

US011435334B2

(12) United States Patent (10) Patent No.: US 11,435,334 B2
Ueda et al. (45) Date of Patent: Sep. 6, 2022

(54) DEVICE, PROGRAM, AND METHOD FOR DETERMINING NUMBER OF SAMPLES REQUIRED FOR MEASUREMENT, AND DEVICE, PROGRAM AND METHOD FOR ESTIMATING MEASUREMENT ACCURACY

- (71) Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY,
Tokyo (JP)
- (72) Inventors: Takao Ueda, Ibaraki (JP); Tatsuya (56) References Cited Oki, Ibaraki (JP) (36) Contract a series of the ser
- (73) Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY,
Tokyo (JP)
- (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 117 days.
- (21) Appl. No.: $16/617,398$ (Continued)
- (22) PCT Filed: **Jun. 25, 2018** Primary Examiner Bryan Bui
- (86) PCT No.: PCT/JP2018/024067 $\S 371$ (c)(1),
(2) Date: **Oct. 9, 2020**
- (87) PCT Pub. No.: WO2019/069512 PCT Pub. Date: Apr. 11, 2019

(65) **Prior Publication Data**

US 2021/0025864 A1 Jan. 28, 2021

(30) **Foreign Application Priority Data**

Oct. 5 , 2017 (JP) JP2017-194812

(45) Date of Patent: Sep. 6, 2022

- (52) U.S. Cl.
CPC *G01N 33/24* (2013.01); *G06F 17/18* (2013.01); $G06K$ 9/6277 (2013.01)
- (58) Field of Classification Search CPC G01N 33/24; G06F 17/18; G06K 9/6277 See application file for complete search history.

U.S. PATENT DOCUMENTS

grain size distribution", Minerals Engineering, Oct. 2013, pp. 198-C.L. Evans et al., "Estimating error in measurements of mineral 203, vol. 52, DOI: 10.1016/j.mineng.2013.09.005, Elsevier Ltd.

(74) *Attorney, Agent, or Firm* — Michael Best $\&$ Friedrich LLP

(57) **ABSTRACT**

To give reliability to statistical data on samples as discrete materials, a required sample-number determination device includes: a required sample number for each class acquisition unit configured to acquire a required sample number for each class N_i by the following Equation (1) based on a proportion P [']_i, that is a ratio of the number of samples in each class to the number of the samples in the population; a temporary required sample number acquisition unit configured to acquire a temporary required sample number N_r , which may be a maximum value among the required sample number numbers for each class N_i ; and a required sample number

(Continued)

determination unit configured to determine the temporary (56) **References Cited** required sample number N_r as a true required sample number of the temporary required continuous of N_r and N_r and N_r and N_r and required sample number N_r, as a true required sample num-
ber when the sample number reaches the temporary required \blacksquare OTHER PUBLICATIONS sample number N_r, or more,

[Mathematical 1]

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

for each class, K_P is a constant depending on set reliability, in Equation (1), ξ_i denotes a constant for accuracy that is set and i as indices denotes a class number assigned to each class .

5 Claims, 11 Drawing Sheets * cited by examiner

Takao Ueda et al., "Statistical effect of sampling particle number on mineral liberation assessment", Minerals Engineering, Aug. 2016, pp. 204-212, vol. 98, DOI: 10.1016/j.mineng.2016.08.026, Elsevier Ltd.

S.L. Gay et al., "Using Two Dimensional Sectional Distributions to Infer Three Dimensional Volumetric Distributions — Validation using Temography", Particle & Particle Systems Characterization, Oct. 23, 2006, pp. 246-253, vol. 23, DOI: 10.1002/ppsc.200601056, Wiley-VCH Verlag GmhH & Co. KGaA.
International Search Report issued in Application No. PCT/JP2018/

024067, dated Sep. 18, 2018.

 (a)

$FIG.9(a)$

$FIG.9$ (b)

DEVICE, PROGRAM, AND METHOD FOR
DETERMINING NUMBER OF SAMPLES

as a certain number of discrete materials belonging to the
population, and this needs another method to determine the
based on the measurement result of a physical amount on the
discrete materials. The present invention al accuracy to evaluate the reliability of the statistical data of
the accuracy of the accuracy of the reliability of the statistical data of
the accuracy to evaluate the reliability of the statistical data of
already created

For beneficiation of natural ores, some physical amounts scene for discrete materials, such as dealing with waste of the comminuted ore particles are measured, which include materials for recycling. Similar problems will a of the comminuted ore particles are measured, which include materials for recycling. Similar problems will arise for the liberation distribution and the degree of liberation. method of measuring other scales of the physica Specifically for a group of ore particles made up of one or 25 such as the area, the volume, the weight and the density, a plurality of components, the ore particles are divided into instead of the liberation distribution therest, and the liberation distribution indicates the exis-
of-interest, and the liberation distribution indicates the exis-
tence ratio of each class in the form of cumulative distribu-
tion. The degree of liberation ind measure these physical amounts, the ore particles are PRIOR ART DOCUMENTS mounted in resin as a sample, and sections of the sample are analyzed with an analyzer to create a series of statistical data Non-Patent Documents of the physical amounts. 35

To obtain reliable statistical data on the physical amounts,
such a data-creation procedure may be conducted for all of J., 2013. Estimating error in measurements of mineral grain

For a more practical approach, Non-Patent Document 1 mineral liberation assessment. Miner. Eng. 98, 204-212. doi:
proposes a bootstrap method to obtain the liberation distri-
 $10.1016/j.mineng. 2016.08.026$ bution of the ore particles. The method measures several

hundreds of samples belonging to the group of the ore 45 SUMMARY OF THE INVENTION hundreds of samples belonging to the group of the ore 45 particles to create a sample database, and then extracts a certain number of samples repeatedly from the sample certain number of samples repeatedly from the sample
database to examine the variation. The method then con-
ducts fitting of the variation to estimate the equation repre-
The present invention aims to solve the above-stat ducts fitting of the variation to estimate the equation representing the relationship between the number of the samples - so s problems and provided the number of the samples \sim problems and provide a device, a program, and a method for

depending on the types of functions used for the fitting or the as discrete materials as well as a device, a program and a number of data for the fitting. There is no means to predict method for estimating measurement accu the magnitude of this error. The method, which is able to 55 estimate the statistical reliability of the statistical data, is not Means for Solving the Problems estimate the statistical reliability of the statistical data, is not able to predict the magnitude of an error included in the data,

degree of liberation for ore particles. To this end, this $60 \leq l$ a required sample-number determination device method estimates the relationship between the number of includes: a required sample number for each class ac measurement samples and the confidence interval based on ion unit configured to, when samples of a population made
the interval-estimation technique for the population propor-
up of a plurality of discrete materials are di the interval-estimation technique for the population propor-
the of a plurality of discrete materials are divided into a
plurality of classes based on differences in a physical

 1 2

liberation distribution are indices relating to the content ratio **DETERMINING NUMBER OF SAMPLES** of the component-of-interest, the index required by a user to **REQUIRED FOR MEASUREMENT, AND** beneficiate natural ores may vary with the types of the REQUIRED FOR MEASUREMENT, AND beneficiate natural ores may vary with the types of the DEVICE, PROGRAM AND METHOD FOR natural ores, their producing regions, and the like. Both of **DEVICE, PROGRAM AND METHOD FOR** natural ores, their producing regions, and the like. Both of **ESTIMATING MEASUREMENT ACCURACY** \rightarrow these indices therefore are required to have high reliability these indices therefore are required to have high reliability of the statistical data depending on the user's needs.

