a2 United States Patent

Tsuchida et al.

US011934518B2

US 11,934,518 B2
Mar. 19, 2024

(10) Patent No.:
45) Date of Patent:

(54) VERIFICATION APPARATUS, MULTIPARTY
COMPUTATION VERIFICATION SYSTEM,
AND METHOD AND PROGRAM FOR
VERIFYING MULTIPARTY COMPUTATION
EXECUTABLE CODE

(71) Applicant: NEC Corporation, Tokyo (JP)

(72) Inventors: Hikaru Tsuchida, Tokyo (JP); Takao
Takenouchi, Tokyo (JP); Toshinori
Araki, Tokyo (JP); Kazuma Obhara,
Tokyo (JP); Takuma Amada, Tokyo
(IP)

(73) Assignee: NEC CORPORATION, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 441 days.

(21) Appl. No.: 17/420,949

(22) PCT Filed: Jan. 9, 2019

(86) PCT No.: PCT/JP2019/000374
§ 371 (e)(D),
(2) Date: Jul. 6, 2021

(87) PCT Pub. No.: W02020/144768
PCT Pub. Date: Jul. 16, 2020

(65) Prior Publication Data
US 2022/0092172 Al Mar. 24, 2022
(51) Imt.CL
GO6F 21/54 (2013.01)
GO6F 8/41 (2018.01)
(Continued)
(52) US. CL
CPC ..o GO6F 21/54 (2013.01); GOGF 8/41

(2013.01); GOGF 11/3404 (2013.01); GO6F
21/554 (2013.01)

VERIFICATION APPARATUS

(58) Field of Classification Search
USPC ittt s 726/26
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,598,561 A
2002/0104076 Al

1/1997 Funaki
8/2002 Shaylor

(Continued)

FOREIGN PATENT DOCUMENTS

Jp H05035772 A 2/1993
Jp H10229398 A 8/1998
(Continued)

OTHER PUBLICATIONS

Zhang, Yihua, Aaron Steele, and Marina Blanton. “PICCO: a
general-purpose compiler for private distributed computation.” Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. 2013. (Year: 2013).*

(Continued)

Primary Examiner — Sanchit K Sarker
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A verification apparatus acquires a source code for multi-
party computation, while changing a combination of options
settable to a multiparty computation compiler, compiles the
source code for each combination of options to generate a
plurality of multiparty computation executable codes,
selects at least one multiparty computation executable code
from the plurality of multiparty computation executable
codes as a verification code and provides the at least one
verification code to a verification environment of multiparty
computation, generates an evaluation index with respect to
an execution result of at least one verification code in the
verification environment, and selects at least one recom-
mended code from the plurality of multiparty computation
executable codes, based on the evaluation index correspond-

(Continued)

1§ SECURE COMPLTATION
H SERVER

US 11,934,518 B2
Page 2

ing to at least one verification code and outputs the selected

recommended code.

19 Claims, 20 Drawing Sheets

(51) Int. CL
GOGF 11/34
GOGF 21/55

(56)

(2006.01)
(2013.01)

References Cited

U.S. PATENT DOCUMENTS

2008/0046865 Al*

2008/0104699 Al*

2014/0130173 Al*

2014/0372769 Al*

2016/0188873 Al*

2017/0123773 Al*

2/2008

5/2008

5/2014

12/2014

6/2016

5/2017

Kerschbaum GO6F 21/556
717/106

Gounares GOGF 9/468
726/25

Kerschbaum GOGF 21/10
726/26

Kerschbaum HO04L 9/008
713/189

Smith ..o GO6F 21/53
726/22

Ga0 oo GOG6F 8/443

2018/0115415 Al
2018/0139045 Al
2021/0049600 Al*

4/2018 Teranishi
5/2018 Furukawa et al.
2/2021 Spectorcceceovuenene HO4L 9/085

FOREIGN PATENT DOCUMENTS

JP 2000040007 A 2/2000
JP 2006277053 A 10/2006
JP 2018045019 A 3/2018
WO 2016159357 Al 10/2016
WO 2016178291 Al 11/2016

OTHER PUBLICATIONS

International Search Report for PCT Application No. PCT/JP2019/
000374, dated Mar. 26, 2019.

“Scale-Mamba Software”, Dec. 11, 2018, pp. 1-3, [Online] <URL:
https://homes.esat kuleuven.be/~nsmart/SCALE/>, retrieval date Jan.
8, 2019.

NEC Corporation Research & Development,, Nov. 5, 2018, pp. 1-5,
[online] <URL:https://www.nec.com/en/global/rd/technologies/
201805/index html>, retrieval date Feb. 27, 2019.

Aomine Ryoko, “System for developing language processing appa-
ratus”, Toshiba Corporation, Toshiba’s Technology Disclosure Paper,
Publication: No. 2002-0702, Ref. No. AB02025346, Proposal No.
46B018083, ISSN 0288-2701, vol. 2016, Mar. 28, 2002, pp. 121-
136.

* cited by examiner

US 11,934,518 B2

Sheet 1 of 20

Mar. 19, 2024

U.S. Patent

Ldvd 1Nd1LN0

Lvd NOLLYYIVAS

1V IRIINOD
ANZWNCHIANG
NOLLYBEIA

LHvd NOLLY HdWOD

N

L NOLLISINDOV

~

LOL

001

-

SNLVHVddY NOUVDIREA

L Old

US 11,934,518 B2

Sheet 2 of 20

Mar. 19, 2024

U.S. Patent

-~ ~
\ "
%
HIANES ERE HIANIS
NOILVLNANGD NOULYLINGNDD NOUVINGIN0OO
JHNDIS 3MNTIS IHN0IS

&-01 i~01

o e e ooe e e o W e e e M e e W e S e
A A A W WA AR M VA AR AV W WA A AV WA e A e

v LNZANGHIANT NOILYDIZEA L
ST e LT T TTTTTmoTmmmommmmmooos -
oe .
3000 NOULYOIMEA | | SLINSTY NOILADEKE
s RERY
5000 TEENINNOOTY
SOLYYcdy NOLLY DI - »
INFWHINDFY + 3C0D F0UN0S _ a
oz
WELSAS NOLLYOIAEA NOILYINGN00 ALV diLT A1

US 11,934,518 B2

Sheet 3 of 20

Mar. 19, 2024

U.S. Patent

€08

L4y
FOYH0LS

NOWDES NOULDMRILSNO DAY
Y1V ONIIYHS 134035

A
€18

NOLLO3S NOULYINGNOO
ALV TN
N

eié

NOLLOIS NOLLVYENTD
VIV ONRYHS 134038

| mm& 24vd NOILND3XE

NOLLYLOANOO ALdvdl LN

AV

LW TOUINDD NOULYDINMINGD

.
1t/

HIANIS NOLLYINGNOD FHN03S 01

€ Old

US 11,934,518 B2

Sheet 4 of 20

Mar. 19, 2024

U.S. Patent

SWG SAGN00 £-0L '2-0) SY3IAYIS
SUIGY sAgW00} £-0) 10 SHIANES
SW0) sdgNg) 0L 10} SH3IANIS
AONELYT HLGIMONYY
NOUYOINDIWAIOD | NOLIVDINMINNOD Hlvd

SHALIWVHYL INFWNOHIANT NOLLYOINNININGD

v Old

US 11,934,518 B2

Sheet 5 of 20

Mar. 19, 2024

U.S. Patent

idvd

Ldvd INdino

0f”

L3V d NCLLYIDTTIVAL

oof”

LY d TOHINGD

3OVH0L

LOE

SNLYHYAEY NOILYOLIIEA G

INIWNOHIANT NOLLYOIIEEA

vob

L14Yd NOUYHANOD

mmmf\

JHYd NOLISINDOY

mom(

14¥d TOHINOD NOLLYIINOWNGD

~7
10¢

G 'Old

US 11,934,518 B2

Sheet 6 of 20

Mar. 19, 2024

U.S. Patent

A3Z1LH0RMd 58300Md

FTONIS ¥ N L ASNOJSHY L

NOISHIANOD JdAL

JIFZIL-OM WL LIND

Hid S48V GI8ST00HUd 40 H3IGNNN O

J3ZILRI0d 3218 3000 L

3718 3G00
QaZULH0MLON 3218 3000 O
J1LON ANTVA ANYN NOULAO
1STTNOUJO FH4NOD

9 'Ol4

US 11,934,518 B2

Sheet 7 of 20

Mar. 19, 2024

U.S. Patent

» L= NOISHIANOD 3dAL ‘0= F218 3000 8107 € 33400

= 'Oz NOISHIANOD JdAL "1 == 3218 3003 0&l Z 3000

- +'O= NOISHIANOD 3dAL ‘0= 3ZI$ 3000 0G L 3G002
NOLYNIGWOO NOILLO LNGHDNONHL 300D NOULYIHRIEA

L Ol

US 11,934,518 B2

Sheet 8 of 20

Mar. 19, 2024

U.S. Patent

o

-

I

3000
GIANIWNODIY 10dIN0 105

i

3000
GIONIAWODTY L0315 908

|

XJON
NOUEVATYAD ZAVHENGD Q08

153y
NOLLA0AKT LINGNYYL 218

_

NOLLVANGNOD
ALYV IN0IXE IS

¥

1Y a3

3000
NOLLYOLIYZA LINSNYYL W08

$300031A8
N 3LYHEINGD 608

|

£

%\&ww w
NOILYLNENOT 3H0038

2

SHILINVEY D INSANCHIANT
NOLLYDINNIWINOD LINSNYYL 208

m

JNTWIHENDR
ONY 3000 30UN0S 39NV LIS

Mmgkm«‘&&,q zowwa‘umwmw&

L R

g old

US 11,934,518 B2

Sheet 9 of 20

Mar. 19, 2024

U.S. Patent

onr wn nm A e nn A e en oy

£¢-01

{Gnool
INIJANOHIANG
NOLLYOINEA,

L I e
s one e e ne nee cen on e e ap

v

SRLVHY Y NOLLYDIAIRIBA

NZLSAS NOILY DI EA NOILYLNAGWOO ALdVdILINW

1Z-01

. n.
pNTTTTTTTTTR

o 000 NOWYDIHI-EIA

e0¢

Yy
it
ik
[.
§ ot
ik m.w\
[
¥t /+f...
ano) 1o
LNHNOHIANG |
NOLLYOIRAA, \ (1-D1
\&\%\\
L0
SLINSIY NOLLADINE
3000 A
NOULYOLMAA 7
LSS AN NOLLNG
..Wx«\x ; y
3000 CIONIWROOTH + (380

ANSANOYIANT C3ONIWWOOR |]

ANTSAIHINDTY + 3000 308008 _ _

{ano)

INTWNOHIANT M
NOLLYOIIM3A,,

A wam mm A e e e S

e A A A A VA A A A A A A e AR

6 9ld

US 11,934,518 B2

Sheet 10 of 20

Mar. 19, 2024

U.S. Patent

14¥d L0dIN0

mwom(

Led¥d NOUYITYAS

esof”

18¥d TOEINGD
INIWNOHIANT NOLLYDIHIMIA

o luvd |
FOVHOLS |

evof”

Jel¥d NOUYHANOD

e mQM/\

L4¥d NOLLISINODY

Nem/\

LV TO™LINGD NOLLYOINNININGD

7
10g

SNIVEYddY NOLLYOIIREEA B0

0l 9l

US 11,934,518 B2

Sheet 11 of 20

Mar. 19, 2024

U.S. Patent

°
°

&— 0% LINFWNOHIANT

SH8YD 0 ANON NOLLYOIIM3A
¢ — OV INFWNOUIANT

S3I8YE 008 L€ 4000 NOLLYDIMZEA
b~ Ot LNDWNOMIANG

5438VD 002 L1 3000 NOLIVOIIEA

3400 ANFANOUIANT

LNdHONOEHL NOLLYOHEA NOLLYOER3A

LL "Old

US 11,934,518 B2

Sheet 12 of 20

Mar. 19, 2024

U.S. Patent

[iwvd |

L¥vd IN41N0

Q@om/\

LA¥d NOUYITIoAL

mmom/\

LMV TOHINGD

LO%

SNLYHVddY NOLLYOIHRIEA 1902

ANFANOHIANT NOLYDIHYEA

ovof”

LuVd NOUY NGO

cof”

1aVd NOLLISINGOY

m@m/\

LHVd TOULNOD NOLLYOINNINNGD

N
10€

¢l 9ld

US 11,934,518 B2

Sheet 13 of 20

Mar. 19, 2024

U.S. Patent

1¥Yd INdING
wcm/\
L¥Yd NOUYITIYATS
mOM/\
R 18V I0ELNGD
g _ LNFANOHIANT NOLLYDIH3A
1Hvd | m/\
JO7HOLS 0

Led¥d NOUYHNGD

LOE omo%\

LH¥d NOLLISINOOY

womﬁ

L18Vd TOJINOD NOLLYOINDININGD

N
108

SOLYHYddY NOUYOIMEA 908

¢l Ol

US 11,934,518 B2

Sheet 14 of 20

Mar. 19, 2024

U.S. Patent

Ldvd

L¥Vd INdIN0

mcm/\

18Vd NOUYITIYAL

cof”

