US011847427B2

a2 United States Patent

Lingam et al.

US 11,847,427 B2
Dec. 19, 2023

(10) Patent No.:
45) Date of Patent:

(54) LOAD STORE CIRCUIT WITH DEDICATED
SINGLE OR DUAL BIT SHIFT CIRCUIT AND
OPCODES FOR LOW POWER
ACCELERATOR PROCESSOR

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2017/0060586 Al

Int. CL.

GO6F 5/01
GO6F 9/30

U.S. CL
CPC

Texas Instruments Incorporated,
Dallas, TX (US)

Srinivas Lingam, Dallas, TX (US);
Seok-Jun Lee, Allen, TX (US)

TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 424 days.

14/840,308

Aug. 31, 2015

Prior Publication Data

Mar. 2, 2017

(2006.01)
(2018.01)

GOGF 5/01 (2013.01); GOGF 9/30032
(2013.01); Y02D 10/00 (2018.01)

Field of Classification Search
CPC .. GO6F 9/30032; GOGF 9/3877, GO6F 15/763;

GOG6F 15/7842; GOG6F 15/8053; GOGF
5/01; Y02D 10/00

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,045,993 A
5,119,483 A

9/1991 Murakami et al.
6/1992 Madden et al.

5,485,093 A 1/1996 Russell et al.

5,638,312 A 6/1997 Simone

5,734,575 A 3/1998 Snow et al.

5,784,585 A 7/1998 Denman

5,822,606 A 10/1998 Morton

5,835392 A 11/1998 Dulong et al.

5,896,305 A 4/1999 Bosshart et al.

5,903,155 A 5/1999 Bjorklund

5,912,830 A 6/1999 Krech, Ir. et al.

5,920,497 A 7/1999 Rim

5,961,575 A * 10/1999 Hervincoovnen. GO6F 5/015
708/209

5,978,838 A * 11/1999 Mohamed GOG6F 9/30036
709/208

5,983,256 A 11/1999 Peleg et al.

(Continued)

OTHER PUBLICATIONS

Intel, “TA-64 Application Developer’s Architecture Guide”, May
1999, pp. 7:154-7:158; C:16, 18-19, 23.*
(Continued)

Primary Examiner — David J. Huisman

(74) Attorney, Agent, or Firm — Brian D. Graham; Frank
D. Cimino

57 ABSTRACT

Described examples include integrated circuits such as
microcontrollers with a low energy accelerator processor
circuit or other application specific integrated processor
circuit including a load store circuit operative to perform
load and store operations associated with at least one register
and a low gate count shift circuit to selectively shift the data
of'the register by only an integer number of bits less than the
register data width without using a barrel shifter for low
power operation to support vector operations for FFT or
filtering functions.

15 Claims, 8 Drawing Sheets

100
2, 102 104 % 424a 42<b
Ia
[0 stePreesac 31} [0 ADDRMASKREG 31| [0 STEPREGSR 31] [0 STEPREGSR2 31]
r LOAD STORE UNIT i T]
| 110 i |
lp====mmmmmmm e 1
: SHIFT CIROUIT i
I 1 ‘
1 1|
! !
1 1
| : |
1
I H f
| 126-0% 126-1- |
I 1
I s ————— 1
bomos e 3 s |
UR| 0=LEFT.1=RiGHT || [315 108 :l
_»| RS | 0=5A0SR, 1= MASKISR2 || 324, |
140 K 0= 1-BiT, 1= 2-BIT e f:.":.‘:.“.:*:_—:.—:_—_:—_:—_:—_:-_i‘
32 136 138
0 134~ 59 éo 34

0 4 “
LelolefolaIxPelxx x[x]x[x[x]x[x]x[x]x[x]x[x]x

DX x I x [fur]rs]

US 11,847,427 B2

Page 2
(56) References Cited 2009/0019262 Al 1/2009 Tashiro et al.
2009/0063820 Al 3/2009 Xi et al.
U.S. PATENT DOCUMENTS 2009/0150654 Al 6/2009 Oberman et al.
2009/0265409 Al 10/2009 Peleg et al.
6,014,684 A 1/2000 Hoffman 2010/0191979 Al 7/2010 Zipperer et al.
6,233,597 Bl 5/2001 Tanoue et al. 2010/0211761 Al 82010 Dasgupta
6317820 Bl 112001 Shiell ot al. 2010/0306292 Al 12/2010 Catherwood et al.
6.574.724 Bl 6/2003 Hoyle et al. 2013/0061022 A1 3/2013 Lee
7,062,526 Bl 6/2006 Hoyle 2013/0145124 Al 6/2013 Qiu et al.
7,136,265 B2 11/2006 Wong et al. 2014/0280420 Al 9/2014 Khan
7,236,338 B2 6/2007 Hale et al. 2015/0058389 Al 2/2015 Blomgren et al.
7,281,117 B2* 10/2007 Tanaka GO6F 9/30014 2015/0121043 Al 4/2015 Lee et al.
7121226 2016/0291974 Al 10/2016 Lingam
; 2016/0292127 Al 10/2016 Lingam
7,386,326 B2 6/2008 Sundar: t al. g
7587377 B2 92009 Royer et ol. 2018/0018298 Al 12018 Lingam et al.
7,681,013 Bl 3/2010 Trivedi et al.
7,937,559 Bl 5/2011 Parameswar GO6F 9/731020/éﬁ61 OTHER PUBLICATIONS
8,065,506 B2 11/2011 Xi et al. Hewlett-Packard, “PA-RISC 2.0”, 1995, pp. 2:18; 7:60, 62.*
9,817,791 B2 11/2017 Lingam et al. . . ” .
0.952.865 B2 4/2018 Lingam et al. MSP Low-Power Microcontrollers”, Texas Instruments, www.ti.
2001/0033469 Al 10/2001 Macbeth et al. com/msp, 2015, 41 pgs.
2001/0037352 Al 11/2001 Hong Plant et al., “MSP432 Microcontrollers: Bringing High Perfor-
2002/0156818 Al* 10/2002 Rochec.oovvennnnns GO6F 7/768 mance to Low-Power Applications”, Texas Instruments, Mar. 2015,
708/200 11 pgs.
2002/0198911 A1 12/2002 qumgren et al. Texas Instruments, “The MSP430 Hardware Multiplier—Function
2003/0196072 Al 10/2003 Chinnakonda et al. and Applications”, Application Report SLAA042, Apr. 1999 (34
2005/0005180 Al 1/2005 Webster pages).
2005;0044434 Al 2;2005 Kan}hlj et al. | SGS-Thomson Microelectronics, “D950-Core: 16-Bit Fixed Point
2005/0144215 Al 6/2005 Simkins et al. Digital Signal Processor (DSP) Core”, Sep. 4, 1997 (89 pages).
2005/0251644 Al 11/2005 Maher . . .
International Search Report and Written Opinion, PCT/US 2017/
2007/0083736 Al 4/2007 Baktha et al. 067030, dated Apr. 5. 2018, 7
2008/0071848 Al 3/2008 Baireddy U, dated Apr. 5, 2018, 7 pages.
2008/0133627 Al 6/2008 Langhammer et al. Non-Final Office Action dated Sep. 10, 2021, U.S. Appl. No.
2008/0141012 Al 6/2008 Yehia et al. 16/920,901, filed Jul. 6, 2020, 11 pages.
2008/0263285 Al 10/2008 Sharma et al.
2008/0270771 Al 10/2008 Lee * cited by examiner

