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AUTOMATED MODEL BUILDING SEARCH 
SPACE REDUCTION 

BACKGROUND 

[ 0001 ] Computers are often used to solve complex quan 
titative and qualitative problems . For certain types of prob 
lems , advanced computing techniques , such as genetic algo 
rithms , may be available to develop a model , such as a 
neural network , that is used to solve the problem . However , 
genetic algorithms may take a large number of iterations to 
converge on an acceptable neural network . 
[ 0002 ] Furthermore , various types of machine - learning 
problems exist . For example , regression problems involve 
evaluating a series of inputs to predict a numeric output , 
classification problems involve evaluating a series of inputs 
to predict a categorical output , and reinforcement learning 
involves performing actions within an environment while 
learning from feedback from the actions . Due to the differ 
ences in the various types of problems , the available mecha 
nisms to generate and in a neural network may be 
problem - specific . For example , a method of generating and 
training a neural network to solve a regression problem may 
be significantly less efficient for generating and training a 
neural network to solve a classification problem 

teristics in the set of rules , one or more architectural param 
eters are selected . In this implementation , the set of rules 
may be generated based on analysis of a plurality ( e.g. , 
hundreds or thousands ) of previously generated neural net 
works . In an alternate implementation , a classifier is gener 
ated and trained using data representative of previously 
generated neural networks and the classifier is configured to 
output a neural network grammar based on the characteris 
tics of the input data . 
[ 0005 ] After selecting the one or more architectural 
parameters , the one or more architectural parameters are 
adjusted to weight a randomization process ( e.g. , a genetic 
algorithm ) to adjust a probability of generation of models 
( e.g. , neural networks ) having particular architectural fea 
tures . For example , if the characteristics of the input data file 
are associated with recurrent structures , either in the set of 
rules or by the trained classifier , an architectural parameter 
corresponding to recurrent structures ( e.g. , recurrent neural 
networks ( RNNs ) , long short - term memory ( LSTM ) layers , 
gated recurrent unit ( GRU ) layers , as non - limiting 
examples ) is adjusted to increase the likelihood that neural 
networks having recurrent structures are included in the 
randomization process . To further illustrate , a weight asso 
ciated with recurrent structures may be increased , which 
increases the likelihood that neural networks having recur 
rent structures ( as opposed to other randomly selected neural 
networks ) are included in the randomization process . As 
another example , if the set of rules ( or the trained classifier ) 
indicates that feedforward layers have a negative correspon 
dence to the characteristics of the input data set , an archi 
tectural parameter corresponding to feedforward layers is 
adjusted to decrease the likelihood that neural networks 
having feedforward layers are included in the randomization 
process . Thus , a randomization process can be weighted 
( through adjustment of the architectural parameters ) to focus 
the randomization process on particular types of neural 
networks that are expected to perform well given the char 
acteristics of the input data set , which can increase the speed 
and reduce the amount of processing resources used by the 
automated model generation process in converging 
acceptable neural network . 

SUMMARY 

an 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] The present disclosure describes systems and 
methods for efficiently generating neural networks for dif 
ferent types of problems by automatically adjusting archi 
tectural parameters of an automated model building process . 
The architectural parameters are automatically adjusted 
based on characteristics of an input data set . Adjusting the 
architectural parameters operates to reduce the search space 
for a reliable neural network to solve a given problem . For 
example , parameters of an automatic model generation 
process , such as a genetic algorithm , may be biased to 
increase the probability that certain types of neural networks 
are used during evolution ( e.g. , as part of an initial set of 
models or set of models generated during a later epoch ) . 
Thus , adjusting the architectural parameters based on char 
acteristics of the input data set can result in the automated 
model building process focusing on types of neural networks 
that are particularly suited to processing the input data set , 
which can reduce the amount of time and processing 
resources used by the automated model building process to 
converge on an acceptable neural network ( e.g. , a neural 
network that satisfies a fitness or other criteria ) . 
[ 0004 ] To illustrate , an input data set is analyzed to 
determine characteristics of the input data set . The charac 
teristics may indicate a data type of the input data set , a 
problem to be solved by the input data set , etc. For example , 
if the input data set includes industrial time - series data , the 
characteristics may indicate that the input data set is time 
stamped and sequential and that the input data set includes 
continuous values ( as compared to categorical values ) . 
Based on the characteristics of the input data set , one or 
more parameters of an automated model generation process 
are selected for adjustment . In a particular implementation , 
the characteristics are compared to a set of rules that maps 
characteristics of data sets to neural network grammars . As 
used herein , a neural network grammar is a list of rules that 
specify a topology or an architecture of a neural network . 
Based on the grammars that are associated with the charac 

[ 0006 ] FIG . 1 illustrates a particular implementation of a 
system that is operable to adjust an architectural parameter 
of an automated model generation process based on char 
acteristics of an input data set ; 
[ 0007 ] FIGS . 2A and 2B illustrate particular examples of 
selecting architectural parameters to adjust based on char 
acteristics of input data in accordance with one or more 
aspects disclosed herein ; 
[ 0008 ] FIG . 3 illustrates an example of a grammar that 
indicates architectural parameters of a neural network ; 
[ 0009 ] FIG . 4 illustrates is a diagram to illustrate a par 
ticular implementation of a system that is operable to 
determine a topology of a neural network , such as a neural 
network of FIG . 1 , based on execution of a genetic algo 
rithm ; and 
[ 0010 ] FIG . 5 is a flowchart to illustrate a particular 
implementation of a method of operation at the system of 
FIG . 1 . 
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DETAILED DESCRIPTION 

[ 0011 ] Referring to FIG . 1 , a particular illustrative 
example of a system 100 is shown . The system 100 , or 
portions thereof , may be implemented using ( e.g. , executed 
by ) one or more computing devices , such as laptop com 
puters , desktop computers , mobile devices , servers , and 
Internet of Things devices and other devices utilizing 
embedded processors and firmware or operating systems , 
etc. In the illustrated example , the system 100 includes a 
parameter selector 104 and an automated model generation 
process 120 . 
[ 0012 ] It is to be understood that operations described 
herein as being performed by the parameter selector 104 and 
the automated model generation process 120 may be per 
formed by a device executing instructions . The instructions 
may be stored at a memory , such as a random - access 
memory ( RAM ) , a read - only memory ( ROM ) , a computer 
readable storage device , an enterprise storage device , any 
other type of memory , or a combination thereof . In a 
particular implementation , the operations described with 
reference to the parameter selector 104 and the automated 
model generation process 120 are performed by a processor 
( e.g. , a central processing unit ( CPU ) , graphics processing 
unit ( GPU ) , or other type of processor ) . In some implemen 
tations , the operations of the parameter selector 104 are 
performed on a different device , processor ( e.g. , CPU , GPU , 
or other type of processor ) , processor core , and / or thread 
( e.g. , hardware or software thread ) than the automated 
model generation process 120. Moreover , execution of cer 
tain operations of the pas meter selector 104 or the auto 
mated model generation process 120 may be parallelized . 
[ 0013 ] The parameter selector 104 is configured to receive 
an input data set 102 and to determine one or more charac 
teristics 106 of the input data set 102. The characteristics 106 
may indicate a data type of the input data set 102 , a problem 
to be solved for the input data set 102 , a size of the input data 
set 102 , other characteristics associated with the input data 
set 102 , or a combination thereof . The parameter selector 
104 is further configured to adjust an architectural parameter 
112 of the automated m generation process 120 based on 
the characteristics 106. In a particular implementation , the 
parameter selector 104 is configured to select the architec 
tural parameter 112 using a set of rules 108 , as further 
described herein . In another particular implementation , the 
parameter selector 104 is configured to select the architec 
tural parameter 112 using a trained classifier 110 , as further 
described herein . 
[ 0014 ] The automated model generation process 120 is 
configured to generate a plurality of models 122 using a 
weighted randomization process . In a particular implemen 
tation , the automated model generation process 120 includes 
a genetic algorithm . In this implementation , the plurality of 
models 122 includes one or more sets of models generated 
during one or more epochs of the genetic algorithm . For 
example , the plurality of models 122 may include a set of 
initial models used as input to a first epoch of the genetic 
algorithm , a set of models output by the first epoch and used 
as input to a second epoch of the genetic algorithm , and 
other sets of models output by other epochs of the genetic 
algorithm . The automated model generation process 120 is 
configured to generate sets of models during each epoch 
using the weighted randomization process . For example , if 
all the weights of the architectural parameters are the same , 
the automated model generation process 120 generates an 