TECHNICAL FIELD

The present invention relates to devices, programs, and

methods for determining the number of samples required for 10

methods for determining the number of samples required for 10

measurement that deter

the actually measured physical amount.
to evaluate the reliability of the statistical data correctly.

 BACKGROWND ART 20 Such problems may arise not only in the scene for ore particles of the natural ores as stated above but also in any

the ore particles belonging to the group, i.e., the population.

This procedure for all of the ore particles belonging to the

population. Miner. Eng. 52, 198-203. doi: 10.1016/

population, however, is impractical because

create the statistical data requires a lot of money and time.
For a more practical approach, Non-Patent Document 1 mineral liberation assessment. Miner, Fing. 98, 204-212, doi:

and the variation.
Such a proposed method, however, will have an error and to give the reliability to the statistical data of samples

and may not ensure the reliability of the estimated result. Means for solving the above-stated problems is as fol-
Non-Patent Document 2 proposes a method to obtain the lows.

This proposal, however, is targeted at the degree of 65 amount, acquire a required sample number for each class N_i liberation only, and is not applicable to the liberation dis-
tribution. Although both of the degree of

35

ratio of the number of samples in each class to the number of the samples in the population; [Mathematical 2]

sample number N, being the required sample number for $P_{i}^* = \xi_i < P_i < P_i + \xi_i$, where P_i denotes the proportion that is a a temporary required sample number acquisition unit configured to acquire a temporary required sample number
N_n, when a plurality of classes are selected as the selected 5 classes, the temporary required sample number N_r , being a maximum value among the required sample numbers for maximum value among the required sample numbers for in Equation (1), ξ_i denotes a constant for accuracy that is each class N_i of the selected classes, and when a single class set for each class, K_p is a constant de is selected as the selected class, the temporary required
sample is set as probability satisfying the relationship of
sample number N, being the required sample number for ¹⁰ P^o-E<P.<P.²+E, where P, denotes the prop

to, in the relationship between a sample number determined denotes a class number assigned to each class.
at one processing by the required sample number for each $_{15}$ <5> A method for determining a required sample numb the temporary required sample number N, or more and make $_{20}$ based on differences in a physical amount, acquiring a a required sample number determination unit configured all of the discrete materials of the population, and i as indices to, in the relationship between a sample number determined denotes a class number assigned to each cl class acquisition unit and the temporary required sample includes: number acquisition unit and the temporary required sample a required sample number for each class acquisition step
number N_n, if the sample number falls below the temporary of, when samples of a population made up of a p required sample number N_r, update the sample number to be discrete materials are divided into a plurality of classes
the temporary required sample number N_r or more and make γ_0 based on differences in a physical a the required sample number for each class acquisition unit required sample number for each class N_i of selected classes and the tennorary required sample number acquisition unit that are all or a part of the classes by and the temporary required sample number acquisition unit that are all or a part of the classes by Equation (1) based on repeatedly execute the acquisition of the required sample a proportion P' , that is a ratio of th repeatedly execute the acquisition of the required sample a proportion P_i that is a ratio of the number of samples in the population; number for each class N_i and the temporary required sample each class to the number of the samples in the population;
a temporary required sample number acquisition step of number N_r, so as to determine the temporary required sample 25 a temporary required sample number acquisition step of acquiring a temporary required sample number N_r, when a number N_r as a true required sample number when the acquiring a temporary required sample number N_r , when a plurality of classes are selected as the selected class, the sample number reaches the temporary required sample num-
ber N, or more,
 $\frac{1}{2}$ temporary required sample number reaches the temporary required sample number
 $\frac{1}{2}$ temporary required sample number of the sample num

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

which is set as probability satisfying the relationship of N_r , if the sample number falls below the temporary required $P^{\gamma}_{r} - \xi_{i} < P_{i} < P_{i} + \xi_{i}$, where P_i denotes the proportion that is a ₄₀ sample number N_r all of the discrete materials of the population, and i as indices edly conducting the required sample number for each class
denotes a class number assigned to each class acquisition step and the temporary required sample n

according to $\langle 1 \rangle$, wherein the discrete materials are multi- 45 sample number N, as a true required sample number when component particles, and the physical amount is a liberation the sample number reaches the tempo

distribution of the multicomponent particles.
 $\langle 3 \rangle$ The required sample-number determination device

according to $\langle 2 \rangle$, wherein the physical amount is a libera-

tion distribution and cross sectional gross of the tion distribution and cross-sectional areas of the multicom- 50 ponent particles, and the required sample-number determination device sets classes based on differences in the crosssectional area and divides the classes into sub-classes based on differences in the liberation distribution, or sets classes
based on differences in the liberation distribution and 55 based on differences in the liberation distribution and 55 in Equation (1), ξ_i denotes a constant for accuracy that is divides the classes into sub-classes based on differences in set for each class, K_p is a consta the cross-sectional area, and calculates a required sample which is set as probability satisfying the relationship of number with a proportion P^2 that is a ratio of the number of P^2 , \in , ∞ , ∞ , ∞ , where number with a proportion P^{γ} that is a ratio of the number of $P_{i} \in \mathbb{R}^{2} \setminus P_{i} + \mathbb{E}_{i}$, where P_{i} denotes the proportion that is a the samples of each class to the number of samples belong-
train of the nu

number assigned to each class, and j denotes the sub-class

S > A measurement-accuracy estimation device includes

an accuracy estimation unit configured to, when samples of

that makes a computer function as the required sample- ϵ divided into a plurality of classes based on differences in a number determination device according to any one of ϵ 1>to physical amount, solve the following E number determination device according to any one of <1> to physical amount, solve the following Equation (1) about \ll 3>, \ll based on proportion P^o, that is a ratio of the

 $3 \hspace{1.5cm} 4$

$$
V_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

each class N_i of the selected class; and ratio of the number of the discrete materials in each class to a required sample number determination unit configured all of the discrete materials of the population, and i as in

 $_{30}$ of the selected classes, and when a single class is selected as ber N_r, or more, temporary required sample number number N_r, being a maximum value among the required sample numbers for each class N_i value among the required sample numbers for each class N_i [Mathematical 1] the selected class, the temporary required sample number N_r being the required sample number for each class N_i of the selected class; and
a required sample number determination step of, in the

 $N_i = \left(\frac{1}{\xi_i}\right) P_i(1 - P_i)$ a required sample number determination step of, in the relationship between a sample number determined at one processing by the required sample number for each class in Equation (1), ξ_i denotes a constant for accuracy that is acquisition step and the temporary required sample number
set for each class, K_p is a constant depending on reliability, acquisition step and the temporary denotes a class number assigned to each class.
 α acquisition step and the temporary required sample number determination device
 α acquisition step so as to determine the temporary required

$$
V_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

the samples of each class to the number of samples belong-
ing to each sub-class, instead of the proportion P_i , $\qquad \qquad$ 60 all of the discrete materials of the population, and i as indices g to each sub-class, instead of the proportion P^o_{*i*}, 60 all of the discrete materials of the population, and i as indices where i as the index in the proportion P^o_{*i*} denotes the class denotes a class number assi

mber assigned to each sub-class.
 ≤ 4 A required sample-number determination program a population made up of a plurality of discrete materials are \leq 4> A required sample-number determination program a population made up of a plurality of discrete materials are that makes a computer function as the required sample- ϵ divided into a plurality of classes based o accuracy ξ_i based on proportion P^{\hat{P}} that is a ratio of the