US 11,847,427 B2

Sheet 1 of 8

Dec. 19, 2023

U.S. Patent

x [sulun| x | x X X[x[x|x{x]x|[x|x]|x X | x| x vlolv o] 1 "DIA
vm om 62~ pe| JQ ¥ < 0
8ElL 9¢l cel
il EE e S e \llllllllllﬂ bm-wu:.m_-?o M ov
| z€ “ ZUSIMSYIN = | "4S/IOVS =0 | S
I 8¢k\Je | 1HOT =} ‘1431=0 ¥y
I 'y P i @2 TV
“_ 00O L o o === == .._|_
[o S _
“ gs-mﬁ _Ilv\lw 29z gvmﬁ 0\ 09!
_ :»:; L A A A »_::, I
| TNy === |
_ SY —»] —== _
| L - "
_ ——— =
Il eqgzl ZZL e °oe 0 =T _
_ 2 26 \e— sy 0zl i
“ _..UFI.......IIIIJ V\ LINDYID 14IHS "
> |
“ LiQ 9 71 211 _lllmmlllllmmll_ == —————————————
I ~ ke 0Ll
_ LY R1__¥p b1y "% LINN FHOLS avOTl |
Fuu“””””””””l. L L T L T T T T T T T T e e — — — — — — .|_
1 2¥SOFWdILS 0| (1€ uSOIJ3LS 0 OTd MSYIN HAaY 1€ 0VSOFdAUS 0
/ \ A 4 \ A
avey eyZY . 0L 1z X~
001

U.S. Patent

e e — —

Dec. 19, 2023 Sheet 2 of 8 US 11,847,427 B2
200
100 210
N\ /
LOW ENERGY
ACCELERATOR | _APDR ADDR | LOW ENERGY
(ASIP) DATA DATA | ACCELERATOR
- - -t > RAM
202 212 214
N\ / /
ADDR ADDR
oDMA > ™ PERIPHERAL |__ ADC
<DATA | DPATA | BRIDGE [~ | CONVERTER
BUS
MATRIX
208 | ADDR
ADDR _ oara | PRAMIFLASH
~ > ROM
/ N
204 216
ADDR ADDR
eDebug | DATA DATA RAM
/ N
206 218

US 11,847,427 B2

Sheet 3 of 8

Dec. 19, 2023

U.S. Patent

<—"> v1va ‘yaav

¢ DIA
140 289 aLIgNY
gze~,| / zee /o0se c0e
9%€e vee) L £
yze WYYS L¥Od _ d3LSYAN
C oBUS 1 NOYO™dTNME | “snan
Va1
€ce I
\ Y v0€
a0 | L ==] j p,
A
WOY 310QIML ‘ »{ 31NCoN
vo01 vl
SH3LSIOTY ANYWOD VT
A4S 0ze-" 'y
\ v
2vRAINT || i< TOMINOO HoLS > >
ongaa [7'® anvanwwwoo v > g
A A
\ \ Y
[A%% oLe 80¢
JOV-UILINI FOVAULNI £ 4 ‘
e INVIS YASION | oo | SUILSION
S ¥0SS300¥d-09 ¥OLdT¥0S3a TYNOLLONNA
IAVIS 8dvV
wr\m S\m (dISY) va1 vwcm

US 11,847,427 B2

Sheet 4 of 8

Dec. 19, 2023

U.S. Patent

v "DIA
V¥ 3114 ¥31S193Y V1va ounos 7Y
14474
snivis OV
Sev~L ozuyswn
=a WV~ zusomudats | ssvwuaaw + 7O laNadoo1 4 807
e ®VeV~1 ysomydals | lelsberdais + O [[l iuvisdoon 90V
HOJ-dISY VI
¢V~ [} 6oppy i stewppy 1+ 8 [@l iNnoodoor 4 VO¥
A A
Y A
(LINN N1Tv) (xdiN) LINA (0a) LINN 1INN LINA M TIONINGD
LINN ¥3aay AL IN3I0144309 OIS AYHDON
JA1443LLNg avo1l avonl
/ / K S ' SN
ocY 8¢y 9cY oLl A%
¥344nd dOOTNOILONYLSNI = >
Y / L J
WOY 37aaIMmL LSV AYOWIIN WYHO0¥Hd
V01 vO01va1
4)
vee [4%%

US 11,847,427 B2

Sheet 5 of 8

Dec. 19, 2023

U.S. Patent

¢ DIA
GoY-0%Y [0S ‘A0S ‘ZIS
Jaoow —— IYSBW ‘ysew
7EG ~ nv AN elepw fe 8¢y hwm%_mm L~ 0€S | 4 des ed |~ 8CS
1INN 93 dardLLNA LINN 93Y
Hivd-vivd yaav
» AAA A A A A »
l |
J9V1S NOLLNOAXT | ~809
Y i \ \
aN3 40071 42 (4% [0S ‘A0S ‘ZIS
LHVIS d001 N / jsew ‘ysew
INNOD 4001 GoY ‘oY 893y || isd ‘es ‘ed
LINN 93 LINN 93 1¥0d LINN 93
d001 viva -d daav
7 ¥ /'y Y * S
916 0LS
_
¥30003d ¥30003d ¥30023a ¥3a023a ¥30003d
02G -"|anssi3ONIS | 925 | A48 AW [¥2S| oa1 [-¢cS 1saT - 816
39V1S wﬁEOOmc ~- 905

U.S. Patent Dec. 19, 2023 Sheet 6 of 8 US 11,847,427 B2
r—==-=-=-=-=-=-=-=-== |
| 606 » |
L\ 414 |
I T~ |
+»| RcO > |
| |
I | Ref > I
| |
| > |
»| Rc2 > |
| |
.| Re3 > | ALU
I~ 608 |—L»| UNIT
| Ro I Y
| |
l » Rc5 > [
| |
L, |
|»| Rc6 > [
| |
™| Rc7 |—9 > |
I |
| 5 |
LOAD ' J~ 1 [Lo
COEFFICIENT : 610 : > STORE
UNIT | A UNIT
/ | | \
604 : : 110
| - |
- MULTIPLY
: 612 | UNIT
| |
e e e e e o —— —J N
428