initial set of models by randomly ( or pseudo - randomly ) 
selecting models having various architectures , and the initial 
set of models are evolved across multiple epochs , as further 
described with reference to FIG . 4. As a particular example , 
one or more models may be mutated or crossed - over ( e.g. , 
combined ) during a first epoch , as further described with 
reference to FIG . 4 , to generate models of an output set of 
the first epoch . The output set is used as an input set to a next 
epoch of the automated model generation process 120 . 
Additional epochs continue in this manner , by evolving 
( e.g. , performing genetic operations on ) an input set of 
models to generate an output set of models , as further 
described with reference to FIG . 4 . 

[ 0015 ] The architectural parameter 112 weights the 
weighted randomization process of the automated model 
generation process 120 to control a probability of generation 
of models having particular architectural features . For 
example , if the architectural parameter 112 corresponds to 
recurrency , the architectural parameter 112 can be adjusted 
( e.g. , by increasing a weight ) to increase a probability of 
generation of recurrent models by the weighted randomiza 
tion process . As another example , if the architectural param 
eter 112 corresponds to pooling , the architectural parameter 
112 can be adjusted ( e.g. , by decreasing a weight ) to 
decrease the probability of generation of pooling - based 
models by the weighted randomization process . The archi 
tectural parameter 112 is adjusted based on the characteris 
tics 106 , as further described herein . 
[ 0016 ] The automated model generation process 120 is 
configured to generate the plurality of models 122 during 
performance of the automated model generation process 120 
( e.g. , during multiple epochs of the genetic algorithm ) . The 
automated model generation process 120 is further config 
ured to output one or more models 124 ( e.g. , data indicative 
of one or more neural networks ) . In a particular implemen 
tation , the automated model generation process 120 is con 
figured to execute for a set amount of time ( e.g. , a particular 
number of epochs ) , and the one or more models 124 are the 
“ fittest ” models generated during the last epoch of the 
automated model generation process 120. Alternatively , the 
automated model generation process 120 may be executed 
until the automated model generation process 120 converges 
on one or more models having fitness scores that satisfy a 
fitness threshold . The fitness scores may be based on a 
frequency and / or a magnitude of errors produced by testing 
the one or more models 124 on a portion on the input data 
set 102. For example , if the one or more models 124 are 
trained , based on the input data set 102 to predict a value of 
a particular feature , the fitness score may be based on the 
number of correctly predicted features for a testing portion 
of the input data set 102 compared to the total number of 
features ( both correctly and incorrectly predicted ) . Addition 
ally , or alternatively , the fitness score may indicate charac 
teristics of the model , such as a density ( e.g. , how many 
layers are included in the neural network , how many con 
nections are included in the neural network , etc. ) of the 
model . Additionally , or alternatively , the fitness score may 
be based on the amount of time taken by the automated 
model generation process 120 to converge on the one or 
more models 124. Data indicative of the one or more models 
124 , such as data indicating an architecture type of the one 
or more models 124 , the fitness score , or a combination 
thereof , can be used as training data 130 to train the 
parameter selector 104 . 
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[ 0017 ] The execution of the automated model generation 
process 120 results in ( e.g. , outputs ) the one or more models 
124. The one or more models 124 are executable by the 
processor that executes the automated model generation 
process 120 ( or by another processor or by another device ) 
to perform an operation , such as classification , clustering , 
anomaly detection , or some other type of operation based on 
input data . Stated another way , the automated model gen 
eration process 120 uses an unknown data set ( e.g. , the input 
data set 102 ) to generate software ( e.g. , the one or more 
models 124 ) that is configured to perform one or more 
operations based on related data sets . As a particular non 
limiting example , if the input data set 102 includes time 
series data from a sensor of a device , the automated model 
generation process 120 may be executed to train a neural 
network that can be executed by a processor to perform 
anomaly detection based on real - time ( or near real - time ) 
time - series data from the sensor . In this example , the one or 
more models 124 can be used to predict when a fault is likely 
to occur at the device , which can be used to repair the device 
before damage occurs or to apply shorter pre - emptive 
repairs instead of waiting for the device to fail . Because the 
automated model generation process 120 is biased to include 
models having particular architectural types ( or to exclude 
models having particular architectural types ) , the one or 
more models 124 may be generated faster than compared to 
a model generation process that randomly selects models for 
use during the model generation process . Additionally , the 
one or more models 124 may have a higher fitness score than 
models that are generated using other model generation 
techniques . 
[ 0018 ] During operation , the parameter selector 104 
receives the input data set 102. The input data set 102 
includes a plurality of features . The input data set 102 may 
include input data ( e.g. , features ) for which one or more 
neural networks are to be trained to solve a problem . For 
example , the input data set 102 may include image data of 
handwritten digits , and the input data set 102 may be used 
to determine which digit ( e.g. , 0-9 ) is shown in each image , 
as a non - limiting example . In other examples , the input data 
set 102 includes other types of data that is to be used to solve 
other types of problems . 
[ 0019 ] The parameter selector 104 determines the charac 
teristics 106 based on the input data set 102. In a particular 
implementation , the characteristics 106 indicate a type of 
problem associated with the input data set , a data type 
associated with the input data set , or a combination thereof . 
To illustrate , in a particular example , the input data set 102 
includes industrial time - series data . In this example , the 
characteristics 106 include that the input data set 102 is 
time - stamped and sequential , and that the input data set 102 
includes continuous features ( e.g. , numerical features ) . As 
another example , the input data set 102 includes data for a 
classification task . In this example , the characteristics 106 
include that the data includes one or more categorical 
features and that the data is indicated for classification . As 
yet another example , if the input data set 102 includes image 
data , the characteristics 106 indicate that a data type of the 
input data set 102 includes image data . 
( 0020 ] The parameter selector 104 adjusts the architec 
tural parameter 112 based on the characteristics 106. For 
example , the characteristics 106 may correspond to one or 
more types of architectures of neural networks , and the 
parameter selector 104 may select and adjust the architec 