10

30

number of samples in each class to the number of the samples in the population, and the actually measured sample number N, for each class,

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

in Equation (1), ξ_i denotes a value of the accuracy for each values for F_s and F_V (particle type A and particle type B).
ass, K_P is a constant depending on reliability, which is set FIG. 11 is Table 2, which show class, K_P is a constant depending on reliability, which is set
as probability satisfying the relationship of $P^T = \xi_f \langle P_f \xi_P \rangle + \xi_I$, where P_i denotes the proportion that is a ratio of the number 15 answers R, which shows the verification result by the of the discrete materials in each class to all of the discrete required sample-number determinatio materials of the population, and i as indices denotes a class to Embodiment 1-1 for the particle type A, 3D(number) and number assigned to each class. 2D(number). where P_i denotes the proportion that is a ratio of the number

 \ll > A method for estimating measurement accuracy
includes an accuracy estimation step of, when samples of a
population made up of a plurality of discrete materials are
divided into a plurality of classes based on diffe accuracy ζ_i based on proportion P_i that is a ratio of the
number of samples in each class to the number of the
samples in the population, and the actually measured sample
number N_i for each class,
number N_i for accuracy ξ_i based on proportion P_i that is a ratio of the number of samples in each class to the number of the

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

in Equation (1), ξ , denotes a value of the accuracy for each where P_i denotes the proportion that is a ratio of the number racy by randomly extracting a certain number of samples materials of the population, and i as indices denotes a class

The present invention solves the problems as stated above
and provides a device, a program, and a method for deter-
mining the number of samples required for measurement to 50
give the reliability to the statistical data give the reliability to the statistical data of samples as
discrete materials as well as a device, a program and a
method for estimating measurement accuracy.

EXERCT FOR ESCRIPTION OF THE DRAWINGS $\frac{N}{s}$

FIG. 4 shows an example of the conditions set for required accuracy (ξ_i) that is determined before the mea-
surement. Embodiment 2 estimates the accuracy (ξ_i) of the

required sample-number determination device according to amount is already measured and the number of the measured
Embodiment 1-2. Samples (particles) also is known.

FIG. 6 is a block diagram showing the configuration of a measurement-accuracy estimation device according to Embodiment 2.

FIG. 7 is a flowchart to describe the operation of the measurement-accuracy estimation device.

Mathematical 4 **EXAMPLE - Accuracy estimation device 2 EXAMPLES** 2 **EXAMPLES**

FIG. $9(a)$ shows a cross section of the particle type A.

FIG. $9(b)$ shows a cross section of the particle type B;
FIG. 10 is Table 1, which shows two types of setting

number for measurement N, and the percentage of correct

 $\langle 7 \rangle$ A measurement-accuracy estimation program that FIG. 12 is Table 3, which shows ξ , the required number makes a computer function as the measurement-accuracy $_{20}$ of samples for measurement N, for the set condition and the percentage of correct answers R for Case 1 using these estimation device according to ≤ 6 .

[Mathematical 5] Firstly the following describes interval estimation of the 35 population proportion in the context of the present invention. The interval estimation of the population proportion $N_i = \left(\frac{\kappa_p}{\xi_i}\right)^2 \hat{P}_i(1-\hat{P}_i)$
 $N_i = \frac{\kappa_p}{\xi_i} \sum_{i=1}^n (1-\hat{P}_i)$
 $N_i = \frac{\kappa_p}{\xi_i} \sum_{i=1}^n (1-\hat{P}_i)$ of the discrete materials in each class to all of the discrete
materials of the population, and i as indices denotes a class
mumber assigned to each class.
Advantageous Effect of the Invention
Advantageous Effect of the I

certain accuracy $(\pm \xi)$, i.e., to be P^{$\angle - \xi < P < P^{\angle} + \xi$}, the required number (N) of samples having the proportion (P^{\angle}) is repre-

$$
i = \left(\frac{K_P}{\xi}\right)^2 \hat{P}(1-\hat{P})
$$
\n(A)

FIG. 1 is a block diagram showing the configuration of a
required sample-number determination device according to
mean the set reliability (the probability to be $P^2 = \xi^{-2}e^{-P^2} + \xi$).
Embodiment 1-1.
FIG. 2 is a flowchar

FIG. 3 shows an example of the input information. Samples required for measurement so as to satisfy the FIG. 4 shows an example of the conditions set for required accuracy (ξ) that is determined before the meacuracy at Step S3.
FIG. 5 is a block diagram showing the configuration of a 65 statistical data on a physical amount, where the physical samples (particles) also is known.

able from the outside space. Examples of the discrete
materials include particles, block objects, crystals, cells, and 5 Specifically Embodiment 1 includes two embodiments of;
bubbles, and the discrete materials of the sam bubbles, and the discrete materials of the same type consti-
tute one population.
and Embodiment 1-2 where each sample has a different

The physical amount can be any physical amount specific
to the discrete materials or a section of the discrete materials.
Examples of the physical amount include the volume, sur-
face area, cross-sectional area, axial leng $($ the percentage of a component occupying the surface area), $\frac{15}{15}$ multicomponent particles is observed and the liberation (the percentage of a component occupying the surface area), $\frac{1}{15}$ distribution is meas and aspect ratio (ratio between the maximum axial length distribution is measured two dimensionally based on the
and the minimum axial length orthogonal to the maximum number of particles (2D(number)), the samples have the and the minimum axial length orthogonal to the maximum axial length).

For ease of explanation, the following describes an ment 1-1.
example where the samples, i.e., the discrete materials, 20 When a two-dimensional cross section of the multicom-
making up the population are multicomponent pa

For a group of the multicomponent particles made up of weights. This case therefore corresponds to Embodiment one or a plurality of components, the multicomponent par- $25 \text{ } 1-2$. ticles are divided into classes each having different content When the liberation distribution is measured three dimenratio of the component-of-interest, and the liberation distri-
sionally based on the number of particles ratio of the component-of-interest, and the liberation distri-
bution then indicates the existence ratio of each class in the the same weight. The liberation distribution based on the bution then indicates the existence ratio of each class in the the same weight. The liberation distribution based on the form of cumulative distribution. The field of beneficiation number of particles (3D(number)) therefor form of cumulative distribution. The field of beneficiation number of particles $(3D(number))$ therefore corresponds to typically divides the ratio x of the component-of-interest 30 Embodiment 1-1. into 12 classes (i.e., 0.0, more than 0.0 and 0.1 or less $(0.0 \text{ Considering these points, the following describes to } 0.1)$, more than 0.1 and 0.2 or less $(0.1 \text{ to } 0.2)$, ... more Embodiment 1 (Embodiment 1-1, Embodiment 1-2) and to 0.1), more than 0.1 and 0.2 or less $(0.1 \text{ to } 0.2)$, ... more Embodiment 1 (Embodiment 1-1, Embodiment 1-2) and than 0.9 and less than 1.0 $(0.9 \text{ to } 1.0)$, and 1.0), and this Embodiment 2 of the present invention. example follows this classification. P_i denotes the proportion of class i. Embodiment 1-1 35

When the liberation distribution is obtained through the observation of a two-dimensional sectional image of the observation of a two-dimensional sectional image of the
multicomponent particles, the liberation distribution is typi-
cally calculated based on the number of particles or based on
ment 1-1 relates to one embodiment of a d cally calculated based on the number of particles or based on ment 1-1 relates to one embodiment of a device for deter-

typically calculated by the following Equation: $\overline{P}_i = M_i / M_{all}$, configuration of the device for determining the number of where M_i denotes the number of particle sections in class i samples required for measurement (where M_i denotes the number of particle sections in class i and M_{all} denotes the total number of particle sections.

