(19)

US 20160191393A1

a2y Patent Application Publication o) Pub. No.: US 2016/0191393 A1

United States

Lermant

(43) Pub. Date:

Jun. 30, 2016

(54)

(71)

(72)

@

(22)

(60)

SELF-ADJUSTING TIERED CACHING
SYSTEM TO OPTIMIZE TRAFFIC
PERFORMANCE AND ORIGIN OFFLOAD

Applicant: Akamai Technologies, Inc., Cambridge,
MA (US)

Inventor: Pierre Lermant, Santa Clara, CA (US)

Appl. No.: 14/981,997
Filed: Dec. 29, 2015
Related U.S. Application Data

Provisional application No. 62/097,630, filed on Dec.
30, 2014.

D

(52)

&7

Publication Classification

Int. CI.

HO4L 12/803 (2006.01)

HO4L 29/06 (2006.01)

HO4L 12/733 (2006.01)

USS. CL

CPC oo HO4L 47/125 (2013.01); HO4L 45/20
(2013.01); HO4L 65/104 (2013.01)

ABSTRACT

A tiered caching system (e.g., in an overlay network such as
CDN) wherein SWR at an edge server therein is automati-
cally set (preferably based on request rate), while SWR at a
parent server therein has its SWR set at or near 0. Collectively,
these SWR settings provide for a self-adjusting tiered caching
system that optimizes both end user performance and the
origin traffic offload

s, ../..m«.,/"'w"\.w' TN T Wt N o, IR

A WIERET

e

. . SR
i o \‘4"/‘”’*~.‘*‘J"W\"/...N""/M\"”~“\”w VM\ .

/

y »«,W MMA VP W'“;-.,w {:\

]
'%‘

LIHGIEG

Patent Application Publication

WERNEY

. i, gt T s T I s ey

Jun. 30,2016 Sheet 1 of 2

et e,
P /“‘V“\% T S Sy (P i, Y,
s P i,
$ii,
Loy %
o £
o
%k
o
%
b3
g
#
#
&

US 2016/0191393 A1l

STAGMG

120

HTAGNG

200+ |

FiG. 2

%,

HARDW

g
¢

RATING BYSTEN

APFLICATION

WEB PROXY

2B~

NAME SERVER

DATA COLLECTION PROGERS

Patent Application Publication Jun. 30,2016 Sheet 2 of 2 US 2016/0191393 A1

tncoming fneoming ncoming
request setved raguest served fequest servad
from edge from edge o gateway

cache pache thru edge

i e Tima
} H
§ E
Request forwarded ! Request forwarded
o galeway segver z : 1o galeway sarver
asyachronously & ¥ synotyonously
G.

FIG. 3

FIG. 4

US 2016/0191393 Al

SELF-ADJUSTING TIERED CACHING
SYSTEM TO OPTIMIZE TRAFFIC
PERFORMANCE AND ORIGIN OFFLOAD

BACKGROUND
[0001] 1. Technical Field
[0002] This application relates generally to overlay net-

working and, in particular, to techniques to optimize traffic
performance and origin offload by an overlay network, such
as a content delivery network.

[0003] 2. Brief Description of the Related Art

[0004] Distributed computer systems are well-known in the
prior art. One such distributed computer system is a “content
delivery network™ or “CDN” that is operated and managed by
a service provider. The service provider typically provides the
content delivery service on behalf of third parties (customers)
who use the service provider’s infrastructure. A distributed
system of this type typically refers to a collection of autono-
mous computers linked by a network or networks, together
with the software, systems, protocols and techniques
designed to facilitate various services, such as content deliv-
ery, web application acceleration, or other support of out-
sourced origin site infrastructure. A CDN service provider
typically provides service delivery through digital properties
(such as a website), which are provisioned in a customer
portal and then deployed to the network. A digital property
typically is bound to one or more edge configurations that
allow the service provider to account for traffic and bill its
customer.

