US011875094B2

a2 United States Patent

Mitrovic et al.

US 11,875,094 B2
Jan. 16, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

MINIMIZATION FUNCTION FOR FRICTION
SOLVING

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Petar Mitrovic, Belgrade (RS); Eoin
Mcloughlin, Dublin (IE); Maxwell
Simon Abernethy, San Francisco, CA
(US); Milan Simic, Belgrade (RS);
Milos Jovanovic, Belgrade (RS);
Nikola Nikolic, Belgrade (RS); Oliver
M. Strunk, Munich (DE); Pavle
Josipovic, Belgrade (RS); Rory
Mullane, Dublin (IE); Janos Benk,
Munich (DE)

Inventors:

Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 972 days.

Appl. No.: 16/576,669
Filed: Sep. 19, 2019

Prior Publication Data

US 2021/0089628 Al Mar. 25, 2021

Int. CL.

GO6F 30/20 (2020.01)

GO6F 111/04 (2020.01)

GO6F 111/10 (2020.01)

U.S. CL

CPC ... GO6F 30/20 (2020.01); GO6F 2111/04

(2020.01); GO6F 2111/10 (2020.01); GO6T
2210721 (2013.01); Y10S 345/958 (2013.01)
Field of Classification Search
CPC e, Y10S 345/958
See application file for complete search history.

x; STATIC
‘\\ c2 / LANDSCAPE
L / BODY

Sy B s

N Ed nd B4

\\\V1 ’ e

(56) References Cited
U.S. PATENT DOCUMENTS
5,432,718 A * 7/1995 Molvigccce.. GOG6F 15/803
702/50
5,594,671 A * 1/1997 Chenceeeveen GOG6F 15/803
702/50
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1255230 A2 11/2002

OTHER PUBLICATIONS

Daniel Melanz et al., A comparison of numerical methods for
solving multibody dynamics problems with frictional contact mod-
eled via differential variational inequalities, Computer Methods in
Applied Mechanics and Engineering, vol. 320, 2017, pp. 668-693,
ISSN 0045-7825 (Year: 2017).*

(Continued)

Primary Examiner — Akash Saxena
(74) Attorney, Agent, or Firm — Alleman Hall Creasman
& Tuttle LLP

(57) ABSTRACT

A physics engine executed on a processor to simulate
real-time rigid body dynamics of a simulated physical
system with a minimizing function between initial velocities
and intermediate solver velocities is provided. The physics
engine may be configured to iteratively loop through a
collision detection phase, an iterative solving phase, updat-
ing phase, and display phase. The physics engine may be
configured to store initial velocities for colliding pairs of
bodies. The physics engine may be further configured to
determine intermediate solver velocities for the colliding
pairs of bodies based on accumulated results of constraint
solving for each pair of bodies. The physics engine may be
further configured to calculate friction velocities for that
colliding pair of bodies based on the stored initial velocities
and the intermediate solver velocities using a minimization

(Continued)

[B STATIC
LANDSCAPE
/ BODY

Lot I B4

US 11,875,094 B2
Page 2

function, and apply a friction force or impulse based on the
calculated friction velocities.

21 Claims, 8 Drawing Sheets

(56) References Cited
U.S. PATENT DOCUMENTS

5,625,575 A * 4/1997 Goyal ... GO6F 30/20
703/6

7,610,182 B2* 10/2009 Smith ... GO6F 30/20
703/2

7,933,858 B2* 4/2011 Stamccocee GO6F 30/20
703/2

7,936,355 B2* 5/2011 Moravanszky GO6T 13/20
345/473

8,223,155 B2* 7/2012 Cohenc.cc.cco.. GO6F 30/20
345/474

8,279,227 B2* 10/2012 Cohenc.cc.cco.. GO6T 13/20
345/473

9,311,745 B2* 4/2016 Andrade ... GO6T 17/00

9,440,148 B2* 9/2016 Bond
10,866,632 B2* 12/2020 Johnston

. A63F 13/80
G02B 7/002

11,030,363 B2* 6/2021 Strunk GO6F 30/20
11,256,835 B2* 2/2022 Voroshilov GO6F 30/20
11,615,222 B2* 3/2023 Mitrovic GO1G 19/414
703/6

2003/0187626 Al* 10/2003 Catto ..o G16C 10/00
703/11

2004/0075662 Al* 4/2004 Baraff ... GO6T 13/40
345/473

2006/0235659 Al* 10/2006 Stam GO6T 13/20
703/2

2007/0085851 Al* 4/2007 Muller ..o GO6T 13/20
345/474

2008/0270092 Al* 10/2008 Cohencoe... GO6F 30/20
703/7

2012/0123754 Al* 5/2012 Bodin ... GO6F 30/23
703/2

2012/0287124 Al* 11/2012 Ragozin GO6T 13/20
345/419

2013/0158965 Al* 6/2013 Beckman GO6F 30/20
345/423

2014/0244222 Al* 8/2014 Tonge GO6F 30/20
703/2

2015/0109309 Al 4/2015 Mueller-Fischer et al.

2017/0344680 Al* 11/2017 Strunk GO6F 30/20
2018/0240262 Al* 8/2018 Hagedoorn .. . GO6T 13/00
2019/0108300 Al* 4/2019 Soler Arasanz . GO6F 30/00
2021/0089629 Al* 3/2021 Mitrovic . GO6F 30/20
2022/0100928 Al* 3/2022 StOreyccccoeveenn. GO6F 30/20

OTHER PUBLICATIONS

“Friction”, Retreived From: https://en.wikipedia.org/wiki/Friction,
Retrieved Date: Sep. 6, 2019, 17 Pages.

Bodin, et al., “Notes on the SPOOK Method for Simulating Con-
strained mechanical Systems”, Retrieved from: https://www8.cs.
umu.se/kurser/SDV058/VT 1 5/lectures/SPOOKIlabnotes.pdf, 2009, 11
Pages.

Catto, Frin, “Fast and Simple Physics using Sequential Impulses”,
In Proceedings of Games Developer Conference, 2006, 53 Pages.
Catto, Erin, “Modelling and Solving Constraints”, Retreived From:
http://twvideoO 1.ubm-US.net/o1/vault/gdc09/slides/04-GDCO09_
Catto_Erin_Solver.pdf, Retrieved Date: Sep. 6, 2019, 81 Pages.
“Physics for Game Programmers:Understanding Constraints”, Retreived
From: https://80.Iv/articles/physics-for-game-programmers-
understanding-constraints/, Mar. 4, 2018, 05 Pages.

Featherstone, Roy, “Rigid Body Dynamics Algorithms”, In Publi-
cation of Springer, 2008, 281 Pages.

Lacoursiere, Claude, “Using Gauss-Seidel for Multibody Prob-
lems”, In the Dissertation Submitted to Department of Computing
Science, Umea University, Dec. 1, 2011, 6 Pages.

Mendez, Jose Maria, “Physics 101 #3: Solvers”, Retreived From:
http://blog.virtualmethodstudio.com/2017/11/physics-101-3-
solvers/, Nov. 21, 2017, 7 Pages.

Mirtich, Brian Vincent, “Impulse-based Dynamic Simulation of
Rigid Body Systems”, In the Dissertation Submitted to University
Of California, 1996, 259 Pages.

Moravanszky, et al., “Fast Contact Reduction for Dynamics Simu-
lation”, In Proceedings of Game Programming Gems, 2004, 10
Pages.

Tamis, Marijn, “3D Constraint Derivations for Impulse Solvers”,
Retreived Form: http://www.mft-spirit.nl/files/MTamis_Constraints.
pdf, Jul. 1, 2015, 41 Pages.

Tamis, et al., “Constraint Based Physics Solver”, Retreived From:
http://www.mft-spirit.nl/files’MTamis_ConstraintBasedPhysicsSolver.
pdf, Jun. 15, 2015, 31 Pages.

Tonge, et al., “Mass Splitting for Jitter-Free Parallel Rigid Body
Simulation”, In Journal of Transactions on ACM Graphics, vol. 31,
Issue 4, Jul. 2012, 8 Pages.

Tonge, Richard, “Solving Rigid Body Contacts”, In Proceedings of
the Game Developers Conference, Mar. 5, 2012, 59 Pages.
Tournier, et al., “Stable Constrained Dynamics”, In Journal of ACM
Transactions on Graphics, vol. 34, Issue 4, Aug. 2015, 11 Pages.
Melanz, et al., “A Comparison of Numerical Methods for Solving
Multibody Dynamics Problems with Frictional Contact Modeled
via Differential Variational Inequalities”, In Journal of Computer
Methods in Applied Mechanics and Engineering, vol. 320, Jun. 15,
2017, pp. 668-693.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US20/038547”, dated Sep. 28, 2020, 13
Pages.