1M¥d TOHINGD

ANFANOHIANT NOLYOIAIMEA

vob

LedV¥d NOLLY IdNGD

| 39V0LS

L08

SNLYEYddY NOUYOIYEA P0C

mom/\

Lu¥d NOISHIANOD

mom(

L1¥vd NOLLISINOOY

Ncm/\

L¥vd TOULNGD NOLIYOINNININGD

N
tog

i 9Old

US 11,934,518 B2

Sheet 15 of 20

Mar. 19, 2024

U.S. Patent

UBoUl UM
WNU/UWINS = uesw
[lfenjeas(] + WNs = umns
(wnuy aBued w1 40}
wns ju
{wnu ‘anjeA) uesw jap

/% USIoUNY %/

(UNSe ‘Ug SY-uwall Y d

(anduwiny ‘senjea Indunuesw = Ynsad

ndufjed={ilsenjea induw
(ndurumnu)edued w1 10§
(Indui’unuy Aedy = senfea induw
0001 = ndurwny

/% BB &/

gt
St
14}
gl
4
L
0L

N s W W P B

e

Gl Ol

US 11,934,518 B2

Sheet 16 of 20

Mar. 19, 2024

U.S. Patent

INIOA-GEXId L83 NOISING
G3403d8
HIDIIN ATLDNEX3 LON 3dAL
SHIIZNVHY
WNIAINIA 30 ONRIYHS 1364038

{(paraninsal ~u uud

fursas - pud

(woy ndueb ndueb
b0 = W3AYIS SALLVINIS Fd 2 ALING
“HIAUIS BALLY NS TN AS G3LONYLSNOOZY NOLLDNMLSNOD I vivQ

101 = H3IANIS
FALVINIS I HIAMTS INLVINISIHITY AS G3AI303Y

JYINMOL LNdNEVLYQ

NOLLYINGOANE ONILLES

491 'Ol

asi oid

o981l 'Old

a9l Old

V9l 'Old

US 11,934,518 B2

Sheet 17 of 20

Mar. 19, 2024

U.S. Patent

UBSLL LIN3BL

mZ\ww = UBaul
mrcmcthmaﬁmomwz
(OYRUS=IN
{wnsyulpeoyg
(0)xYs=S

[sneaspl + wins = wns
{uinu) e8uel W 1 Jdof
(puiszumns
J(WINU ‘BnjRA) UesLL jap

/% UOTIOUNG %/

(P EOARIHNSRI Uk SY=UBOW Ui juLid

(Induuny ‘seneATInduliugsul = nses

(L ywoandu e usisenea™indu
(nduf winu)eBuel Ui | a0}
(3uis “duiwinuy Aeddy = senjeaindul
0001 = W wnu

Sk B %/

S v NS g 8 W~ O L3 e
P e e e R T ST <N B ot

Lot B LS Sy D~ B D " B = >

Py

IANRIIE

US 11,934,518 B2

Sheet 18 of 20

Mar. 19, 2024

U.S. Patent

UBOW LN}

IN/IS = uBsw
(UNUYIHPROIIN
{O)KUS=N
(WnsYul peayis
(OPHs=48

[orjeasid + Wns = wns
(wnu) ofues Wy Joy
(01)uis=id
(gnuIs=wns
(WINU ‘ONjeA) UBSU JOp

Sk UOROUNny »/

((Lyeesssynsad ‘Ux sy=ueauw juuud

(Induuny ‘senjeATnduliugeul = Ynsed

(L oymindur edqusc]]senjea indu
(ndufwinu)eBuel Ui | 104
(3uis ndul umnu) Aeidy = senjeATInduy
(OO0 1Ras = Induwumy

/% IR 5/

&7
te
0
g1
8t
Lt
8t
5l
14
4
4

0

Lo B S - S < I~ B A~ B)

e

gl 9ld

US 11,934,518 B2

Sheet 19 of 20

Mar. 19, 2024

U.S. Patent

5
9IN ANOWIN

N t

v 2
JOVAHTING
ANALN0MNEN glcle

\< “

YA 4
am/\ SMLYHYddY NOLYDIREA

6l 9Old

US 11,934,518 B2

Sheet 20 of 20

Mar. 19, 2024

U.S. Patent

HIAYES
NOLLYLNNQO
3¥N038

HAAHES AIAMZS
NOLIVLNGNCD NOLYINGNOO
FN03S RN0ES

&-01

ranil

-0}

po o o

HANGES
NOILOMYLSNODIUNOLLNBILSIG

000 NOLLYOIHREA

B = o memsims ms oo

SNLvHvddy NOLLYDIRI3A

SIS NOILNO3XT

{48n)

A0S GACNINNOORY

2
>

INFWHEN0IY + 3000 33UN0S

0

WAISAS NOILYOIANEA NOILYINGNOD ALY I

0¢ 9ld

US 11,934,518 B2

1

VERIFICATION APPARATUS, MULTIPARTY
COMPUTATION VERIFICATION SYSTEM,
AND METHOD AND PROGRAM FOR
VERIFYING MULTIPARTY COMPUTATION
EXECUTABLE CODE

This application is a National Stage Entry of PCT/JP2019/
000374 filed on Jan. 9, 2019, the contents of all of which are
incorporated herein by reference, in their entirety.

FIELD

The present invention relates to a verification apparatus,
multiparty computation verification system, and method and
non-transitory medium storing a program for veritfying mul-
tiparty computation executable code.

BACKGROUND

There is a technique called Multi Party Computation
(MPC) (for example, refer to Patent Literature (PTL) 1). In
multiparty computation (secret sharing computation), a plu-
rality of parties (secure computation servers) performs vari-
ous computations using secret information while hiding the
secret information possessed by each party.

The secure computation servers execute predetermined
processing in cooperation with each other. In order to
perform multiparty computation, each secure computation
server must receive a multiparty computation executable
code (bytecode). It is noted that “bytecode’ or “code” herein
denotes multiparty computation executable code when there
is no special explanation.

For example, a bytecode is generated by providing a
source code to a multiparty computation compiler disclosed
in Non-Patent Literature 1. By executing the compiler, one
can obtain a bytecode to be fed (delivered) to each secure
computation server.

Further, when executing multiparty computation, the
secure computation servers communicate with each other. In
this case, the communication cost is often evaluated with a
communication amount (size of data transmitted and
received between servers) and the number of communica-
tion rounds (the number of communications between serv-
ers). This communication cost varies according to bytecode
executed by each secure computation server. More specifi-
cally, even if the same source code is fed to the multiparty
computation compiler, different options given to the com-
piler would generate different bytecodes, and the commu-
nication cost will be different for each generated byte code.
PTL1: Japanese Patent Kokai Publication No. JP-P2018-

045019A
NPL1: “SCALE-MAMBA Software,” Dec. 11, 2018, [on-

line], [searched on Dec. 11, 2018], the Internet <URL:
https://homes.esat.kuleuven.be/~nsmart/SCALE/>

SUMMARY

Each disclosure of Patent Literature 1 and Non-Patent
Literature 1 cited above is incorporated herein in its entirety
by reference thereto. The following analysis is given by the
present inventors.

As described above, even if the same source code is
provided to a multiparty computation compiler, the gener-
ated bytecode varies depending on specified compile
options. Different bytecodes have different communication
costs. An environment in which a user tries to achieve a
predetermined service or application using multiparty com-

10

15

20

25

30

35

40

45

50

55

60

65

2

putation (environment in which a secure computation server
is provided) varies widely. That is, communication charac-
teristics (such as communication bandwidth, and latency)
between individual servers depend on the user environment.

If communication characteristics of a user environment
are different, an optimum bytecode for executing multiparty
computation in the environment will also be different. More
specifically, in terms of communication characteristics, opti-
mal bytecodes are normally different, between a user envi-
ronment with a good communication bandwidth and one
with favorable (small) latency. If a bytecode suitable for
each user environment is not used, the user may not be able
to achieve multiparty computation performance which the
user wants.

Therefore, a bytecode suitable for the user environment is
desirable, but it is not easy to generate such bytecode. As
described above, by changing the options set to the multi-
party computation compiler, bytecodes with different capa-
bilities can be obtained. Choosing these options, however,
requires specialized knowledge of multiparty computation,
and it is difficult for an ordinary user even to select an option
optimal to some extent.

A multiparty computation expert is able to deduce opti-
mum options from characteristics of a communication path
in a user execution environment (for example, communica-
tion bandwidth, and latency) to some extent. Even an expert,
however, cannot accurately determine whether or not an
option is truly optimal without executing a bytecode in each
environment. For example, if a condition that differs is only
that a communication bandwidth is “narrow” or “wide” and
other conditions match, then the difference between an
expected optimal bytecode and a bytecode truly optimal is
likely to be small. Communication bandwidth and commu-
nication latency, however, often change together. Therefore,
for example, depending on a degree of parallelism in parallel
processing, favorability of bytecodes may be reversed in a
certain degree of parallelism. It is difficult to verify a degree
of parallelism that causes such a reversal without executing
a bytecode in the real environment.

As described above, it is difficult for even a multiparty
computation expert to choose a compile option for gener-
ating a bytecode optimal for a user environment, depending
on communication path characteristics or multiparty com-
putation contents.

It is a main object of the present invention to provide a
verification apparatus, multiparty computation verification
system, and method and non-transitory medium storing a
program for verifying multiparty computation executable
code that contribute to recommending a bytecode (multi-
party computation executable code) suitable for a user
environment.

According to a first aspect of the present invention or
disclosure, there is provided a verification apparatus includ-
ing an acquisition part that acquires a source code for
multiparty computation; a compilation part that while
changing a combination of options settable to a multiparty
computation compiler, compiles the source code for each
combination of options to generate a plurality of multiparty
computation executable codes; a verification environment
control part that selects at least one multiparty computation
executable code from the plurality of multiparty computa-
tion executable codes as a verification code and provides the
at least one verification code to a verification environment of
multiparty computation; an evaluation part that generates an
evaluation index with respect to an execution result of the at
least one verification code in the verification environment;
and an output part that selects at least one recommended

US 11,934,518 B2

3

code from the plurality of multiparty computation execut-
able codes, based on the evaluation index corresponding to
the at least one verification code and outputs the selected
recommended code.
According to a second aspect of the present invention or
disclosure, there is provided a multiparty computation veri-
fication system including a verification environment includ-
ing a plurality of secure computation servers and a verifi-
cation apparatus connected to the verification environment,
and the verification apparatus includes an acquisition part
that acquires a source code for multiparty computation; a
compilation part that while changing a combination of
options settable to a multiparty computation compiler com-
piles the source code for each combination of options to
generate a plurality of multiparty computation executable
codes; a verification environment control part that selects at
least one multiparty computation executable code from the
plurality of multiparty computation executable codes as a
verification code and provides the at least one verification
code to the verification environment; an evaluation part that
generates an evaluation index with respect to an execution
result of the at least one verification code in the verification
environment; and an output part that selects at least one
recommended code from the plurality of multiparty com-
putation executable codes, based on the evaluation index
corresponding to the at least one verification code and
outputs the selected recommended code.
According to a third aspect of the present invention or
disclosure, there is provided a method for verifying multi-
party computation executable code including:
acquiring a source code for multiparty computation;
while changing a combination of options settable to a
multiparty computation compiler, compiling the source
code for each combination of options to generate a
plurality of multiparty computation executable codes;

selecting at least one multiparty computation executable
code from the plurality of multiparty computation
executable codes as a verification code and providing
the at least one verification code to a verification
environment of multiparty computation;

generating an evaluation index with respect to an execu-

tion result of the at least one verification code in the
verification environment; and
selecting at least one recommended code from the plu-
rality of multiparty computation executable codes,
based on the evaluation index corresponding to the at
least one verification code and outputting the selected
recommended code.
According to a fourth aspect of the present invention or
disclosure, there is provided a program executing processing
including:
acquiring a source code for multiparty computation;
while changing a combination of options settable to a
multiparty computation compiler, compiling the source
code for each combination of options to generate a
plurality of multiparty computation executable codes;

selecting at least one multiparty computation executable
code from the plurality of multiparty computation
executable codes as a verification code and providing
the at least one verification code to a verification
environment of multiparty computation;

generating an evaluation index with respect to an execu-

tion result of the at least one verification code in the
verification environment; and selecting at least one
recommended code from the plurality of multiparty
computation executable codes, based on the evaluation

10

15

20

25

30

35

40

45

50

55

60

65

4

index corresponding to the at least one verification code
and outputting the selected recommended code.