tural parameter 112 to weight the weighted randomization 
process of the automated model generation process 120 to 
adjust a probability of generation of models having the one 
or more types of architectures . 
( 0021 ] In a particular implementation , the parameter 
selector 104 selects the architectural parameter 112 using the 
set of rules 108. For example , the parameter selector 104 
may store or have access to the set of rules 108. In this 
implementation , the set of rules 108 maps characteristics of 
data sets to architectural parameters . For example , the set of 
rules 108 may map characteristics of data sets to grammars 
that indicate architectural parameters of neural networks . As 
a particular example , the set of rules 108 may map charac 
teristics of standard ( or “ flat ” ) supervised problems to archi 
tectural parameters corresponding to densely connected 
feedforward layers . As another example , the set of rules 108 
may map characteristics of sequence problems to recurrent 
structures ( such as recurrent neural networks ( RNNs ) , long 
short - term memory ( LSTM ) layers , or gated recurrent units 
( GRU ) layers , as non - limiting examples ) . As another 
example , the set of rules 108 may map characteristics of 
image problems ( e.g. , input image data ) to pooling - based 2D 
convolutional neural networks . As another example , the set 
of rules 108 may map characteristics of industrial time series 
data to daisy chains of causal convolutional blocks . In a 
particular implementation , the set of rules 108 is based on 
analysis of a plurality of models that were previously 
generated by the automated model generation process 120 , 
based on analysis of other models , or a combination thereof . 
[ 0022 ] In a particular implementation , the set of rules 108 
includes weight values . For example , a first rule may map a 
first characteristic to a first architectural parameter with a 
first weight value , and a second rule may map the first 
characteristic to a second architectural parameter with a 
second weight value . For example , time series data may be 
mapped to daisy chains of causal convolutional weight 
values with a first weight value , and time series data may be 
mapped to recurrent structures with a second weight value . 
The weight value indicates how much the parameter selector 
104 will adjust the architectural par heter . For example , if 
the second weight value is less than the first weight value , 
the parameter adjuster will adjust architectural parameters 
such that the probability of models having daisy chains of 
causal convolution blocks is greater than the probability of 
models having recurrent structures . In some implementa 
tions , the weight may be negative . For negative weights , the 
parameter selector 104 may adjust the architectural param 
eter 112 to reduce the probability that models have the 
particular architectural feature . 
[ 0023 ] In another particular implementation , the param 
eter selector 104 selects the architectural parameter 112 
using the trained classifier 110. To illustrate , the parameter 
selector 104 provides data indicative of the characteristics 
106 to the trained classifier 110 , and the trained classifier 110 
identifies one or more architectural parameters for adjust 
ment based on the data indicative of the characteristics 106 . 
The trained classifier 110 may be trained based on data 
indicative of previous models generated by the automated 
model generation process 120 ( e.g. , data indicative of archi 
tectural types of the previous models ) and data indicative of 
characteristics of the input data used to train the previous 
models . For example , characteristics of input data may be 
labeled with an architectural parameter corresponding to the 
model generated for the input data , and this labeled data may 
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be used as supervised training data to train the trained 
classifier 110 to identify architectural parameters based on 
characteristics of input data . In a particular implementation , 
the trained classifier 110 includes a neural network classifier . 
In other implementations , the trained classifier 110 includes 
a decision tree classifier , a support vector machine classifier , 
a regression classifier , a naive Bayes classifier , a perceptron 
classifier , or another type of classifier . 
[ 0024 ] After selecting the architectural parameter 112 , the 
parameter selector 104 adjusts the architectural parameter 
112 to adjust a probability of generation of models ( by the 
automated model generation process 120 ) having particular 
architectural features . In a particular implementation , the 
architectural feature includes an initial model type used by 
the weighted randomization process of the automated model 
generation process 120. The initial model type may include 
feedforward models , recurrent models , pooling - based two 
dimensional convolutional models , daisy - chains of causal 
convolutional models , other types of models , or a combi 
nation thereof . To illustrate , the parameter selector 104 may 
set the architectural parameter 112 to a first value based on 
the characteristics 106 , the first architectural parameter 
associated with a probability that models of a first epoch of 
the weighted randomization process have a first model type , 
and the parameter selector 104 may set a second architec 
tural parameter to a second value based on the characteris 
tics 106 , the second architectural parameter associated with 
a probability that models of the first epoch of the weighted 
randomization process have a second model type . 
[ 0025 ] As an example , the characteristics 106 may indi 
cate that the input data set 102 includes image data . In this 
example , the set of rules 108 ( or the trained classifier 110 ) 
indicate that pooling - based 2D convolutional neural net 
works have a positive correspondence with image data and 
that densely connected feedforward layers have a negative 
correspondence with image data . Based on the characteris 
tics 106 , the parameter selector 104 selects the architectural 
parameter 112 ( corresponding to pooling - based 2D convo 
lutional neural networks ) and a second architectural param 
eter ( corresponding to densely connected feedforward lay 
ers ) for adjustment . In this example , the parameter selector 
104 adjusts the architectural parameter 112 to increase the 
probability that the plurality of models 122 include pooling 
based 2D convolutional neural networks . In this example , 
the parameter selector 104 also adjusts the second architec 
tural parameter to decrease the probability that the plurality 
of models 122 include models having densely connected 
feedforward layers . Adjusting the architectural parameters in 
this manner may cause the automated model generation 
process 120 to converge faster on the one or more models 
124 using fewer processing resources , because models that 
are more likely to be successful have a higher likelihood of 
being generated and used in the automated model generation 
process 120 ( and models that are less likely to be successful 
have a lower likelihood of being generated ) . 
[ 0026 ] The architectural parameter 112 may also include a 
mutation parameter . A mutation parameter controls mutation 
that occurs during the automated model generation process 
120 , such that at least one model of the plurality of models 
122 is modified based on the mutation parameter . For 
example , mutation may occur to one or more models during 
an epoch of the automated model generation process 120. As 
further described with reference to FIG . 4 , mutation includes 
changing at least one characteristic of the model . The 