* cited by examiner

U.S. Patent Jan. 16, 2024 Sheet 1 of 8 US 11,875,094 B2
— PROCESSOR 12
10 —4
- VOLATILE MEMORY 14
NON-VOLATILE MEMORY 16
WORLD DATA 28
GRAPHICS APPLICATION
DISPLAY 18 % ENGINE 18A]| PROGRAM 24
USER DATA 30
INPUT /0 MANAGER
DEVICES20 7 20A i
SOUND PHYSICS ENGINE 26
SPEAKERS 22 <—— c\oie o0 F
COLLISION
DETECTION LOGIC 32
SOLVER LOGIC 34
KINEMATIC
INTEGRATOR 36

FIG. 1

U.S. Patent

(SETUPLOGIC 40)

Jan. 16, 2024

Sheet 2 of 8

SETUP PHASE 38

US 11,875,094 B2

________ .*...__

COLLISION DETECTION LOGIC
32
g BROAD PHASE
COLLISION DETECTION
| 30
I

["BoDY PARS 52

| COLLISION DETECTION

e

COLLISION DETECTION PHASE 42

LOOP

l
/ NARROW PHASE ‘<

‘ 54

\

Y
H[CONTACT MANIFOLDS 58 |

’m COLLISION CACHES 56 |

SOLVINGVLOGIC 34

[SOLVER SETUP 60 1

'

HJ JACOBIAN MATRICES 62

v

{ SOLVER 64 J

o

v |
| VELOCITIES 66 |

SOLVING PHASE 44

________ S

& KINEMATIC INTEGRATOR 36)

v |

H UPDATED BODY POSITIONS
! AND VELOCITIES 66

UPDATING PHASE 46

DISPLAY PHASE 48

P 1 . LOOP
(

DISPLAY 18

J_____J‘

FIG. 2

US 11,875,094 B2

Sheet 3 of 8

Jan. 16, 2024

U.S. Patent

AQo4
AdVOSANYT
JILVLS

AQO4
AdVOSANY
JILV1S

¢||||||||||;
(vg Z9) IN10S

AQO4
ddVOSANY
JILV1S

(€9 ‘z9) aA10S

&Iclclllclclclcl..
(zg'18) 3n10S

AdOHg
IdVOSANY
JILVLS

U.S. Patent Jan. 16, 2024 Sheet 4 of 8 US 11,875,094 B2
(SETUP LOGIC 40) SETUP PHASE 38
COLLISION DE*ECT!ON Logic | COLLISIONDETECTION PHASE 42
32
" BROAD PHASE
' COLLISION DETECTION J«
%Q LOOP
[BODY PARS 52
l
" NARROW PHASE
| INITIAL STATES
COLLISION5[4)ETECTION | OF BODIES 68
N
v
H_[CONTACT MANIFOLDS 58 |
SOLVING PHASE 44
Y SOLVING LOGIC 34
v
SOLVER SETUP 60 } MINIMIZING FUNCTION FOR FRICTION
, SOLVING 72
| JACOBIAN MATRICES 62 INTERMEDIATE | [yimiaL STATES
v SOLVER OF BODIES 68
VELOCITY 70 =®
SOLVER 64
FRICTION VELOCITY
74

\

VELOCITIES 66 |

________ I NN

& KINEMATIC INTEGRATOR 36)

v |

]
U UPDATED BODY POSITIONS
H] AND VELOCITIES 66

UPDATING PHASE 46

DISPLAY PHASE 48
LOOP

/ DISPLAY 18]———————3

FIG. 4

US 11,875,094 B2

Sheet 5 of 8

Jan. 16, 2024

U.S. Patent

vZ
ALIDOT3A NOILOIYS

T

0Z ALIDOT3A 89531009 40
¥3AA10S (S31LID0713A '©'3)
JLVIQANYILNI S3LVLS TVILINI

5,

¢ ONIN10S
NOILO44 ¥O04 NOILONNA ONIZINININ

<t

9 ¥3AA10S

a¢ Ol

AdOd
AdVOSANY' m.\ [49) /

DILYLS ﬁ, /

A

9§ Ol

0=ALIOOT3A 8
0=ALID0T3N €8
0=ALID0TIN ¢8
LA = ALIDOT3A L E

9 §31004 40 SALYLS TYLLINI

AII.II..III.I.III
(zg ‘19) 3A10S

Adod

I H
QA@ 541004 NOILO313d
40 (S3ILIDOT3IA NOISITI0D

'9°'3) SILYLS WILINI ASVYHd MOYYYN

3dVOSANY] \ 0

JILV1S

US 11,875,094 B2

Sheet 6 of 8

Jan. 16, 2024

U.S. Patent

0 = ALIDOTAA
Vi
ALIDOTAANOILOINEA

¢A\ = ALIDOTAA 0 = ALIDOT3EA

0Z ALIDOT3A 89 531004 40 (S31LID013A
d3AT0S JLVIAINGILNI '9°3) SILYLS WILINI

CZ ONIAT0S NOILOIMA ¥O4 NOILONNA ONIZINININ

s

:((g '29) IA10S
[[[[[T
AQog \\8 / v \NM\T A

[3dYOSANY] M \

3dYDSANYT \ | ALLVLS
JILYLS CQ C(

U.S. Patent Jan. 16, 2024 Sheet 7 of 8 US 11,875,094 B2

100 —4
ITERATIVELY LOOPING THROUGH A COLLISION DETECTION PHASE,
SOLVING PHASE, UPDATING PHASE, AND DISPLAY PHASE 102
COLLISION IDENTIFYING COLLIDING PAIRS OF BODIES OF THE
DETECTION PLURALITY OF BODIES 104
PHASE ¥
DETERMINING COLLISION INFORMATION 106
y
STORING INITIAL VELOCITIES FOR THE COLLIDING PAIRS OF
BODIES 108
SOLVING q'
PHASE > SOLVING THAT CONSTRAINT 110
FOR EACH v
CONTACT
POINT ACCUMULATING RESULTS OF CONSTRAINT
SOLVING 112
v
DETERMINING INTERMEDIATE SOLVER
FOR EACH VELOCITIES FOR THAT COLLIDING PAIR OF
PAIR OF / BODIES BASED ON THE ACCUMULATED RESULTS
BODIES OF CONSTRAII\iT SOLVING 114
CALCULATING FRICTION VELOCITIES FOR THAT
FOREACH COLLIDING PAIR OF BODIES USING A
SOLVER MINIMIZATION FUNCTION 116
ITERATION v
APPLYING A FRICTION FORCE OR IMPULSE
BASED ON THE CALCULATED FRICTION
VELOCITIES FOR THAT COLLIDING PAIR OF
BODIES 118
e
UPDATING
PHASE UPDATING POSITIONS OF THE COLLIDING PAIRS OF BODIES BASED ON A
RESULT OF THE CURRENT ITERATIVE SOLVING PHASE 120
DISPLAY
PHASE OUTPUTTING DATA REPRESENTATIONS OF THE PLURALITY OF BODIES TO A
DISPLAY ASSOCIATED WITH THE COMPUTING DEVICE 122

FIG. 7

U.S. Patent Jan. 16, 2024 Sheet 8 of 8 US 11,875,094 B2

(COMPUTING SYSTEM 800 h
N
[LOGIC PROCESSOR 802
J
4)
VOLATILE MEMORY 804
_ J
4 N\
NON-VOLATILE STORAGE DEVICE 806
_ J
P

DISPLAY SUBSYSTEM 808

-
INPUT SUBSYSTEM 810]
\.

[COMMUNICATION SUBSYSTEM 812

FIG. 8

US 11,875,094 B2

1

MINIMIZATION FUNCTION FOR FRICTION
SOLVING

BACKGROUND

Physics engines with real-time iterative rigid body
dynamics solvers are used in a variety of computer graphics
applications, to simulate the motion of rigid bodies in
real-time in a simulated physical environment. Such solvers
do not find perfect solutions, but rather find approximate
solutions. It is a challenge therefore, of such solvers to find
approximate solutions quickly, efficiently, and sufficiently
accurately for the needs of the application. One area in
particular that physics engines, particularly stateless physics
engines, face challenges is the handling of potential artifacts
that may occur due to intermediate forces determined in
solver iterations. These challenges, the manner in which
they are addressed, and the attendant potential beneficial
technical effects thereof are further discussed below.

SUMMARY

According to one aspect of the present disclosure, a
computing device is provided which includes a processor
configured to execute a physics engine to simulate real-time
rigid body dynamics of a simulated physical system includ-
ing a plurality of bodies. The physics engine may be
configured to iteratively loop through a collision detection
phase, an iterative solving phase, updating phase, and dis-
play phase. The physics engine may further be configured to,
in a current collision detection phase, identify colliding pairs
of bodies of the plurality of bodies, determine collision
information including a plurality of constraints for the
identified colliding pairs of bodies, and store initial veloci-
ties for the colliding pairs of bodies. The physics engine may
further be configured to, in a current iterative solving phase,
for each solver iteration, for one or more colliding pairs of
bodies, for one or more constraints between that colliding
pair of bodies, solve that constraint, and accumulate results
of constraint solving. For the one or more colliding pairs of
bodies, the physics engine may be further configured to
determine intermediate solver velocities for that colliding
pair of bodies based on the accumulated results of constraint
solving, calculate friction velocities for that colliding pair of
bodies based on the stored initial velocities and the inter-
mediate solver velocities for that colliding pair of bodies
using a minimization function, and apply a friction force or
impulse based on the calculated friction velocities for that
colliding pair of bodies. The physics engine may further be
configured to, in an updating phase, update positions of the
colliding pairs of bodies based on a result of the current
iterative solving phase. The physics engine may further be
configured to, in a display phase, output data representations
of the plurality of bodies to a display associated with the
computing device.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a computing device equipped with a physics
engine having a rigid body dynamics solver that performs

10

15

20

25

35

40

45

50

55

60

65

2

friction solving using a minimization function, according to
one embodiment of the present disclosure.

FIG. 2 shows a process flow that may be implemented by
the computing device of FIG. 1 for performing friction
solving.

FIGS. 3A, 3B, 3C, and 3D are simplified diagrams of a
plurality of colliding bodies, showing an effect that inter-
mediate solver velocities have on friction solving.

FIG. 4 is a schematic diagram illustrating a process flow
executed by the solver of the physics engine of FIG. 1, by
which the solver iteratively performs friction solving using
a minimization function.

FIGS. 5A and 5B are simplified diagrams of a plurality of
colliding bodies, showing an effect of the minimizing func-
tion on friction solving.

FIG. 5C illustrates an example process for the solver of
the physics engine of FIG. 1 for calculating friction veloci-
ties using the minimizing function.

FIGS. 6A and 6B are simplified diagrams of the plurality
of'bodies of FIGS. 5A and 5B, showing a result of the using
the minimizing function for friction calculations.

FIG. 7 is a flowchart of a method for performing friction
solving using a minimization function, according to one
embodiment of the present disclosure.

FIG. 8 is a schematic depiction of an example computer
device that may be used as the computing device of FIG. 1.