US 11,847,427 B2

Sheet 7 of 8

Dec. 19, 2023

U.S. Patent

L DIA

00COGBO0OONNCOROCOOONCOXNXXL0L L |

uinjal
doojop XX000XKKXX 0001
Juopeo XOXXXXXXO000 | |
0laz peo| XX0000KXX L 01
wwi”peo| XXXXXXX |, 000}
1dwo _ XXO00000000XO000 |
ssed _ XX000000000000XX001 | L
Jiysl XOAXOONOCOOOOOXXXL LOL L
Bys) X000CACONAANCCOXXXX0L0L L
000000 | |
dou
ssed | 0l
Jdwd 0l0LL
Ys~Xewuiw 1004}
Xewu|w 00011
SSAQY MHS 111
NSV ¥HS 0})
ans Lol
Jaay 00l
700y HENS 110 XXXXXXXXXX |
18NS HAAv 010 dou
ogns 100 XXX, | b snd"ppe | 010
ngy:r | ngil | ongyid 20av 000 dou dou Y jA07)S 1110
OYW I 4p [oywiigs | oy s do™Ayq : do udokdw |0 0 Vs 0110
udo™Ayq 0] udoAdw | 0L |zxpypI o4V PI | 00
Aug:q Adw : w H PL:PI VISPl : ST
pirsI Auq Adwed 0
\efoelez|ez|z]|oz|sz|velee| 2 | Lz | oz [er[sL]zL{oL|st{vi|eL] 2z [ui]oi[e]8]Z]9fs|t]|e[z]L |0

004

U.S. Patent Dec. 19, 2023 Sheet 8 of 8 US 11,847,427 B2

0]1]213]4|5]6|718[9}10]11|12]13]14] 15 |16]17]18]19]20]21|22]23}24]|25|26]27{28[29] 30 | K]
(101071X000000000000XVOXXKXX smr_lrshift
0 Ishift
sd: mSM | sf: shift factor
g:eSM e : eShift
0 sal 0 one
130 < 1 ma 1 two
1 rshift
sd:mSr | sf: shift_factor
e:edr e : eShift
0 sr 0 one
L 182 1 two
1000xxx Idimm
00x00x load_imm
d: mAguRegs imm : word18
¢ eAguRegs
010 load Rimm
d:mR imm : word16
mRr
0| i:t3u
mRi
1] i:3u
10xxx load zero
0] d:mRe 0000000000000000
i:{3u
1100000 load_cnt
imm : word16
Is sp off
1001xxx 00 load R sp idx imm
d:mR 0000000000 offs : t6u
mRr
mRi
010 store R sp idx imm
s:mR 0000000000 offs : tu
mRr
mRi
10h00xx load_Rc_sp_idx_imm
d;mRe 0000000000 offs : tu
i:t3u
1100 store R sp idx imm
s:mRe 0000000000 offs : tbu
i:t3u
101 00300000000XX add_imm_SP
offs : word16
1011xxx pc dent
00x000000 doloop
end : word16
return
{013000000000000000XXX0XX
refi
1 0X0OKKXXOOCOOOKXNKNXXX

US 11,847,427 B2

1
LOAD STORE CIRCUIT WITH DEDICATED
SINGLE OR DUAL BIT SHIFT CIRCUIT AND
OPCODES FOR LOW POWER
ACCELERATOR PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to U.S. patent applica-
tion Ser. No. 14/678,944, filed Apr. 4, 2015 (and issued as
U.S. Pat. No. 9,952,865) and entitled “LOW ENERGY
ACCELERATOR PROCESSOR ARCHITECTURE WITH
SHORT PARALLEL INSTRUCTION WORD AND NON-
ORTHOGONAL REGISTER DATA FILE,” and to U.S.
patent application Ser. No. 14/678,939, filed Apr. 4, 2015
(and issued as U.S. Pat. No. 9,817,791) and entitled “LOW
ENERGY ACCELERATOR PROCESSOR ARCHITEC-
TURE WITH SHORT PARALLEL INSTRUCTION
WORD,” which applications are hereby incorporated by
reference.

TECHNICAL FIELD

The present disclosure relates to electronic processor
circuits and more particularly to microcontrollers and other
integrated circuits.

BACKGROUND

Microcontroller units (MCUs) and other microprocessors
are often used for battery powered user devices, for control
systems to process data from sensors, or for other applica-
tions in which processing speed and low power consumption
are important. Many applications involve analog signals
received by a processor circuit as inputs from sensing
devices, and mixed signal processors (MSPs) accordingly
include embedded analog to digital converters and analog
comparison functions combined with processor circuits.
Example analog sensors include pressure, temperature,
speed and rotation sensors, gyroscopes, accelerometers,
optical sensors and the like. The analog circuitry receives
analog input signals from a sensor and converts these to
digital data for use in performing computations. Reduced
power consumption in MCUs and MSPs can be achieved by
executing various instructions in dedicated or specialized
execution unit circuitry optimized for individual groups of
instructions so that only a minimum number of gates have to
toggle during the execution of a given instruction while
other processor system data paths remain quiet. Some forms
of specialized execution circuits are referred to as applica-
tion specific instruction set processors (ASIPs) often used
for signal conditioning algorithms. Moreover, certain signal
conditioning computations can be made more efficient by
intelligent address generation operations, such as for signal
conditioning operations using vector computations (FFT,
FIR filtering, IIR filtering, etc). However, simply limiting
address generation operations for an ASIP to reduce power
consumption can limit computational performance.

SUMMARY

In described examples, integrated circuits such as micro-
controller units (MCUSs) are disclosed with a low energy
accelerator (LEA) processor circuit or other application
specific integrated processor (ASIP) circuit. The examples
include a load store circuit to perform load and store
operations associated with at least one register, and a low

10

15

20

25

30

35

40

45

50

55

60

65

2

gate count shift circuit to selectively shift the data of the
register by only an integer number of bits less than the
register data width. Example circuitry and corresponding
instruction set architecture opcodes are described in which
shift circuitry facilitates low-power address generation
operations frequently used for vector operations associated
with FFT or filtering functions as part of the load store unit
in an ASIP, while providing support for a full set of address
update mechanisms without significant overhead. Thus,
while other solutions employ a full barrel shifter that sup-
ports arbitrary bit shifts throughout the entire register data
width, disclosed examples avoid the usage of a full barrel
shifter that is expensive in terms of gate count and energy
consumption.

DESCRIPTION OF THE VIEWS OF THE
DRAWINGS

FIG. 1 is a schematic diagram of a dedicated single or dual
bit shift circuit in a microcontroller integrated circuit.

FIG. 2 is a schematic diagram of an example microcon-
troller integrated circuit including an example low energy
accelerator processor.

FIG. 3 is a schematic diagram of additional details of the
low energy accelerator processor of the microcontroller of
FIG. 2.

FIG. 4 is a detailed schematic diagram of a low energy
accelerator core of the low energy accelerator processor of
FIG. 3.

FIG. 5 is a program execution diagram of instruction
execution stages for an example low energy accelerator
processor circuit.