mutation parameter indicates how likely mutation is to 
occur , what type of mutation is likely to occur ( e.g. , what 
characteristic is likely to change ) , or both . The mutation 
parameter may be adjusted based on the characteristics 106 . 
For example , the set of rules 108 ( or the trained classifier 
110 ) may indicate an adjustment to a mutation parameter 
that corresponds to the characteristics 106 , and the mutation 
parameter ( e.g. , the architectural parameter 112 ) may be 
adjusted accordingly . 
[ 0027 ] In a particular implementation , the parameter 
selector 104 also selects and adjusts one or more training 
hyperparameters of the automated model generation process 
120. The one or more training hyperparameters control one 
or more aspects of training of the model . As used herein , a 
hyperparameter refers to a characteristic that determines 
how a model is trained . For example , a hyperparameter may 
include a learning rate of a neural network ( e.g. , how quickly 
a neural network updates other parameters ) , momentum of 
a neural network , number of epochs of the automated model 
generation process 120 , batch size , or a combination thereof . 
The parameter selector 104 may adjust the hyperparameter 
based on the characteristics 106. For example , the set of 
rules 108 ( or the trained classifier 110 ) may indicate that a 
particular hyperparameter corresponds to the characteristics 
106 , and the parameter selector 104 may adjust the particular 
hyperparameter accordingly . 
[ 0028 ] After the architectural parameter 112 is adjusted , 
the automated model generation process 120 is executed . 
For example , a processor executes the automated model 
generation process 120. During execution of the automated 
model generation process 120 , the plurality of models 122 
are generated . The plurality of models 122 are generated 
using a weighted randomization process , where architectural 
parameters control the weights . For example , if a particular 
architectural parameter has a higher weight than another 
architectural parameter , models having a particular archi 
tectural type have a higher probability of being included in 
an initial set ( or other set ) of models generated by the 
automated model generation process 120. The plurality of 
models 122 includes an initial set of models generated as 
input to an initial epoch as well as other sets of models 
generated as output sets of one or more epochs , as further 
described with reference to FIG . 4. The automated model 
generation process 120 may be executed until the automated 
model generation process 120 converges on the one or more 
models 124. As an example , the one or more models 124 
may be the fittest model ( s ) of a last epoch of the automated 
model generation process 120. In a particular implementa 
tion , the number of epochs of the automated model genera 
tion process 120 is set prior to execution of the automated 
model generation process 120 , and the one or more models 
124 are taken from the output set of the last epoch . Alter 
natively , the automated model generation process 120 may 
be executed for a particular amount of time ( e.g. , until a time 
limit has expired ) . Alternatively , the automated model gen 
eration process 120 may be executed until at least one model 
of an output set has a score that satisfies a threshold ( e.g. , 
until the automated model generation process 120 converges 
on an acceptable model ) , and the one or more models 124 
are the one or more models that satisfy the threshold . Thus , 
the one or more models 124 may be referred to as the output 
of the automated model generation process 120 . 
[ 0029 ] The one or more models 124 are trained to perform 
a task based on input data . As a particular example , the one 
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or more models 124 may be trained based on the input data 
set 102 to perform a classification task . To further illustrate , 
the input data set 102 may include industrial time - series data 
indicative of various operating states of a device ( e.g. , 
industrial machinery , such as a wind turbine , a power plant , 
a generator , etc. ) , and the one or more models 124 may be 
trained to identify an operating state ( or to predict a fault 
state ) based on real - time time series input data . As another 
example , the one or more models 124 may be trained to 
perform clustering on credit card transactions to identify 
potentially fraudulent transactions . These examples are non 
limiting , and in other implementations the one or more 
models 124 are trained to perform other machine learning 
tasks . 
[ 0030 ] In some implementations , after the one or more 
models 124 are generated and trained , data indicative of the 
one or more models 124 is provided as the training data 130 
to update the parameter selector 104. The training data 130 
indicates characteristics , such as architecture types , of the 
one or more models 124. Updating the parameter selector 
104 based on the training data 130 enables the parameter 
selector 104 to account for the success of the one or more 
models 124 generated by the automated model generation 
process 120 . 
[ 0031 ] In a particular implementation , the parameter 
selector 104 updates the set of rules 108 based on the 
training data 130 ( e.g. , based on the characteristics of the 
one or more models 124 ) . In some implementations , the set 
of rules 108 are updated responsive to scores of the one or 
more models 124 satisfying a threshold . For example , if 
fitness scores of the one or more models 124 satisfy ( e.g. , are 
greater than or equal to ) a first threshold , the set of rules 108 
may be updated to indicate a correspondence between the 
characteristics 106 and architectural parameters indicating 
architectural types of the one or more models 124. If the set 
of rules 108 already indicate a correspondence between the 
characteristics 106 and the architectural parameters , a 
weighting associated with the architectural parameter may 
be increased . As another example , if fitness scores of the one 
or more models 124 fail to satisfy ( e.g. , are less than ) a 
second threshold , the set of rules 108 may be updated to 
indicate a negative correspondence between the character 
istics 106 and architectural parameters indicating architec 
tural types of the one or more models 124. If the set of rules 
108 already indicates a correspondence between the char 
acteristics 106 and the architectural parameters , a weighting 
associated with the architectural parameters may be 
decreased . Thus , the set of rules 108 may be updated to 
account for the success ( or lack thereof ) of the one or more 
models 124 . 
[ 0032 ] In an alternate implementation , the parameter 
selector 104 uses the training data 130 as training data to 
retrain the trained classifier 110. For example , the training 
data 130 may include data corresponding to the character 
istics 106 and a label indicating an architectural parameter 
corresponding to architectural types of the one or more 
models 124. In this example , the training data 130 is used as 
labeled training data to update the trained classifier 110. In 
a particular implementation , the trained classifier 110 is 
updated only if fitness scores of the one or more models 124 
satisfy ( e.g. , are greater than or equal to ) a first threshold . 
Additionally , or alternatively , an alternate label ( e.g. , indi 
cating a negative correspondence ) may be used if the fitness 
scores of the one or more models 124 fail to satisfy ( e.g. , are 

less than ) a second threshold . Thus , the trained classifier 110 
may be trained to account for the success ( or lack thereof ) 
of the one or more models 124 . 