DETAILED DESCRIPTION

Physics engines with real-time iterative rigid body
dynamics solvers are used in a variety of computer graphics
applications, to simulate the motion of rigid bodies in
real-time in a simulated physical environment. Each simu-
lation step of these physics engines typically includes col-
lision detection, applying impulses or forces or positioned
based dynamics (i.e. solving), and integrating bodies. One
example solver for a physics engine is a Gauss-Seidel solver.
However, because Gauss-Seidel and other types of iterative
solvers may solve constraints separately, these solvers may
potentially produce intermediate states and velocities that
are not representative of actual states of the rigid bodies
being simulated.

These intermediate states and velocities may potentially
cause issues with friction calculations, which will be dis-
cussed in more detail below. These issues may potentially
lead to artifacts and cause unintended behavior such as, for
example, rigid bodies sliding or rolling when those rigid
bodies would be expected by users to remain still, poten-
tially degrading user experience of the application.

Typically, these issues caused by intermediate velocities
are solved by introducing state for friction calculations for
the physics engine. These states are stored in memory such
that the produced error/artifact may be remembered and
mitigated in subsequent simulation steps. However, intro-
ducing states in this manner may increase memory resource
consumption of the physics engine and may cause issues
with implementation of the solver using a graphics process-
ing unit (GPU) or another type of hardware acceleration
device.

To address these issues, FIG. 1 illustrates a computing
device 10 configured with a stateless physics engine having
a rigid body dynamics solver, according to one embodiment
of the present disclosure. Computing device 10 includes a
processor 12, volatile memory 14 such as RAM, non-
volatile memory 16 such as a hard disk or FLASH memory,
a display 18, input devices 20 such as a mouse, keyboard,
touchscreen, etc., and one or more speakers 22. The proces-

US 11,875,094 B2

3

sor 12 is configured to execute various software programs,
such as application program 24, which are stored in non-
volatile memory 16, using portions of volatile memory 14.
Drivers such as a graphics engine 18 A, an I/O manager 20A,
and sound engine 22A enable communication between
application program 24 and the display 18, input devices 20
and speakers 22, respectively. Application program 24 may
be a computer game, or virtually any other type of program
that utilizes a physics engine 26 that simulates real-time
rigid body dynamics in response to user inputs and program
logic.

Application program 24 is configured to utilize and pro-
cessor 12 is configured to execute a physics engine 26 to
simulate the real-time rigid body dynamics of a simulated
physical system including a plurality of bodies. Data repre-
senting these physical bodies is stored as world data 28 and
user data 30. It will be appreciated that physics engine 26 is
provided with a minimization function for friction solving,
as will be described in more detail below. At a high level, the
physics engine includes collision detection logic 32, solving
logic 34, and a kinematic integrator 36, which are applied
iteratively by the physics engine 26 to adjust the positions
and velocities of various rigid bodies in the physical system,
in order to make them behave appropriately under applied
forces, such as gravity, wind resistance, springs, magnetism,
etc., as well as observe physical constraints, such as non-
penetration of other rigid bodies, joint constraints, etc.
Collision detection logic 32, solver logic 34, and kinematic
logic 36 are typically software programs executed by the
processor 12, which may be a multi-threaded and possibly
multi-core central processing unit (CPU). However, in some
embodiments portions or all of the logic of the physics
engine 26 described herein may be implemented in firmware
or hardware, for example on a graphical processing unit
(GPU). Further, as will be described in more detail below,
the physics engine 26 may be stateless and deterministic,
and portions or all of the solver logic 34 may be accelerated
by a GPU.

FIG. 2 illustrates a real-time rigid body simulation by the
physics engine 26 that uses an iterative solver. The physics
engine 26 is stateless and deterministic, and uses an iterative
solver, such as, for example, a Gauss-Seidel solver, or
another type of iterative solver that solves constraints sepa-
rately and passes the results of one constraint solve as input
to the next constraint solve in the iteration. As discussed
above, these solvers may potentially produce intermediate
states and velocities that are not representative of actual
states of the rigid bodies being simulated, which may
potentially cause issues with friction calculations. Typical
physics engines introduce states for the solvers that are
stored in memory such that the produced error/artifact may
be remembered and mitigated in subsequent simulation
steps. In contrast, the physics engine 26 according to one
embodiment of the present disclosure is stateless. As used
herein, the term “stateless physics engine” is a physics
engine that does not introduce extra state outside of the
expected physical state consisting of body positions and
velocity. For example, introducing states that include infor-
mation regarding produced errors/artifacts during the solver
phase would be an extra state, and such a physics engine
would therefore not be “stateless”. In order to mitigate the
potential issues with friction calculations caused by inter-
mediate velocities produced by the solver when iteratively
solving each constraint, the physics engine 26 may imple-
ment a minimization function for solving friction, as will be
described in more detail below.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

As shown in FIG. 2, the simulation begins with a setup
phase 38 implemented by setup logic 40 executed on pro-
cessor 12, in which the objects and their positions, orienta-
tions and velocities are initially set prior to kinematic
simulation. Following the setup phase 40, the simulation
enters into a loop, during which a collision detection phase
42 and a solving phase 44 are iteratively executed by the
collision detection logic 32 and solving logic 34 respec-
tively. During the collision detection phase 42, contact
information for touching bodies is generated, and during the
solving phase 44 the system of body velocities and con-
straints imposed by contacts are computed. At the end of the
solving phase 44, the forces are applied to the bodies in
examples where the physics engine 26 is a force-based
physics engine. In another example, the physics engine 26
may be a position-based physics engine, and at the end of the
solving phase 44, the calculated changes in positions for
each body may be applied. The positions and velocities of
the bodies are updated in an updating phase 46. The results
(i.e., a graphical representation of the updated positions of
the bodies) are displayed in a display phase 48. Once the
results are displayed, the process loops back to the collision
detection phase 42. These phases will now be explained in
more detail.

Collision Detection

The collision detection phase 42 generates contact points
between any touching or nearly touching rigid bodies.
Typically, this is done by a broad collision detection phase
50 which finds pairs 52 of potentially colliding bodies, then
a narrow collision detection phase 54 which generates
contact information for each pair 52 and stores it in a
collision manifold 58, which is a data structure designed to
hold data regarding each collision between a pair of bodies
52. The contact information stored in the collision manifold
58 may include information regarding constraints for each
pair of bodies 52. For example, the contact information may
include a separating plane, a separating normal vector, any
number of contact point positions and their penetrating or
separating distances (i.e., the positive (separating) or nega-
tive (penetrating) distances between the pair of bodies 52 at
the point of contact). In some examples, the constraints may
take the form of attachment points between pairs of bodies
52. However, it should be appreciated that other types of
constraints may be identified during the collision detection
phase 42 and information regarding those constraints may be
stored in the contact manifolds 58. In order to improve
convergence to a stable solution during the solving phase 44
for friction calculations, some narrow phase working data is
stored alongside the collision caches 56 and used in subse-
quent simulation steps. In some examples, the physics
engine 25 may not include collision caches 56.

Solving Constraints

The solving phase 44 implemented by solver logic 34 first
creates a set of mathematical constraints (known as Jacobian
matrices or simply Jacobians) based on the generated con-
tact manifolds. Solver setup 60 involves converting the
position and velocity data for the rigid bodies into Jacobian
matrices 62, which can be processed in a computationally
efficient manner in real time by the solver 64. In one
example, the constraints are velocity-based, meaning that
they are constraints on the velocities of the two contacting
bodies. The solver 64 then solves for all the body velocities
66 and constraints and finally applies the resulting impulses
or forces back to the bodies. However, it should be appre-
ciated that the solving logic 34 of the physics engine may
implement other types of simulation logic. For example, in
a position-based physics engine, the constraints may be

US 11,875,094 B2

5

position-based, meaning that they are constraints on the
positions of the two contacting bodies and contact points
between those contact bodies. The solver 64 may solve for
all of the body positions and constraints, and apply changes
in position on the bodies. As a change in position is being
applied to the bodies over a discrete period of time covered
by the simulation step, velocities for the bodies may also be
derived in a position-based physics engine.

In real-time physics engines such as physics engine 26, it
is typically too computationally expensive to solve an
unbounded system of constraints simultaneously, so instead
an iterative algorithm is employed by the solver 64, such as
a Gauss-Seidel algorithm. Instead of solving all constraints
at once, a Gauss-Seidel algorithm solves each constraint in
turn, repeating the process several times, so that the solver
64 converges towards to a stable solution. It will be appre-
ciated that other algorithms may also be used instead of a
Gauss-Seidel algorithm, such as other types of iterative
solvers where the result of constraint solving for one body
is passed as input to the constraint solving for the next body
in the form of intermediate states such as velocities or
changes in position.

Handling Friction

While solving constraints for each contact point between
each pair of colliding bodies using an iterative algorithm
such as a Gauss-Seidel algorithm, forces or impulses are
applied to the bodies and accumulated for each contact
point. For example, to solve a non-penetration constraint,
the solver may apply a force or impulse at a contact point to
prevent penetration of that contact point into one of the
colliding pairs of bodies. As another example, to solve an
attachment constraint, the solver may apply a force or
impulse to ensure that the contact point does not move
relative to the two pairs of bodies. It should be appreciated
that other types of constraints may be handled by the solver.

The accumulation of these forces or impulses being
applied to a body may result in an intermediate velocity for
that body. That intermediate velocity may be used as input
for a next step of constraint solving. As further constraints
are solved, and further forces or impulses are applied to
bodies, these intermediate velocities may be overwritten in
the subsequent constraint solving steps. Thus, the interme-
diate velocities do not necessarily reflect a physical reality of
the bodies. That is, a body that has not moved during a
simulation step may have had a non-zero intermediate
velocity at some point during the solving phase that was
overwritten during a subsequent constraint solve. Similarly,
a position-based physics engine may have intermediate
positions and states of the bodies caused by applying
changes in position to bodies based on constraint solving.
However, as discussed above, these intermediate states and
velocities may potentially cause issues with friction calcu-
lations, which may lead to artifacts and cause unintended
behavior such as, for example, rigid bodies sliding or rolling
when those rigid bodies would be expected by users to
remain still, potentially degrading user experience of the
application.