[0005] To maximize end user experience, content delivery
networks often implement some form of the Stale-While-
Revalidate (“SWR”) HTTP Cache-Control extension. The
SWR extension is described in Internet Request for Comment
(RFC) 5861, titled “HTTP stale controls.” The functionality
allows a cache to immediately return a stale response while it
revalidates it in the background, thereby hiding latency (both
in the network and on the server) from clients.

BRIEF SUMMARY

[0006] The approach herein provides a tiered caching sys-
tem (e.g., in an overlay network such as CDN) wherein SWR
at an edge server therein is automatically set (preferably
based on request rates), while SWR at a parent server therein
has its SWR set at or near 0. Collectively, these SWR settings
provide for a self-adjusting tiered caching system that opti-
mizes both end user performance and the origin traffic off-
load.

[0007] The foregoing has outlined some of the more perti-
nent features of the disclosed subject matter. These features
should be construed to be merely illustrative. Many other
beneficial results can be attained by applying the disclosed
subject matter in a different manner or by modifying the
subject matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] For a more complete understanding of the subject
disclosure and the advantages thereof, reference is now made
to the following descriptions taken in conjunction with the
accompanying drawings, in which:

[0009] FIG. 1 is a block diagram illustrating a known dis-
tributed computer system configured as a content delivery
network (CDN);

Jun. 30, 2016

[0010] FIG. 2 is a representative CDN edge machine con-
figuration;
[0011] FIG. 3 depicts a Stale-While-Revalidate (SWR)

process depicting that a request hitting an edge server during
an SWR period immediately returns a stale response while
the server revalidates it asynchronously in the background,
thereby hiding latency (both in the network and on the server)
from clients; and

[0012] FIG. 4 depicts a self-adjusting tiered caching system
to optimize traffic performance and origin offload according
to this disclosure.

DETAILED DESCRIPTION

[0013] FIG. 1illustrates a known distributed computer sys-
tem configured as a content delivery network (CDN). The
system has a set of machines 102a-» distributed around the
Internet. Typically, most of the machines are servers located
near the edge of the Internet, i.e., at or adjacent end user
access networks. A network operations command center
(NOCC) 104 manages operations of the various machines in
the system. Third party sites, such as web site 106, offload
delivery of content (e.g., HTML, embedded page objects,
streaming media, software downloads, and the like) to the
distributed computer system 100 and, in particular, to “edge”
servers. Typically, content providers offload their content
delivery by aliasing (e.g., by a DNS CNAME) given content
provider domains or sub-domains to domains that are man-
aged by the service provider’s authoritative domain name
service. End users that desire the content are directed to the
distributed computer system to obtain that content more reli-
ably and efficiently. Although not shown in detail, the distrib-
uted computer system may also include other infrastructure,
such as a distributed data collection system 108 that collects
usage and other data from the edge servers, aggregates that
data across a region or set of regions, and passes that data to
other back-end systems 110, 112, 114 and 116 to facilitate
monitoring, logging, alerts, billing, management and other
operational and administrative functions. Distributed net-
work agents 118 monitor the network as well as the server
loads and provide network, traffic and load data to a DNS
query handling mechanism 115, which is authoritative for
content domains being managed by the CDN. A distributed
data transport mechanism 120 may be used to distribute con-
trol information (e.g., metadata to manage content, to facili-
tate load balancing, and the like) to the edge servers.

[0014] As illustrated in FIG. 2, a given machine 200 com-
prises commodity hardware (e.g., an Intel Pentium processor)
202 running an operating system kernel (such as Linux or
variant) 204 that supports one or more applications 206a-n.
To facilitate content delivery services, for example, given
machines typically run a set of applications, such as an HT'TP
proxy 207 (sometimes referred to as a “global host” or
“ghost” process), a name server 208, a local monitoring pro-
cess 210, a distributed data collection process 212, and the
like. For streaming media, the machine typically includes one
or more media servers, such as a Windows Media Server
(WMS) or Flash server, as required by the supported media
formats.