The above program may be stored in a computer-readable
storage medium. The storage medium may be non-transient
one such as a semiconductor memory, a hard disk, a mag-
netic recording medium, an optical recording medium, and
the like. The present invention can be realized as a computer
program product.

According to each aspect of the present invention or
disclosure, there is provided a verification apparatus, mul-
tiparty computation verification system, and method and
program for verifying multiparty computation executable
code that contribute to recommending a bytecode (multi-
party computation executable code) suitable for a user
environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a drawing for explaining an outline of an
example embodiment.

FIG. 2 is a diagram illustrating an example of a schematic
configuration of a multiparty computation verification sys-
tem relating to a first example embodiment.

FIG. 3 is a diagram illustrating an example of a processing
configuration of a secure computation server according to
the first example embodiment.

FIG. 4 is a diagram illustrating an example of communi-
cation environment parameters.

FIG. 5 is a diagram illustrating an example of a processing
configuration of a verification apparatus according to the
first example embodiment.

FIG. 6 is a diagram illustrating an example of a compile
option list.

FIG. 7 is a diagram illustrating an example of verification
codes and the results of evaluation indices.

FIG. 8 is a sequence diagram illustrating an example of
the operation of the multiparty computation verification
system according to the first example embodiment.

FIG. 9 is a diagram illustrating an example of a schematic
configuration of a multiparty computation verification sys-
tem relating to a third example embodiment.

FIG. 10 is a diagram illustrating an example of a pro-
cessing configuration of a verification apparatus according
to the third example embodiment.

FIG. 11 is a diagram illustrating an example of a verifi-
cation code and an evaluation index result for each verifi-
cation environment.

FIG. 12 is a diagram illustrating an example of a pro-
cessing configuration of a verification apparatus relating to
a fourth example embodiment.

FIG. 13 is a diagram illustrating an example of a pro-
cessing configuration of a verification apparatus relating to
a fifth example embodiment.

FIG. 14 is a diagram illustrating an example of a pro-
cessing configuration of a verification apparatus relating to
a sixth example embodiment.

FIG. 15 is an example of source code received by the
verification apparatus according to the sixth example
embodiment.

FIGS. 16A, 16B, 16C, 16D, and 16E are drawings show-
ing examples of setting information referred to by a con-
version part according to the sixth example embodiment.

FIG. 17 is a diagram illustrating an example of a dedi-
cated secure computation code.

FIG. 18 is a diagram illustrating an example of a dedi-
cated secure computation code.

US 11,934,518 B2

5

FIG. 19 is a diagram illustrating an example of the
hardware configuration of the verification apparatus.

FIG. 20 is a diagram illustrating an example of a sche-
matic configuration of the multiparty computation verifica-
tion system.

DETAILED DESCRIPTION

First, an outline of an example embodiment of the present
invention will be given. It should be noted that the drawing
reference signs in the outline are given to each element for
convenience as an example to facilitate understanding, and
the description in the outline is not intended to limit the
present invention. Further, connection lines between blocks
in each drawing can be both bidirectional and unidirectional.
A unidirectional arrow schematically shows the main flow of
a signal (data) and does not exclude bidirectionality. Further,
in circuit diagrams, block diagrams, internal configuration
diagrams, and connection diagrams illustrated in the disclo-
sure of the present application, the input and output ends of
each connection line have an input port and an output port,
respectively, although not shown explicitly. The same
applies to input/output interfaces.

A verification apparatus 100 relating to an example
embodiment comprises an acquisition part 101, a compila-
tion part 102, a verification environment control part 103, an
evaluation part 104, and an output part 105 (refer to FIG. 1).
The acquisition part 101 acquires a source code for multi-
party computation. The compilation part 102 compiles the
source code for each combination of options settable for a
multiparty computation compiler while changing the com-
binations and generates a plurality of multiparty computa-
tion executable codes. The verification environment control
part 103 selects at least one multiparty computation execut-
able code from the plurality of multiparty computation
executable codes as a verification code and provides the at
least one verification code to a verification environment of
multiparty computation. The evaluation part 104 generates
an evaluation index with respect to an execution result of at
least one verification code in the verification environment.
The output part 105 selects at least one recommended code
from the plurality of multiparty computation executable
codes, based on the evaluation index corresponding to at
least one verification code and outputs the selected recom-
mended code.

The verification apparatus 100 obtains a source code for
multiparty computation from a user and generates a plurality
of bytecodes by changing combinations of compile options
while compiling the source code. The verification apparatus
100 has a verification environment simulating the user
environment execute each of the plurality of generated
bytecodes. The verification apparatus 100 evaluates the
result of executing each verification code in the verification
environment and provides a verification code suitable for the
user environment as a recommended code to the user. As a
result, it becomes possible to select a bytecode suitable for
the user environment from a plurality of bytecodes gener-
atable from combinations of compile options and provide
the selected bytecode to the user. That is, a bytecode
(multiparty computation executable code) suitable for the
user environment can be recommended to the user.

Specific example embodiments will be described in more
detail with reference to the drawings. Note that the same
reference signs are given to the same elements in each
example embodiment, and the description thereof will be
omitted.

25

35

40

45

6

[First Example Embodiment]

A first example embodiment will be described in detail
with reference to the drawings.

FIG. 2 is a diagram illustrating an example of a schematic
configuration of a multiparty computation verification sys-
tem relating to a first example embodiment. Referring to
FIG. 2, the multiparty computation verification system is
configured to include a plurality of secure computation
servers 10-1 to 10-3 and a verification apparatus 20. The
secure computation servers 10-1 to 10-3, which constitute a
verification environment 30, is connected to the verification
apparatus 20. In the following description, the secure com-
putation servers 10-1 to 10-3 will be simply referred to as the
“secure computation servers 10” unless there is a special
reason to distinguish between them.

The following describes the first example embodiment
assuming that a secure computation method by means of
multiparty computation as disclosed in PTL 1 is used.
Therefore, the multiparty computation verification system
should include at least two secure computation servers 10.
Further, the system configuration illustrated in FIG. 2 is only
a non-limiting example where the number of the secure
computation servers 10 is not limited to that illustrated.

The secure computation servers 10 execute multiparty
computation. The secure computation servers 10 obtain data
required to execute multiparty computation from the veri-
fication apparatus 20. More specifically, the secure compu-
tation servers 10 acquire from the verification apparatus 20
a bytecode for achieving predetermined multiparty compu-
tation (multiparty computation executable code; code in
which a multiparty computation circuit is described).

The following description assumes that data necessary for
executing multiparty computation (input data, secret sharing
data) are included within a bytecode. When input data are
not included in a bytecode, the verification apparatus 20
provides the input data to the secure computation servers 10
along with the bytecode.

The secure computation servers 10 execute predetermined
multiparty computation in cooperation with each other. Out
of the three secure computation servers 10, one secure
computation server 10 transmits an execution result of
multiparty computation to the verification apparatus 20.

As for the execution result of the secure computation
servers 10, various formats can be conceivable depending on
contents of the multiparty computation executed. For
example, in a statistical computation using a set of input
data, a “statistical value” that is a computation result is the
execution result. Alternatively, when the same process is
repeatedly applied to a plurality of input sets, the fact that the
process with respect to an input set has been completed
corresponds to the execution result. For example, a notifi-
cation that processing for a query in an RDB (Relational
Database) has been completed corresponds to the execution
result.

The verification apparatus 20 obtains a source code
describing multiparty computation processing and a user
requirements specification with respect to multiparty com-
putation (simply referred to as “requirements specification”
hereinafter). As described above, a multiparty computation
compiler is used to generate a bytecode, and source code
processable by the multiparty computation compiler is one
created for multiparty computation (referred to as “dedicated
multiparty computation source code” hereinafter).

The multiparty computation compiler is not able to gen-
erate a bytecode (multiparty computation executable code)
directly from a source code written in a general-purpose
language such as C language and Python. A source code
written in C language or the like requires predetermined

US 11,934,518 B2

7

conversion and editing work. In the first example embodi-
ment, a user enters a source code processable by the mul-
tiparty computation compiler (dedicated multiparty compu-
tation source code) to the verification apparatus 20, as a
“source code for multiparty computation.”

The requirements specification obtained by the verifica-
tion apparatus 20 includes various requests for multiparty
computation from a user. In the first example embodiment,
the requirements specification includes information regard-
ing a network in an environment in which multiparty com-
putation is executed (hereinafter referred to as “user envi-
ronment”). More specifically, the information defining the
network in a user environment may include the number of
servers executing multiparty computation, characteristics of
communication lines between the servers (communication
bandwidth, communication latency, etc.), and communica-
tion channel configuration (bi-directional communication
enabled, one-way communication, dedicated line, etc.).

Using the information (the requirements specification)
regarding the network, the verification apparatus 20 simu-
lates a user environment in which multiparty computation is
executed. Then the verification apparatus 20 evaluates a
bytecode in the simulated user environment, and based on a
result of the evaluation, the verification apparatus 20 pro-
vides the user with the most suitable code for the user
environment (a user’s network configuration in which mul-
tiparty computation is expected to be executed) as a “rec-
ommended code.” Note that simulating an environment in
which multiparty computation is executed, indicates simu-
lating quantifiable characteristics with respect to the envi-
ronment in which multiparty computation is executed (for
example, the number of secure computation servers used
and communication characteristics between the servers) in
another environment.

Here, when compiling the acquired source code, the
verification apparatus 20 varies options settable in the com-
piler and generates a plurality of bytecodes. Since the
plurality of bytecodes are generated from the same source
code, as a basis thereof, they will produce the same multi-
party computation result. However, since each of the gen-
erated bytecodes has a different set of options set in the
compiler, they have different communication costs (commu-
nication amount between the servers, the number of com-
munication rounds). With different communication costs,
performance of the multiparty computation realized by each
bytecode, i.e., processed data amount per unit time (through-
put) and a response time (latency), will be different.

The verification apparatus 20 selects one bytecode from a
plurality of the generated bytecodes and provides the
selected code to each secure computation server 10 as a
“verification code.”

The secure computation servers 10 execute multiparty
computation using the acquired verification code and out-
puts the execution result to the verification apparatus 20. The
verification apparatus 20 and the secure computation servers
10 repeat this process (of providing a verification code and
outputting the execution result) for each of a plurality of the
generated bytecodes.

The verification apparatus 20 evaluates each bytecode
using the acquired execution result and provides an optimal
bytecode for the user environment as a “recommended
code.” For example, the verification apparatus 20 outputs a
bytecode with good performance executable in a user envi-
ronment, in which the user is planning to execute multiparty
computation, as a “recommended code.”

Alternatively, the verification apparatus 20 may output a
plurality of bytecodes as “recommended codes.” Specifi-

10

15

20

25

30

35

40

45

50

55

60

65

8

cally, the verification apparatus 20 may select a verification
code corresponding to an evaluation index indicating a best
performance among evaluation indices with respect to the
execution results of a plurality of verification codes. Alter-
natively, the verification apparatus 20 may perform thresh-
old processing on a plurality of evaluation indices to select
verification codes corresponding to evaluation indices indi-
cating a predetermined performance level or higher, as
“recommended codes.”

Further, when a recommended code is provided, in addi-
tion to the bytecode (binary data), information that can
generate the recommended code (for example, a compiler
type, a version, and selected compile options) is also pro-
vided.

As described above, the verification apparatus 20 utilizes
a plurality of the secure computation servers 10, as a
“verification environment” for evaluating each of a plurality
of generated bytecodes. That is, the verification environment
30 can be said to be an environment for evaluating a
performance of a bytecode (multiparty computation circuit)
generated by the verification apparatus 20.

The verification apparatus 20 generates “communication
environment parameters” for simulating the user environ-
ment using the information included in the requirements
specification and constructs the verification environment 30
by setting the parameters in the secure computation servers
10. That is, the communication environment parameters are
information for simulating the user environment and include
information regarding, for example, a communication band-
width and a latency between the servers.

Next, each apparatus included in the multiparty compu-
tation verification system will be described.

[Secure Computation Server|

FIG. 3 is a diagram illustrating an example of a processing
configuration (processing modules) of the secure computa-
tion server 10 according to the first example embodiment.
Referring to FIG. 3, the secure computation server 10 is
configured to include a communication control part 201, a
multiparty computation execution part 202, and a storage
part 203.

The communication control part 201 is means for con-
trolling communication with another apparatus. The com-
munication control part 201 stores a verification code
obtained from the verification apparatus 20 in the storage
part 203. The communication control part 201 transmits data
(for example, data for completing a multiplication process)
generated by the multiparty computation execution part 202
to other secure computation servers 10.

The communication control part 201 acquires the com-
munication environment parameters from the verification
apparatus 20. Using the communication environment param-
eters, the communication control part 201 simulates an
environment (user environment) in which the user plans to
execute multiparty computation.