FIGS. 3A-D illustrate an example friction solve that is
affected by an intermediate velocity that causes unintended
behavior. In FIGS. 3A, B, C, and D, the simulated physical
system includes four colliding bodies labeled B1, B2, B3,
and B4. In the illustrated example, bodies B1-B3 are free
bodies that may move, and body B4 is a static landscape
body that does not move. As shown, there are three colliding
pairs of bodies 52, pair (B1, B2), pair (B2, B3), and pair (B2,
B4). The solving logic 34 of the physics engine may
iteratively solve each of these colliding pairs of bodies 52 in

10

15

20

25

30

35

40

45

50

55

60

65

6

a solving order that may be determined according to any
suitable heuristic. As a specific example, the solving logic 34
may solve the colliding pairs of bodies 52 in order of body
identifiers. For example, pairs for body B1 may be solved
before pairs for body B4. However, it should be appreciated
that this ordering is merely exemplary, and that other meth-
ods and techniques for ordering the colliding pairs of bodies
52 for solving may be used by implemented by the solving
logic 34.

FIG. 3A shows an initial state of the simulated physical
system before the solving phase 44. As illustrated, the body
B1 has an initial velocity V1 directed toward the body B2.
During the collision detection phase 42, contact information
including a plurality of contact points C1, C2, and C3 are
determined and stored in the contact manifolds 58. The
physics engine 26 may then process the contact information
in the contact manifolds 58 as discussed above using a
solving logic 34 during a solving phase 44.

FIG. 3B shows a result of solving the constraint for the
contact point C1 between the pair of bodies (B1, B2). In this
example, to solve the constraint, the solving logic 34 may
determine a force or impulse to be applied at the contact
point to prevent penetration of the contact point C1 into the
body B2. For example, the solving logic 34 may be config-
ured to calculate a point relative velocity for that contact
point C1, and apply a force or impulse to that contact point
C1 based on the point relative velocity to prevent penetra-
tion of the contact point C1 into the colliding pair of bodies
(B1, B2). The illustrated example only includes one contact
point between the pair of bodies (B1, B2). However, it
should be appreciated that any suitable number of contact
points may be determined for each body pair 52 identified
during the collision detection phase 42. The solving logic 34
may solve each constraint between the colliding pair of
bodies (B1, B2), and accumulate applied forces or impulses
for that colliding pair of bodies.

As shown in FIG. 3B, the accumulation of the applied
forces or impulses for the colliding pair of bodies (B1, B2)
results in an intermediate solver velocity V2 for the body B2.
In an example where the simulated physical system is
elastic, the body B1 may potentially also have an interme-
diate solver velocity (not shown) from bouncing off of the
body B2. After solving the constraints for the colliding pair
of bodies (B1, B2), the solving logic 34 may then solve
constraints for the next colliding pair of bodies (B2, B3).

FIG. 3C shows a result of solving the constraint for the
contact point C2 between the colliding pair of bodies (B2,
B3). In the illustrated example, there may be two compo-
nents to solving for the contact point C2. In a first compo-
nent, if the simulated physical system includes gravity, then
the body B3 may have a downward velocity (not shown). To
solve for this constraint, the solving logic 34 may apply an
impulse or force to the contact point C2 to counteract the
downward velocity and prevent penetration of the contact
point C2 into the pair of bodies (B2, B3).

In a second component, the solving logic 34 may include
a friction solve for the contact point C2 between the pair of
bodies (B2, B3). At this step of the solving phase 44, the
body B2 has the intermediate solving velocity V2. For
friction solving, the solving logic 34 may determine a force
or impulse to be applied to the contact point C2 to reduce the
relative point velocity at the contact point C2 to zero or
nearly zero. As the body B2 currently has an intermediate
solver velocity V2 that is non-zero, the relative point veloc-
ity at the contact point C2 is also non-zero. Thus, after
friction solving, the solving logic 34 applied a force or
impulse at the contact point C2 that will reduce the relative

US 11,875,094 B2

7

point velocity to zero, which results in the body B3 having
an intermediate solver velocity V3 that has angular compo-
nents that cause the body B3 to rotate.

FIG. 3D shows a result of solving the constraint for the
contact point C3 between the colliding pair of bodies (B2,
B4). As the body B4 is a static landscape body, no velocities
may be transferred to the body B4 from the collision with the
body B2. Thus, when solving for the constraint for the
contact point C3, the solving logic 34 will apply a force or
impulse to prevent penetration of the contact point C3 into
the body B4, which will result in the intermediate solving
velocity V2 of the body B2 being counteracted. At this point
in time, all of the constraints in the simulated physical
system have been solved. As shown in example of FIGS.
3A-D, the body B2 did not actually move. That is, at the end
of the simulation step, the body B2 does not have any
velocity, as would be expected in a non-elastic system due
to the static landscape body B4.

However, even though the body B2 did not move in this
simulation step, the body B3 has gained the velocity V3 as
a result of the friction solve for the contact point C2 that
occurred while the body B2 temporarily had the intermedi-
ate solver velocity V2. As the body B2 is not moving, the
end result of the body B3 having a velocity V3 is an error.
Typically, to mitigate these types of artifact/errors occurring
from friction solving, physics engines will introduce extra
states for the simulation that are stored and used to monitor
these errors and provide feedback to the solving process for
the next simulation step. However, as discussed above,
introducing extra states to propagate information about
errors that occurred during the iterative solving has a num-
ber of drawbacks.

Introducing extra state to store information about each
artifact/error that occurs during a particular solving step
increases memory consumption, which increases as the
number of colliding bodies increase. Further introducing
extra states may potentially cause the physics engine to be
non-deterministic. That is, simulations for the same initial
setup of rigid bodies may have different results depending
upon the extra states used in those simulations, causing the
simulation to appear non-deterministic. This issue of extra
states affecting simulation results may cause significant
problems for multi-player applications.

For example, multi-player applications may be imple-
mented by computer systems that include a plurality of
client devices in communication with a server device. Each
client device may implement a client-side version of the
application that locally renders visuals for display. Each
client application may receive the local user’s inputs and
send those inputs to the server device. The server device may
maintain a server-side state for the world of the application,
and may send updates for the server-side state of the world
to the client devices. In order to provide responsive inputs,
rather than waiting for the user’s inputs to be sent to the
sever device and waiting for an update to the server-side
state of the world before rendering a result of the user’s
inputs, the client application may be configured to maintain
a client-side state of the world that immediately implement’s
the user’s inputs. However, the client-side state of the world
may not necessarily reflect the server-side state of the world.
For example, a first user’s input may change a result of a
second user’s input.

In order to maintain the same game state for each user,
incorrect client-side states of the world may be rolled back
and updated to reflect the server-side state of the world.
However, in typical physics engines that use extra states to
correct for the artifacts/errors discussed above, all of the data

10

20

25

30

35

40

45

50

55

60

65

8

for those extra states needs to be sent to the client-device in
order to ensure a correct simulation of the game state on the
client application. Thus, these extra states for the physics
engine increase the amount of data that need to be sent
between the server-device and the client devices, and may
significantly increase the complexity of rolling back and
updating the simulation for the application.

As another example, due to the increased calculation
complexity and the increased memory consumption of the
extra states, it may be difficult to implement hardware
accelerated solutions using graphics processing units (GPU)
for these typical physics engines.

To address these issues, the physics engine 26 of the
computing device 10 of the present disclosure is provided
with a velocity minimizing function for friction solving. As
illustrated in FIG. 4, the setup phase 38, collision detection
phase 42, constraint solving phase 44, updating phase 46,
and display phase 48 are similar to that described above with
relation to FIG. 2, except as described different below.

In the setup phase 38, setup logic 40 sets initial values for
the position, orientation, and velocity for the plurality of
bodies in the physical simulation, in three-dimensional
space of the simulation environment (e.g., game space). The
physics engine 26 then iteratively loops through a collision
detection phase 42, iterative solving phase 44, updating
phase 46, and display phase 48, as shown. The phases occur
iteratively, and the term “current” is used herein to refer to
phases that occur in a current frame (i.e., timestep or
simulation step).

In the current collision detection phase 42, broad phase
collision detection 50 is performed to identify colliding pairs
52 of bodies of the plurality of bodies. Next, narrow phase
collision detection 54 is performed for each identified pair
52, to determine collision information including a plurality
of constraints for the identified colliding pairs of bodies 52.
The plurality of constraints may include contact points
between colliding pairs of bodies 52, and mathematical
relationships/equations for those contact points that will be
used for solving those constraints. Contact manifolds 58 are
computed for each pair 52 of bodies by the collision detec-
tion logic, and passed to the solving logic 34.

As illustrated in FIG. 4, before entering the solving phase
44, the collision detection logic 32 may be configured to
determine initial states 68 for the colliding pairs of bodies
52. For example, in a force or impulse based physics engine,
the collision detection logic 32 may be configured to deter-
mine the initial velocities 68 for the colliding pairs of bodies,
and store the initial velocities 68 for the colliding pairs of
bodies 52 in memory. As another example, in a position-
based physics engine, the positional states and changes in
positions for each of the colliding pairs of bodies 52 may be
determined and stored alongside the collision caches 56.