[0015] A CDN edge server is configured to provide one or
more extended content delivery features, preferably on a
domain-specific, customer-specific basis, preferably using
configuration files that are distributed to the edge servers
using a configuration system. A given configuration file pref-
erably is XML-based and includes a set of content handling

US 2016/0191393 Al

rules and directives that facilitate one or more advanced con-
tent handling features. The configuration file may be deliv-
ered to the CDN edge server via the data transport mecha-
nism. U.S. Pat. No. 7,111,057 illustrates a useful
infrastructure for delivering and managing edge server con-
tent control information, and this and other edge server con-
trol information can be provisioned by the CDN service pro-
vider itself, or (via an extranet or the like) the content provider
customer who operates the origin server.

[0016] The CDN may include a storage subsystem, such as
described in U.S. Pat. No. 7,472,178, the disclosure of which
is incorporated herein by reference.

[0017] The CDN may operate a server cache hierarchy to
provide intermediate caching of customer content; one such
cache hierarchy subsystem is described in U.S. Pat. No.
7,376,716, the disclosure of which is incorporated herein by
reference.

[0018] The CDN may provide various technologies and
techniques to accelerate traffic flow between an edge server,
on the one hand, and a customer origin server, on the other.
These technologies provide acceleration for many different
types of interactions, e.g., delivery of dynamic content, edge
server interactions with back-end origin infrastructures, and
the like. Representative examples include, without limitation,
the techniques described in U.S. Pat. No. 8,194,438 (overlay
path selection optimization), and U.S. Pat. No. 8,477,837
(content pre-fetching). Other IP, TCP, UDP or application-
layer optimizations may be implemented as well to facilitate
such acceleration.

[0019] The CDN may provide secure content delivery
among a client browser, edge server and customer origin
server in the manner described in U.S. Publication No.
20040093419. Secure content delivery as described therein
enforces SSL-based links between the client and the edge
server process, on the one hand, and between the edge server
process and an origin server process, on the other hand. This
enables an SSL-protected web page and/or components
thereof to be delivered via the edge server.

[0020] As an overlay, the CDN resources may be used to
facilitate wide area network (WAN) acceleration services
between enterprise data centers (which may be privately-
managed) and third party software-as-a-service (SaaS) pro-
viders.

[0021] Inatypical operation, a content provider identifies a
content provider domain or sub-domain that it desires to have
served by the CDN. The CDN service provider associates
(e.g., via a canonical name, or CNAME) the content provider
domain with an edge network (CDN) hostname, and the CDN
provider then provides that edge network hostname to the
content provider. When a DNS query to the content provider
domain or sub-domain is received at the content provider’s
domain name servers, those servers respond by returning the
edge network hostname. The edge network hostname points
to the CDN, and that edge network hostname is then resolved
through the CDN name service. To that end, the CDN name
service returns one or more IP addresses. The requesting
client browser then makes a content request (e.g., via HTTP
or HTTPS) to an edge server associated with the IP address.
The request includes a host header that includes the original
content provider domain or sub-domain. Upon receipt of the
request with the host header, the edge server checks its con-
figuration file to determine whether the content domain or
sub-domain requested is actually being handled by the CDN.
If so, the edge server applies its content handling rules and

Jun. 30, 2016

directives for that domain or sub-domain as specified in the
configuration. These content handling rules and directives
may be located within an XML .-based “metadata” configura-
tion file.

The SWR Cache-Control Extension

[0022] By way ofadditional background, to maximize their
end user experience, a CDN may implement some form ofthe
Stale-While-Revalidate (SWR) HTTP Cache-Control exten-
sion. As noted above, this extension allows a cache to imme-
diately return a stale response while it revalidates it in the
background, thereby hiding latency (both in the network and
on the server) from clients.

[0023] Because CDNs wantto strictly honorthe TTL (time-
to-live) of a website resource, they typically trigger this pro-
cess when a request arrives at the edge server within a certain
percentage of the overall TTL. For instance, if the TTL is one
minute and the SWR is set to 10%, then a request hitting an
edge server 0 to 6 seconds (10% of one minute) before the
TTL expires triggers an asynchronous revalidation call to the
origin server, while the request is served from the server’s
cache.