Areal -based P_i based on the area is typically calculated by 45 Embodiment 1-1.
the following Equation: $P_i=S_i/S_{all}$, where S_i denotes the sum The required sample-number determination device 1 is an of sectional areas of the particles in class I and S_{all} denotes information processing device comigured to determine the

the existence ratio of particles equally irrespective of the 50 cross-sectional area of the particles, the areal-based liberacross-sectional area of the particles, the areal-based libera-

FIG. 1, this device includes an input unit 2, a memory unit

tion distribution evaluates the existence ratio of a particle

3, a calculation unit 4, and an ou section having a larger cross-sectional area more and evalu-
The input unit 2 includes well-known information input
ates the existence ratio of a particle section having a smaller
cross-sectional area less. The multicompon cross-sectional area less. The multicomponent particles have 55 reader, and is configured a structural feature that only one component is likely the calculation unit 4. observed from a small particle section, and is unlikely The memory unit 3 includes a well-known memory, such observed from a large particle section as compared with a as RAM (Random Access Memory) or a ROM (Read Only small particle section. In other words, the liberation distri-
bution in a section of the multicomponent particles depends 60 grams and data, and function as a workspace of the calcu-
on the size of the cross-sectional are on the size of the cross-sectional area of the particles.
The interval estimation of the population proportion

The interval estimation of the population proportion The memory unit 3 of the present embodiment stores a assumes that each sample has an equal weight, and simple program 30A. interval estimation of the population portion for the libera-
the program 30A is a program for determining the
tion distribution based on the area therefore will degrade the 65 required sample number for measurement, and i tion distribution based on the area therefore will degrade the 65 required sample number for measurement, and is executable measurement accuracy. One aspect of the present invention by the calculation unit 4. The program 3 therefore gives the reliability to statistical data based on the

The population is made up of a plurality of discrete number of samples while partially incorporating the concept materials.

The discrete materials mean materials that are distinguish-

to the method for setting sub-classe

same weight. This case therefore corresponds to Embodi-
ment 1-1.

such as ore particles and waste material for recycling, and measured two dimensionally while considering a difference
the physical amount is the liberation distribution.
in cross-sectional area (2D(area)), the samples have the physical amount is the liberation distribution. in cross-sectional area (2D(area)), the samples have different
For a group of the multicomponent particles made up of weights. This case therefore corresponds to Embodime

the area.

40 mining the number of samples required for measurement of

Number-based P_i based on the number of particles is

the present invention. FIG. 1 is a block diagram showing the d M_{all} denotes the total number of particle sections. required sample-number determination device) according to Areal-based P_i based on the area is typically calculated by 45 Embodiment 1-1.

the sum of the sectional areas of all particles. minimum required sample number for measurement of While the number-based liberation distribution evaluates discrete materials that is required for the estimation of the discrete materials that is required for the estimation of the population proportion with a target accuracy ξ_i . As shown in

The memory unit 3 includes a well-known memory, such

program 30A .

by the calculation unit 4. The program 30A will be described later.

30

The calculation unit 4 includes a well-known calculation number determination device 1 in a centralized manner. configured to execute the processing according to a prede-
termined program based on input instructions, and issue
instructions to various parts to control the required sample- ⁵ point Probability Statistics" Iwanami-sho

Specifically the calculation unit 4 reads a predetermined the memory unit 3, and executes the following processing in program from the memory unit 3 in accordance with data accordance with the program 30A. and instructions from the input unit 2, and executes the
circulation unit 4 acquires the required sample
corresponding processing. The calculation unit 4 also stores
 10 number for each class N_i based on the input in the result of the processing in the memory unit 3 and outputs the information on the conditions and through the calcula-
tion by the following Equation (1). The calculation unit 4

Referring to FIG. 2, the following describes the operation acquires N_i for all of the selected classes (Step S3). of the required sample-number determination device 1 and $_{15}$ the program 30A that is the program for determining the required sample number for measurement. FIG. 2 is a [Mathematical 7] flowchart to describe the operation of the required sample-

flow number determination device.
Firstly the calculation unit 4 receives information from $_{20}$ the input unit 2 (Step S1).

based on differences in the physical amount, the input class 1 and class 12 or all of the 12 classes in FIG. 3, the information contains the proportion P^{\dagger} , that is the ratio of the 25 calculation unit 4 sets a tempo information contains the proportion P_t that is the ratio of the 25 number of the samples in each class and the number of the samples N_0 .

For instance, when the discrete materials are the multi-
mum value among all of the representative materials are the liberal sample numbers $\frac{1}{2}$ (Steps S4, S5). component particles and the physical amount is the libera-
tion distribution, then the input information has the form 30 . When a single class is selected as the selected class, the tion distribution, then the input information has the form ³⁰ when a single class is selected as the selected class, the shown in FIG. 3. FIG. 3 shows an example of the input calculation unit 4 sets the required sample n

shown in Fig. 3. FIG. 3 shows an example of the hip dass N_i of the selected class as a temporary required sample
information.
Information is a relatively small number because a too large
number N_r (Steps S4, S6).
Note

 ξ_i is a constant of accuracy that is set for each class. A 45 S5.

smaller value for ξ_i (e.g., 0.01 to 0.1) indicates higher Such simplified processing just sets ∞ as ξ_i for the accuracy, and a larger value i

 $\xi_i < P_i < P_i$; where P_i denotes the proportion that is the ratio so In one example, for the liberation distribution (12 classes of the number of the discrete materials in each class to all of in total) of the multicompone the discrete materials of the population. In one example, the the simplified processing just sets ξ at Step S3 depending on reliability of 90% gives $K_p=1.65$, the reliability of 95% the set accuracy including Case reliability of 90% gives K_p=1.65, the reliability of 95% the set accuracy including Cases 1 to 3 shown in FIG. 4 to gives K_p=1.96, and the reliability of 99% gives K_p=2.58. conduct the processing common to all of Ca gives $K_p=1.96$, and the reliability of 99% gives $K_p=2.58$. conduct the processing common to all of Cases 1 to 3, and That is, K_p can be a value from 1.65 to 2.58 for the reliability 55 is able to omit the processing t That is, K_p can be a value from 1.65 to 2.58 for the reliability 55 is able to omit the processing to set the selected class (es) at set in the range of 90% to 99% (see Reference 1 described Step S2 and the processing a set in the range of 90% to 99% (see Reference 1 described Step S2 and the processing at Steps S4, S5. FIG. 4 show
example of the conditions set for accuracy at Step S3. as the probability satisfying the relationship of P^{\uparrow} .

classes that are selected. Examples of the case to select a part N_0 with the temporary required sample number N_r , so as to of the classes include the situation where the information on 60 determine whether the sample of the classes include the situation where the information on 60 determine whether the sample number N₀ and the temporary
class 1 and class 12, which indicates that the particles are required sample number N_r satisfy 12 classes shown in FIG. 3. Such setting of the selected calculation unit 4 updates the sample number No to be the classes tends to require a less number of the samples for 65 temporary required sample number N_r, or mor