In turn, the solving logic 34 runs an initial solver setup 60
in which the contact manifolds are converted from 3D space
into solver space, by computing Jacobian matrices for the
contact manifold 58 for each pair 52 of colliding bodies. In
each current solving phase 44, for each pair 52 of bodies for
which contact manifolds 58 are produced, the iterative
solver 64 separately solves each constraint of those pairs 52
of bodies. As discussed above, the iterative solver 64 accu-
mulates the results of the constraint solving, such as, for
example, by accumulating applied forces or impulses for the
constraint solves. After each constraint between a pair 52 of
bodies is solved, the iterative solver 64 may determine
intermediate solver velocities 70 for that colliding pair 52 of
bodies based on the accumulated results of constraint solv-
ing. That is, the accumulation of the applied impulses or

US 11,875,094 B2

9

forces may result in one of the bodies of the pair 52 of bodies
having an intermediate solver velocity 70.

As discussed above, the solver 64 may further perform
friction solving for relevant contact points between the pair
52 of bodies. The intermediate solver velocities 70 of one or
more of the bodies may potentially cause issues for the
friction solving that may cause artifacts or errors to occur.
However, in one example, the physics engine 26 imple-
mented by the computing device 10 is stateless and deter-
ministic. That is, the physics engine 26 does not introduce
extra solver states to propagate error information to subse-
quent simulation steps in order to mitigate the errors in
subsequent steps.

In order to mitigate these potential artifact or errors
occurring during friction solving, the physics engine 26 of
the computer device 10 according to the present embodi-
ment implements a minimizing function 72 for friction
solving. The solver 64 is configured to calculate friction
velocities 74 for the bodies of the colliding pair 52 being
solved using the minimizing function 72. As illustrated, the
solver 64 is configured to calculate the friction velocities 74
for that colliding pair 52 of bodies based on the stored initial
velocities 68 and the intermediate solver velocities 70 for
that colliding pair 52 of bodies using the minimization
function 72. As will be described in more detail below, the
minimizing function 72 produces friction velocities 74 that
may be used for friction solving to mitigate the potential
artifact or errors that may occur from the intermediate solver
velocities 70.

The solver 64 may then perform friction solving for the
contact points between the pair 52 of bodies, and apply a
friction force or impulse based on the calculated friction
velocities 74 for that colliding pair 52 of bodies. The solver
64 may then continue to iterate through each colliding pair
52 of bodies in the same manner. The solver 64 may perform
several solver iterations until an approximate solution for
that simulation step is calculated.

The positions and velocities of the bodies are then
updated in the updating phase 46. The results (i.e., a graphi-
cal representation of the updated positions of the bodies) are
then displayed in the display phase 48. Once the results are
displayed, the physics engine 26 may proceed to the next
simulation step, and the process loops back to the collision
detection phase 42.

FIGS. 5A, 5B, 6A, and 6B illustrate an example friction
solve using the minimizing function 72. FIG. 5A has the
same initial state of the simulated physical system as in FIG.
3A. As illustrated, the body B1 has an initial velocity V1
directed toward the body B2. During the collision detection
phase 42, contact information including a plurality of con-
tact points C1, C2, and C3 are determined and stored in the
contact manifolds 58. The physics engine 26 may then
process the contact information in the contact manifolds 58
as discussed above using a solving logic 34 during the
solving phase 44. Before moving to the solving phase 44, the
physics engine 26 determines initial states 68 of the bodies,
such as, for example, initial velocities of the bodies. The
initial state 68 of the bodies may be stored alongside the
collision caches 56, or otherwise stored for later use by the
iterative solver. In the example of FIG. 5A, the body B1 has
an initial velocity of V1, and the bodies B2, B3, and B5 have
initial velocities of 0, as shown in FIG. 5C.

FIG. 5B shows a result of solving the constraint for the
contact point C1 between the pair of bodies (B1, B2). The
accumulation of the applied forces or impulses for the
colliding pair of bodies (B1, B2) results in an intermediate
solver velocity V2 for the body B2. After solving the

10

20

25

30

35

40

45

50

55

60

65

10
constraints for the colliding pair of bodies (B1, B2), the
solving logic 34 may then solve constraints for the next
colliding pair of bodies (B2, B3).

When performing friction solving for the contact point C2
between the pair of bodies (B2, B3), the body B2 has an
intermediate solver velocity V2 that would potentially cause
artifacts or errors in the friction solving. To mitigate these
errors, the iterative solver 64 of the physics engine 26 is
configured to calculate friction velocities 74 for that collid-
ing pair 52 of bodies based on the stored initial velocities 68
and the intermediate solver velocities 70 for that colliding
pair of bodies 52 using a minimization function 72.

In one example, the minimizing function 72 is configured
to compare the stored initial velocities 68 to the intermediate
solver velocities 70, and select the velocities having a
smaller magnitude between the stored initial velocities 68
and the intermediate solver velocities 70 as the friction
velocities 74. For example, the minimizing function 72 may
be configured to compare values of one or more linear or
angular velocities of the stored initial velocities 68 to
corresponding one or more linear or angular velocities of the
intermediate solver velocities, and select the set of velocities
that is smaller as the friction velocities 74. The minimizing
function 72 may be configured to perform comparisons for
each corresponding velocity components.

In another example, the minimizing function 72 may be
configured to calculate a squared length for vector compo-
nents of the stored initial velocities 68 and a squared length
for vector components of the intermediate solver velocities
70. The minimizing function 72 may be configured to
perform these squared length calculations separately for the
linear and angular velocity components. The minimizing
function 72 may then compare the squared length for vector
components of the initial velocities to the squared length for
vector components of the intermediate solver velocities 70,
and select the velocities having the smaller squared length as
the friction velocities.

If the velocities have both linear and angular components,
the minimizing function 72 may be configured to separately
compare and select the linear components from the angular
components of the two sets of velocities. Thus, in one
example, if the initial velocities have linear components
with a smaller squared length but angular components with
a larger squared length than the intermediate solver veloci-
ties 70, then the resulting selected friction velocities 74 may
include values for the linear velocities of the initial veloci-
ties and angular velocities of the intermediate solver veloci-
ties 70. That is, the minimizing function 72 may be config-
ured to select linear velocities having a smaller squared
length for linear vector components between the stored
initial velocities and the intermediate solver velocities as
linear components of the friction velocities, and select
angular velocities having a smaller squared length for angu-
lar vector components between the stored initial velocities
and the intermediate solver velocities as angular components
of the friction velocities.

In these examples, the minimizing function 72 selected
the friction velocities 74 based on various magnitudes of
velocity. In another example, the minimizing function 72
may be configured to minimize an energy when selecting the
friction velocities. For example, the minimizing function 72
may be configured to calculate an initial kinetic energy for
a body of the colliding pair of bodies based on the stored
initial velocities 68 and an intermediate solver kinetic
energy for the body of the colliding pair of bodies based on
the intermediate solver velocities 70. For example, mini-

US 11,875,094 B2

11

mizing function 72 may be configured to calculate the
energies with the following functions:

linearEnergySq=mass*LinearVelocity.lengthSquared
angularMomentum=inertia* AngularVelocity

rotational EnergySq=AngularVelocity.dot(angularMo-
mentum)

energy=0.5/*(linearEnergySq+rotationalEnergySq)

The minimizing function 72 may compute such an energy
value for both the initial velocities 68 and the intermediate
solver velocities 70, and then select the velocities resulting
in a smaller kinetic energy for the body as the friction
velocities 74.

It should be appreciated that the example techniques for
selecting friction velocities based on the stored initial veloci-
ties and intermediate solver velocities 70 are merely exem-
plary, and that other methods and techniques may be used in
determining the friction velocities in order to mitigate poten-
tial friction artifacts and errors discussed above.

The solver 64 may then perform friction solving for the
constraint by applying a friction force or impulse based on
the calculated friction velocities 74 for that colliding pair of
bodies 52. FIG. 6A continues the example simulation of
FIGS. 5A and 5B. The body B2 has a stored initial velocity
of zero and an intermediate solver velocity of V2. Thus,
when performing the friction solving for the contact point
C2 between body B2 and B3, the solver is configured to
calculate the friction velocity 74 using the minimizing
function 72. In the illustrated example, the initial velocities
68 for the body B2 are less than the intermediate solver
velocities 70 for the body B2. Thus, the initial velocities of
the body B2, which are zero, are selected as the friction
velocity 74. As a result, when performing friction solving,
the relative point velocity of the contact point C2 based on
the calculate friction velocity is zero, and no friction force
or impulse is applied to the contact point. Thus, the body B3
does not gain an intermediate velocity and remains still
would be expected by the user due to the body B2 also
remaining still at the end of the simulation step. In this
manner, the minimizing function 72 for friction solving 72
mitigates the potential errors or artifacts that may occur
during friction solving using iterative solvers such as a
Gauss-Seidel solver.

Additionally, as the minimizing function 72 chooses the
smaller velocity or energy for friction solving, the iterative
solver may converge to a stable solution in less iterations
compared to iterative solvers that do not implement such a
minimizing function 72 for friction solving. In one example,
each iterative solving phase 44 of the physics engine 26 has
a capped number of solver iterations. In one example, the
capped number of solver iterations is less than five. Spe-
cifically, the capped number of solver iterations may be four.
However, it should be appreciated that the capped number of
solver iterations may be set to other values, such as, for
example, five, six, etc. By capping the number of solver
iterations, the physics engine 26 may significantly reduce
the resource requirements for the physics engine 26. Typi-
cally, iterative solvers require at least eight or more solver
iterations to converge to an approximately stable solution. In
contrast, by implementing the minimizing function 72, the
physics engine 26 may cap the number of solver iterations
to four, while still converging to approximately stable solu-
tions for simulated physical systems.

Additionally, by mitigating artifacts and errors that may
occur during friction solving with iterative solvers, such as

10

15

40

45

50

55

65

12

Gauss-Seidel solvers, without introducing extra states, the
physics engine 26 may be implemented in a stateless and
deterministic configuration. As discussed above, the state-
less and deterministic configuration for the physics engine
26 provides potential benefits in multiplayer online appli-
cation scenarios as well as when hardware accelerating the
physics engine 26 using a GPU.