For example, let’s assume that communication environ-
ment parameters as illustrated in FIG. 4 are provided to the
secure computation server 10. In this case, the secure
computation server 10-1 sets a bandwidth of communication
with the secure computation server 10-2 to 10 Mbps (mega-
bits per second) and the latency to 100 ms (milliseconds).
Further, the secure computation server 10-1 sets a bandwidth
of communication with the secure computation server 10-3
to 100 Mbps and the latency to 10 ms.

It is assumed that communication paths between the
secure computation servers 10 originally have very high
capacities (ideal characteristics). By limiting the communi-
cation paths with ideal characteristics to the characteristics

US 11,934,518 B2

9

specified by the communication environment parameters,
the communication control part 201 of each secure compu-
tation server 10 simulates an environment in which the user
plans to execute multiparty computation.

The simulation (limitation) of the communication band-
width may be achieved by utilizing hardware such as an NIC
(Network Interface Card) or software. For example, when
hardware is used, a communication bandwidth rate (10
Mbps, 100 Mbps, etc.) may be selected and set in the NIC
according to the communication environment parameters.
Likewise, the simulation of the communication latency may
be achieved utilizing hardware or software. For example, by
adjusting a time interval between transmissions one a piece
of data and the next, the “communication latency” specified
in the communication environment parameters may be
achieved.

Further, when “one-way communication,” is set as a
communication environment parameter, a secure computa-
tion server 10 that acquired this parameter may stop trans-
mitting data to a target secure computation server 10.
Alternatively, when “dedicated line,” is sent as a commu-
nication environment parameter, a secure computation
server 10 that acquired this parameter may simulate a
“dedicated line” by setting the original ideal characteristics
non-restrictive.

Referring to FIG. 3 again, the multiparty computation
execution part 202 executes multiparty computation. The
multiparty computation execution part 202 executes multi-
party computation using a bytecode (verification code)
stored in the storage part 203.

In addition to the bytecode, the storage part 203 stores
various types of information. More specifically, the storage
part 203 stores information indicating as what number of
“party” the server itself operates and information regarding
other secure computation servers (other parties) (for
example, IP (Internet Protocol) address, etc.).

The multiparty computation execution part 202 performs
multiparty computation using the information stored in the
storage part 203. The multiparty computation execution part
202 includes a submodule constituted by a secret sharing
data generation section 211, a multiparty computation sec-
tion 212, and a secret sharing data reconstruction section
213.

The secret sharing data generation section 211 is a module
that operates when an executable code for secret sharing
states that the server itself performs secret sharing on input
data and distributes shares to other servers. The secret
sharing data generation section 211 of the secure computa-
tion server 10 with a party number (identifier) matching the
one specified in the secret sharing executable code performs
secret sharing on input data and distributes secret informa-
tion (share information) to the other secure computation
servers 10.

The multiparty computation section 212 executes byte-
code. In multiparty computation utilizing secret sharing,
each party locally performs closed computation within itself
with respect to addition (subtraction) of share information.
On the other hand, with respect to a multiplication (division)
of share information, each server proceeds processing by
transmitting a computation result thereof to other secure
computation servers 10.

The secret sharing data reconstruction section 213 is a
module that operates when a secret sharing executable code
states that the server itself reconstructs a computation result.
The secret sharing data reconstruction section 213 of the
secure computation server 10 with a party number matching
the one specified in the secret sharing executable code

20

25

30

40

45

10

collects computation results distributed among the servers
and reconstructs the computation result. The secret sharing
data reconstruction section 213 transmits the reconstructed
computation result to the verification apparatus 20.
[Verification Apparatus)]

FIG. 5 is a diagram illustrating an example of a processing
configuration (processing modules) of the verification appa-
ratus 20 according to the first example embodiment. Refer-
ring to FIG. 5, the verification apparatus 20 is configured to
include a communication control part 301, an acquisition
part 302, a compilation part 303, a verification environment
control part 304, an evaluation part 305, an output part 306,
and a storage part 307.

The communication control part 301 controls communi-
cation with another apparatus (the secure computation server
10).

The acquisition part 302 generates a GUI (Graphical User
Interface) for the user to enter a source code and a require-
ments specification. The acquisition part 302 stores the
acquired source code and requirements specification in the
storage part 307.

For example, the compilation part 303 is realized by the
program disclosed in NPL 1. The compilation part 303
compiles the source code for each combination of options
while changing the combination of options settable for the
secret calculation compiler to generate a plurality of multi-
party computation executable codes (bytecodes).

More specifically, the compilation part 303 refers to a
compile option list stored in advance in the storage part 307
and compiles the source code while changing options used
to cover a combinations of compilation options described in
the list. Note that the verification apparatus 20 may access
a database server storing the compile option list to obtain it.

FIG. 6 is a diagram illustrating an example of the compile
option list. As illustrated in FIG. 6, options settable for a
compiler are listed therein.

For example, the compile options include an option for
“code size” as illustrated in FIG. 6, and when this option is
made effective, a bytecode with a small size is generated.
Further, an option for “type conversion” is also provided. In
multiparty computation, there is a “type conversion process”
called bit decomposition. Options of prioritizing the number
of processed cases per unit time or a response time for a
single process during a bit decomposition process are given.

It is noted that the compile options illustrated in FIG. 6 are
only non-limiting examples and there are many more
options. For example, there are “option for fixed (floating)
point accuracy” and “option for security”. Note that the
option for security determine whether or not a fraud detec-
tion is be enabled.

Alternatively, the compile options may include a selection
of'a multiparty computation method itself that is to be used.
In this case, a compile option list for a first multiparty
computation method and a compile option list for a second
multiparty computation method may be provided. For
example, in the first multiparty computation method, when
shares (secret sharing information) distributed to parties
participating in multiparty computation are generated from
secret information S, a modulus N (N is a natural number;
the same applies hereinafter) is the power of 2. In the second
multiparty computation method, the modulus N is a prime
number.

The compilation part 303 hands over the plurality of
bytecodes generated by compiling the source code to the
verification environment control part 304.

Since the compilation part 303 can be realized by the
program disclosed in NPL 1 As described above, a detailed

US 11,934,518 B2

11

explanation thereof will be omitted. The following is an
outline of the processing performed by the compilation part
303.

In multiparty computation, a secure computation server
10 needs to communicate with another secure computation
server 10 to complete multiplication. Communication
among the secure computation servers 10 causes speed
lowering of multiparty computation. The compilation part
303 generates bytecode so that the number of the commu-
nications is kept to a minimum. More specifically, the
compilation part 303 performs processing such as changing
an order of multiplications in the source code so that the
number of communications among the secure computation
servers associated with the multiplications is reduced.

Further, for example, if the dedicated multiparty compu-
tation source code is based on C language, the compilation
part 303 operates as a C compiler while performing pro-
cessing relating to multiplication. Similarly for other lan-
guages, the compilation part 303 performs compilation
corresponding to the language used for the dedicated mul-
tiparty computation source code while performing the pro-
cessing relating to multiplication (generating bytecode). It is
noted that a system administrator may enter the language of
the dedicated multiparty computation source code into the
verification apparatus 20 in advance, or the compilation part
303 may automatically identify the language used.

The verification environment control part 304 controls the
verification environment 30. More specifically, the verifica-
tion environment control part 304 selects at least one byte-
code from the plurality of bytecodes as a verification code
and provides at least one verification code to the verification
environment 30. For example, the verification environment
control part 304 selects one of a plurality of generated
bytecodes and transmits the selected code to each secure
computation server 10 as a “verification code.”

Further, the verification environment control part 304
generates the “communication environment parameters”
based on the information on a network in the user environ-
ment included in the requirements specification obtained
from the user and transmits the generated communication
environment parameters to each secure computation server
10.

The verification environment control part 304 acquires an
execution result from one secure computation server 10 out
of the three secure computation servers 10. The verification
environment control part 304 stores the acquired execution
result in the storage part 307 in association with the corre-
sponding verification code. The verification environment
control part 304 repeats the processing (transmitting a
verification code and storing the execution result) for every
bytecode generated by the compilation part 303.

Based on the execution result of each verification code
stored in the storage part 307, the evaluation part 305
generates an evaluation index with respect to the execution
result of each verification code. For example, the evaluation
part 305 generates the number of processed cases (through-
put) per unit time (for example, one second) as the evalu-
ation index for each verification code. Alternatively, the
evaluation part 305 generates, as the evaluation index, a
response time (latency) from a time when a verification code
is outputted until a time when the execution result is
obtained.

Further, in order to increase reliability of the evaluation
index, the evaluation part 305 may calculate a mean,
median, mode, etc., of a plurality of the execution results of
the same verification code as the evaluation index.

15

35

40

45

12

FIG. 7 is a diagram illustrating an example of the veri-
fication codes and the results of the evaluation indices
(throughput) generated by the evaluation part 305. As illus-
trated in FIG. 7, the evaluation part 305 calculates an
evaluation index for each verification code and manages the
result thereof in association with the verification code. Note
that FIG. 7 also shows compile options that served as a basis
when each verification code was generated (options selected
when the code was generated).

As described above, the evaluation part 305 generates at
least the information that associates a verification code with
an evaluation index corresponding to the verification code.

The output part 306 selects at least one recommended
code from a plurality of multiparty computation executable
codes, based on the evaluation index for each verification
code and outputs the selected recommended code. More
specifically, the output part 306 selects the best performing
code from the plurality of bytecodes (verification codes)
generated by the compilation part 303. For example, when
the response time (latency) has been calculated as the
evaluation index, the output part 306 selects the bytecode
with the shortest response time. Alternatively, when the
number of processed cases (throughput) per unit time is
calculated as the evaluation index, the output part 306
selects the bytecode with the largest number of processed
cases. Further, the output part 306 may select any code
meeting a certain condition, instead of selecting the best
performing code. For example, with the response time
(latency) as the evaluation index, the output part 306 may
select a code according to a predetermined criterion from
codes with latency less than or equal to a certain period of
time. Alternatively, the output part 306 may (randomly)
select any code from codes with latency less than or equal
to a certain period of time without any predetermined
criterion defined.

The output part 306 outputs the selected bytecode to the
outside as a “recommended code.” For example, the output
part 306 writes the recommended code to an external storage
device such as a USB (Universal Serial Bus) memory.
Alternatively, the output part 306 may display information
regarding the file name of the recommended code or where
it is stored on a liquid crystal display monitor or transmit the
recommended code to another apparatus via a network.
[System Operation]

Next, with reference to FIG. 8, the operation of the
multiparty computation verification system according to the
first example embodiment will be described.

First, the verification apparatus 20 acquires a “source
code” and a “requirements specification” from a user (step
S01).

The verification apparatus 20 generates the “communica-
tion environment parameter(s)” from the information
included in the requirements specification and transmits the
parameter(s) to each secure computation server 10 (step
S02).

The verification apparatus 20, while encompassing all the
combinations of compile options settable for a multiparty
computation compiler, compiles the acquired source code to
generate a plurality of bytecodes (step S03).

The verification apparatus 20 selects one from the plu-
rality of the generated bytecodes and transmits the selected
code to each secure computation server 10 as a “verification
code” (step S04).

The secure computation servers 10 execute multiparty
computation using the obtained verification code (step S11).

Of the three secure computation servers 10, the server
(representative server) that reconstructs secret-shared data,

US 11,934,518 B2

13

transmits an execution result of multiparty computation to
the verification apparatus 20 (step S12).

The verification apparatus 20 and the secure computation
servers 10 repeat the processes of the steps S04, S11, and
S12 for all the bytecodes.

The verification apparatus 20 generates an evaluation
index for each verification code (step S05).

The verification apparatus 20 selects a recommended
code, based on the evaluation index for each verification
code (step S06). For example, the verification apparatus 20
selects the best performing verification code (highest
throughput or lowest latency) as the recommended code.

The verification apparatus 20 outputs the selected recom-
mended code to the outside (step S07).

[Variation of the First Example Embodiment]

In the first example embodiment, as the verification
environment 30, a dedicated environment for verifying
performance for a verification code is used. The verification
environment 30, however, does not have to be a dedicated
environment.

For example, an on-premises environment (server/facili-
ties owned by a user) in which the user plans to actually
execute multiparty computation may be used as the verifi-
cation environment 30. That is, the verification apparatus 20
may verify each bytecode in an environment in which the
user plans to actually execute multiparty computation to
choose an optimal bytecode (recommended code).

Alternatively, a cloud environment in which the user plans
to execute multiparty computation may be used as the
verification environment.

In this manner, the environment for verifying a plurality
of bytecodes generated by combining various compile
options may be a dedicated environment or one actually
used by the user (on-premises or cloud environment). That
is, the environment for veritying bytecode may be the same
as or different from the environment in which multiparty
computation is actually executed.