[0024] FIG. 3 illustrates this known SWR process in the
context of an edge cache (e.g., one of the edge servers in FIG.
2). While use of the SWR process increases overall perfor-
mance (because the end user does not have to wait for this
revalidation to happen), it also lowers off-load to the origin
infrastructure, by reducing the actual TTL. In the example
above, and for a busy edge machine that gets requests every
second, the actual TTL would be around 54 or 55 sec, which
lowers the offload (compared to no SWR process) by about
10%.

[0025] Thus, there is a tension between, on the one hand,
enhancing end user experience (through faster resource
download from cache) and, on the other hand, origin traffic
offload. This raises the question of how to optimally set the
SWR value?

[0026] The approach herein describes a system that auto-
matically sets the SWR to optimize both the performance and
the origin traffic offload.

Self-Adjusting Tiered Caching System to Optimize Traffic
Performance and Origin Offload

[0027] As will be seen, the technique of this disclosure
takes advantage of two factors: (1) the ability of an edge
server to compute a rate of incoming requests for a given
resource; and (2) the ability of a CDN to leverage a tiered
caching architecture, such as depicted in FIG. 4 (see, also
U.S. Pat. No. 7,376,716, referenced above). As depicted in
FIG. 4, an overlay network 400 (such as a CDN comprises a
tiered caching system comprising edge server and cache 404
positioned close to a requesting client machine 402, together
with a gateway server and cache 406 (the cache parent) posi-
tioned close to the CDN customer’s origin server 408. Typi-
cally, each of the CDN machines 404 and 406 is configured as
shown in FIG. 2, and an end user machine 402 is a desktop,
laptop, mobile device, set-top box, Smart television, Internet
appliance, IoT device, or the like.

[0028] In atiered architecture of this type, the edge server
404 typically is located very close (e.g., within a few milli-
seconds of [P packet roundtrip time) to the client 402, and the
cache parent (the gateway server 406) may or may not be
close to the origin server 408. With this type of cache hierar-

US 2016/0191393 Al

chy within the overlay network, gateway servers act as “fun-
nels” to edge servers to increase the likelihood that a cache-
able resource will be served from the CDN infrastructure and
not from the origin infrastructure.

[0029] According to this disclosure, the SWR preferably is
set to 0 at the gateway server 406 while, at the edge 404, an
automatic policy is implemented (preferably) on a per-server
basis where the SWR is computed on-the-fly as a function of
the request rate. The first factor (setting SWR to O at the
gateway 406) is advantageous because if/when the request
reaches the gateway, the performance penalty has already
happened (to some degree), and therefore it is desired to
maximize the origin offload there (by setting SWR to 0 so as
to not trigger the asynchronous process). On the other hand,
and for maximum performance, it is desired to set SWR as
high as possible at the edge 404, especially because the gate-
way servers (with the SWR=0 setting) are optimized to ensure
optimum origin offload. Yet, applying a simplistic 100%
value universally at the edge 404 would generate very high
traffic between the edge servers and the gateways, and this
would be detrimental to the CDN’s ability to offer this system
atscale and at a reasonable cost. By taking into account the hit
rate at the edge server, however, a heuristic, which is
described below, can be used to provide a best user experience
atan optimal CDN infrastructure cost. The notion of “best” or
“optimal” here, however, is not intended to refer to some
absolute value or characteristic but may be relative in nature
and/or degree.

[0030] The following describes a preferred heuristic. In
particular, let R be the incoming request rate at the edge 404
at a given point in time (in hits/second), and SWR a percent-
age ofthe TTL (in seconds). (The edge machine is assumed to
be receiving requests from a large number of clients, as typi-
cally the machine caches and serves content for a large num-
ber of content providers that use the CDN service). Assuming
auniform request temporal distribution, and to guarantee that
alast hit before TTL is reached falls within SWR, a preferred
heuristic for the edge is then as follows:

SWR(% of TTL)=100/(TTL*R).

[0031] For instance, if the TTL is 10 seconds, SWR would
be set to 10% if the request rate is one per second, to 5% if the
request rate is two per second, and so forth.