[ 0033 ] The system 100 enables the automated model gen 
eration process 120 to converge on the one or more models 
124 faster than other model generation processes . For 
example , the architectural parameter 112 may be adjusted 
based on the characteristics 106 to increase the probability 
that an initial set of models of the automated model gen 
eration process 120 includes models having architectural 
types that were previously successful for similar input data 
sets . These models may be fitter than other types of models 
at modeling the input data set 102. Increasing the probability 
that models having higher fitness are included in the initial 
set of models may decrease the number of epochs needed to 
converge on an acceptable neural network ( e.g. , the one or 
more models 124 ) , thereby increasing speed of the auto 
mated model generation process 120 and decreasing the 
amount of processing resources utilized by the automated 
model generation process 120. Additionally , because fitter 
models are introduced in the initial set of models , the overall 
fitness of the one or more models 124 may be improved as 
compared to model generation processes that randomly 
determine the initial set of models . The architectural param 
eter 112 can be adjusted by an amount that still maintains 
some randomness in the selection of the initial input set in 
order to try models having different architectural parameters 
in case there is a type that has not yet been tried for the input 
data set 102 that performs better than those that have been 
previously tried . Adjusting a mutation parameter , or a hyper 
parameter , based on the characteristics 106 can similarly 
improve the speed of the automated model generation pro 
cess 120 and reduce the amount of processing resources 
used by the automated model generation process 120 . 
[ 0034 ] It will be appreciated that the systems and methods 
of the present disclosure may be applicable in various 
scenarios , infrastructures , and data environments . As an 
illustrative non - limiting example , the input data set 102 may 
include timestamped data from a large array of sensors 
distributed around a wind farm and may also include time 
stamped uptime / downtime data of individual wind turbines . 
The system 100 may generate a neural network model that 
is configured to predict how likely a wind turbine is to fail . 
The neural network model may , in a particular example , 
increase failure lead time from 3-5 days to 30-40 days , 
which can result in reduced downtime and monetary savings 
for an operator of the wind farm . The system 100 may be 
capable of automatically building similar kinds of models 
that predict numerical values or states ( e.g. , failures ) for 
internet of things ( IoT ) , utilities , and oil / gas infrastructures . 
[ 0035 ] As another illustrative non - limiting example , the 
input data set 102 may include health data and the system 
100 may automatically build a model to predict whether a 
patient exhibiting certain health conditions is likely to have 
a particular ailment . As another illustrative non - limiting 
example , the input data set 102 may include financial data 
and the system 100 may automatically build a model to 
forecast market conditions . As another illustrative non 
limiting example , the input data set 102 may include net 
work security , network log , and / or malware data , and the 
system 100 may automatically build a model to implement 
firewall filtering rules , endpoint anti - malware detection , a 
bot / botnet detector , etc. 
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[ 0036 ] As another illustrative non - limiting example , the 
system 100 may generate a neural network to output aircraft 
auto - pilot operations ( e.g. throttle , steer , flaps , etc. ) based on 
reinforcement learning . In such an example , the reward 
function optimized by the neural network may involve 
aircraft altitude , aircraft distance traveled , etc. As yet 
another example , the system 100 may generate a neural 
network to predict oil / gas industry workover events ( e.g. , 
events that lead to major maintenance or remedial operations 
on a rig or well , which can lead to considerable production 
time lost and expense incurred ) . 
[ 0037 ] Yet another example of a problem set that can be 
solved with neural networks generated with the system 100 
described herein is data fusion . In this case , data aggregated 
from a large number of sensors of various types , including 
multiple sensors of the same type , is collected and used to 
identify an object , action or phenomenon that would not be 
entirely detectable with any one sensor or with a small 
subset of sensors . For example , the detection of a submarine 
may be performed based on the inputs received from mul 
tiple sonar buoys which provide input to the generated 
neural network . Another example may be the identification 
of a particular type of aircraft based on both the audio 
signature and a visual view ( which may be partially 
obscured or have a low resolution ) . 
[ 0038 ] Referring to FIGS . 2A and 2B , particular examples 
of selecting architectural parameters to adjust based on 
characteristics of input data are shown . In a particular 
implementation , the architectural parameters are set by the 
parameter selector 104 of FIG . 1 . 
[ 0039 ] FIG . 2A illustrates a first example 200 of selecting 
architectural parameters to be adjusted based on character 
istics of input data . In the first example 200 , characteristics 
of a first input data set 202 are identified , at 210. For 
example , data types of the first input data set 202 may be 
identified , a type of problem corresponding to the first input 
data set 202 may be identified , timestamps may be identi 
fied , labels may be identified , other characteristics may be 
identified , or a combination thereof . The characteristics of 
the first input data set 202 may be identified by the parameter 
selector 104 of FIG . 1 . 
[ 0040 ] In the first example 200 , the first input data set 202 
corresponds to a standard ( or " flat " ) supervised problem 
204. For example , the first input data set 202 may include 
labeled data indicating that the problem associated with the 
first input data set 202 is the supervised problem 204. After 
identifying the characteristics of the first input data set 202 
( e.g. , the supervised problem 204 ) , the characteristics are 
provided to a set of rules ( or a trained classifier ) at 212 to 
select an architectural parameter from the set of architectural 
parameters 220. The set of rules ( or the trained classifier ) 
may include or correspond to the set of rules 108 ( or the 
trained classifier 110 ) of FIG . 1. The set of architectural 
parameters 220 may include a first architectural parameter 
222 ( corresponding to densely connected feedforward lay 
ers ) , a second architectural parameter 224 ( corresponding to 
recurrent structures , such as RNNs , LSTM layers , GRUS , 
etc. ) , a third architectural parameter 226 ( corresponding to 
pooling - based 2D convolutional neural networks ) , and a 
fourth architectural parameter 228 ( corresponding to daisy 
chains of causal convolutional blocks ) . 
[ 0041 ] Based on the set of rules ( or the trained classifier ) , 
it is determined that densely connected feedforward layers 
are successful at modeling standard supervised problems . 

Thus , based on the characteristics of the first input data set 
202 , the first architectural parameter 222 is adjusted to 
increase the probability that an initial set of models used by 
a weighted randomization process ( e.g. , the automated 
model generation process 120 of FIG . 1 ) includes models 
having densely connected feedforward layers . This may 
improve the speed with which the weighted randomization 
process converges on an acceptable neural network ( e.g. , a 
neural network that satisfies a fitness or other criteria ) . 
[ 0042 ] FIG . 2B illustrates a second example 230 of select 
ing architectural parameters to be adjusted based on char 
acteristics of input data . In the second example 230 , char 
acteristics of a second input data set 206 are identified , at 
210. For example , data types of the second input data set 206 
may be identified , a type of problem corresponding to the 
second input data set 206 may be identified , timestamps may 
be identified , labels may be identified , other characteristics 
may be identified , or a combination thereof . The character 
istics of the second input data set 206 may be identified by 
the parameter selector 104 of FIG . 1 . 
[ 0043 ] In the second example 230 , the second input data 
set 206 corresponds to an industrial time - series problem 
208. For example , the second input data set 206 may include 
timestamped measurement data indicating that the problem 
associated with the second input data set 206 is the industrial 
time - series problem 208. After identifying the characteris 
tics of the second input data set 206 ( e.g. , the industrial 
time - series problem 208 ) , the characteristics are provided to 
a set of rules ( or a trained classifier ) at 212 to select an 
architectural parameter from the set of architectural param 
eters 220 . 