When an on-premises environment or a cloud environ-
ment provided by a service provider is used as the “verifi-
cation environment,” simulating one is not necessary and
therefore simulating a user environment by using the “com-
munication environment parameters” is not required. Fur-
ther, as described above, the verification apparatus 20 simu-
lates the user environment by setting the “communication
environment parameters” in the secure computation servers
10. However, the communication environment parameters
may be preset in the secure computation servers 10. That is,
the verification apparatus 20 does not have to obtain from
the user the information regarding the network in the user
environment as the “requirements specification”, as long as
the information for simulating the user environment is preset
in the secure computation servers 10.

Here, a recommended code selected in an actual user
environment may be more suitable than one selected in a
simulated user environment. Therefore, it is desirable that a
recommended code be determined in an actual environment
in which the user plans to execute multiparty computation if
there are no time constraints, or access right restriction, etc.

As described above, in the first example embodiment, the
verification apparatus 20 acquires a source code for multi-
party computation from a user and generates a plurality of
bytecodes by changing combinations of compile options
when compiling the source code. The verification apparatus
20 causes each of a plurality of the generated bytecodes to
be executed by a verification environment simulating an
environment in which the user plans to execute multiparty
computation. The verification apparatus 20 evaluates an

15

20

25

30

40

45

50

14

execution result of each verification code in the verification
environment 30 and provides (externally outputs) a verifi-
cation code (bytecode) suitable for a user environment as a
recommended code to the user. As a result, it becomes
possible to reliably detect a bytecode suitable for a user
environment (user’s network configuration) from a plurality
of bytecodes generatable from combinations of compile
options. That is, it is possible to recommend a bytecode
(multiparty computation executable code) suitable for the
user environment.

[Second Example Embodiment]

Next, a second example embodiment will be described in
detail with reference to the drawings.

In the first example embodiment, the requirements speci-
fication includes information for simulating a user environ-
ment (information regarding a network in the user environ-
ment), however, the requirements specification may include
other types of information. In the second example embodi-
ment, the requirements specification includes information
other than a network configuration in the user environment.

It is noted that a system configuration and a processing
configuration of each apparatus in the second example
embodiment are the same as those in the first example
embodiment and descriptions corresponding to those of
FIGS. 2, 3, and 5 will be omitted.

For example, information regarding performance of mul-
tiparty computation (throughput and latency) may be
included in the requirements specification. For example,
achieving “a throughput of 100 cases per second or higher”
may be a requirements specification. Alternatively, a condi-
tion such as “a latency of 10 seconds or lower” may be a
requirements specification.

The verification apparatus 20 relating to the second
example embodiment may select a verification code meeting
such a requirements specification and provide the verifica-
tion code to a user as a “recommended code.” For example,
in a case where a requirements specification from the user is
“a throughput of 100 cases per second or higher” and an
evaluation index for each verification code is as illustrated in
FIG. 7, since code 2 or 3 in FIG. 7 meets the requirements
specification, the verification apparatus 20 provides either
one or both to the user as a “recommended code.”

Further, as in the first example embodiment, a require-
ments specification may include information for generating
“communication environment parameters” and information
regarding a performance in the second example embodi-
ment, or a requirements specification may include only
information regarding the performance. That is, the user
environment may be simulated in the verification environ-
ment 30 in advance, and at least one bytecode (verification
code) meeting a user’s requirements specification may be
selected from bytecodes executable in the verification envi-
ronment 30 and provided as a recommended code.

As described above, in the second example embodiment,
the output part 306 selects at least one recommended code
from a plurality of verification codes based on the informa-
tion (requirements specification) regarding a performance of
multiparty computation. In this way, by including informa-
tion regarding a performance of multiparty computation in a
requirements specification, a bytecode meeting a user’s
requirements specification can be extracted from among
bytecodes executable in a user environment and provided to
a user as a “recommended code.”

[Third Example Embodiment]

Next, a third example embodiment will be described in

detail with reference to the drawings.

US 11,934,518 B2

15

In the third example embodiment, a recommended code
and recommended environment are chosen using a plurality
of verification environments 40. Further, the user environ-
ment is not simulated using the communication environment
parameters in the third example embodiment.

FIG. 9 is a diagram illustrating an example of a schematic
configuration of a multiparty computation verification sys-
tem according to the third example embodiment. Referring
to FIG. 9, the multiparty computation verification system
includes a plurality of the verification environments 40.

For example, a cloud system provided by an EC (Elec-
tronic Commerce) service provider corresponds to the veri-
fication environment 40.

In the third example embodiment, an instance (virtual
machine) provided by the cloud system serving as the
verification environment is treated as the secure computation
server 10 described in the first example embodiment. Fur-
ther, a plurality of the verification environments 40 has
different characteristics from each other. For example, a
performance of an instance (virtual machine) provided by
each verification environment 40 and communication char-
acteristics between the instances are different from each
other. As a result, even if the same bytecode (verification
code) is fed to the secure computation server 10 included in
each verification environment 40, a performance of multi-
party computation obtained by the code will be different. For
example, when the same verification code is provided to
verification environments 40-1 and 40-2 to have them
execute multiparty computation, the performances (through-
put and latency) thereof may be different from each other.

As described above, the requirements specification
includes the information regarding the performance
(throughput and latency) with respect to multiparty compu-
tation. A verification apparatus 20a according to the third
example embodiment selects a verification environment 40
matching the requirements specification and provides the
selected verification environment 40 as a “recommended
environment” to a user. Further, the verification apparatus
20a provides a bytecode recommended for multiparty com-
putation execution in the recommended environment to the
user as a “recommended code.”

For example, when a verification environment meeting
the multiparty computation performance (throughput and
latency) requested by the user is the verification environ-
ment 40-1 in FIG. 9, the best performing code is selected
from among bytecodes executable in the verification envi-
ronment 40-1. In this case, the verification apparatus 20a
recommends the “verification environment (cloud) 40-1 as
an environment for executing multiparty computation meet-
ing the requirements specification and outputs a recom-
mended code for the environment.

FIG. 10 is a diagram illustrating an example of a pro-
cessing configuration (processing modules) of the verifica-
tion apparatus 20a according to the third example embodi-
ment. The verification apparatus 20« illustrated in FIG. 10
differs from the verification apparatus 20 illustrated in FIG.
5 in each operation of the verification environment control
part 304, the evaluation part 305, and the output part 306.
These differences will be mainly described below.

A verification environment control part 304a transmits a
verification code to each of the plurality of the verification
environments 40 and acquires an execution result of multi-
party computation using the verification code. After com-
pleting control (providing a verification code, colleting the
execution result) of one verification environment 40, the
verification environment control part 304a may control a

10

15

20

25

30

35

40

45

50

55

60

65

16

next verification environment 40 or it may control two or
more verification environments 40 in parallel.

The verification environment control part 304a may con-
trol the verification environments 40 in any manner as long
as it is able to provide a plurality of bytecodes (verification
codes) generated by the compilation part 303 to each veri-
fication environment 40 without any omissions and collect
execution results thereof.

A basic operation of an evaluation part 305a is the same
as the operation of the evaluation part 305 described in the
first example embodiment. The evaluation part 3054 gener-
ates an evaluation index with respect to an execution result
of a verification code for each of a plurality of the verifi-
cation environments 40. More specifically, the evaluation
part 305a generates the information as illustrated in FIG. 7
for each verification environment 40.

An output part 306a selects a recommended code based
on the evaluation indices generated by the evaluation part
305a and outputs the verification environment 40 corre-
sponding to the selected recommended code as a “recom-
mended environment.” More specifically, the output part
306a selects the best performing verification code for each
verification environment 40. For example, the output part
306a extracts the evaluation result (the best performing
verification code) for each verification environment 40 as
illustrated in FIG. 11. Note that FIG. 11 illustrates results
when the requirements specification from the user includes
“a throughput of 100 cases or more.”

As illustrated in FIG. 11, each of the verification envi-
ronments 40-1 and 40-2 has a verification code meeting the
requirements specification. On the contrary, a verification
environment 40-3 does not have a verification code that
meets the requirements specification from the user.

In the example of FIG. 11, since the verification environ-
ment 40-2 has the best execution result, the output part 306a
selects the verification environment 40-2 as a “recom-
mended environment” and code 21, the best performing
code in this environment, as a “recommended code.” The
output part 306a provides these pieces of information (the
recommended environment and the recommended code) to
the user.

Alternatively, instead of a specific performance value, the
requirements specification may indicate that “performance
prioritized.” In this case, the output part 306a provides the
best performing verification environment 40-2 as a recom-
mended environment to the user.

Further, the requirements specification acquired from the
user may not include information regarding the perfor-
mance. For example, the requirements specification may
indicate that “cost prioritized” without including any infor-
mation on the performance. In this case, the output part 306a
recommends the environment with the lowest cost out of the
verification environments 40 that can execute the multiparty
computation relating to the source code acquired from the
user. For example, in the example of FIG. 11, if a cost of the
verification environment 40-3 is the lowest, the output part
306a will recommend a bytecode corresponding to the
environment 40-3.

Alternatively, the requirements specification may indicate
that “legal requirements prioritized.” In recent year, there
has been a strong demand for protection of personal infor-
mation as represented by the GDPR (General Data Protec-
tion Regulation) and restrictions are expected to be imposed
on transfer(relocation) of data (information).

In multiparty computation using a plurality of the secure
computation servers 10, since information is transmitted/
received among the servers, a process may be recognized as

US 11,934,518 B2

17

a violation of the GDPR rules, depending on a region where
the server is installed. Therefore, when the requirements
specification indicates that “legal requirements prioritized,”
the output part 3064 may select and recommend a verifica-
tion environment 40 that minimizes legal risk from the
plurality of the verification environments 40.

For example, in a case where a target of the legal
requirements prioritized is assumed to be the GDPR, when
all the secure computation servers 10 included in the veri-
fication environment 40-1 are located in EU (European
Union) member states, the verification environment 40-1 is
determined to have a low legal risk and selected as a
recommended environment.

Alternatively, legal risk is also determined to be low when
all the secure computation servers 10 included in the veri-
fication environment 40-2 are located in regions in which the
GDPR is not applied. In this case, the verification environ-
ment 40-2 is selected as a recommended environment.

Further, detailed information (for example, a cost, a
region on which a server is installed, etc.) of each verifica-
tion environment 40 may be stored in advance in the
verification apparatus 20qa, or the verification apparatus 20a
may obtain the information from an external server.

As described above, in the third example embodiment, the
verification code corresponding to an environment (cloud)
recommended to the user is selected based on an evaluation
result generated by the evaluation part 305q, and these
pieces of information are provided to the user. More spe-
cifically, based on the evaluation index for each verification
environment 40, the output part 3064 selects the verification
environment 40 that achieves the best performing multiparty
computation from the verification environments 40 that can
provide bytecodes meeting the user’s requirements specifi-
cation (for example, a requirements specification with
respect to the performance). As a result, from a plurality of
verification environments, an environment matching the
user’s requirements specification and a bytecode executed in
the environment are selected as a “recommended environ-
ment” and a “recommended code,” respectively, and pro-
vided to the user.

[Fourth Example Embodiment]

Next, a fourth example embodiment will be described in
detail with reference to the drawings.

In the fourth example embodiment, a plurality of requests
are included in a requirements specification. FIG. 12 is a
diagram illustrating an example of a processing configura-
tion (processing modules) of a verification apparatus 206
according to the fourth example embodiment.

The verification apparatus 205 according to the fourth
example embodiment differs from the verification apparatus
20a according to the third example embodiment in the
operation and function of an output part 3065. The following
describes mainly the difference.

In the third example embodiment, when a plurality of the
verification environments 40 meets a requirements specifi-
cation from a user, for example, the environment giving the
best performing multiparty computation is recommended. It
is not, however, always necessary to select the best perform-
ing environment as long as the requirements specification
from the user is met. For example, in the example of FIG.
11, the verification environments 40-1 and 40-2 satisfy the
user requirements specification (a throughput of 100 cases or
more) and the better performing verification environment
40-2 is recommended.

It is, however, possible that the verification environment
40-1, not 40-2, may be an environment to be truly recom-
mended to the user. For example, each verification environ-

40

45

18

ment 40 has a different usage fee per time period. In this
case, if a cost required for executing multiparty computation
(i.e., usage fee per time period) is lower with the verification
environment 40-1 than with the verification environment
40-2, an environment to be truly recommended to the user
is likely to be the verification environment 40-1.

The verification apparatus 205 according to the fourth
example embodiment determines an environment to be
recommended to the user, based on a factor other than the
performance of multiparty computation. For example, in a
case where the requirements specifications acquired from
the user include a throughput of 100 cases or more (first
requirement) and cost prioritized (second requirement), the
output part 3065 recommends an environment with a lower
cost (running cost) out of the verification environments 40
meeting the performance requirements specification
(throughput).