FIG. 6 is a schematic diagram of details of a data register
file arrangement in the low energy accelerator processor
circuit of FIGS. 2-4.

FIG. 7 is a chart of an opcode encoding for an instruction
set architecture (ISA) of the example microcontroller inte-
grated circuit of FIGS. 1-6.

FIG. 8 is a table of additional shift circuit control details
of the instruction set architecture arrangement in the
example microcontroller integrated circuit of FIGS. 1-7.

DETAILED DESCRIPTION

In the drawings, like reference numerals refer to like
elements throughout, and the various features are not nec-
essarily drawn to scale. In the following discussion and in
the claims, the terms “including”, “includes”, ‘“having”,
“has”, “with”, or variants thereof are intended to be inclu-
sive in a manner similar to the term “comprising”, and thus
should be interpreted to mean “including, but not limited to
.. ..7 Also, the term “couple” or “couples” is intended to
include indirect or direct electrical connection or combina-
tions thereof. For example, if a first device couples to or is
coupled with a second device, that connection may be
through a direct electrical connection, or through an indirect
electrical connection via one or more intervening devices
and connections.

FIGS. 1 and 2 show a microcontroller unit (MCU) 200
which can be a single integrated circuit (IC) 200 in one
example. Certain example implementations include analog
interface circuitry such as analog to digital converters,
digital to analog converters, and associated signal condi-
tioning circuitry, in which case the integrated circuit 200 can
be referred to as a mixed signal processor (MSP). As best
shown in FIG. 2, the integrated circuit 200 includes a bus
matrix or system bus 208 along with a main or central

US 11,847,427 B2

3

processing unit (CPU) 204 and a low-energy accelerator
processor (LEA) or other application specific integrated
processor (ASIP) circuit 100 and associated memory 210.
The CPU 204 is operatively coupled with the system bus 208
to perform general computing tasks, and the ASIP circuit
100 in one example operates to execute vector computation
instructions 130 for filtering and FFT computations.

FIG. 1 shows one example shift circuit 120 constructed as
part of the load store unit 110 in the ASIP circuit 100. The
ASIP circuit 100 includes a load store unit or load store
circuit 110 with a dedicated shift circuit 120 to perform load
and store operations associated with at least one register 102
or 104 in the ASIP circuit 100. The shift circuit 120 in one
example is operative according to a given vector computa-
tion instruction 130 to selectively shift data of a select one
of'a 32-bit step register 102 (labeled “SAQO” in the drawing)
and a 32-bit address mask register 104 (labeled “Addr
MASK REG.” in the drawing). In other examples, the shift
circuit 120 can be dedicated to operate only in a single
register of the ASIP circuit 100, or the shift circuit 120 can
be selectively operated by suitable control signals to operate
on a select one of a plurality of registers of the circuit 100.
Unlike a full barrel shifter, the shift circuit 120 conserves
power by only providing the capability of shifting the
register data by an integer number L bits in a single
operation. In general, the maximum shift amount L is less
than an integer number J corresponding to the number of bits
in the associated registers 102, 104, where J=32 in the
illustrated example. The number of shifts L in a particular
operation, moreover, is defined according to a shift amount
operand 138 of the corresponding given vector computation
instruction 130 associated with that operation. L is in a
closed set S of positive integer numbers including a lowest
value of 1 and a highest value of T, where T is less than J.
In certain examples, L. can be any positive integer number
between and including 1 up to a maximum of T=J-1.

In this manner, the example shift circuit 120 is operative
according to the given instruction 130 to selectively shift the
data of the selected register 102 or 104 by only an integer
number of bits less than the register data width without using
a barrel shifter for low power operation to support vector
operations for FFT or filtering functions. In the example of
FIG. 1, T=2, and the shift circuit 120 is operative according
to a given short parallel instruction word 130 to selectively
shift the data of the register 102, 104 by only one bit or two
bits, according to a single bit shift amount operand 138 of
the instruction 130 (e.g., bit position 31 in FIG. 1).

As seen in FIG. 1, the example instruction 130 is a 32-bit
short parallel instruction word including a 5-bit opcode 132
(e.g., 10101 in bit positions O through 4). The example
instruction 130 further includes a single bit shift direction
operand 134 (bit position 29 in one example) indicating
whether a left or right shift is desired (direction indicated as
LSHIFT or RSHIFT in FIG. 1). The shift circuit 120 is
operative to selectively shift the data of the selected register
102 or 104 in either a first direction (L) or a second direction
(R) according to the single bit shift direction operand 134.
In other examples, separate opcodes can be used for left shift
and right shift operations.

In addition, the example instruction 130 in FIG. 1
includes a source register operand 136 (e.g., “RS” in bit
position 30) used in some examples to designate or select
one of a plurality of registers of the ASIP circuit 100 for
selective operation by the shift circuit 120. In the example
of FIG. 1, the source register operand 136 is a single bit
operand, and the shift circuit 120 selectively shifts the data
of a first register 102 or a second register 104 according to

20

25

35

40

45

4

the single bit source register operand 136 for left shift
operations. In this example, moreover, a different set of two
registers SR or SR2 424a or 4245, respectively, are used for
right shift operations. The circuit in FIG. 1 includes switch-
ing circuits 125a and 1255 to select which pair of registers
are selectable for right or left shift operations according to
the shift direction operand 134. In other examples, the shift
circuit 120 may be used to selectively shift data of a selected
one of more than two registers, for example, registers 102,
104, 418, 422, 424a , or 424b of the ASIP circuit 100 as
described further below in connection with FIG. 4. In such
examples, the source register operand 136 can be more than
one bit, with the value encoded to designate a select one of
a plurality of registers for shift operations by the circuit 120.

A table 140 in FIG. 1 shows example definitions and
encodings of the operands 134, 136 and 138, with the single
bit shift direction operand 134 (L/R) indicating a left shift
for a bit value of 0 and a right shift for a bit value of 1. The
source register operand (RS) in this example designates
shifting of the first register 102 for a bit value of 0, and the
mask register 104 is shifted for an operand bit value of 1.
Also, the instruction 130 provides a single bit shift amount
operand 138 (K) in which a bit value of 0 indicates a single
bit shift operation, and an operand bit value of 1 indicates a
dual bit shift operation.

The shift circuit 120 in FIG. 1 includes an encoder 122 or
multiplexer receiving two sets of 32-bit input data from the
selectable registers 102 and 104, respectively, and providing
a single 32-bit output to a set of 32 4 to 1 multiplexers 126-0,
126-1, 126-2 . . . 126-31 each providing a single bit output
to form a shifted 32-bit word 128 provided as an input
through a 32 to 64 demultiplexer or switching circuit 124 to
the input of the selected register 102 or 104. The 64 to 32
multiplexer 122 and the demultiplexer 124 are operated
according to the source register operand bit RS such that the
register 102 or the register 104 is selected for shifting
operation. In addition, the 4 to 1 multiplexers 126 are
operated according to the single bit shift direction operand
134 (L/R) and the single bit shift amount operand 138 (K).