FIG. 7 is a flow chart of a method for user with a
computing device, for friction solving for rigid body dynam-
ics using a minimizing function. It will be appreciated that
method 100 may be executed using the hardware describe
above, or using other suitable hardware. For example, the
method 100 may be executed at a physics engine 26
executed by a processor 12 of a computing device 10 to
simulate real-time rigid body dynamics of a simulated
physical system including a plurality of bodies.

At 102, the method may include iteratively looping
through a collision detection phase, solving phase, updating
phase, and display phase. Steps 104-108 are executed in a
collision detection phase. At 104, the method may include
identifying colliding pairs of bodies of the plurality of
bodies. At 106, the method may include, for each identified
pair, determining collision information including a plurality
of constraints for the identified colliding pairs of bodies. At
108, the method may include storing initial velocities for the
colliding pairs of bodies.

Steps 110-118 are executed in an iterative solving phase.
Steps 110-118 may be implemented by an iterative solver,
such as, for example, a Gauss-Seidel solver. Steps 110-118
may be looped for each solver iteration. In one example, the
solver may be configured to have a capped number of solver
iterations. In one example, the capped number of solver
iterations is less than five, more preferably four. Steps
110-112 may be looped for one or more constraints between
a colliding pair of bodies. At step 110, the method may
include solving that constraint. At step 112, the method may
include, accumulating results of constraint solving.

At step 114, the method may include determining inter-
mediate solver velocities for that colliding pair of bodies
based on the accumulated results of constraint solving. At
116, the method may include calculating friction velocities
for that colliding pair of bodies based on the stored initial
velocities and the intermediate solver velocities for that
colliding pair of bodies using a minimization function. At
method 118, the method may include applying a friction
force or impulse based on the calculated friction velocities
for that colliding pair of bodies. The loop of steps 110-112
and steps 114-118 may be looped for each pair of bodies in
the system. After looping steps 110-118 for each pair of
bodies, one solver iteration is completed.

Step 120 is executed in an updating phase. At 120, the
method may include updating positions of the colliding pairs
of bodies based on a result of the current iterative solving
phase.

Step 122 is executed in a display phase. At 122, the
method may include outputting data representations of the
plurality of bodies to a display associated with the comput-
ing device.

The method 100 may be implemented using a stateless
and deterministic physics engine. The steps of the method
100 may be hardware accelerated using a GPU, or another
type of hardware acceleration device.

While the illustrative embodiments have been described
using two-dimensional graphics as examples for simplicity
of explanation, it will be appreciated that the techniques
described herein apply equally to three-dimensional repre-
sentations.

US 11,875,094 B2

13

In some embodiments, the methods and processes
described herein may be tied to a computing system of one
or more computing devices. In particular, such methods and
processes may be implemented as a computer-application
program or service, an application-programming interface
(API), a library, and/or other computer-program product.

FIG. 8 schematically shows a non-limiting embodiment
of'a computing system 800 that can enact one or more of the
methods and processes described above. Computing system
800 is shown in simplified form. Computing system 800
may embody the computer device 10 described above and
illustrated in FIG. 1. Computing system 800 may take the
form of one or more personal computers, server computers,
tablet computers, home-entertainment computers, network
computing devices, gaming devices, mobile computing
devices, mobile communication devices (e.g., smart phone),
and/or other computing devices, and wearable computing
devices such as smart wristwatches and head mounted
augmented reality devices.

Computing system 800 includes a logic processor 802
volatile memory 804, and a non-volatile storage device 806.
Computing system 800 may optionally include a display
subsystem 808, input subsystem 810, communication sub-
system 812, and/or other components not shown in FIG. 8.

Logic processor 802 includes one or more physical
devices configured to execute instructions. For example, the
logic processor may be configured to execute instructions
that are part of one or more applications, programs, routines,
libraries, objects, components, data structures, or other logi-
cal constructs. Such instructions may be implemented to
perform a task, implement a data type, transform the state of
one or more components, achieve a technical effect, or
otherwise arrive at a desired result.

The logic processor may include one or more physical
processors (hardware) configured to execute software
instructions. Additionally or alternatively, the logic proces-
sor may include one or more hardware logic circuits or
firmware devices configured to execute hardware-imple-
mented logic or firmware instructions. Processors of the
logic processor 802 may be single-core or multi-core, and
the instructions executed thereon may be configured for
sequential, parallel, and/or distributed processing. Indi-
vidual components of the logic processor optionally may be
distributed among two or more separate devices, which may
be remotely located and/or configured for coordinated pro-
cessing. Aspects of the logic processor may be virtualized
and executed by remotely accessible, networked computing
devices configured in a cloud-computing configuration. In
such a case, these virtualized aspects are run on different
physical logic processors of various different machines, it
will be understood.

Non-volatile storage device 806 includes one or more
physical devices configured to hold instructions executable
by the logic processors to implement the methods and
processes described herein. When such methods and pro-
cesses are implemented, the state of non-volatile storage
device 806 may be transformed—e.g., to hold different data.

Non-volatile storage device 806 may include physical
devices that are removable and/or built-in. Non-volatile
storage device 806 may include optical memory (e.g., CD,
DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor
memory (e.g., ROM, EPROM, EEPROM, FLLASH memory,
etc.), and/or magnetic memory (e.g., hard-disk drive, floppy-
disk drive, tape drive, MRAM, etc.), or other mass storage
device technology. Non-volatile storage device 806 may
include nonvolatile, dynamic, static, read/write, read-only,
sequential-access, location-addressable, file-addressable,

10

15

20

25

30

35

40

45

50

55

60

65

14

and/or content-addressable devices. It will be appreciated
that non-volatile storage device 806 is configured to hold
instructions even when power is cut to the non-volatile
storage device 806.

Volatile memory 804 may include physical devices that
include random access memory. Volatile memory 804 is
typically utilized by logic processor 802 to temporarily store
information during processing of software instructions. It
will be appreciated that volatile memory 804 typically does
not continue to store instructions when power is cut to the
volatile memory 804.

Aspects of logic processor 802, volatile memory 804, and
non-volatile storage device 806 may be integrated together
into one or more hardware-logic components. Such hard-
ware-logic components may include field-programmable
gate arrays (FPGAs), program- and application-specific inte-
grated circuits (PASIC/ASICs), program- and application-
specific standard products (PSSP/ASSPs), system-on-a-chip
(SOC), and complex programmable logic devices (CPLDs),
for example.

The terms “module,” “program,” and “engine” may be
used to describe an aspect of computing system 800 typi-
cally implemented in software by a processor to perform a
particular function using portions of volatile memory, which
function involves transformative processing that specially
configures the processor to perform the function. Thus, a
module, program, or engine may be instantiated via logic
processor 802 executing instructions held by non-volatile
storage device 806, using portions of volatile memory 804.
It will be understood that different modules, programs,
and/or engines may be instantiated from the same applica-
tion, service, code block, object, library, routine, AP, func-
tion, etc. Likewise, the same module, program, and/or
engine may be instantiated by different applications, ser-
vices, code blocks, objects, routines, APIs, functions, etc.
The terms “module,” “program,” and “engine” may encom-
pass individual or groups of executable files, data files,
libraries, drivers, scripts, database records, etc.

When included, display subsystem 808 may be used to
present a visual representation of data held by non-volatile
storage device 806. The visual representation may take the
form of a graphical user interface (GUI). As the herein
described methods and processes change the data held by the
non-volatile storage device, and thus transform the state of
the non-volatile storage device, the state of display subsys-
tem 808 may likewise be transformed to visually represent
changes in the underlying data. Display subsystem 808 may
include one or more display devices utilizing virtually any
type of technology. Such display devices may be combined
with logic processor 802, volatile memory 804, and/or
non-volatile storage device 806 in a shared enclosure, or
such display devices may be peripheral display devices.

When included, input subsystem 810 may comprise or
interface with one or more user-input devices such as a
keyboard, mouse, touch screen, or game controller. In some
embodiments, the input subsystem may comprise or inter-
face with selected natural user input (NUI) componentry.
Such componentry may be integrated or peripheral, and the
transduction and/or processing of input actions may be
handled on- or off-board. Example NUI componentry may
include a microphone for speech and/or voice recognition;
an infrared, color, stereoscopic, and/or depth camera for
machine vision and/or gesture recognition; a head tracker,
eye tracker, accelerometer, and/or gyroscope for motion
detection and/or intent recognition; as well as electric-field
sensing componentry for assessing brain activity; and/or any
other suitable sensor.

2 <

US 11,875,094 B2

15

When included, communication subsystem 812 may be
configured to communicatively couple various computing
devices described herein with each other, and with other
devices. Communication subsystem 812 may include wired
and/or wireless communication devices compatible with one
or more different communication protocols. As non-limiting
examples, the communication subsystem may be configured
for communication via a wireless telephone network, or a
wired or wireless local- or wide-area network, such as a
HDMI over Wi-Fi connection. In some embodiments, the
communication subsystem may allow computing system
800 to send and/or receive messages to and/or from other
devices via a network such as the Internet.