For example, in the example of FIG. 11, if the verification
environment 40-1 is lower in cost than the verification
environment 40-2, the output part 3065 will output the
verification environment 40-1 as a recommended environ-
ment and code 11 as a recommended code.

As described above, when there is a plurality of the
verification environments 40 offering evaluation indices that
satisty a first requirement included in the user requirements
specification, the verification apparatus 206 according to the
fourth example embodiment selects a recommended envi-
ronment from a plurality of the verification environments 40
based on a second requirement included in the user require-
ments specification and outputs the recommended environ-
ment. As a result, a recommended environment and a
recommended code that the user truly needs are provided.
[Fifth Example Embodiment]

Next, a fifth example embodiment will be described in
detail with reference to the drawings.

In the fifth example embodiment, the compilation part
303 narrows down compile options used when generating
bytecode. In the previous example embodiments, the com-
pilation part 303 varies options for all possible combinations
to generate a plurality of bytecodes.

In the fifth example embodiment, options to be used are
narrowed down based on the requirements specification
obtained from the user without using all options. It is noted
that the system configuration in the fifth example embodi-
ment is the same as that in the first example embodiment and
a description corresponding to that of FIG. 2 will be omitted.

FIG. 13 is a diagram illustrating an example of a pro-
cessing configuration (processing modules) of a verification
apparatus 20c according to the fifth example embodiment.
Referring to FIG. 13, the verification apparatus 20c¢ accord-
ing to the fifth example embodiment differs from the veri-
fication apparatus 20 according to the first example embodi-
ment in the operation and function of a compilation part
303c¢. These differences will be mainly described below.

As described above, a requirements specification obtained
from a user may include various types of information. For
example, one of requirements specifications may indicate
that “code size prioritized.” In this case, the compilation part
303¢ generates a plurality of bytecodes while excluding
options that are expected to increase a code size. For
example, with reference to the compile option list illustrated
in FIG. 6, the compilation part 303¢ generates a plurality of
bytecodes while fixing the option for the code size to “1”” and
varying other options.

Alternatively, a requirements specification may include a
requirements specification regarding time from when a user
enters necessary information (a source code, the require-

US 11,934,518 B2

19

ments specification) into the verification apparatus 20c to
when a recommended code is obtained. Compiling multi-
party computation normally takes a relatively long time.
Therefore, it takes a significant amount of time to generate
a large amount of bytecode by varying compile options.
Some users, however, demand a result (recommended code)
in a short period of time because they want to hurry up a
system operation.

In such a case, the compilation part 303¢ selects some of
the options, not all of them, according to the requirements
specification and generates a limited number of bytecodes.
The verification apparatus 20c selects the most suitable code
for the user from the limited number of bytecodes (verifi-
cation codes) and provides the selected code as a “recom-
mended code” to the user.

For example, to some extent, optimal compile options can
be deduced from an environment in which the user plans to
execute multiparty computation. More specifically, when a
user’s execution environment has a wide communication
bandwidth, bytecode with a small communication amount
per communication between the secure computation servers
10 is often advantageous. Conversely, when the user’s
execution environment has a narrow communication band-
width, bytecode with a large number of communications
between the secure computation servers 10 is often advan-
tageous.

In the compilation of multiparty computation, it is pos-
sible to grasp a communication amount and the number of
communications required when each option is selected (en-
abled). Therefore, the compilation part 303¢ may limit the
number of generated bytecodes by not selecting some com-
pile options according to characteristics of a communication
path (for example, a communication bandwidth and a
latency) included in the requirements specification.

Alternatively, a requirements specification from a user
may indicate “security prioritized.” In this case, the compi-
lation part 303¢ may enable and fix a security option (for
example, fraud detection option) and vary other options to
generate a plurality of bytecodes.

As described above, the verification apparatus 20c
according to the fifth example embodiment fixes some
options out of options settable to a multiparty computation
compiler, based on a requirements specification to generate
a plurality of multiparty computation executable codes. As
a result, it becomes possible to quickly provide a recom-
mended environment and a recommended code while meet-
ing the requirements specification from a user and reducing
the number of bytecodes to be verified.

[Sixth Example Embodiment]

Next, a sixth example embodiment will be described in
detail with reference to the drawings.

In the first to the fifth example embodiments, the user
enters a source code (dedicated multiparty computation
source code) processable by a multiparty computation com-
piler. In the sixth example embodiment, the user enters a
normal source code written in a general-purpose language
into a verification apparatus 204, instead of entering the
dedicated multiparty computation source code.

FIG. 14 is a diagram illustrating an example of a pro-
cessing configuration (processing modules) of the verifica-
tion apparatus 204 according to the sixth example embodi-
ment. Referring to FIG. 14, the verification apparatus 204
according to the sixth example embodiment has a conver-
sion part 308 added thereto, compared with the verification
apparatus 20 according to the first example embodiment.
The following describes mainly the difference.

15

20

35

40

45

50

55

20

When the multiparty computation compiler (the compi-
lation part 303) cannot process a source code for multiparty
computation, the conversion part 308 converts the source
code un-processable by the multiparty computation com-
piler into a source code processable by the multiparty
computation compiler. More specifically, based on setting
information regarding multiparty computation to be
executed by a plurality of the secure computation servers 10,
the conversion part 308 converts a source code entered via
the acquisition part 302 so that the multiparty computation
compiler can process it. That is, the conversion part 308
converts the source code entered by the user into a dedicated
multiparty computation source code. The detailed operation
of the conversion part 308 will be described later. Note that
a source code un-processable by the multiparty computation
compiler is a source code (general-purpose source code) that
is not specified to be processed with multiparty computation.
That is, a source code processable by the multiparty com-
putation compiler is a source code in which a particular
process is specified (can be specified) to be processed with
multiparty computation.

For example, the storage part 307 stores the setting
information required for the conversion process performed
by the conversion part 308. The more concrete content of the
setting information stored in the storage part 307 will be
described later along with the operation of the conversion
part 308.

Next, the operation of the conversion part 308 will be
described with reference to the drawings.

The conversion part 308 obtains a source code via the
acquisition part 302. Here, it is assumed that the conversion
part 308 has obtained a source code illustrated in FIG. 15.
The source code illustrated in FIG. 15 is written in Python.
This is a non-limiting example and the source code language
is as a matter of course limited to Python. The conversion
part 308 is able to convert a source code written in any
language such as C, BASIC, assembly language, etc.

The source code illustrated in FIG. 15 multiplies exter-
nally acquired input data by 10 and calculates a mean value
of the input data multiplied by 10. The program illustrated
in FIG. 15 includes a main function (“main”) and a sub-
function (“function”) and calculates the mean value.

The conversion part 308 converts the source code illus-
trated in FIG. 15 and generates a “dedicated multiparty
computation source code” to be provided to the compilation
part 303. At this time, the conversion part 308 refers to
setting information stored in the storage part 307.

FIGS. 16A, 16B, 16C, 16D, and 16E are diagrams show-
ing examples of the setting information referred to by the
conversion part 308. The setting information includes infor-
mation regarding the secure computation servers 10 and
various rules determining a conversion operation of the
conversion part 308. For example, the setting information
includes rules regarding the conversion processing on an
input function and output function and rules regarding the
conversion processing on parameters and types.

FIG. 16A illustrates an example of the information
regarding the secure computation servers 10. FIG. 16A
indicates settings for “data input format” and “data recon-
struction entity” as the information regarding the secure
computation servers 10.

The data input format setting defines how the secure
computation server 10 acquires data required for executing
multiparty computation.

As illustrated in FIG. 16 A, in a possible data input format,
a server specified as a representative server out of a plurality
of the secure computation servers 10 receives input data,

US 11,934,518 B2

21

performs secret sharing of the input data and distributes
shares to the other secure computation servers 10. In the
examples of FIGS. 2 and 16 A, the secure computation server
10-1 serving as a representative server performs secret
sharing of the input data and distributes the shares to the
other secure computation servers 10-2 and 10-3.

Setting regarding data reconstruction entity defines a
server that reconstructs results obtained from multiparty
computation. For example, in the example of FIG. 16A, the
secure computation server 10-1 serving as the representative
server collects results of multiparty computation from the
other secure computation servers 10-2 and 10-3 and recon-
structs its own computation result and the collected com-
putation results. In the example illustrated in FIG. 15, since
the mean value of the input data that have been multiplied
by 10 is distributed among the secure computation servers
10, the secure computation server 10-1 serving as the
representative server reconstructs this mean value.

FIG. 16B is a diagram illustrating an example of the rule
for the conversion processing on an input function. The
conversion part 308 converts an input function specified by
the rule into a function suitable for multiparty computation.

In the example of FIG. 16B, when the source code
includes “get_input” therein, the conversion part 308
rewrites this input function to “get_input_from().” Note that
an identifier of the representative server that acquires the
input data is inserted in the parentheses following “from” in
the function.

FIG. 16C is a diagram illustrating an example of the rule
for the conversion processing on an output function. The
conversion part 308 converts an output function specified by
the rule into a function suitable for multiparty computation.

In the example of FIG. 16C, when the source code
includes “print_In” therein, the conversion part 308 adds
“reveal()” to the arguments of the output function. Note that
an identifier of the representative server that reconstructs the
computation result is inserted in the parentheses following
“reveal.”

FIG. 16D is a diagram illustrating an example of the
setting for the conversion processing on parameters. The
conversion part 308 determines whether or not parameters
and constants other than input data should be secret-shared
based on this setting. For example, a value such as “mini-
mum” or “maximum” can be set in the setting for the
conversion processing on parameters.

When the setting is set to “minimum,” secret-shared input
data and the parameters affected by the input data are made
targets of secret-sharing. Further, when the setting is set to
“maximum,” all the parameters and constants included in
the source code are made targets of secret-sharing.

FIG. 16E is a diagram illustrating an example of the
settings for the conversion processing on a type. When a
type for a parameter is specified in the source code, the
conversion part 308 converts the parameter into a multiparty
computation type corresponding to the specified type.

Depending on the language, however, a type may not be
specified. In this case, the conversion part 308 refers to the
type conversion processing setting and uses a multiparty
computation type corresponding to the set value. In the
example of FIG. 16E, the conversion part 308 converts a
parameter without a specified type to an integer type for
secure computation.

Further, the type conversion processing settings include a
setting that allows a division result to be a “fixed-point” or
“floating-point” number. In the example of FIG. 16K, a
result of dividing secret-shared parameters is defined to be
a fixed-point number.

10

15

20

25

30

35

40

45

50

55

60

65

22

Next, with reference to the source code illustrated in FIG.
15, the conversion processing of the conversion part 308
using the setting information described above will be
described in detail. First, from the source code, the conver-
sion part 308 detects (extracts) a function specified in the
input function setting of the setting information.

In the example of FIGS. 16A-16E, the conversion part
308 tries to detect “get_input.” The conversion part 308
detects this function in the fifth line of the source code
illustrated in FIG. 15. The conversion part 308 refers to the
secure computation server setting in the setting information
and confirms the set value regarding “data input format.”

In FIGS. 16A-16E, the representative server (the secure
computation server 10-1) is configured to perform secret
sharing, and the conversion part 308 sets the identifier (for
example, “1”) of the secure computation server 10-1 in the
parentheses of “get_input_from()” illustrated in FIG. 16B.
As a result, as illustrated in the fifth line in FIG. 17,
“get_input” is converted to “sint.get_input_from(1).”

Further, since the line “get_input” does not explicitly
specify a type, the conversion part 308 follows the setting in
FIG. 16E and sets “sint,” an integer type for secure com-
putation, for the function.

As described above, the conversion part 308 replaces a
predetermined input function included in the source code
and also included in the setting information, with an input
function for multiparty computation. At this time, the con-
version part 308 sets in the input function for multiparty
computation the information of the secure computation
server (representative server) that acquires data to be secret-
shared out of a plurality of the secure computation servers as
necessary.

Here, the conversion part 308 makes a parameter of a
storage destination of data acquired by the input function
(for acquiring data from an external apparatus) a target of
secret sharing. In the example of FIG. 15, the parameter
“input_values” in the third and the fifth lines is a target of
secret sharing.

Next, the conversion part 308 refers to the setting for the
secret sharing of parameters in the setting information.

In the example of FIG. 16D, since “minimum” is set for
this setting, the conversion part 308 sets a secret-sharing
target parameter determined by the input function and
parameters affected by this parameter as targets of secret
sharing.

In the example of FIG. 15, “input_values” is a secret-
sharing target parameter. Further, in the seventh line in FIG.
15, this parameter is used as the first argument of the
function “mean.” In this function, the first argument (value)
is multiplied by 10 and then added to a parameter “sum” in
the 14” line. Therefore, the parameter “sum” becomes a
target of secret-sharing since it is affected by a secret-shared
parameter.