[0032] A constraint on the rule set forth in the above equa-
tion is that: 0<SWR<100. To ensure with good confidence
that the response to the asynchronous call comes back before
the TTL expires, preferably the system also sets
SWR*TTL>Minimum (seconds), where the Minimum is
defined either statically (e.g., one second), or as some multi-
plier of the observed latency to fetch the resource from the
edge server. In light of the point above, for very short TTLs or
other corner use cases (e.g. the server is being placed online
and has no request history), the automated policy may be
disabled and a static SWR value (e.g., fetched from a con-
figuration file specific to the resource) may be used.

[0033] The approach thus leverages the typical CDN two-
tier caching architecture, with SWR at the edge preferably set
to 100/(TTL*R), and set to O at the gateway. The approach
achieves an optimum performance and origin offload, while
minimizing the CDN internal traffic. Once again, the notion
of “optimum” should be not be taken as some absolute value
but may be relative in nature and/or scope.

[0034] More generally, the techniques described herein are
provided using a set of one or more computing-related entities

Jun. 30, 2016

(systems, machines, processes, programs, libraries, func-
tions, or the like) that together facilitate or provide the
described functionality described above. In a typical imple-
mentation, a representative machine on which the software
executes comprises commodity hardware, an operating sys-
tem, an application runtime environment, and a set of appli-
cations or processes and associated data, that provide the
functionality of a given system or subsystem. As described,
the functionality may be implemented in a standalone
machine, or across a distributed set of machines. The func-
tionality may be provided as a service, e.g., as a SaaS solution.

[0035] While the above describes a particular order of
operations performed by certain embodiments of the inven-
tion, it should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the par-
ticular feature, structure, or characteristic.

[0036] While the disclosed subject matter has been
described in the context of a method or process, the subject
disclosure also relates to apparatus for performing the opera-
tions herein. This apparatus may be specially constructed for
the required purposes, or it may comprise a general-purpose
computer selectively activated or reconfigured by a computer
program stored in the computer. Such a computer program
may be stored in a computer readable storage medium, such
as, but is not limited to, any type of disk including an optical
disk, a CD-ROM, and a magnetic-optical disk, a read-only
memory (ROM), a random access memory (RAM), a mag-
netic or optical card, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys-
tem bus. While given components of the system have been
described separately, one of ordinary skill will appreciate that
some of the functions may be combined or shared in given
instructions, program sequences, code portions, and the like.
[0037] Preferably, the functionality is implemented in an
application layer solution, although this is not a limitation, as
portions of the identified functions may be built into an oper-
ating system or the like that executes in a given machine.

[0038] The functionality may be implemented with or in
association with other application layer protocols besides
HTTP or HTTPS, such as SSL. VPN or TLS, or any other
protocol having similar operating characteristics.

[0039] Theterm “gateway” is not intended to be limiting, as
typically the forward server (the one closer to the origin
infrastructure) is just another edge server in the CDN located
in a different location/network.

[0040] Generalizing, it should be appreciated that the SWR
window as described and illustrated herein is an asynchro-
nous (async) refresh window. In the SWR implementation as
described, the async refresh window starts before the TTL
expires; another equally valid approach is to add the async
refresh window after the TTL. Thus, the technique herein of
optimizing the value of the async refresh window by making
it dynamic (preferably to match the rate of incoming requests)
applies equally well to both cases (i.e., whether the window is
applied right before or right after the TTL expires).

[0041] Thenotion ofsetting the SWR to zero at the gateway
does not require that the value be an absolute 0 but also
includes a value that is “substantially zero.”

US 2016/0191393 Al

[0042] Generalizing further, there is no limitation on the
type of computing entity that may implement the client-side
or server-side of the connection. Any computing entity (sys-
tem, machine, device, program, process, utility, or the like)
may act as the client or the server.

[0043] While the technique above has been described in the
context of a tiered caching system, it should be appreciated
that the approach also provides significant advantages in a
single tier system (edge servers only). In this single tier cach-
ing context, the SWR is dynamically computed in the same
way as described above, with the only difference being that
the request from the edge server would go directly to the
origin and not thru a parent (gateway) server.