The calculation unit 4 includes a well-known calculation class 1 and class 12 and other classes do not relate to the means, such as a CPU (Central Processing Unit), and is processing to determine the number of the samples

mber determination device 1 in a centralized manner. Next the calculation unit 4 reads the program 30A from
Specifically the calculation unit 4 reads a predetermined the memory unit 3, and executes the following processing

e result to the output unit 5. the following describes the operation is equivened by the following Equation (1). The calculation unit 4 Referring to FIG. 2, the following describes the operation acquires N, for all of the

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right) \tag{1}
$$

 N_r to ensure the accuracy ξ , for all of the selected classes so When the samples of the population made up of a plurality When a plurality of classes are selected as the selected of discrete materials are divided into a plurality of classes class, e.g., when the selected classes includ class, e.g., when the selected classes include two classes of class 1 and class 12 or all of the 12 classes in FIG. 3, the that the temporary required sample number N_r , is the maximum value among all of the required sample numbers for

mumber will be a waste corresponding to the amount exceed-

ing the number required for the measurement determined by

the selected class(es) at Step S2, and calculates the required

the required sample-number determinati Next the calculation unit 4 receives conditions (input) classes to calculate the required sample number N_i at Step S3 so that the required sample number for each class N_i(=0) is from the input unit 2 (Step S2). so that the required sample number for each class $N_i = 0$ is The conditions include ξ_i , K_p , and selected classes as ignorable and the selected class (es) only contributes to determine the temporary required sample number N_r, at Step

curacy, and a larger value indicates lower accuracy. non-selected classes at Step S3 to omit the setting of the K_P is a constant depending on the reliability, which is set selected class(es) at Step S2 and the processin selected class(es) at Step S2 and the processing at Steps S4 and S5.

The selected classes are all of the classes or a part of the Next the calculation unit 4 compares the sample number classes that are selected. Examples of the case to select a part N_0 with the temporary required sample \mathbf{r}

ber N_r .
The processing by the calculation unit 4 once shifts to the condition, and a too large sample number will be a waste similar to that of the required sample-number determination corresponding to the amount exceeding the required sample device 1, their descriptions are omitted.

numb

standby state. Then the user randomly extracts other discrete The following describes the case as an example where the materials, which are different from the discrete materials as physical amount is the liberation distrib the target of the initial sample number N_0 , from the popu- 10 ponent particles and cross-sectional areas of the multicom-
lation based on the updated sample number N_0 and measures ponent particles. The required samp lation based on the updated sample number N_0 and measures the physical amount again.

the re-measurement and the re-input sample number N_0 after based on differences in the liberation distribution, or sets the updating (Step S9), the calculation unit 4 executes the 15 classes based on differences in the liberation distribution and processing from Step S3 based on the re-inputting and then divides the classes into sub-classes processing from Step S3 based on the re-inputting and then divides the classes into repeats the processing from Step S3 to Step S9 until the in the cross-sectional area. sample number N_0 and the temporary required sample num-
ber N, satisfy the relationship of $N_0 > N_r$.
accordance with the liberation distribution (i in this example

each class N_i and the temporary required sample number N_i of the 12 classes for the liberation distribution is subdivided and the temporary required sample number N if the sample into three sub-classes in accordance w and the temporary required sample number N_r , if the sample into three sub-classes in accordance with the number N_0 falls below the temporary required sample num- 25 cross-sectional area to be 36 classes in total. ber N_r, update the sample number N₀ to be the temporary This embodiment replaces the proportion P^{γ} in Equation required sample number N_r, or more and repeatedly execute (1) as stated above with the proportion

required sample number N_r satisfy the relationship of N_o>N_r, the calculation unit 4 determines that this temporary Next when the sample number N_0 and the temporary 30 of the samples of each class i to the number of the samples
required sample number N_r satisfy the relationship of belonging to each sub-class.
 $N_0 > N_r$, the calcula number, and outputs the result of determination to the output unit 5.

reliability to the statistical data of the samples as the discrete (small), the number of the samples belonging to the class materials based on the final sample number N_0 . This having the ratio of the component-of-inte required sample-number determination device 1 determines $i=1$) is 8, $P^{\gamma} = P^{\gamma} = 0.4$. When among the 20 samples
the minimum required sample number while ensuring the set belonging to sub-class 1 (small), the number of materials based on the final sample number N_0 . This

ration of Embodiment 1-2 of the present invention. Embodiment 1-2 relates to one embodiment of a required samplement 1-2 relates to one embodiment of a required sample-
number of the classes (36 classes in total)
number determination device of the present invention. FIG. with respect to the number of the samples belonging to the number determination device of the present invention. FIG. with respect to the number of the samples belonging to the 5 is a block diagram showing the configuration of the sub-class, which means that $\Sigma_i P^2 = 1$. That is, 5 is a block diagram showing the configuration of the sub-class, which means that $\Sigma_i P^{\gamma} = 1$. That is, $\Sigma_i P^{\gamma} = 1$, required sample-number determination device according to 60 $\Sigma_i P^{\gamma} = 1$, and $\Sigma_i P^{\gamma} = 1$.

The p

program 30A of the required sample-number determination The following describes the reasons.
device 1. The following describes the operation of the 65 When a cross-sectional image is obtained near the end of required sampl

preferably the same as the temporary required sample num- 5 same weight, the required sample-number determination mination device 1. The updated sample number therefore is 1 dealing with the case where all of the samples have the preferably the same as the temporary required sample num- 5 same weight, the required sample-number determ device 10 deals with the case where the samples have different weights.

physical amount is the liberation distribution of multicom-
10 ponent particles and cross-sectional areas of the multicomdevice 10 sets classes based on differences in the cross-
sectional area and then divides the classes into sub-classes When receiving the proportion P^{γ} based on the result of sectional area and then divides the classes into sub-classes are-measurement and the re-input sample number N_e after based on differences in the liberation di

That is, the calculation unit 4 is configured to, in the 20 are integers from 1 to 12) and the number of the sub-classes relationship between the sample number N_0 determined at (n_{size}) is 3, including large, medium, and dance with the difference in cross-sectional area. Then each of the 12 classes for the liberation distribution is subdivided

(1) as stated above with the proportion P^{γ} , where j denotes the number of the sub-classes (in this example j are integers N_i and the temporary required sample number N_i. from 1 to 3), and the proportion P_i^j is the ratio of the number
Next when the sample number N_o and the temporary 30 of the samples of each class i to the number of

it 5.
If the temporary required sample number N, is the number cross-sectional areas. Then the number of samples belong-If the temporary required sample number N, is the number
of the samples in the population or higher, measurement
with this updated sample number N_o will fail. The calcula-
with this updated sample number N_o will fail. number N_r is the true required sample number and outputs with the liberation distribution, and the ratio of the number the result of determination to the output unit 5. The above-stated required sample-number determination
The above-stated required sample-number determination belonging to each sub-class j is calculated. For instance,
devic discrete materials to be measured. Find that is 1.0 (class i=12) is 10, $P_{i}^{2} = P_{12}^{2} = 0.5$. In
this way, P_{i}^{2} is calculated for each of the sub-divided 36
Embodiment 1-2 of the number of the samples belonging to each of the
Referring to FIG. 5, the following describes the configu- 55 classes (36 classes in total) with respect to the number of all classes (36 classes in total) with respect to the number of all
of the samples in total, and is the ratio of the number of the

As shown in FIG. 5, the required sample-number deter-
mination device 10 stores a program 30B instead of the weights of the samples.