Further, since the parameter “sum” is divided by the
second argument (num) of the function “mean” in the 15%
line, the parameter “mean” is also affected by a secret-shared
parameter (indirectly). As a result, the parameter “mean”
also becomes a target of secret-sharing.

In summary, the parameters “input_values,” “sum,” and
“mean” are secret-sharing targets in the example of FIG. 15.

The conversion part 308 checks “type conversion pro-
cessing setting” in the setting information, determines a
type(s) for a parameter(s) of secret-sharing target(s), and
reflects the type determined in the source code.

The example in FIG. 16E requires conversion into an
“integer type for secure computation” when a type is not
specified. Since the parameter “input_values” does not have

2 <

US 11,934,518 B2

23

any type specified, the conversion part 308 treats the type of
the parameter as an integer type. More specifically, as
illustrated in the third line in FIG. 17, the conversion part
308 converts the type of a function “Array” into “sint”
indicating a secure computation integer type (treated as a
secret-sharing integer type by the multiparty computation
compiler).

Since the type of the parameter “sum” is specified as an
integer type as illustrated in the 12 line in FIG. 15, the
conversion part 308 maintains an integer type of the param-
eter without converting it and sets “sint” indicating that it is
a secret-sharing target. More specifically, as illustrated in the
12™ line in FIG. 17, the type of the parameter “sum” is set
to “silt.” Further, the initial value of the parameter is set to
“0” in the 12 line in FIG. 17.

As for the type of the parameter “mean,” the conversion
part 308 pays attention to the fact that the parameter stores
a result of dividing the secret-sharing target parameter
“sum” by a constant (num, num input).

Since this is a division, the conversion part 308 refers to
the setting (type for divisions) illustrated in FIG. 16E and
converts the parameter “mean” into a fixed-point type for
secure computation. More specifically, the conversion part
308 adds the processes of the 16™ to the 19” lines illustrated
in FIG. 17.

In more detail, the conversion part 308 defines new
fixed-point type parameters corresponding to the parameters
(sum, num) involving the division; a fixed-point type param-
eter “St” corresponding to the parameter “sum” and another
fixed-point type parameter “Nf” corresponding to the con-
stant “num” are defined (the 16” and the 18 lines in FIG.
17).

The conversion part 308 converts the integer types of the
parameters “sum” and “num” into fixed-point types and
loads these values into the new parameters “Sf” and “Nf”
(the 17” and the 19" lines in FIG. 17). Since the new
parameters replace the parameters “sum” and “num,” the
conversion part 308 replaces the division using these param-
eters with one using new parameters “Sf”* and “Nf” (the 20
line in FIG. 17).

As described above, the conversion part 308 makes a first
parameter (“input_values” in the above example) that stores
data acquired by a predetermined input function a secret
sharing target and converts the source code so that the first
parameter is secret-shared. Further, the conversion part 308
sets a second parameter (“sum,” etc., in the above example)
affected by the first parameter as a secret sharing target and
converts the source code so that the second parameter is
secret-shared.

Next, from the source code, the conversion part 308
detects (extracts) a function specified in the output function
setting of the setting information.

In the example of FIG. 16C, the conversion part 308
attempts to detect “print_In.” As a result, the conversion part
308 detects this function in the eighth line of the source code
illustrated in FIG. 15. The conversion part 308 refers to the
secure computation server setting in the setting information
and confirms a set value in “data reconstruction server.”

In the example of FIG. 16A, the representative server (the
secure computation server 10-1) is configured to reconstruct
the processing results. Therefore, the conversion part 308
sets an identifier (for example, “1”) of the secure computa-
tion server 10-1 in the parentheses of “print_In(-, result.re-
veal())”, illustrated in FIG. 16C. As a result, as illustrated
in the eighth line in FIG. 17, “print_In(‘mean=% s’¥n,
result)” is converted to “print_ln(‘mean=% s’¥n,result.re-
veal(1)).”

15

25

30

35

40

45

50

55

24

As described above, the conversion part 308 replaces a
predetermined output function, which is included in the
source code and also included in the setting information,
with an output function for multiparty computation. At this
time, the conversion part 308 sets in the output function for
multiparty computation the information of the secure com-
putation server (representative server) that reconstructs the
results of multiparty computation executed by a plurality of
the secure computation servers 10 as necessary.

Next, the following describes an operation of the conver-
sion part 308 when “maximum” is set in the parameter
conversion processing setting illustrated in FIG. 16D.

When the set value is “maximum,” the conversion part
308 secret-shares all the parameters and constants included
in the source code. In the example of FIG. 15, “num_input”
in the second line and a constant “10” in the 147 line are also
secret-shared.

When the parameter conversion processing setting is set
to “maximum,” in the source code illustrated in FIG. 15, the
conversion part 308 generates, for example, a dedicated
secure computation code illustrated in FIG. 18. The differ-
ences between the dedicated secure computation codes
illustrated in FIGS. 17 and 18 are as follows. In the second
line in FIG. 18, “num_input” is defined as an integer type for
secret sharing and “1000” is set as the value thereof. Further,
in FIG.

18, an integer type parameter “pl” for secret sharing is
added in the 13™ line, and the constant “10” is replaced by
this parameter “p1” in the 15 line.

As described above, when the parameter conversion pro-
cessing setting is set to “maximum,” in addition to a
parameter externally acquired and a parameter affected
thereby, the conversion part 308 secret-shares other param-
eters and constants in the source code.

This secret sharing scheme is able to robustly prevent the
information included in the source code from being leaked.
For example, if user’s knowledge (know-how) is integrated
into the constant “10” in the 14th line in FIG. 15, it is
desirable to keep the constant secret. The conversion part
308 is able to create a dedicated multiparty computation
source code that meets this need.

The compilation part 303 varies combinations of compile
options for the dedicated multiparty computation source
code generated by the conversion part 308 and generates a
plurality of bytecodes.

As described above, the verification apparatus 20d
according to the sixth example embodiment acquires a
normal source code from a user and converts the source code
into a dedicated multiparty computation source code. As a
result, the user is able to obtain an optimal bytecode for a
user’s environment without providing a dedicated multi-
party computation source code. That is, the verification
apparatus disclosed in the present application can accept a
normal source code (written in C or the like) as a “source
code for multiparty computation” or a dedicated multiparty
computation source code.

[Variation of the Sixth Example Embodiment]

As described above, when a dedicated multiparty com-
putation source code is generated, the parameter conversion
processing settings can be changed. Specifically, an amount
of secret-shared information can be minimized or maxi-
mized. Here, a level of secret sharing (minimum or maxi-
mum) affects a performance of multiparty computation
(throughput and latency). That is, the lower the level of
secret sharing, the higher the performance, and the higher
the level of secret sharing, the lower the performance.

US 11,934,518 B2

25

Therefore, the compilation part 303 may treat various
settings (especially, a level of secret sharing) for converting
a normal source code into a dedicated multiparty computa-
tion source code as compile options when generating a
plurality of bytecodes.

More specifically, the compilation part 303 may vary a
level of secret sharing (for example, minimum or maximum)
to generate a plurality of bytecodes.

Alternatively, when the user requirements specification
indicates that “security prioritized,” the compilation part 303
may fix the level of secret sharing to “maximum” and vary
other options to generate a plurality of bytecodes. On the
other hand, when the user requirements specification indi-
cates that “performance prioritized,” the compilation part
303 may fix the level of secret sharing to “minimum” and
vary other options to generate a plurality of bytecodes. In
this case, the compilation part 303 may rewrite the setting
information based on the requirements specification and
instruct the conversion part 308 to reconvert the source code
using the rewritten setting information.

Alternatively, the compilation part 303 may rewrite the
setting information based on an evaluation index and
instruct the conversion part 308 to reconvert the source code
using the rewritten setting information. For example, if a
recommended code and a recommended environment meet-
ing the requirements specification cannot be obtained with
an initial level of secret sharing, the setting information may
be rewritten to expand options for verification codes. More
specifically, if the compilation part 303 cannot obtain a
bytecode meeting a user requirements specification with the
initial setting (for example, the maximum level of secret
sharing), the compilation part 303 may change the setting
information which is referred to by the conversion part 308
(for example, to the minimum level of secret sharing). That
is, the compilation part 303 may incorporate an evaluation
result (evaluation index) from the evaluation part 305 into an
operation of the conversion part 308.

As described above, in the variation according to the sixth
example embodiment, the conversion part 308 rewrites the
setting information based on an evaluation index or the
requirements specification and generates a plurality of byte-
codes. As a result, it becomes possible to quickly identify
and reliably provide a recommended code suitable for a
user’s request.

[Hardware Configuration]

The following will describe the hardware configuration of
each apparatus constituting the multiparty computation veri-
fication system.

FIG. 19 is a diagram illustrating an example of the
hardware configuration of the verification apparatus 20. The
verification apparatus 20 is realized by an information
processing apparatus (computer) and comprises the configu-
ration illustrated in FIG. 19. For example, the verification
apparatus 20 comprises a CPU (Central Processing Unit) 21,
a memory 22, an input/output interface 23, and a NIC
(Network Interface Card) 24, which is communication
means. These elements are interconnected by an internal
bus.

It should be noted that the configuration illustrated in FIG.
19 is not intended to limit the hardware configuration of the
verification apparatus 20. The verification apparatus 20 may
include hardware not illustrated in the drawing. The example
of FIG. 19 does not limit the number of CPUs, etc., included
in the verification apparatus 20 and for example, a plurality
of'the CPUs 21 may be included in the verification apparatus
20.

10

15

20

25

30

35

40

45

50

55

60

65

26

The memory 22 is a RAM (Random Access Memory),
ROM (Read-Only Memory), or auxiliary storage device
(such as a hard disk).

The input/output interface 23 is an interface for an input/
output device not illustrated in the drawing. For example,
the input/output device may be a display device, an opera-
tion device, etc. The display device is, for example, a liquid
crystal display. The operation device is, for example, a
keyboard and a mouse.

The functions of the verification apparatus 20 are realized
by the processing modules described above. For example,
these processing modules are realized by having the CPU 21
execute a program stored in the memory 22. This program
may be downloaded via a network or updated using a storage
medium storing the program. Further, the processing mod-
ules may be realized by a semiconductor chip. That is, the
functions performed by the processing modules may be
realized by some kind of hardware or by software running on
hardware.

Further, the secure computation server 10 can also be
realized by an information processing apparatus (computer),
and since the hardware configuration thereof is evident to a
skilled person, a detailed description will be omitted.
[Variations]

The configurations and the operations of the multiparty
computation verification systems described in the first to the
sixth example embodiments are examples, various varia-
tions of which are possible.

In the example embodiments described above, the user
enters/outputs information using an operation device and a
display device connected to the verification apparatus 20.
The user, however, may enter/output necessary information
using a terminal connected via a network.

In the example embodiments described above, basically
one recommended code and one recommended environment
are provided to the user. However, there is usually a plurality
of bytecodes that satisfy the user requirements specification.
In this case, bytecodes matching a predetermined bytecode
rule that satisfies the user requirements specification may be
uniformly provided to the user as “recommended codes.”
For example, when the user requirements specification indi-
cates that “performance prioritized,” the verification appa-
ratus 20 outputs the best performing bytecode as a “recom-
mended code,” but among the bytecodes meeting the
requirements specification, there may be a more secure code
or code with a smaller size. In this case, depending on the
user’s application, a code that balances performance and
security, or performance and code size may be optimal.
Then, the verification apparatus 20 may select a predeter-
mined number of bytecodes, in order of performance, from
the bytecodes that meet the requirements specification and
provide the selected codes to the user. That is, the verifica-
tion apparatus 20 may output a plurality of recommended
codes. Further, in this case, the verification apparatus 20 may
provide the user with additional information (details of the
options used, code size, etc.) attached to each recommended
code. The user may specify the number of bytecodes out-
putted as recommended codes.

In the third example embodiment, etc., the verification
apparatus 20 generates a plurality of bytecodes and the
verification environment 40 verifies each bytecode. The
verification apparatus 20, however, may generate a single
bytecode and a plurality of the verification environments 40
may verify suitability of the bytecode for the requirements
specification. That is, with a verification code being fixed,
the verification environment 40 suitable for the requirements

US 11,934,518 B2

27

specification may be searched for. The selected verification
environment 40 may be recommended as a “recommended
environment” to the user.

In the above example embodiments, in addition to a
source code, the requirements specification is entered into
the verification apparatus 20, however, an explicit input of
a requirements specification may be omitted. For example,
when no requirements specification is entered, the verifica-
tion apparatus 20 may provide a recommended code and a
recommended environment, assuming that a requirements
specification indicating that “performance prioritized” has
been entered.

