 
Channel Architecture ( MCA ) , NuBus , Peripheral Compo 
nent Interconnect ( Extended ) ( PCI ( X ) ) , PCI Express , Per 
sonal Computer Memory Card International Association 
( PCMCIA ) , and the like . 
[ 0065 ] The system memory 706 may include various types 
of computer - readable storage media in the form of one or 
more higher speed memory units , such as read - only memory 
( ROM ) , random - access memory ( RAM ) , dynamic RAM 
( DRAM ) , Double - Data - Rate DRAM ( DDRAM ) , synchro 
nous DRAM ( SDRAM ) , static RAM ( SRAM ) , program 
mable ROM ( PROM ) , erasable programmable ROM 
( EPROM ) , electrically erasable programmable ROM ( EE 
PROM ) , flash memory ( e.g. , one or more flash arrays ) , 
polymer memory such as ferroelectric polymer memory , 
ovonic memory , phase change or ferroelectric memory , 
silicon - oxide - nitride - oxide - silicon ( SONOS ) memory , mag 
netic or optical cards , an array of devices such as Redundant 
Array of Independent Disks ( RAID ) drives , solid state 
memory devices ( e.g. , USB memory , solid state drives 
( SSD ) and any other type of storage media suitable for 
storing information . In the illustrated embodiment shown in 
FIG . 7 , the system memory 706 may include non - volatile 
memory 710 and / or volatile memory 712. In some embodi 
ments , system memory 706 may include main memory . A 
basic input / output system ( BIOS ) may be stored in the 
non - volatile 
[ 0066 ] The computer 702 may include various types of 
computer - readable storage media in the form of one or more 
lower speed memory units , including an internal ( or exter 
nal ) hard disk drive ( HDD ) 714 , a magnetic floppy disk 
drive ( FDD ) 716 to read from or write to a removable 
magnetic disk 718 , and an optical disk drive 720 to read 
from or write to a removable optical disk 722 ( e.g. , a 
CD - ROM or DVD ) . The HDD 714 , FDD 716 and optical 
disk drive 720 may be connected to the system bus 708 by 
a HDD interface 724 , an FDD interface 726 and an optical 
drive interface 728 , respectively . The HDD interface 724 for 
external drive implementations may include at least one or 
both of Universal Serial Bus ( USB ) and Institute of Elec 
trical and Electronics Engineers ( IEEE ) 994 interface tech 
nologies . In various embodiments , these types of memory 
may not be included in main memory or system memory . 

[ 0067 ] The drives and associated computer - readable 
media provide volatile and / or nonvolatile storage of data , 
data structures , computer - executable instructions , and so 
forth . For example , a number of program modules may be 
stored in the drives and memory units 710 , 712 , including an 
operating system 730 , one or more application programs 
732 , other program modules 734 , and program data 736. In 
one embodiment , the one or more application programs 732 , 
other program modules 734 , and program data 736 may 
include , for example , the various applications and / or com 
ponents of message controller 104 . 
[ 0068 ] A user may enter commands and information into 
the computer 702 through one or more wire / wireless input 
devices , for example , a keyboard 738 and a pointing device , 
such as a mouse 740. Other input devices may include 
microphones , infra - red ( IR ) remote controls , radio - fre 
quency ( RF ) remote controls , game pads , stylus pens , card 
readers , dongles , finger print readers , gloves , graphics tab 
lets , joysticks , keyboards , retina readers , touch screens ( e.g. , 
capacitive , resistive , etc. ) , trackballs , trackpads , sensors , 
styluses , and the like . These and other input devices may 
often connected to the processing unit 704 through an input 
device interface 742 that may be coupled to the system bus 
708 , but may be connected by other interfaces such as a 
parallel port , IEEE 994 serial port , a game port , a USB port , 
an IR interface , and so forth . 
[ 0069 ] A monitor 744 or other type of display device may 
be also connected to the system bus 708 via an interface , 
such as a video adaptor 746. The monitor 744 may be 
internal or external to the computer 702. In addition to the 
monitor 744 , a computer typically includes other peripheral 
output devices , such as speakers , printers , and so forth . 
[ 0070 ] The computer 702 may operate in a networked 
environment using logical connections via wire and / or wire 
less communications to one or more remote computers , such 
as a remote computer 748. In various embodiments , one or 
more migrations may occur via the networked environment . 
The remote computer 748 may be a workstation , a server 
computer , a router , a personal computer , portable computer , 
microprocessor - based entertainment appliance , a peer 
device or other common network node , and typically 
includes many or all of the elements described relative to the 
computer 702 , although , for purposes of brevity , only a 
memory / storage device 750 may be illustrated . The logical 
connections depicted include wire / wireless connectivity to a 
local area network ( LAN ) 752 and / or larger networks , for 
example , a wide area network ( WAN ) 754. Such LAN and 
WAN networking environments may be commonplace in 
offices and companies , and facilitate enterprise - wide com 
puter networks , such as intranets , all of which may connect 
to a global communications network , for example , the 
Internet . 
[ 0071 ] When used in a LAN networking environment , the 
computer 702 may be connected to the LAN 752 through a 
wire and / or wireless communication network interface or 
adaptor 756. The adaptor 756 may facilitate wire and / or 
wireless communications to the LAN 752 , which may also 
include a wireless access point disposed thereon for com 
municating with the wireless functionality of the adaptor 
756 . 
[ 0072 ] When used in a WAN networking environment , the 
computer 702 may include a modem 758 , or may be 
connected to a communications server on the WAN 754 , or 
has other means for establishing communications over the 