12 tends to be large. When the part has a large cross-

 P_{i} of classes 2 to 11 tends to be large.
" $P_{i}(1-P_{i})$ " in Equation (1) has the maximum value when to 0.5, and so affects the determination of the required the proportion P_1 is 0.5, and decreases with the proximity of
the proportion P_1 is 0.5, and decreases with the proximity of
the proportion P_1 to 0 or 1. The required sample number for
each class N_i increases wi

Note here that the liberation distribution may be deter-
mined based on the areal-base concept unlike the present
 $\lim_{n \to \infty} \frac{dE}{dx}$ of the statistical data.

areal-base proportion P_{i} as in $P_{i}^{*} = S_{i}/S_{all}$ for the calculation section, and the proportion $P^{\hat{i}}$, will be large in classes 2 to 11 of discrete materials are divided into a plurality of classes areal-base method, the existence ratio of a particle section 20μ program 30C that is the program for estimating the mea-
baying a large cross sectional area is evaluated more, and
a surement accuracy. FIG. 7 is a flowc having a large cross-sectional area is evaluated more, and
the existence ratio of a particle section having a smaller
ration of the measurement-accuracy estimation device. cross-section at a particle section having a smaller
cross-section in the calculation unit 4 receives information from
cross-sectional area is evaluated less. This means that the input unit 2 (Step T1). areal base proportion P $_i$ as in P $_i$ (S_i S_i for the calculation T_i). When the samples of the population made up of a plurality by Equation (1) increases the influences from a large cross 25 and the increases 2 t and be small in classes 1 and 12 as compared with the based on differences in the physical amount, the input number-based calculation, and an error will easily occur in the determined required sample number.
This embodiment introduces the sub-classes i each included and actually-measured samples N_i .

This embodiment introduces the sub-classes j each includ- 30° actually-measured samples N_i .
That is, when the required-number determination device ing samples having a similar cross-sectional area, and cal-
and is, when the required-number determination device
and the required sample number for each class N_i , that culates the required sample number N_i in Equation (1) with $\frac{1 \text{ knows}}{1 \text{ s}}$ is the number of the actually-measured samples N, in the proportion P_i^j to avoid the influences from cross-
actional areas and accordingly determine a raliable required
advance, the measurement-accuracy estimation device 20 sectional areas and accordingly determine a reliable required sample number for measurement.

That is, this embodiment calculates the required sample
That is, this embodiment calculates the required sample
measurement.
Next the calculation unit 4 receives a condition (input) number for each class N_i with the proportion P²_j' that is free Next the calculation unit 4 references from the cross-sectional areas, and from the input unit 2 (Step T2). For the effore selects the temporary required sample number N_r ,
therefore selects the temporary required sample number N_r ,
which is the maximum required sample number for each 40
class N_i among the selected classes, ation across the sub-classes. This allows the liberation accordance with the program 30C.
Firstly the calculation unit 4 calculates the accuracy ξ_i for distribution to be obtained based on the number of samples $\frac{1}{1}$ and the calculation unit 4 calculates the accuracy ϵ_i for while partially incorporating the concept based on the area.

Equation (1) with the proportion $P^{\gamma j}_{i}$ that is the ratio of the number of the samples of each class i to the number of the samples belonging to each sub-class, N_i and ξ_i are the same samples belonging to each sub-class, N_i and S_i are the same [Mathematical 8] as in Equation (1) as stated above, which are the values for each class i.

From the above viewpoint, the required sample-number
determination device 10 determines the required sample
number
number $N_i = \left(\frac{N_i}{\xi_i}\right) \hat{P}_i(1-\hat{P}_i)$
in the required sample-number determination device 1.
Other oper in the required sample-number determination device 1.

A method for determining a required sample number may be implemented by the required sample-number determina-

ration of Embodiment 2 of the present invention. Embodi- 65 ment 2 relates to one embodiment of a device for estimating measurement accuracy (hereinafter called a measurement-

from such a part having a small cross-sectional area. This accuracy estimation device) of the present invention. FIG. 6 leads to the evaluation that the proportion P^{\uparrow} , of classes 1 and is a block diagram showing the is a block diagram showing the configuration of the mea-12 tends to be large. When the part has a large cross-
surement-accuracy estimation device according to Embodi-
sectional area, this leads to the evaluation that the proportion ment 2.

As shown in FIG. 6, the measurement-accuracy estimation device 20 stores a program 30C instead of the program

Exercise which one of the classes has the proportion F_i closer
to 0.5, and so affects the determination of the required
number of measurement-accuracy estimation device 20 estimates
Note has the liberation distribution

mined stated on the areal case concept unlike the present the present the Referring to FIG. 7, the following describes the operation based the number-base concept. $\frac{1}{20}$ and the measurement-accuracy estimation device When the liberation distribution is evaluated based on the of the measurement-accuracy estimation device 20 and the mea-
eal-base method, the existence ratio of a particle section α program 30C that is the program for

information contains the proportion P_i that is the ratio of the number of the samples in each class and the number of the

sample number for measurement.
 $\frac{35}{25}$ calculates the accuracy (ζ_i) for the statistical data on the sample number

Although this embodiment replaces the proportion P_{i} in 45 tion (N_{i}, K_{P}, P_{i}) on the conditions and through the calculation by the following Equation (1) (Step T3).

50

$$
V_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i (1 - \hat{P}_i)
$$
 (1)

satisfies the relationship of $P_{i}^{\dagger} - \xi_{i} < P_{i} < P_{i}^{\dagger} + \xi_{i}$ or not, where P_{i} denotes the proportion that is the ratio of the number of the discrete materials in each class to all of the discrete materials $\overline{60}$ of the nonulation. A smaller value of ξ indicates higher tion device 1, 10. $\frac{60}{2}$ of the population. A smaller value of ξ_i indicates higher accuracy for the statistical data on the actual measurement, Embodiment 2 and a larger value of ξ_i indicates lower accuracy for the statistical data on the actual measurement.

Referring to FIG. 6, the following describes the configu-

The measurement-accuracy estimation device 20 there-

tion of Embodiment 2 of the present invention. Embodi- 65 fore estimates the accuracy for the statistical dat actual measurement, and so ensures reliability of the statistical data on the samples of the discrete materials.

This measurement-accuracy estimation device 20 is com-
monet particle, and then calculates three-dimensional
mon to the required sample-number determination devices 1 liberation information on the two-component particle. and 10 in the calculation by the above-stated Equation (1). Next (d) the modeling creates a cross section of the The measurement-accuracy estimation device 20 therefore two-component particle at a random position to calcul The measurement-accuracy estimation device 20 therefore two-component particle at a random position to calculate can be configured to conduct each step by the required $\frac{5}{2}$ two-dimensional liberation information in t sample-number determination devices 1 and 10 so as to The modeling repeats the procedures of (a) to (d) 100,000 execute the processing from Steps S1 to S10 and from Steps times to create 100,000 particles.