In this manner, a selectable single or dual bit shift
operation can be performed in either the left or right direc-
tion according to the operands 29 and 31, with the source
register operand 136 determining which register 102, 104 is
selectively shifted according to the given instruction word
130. As seen in FIG. 1, the shifting is implemented without
a full barrel shifter, and thus the power consumption of the
load store unit 110 is reduced. Furthermore, the provision of
single operation dual or single bit shifting accommodates
various vector operations for filtering and/or FFT computa-
tions, with the single or dual bit shifting being accomplished
in a single clock cycle. Furthermore, additional shift
amounts can be implemented by implementation of multiple
instructions. For example, a 5-bit shift can be accomplished
by executing a pair of dual bit instructions 130 (K=1) and a
single bit instruction 130 (K=0). The shift circuit 120 is
provided with a given instruction 130 and the ASIP circuit
100 includes suitable decoding circuitry as described further
below in order to selectively actuate the shift circuit 121 a
matching opcode 132 is present in a received instruction
130.

Although illustrated in the context of an MCU or MSP
integrated circuit 200, the various concepts of the described
examples can be used in any microcontroller or processor-
based circuitry. The illustrated low energy accelerator pro-
cessor example facilitates accelerating commonly per-
formed vector operations with lower power consumption,
and the use of dedicated limited range shift circuitry 120

US 11,847,427 B2

5

facilitates power efficiency particularly compared to the use
of full barrel shifters. The described examples are directed to
LEAs dedicated to processing special instructions 130 to
address signal conditioning operations using vector compu-
tations (FFT, FIR filtering, IIR filtering, etc). In these
particular applications, single and dual-bit shift operations
can accommodate a large majority of operations, and thus
facilitate fast processing speeds via single cycle shifts in
most cases, with the capability of implementing shifts of 3
or more bits using multiple instructions 130 executed by the
ASIP/LEA circuit 100. For example, FFT (or inverse FFT)
operations can employ recursive decomposition of discrete
Fourier transform (DFT) techniques using various algo-
rithms, such as a Radix-2 Decimation-in-Time (DIT)
approach with 2-point DFT implemented using butterfly
multiplier. The example shift circuitry 120 can be employed
in certain applications for address offset register operations,
thus allowing offsets to be divided by two or four, or
multiplied by two or four by shifting a register containing
offset data by 1 or 2 bits in either the left or right directions
using appropriate instructions 130 having the shift opcode
132 and the appropriately set operands 134, 136 and 138.

In some examples, two specific instructions 130 can be
used for left or right shifting, or a single instruction 130 can
be used with an appropriate shift direction operand bit 134
as shown in FIG. 1. These examples use specific (fixed) 1-bit
and 2-bit shift amounts less than the data width of the
associated registers 102, 104. This described technique
avoids the usage of a full barrel shifter that is expensive both
in terms of gate count and energy consumption. These two
example shift amounts are sufficient for nearly all the signal
conditioning algorithms of interest in certain applications.
At the same time, the described designs allow implementa-
tion of larger address updates using multiple instantiations
of these instructions 130. Instructions 130 as described can
be used for the basic operation of a 2 k pointer update of the
load store circuit 110 without a full shifter for the low energy
accelerator ASIP 100 with a short parallel instruction word
(SPIW) instruction set architecture (ISA). The disclosed
systems and instructions/operations enable low-energy and
low gate count implementation of address pointer updates
compared to the usage of an expensive full barrel shifter.

FIG. 2 shows a high level architecture of a microcon-
troller system 200 which can be arranged on a single
integrated circuit as a “system on an integrated circuit”
(SOIC), or which can be arranged in further alternative
examples as a multiple chip module or circuit board. The bus
matrix or system bus 208 couples various functional blocks
or circuits to one another with the LEA processor 100
coupled to the bus matrix 208. The LEA (ASIP) 100 in one
example includes a local memory 101 for instructions and/or
data. The units and “functions” of the system 200 are
embodied as circuits in certain examples, although referred
to as units and/or functions and/or blocks hereinafter. As
seen in FIG. 2, various additional embedded functional units
are provided as part of system 200. An embedded central
processor unit or circuit (eCPU) 204 is provided to perform
general computing tasks and to support various input and
output functions, memory accesses, data store and retrieval
operations, and communications with external devices. An
embedded direct memory access (eDMA) circuit 202 is
coupled to the bus matrix 208 to access external memory
such as DRAM or FLASH storage outside the system 200.
A software debug module (eDebug) 206 is provided and
coupled to the bus matrix 208 in one example.

The LEA circuit 100 in FIG. 2 has an associated memory
210 (LEA RAM labeled “Low Energy Accelerator RAM” in

10

15

20

25

30

35

40

45

50

55

60

65

6

the drawing) also coupled to the system bus 208, for
example, an embedded RAM such as static RAM (SRAM),
ferroelectric RAM (FRAM), flash RAM and/or dynamic
RAM (DRAM). The LEA circuit 100 uses the memory 210
for data storage and for storing intermediate results in one
example. In certain examples, a dedicated LEA RAM 210 is
omitted, and the RAM (218) and/or FRAM/Flash (216) is
sufficient. Where the LEA RAM 210 is provided, the LEA
100 can still access and use the RAM (218) and/or FRAM
(216).

A peripheral bridge unit 212 couples various additional
peripheral units (not shown) to the bus matrix 208 and thus
to the eCPU 204, and/or to the LEA circuit 100. Additional
peripheral units such as bus interface units for test bus, scan
bus, USB, and other bus interfaces can be coupled to the
peripheral bridge 212. In addition, various application spe-
cific peripheral units such as analog to digital converters
(ADCQ), digital to analog converters (DAC), embedded or
external sensors such as gyroscopes, accelerometers, and
position sensors can be coupled to the peripheral bridge 212.
In the example of FIG. 2, an ADC converter 214 is opera-
tively coupled with the system bus 208 via the peripheral
bridge 212, and the ADC converter 214 can be constructed
as part of the integrated circuit 200 in some examples. Radio
and wireless communications functions such as WiFi, Blu-
etooth, NFC, and RF and cellular functions can be embed-
ded as additional peripheral units with operative coupling to
the peripheral bridge 212. The system 200 of FIG. 2 also
includes non-volatile program storage 216, such as FRAM
and/or FLASH memory for storing code for the LEA circuit
100. The storage circuit 216 in one example includes a
portion of read only memory (ROM) for storing code used
for boot-up or start-up program storage. Additional on-board
memory 218 is provided in one example, which can be
embedded RAM such as SRAM or DRAM (labeled as
“RAM” in FIG. 2). The FRAM/ROM 216 and/or the RAM
218 can be considered a first memory coupled with the
system bus 208, and the low energy accelerator RAM 210 is
a second memory that can be used for ASIP instructions.