memory 710 . 
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WAN 754 , such as by way of the Internet . The modem 758 , 
which may be internal or external and a wire and / or wireless 
device , connects to the system bus 708 via the input device 
interface 742. In a networked environment , program mod 
ules depicted relative to the computer 702 , or portions 
thereof , may be stored in the remote memory / storage device 
750. It may be appreciated that the network connections 
shown may be exemplary and other means of establishing a 
communications link between the computers may be used . 
[ 0073 ] The computer 702 may be operable to communi 
cate with wire and wireless devices or entities using the 
IEEE 802 family of standards , such as wireless devices 
operatively disposed in wireless communication ( e.g. , IEEE 
802.16 over - the - air modulation techniques ) . This includes at 
least Wi - Fi ( or Wireless Fidelity ) , WiMax , and BluetoothTM 
wireless technologies , among others . Thus , the communica 
tion may be a predefined structure as with a conventional 
network or simply an ad hoc communication between at 
least two devices . Wi - Fi networks use radio technologies 
called IEEE 802.11x ( a , b , g , n , etc. ) to provide secure , 
reliable , fast wireless connectivity . A Wi - Fi network may be 
used to connect computers to each other , to the Internet , and 
to wire networks ( which use IEEE 802.3 - related media and 
functions ) 
[ 0074 ] Numerous specific details have been set forth 
herein to provide a thorough understanding of the embodi 
ments . It will be understood by those skilled in the art , 
however , that the embodiments may be practiced without 
these specific details . In other instances , well - known opera 
tions , components , and circuits have not been described in 
detail so as not to obscure the embodiments . It can be 
appreciated that the specific structural and functional details 
disclosed herein may be representative and do not neces 
sarily limit the scope of the embodiments . 
[ 0075 ] Some embodiments may be described using the 
expression “ coupled ” and “ connected ” along with their 
derivatives . These terms are not intended as synonyms for 
each other . For example , some embodiments may be 
described using the terms “ connected ” and / or " coupled ” to 
indicate that two or more elements are in direct physical or 
electrical contact with each other . The term " coupled , ” 
however , may also mean that two or more elements are not 
in direct contact with each other , but yet still co - operate or 
interact with each other . 
[ 0076 ] Unless specifically stated otherwise , it may be 
appreciated that terms such as “ processing , " " computing , " 
" calculating , ” “ determining , ” or the like , refer to the action 
and / or processes of a computer or computing system , or 
similar electronic computing device , that manipulates and / or 
transforms data represented as physical quantities ( e.g. , 
electronic ) within the computing system's registers and / or 
memories into other data similarly represented as physical 
quantities within the computing system's memories , regis 
ters or other such information storage , transmission or 
display devices . The embodiments are not limited in this 
context . 
[ 0077 ] It should be noted that the methods described 
herein do not have to be executed in the order described , or 
in any particular order . Moreover , various activities 
described with respect to the methods identified herein can 
be executed in serial or parallel fashion . 
[ 0078 ] Although specific embodiments have been illus 
trated and described herein , it should be appreciated that any 
arrangement calculated to achieve the same purpose may be 