[ 0044 ] Based on the set of rules ( or the trained classifier ) , 
it is determined that daisy chains of causal convolutional 
blocks are successful at modeling industrial time - series 
problems . Thus , based on the characteristics of the second 
input data set 206 , the fourth architectural parameter 228 is 
adjusted to increase the probability that an initial set of 
models used by a weighted randomization process ( e.g. , the 
automated model generation process 120 of FIG . 1 ) includes 
models having daisy chains of causal convolutional blocks . 
This may improve the speed with which the weighted 
randomization process converges on an acceptable neural 
network ( e.g. , a neural network that satisfies a fitness or 
other criteria ) . 
[ 0045 ] Referring to FIG . 3 , a particular example of a 
grammar 300 that indicates architectural parameters for a 
neural network is shown . The grammar 300 indicates archi 
tectural parameter ( s ) that can be adjusted by the parameter 
selector 104 of FIG . 1. Because the grammar 300 indicates 
particular architectural parameters of neural networks , the 
grammar 300 can be referred to as defining a search space 
for a neural network architecture . 
[ 0046 ] The grammar 300 includes production rules 302 . 
The production rules 302 define which neural network 
substructures are allowed to evolve . In the particular 
example illustrated in FIG . 3 , a neural network ( N ) includes 
two modules ( MODULE ) . Any number of these residual 
blocks may be strung together to describe a topology or 
architecture of a neural network . Each module includes a 
linear layer , LSTM layers , or a combination thereof . The 
linear layer is defined by a particular size and an activation 
type . The LSTM layers are defined by a number of layers 
and a size . 
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[ 0047 ] In the particular example illustrated in FIG . 3 , the 
size of a linear layer ( or LSTM layers ) is defined by a 
number , the number of layers of the LSTM layers ) is 
defined by a number , and the activation type is defined by a 
particular type of activation function . To illustrate , the 
numbers include integers from 1 to m , where m is a 
maximum number . M may be any maximum allowed size of 
a neural network layer . The activation types include a 
rectified linear unit ( relu ) function , an identity function , a 
gaussian function , or a sigmoid function . In other imple 
mentations , the activation types include other types of 
activation functions . 
[ 0048 ] The grammar 300 further includes terminal sym 
bols 304. The terminal symbols 304 include the elementary 
building blocks that are used to produce the neural network 
structures . In the particular example illustrated in FIG . 3 , the 
terminal symbols 304 include the number and the activation 
type . 
[ 0049 ] In the particular example illustrated in FIG . 3 , the 
grammar 300 evolves RNNs and can be used for sequence 
problems . In other implementations , other grammars 
describe other neural network architectures , such as convo 
lutional neural networks , densely connected feedforward 
layers , pooling - based 2D convolutional neural networks , 
daisy chains of causal convolutional blocks , other types of 
recurrent structures ( e.g. , GRUs ) , other types of neural 
networks , or a combination thereof . As described with 
reference to FIG . 1 , architectural parameters associated with 
the grammar 300 ( or other grammars ) can be used to change 
the probability that models having particular types of archi 
tectures are generated by the automated model generation 
process 120 , which can cause the automated model genera 
tion process 120 to converge faster on an acceptable model 
( e.g. , a model that satisfies a fitness or other criteria ) . 
[ 0050 ] Referring to FIG . 4 , a particular implementation of 
a system 400 for determining a topology of a neural network 
is shown . In FIG . 4 , a neural network topology may be 
“ evolved ” using a genetic algorithm 410. The genetic algo 
rithm 410 automatically generates a neural network based on 
a particular data set , such as an illustrative input data set 402 , 
and based on a recursive neuroevolutionary search process . 
In an illustrative example , the input data set 402 is the input 
data set 102 shown in FIG . 1. During each iteration of the 
search process ( also called an “ epoch ” or “ generation ” of the 
genetic algorithm 410 ) , an input set 420 ( or population ) is 
" evolved ” to generate an output set 430 ( or population ) . 
Each member of the input set 420 and the output set 430 is 
a model ( e.g. , a data structure ) that represents a neural 
network . Thus , neural network topologies can be evolved 
using the genetic algorithm 410. The input set 420 of an 
initial epoch of the genetic algorithm 410 may be randomly 
or pseudo - randomly generated . In a particular implementa 
tion , the input set 420 of the initial epoch of the genetic 
algorithm 410 is generated based on one or more architec 
tural parameters , which weight the selection of the input set 
420 toward selection of particular neural network architec 
tures , as described with reference to FIG . 1. After that , the 
output set 430 of one epoch may be the input set 420 of the 
next ( non - initial ) epoch , as further described herein . 
[ 0051 ] The input set 420 and the output set 430 each 
includes a plurality of models , where each model includes 
data representative of a neural network . For example , each 
model may specify a neural network by at least a neural 
network topology , a series of activation functions , and 

connection weights . The topology of a neural network 
includes a configuration of nodes of the neural network and 
connections between such nodes . The models may also be 
specified to include other parameters , including but not 
limited to bias values / functions and aggregation functions . 
[ 0052 ] In some examples , a model of a neural network is 
a data structure that includes node data and connection data . 
The node data for each node of a neural network may 
include at least one of an activation function , an aggregation 
function , or a bias ( e.g. , a constant bias value or a bias 
function ) . The activation function of a node may be a step 
function , sine function , continuous or piecewise linear func 
tion , sigmoid function , hyperbolic tangent function , or 
another type of mathematical function that represents a 
threshold at which the node is activated . The biological 
analog to activation of a node is the firing of a neuron . The 
aggregation function is a mathematical function that com 
bines ( e.g. , sum , product , etc. ) input signals to the node . An 
output of the aggregation function may be used as input to 
the activation function . The bias is a constant value or 
function that is used by the aggregation function and / or the 
activation function to make the node more or less likely to 
be activated . The connection data for each connection in a 
neural network includes at least one of a node pair or a 
connection weight . For example , if a neural network 
includes a connection from node N1 to node N2 , then the 
connection data for that connection may include the node 
pair < N1 , N2 > . The connection weight is a numerical 
quantity that influences if and / or how the output of N1 is 
modified before being input at N2 . In the example of a 
recurrent neural network , a node may have a connection to 
itself ( e.g. , the connection data may include the node pair 
< N1 , N1 > ) . 
[ 0053 ] The genetic algorithm 410 includes or is otherwise 
associated with a fitness function 440 , a stagnation criterion 
450 , a crossover operation 460 , and a mutation operation 
470. The fitness function 440 is an objective function that 
can be used to compare the models of the input set 420. In 
some examples , the fitness function 440 is based on a 
frequency and / or magnitude of errors produced by testing a 
model on the input data set 402. As a simple example , 
assume the input data set 402 includes ten rows , that the 
input data set 402 includes two columns denoted A and B , 
and that the models illustrated in FIG . 4 represent neural 
networks that output a predicted value of B given an input 
value of A. In this example , testing a model may include 
inputting each of the ten values of A from the input data set 
402 , comparing the predicted values of B to the correspond 
ing actual values of B from the input data set 402 , and 
det ng if and / or by how much the two predicted and 
actual values of B differ . To illustrate , if a particular neural 
network correctly predicted the value of B for nine of the ten 
rows , then the a relatively simple fitness function 440 may 
assign the corresponding model a fitness value of 9 / 10 = 0.9 . 
It is to be understood that the previous example is for 
illustration only and is not to be considered limiting . In some 
aspects , the fitness function 440 may be based on factors 
unrelated to error frequency or error rate , such as number of 
input nodes , node layers , hidden layers , connections , com 
putational complexity , etc. 
[ 0054 ] In a particular aspect , fitness evaluation of models 
may be performed in parallel . To illustrate , the illustrated 
system may include additional devices , processors , cores , 
and / or threads 490 to those that execute the genetic algo 
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rithm 410. These additional devices , processors , cores , and / 
or threads 490 may test model fitness in parallel based on the 
input data set 402 and may provide the resulting fitness 
values to the genetic algorithm 410 . 
[ 0055 ] In a particular aspect , the genetic algorithm 410 
may be configured to perform speciation . For example , the 
genetic algorithm 410 may be configured to cluster the 
models of the input set 420 into species based on “ genetic 
distance ” between the models . Because each model repre 
sents a neural network , the genetic distance between two 
models may be based on differences in nodes , activation 
functions , aggregation functions , connections , connection 
weights , etc. of the two models . In an illustrative example , 
the genetic algorithm 410 may be configured to serialize a 
model into a string , such as a normalized vector . In this 
example , the genetic distance between models may be 
represented by a binned hamming distance between the 
normalized vectors , where each bin represents a subrange of 
possible values . 
[ 0056 ] Because the genetic algorithm 410 is configured to 
mimic biological evolution and principles of natural selec 
tion , it may be possible for a species of models to become 
“ extinct . ” The stagnation criterion 450 may be used to 
determine when a species should become extinct , as further 
described below . The crossover operation 460 and the muta 
tion operation 470 may be highly stochastic under certain 
constraints and a defined set of probabilities optimized for 
model building , which may produce reproduction operations 
that can be used to generate the output set 430 , or at least a 
portion thereof , from the input set 420. Crossover and 
mutation are further described below . 
[ 0057 ] Operation of the illustrated system is 
described . It is to be understood , however , that in alternative 
implementations certain operations may be performed in a 
different order than described . Moreover , operations 
described as sequential may be instead be performed at least 
partially concurrently , and operations described as being 
performed at least partially concurrently may instead be 
performed sequentially . 
[ 0058 ] During a configuration stage of operation , a user 
may specify the input data set 402 or data sources from 
which the input data set 402 is determined . The user may 
also specify a goal for the genetic algorithm 410. For 
example , if the genetic algorithm 410 is being used to 
determine a topology of the one or more models 124 , the 
user may provide one or more characteristics of the neural 
networks . The system 400 may then constrain models pro 
cessed by the genetic algorithm 410 to those that have the 
one or more characteristics . 
[ 0059 ] Thus , in particular implementations , the user can 
configure various aspects of the models that are to be 
generated / evolved by the genetic algorithm 410. Configu 
ration input may indicate a particular data field of the data 
set that is to be included in the model or a particular data 
field of the data set that is to be omitted from the model , may 
constrain allowed model topologies ( e.g. , to include no more 
than a specified number of input nodes output nodes , no 
more than a specified number of hidden layers , no recurrent 
loops , etc. ) . 
[ 0060 ] Further , in particular implementations , the user can 
configure aspects of the genetic algorithm 410 , such as via 
input to graphical user interfaces ( GUI ) . For example , the 
user may provide input to limit a number of epochs that will 
be executed by the genetic algorithm 410. Alternatively , the 