The following paragraphs provide additional support for
the claims of the subject application. One aspect provides a
computing device comprising a processor configured to
execute a physics engine to simulate real-time rigid body
dynamics of a simulated physical system including a plu-
rality of bodies. The physics engine is configured to itera-
tively loop through a collision detection phase, an iterative
solving phase, updating phase, and display phase. In a
current collision detection phase, the physic engine is con-
figured to identify colliding pairs of bodies of the plurality
of bodies, determine collision information including a plu-
rality of constraints for the identified colliding pairs of
bodies, and store initial velocities for the colliding pairs of
bodies. In a current iterative solving phase, the physics
engine is configured to, for each solver iteration, for one or
more colliding pairs of bodies, for one or more constraints
between that colliding pair of bodies, solve that constraint,
and accumulate results of constraint solving. For that one or
more colliding pairs of bodies, the physics engine is con-
figured to determine intermediate solver velocities for that
colliding pair of bodies based on the accumulated results of
constraint solving, calculate friction velocities for that col-
liding pair of bodies based on the stored initial velocities and
the intermediate solver velocities for that colliding pair of
bodies using a minimization function, and apply a friction
force or impulse based on the calculated friction velocities
for that colliding pair of bodies. In an updating phase, the
physics engine is configured to update positions of the
colliding pairs of bodies based on a result of the current
iterative solving phase. In a display phase, the physics
engines is configured to output data representations of the
plurality of bodies to a display associated with the comput-
ing device. In this aspect, additionally or alternatively, the
plurality of constraints may be contact points between
colliding pairs of bodies, and to solve a constraint, the
physics engine may be configured to calculate a point
relative velocity for that contact point, apply a force or
impulse to that contact point based on the point relative
velocity, and accumulate applied forces or impulses for that
colliding pair of bodies. In this aspect, additionally or
alternatively, each iterative solving phase may include a
capped number of solver iterations. In this aspect, addition-
ally or alternatively, the capped number of solver iterations
may be less than five. In this aspect, additionally or alter-
natively, to calculate friction velocities based on the stored
initial velocities and the intermediate solver velocities, the
physics engine may be configured to compare the stored
initial velocities to the intermediate solver velocities, and
select the velocities having a smaller magnitude between the
stored initial velocities and the intermediate solver velocities
as the friction velocities. In this aspect, additionally or
alternatively, to compare the stored initial velocities to the
intermediate solver velocities, the physics engine may be
configured to calculate a squared length for vector compo-

10

15

20

25

30

35

40

45

50

55

60

65

16

nents of the stored initial velocities and a squared length for
vector components of the intermediate solver velocities, and
select the velocities having the smaller squared length
between the stored initial velocities and the intermediate
solver velocities as the friction velocities. In this aspect,
additionally or alternatively, the physics engine may be
configured to select linear velocities having a smaller
squared length for linear vector components between the
stored initial velocities and the intermediate solver velocities
as linear components of the friction velocities, and select
angular velocities having a smaller squared length for angu-
lar vector components between the stored initial velocities
and the intermediate solver velocities as angular components
of the friction velocities. In this aspect, additionally or
alternatively, to compare the stored initial velocities to the
intermediate solver velocities, the physics engine is config-
ured to calculate an initial kinetic energy for a body of the
colliding pair of bodies based on the stored initial velocities
and an intermediate solver kinetic energy for the body of the
colliding pair of bodies based on the intermediate solver
velocities, and select the velocities resulting in a smaller
kinetic energy for the body as the friction velocities. In this
aspect, additionally or alternatively, the physics engine may
be stateless and deterministic. In this aspect, additionally or
alternatively, the iterative solving phase of the physics
engine may be configured to be accelerated by a graphics
processing unit.

Another aspect provides a method for use with a com-
puting device, comprising, at a physics engine executed by
a processor of the computing device to simulate real-time
rigid body dynamics of a simulated physical system includ-
ing a plurality of bodies, iteratively looping through a
collision detection phase, an iterative solving phase, updat-
ing phase, and display phase. In a current collision detection
phase, the method may further comprise identifying collid-
ing pairs of bodies of the plurality of bodies, determining
collision information including a plurality of constraints for
the identified colliding pairs of bodies, and storing initial
velocities for the colliding pairs of bodies. In a current
iterative solving phase, the method may comprise, for each
solver iteration, for one or more colliding pairs of bodies, for
one or more constraints between that colliding pair of
bodies, solving that constraint, and accumulating results of
constraint solving. For that one or more colliding pairs of
bodies, the method may further comprise determining inter-
mediate solver velocities for that colliding pair of bodies
based on the accumulated results of constraint solving,
calculating friction velocities for that colliding pair of bodies
based on the stored initial velocities and the intermediate
solver velocities for that colliding pair of bodies using a
minimization function, applying a friction force or impulse
based on the calculated friction velocities for that colliding
pair of bodies. In an updating phase, the method may further
comprise updating positions of the colliding pairs of bodies
based on a result of the current iterative solving phase. In a
display phase, the method may further comprise outputting
data representations of the plurality of bodies to a display
associated with the computing device. In this aspect, addi-
tionally or alternatively, the plurality of constraints may be
contact points between colliding pairs of bodies, and solving
a constraint may further comprise calculating a point relative
velocity for that contact point, applying a force or impulse
to that contact point based on the point relative velocity, and
accumulating applied forces or impulses for that colliding
pair of bodies. In this aspect, additionally or alternatively,
each iterative solving phase may include a capped number of
solver iterations. In this aspect, additionally or alternatively,

US 11,875,094 B2

17

the capped number of solver iterations may be less than five.
In this aspect, additionally or alternatively, calculating fric-
tion velocities based on the stored initial velocities and the
intermediate solver velocities may further comprise com-
paring the stored initial velocities to the intermediate solver
velocities, and selecting the velocities having a smaller
magnitude between the stored initial velocities and the
intermediate solver velocities as the friction velocities. In
this aspect, additionally or alternatively, comparing the
stored initial velocities to the intermediate solver velocities
may further comprise calculating a squared length for vector
components of the stored initial velocities and a squared
length for vector components of the intermediate solver
velocities, and selecting the velocities having the smaller
squared length between the stored initial velocities and the
intermediate solver velocities as the friction velocities. In
this aspect, additionally or alternatively, the method may
further comprise selecting linear velocities having a smaller
squared length for linear vector components between the
stored initial velocities and the intermediate solver velocities
as linear components of the friction velocities, and selecting
angular velocities having a smaller squared length for angu-
lar vector components between the stored initial velocities
and the intermediate solver velocities as angular components
of the friction velocities. In this aspect, additionally or
alternatively, comparing the stored initial velocities to the
intermediate solver velocities may further comprise calcu-
lating an initial kinetic energy for a body of the colliding pair
of bodies based on the stored initial velocities and an
intermediate solver kinetic energy for the body of the
colliding pair of bodies based on the intermediate solver
velocities, and selecting the velocities resulting in a smaller
kinetic energy for the body as the friction velocities. In this
aspect, additionally or alternatively, the iterative solving
phase of the physics engine may be configured to be
accelerated by a graphics processing unit of the computing
device.

Another aspect provides a computing device, comprising
a processor configured to execute a physics engine to
simulate real-time rigid body dynamics of a simulated
physical system including a plurality of bodies. The physics
engine is configured to iteratively loop through a collision
detection phase, an iterative solving phase, updating phase,
and display phase. In a current collision detection phase, the
physics engine is configured to identify colliding pairs of
bodies of the plurality of bodies, determine collision infor-
mation including a plurality of constraints for the identified
colliding pairs of bodies, and store initial state data for the
colliding pairs of bodies. In a current iterative solving phase,
the physics engines is configured to, for each solver itera-
tion, for one or more colliding pairs of bodies, for one or
more constraints between that colliding pair of bodies, solve
that constraint, and accumulate results of constraint solving.
For that one or more colliding pairs of bodies, the physics
engines is further configured to determine intermediate state
data for that colliding pair of bodies, calculate friction state
data for that colliding pair of bodies based on the stored
initial state data and the intermediate state data for that
colliding pair of bodies, and solve for friction for that
colliding pair of bodies based on the calculated friction state
data. In an updating phase, the physics engine is configured
to update positions of the colliding pairs of bodies based on
a result of the current iterative solving phase. In a display
phase, the physics engine is configured to output data
representations of the plurality of bodies to a display asso-
ciated with the computing device.

20

25

40

45

18

It will be understood that the configurations and/or
approaches described herein are exemplary in nature, and
that these specific embodiments or examples are not to be
considered in a limiting sense, because numerous variations
are possible. The specific routines or methods described
herein may represent one or more of any number of pro-
cessing strategies. As such, various acts illustrated and/or
described may be performed in the sequence illustrated
and/or described, in other sequences, in parallel, or omitted.
Likewise, the order of the above-described processes may be
changed.

The subject matter of the present disclosure includes all
novel and non-obvious combinations and sub-combinations
of the various processes, systems and configurations, and
other features, functions, acts, and/or properties disclosed
herein, as well as any and all equivalents thereof.

The invention claimed is:

1. A computing device, comprising:

a processor configured to execute a physics engine to
simulate real-time rigid body dynamics of a simulated
physical system including a plurality of bodies,
wherein the physics engine is deterministic and does
not maintain state data other than respective positions
and velocities of the plurality of bodies between suc-
cessive timesteps, the physics engine being configured
to:
iteratively loop through a collision detection phase, an

iterative solving phase, updating phase, and display
phase;
in a current collision detection phase:
identify colliding pairs of bodies of the plurality of
bodies;
determine collision information including a plurality
of position or velocity constraints for the identi-
fied colliding pairs of bodies; and
store initial velocities for the colliding pairs of
bodies;
in a current iterative solving phase:
for each solver iteration:
for one or more colliding pairs of bodies:
for one or more position or velocity constraints
between that colliding pair of bodies:
solve that position or velocity constraint;
apply a force or impulse to each of the colliding
pair of bodies at a contact point of the colliding
pair of bodies based on the solving of each
position or velocity constraint; and
accumulate results of constraint solving by
accumulating the applied forces or impulses;
determine intermediate solver velocities at the
contact point between the colliding pair of
bodies based on the accumulated results of
constraint solving;
calculate friction velocities for that colliding
pair of bodies based on the stored initial veloci-
ties and the intermediate solver velocities at the
contact point between that colliding pair of
bodies using a minimization function, wherein
the minimization function selects a smaller of
the stored initial velocities and the intermediate
solver velocities to compute the friction veloci-
ties; and
apply a friction force or impulse based on the
calculated friction velocities for that colliding
pair of bodies;
in an updating phase:

US 11,875,094 B2

19

update positions of the colliding pairs of bodies
based on a result of the current iterative solving
phase; and
in a display phase:
output data representations of the plurality of
bodies to a display associated with the comput-
ing device.