The following verifies the advantageous effects from the required sample-number determination device according to Verification Method Embodiment 1-1 and the required sample-number determination device according to Embodiment 1-2 of the present For Step S1 of the required sample-number determination
invention through a numerical experiment to measure the 20 devices 1 and 10, the initial sample number N_0 up of two components including component A and compo-
next B as follows.
 $\frac{1}{2}$ and 10, the simplified processing was

x that indicated the ratio of component A in each particle for strict accuracy for the class of $x=0.8$, and Case 3 set strict the distribution of the liberation distribution. These 12 30 accuracy for the classes of $x=0$ classes included 0.0, more than 0.0 and 0.1 or less (0.0 to K_P in Equation (1) was 1.96 by setting the reliability at 0.1), more than 0.1 and 0.2 or less (0.1 to 0.2), ... more than 95%.

FIG. 8 shows the modeling procedure of such a two-
component particle. FIG. 8 describes how to create particle 35 (number)) based on the three-dimensional number of

the Voronoi tessellation. The Voronoi tessellation is a tech-
nique to partition a space in which a plurality of points are
present, and the partitioning is based on whether other points
mination device 1 according to Embo present, and the partitioning is based on whether other points mination device 1 according to Embodiment 1-1, and the in the same space are close to which one of the points. liberation distribution for 2D(area) was verifie tion of the components A and B in a certain space based on 40

are arranged at random positions in a space. V_c denotes the tion method refers to the true required sample number for volume of the space. V_s denotes the volume of the globe measurement determined at Step S10. having the diameter that is the average size of the divided 50 Firstly the method calculates the distribution of liberation elements (d_A) , i.e., the volume is given by Equation distribution for three types (3D(number), 2D(area), and $V_s = \pi d_A^3/6$. The ratio of d_A and d_S is defined as the size 2D(number)) based on 100,000 particle data, wh $V_s = u_A / 6$. The ratio of u_A and u_S is defined as the size $2D$ (number)) based on 100,000 particle data, where this Firstly (1) the points in number corresponding to V_c/V_s

rarily stored as component B. Randomly selected small two-component particle as stated above to verify the advan-
elements are each converted into component A, and the total tageous effects of the present invention, and th elements are each converted into component A, and the total tageous effects of the present invention, and the data volume of the component A accounting for the volume of the acquired is used as the correct value.

parameters of F_s and F_{ν} .

T1 to T4 in accordance with the input information and the FIG. 10 is Table 1, which shows two types of setting
input of setting information.
A measurement-accuracy estimation method of the pres- 10 This experiment created

accuracy estimation device 20. \Box FIG. $9(a)$, (*b*) shows examples of the analyzed cross section of a spherical particle. FIG. $9(a)$ shows a cross EXAMPLES section of the particle type A, and FIG. $\dot{\mathbf{9}}(b)$ shows a cross 15 section of the particle type B.

mination devices 1 and 10, the simplified processing was conducted for Steps $S2$ to $S6$ as described referring to FIG.

Creation of Particle Data for the Numerical 25 **4**. Note here that three types of ξ_i were set for ξ_i in Equation
Experiment (1) as shown in FIG. **4**, which were Cases 1, 2, and 3,
respectively.
X that indicated the

0.9 and less than 1.0 (0.9 to 1.0), and 1.0. For Cases 1 to 3, three types of the liberation distribution FIG. 8 shows the modeling procedure of such a two-were examined, including the liberation distribution (3D) data used in Examples.

Firstly (a) this modeling creates a spherical particle with

the diameter ds.

The diameter ds.
 $\frac{1}{2}$ of the two-dimensio e diameter ds.

Next (b) the modeling creates a two-component distribution

(2D(number)) based on the two-dimensional number of $(2D(number))$ based on the two-dimensional number of samples.

Specifically the two-component distribution is created by the 45 required sample-number determination device 10 according
following procedures (1) to (3). to Embodiment 1-2 so as to determine the required sample
Firstly (

parameter F_s ($= d_d/d_s$).
Next (2) the Voronoi tessellation is conducted for the correct value. In other words, the statistical data (population is conducted for the correct value. In other words, the statistical data (po points.
Next (3) small elements after the tessellation are tempo-
he to acquire, is acquired in advance by configuring the
the statistical data of the entire population, which would not be
 $\frac{1}{2}$. Next (3) small elements after the tessellation are tempo-
able to acquire, is acquired in advance by configuring the
rarily stored as component B. Randomly selected small
two-component particle as stated above to verify th distribution for three types (3D(number), 2D(area), and

volume of the component A accounting for the volume of the
space, i.e., the content ratio of the component A is calcu- 60 Next, the method randomly selects particle data in num-
lated. This procedure is repeated until the parameters of F_s and F_r .
Next (c) the modeling combines the spherical particle and statistical data (sample statistical data) containing the data Next (c) the modeling combines the spherical particle and statistical data (sample statistical data) containing the data the two-component distribution to create a spherical two- on the samples in number corresponding to t on the samples in number corresponding to the required

sample number for measurement N_r determined by the Example 3: Particle Type B, Embodiment 1-1, required sample-number determination devices 1, 10. 3D(Number), 2D(Number)

statistical data is within the range of the correct-answer 10 Next the method gives a certain range, which is a correct-
answer range, of the accuracy $(\pm \xi_i)$ to the proportion $P'_i(P'_i)$ answer range, of the accuracy $(\pm \xi_i)$ to the proportion $P^2{}_i(P^2{}_i)$ The following verifies the particle type B, 3D(number), of the samples in the sample statistical data so that the ⁵ and 2D(number) by the required s population in the population statistical data with a certain FIG. 13 is Table 4, which shows ξ_i , the required number accuracy $(\pm \xi_i)$ in the following Equation: $P^2 - \xi_i < P^2 F^2 + \xi_i$, of samples for measurement N_r, f

proportion \overline{P}_i in the sample statistical data being within the correct-answer range ($\pm \xi_i$). The method repeats this analysis 1,000 times to calculate gray-colored cells were similar to the reliability (95%) or the probability (the percentage of correct answers (H)) of the more for the set $K_p=1.96$, and so f

FIG. 11 is Table 2, which shows the required sample $N_r=100$.

number for measurement N, and the percentage of correct

answers R, which shows the verification result by the Example 4: Particle Type B, Embodiments 1-1, 1required sample-number determination device 1 according $2D(Area)$ to Embodiment 1-1 for the particle type A, 3D(number) and 25 $2D(number)$. The cells on the right of "N_r" indicate the The following verifies the particle type B, $2D(\text{area})$ by the required number of samples for measurement, and the cells required sample-number determination device 1 a on the right of "1" to "12" indicate the values of the to Embodiment 1-1 and the required sample-numb percentage of correct answers R for the corresponding mination device 10 according to Embodiment 1-2. 30

surement. These minimum values were similar to the reli-
sub-classes j in accordance with the cross-sectional area.
ability (95%) or more for the set $K_p=1.96$, and so favorable
the gray-colored cells and the minimum valu

3D(number), N_n=0, although the initial sample number N₀ 40 was set at 100, the required number of samples for measurement N_r, did not reach 100. Then the verification was conducted by setting N_r=100.

Example 2: Particle Type A, Embodiments 1-1, 1-2, 45 DESCRIPTION OF REFERENCE NUMERALS 2D(Area)

50 The following verifies the particle type A, $2D(\text{area})$ by the required sample-number determination device 1 according to Embodiment 1-1 and the required sample-number determination device 10 according to Embodiment 1-2.