user may specify a time limit indicating an amount of time 
that the genetic algorithm 410 has to execute before output 
ting a final output model , and the genetic algorithm 410 may 
determine a number of epochs that will be executed based on 
the specified time limit . To illustrate , an initial epoch of the 
genetic algorithm 410 may be timed ( e.g. , using a hardware 
or software timer at the computing device executing the 
genetic algorithm 410 ) , and a total number of epochs that are 
to be executed within the specified time limit may be 
determined accordingly . As another example , the user may 
constrain a number of models evaluated in each epoch , for 
example by constraining the size of the input set 420 and / or 
the output set 430 . 
[ 0061 ] After configuration operations are performed , the 
genetic algorithm 410 may begin execution based on the 
input data set 402. Parameters of the genetic algorithm 410 
may include but are not limited to , mutation parameter ( s ) , a 
maximum number of epochs the genetic algorithm 410 will 
be executed , a threshold fitness value that results in termi 
nation of the genetic algorithm 410 even if the maximum 
number of generations has not been reached , whether par 
allelization of model testing or fitness evaluation is enabled , 
whether to evolve a feedforward or recurrent neural net 
work , etc. As used herein , a “ mutation parameter " affects the 
likelihood of a mutation operation occurring with respect to 
a candidate neural network , the extent of the mutation 
operation ( e.g. , how many bits , bytes , fields , characteristics , 
etc. change due to the mutation operation ) , and / or the type 
of the mutation operation ( e.g. , whether the mutation 
changes a node characteristic , a link characteristic , etc. ) . In 
some examples , the genetic algorithm 410 may utilize a 
single mutation parameter or set of mutation parameters for 
all models . In such examples , the mutation parameter may 
impact how often , how much , and / or what types of muta 
tions can happen to any model of the genetic algorithm 410 . 
In alternative examples , the genetic algorithm 410 maintains 
multiple mutation parameters or sets of mutation param 
eters , such as for individual or groups of models or species . 
In particular aspects , the mutation parameter ( s ) affect cross 
over and / or mutation operations , which are further described 
herein . In a particular implementation , the mutation param 
eter is adjusted by the system 400 based on characteristics of 
the input data set 402 , as described with reference to FIG . 1 . 
[ 0062 ] The genetic algorithm 410 may automatically gen 
erate an initial set of models based on the input data set 402 
and configuration input . Each model may be specified by at 
least a neural network topology , an activation function , and 
link weights . The neural network topology may indicate an 
arrangement of nodes ( e.g. , neurons ) . For example , the 
neural network topology may indicate a number of input 
nodes , a number of hidden layers , a number of nodes per 
hidden layer , and a number of output nodes . The neural 
network topology may also indicate the interconnections 
( e.g. , axons or links ) between nodes . In some aspects , layers 
nodes may be used instead of or in addition to single nodes . 
Examples of layer types include long short - term memory 
( LSTM ) layers , gated recurrent units ( GRU ) layers , fully 
connected layers , and convolutional neural network ( CNN ) 
layers . In such examples , layer parameters may be involved 
instead of or in addition to node parameters . 
[ 0063 ] The initial set of models may be input into an initial 
epoch of the genetic algorithm 410 as the input set 420 , and 
at the end of the initial epoch , the output set 430 generated 
during the initial epoch may become the input set 420 of the 
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next epoch of the genetic algorithm 410. In some examples , 
the input set 420 may have a specific number of models . 
[ 0064 ] For the initial epoch of the genetic algorithm 410 , 
the topologies of the models in the input set 420 may be 
randomly or pseudo - randomly generated within constraints 
specified by any previously input configuration settings or 
by one or more architectural parameters . Accordingly , the 
input set 420 may include models with multiple distinct 
topologies . For example , a first model may have a first 
topology , including a first number of input nodes associated 
with a first set of data parameters , a first number of hidden 
layers including a first number and arrangement of hidden 
nodes , one or more output nodes , and a first set of intercon 
nections between the nodes . In this example , a second model 
of epoch may have a second topology , including a second 
number of input nodes associated with a second set of data 
parameters , a second number of hidden layers including a 
second number and arrangement of hidden nodes , one or 
more output nodes , and a second set of interconnections 
between the nodes . The first model and the second model 
may or may not have the same number of input nodes and / or 
output nodes . 
[ 0065 ] The genetic algorithm 410 may automatically 
assign an activation function , an aggregation function , a 
bias , connection weights , etc. to each model of the input set 
420 for the initial epoch . In some aspects , the connection 
weights are assigned randomly or pseudo - randomly . In some 
implementations , a single activation function is used for 
each node of a particular model . For example , a sigmoid 
function may be used as the activation function of each node 
of the particular model . The single activation function may 
be selected based on configuration data . For example , the 
configuration data may indicate that a hyperbolic tangent 
activation function is to be used or that a sigmoid activation 
function is to be used . Alternatively , the activation function 
may be randomly or pseudo - randomly selected from a set of 
allowed activation functions , and different nodes of a model 
may have different types of activation functions . In other 
implementations , the activation function assigned to each 
node may be randomly or pseudo - randomly selected ( from 
the set of allowed activation functions ) for each node the 
particular model . Aggregation functions may similarly be 
randomly or pseudo - randomly assigned for the models in the 
input set 420 of the initial epoch . Thus , the models of the 
input set 420 of the initial epoch may have different topolo 
gies ( which may include different input nodes corresponding 
to different input data fields if the data set includes many 
data fields ) and different connection weights . Further , the 
models of the input set 420 of the initial epoch may include 
nodes having different activation functions , aggregation 
functions , and / or bias values / functions . 
[ 0066 ] Each model of the input set 420 may be tested 
based on the input data set 402 to determine model fitness . 
For example , the input data set 402 may be provided as input 
data to each model , which processes the input data set 
( according to the network topology , connection weights , 
activation function , etc. , of the respective model ) to generate 
output data . The output data of each model may be evaluated 
using the fitness function 440 to determine how well the 
model modeled the input data set 402 ( i.e. , how conducive 
each model is to clustering the input data ) . In some 
examples , fitness of a model based at least in part on 