The LEA circuit 100 in one example provides a low
power, high performance, programmable vector processing
unit that can perform various vector computations indepen-
dently from the eCPU 204. In this manner, the eCPU 204 can
perform other typical computing tasks while the LEA 100
simultaneously performs vector computations required for
certain applications, thereby providing a high performance
vector accelerator or coprocessor for the system 200. The
various functional blocks or circuits of the MCU system 200
can be provided, for example, as embedded functions imple-
mented within a single integrated circuit. However, the
arrangements of the present application are not limited to a
single integrated circuit implementation, and various alter-
natives include implementing system 200 using multiple
chips in a single package, stacked package modules, pack-
age on package modules, multi-chip modules, and circuit
boards including memory chips, a CPU, and a LEA circuit
100 that can be fabricated as a standalone dedicated inte-
grated circuit or as application specific integrated circuits
(ASICs). The LEA circuit 100 can be provided, in one
example arrangement, as a completely parameterized ASIP
device core for embedding with other known and complete
functional cores such as DSP, ARM, CPU, MPU, RISC and
the like cores for use in an ASIC device.

a FIG. 3 shows details of an example of the functional
circuits used to implement the LEA 100 in FIG. 2, and are
referred to hereinafter as “blocks”. A LEA command and
switch control block 314 is coupled to a local bus. An

US 11,847,427 B2

7

additional peripheral block (APB) slave circuit 306 is
coupled to the local bus and includes a set of functional
registers 308, test functions 310 and a descriptor register
312. The APB slave circuit 306 provides an interface to
additional peripheral devices on an advanced peripheral bus
(APB). A LEA VBUS master circuit 302 provides an inter-
face to the bus matrix 208 of FIG. 2. A LEA module timer
304 is coupled to a local bus. A set of LEA command
registers 320 is coupled to a LEA-ASIP Core 326. The
LEA-ASIP core 326 provides the computational core for the
LEA circuit 100, and further details of the LEA core 326 are
described further below in connection with FIG. 4. A
co-processor slave interface 316 in FIG. 3 couples the LEA
circuit 100 to the CPU circuit 204 of FIG. 2 and allows the
LEA circuit 100 to act as a co-processor. The LEA command
and switch control 314 can be exercised in one example
either through the APB slave circuit 306 or through the
co-processor slave interface 316. In some examples, the
co-processor slave interface 316 is omitted or unused and
the LEA command and switch control 314 is operated
through the APB slave circuit 306. The blocks 318 (Test
Interface), 322 (Debug Interface), 324 (Local Twiddle ROM
including a FFT Twiddle Coefficient 323) in FIG. 3 provide
additional interfaces and coefficient data storage for the LEA
circuit 100. A block 328 provides a code ROM 330, a single
port SRAM 332, an arbiter circuit 334, and a cyclic redun-
dancy check (CRC) and DfT module 336 provide a “design
for test” interface to enable self-testing and test operations.
Instruction words for the LEA ASIP CORE circuit 326 in
one example can be stored in a code ROM 330 (labeled
BWULP_CROM in FIG. 3) and the single port SRAM 332
can be accessed by the LEA ASIP CORE 326 for retrieving
instructions in some examples.

Referring also to FIG. 4, the LEA ASIP-Core circuit 326
provides a processor with four primary functional units 110,
426, 428 and 430, along with a program controller unit 402
to execute instructions in the form of parallel instruction
words 130. In this example, a short parallel instruction word
(SPIW) arrangement is used including short parallel instruc-
tion words 130 that are no wider than the width of the
memory bus used in the system 200. This example reduces
the driver devices needed between the instruction memory
and the LEA ASIP-Core circuit 326. This reduces system
bus power consumption while allowing a new instruction
word to be fetched each cycle, without the need for widening
the memory data path. In an alternative arrangement, the
system bus can have a data word width that is half the length
of the short parallel instruction word so that if the LEA
circuit 100 is executing instructions from a memory located
on the system bus, two memory accesses will be used to
fetch an instruction word. In a further alternative, the
instruction words 130 to be executed by the LEA processor
can be stored in ROM or SRAM memory within the LEA
circuit 100, in which case the local bus within the LEA
circuit 100 can have a width equal to the length of the short
parallel instruction word, enabling a new instruction to be
fetched each clock cycle. The instruction set architecture or
ISA for the LEA circuit 100 in one example is optimized for
both vector computation efficiency and low energy. The
instruction set architecture is arranged in one example so
that the number of gates switching for certain operations is
controlled to reduce the active power consumption of the
LEAcircuit 100. The LEA ASIP-Core 326 in FIG. 4 includes
a pair of loop count registers 404, two loop start registers
406, and two loop end registers 408 and a program controller
unit 402 to enable two simultaneous execution loops such as
an inner do loop and an outer do loop. Status and control

10

15

20

25

30

35

40

45

50

55

60

65

8

registers 410 and 412 provide additional resources for the
program controller unit 402. The LEA core 326 in one
example can fetch instruction words from a local memory
(e.g., local memory 101 in FIG. 2), shown as a LEA local
program memory 432 in FIG. 4, and loop execution is
further supported by an instruction loop buffer 431.

The four execution units in FIG. 4 are the load store unit
110, a load coefficient unit (LDC) 426, the multiply unit 428,
and the butterfly/adder unit 430, which is an arithmetic logic
unit (ALU) arranged to efficiently compute vector opera-
tions such as the butterfly computation used in FFT, FIR, IIR
and DCT vector operations. Additional resources provided
in the example LEA ASIP-Core circuit 326 includes four
separate address registers 418 coupled to the load store unit
110, three step registers 102, and an address mask register
104 are coupled to the load store unit 110. In addition, the
load coefficient unit 426 is coupled to a separate address
register 422, a set of step registers 424a and 4245 (indicated
as SR and SR2 in the drawing), a mask register 425, and the
local twiddle ROM 324, for use in providing constants for
certain computations. The shift circuit 120 in FIG. 1
executes instructions 130 to selectively shift data of a
selected one registers 102, 104, 418, 422, 424a or 424b of
the ASIP circuit 100. The four functional units 110, 426, 428
and 430 are each coupled to certain ones of a set of data
registers in the data register file 414, but the four functional
units are not each coupled to all of the registers in the data
register file 414 in one example. In this implementation, an
optimized design of the data register file 414 is used to tailor
the physical connections needed between the various execu-
tion units and the registers in the data register file 414 so as
to support the vector operations to be performed with the
LEA ASIP-Core circuit 326 with a highly reduced gate
count. The address registers 418, the step registers 102 for
the load store unit, and the address register 422, and the step
register 424, are also arranged separate from the data reg-
isters and are not connected to all of the execution units. In
this manner, the number of connections between these
address and step registers and the four execution units 110,
426, 428 and 430 is limited to the optimal connections
needed to perform selected vector operations in one
example, but is not fully orthogonal in that some of the
execution units have no connections to these registers and
resources.