2. The computing device of claim 1, wherein the plurality
of position or velocity constraints are constraints on the
contact points between the colliding pairs of bodies; and

wherein to solve a constraint, the physics engine is

configured to:

calculate a point relative velocity for that contact point;
and

compute the force or impulse applied to that contact
point based on the point relative velocity.

3. The computing device of claim 1, wherein each itera-
tive solving phase includes a capped number of solver
iterations.

4. The computing device of claim 3, wherein the capped
number of solver iterations is less than five.

5. The computing device of claim 1, wherein to calculate
friction velocities based on the stored initial velocities and
the intermediate solver velocities, the physics engine is
configured to:

compare the stored initial velocities to the intermediate

solver velocities; and

select the velocities having a smaller magnitude between

the stored initial velocities and the intermediate solver
velocities as the friction velocities.
6. The computing device of claim 5, wherein to compare
the stored initial velocities to the intermediate solver veloci-
ties, the physics engine is configured to:
calculate a squared length for vector components of the
stored initial velocities and a squared length for vector
components of the intermediate solver velocities; and

select the velocities having the smaller squared length
between the stored initial velocities and the intermedi-
ate solver velocities as the friction velocities.
7. The computing device of claim 6, wherein the physics
engine is configured to:
select linear velocities having a smaller squared length for
linear vector components between the stored initial
velocities and the intermediate solver velocities as
linear components of the friction velocities; and

select angular velocities having a smaller squared length
for angular vector components between the stored
initial velocities and the intermediate solver velocities
as angular components of the friction velocities.

8. The computing device of claim 5, wherein to compare
the stored initial velocities to the intermediate solver veloci-
ties, the physics engine is configured to:

calculate an initial kinetic energy for a body of the

colliding pair of bodies based on the stored initial
velocities and an intermediate solver kinetic energy for
the body of the colliding pair of bodies based on the
intermediate solver velocities; and

select the velocities resulting in a smaller kinetic energy

for the body as the friction velocities.

9. The computing device of claim 1, wherein the iterative
solving phase of the physics engine is configured to be
accelerated by a graphics processing unit.

10. A method for use with a computing device, compris-
ing:

at a physics engine executed by a processor of the

computing device to simulate real-time rigid body
dynamics of a simulated physical system including a

25

30

35

40

45

50

55

20

plurality of bodies, wherein the physics engine is
deterministic and does not maintain state data other
than respective positions and velocities of the plurality
of bodies between successive timesteps:
iteratively looping through a collision detection phase,
an iterative solving phase, updating phase, and dis-
play phase;
in a current collision detection phase:
identifying colliding pairs of bodies of the plurality
of bodies;
determining collision information including a plu-
rality of position or velocity constraints for the
identified colliding pairs of bodies; and
storing initial velocities for the colliding pairs of
bodies;
in a current iterative solving phase:
for each solver iteration:
for one or more colliding pairs of bodies:
for one or more position or velocity constraints
between that colliding pair of bodies:
solving that position or velocity constraint;
applying a force or impulse to each of the
colliding pair of bodies at a contact point of the
colliding pair of bodies based on the solving of
each position or velocity constraint; and
accumulating results of constraint solving by
accumulating the applied forces or impulses;
determining intermediate solver velocities at
the contact point between the colliding pair of
bodies based on the accumulated results of
constraint solving;
calculating friction velocities for that colliding
pair of bodies based on the stored initial veloci-
ties and the intermediate solver velocities at the
contact point between that colliding pair of
bodies using a minimization function, wherein
the minimization function selects a smaller of
the stored initial velocities and the intermediate
solver velocities to compute the friction veloci-
ties; and
applying a friction force or impulse based on
the calculated friction velocities for that collid-
ing pair of bodies;
in an updating phase:
updating positions of the colliding pairs of bodies
based on a result of the current iterative solving
phase; and
in a display phase:
outputting data representations of the plurality of
bodies to a display associated with the computing
device.

11. The method of claim 10, wherein the plurality of
position or velocity constraints are constraints on the contact
points between the colliding pairs of bodies; and

wherein solving a constraint further comprises:

calculating a point relative velocity for that contact
point; and

computing the force or impulse applied to that contact
point based on the point relative velocity.

12. The method of claim 11, wherein each iterative
solving phase includes a capped number of solver iterations.

13. The method of claim 12, wherein the capped number
of solver iterations is less than five.

14. The method of claim 10, wherein calculating friction
velocities based on the stored initial velocities and the
intermediate solver velocities further comprises:

US 11,875,094 B2

21

comparing the stored initial velocities to the intermediate
solver velocities; and

selecting the velocities having a smaller magnitude
between the stored initial velocities and the intermedi-
ate solver velocities as the friction velocities.

15. The method of claim 14, wherein comparing the
stored initial velocities to the intermediate solver velocities
further comprises:

calculating a squared length for vector components of the
stored initial velocities and a squared length for vector
components of the intermediate solver velocities; and

selecting the velocities having the smaller squared length
between the stored initial velocities and the intermedi-
ate solver velocities as the friction velocities.

16. The method of claim 15, further comprising:

selecting linear velocities having a smaller squared length
for linear vector components between the stored initial
velocities and the intermediate solver velocities as
linear components of the friction velocities; and

selecting angular velocities having a smaller squared
length for angular vector components between the
stored initial velocities and the intermediate solver
velocities as angular components of the friction veloci-
ties.

17. The method of claim 14, wherein comparing the
stored initial velocities to the intermediate solver velocities
further comprises:

calculating an initial kinetic energy for a body of the
colliding pair of bodies based on the stored initial
velocities and an intermediate solver kinetic energy for
the body of the colliding pair of bodies based on the
intermediate solver velocities; and

selecting the velocities resulting in a smaller kinetic
energy for the body as the friction velocities.

18. The method of claim 10, wherein the iterative solving
phase of the physics engine is configured to be accelerated
by a graphics processing unit of the computing device.

19. A computing device, comprising:

a processor configured to execute a physics engine to
simulate real-time rigid body dynamics of a simulated
physical system including a plurality of bodies,
wherein the physics engine is deterministic and does
not maintain state data other than respective positions
and velocities of the plurality of bodies between suc-
cessive timesteps, the physics engine being configured
to:
iteratively loop through a collision detection phase, an

iterative solving phase, updating phase, and display
phase;
in a current collision detection phase:
identify colliding pairs of bodies of the plurality of
bodies;
determine collision information including a plurality
of position or velocity constraints for the identi-
fied colliding pairs of bodies; and
store initial state data for the colliding pairs of
bodies;
in a current iterative solving phase:
for each solver iteration:
for one or more colliding pairs of bodies:
for one or more position or velocity constraints
between that colliding pair of bodies:
solve that position or velocity constraint;
apply a force or impulse to each of the colliding
pair of bodies at a contact point of the colliding
pair of bodies based on the solving of each
position or velocity constraint; and

10

20

25

30

35

40

45

50

65

22

accumulate results of constraint solving by
accumulating the applied forces or impulses;
determine intermediate state data at the contact
point between the colliding pair of bodies based
on the accumulated results of constraint solv-
ing;
calculate friction state data for that colliding
pair of bodies based on the stored initial state
data and the intermediate state data at the con-
tact point between that colliding pair of bodies;
solve for friction at the contact point between
that colliding pair of bodies based on the cal-
culated friction state data;
in an updating phase:
update positions of the colliding pairs of bodies
based on a result of the current iterative solving
phase; and
in a display phase:
output data representations of the plurality of bodies

to a display associated with the computing device.

20. A computing device, comprising:

a processor configured to execute a physics engine con-
figured to:
store initial velocities for a colliding pair of bodies;
determine one or more position or velocity constraints

for the colliding pair of bodies;
solve the one or more position or velocity constraints;
apply one or more forces or impulses to each body of
the colliding pair of bodies based on the solving of
each position or velocity constraint;
accumulate the one or more applied forces or impulses
to obtain accumulated results of constraint solving;
determine intermediate solver velocities for the collid-
ing pair of bodies based on the accumulated results
of constraint solving;
calculate friction velocities for that colliding pair of
bodies based on the stored initial velocities and the
intermediate solver velocities using a minimization
function, wherein the minimization function selects
a smaller of the stored initial velocities and the
intermediate solver velocities to compute the friction
velocities;
apply a friction force or impulse based on the calcu-
lated friction velocities for the colliding pair of
bodies;
update positions of the colliding pairs of bodies based
on the accumulated results of constraint solving and
the applied friction force or impulse; and
output data representations of the plurality of bodies to
a display associated with the computing device.
21. The computing device of claim 20, wherein the
minimization function selects a smaller of the stored initial
velocities and the intermediate solver velocities to compute
the friction velocities, by:

(a) comparing the stored initial velocities to the interme-
diate solver velocities, and selecting the velocities
having a smaller magnitude between the stored initial
velocities and the intermediate solver velocities as the
friction velocities;

(b) calculating a squared length for vector components of
the stored initial velocities and a squared length for
vector components of the intermediate solver veloci-
ties, and selecting the velocities having a smaller
squared length between the stored initial velocities and
the intermediate solver velocities as the friction veloci-
ties;

US 11,875,094 B2
23

(c) selecting linear velocities having a smaller squared
length for linear vector components between the stored
initial velocities and the intermediate solver velocities
as linear components of the friction velocities, and
selecting angular velocities having a smaller squared 5
length for angular vector components between the
stored initial velocities and the intermediate solver
velocities as angular components of the friction veloci-
ties; or

(d) calculating an initial kinetic energy for a body of the 10
colliding pair of bodies based on the stored initial
velocities and an intermediate solver kinetic energy for
the body of the colliding pair of bodies based on the
intermediate solver velocities, and selecting the veloci-
ties resulting in a smaller kinetic energy for the body as 15
the friction velocities.

#* #* #* #* #*