FIG. 12 is Table 3, which shows ξ_i , the required number of samples for measurement N_r , for the set condition and the percentage of correct answers R for Case 1 using these $_{55}$ devices. The required sample-number determination device 10 according to Embodiment 1-2 set n_{size} =12 and the sub-classes j (j are integers from 1 to 12) in accordance with the cross-sectional area. The gray-colored cells and the minimum values at the bottom are the same as those in Table 2. 60

While the minimum value of the required sample-number
determination device 1 according to Embodiment 1-1 was 91.7% , the minimum value of the required sample-number determination device 10 that set sub-classes according to 65 Embodiment 1-2 increased to 94.9%. This confirms the advantageous effect from the setting of the sub-classes.

and analyzes whether the proportion $P'_t(P'_t)$ in the sample
statistical data is within the range of the correct-answer ¹⁰ colored cells and the minimum values at the bottom are the
range $(\pm \xi_i)$ in the relationship of range $(\pm \xi_i)$ in the relationship of P $_{i}$ - ξ_i - ζ - ζ _i ζ or not.

Same as those in Table 2. The minimum values in the The method repeats this analysis 1,000 times to calculate gray-colored cells were simil

 $3D(Number)$, $2D(Number)$ required number of samples for measurement N_r , did not the probability (the percentage of correct answers (H)) of the solution of the set K_P =1.96, and so favorable results were
proportion P'_i in the sample statistical data being within the $\frac{15}{15}$ obtained.
Correct-an 20 reach 100. Then the verification was conducted by setting $N_r = 100$.

classes 1 to 12. ³⁰ FIG. **14** is Table 5, which shows ξ_i , the required number
As shown in FIG. **11**, the gray-colored cells in Table 2 of samples for measurement N_r, for the set condition and the As shown in FIG. 11, the gray-colored cells in Table 2 of samples for measurement N, for the set condition and the correspond to the classes required having high accuracy.

percentage of correct answers R for Case 1 using percentage of correct answers R for Case 1 using these devices. The required sample-number determination device The minimum values at the bottom in Table 2 indicate the devices. The required sample-number determination device
inimum values among the total 12 classes for each mea-
 $\frac{10}{2}$ according to Embodiment 1-2 set n_{size} =12 minimum values among the total 12 classes for each mea- $\frac{35}{2}$ and according to Embodiment 1-2 set $n_{size}-12$ and the bottom are the same as those in Table 2.

Note here that for the calculation result for Case 3, While the minimum value of the required sample-number $N_{0.40}$ determination device 1 according to Embodiment 1-1 was 92.7%, the minimum value of the required sample-number determination device 10 according to Embodiment 1-2 that set sub-classes increased to 94.4%. This confirms the advantageous effect from the setting of the sub-classes.

- 1, 10 Required sample-number determination device
- 2 Input unit

45

- 3 Memory unit
- 4 Calculation unit
- 5 Input unit
- 20 Measurement-accuracy estimation device
- 30A, 30B, 30C Program

The invention claimed is:

1. An information processing apparatus, comprising:

- a memory; and
- a processor coupled to the memory and configured to :
- calculate, for each selected class i among a plurality of classes, a number Ni, which represents a number of required samples, from a ratio P'i of a number of samples in the selected class to a number of all samples N_0 , an accuracy ξ_i of the selected class and a constant Kp associated with a confidence level, according to an equation

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i (1 - \hat{P}_i),\tag{1}
$$

- 10 wherein the plurality of classes are obtained by classify-
in $\frac{1}{2}$ is a ratio of a number of
ing a plurality of discrete materials that are samples
extracted from a population based on a physical amount
is extracted confidence level is set as a probability that satisfies for respective selected classes; and
 $P^2 = \mathbb{E} \le P^2 \le \mathbb{E} \le \mathbb{E} \le \mathbb{E}$ and $P^2 = \mathbb{E} \le \mathbb{E$ discrete materials in the selected class to a number of all discrete materials in the population;
- a maximum number among numbers Ni calculated for $_{15}$ respective selected classes; and
- a repeat the calculating and the specifying with a new ratio
 P' i of a number of new samples in the each selected

class i to a number of all new samples N_0 that is equal

condition is satisfied, wherein the new sampl to or greater than the temporarily required sample $_{20}$

samples N₀ becomes equal to or greater than a new

temporarily required sample number Nr specified

temporarily required sample number Nr specified

i among new

claim 1, wherein the discrete materials are multicomponent class and a constant Kp associated with a constant Class and a constant Kp associated with a confidence of liberation particles, and the physical amount is a degree of liberation of the multicomponent particles.

3. The information processing apparatus as set forth in claim 1, wherein the physical amount includes a first physical amount and a second physical amount. and the plurality of classes are made based on the first physical amount and 30 each of the plurality of classes is divided into a plurality of $_{35}$

-
-
-
- i to a number of samples in the certain class i of the $_{40}$

samples in the selected class to a number of all samples specifying with a new ratio P^{γ} of a number of new samples in the each selected class i to a number of all calculating, for each selected class i among a plurality of $_{45}$ Kp associated with a confidence level, according to an ϵ_0

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i \left(1 - \hat{P}_i\right),\tag{1}
$$

extracted from a population based on a physical amount
for each of the plurality of discrete materials, the confidence level is set as a probability that satisfies $\text{P}_1 - \xi \leq \text{P}_1 \leq \text{P}_1 + \xi \leq \text{P}_2$ and Pi is a ratio of a number of

- For each of the plurality of discrete materials, the is a maximum number among numbers Ni calculated
for each of the plurality of discrete materials, the confidence level is set as a probability that satisfies for respecti
- all discrete materials in the population; selected class 1 to a number of all new samples N_0 that sample number Nr until a condition that the number of $P^i = \xi_i$ Pi i ξ_i , and Pi is a ratio of a number of repeating the calculating and the specifying with a new discrete materials in the selected class to a number of ratio P^{$\dot{\ }$} of a number of new samples in the each specify a temporarily required sample number Nr that is is equal to or greater than the temporarily required respective selected classes; and all new samples N_0 becomes equal to or greater than a repeat the calculating and the specifying with a new ratio new temporarily required sample number Nr specified
	-
- represents a number of required samples, from a ratio among new numbers Ni or a predetermined exceptional represents a number of required samples, from a ratio condition is satisfied, wherein the new samples are 25 P_1 of a number of samples in the selected class to a extracted from the population.
The information processing apparatus as set forth in number of all samples N_0 , an accuracy ξ_i of the selected Extracted from the population.

2. The information processing apparatus as set forth in number of all samples N₀, an accuracy ξ_i of the selected

class and a constant Kp associated with a confidence

$$
N_i = \left(\frac{K_P}{\xi_i}\right)^2 \hat{P}_i (1 - \hat{P}_i),
$$
\n(1)

\nthe plurality

- subclasses based on the second physical amount, and
the number Ni is calculated by using, as the ratio P²i, a
ratio P²ij of a number of samples in a selected subclass
is in the certain class in the certain class is di
- 4. A non-transitory, computer-readable storage medium
storing a program for causing a computer to execute a
process comprising:
calculating, for each selected class i among a plurality of
classes, a number Ni, which repres
	- samples in the each selected class i to a number of all new samples N_0 that is equal to or greater than the Explored with a confidence level of the equation temporarily required sample number Nr until a condition that the number of all new samples N_0 becomes equal to or greater than a new temporarily required sample number Nr specified among new numbers Ni or 55 a predetermined exceptional condition is satisfied, i a predetermined exceptional condition is satisfied , wherein the new samples are extracted from the popu lation . wherein the plurality of classes are obtained by classify ing a plurality of discrete materials that are samples

*