FIG. 5 illustrates an example program execution pipeline
diagram 500 for the LEA processor circuit 100, which
begins with an instruction fetch operation 502. The fetch
operation is controlled by a program controller unit 504, and
is followed by an instruction word decoding stage 506.
During the decoding stage 506, the instruction word
retrieved by the program controller unit 504 at the previous
instruction fetch stage 502 is decoded by decoding units that
correspond to the various execution units of the low energy
accelerator core. For example, a load store decoder 518
(labeled “1dst decoder”) decodes a portion of the instruction
word that provides an op-code for the load store unit 110
(FIG. 4). A load coefficient decoder 522 (labeled “Idc
decoder”) decodes a portion of the instruction word at the
decoding stage 506 that provides an op-code for the load
coeflicient unit 426 (FIG. 4). A decoder 524 (labeled “mpy
decoder”) decodes a portion of the instruction word at the
decoding stage 506 that provides an op-code for the multi-
plier execution unit 428 (FIG. 4). A decoder 526 (labeled
“bfly decoder”) decodes another portion of the instruction
word at the decoding stage 506 that provides an op-code for
the butterfly/ADD execution unit (ALU 428 in FIG. 4). A
decoder 520 (labeled “single issue decoder” in FIG. 5)

US 11,847,427 B2

9

decodes a portion of the instruction word at the decoding
stage 506 that corresponds to the looping and program
counter functions supported by the program control unit.
The decoding stage 506 provides decoded opcodes which
are used to set up operations for execution by the LEA
circuit 100 at an execution stage 508 by units such as an
ADDR Reg. Unit 510, a peripheral port register unit 512, a
data path register unit 514 and a loop register unit 516.

The execution stage 508 in FIG. 5 shows execution of the
previously decoded instruction word by the execution units
110, 426, 428 and 430 of the LEA circuit 100, following the
decoding stage 506. During the execution stage 508, the
execution units of the LEA circuit 100 perform the indicated
operations in parallel in one example according to the
opcodes decoded from the instruction word at decoding
stage 506. Because the LEA instruction execution is pipe-
lined in this example, a new instruction word can be
executed each cycle, where the fetch stage 502, the decoding
stage 506, and the execution stage 508 each operate every
machine cycle so that the LEA circuit 100 performs a new
operation corresponding to a new instruction word 130 each
cycle. The machine cycle can correspond to a single system
clock cycle, in some arrangements. In other arrangements
the machine cycle can correspond to a divided down clock
cycle. At the execution stage 508, the decoded instruction
word op-codes (e.g., opcode 132 in FIG. 1 above) control the
operations performed by the LEA functional units (e.g., the
shift circuit 120 of the load store circuit 110) and other
hardware resources including, in the example of FIG. 4,
address registers 528 (labeled “ADDR. Reg. Unit”, a Periph-
eral Port Registers 530 (labeled “P-Port Regs™), a Multiplier
428, a DATA-PATH Reg. unit 532, and an ALU 534.

FIG. 6 illustrates an example arrangement for the data
register file 414 of FIG. 4. Registers 606 are arranged as
registers Rc0-Rc7. In one sample, the width of the data
registers 606 is the same as an example system bus width
(e.g., 32 bits). In another example, the system bus can be half
of the length of the instruction words or 16 bits. In another
example arrangement, the data registers 606 can be arranged
in 16 registers of 16 bits each. In the example arrangement
of FIG. 6, the load store unit 110 of the LEA processor core
circuit 326 can access just two of the eight registers in the
data register file 414 as source registers for load store
operations, while the load store unit 110 can access four of
the eight registers 606 as destination registers. In this
example, a 2 to 1 multiplexer 610 couples registers Rc4, Rc5
to the load store unit 110. A load coefficient functional unit
604 (Load Coeff. Unit) of the LEA processor core circuit
326 can only access one of the registers (Rc7 in the example
of FIG. 6) in the data register file 414. The multiply
execution unit 428 can only access registers Rc6, Rc7 as
source registers using a 2 to 1 multiplexer 612, and the
Multiply Unit 428 has registers Rc2, Rc3 as destination
registers. The ALU Unit 430 implements butterfly/ADD
operations and other ALU operations, and is coupled to all
eight of the registers Rc0-Rc7 by an 8 to 1 multiplexer 608.
As shown in FIG. 6, the ALU 430 is coupled to all eight of
the registers in register file 606 as destination registers. Thus
the ALU 430 can access any of the registers in the register
file 606.

FIG. 7 shows a combined opcode encoding chart 700 of
an example instruction set architecture for the LEA ASIP
circuit 100 for an example 32 bit instruction word width.
Because the instruction word width is relatively short at 32
bits, the instruction word can be transmitted from a local
memory store or a RAM, FRAM or FLLASH location using
the system data bus width and without the need for a wider

20

30

40

45

60

10

bus, and thus without the need for additional driver devices
and power to supply the drivers for a wider instruction word.
In an alternative approach the system data bus width can be
half the length of the short parallel instruction word, so that
two memory accesses can provide an instruction word.
Matching the instruction short parallel instruction word
width to the memory bus width, or to twice the memory bus
width, results in substantial reduction in the silicon area
required and a corresponding reduction in power consump-
tion. It also increases performance because a new instruction
word can be fetched each memory cycle or for every two
memory cycles. In an alternative arrangement, the system
bus width could be 16 bits, while the short parallel instruc-
tion word 130 remains at 32 bits. If the LEA processor
circuit 100 is retrieving instruction words from a memory
(e.g., memory 216 in FIG. 2) coupled on the system bus (bus
208 in FIG. 2) in this arrangement, the instruction fetch
would require two sequential accesses to memory over the
system bus. However in additional arrangements the instruc-
tion words can be stored in RAM or flash or ROM memory
positioned within the LEA processor circuit 100 (e.g., shown
as local memory 101 in FIG. 2), for example, having a local
bus of 32 bits in width, thereby enabling the LEA processor
circuit 100 to retrieve new instruction words each clock
cycle.

The instruction word example 700 in FIG. 7 has fields that
correspond to the execution units of the LEA processor
circuit 100, where the first bit is used to distinguish between
“1 slot” and “4 slot” instructions. Bits 1-11 provide opcodes
to the load-store execution unit. The column labeled “Is:
1dstA” in FIG. 7 shows a summary of some of the operations
for the load store unit are shown with their encoding. A
single bit 12 in this example provides a control field for the
load coefficient execution unit 426. In the column labeled
“ld: 1d_R,” this bit is shown with encoding for certain
operations. An opcode field for the multiplier unit 428 in this
example is provided by bits 13-18, and in the column labeled
“m: mpy,” selected operations are shown for this functional
unit with some example encoding. The remaining bits 19-31
of the instruction word provide the opcodes for controlling
the operations of the butterfly/add ALU execution unit 430.
In the column labeled “b :bfly,” some selected operations for
this execution unit 430 are shown with example encoding.