substituted for the specific embodiments shown . This dis 
closure is intended to cover any and all adaptations or 
variations of various embodiments . It is to be understood 
that the above description has been made in an illustrative 
fashion , and not a restrictive one . Combinations of the above 
embodiments , and other embodiments not specifically 
described herein will be apparent to those of skill in the art 
upon reviewing the above description . Thus , the scope of 
various embodiments includes any other applications in 
which the above compositions , structures , and methods are 
used . 
[ 0079 ] Although the subject matter has been described in 
language specific to structural features and / or methodologi 
cal acts , it is to be understood that the subject matter defined 
in the appended claims is not necessarily limited to the 
specific features or acts described above . Rather , the specific 
features and acts described above are disclosed as example 
forms of implementing the claims . 

1. A method , comprising : 
configuring a CCS calculation process using one or more 

approximate molecular models for one or more first 
components having known CCS values ; and 

determining CCS values for one or more second compo 
nents via the CCS determination calculation . 

2. The method of claim 1 , the CCS calculation process 
configured using the one or more approximate molecular 
models in combination with known physicochemical infor 
mation associated with the one or more first components . 

3. The method of claim 1 , the one or more second 
components not associated with known CCS values . 

4. An apparatus , comprising : 
at least one memory ; and 
logic , coupled to the at least one memory , operative to 

implement a predicted collision cross - section ( CCS ) 
process , the logic to : 
receive analytical information associated with a com 

prising at least one component , 
generate one or more approximate molecular models 

for the component via an approximate molecular 
modeling process , and 

generate a predicted CCS value via a computational 
model based on the one or more approximate 
molecular models . 

5. The apparatus of claim 4 , the at least one ion mobility 
spectrometry instrument comprising one of an ion mobility 
spectrometer ( IMS ) or an ion mobility - mass spectrometer 
( IM - MS ) . 

6. The apparatus of claim 4 , the analytical information 
comprising at least one of drift time information , ion mobil 
ity information , or mass - to - charge ( m / z ) ratio information . 

7. The apparatus of claim 4 , the approximate molecular 
model comprising at least one pseudo molecular descriptor . 

8. The apparatus of claim 4 , the approximate molecular 
modeling process comprising executing a subset of cycles of 
a full molecular modeling process . 

9. The apparatus of claim 4 , the subset of cycles deter 
mined based on the structure of the component . 

10. The apparatus of claim 4 , the computational model 
comprising a machine learning process . 

11. The apparatus of claim 4 , the approximate molecular 
model comprising a plurality of possible charge states of a 
modeled molecule . 
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12. The apparatus of claim 4 , the predicted CCS value 
within 2 % or less of a corresponding experimental CCS 
value . 

13. The apparatus of claim 4 , the approximate molecular 
model generated in a time duration of less than 5 minutes . 

14. A method for performing a predicted collision cross 
section ( CCS ) process , comprising : 

receiving analytical information associated with a sample 
comprising at least one component ; 

generating an approximate molecular model for the com 
ponent via an approximate molecular modeling pro 

17. The method of claim 14 , the approximate molecular 
model comprising at least one pseudo 3D molecular descrip 
tor . 

18. The method of claim 14 , the approximate molecular 
modeling process comprising executing a subset of cycles of 
a full molecular modeling process . 

19. The method of claim 14 , the subset of cycles deter 
mined based on the structure of the component . 

20. The method of claim 14 , the computational model 
comprising a machine learning process . 

21. The method of claim 14 , the approximate molecular 
model comprising a plurality of possible charge states of a 
modeled molecule . 

22. The method of claim 14 , the predicted CCS value 
within 2 % or less of a corresponding experimental CCS 
value . 

23. The method of claim 14 , the approximate molecular 
model generated in a time duration of less than 5 minutes . 

cess ; and 
generating a predicted CCS value via a computational 

model based on the approximate molecular model . 
15. The method of claim 14 , the at least one ion mobility 

spectrometry instrument comprising one of an ion mobility 
spectrometer ( IMS ) or an ion mobility - mass spectrometer 
( IM - MS ) . 

16. The method of claim 14 , the analytical information 
comprising at least one of drift time information , ion mobil 
ity information , or mass - to - charge ( m / z ) ratio information . 