In the above example embodiments, basically all the
processing described in the bytecode is executed for verifi-
cation of a bytecode in the verification environments 30 and
40. In this verification method, however, it may take a long
time to verify one bytecode, depending on contents of
multiparty computation. As a result, it may take an enor-
mous amount of time to determine a final recommended
code. To eliminate such inconvenience, the verification
apparatus 20 may evaluate a bytecode by executing only
some of processing described in the bytecode, instead of
executing and evaluating all the processing described
therein. For example, before compiling a source code, the
compilation part 303 modifies a part thereof, and when the
main function is executed a predetermined number of times,
the compilation part 303 has this notified to outside (as an
execution result). The verification apparatus 20 may treat
this notification as an execution result and calculate an
evaluation index.

In the above example embodiments, one of a plurality of
the secure computation servers 10 is treated as a represen-
tative server, which distributes input data to be secret-shared
and reconstructs a secret-shared execution result. Instead of
this configuration, however, a distribution/reconstruction
server that distributes input data to be secret-shared to each
secure computation server 10 and reconstructs the execution
result secret-shared by the secure computation servers 10
may be incorporated into a system. For example, as illus-
trated in FIG. 20, a distribution/reconstruction server 50 may
be provided. In this case, the verification apparatus 20 may
distribute a verification code to each secure computation
server 10 via the distribution/reconstruction server 50 or
directly distribute it to each server. Further, the verification
apparatus 20 may obtain an execution result via the distri-
bution/reconstruction server 50.

As illustrated in FIG. 20, the distribution/reconstruction
server 50 can be incorporated into the system. In this case,
the compile options may include an option for whether or
not to use the distribution/reconstruction server 50. Further,
when the compile option to use the distribution/reconstruc-
tion server 50 is enabled, a location where the distribution/
reconstruction server 50 is installed may be recommended
based on the requirements specification from the user. In
many cases, the distribution/reconstruction server 50 is
assumed to be an honest participant. If the distribution/
reconstruction server 50 is a dishonest participant or con-
trolled by a dishonest participant, a value will be known to
the dishonest participant before being distributed and con-
fidentiality cannot be achieved. In such a case, since the
value can be altered when it is reconstructed, authenticity
cannot be achieved, either. Therefore, when the distribution/
reconstruction server 50 is installed, it is necessary to
consider who installs it where and how it is managed. Here,
installation of the distribution/reconstruction server 50 in the
user’s on-premises environment may offer high security.
Such a measure, however, increases a cost and is often

10

15

20

25

30

35

40

45

50

55

60

65

28

avoided by users. On the other hand, if the distribution/
reconstruction server 50 is installed in a cloud, a cost will be
reduced. However, as long as the cloud service provider
manages the distribution/reconstruction server 50, there is a
possibility that the cloud service provider will take a peep at
input data or tamper with the reconstructed value. In addi-
tion, there may be cases where the distribution/reconstruc-
tion server 50 is operated by a third party (such as a
government). As described above, the installation of the
distribution/reconstruction server 50 is closely related to
security and cost. Therefore, for example, when the user
requirements specification indicates “security prioritized,”
the verification apparatus 20 recommends installation of the
distribution/reconstruction server 50 in the user environ-
ment. Alternatively, when the user requirements specifica-
tion indicates “the cost prioritized,” the verification appara-
tus 20 recommends installation of the distribution/
reconstruction server 50 in the cloud environment.

In the above example embodiments, secure computation
is executed by means of secret sharing using a plurality of
the secure computation servers 10. Secure computation,
however, may be performed using homomorphic encryption,
fully homomorphic encryption, etc. In this case, the verifi-
cation environment 30 or 40 should include at least one
server. Further, such a difference in the secret sharing
scheme may be distinguished by compile options.

In the above example embodiments, each secure compu-
tation server 10 is assumed to be realized by a server
(physical machine). However, a plurality of the secure
computation servers 10 may be realized as virtual machines
on a single server. Further, the multiparty computation
verification system may include a secure computation server
10 realized by a virtual machine and a secure computation
server 10 realized by a physical machine.

In the fifth example embodiment, the number of generated
bytecodes is restricted by deselecting some compile options.
Such a measure, however, may not be able to obtain a
bytecode (recommended code) that meets a user’s require-
ments specification. In this case, the compilation part 303
may select the deselected compile options to increase the
number of codes to be verified.

Although a plurality of steps (processes) are described in
order in the sequence diagrams used in the above descrip-
tion, an execution order of steps performed in each example
embodiment is not limited to the order in the description
thereof. In each example embodiment, the order of the
illustrated steps can be changed, such as executing the
processes in parallel, as long as no substantial problem
occurs. Further, the above example embodiments can be
combined as long as no substantial conflict with each other
arises. That is, any combination of the example embodi-
ments is included as another example embodiment.

One can use a computer as the verification apparatus by
installing a multiparty computation executable code verifi-
cation program to a storage part of the computer. Further,
one can execute a method for verifying multiparty compu-
tation executable code using a computer by having the
computer execute the multiparty computation executable
code verification program.

Each disclosure of Patent Literature and Non-Patent Lit-
erature cited above is incorporated herein in its entirety by
reference thereto. It is to be noted that it is possible to
modify or adjust the example embodiments or examples
within the whole disclosure of the present invention (includ-
ing the Claims) and based on the basic technical concept
thereof. Further, it is possible to variously combine or select
(or partially delete) a wide variety of the disclosed elements

US 11,934,518 B2

29

(including the individual elements of the individual claims,
the individual elements of the individual example embodi-
ments or examples, and the individual elements of the
individual figures) within the scope of the whole disclosure
of the present invention. That is, it is self-explanatory that
the present invention includes any types of variations and
modifications to be done by a skilled person according to the
whole disclosure including the Claims, and the technical
concept of the present invention. Particularly, any numerical
ranges disclosed herein should be interpreted that any inter-
mediate values or subranges falling within the disclosed
ranges are also concretely disclosed even without specific
recital thereof.

What is claimed is:

1. A verification apparatus comprising:

a processor; and

a memory storing program instructions executable by the

processor to:

acquire source code for multiparty computation;

for each of a plurality of combinations of options for a

multiparty computation compiler, compile the source
code to generate a corresponding one of a plurality of
multiparty computation executable codes;

select at least one verification code from the plurality of

multiparty computation executable codes, and provide
the at least one verification code to each of a plurality
of verification environments of multiparty computa-
tion, wherein each verification environment includes a
plurality of secure computation servers;

for each verification environment, generate an evaluation

index with respect to an evaluation result of the at least
one verification code within the verification environ-
ment; and

select at least one recommended code from the plurality

of multiparty computation executable codes, based on
the evaluation index for each verification environment,
and output the selected at least one recommended code
and the verification environment corresponding to the
selected at least one recommended code, as a recom-
mended environment.

2. The verification apparatus according to claim 1,
wherein information regarding a network in an environment
in which multiparty computation is executed is acquired,
and

for each verification environment, the environment in

which multiparty computation is executed is simulated
by using the information regarding the network.

3. The verification apparatus according to claim 2,
wherein providing the at least one verification code to each
verification environment and generating the evaluation
index are repeated, and

the at least one verification code corresponding to the

evaluation index indicating best performance among
evaluation indices is selected as the at least one rec-
ommended code.

4. The verification apparatus according to claim 1,
wherein the at least one recommended code is selected from
the plurality of verification codes based on information
regarding performance of multiparty computation.

5. The verification apparatus according to claim 1,
wherein a portion of the options are fixed in each combi-
nation, based on a requirements specification from a user.

6. The verification apparatus according to claim 1,
wherein

when there is a plurality of the verification environments

that for each of which the evaluation index satisfies a
first request included in a requirements specification

15

30

35

40

45

55

30

from a user, the the recommended environment is
selected from the plurality of verification environments
based on a second request included in the requirements
specification.

7. The verification apparatus according to claim 1,
wherein the program instructions are executable by the
processor to further:

convert the source code into source code processable by

the multiparty computation compiler.

8. The verification apparatus according to claim 7,
wherein the source code is converted based on setting
information regarding multiparty computation, and

the setting information is rewritten based on the evalua-

tion index for the recommended environment, and the
source code is reconverted using the rewritten setting
information.

9. The verification apparatus according to claim 7,
wherein the options include at least one of:

an option for a code size indicating whether the code size

is prioritized or not prioritized;

an option for type conversion indicating whether through-

put is prioritized or latency is prioritized;

an option for fixed/floating point accuracy;

an option for security;

an option for selection of a multiparty computation

method to be used; and

an option for a level of secret sharing for converting the

source code into the source code processable by the
multiparty computation compiler.

10. The verification apparatus according to claim 8,
wherein the setting information includes:

information about setting of each verification environ-

ment including the plurality of secure computation
servers; and

a plurality of rules used for determining a conversion

operation, the plurality of rules including at least one of
a rule on conversion processing for a function in the
source code, and a rule on conversion processing for a
parameter and/or type in the source code.

11. The verification apparatus according to claim 10,
wherein the function included in the source code and
included in the setting information is replaced with a func-
tion for multiparty computation, and the parameter that is
included in the source code and that stores data acquired by
the function is set as a target of secret sharing.

12. The verification apparatus according to claim 10,
wherein depending on the rule on the conversion processing
for the parameter, the secret-shared data and one or more
parameters affected by the secret-shared data are set as
targets of secret-sharing, or all parameters and constants
included in the source code are set as the targets of secret-
sharing.

13. The verification apparatus according to claim 7,
wherein the source code is converted based on setting
information regarding multiparty computation, and

the setting information is rewritten based on a require-

ments specification, and the source code is reconverted
by using the rewritten setting information.

14. The verification apparatus according to claim 1,
wherein

the at least one verification code is provided to each of the

plurality of secure computation servers of each verifi-
cation environment.

15. The verification apparatus according to claim 14,
wherein each verification environment includes

a distribution/reconstruction server connected to the plu-

rality of secure computation servers, wherein

US 11,934,518 B2

31

the distribution/reconstruction server distributes secret-
shared input data to the plurality of secure computation
servers, and reconstructs execution results that are
secret-shared by the plurality of secure computation
servers, and wherein

the execution the evaluation result of the at least one
verification code is acquired via the distribution/recon-
struction server of each verification environment.

16. The verification apparatus according to claim 15,

wherein the options include:

an option for whether or not to use the distribution/
reconstruction server.

17. A multiparty computation verification system com-

prising:

a plurality of verification environments that each include
a plurality of secure computation servers; and

a verification apparatus connected to each verification
environment, wherein

the verification apparatus comprises:

a processor; and

a memory storing program instructions executable by the
processor to:

acquire source code for multiparty computation;

for each of a plurality of combinations of options for a
multiparty computation compiler, compile the source

code to generate a corresponding one of a plurality of

multiparty computation executable codes;

select at least one verification code from the plurality of

multiparty computation executable codes, and provide
the at least one verification code to each verification
environment;

for each verification environment, generate an evaluation
index with respect to an evaluation result of the at least
one verification code within the verification environ-
ment; and

select at least one recommended code from the plurality
of multiparty computation executable codes, based on
the evaluation index for each verification environment,
and output the selected at least one recommended code
and the verification environment corresponding to the
selected at least one recommended code, as a recom-
mended environment.

18. A method for verifying multiparty computation

executable code, the method comprising:

acquiring, by a processor, a source code for multiparty
computation;

for each of a plurality of combinations of options for a
multiparty computation compiler, compiling, by the

10

20

25

30

40

45

32

processor, the source code to generate a corresponding
one of a plurality of multiparty computation executable
codes;

selecting, by the processor, at least one verification code
from the plurality of multiparty computation execut-
able codes, and provide the at least one verification
code to each of a plurality of verification environments
of multiparty computation, wherein each verification
environment includes a plurality of secure computation
servers;

generating, by the processor, an evaluation index with
respect to an evaluation result of the at least one
verification code within the verification environment;
and

selecting, by the processor, at least one recommended
code from the plurality of multiparty computation
executable codes, based on the evaluation index for
each verification environment, and outputting the
selected at least one recommended code and the veri-
fication environment corresponding to the selected at
least one recommended code, as a recommended envi-
ronment.

19. A non-transitory computer-readable medium storing a

program executable by a computer to perform processing
comprising:

acquiring a source code for multiparty computation;

for each of a plurality of combinations of options for a
multiparty computation compiler, compiling the source
code to generate a corresponding one of a plurality of
multiparty computation executable codes;

selecting at least one verification code from the plurality
of multiparty computation executable codes, and pro-
vide the at least one verification code to each of a
plurality of verification environments of multiparty
computation, wherein each verification environment
includes a plurality of secure computation servers;

generating an evaluation index with respect to an evalu-
ation result of the at least one verification code within
the verification environment; and

selecting at least one recommended code from the plu-
rality of multiparty computation executable codes,
based on the evaluation index for each verification
environment, and outputting the selected at least one
recommended code and the verification environment
corresponding to the selected at least one recommended
code, as a recommended environment.

#* #* #* #* #*