Additional “1 slot” operations are shown in FIG. 7,
including “Ishift,” “rshift,” “pass,” “cmpr,” “doloop,” and
“return” that are encoded in the bottom rows of table 700
when the first bit, bit 0, is a “1.” In this example The LEA
instruction set is tailored to fit in the 32 bit word length while
providing a four slot, single issue instruction word so the
load store unit 110, the load coefficient unit 426, the mul-
tiplier 428 and the butterfly/ ADD ALU unit 430 can execute
an operation for each LEA machine cycle. Further, the
instruction set architecture in this example includes “1 slot”
instructions that affect the program counter, stack pointer,
load immediate or store with immediate operands, and
register initializations. Although an example ISA arrange-
ment is illustrated in FIG. 7, variations can be made to the
example in order to form additional arrangements. For
example, although bits 1-11 were chosen for the opcodes for
the load store unit in the ISA shown in FIG. 7, another set
of bits of similar length could be used instead, such as that’s
21-31. More or fewer bits could be used for any one of the
execution unit opcodes. The particular bits assigned to an
execution unit can be modified to create additional alterna-
tive arrangements.

FIG. 8 shows a table 800 indicating a portion of the
opcodes used to determine “1 slot” operations. The shift

US 11,847,427 B2

11

circuit 120 in FIG. 1 operates according to certain opcodes
to selectively right shift data of a selected step register 102
(SAO) or an address mask register 104 associated with the
load store unit 110 or to left shift a selected step register
424a (SR) or 4245 (SR2) associated with the LDC 426 (see
FIGS. 1 and 4 above). In this example, the shift amount is
selected as 1 or 2 bits according to the K operand in bit
position 31. The opcodes of FIG. 8 include operation of the
shift circuit 120 of FIG. 1 via one or more instructions 130
having an example 5-bit opcode (e.g., 10101). The operand
134 (I/R) determines whether a right or left shift is to occur,
and the operand 136 (RS) selects the specific register to be
shifted. Other examples are possible, for instance, using a
multi-bit operand RS 136 to select from more than two
possible target registers for shifting either left or right. Also,
multi-bit operands 138 (K) can be used in other examples for
selective shifting by an integer number of bits L. encoded by
the operand 138 in a single operation for a vector compu-
tation instruction, wherein L is less than the bit-width J of
the shifted register.

In the example of FIG. 8, when the first bit 0 is a “1”, a
“1 slot” operation is indicated. As shown in FIG. 8, these 1
slot operations include certain shift operations, load imme-
diate or “Id_imm” operations, load or store operations with
immediate operands such as “Is_sp_off”, stack pointer
update operations such as “add_imm_SP”, and program
controller (PC) operations such as “pc_dent” operations in
one example. In this arrangement, moreover, the length of
the short parallel instruction word 130 can be less than or
equal to the width of the system bus. In an alternative
arrangement, the short parallel instruction word 130 is 32
bits wide, for example, while the system bus is only 16 bits
wide. In this arrangement, the instruction words would
require two memory accesses if the instruction words are
stored on a memory coupled to the system bus 208, however
instruction words 130 for the LEA processor circuit 100 can
be stored in local ROM, SRAM, FRAM and/or FLASH
memory within the LEA processor circuit 100 (e.g., shown
as local memory 101 in FIG. 2) and can be fetched in a single
clock cycle.

The above examples are merely illustrative of several
possible embodiments of various aspects of the present
disclosure, wherein equivalent alterations and/or modifica-
tions will occur to others skilled in the art upon reading and
understanding this specification and the annexed drawings.
Modifications are possible in the described embodiments,
and other embodiments are possible, within the scope of the
claims. In addition, although a particular feature of the
disclosure may have been disclosed with respect to only one
of multiple implementations, such feature may be combined
with one or more other features of other embodiments as
may be desired and advantageous for any given or particular
application.

The following is claimed:

1. A data circuit, comprising:

a register;

a first switching circuit having a first input and an first
output, wherein the first input of the first switching
circuit is coupled to the register;

a multiplexer having a single bit shift direction operand
input, a single bit shift amount operand input, and an
output, wherein the single bit shift direction operand
input is coupled to a switch control input of the first
switching circuit, and wherein the single bit shift
amount operand input is adapted to be coupled to an
instruction operand;

20

30

40

45

55

60

12

a demultiplexer, wherein an input of the demultiplexer is
coupled to an output of the multiplexer; and

a second switching circuit having a first input and an
output, wherein the first input of the second switching
circuit is coupled to the output of the demultiplexer, and
wherein the output of the second switching circuit is
coupled to the register.

2. The data circuit of claim 1, wherein the switch control
input of the first switching circuit is adapted to be coupled
to a shift direction operand.

3. The data circuit of claim 1, wherein the second switch-
ing circuit further includes a second input, and the second
input of the second switching circuit is adapted to be coupled
to a shift direction operand.

4. The data circuit of claim 1, wherein the register is a step
register.

5. The data circuit of claim 1, wherein the register is an
address register.

6. The data circuit of claim 1, wherein the multiplexer has
an output coupled to a shifted data output register.

7. The data circuit of claim 1, wherein:

the register is a first register;

the data circuit includes a second register; and

the first switching circuit has a second input coupled to the
second register.

8. The data circuit of claim 7, wherein the multiplexer is
configured to selectively shift data from the first register in
a first direction and to selectively shift data from the second
register in a second direction, the second direction opposite
the first direction.

9. The data circuit of claim 7, further comprising:

a third register; and

a fourth register;

wherein the first switching circuit has a third input
coupled to the third register and the first switching
circuit has a fourth input coupled to the fourth register.

10. The data circuit of claim 9, wherein:

the multiplexer is a first multiplexer; and

the data circuit includes a second multiplexer coupled to:
a second output of the first switching circuit, the first
output of the first switching circuit, and an input of the
first multiplexer.

11. The data circuit of claim 7, wherein:

the output of the second switching circuit is a first output
coupled to the input of the first register; and

the second switching circuit has a second output coupled
to the second register.

12. The data circuit of claim 11, wherein the second
switching circuit includes a switch configured to selectively
switch between the first output of the second switching
circuit and the second output of the second switching circuit.

13. The data circuit of claim 11, further comprising:

a third register; and

a fourth register;

wherein the second switching circuit comprises a third
output coupled to the third register and a fourth output
coupled to the fourth register.

14. The data circuit of claim 13, wherein:

the second switching circuit includes:

a first switch configured to selectively switch between the
first output of the second switching circuit and the
second output of the second switching circuit; and

a second switch configured to selectively switch between
the third output of the second switching circuit and the
fourth output of the second switching circuit.

US 11,847,427 B2
13

15. The data circuit of claim 1, wherein the instruction
operand is received from an instruction.

#* #* #* #* #*

14