[0044] There is no limitation on the type of content that is
delivered by the CDN. Typical examples include, without
limitation, website objects (e.g., HTML, page objects, etc.),
API-driven content, media content or content fragments, or
the like.

[0045] The techniques herein provide for improvements to
another technology or technical field, namely, content deliv-
ery systems, as well as improvements to the functioning of
edge servers within such systems.

What is claimed is as follows:

1. A system associated with an origin server at which
content to be delivered to a set of client machines is published,
comprising:

first and second computing machines each having a hard-

ware processor, and computer memory;

an edge server process executing in the hardware processor

of the first machine;

aforward server process executing in the hardware proces-

sor of the second machine;

the edge server process having computer program instruc-

tions stored in the computer memory and executed in the
hardware processor of the first machine to compute and
enforce a stale-while-revalidate (SWR) cache-control
value set to a first SWR value, wherein the first value as
a function of rate of requests from the set of client
machines received at the edge server process; and

the forward server process having computer program

instructions stored in the computer memory and
executed in the hardware processor of the second
machine to enforce a SWR set to a second SWR value.

2. The system as described in claim 1 wherein the first
SWR value at the edge server process is SWR (% of TTL)
=100/(TTL*R), wherein TTL refers to a time-to-live of the
content and R is the rate of requests, and the second SWR
value at the forward server process is 0.

3. The system as described in claim 2 wherein the first
SWR value satisfies a constraint that is: O<first SWR
value<100.

4. The system as described in claim 2 wherein the first
SWR value also satisfies a constraint that is: (first SWR
value)*TTL>a minimum number of seconds.

5. The system as described in claim 4 wherein the mini-
mum number of seconds is one of: a fixed number of seconds,
and a multiplier of an observed latency associated with fetch-
ing the content from the edge server process.

Jun. 30, 2016

6. The system as described in claim 2 wherein the first
SWR value and the second SWR value define an asynchro-
nous SWR refresh window.

7. The system as described in claim 6 wherein the asyn-
chronous SWR refresh window starts before or ata time when
the TTL expires.

8. The system as described in claim 1 wherein the first
SWR value is computed dynamically.

9. The system as described in claim 1 wherein the edge
server process and the forward server process comprise a
tiered caching hierarchy for the content.

10. An edge server, operative in an overlay network, com-
prising:

a hardware processor;

computer memory holding computer program instructions

executed by the hardware processor to compute and
enforce a stale-while-revalidate (SWR) cache-control
value as a function of request rate.

11. The edge server as described in claim 10 wherein the
SWR cache-control value is computed as: SWR (% of TTL)
=100/(TTL*R), wherein TTL refers to a time-to-live of the
content and R is the request rate.

12. The edge server as described in claim 11 wherein the
computer program instructions are further executed by the
hardware processor during an SWR period to issue a revali-
dation request to one of: a gateway server, and an origin
server.

13. A method of self-adjusting a tiered caching system to
optimize traffic performance and origin server off-load, the
tiered caching system comprising an edge server and a for-
ward server, comprising:

computing enforcing a first stale-while-revalidate (SWR)

cache control value at the edge server; and
concurrently enforcing a second SWR cache control value
at the forward server;

the first SWR value being computed as a function of

request rate for content at the edge server, and the second
SWR value being substantially zero.

14. The method as described in claim 13 wherein the first
SWR value is SWR (% of TTL)=100/(TTL*R), wherein TTL
refers to a time-to-live of the content and R is the request rate.

15. The method as described in claim 14 wherein the first
SWR value satisfies a constraint that is: O<first SWR
value<100.

16. The method as described in claim 14 wherein the first
SWR value also satisfies a constraint that is: (first SWR
value)*TTL>a minimum number of seconds.

17. The method as described in claim 16 wherein the mini-
mum number of seconds is one of: a fixed number of seconds,
and a multiplier of an observed latency associated with fetch-
ing content from the edge server process.

18. The method as described in claim 14 wherein the first
SWR value and the second SWR value define an asynchro-
nous SWR refresh window.

19. The method as described in claim 18 wherein the asyn-
chronous SWR refresh window starts before or ata time when
the TTL expires.