reliability of the model , performance of the model , com 
plexity ( or sparsity ) of the model , size of the latent space , or 
a combination thereof . 
[ 0067 ] In some examples , the genetic algorithm 410 may 
employ speciation . In a particular aspect , a species ID of 
each of the models may be set to a value corresponding to 
the species that the model has been clustered into . Next , a 
species fitness may be determined for each of the species . 
The species fitness of a species may be a function of the 
fitness of one or more of the individual models in the 
species . As a simple illustrative example , the species fitness 
of a species may be the average of the fitness of the 
individual models in the species . As another example , the 
species fitness of a species may be equal to the fitness of the 
fittest or least fit individual model in the species . In alter 
native examples , other mathematical functions may be used 
to determine species fitness . The genetic algorithm 410 may 
maintain a data structure that tracks the fitness of each 
species across multiple epochs . Based on the species fitness , 
the genetic algorithm 410 may identify the “ fittest ” species , 
which may also be referred to as “ elite species . ” Different 
numbers of elite species may be identified in different 
embodiments . 
[ 0068 ] In a particular aspect , the genetic algorithm 410 
uses species fitness to determine if a species has become 
stagnant and is therefore to become extinct . As an illustrative 
non - limiting example , the stagnation criterion 450 may 
indicate that a species has become stagnant if the fitness of 
that species remains within a particular range ( e.g. , +/- 5 % ) 
for a particular number ( e.g. , 5 ) epochs . If a species satisfies 
a stagnation criterion , the species and all underlying models 
may be removed from the genetic algorithm 410 . 
[ 0069 ] The fittest models of each " elite species ” may be 
identified . The fittest models overall may also be identified . 
An “ overall elite ” need not be an “ elite member , " e.g. , may 
come from a non - elite species . Different numbers of “ elite 
members ” per species and " overall elites ” may be identified 
in different embodiments . " 
[ 0070 ] The output set 430 of the epoch may be generated . 
In the illustrated example , the output set 430 includes the 
same number of models as the input set 420. The output set 
430 may include each of the “ overall elite ” models and each 
of the " elite member " models . Propagating the “ overall 
elite ” and “ elite member " models to the next epoch may 
preserve the “ genetic traits ” resulted in caused such models 
being assigned high fitness values . 
[ 0071 ] The rest of the output set 430 may be filled out by 
random reproduction using the crossover operation 460 
and / or the mutation operation 470. After the output set 430 
is generated , the output set 430 may be provided as the input 
set 420 for the next epoch of the genetic algorithm 410 . 
[ 0072 ] During a crossover operation 460 , a portion of one 
model is combined with a portion of another model , where 
the size of the respective portions may or may not be equal . 
When normalized vectors are used to represent neural net 
works , the crossover operation may include concatenating 
bits / bytes / fields 0 to p of one normalized vector with bits / 
bytes / fields p + 1 to q of another normalized vectors , where p 
and q are integers and p + q is equal to the size of the 
normalized vectors . When decoded , the resulting normal 
ized vector after the crossover operation produces a neural 
network that differs from each of its " parent " neural net 
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works in terms of topology , activation function , aggregation 
function , bias value / function , link weight , or any combina 
tion thereof . 
[ 0073 ] Thus , the crossover operation 460 may be a ran 
dom or pseudo - random operator that generates a model of 
the output set 430 by combining aspects of a first model of 
the input set 420 with aspects of one or more other models 
of the input set 420. For example , the crossover operation 
460 may retain a topology of hidden nodes of a first model 
of the input set 420 but connect input nodes of a second 
model of the input set to the hidden nodes . As another 
example , the crossover operation 460 may retain the topol 
ogy of the first model of the input set 420 but use one or 
more activation functions of the second model of the input 
set 420. In some aspects , rather than operating on models of 
the input set 420 , the crossover operation 460 may be 
performed on a model ( or models ) generated by mutation of 
one or more models of the input set 420. For example , the 
mutation operation 470 may be performed on a first model 
of the input set 420 to generate an intermediate model and 
the crossover operation may be performed to combine 
aspects of the intermediate model with aspects of a second 
model of the input set 420 to generate a model of the output 
set 430 . 
[ 0074 ] During the mutation operation 470 , a portion of a 
model is randomly modified . The frequency , extent , and / or 
type of mutations may be based on the mutation parameter 
( s ) described above , which may be user - defined , randomly 
selected / adjusted , or adjusted based on characteristics of the 
input set 420. When normalized vector representations are 
used , the mutation operation 470 may include randomly 
modifying the value of one or more bits / bytes / portions in a 
normalized vector . 
[ 0075 ] The mutation operation 470 may thus be a random 
or pseudo - random operator that generates or contributes to 
a model of the output set 430 by mutating any aspect of a 
model of the input set 420. For example , the mutation 
operation 470 may cause the topology of a particular model 
of the input set to be modified by addition or omission of one 
or more input nodes , by addition or omission of one or more 
connections , by addition or omission of one or more hidden 
nodes , or a combination thereof . As another example , the 
mutation operation 470 may cause one or more activation 
functions , aggregation functions , bias values / functions , and / 
or or connection weights to be modified . In some aspects , 
rather than operating on a model of the input set , the 
mutation operation 470 may be performed on a model 
generated by the crossover operation 460. For example , the 
crossover operation 460 may combine aspects of two models 
of the input set 420 to generate an intermediate model and 
the mutation operation 470 may be performed on the inter 
mediate model to generate a model of the output set 430 . 
[ 0076 ] The genetic algorithm 410 may continue in the 
manner described above through multiple epochs until a 
specified termination criterion , such as a time limit , a 
number of epochs , or a threshold fitness value ( e.g. , of an 
overall fittest model ) , is satisfied . When the termination 
criterion is satisfied , an overall fittest model of the last 
executed epoch may be selected and output as reflecting the 
topology of the one or more models 124 of FIG . 1. The 
aforementioned genetic algorithm - based procedure may be 
used to determine the topology of zero , one , or more than 
one neural network of the one or more models 124 . 

[ 0077 ] Referring to FIG . 5 , a particular example of a 
method 500 of operation of the system 100 is shown . The 
method 500 includes receiving , by a processor , an input data 
set , at 502. The input data set includes a plurality of features . 
For example , the processor receives the input data set 102 of 
FIG . 1 . 

[ 0078 ] The method 500 includes determining , by the pro 
cessor , one or more characteristics of the input data set , at 
504. For example , the parameter selector 104 ( e.g. , the 
processor ) determines the characteristics 106 of the input 
data set 102 . 

[ 0079 ] The method 500 includes , based on the one or more 
characteristics , adjusting , by the processor , one or more 
architectural parameters of an automated model generation 
process , at 506. The automated model generation process is 
configured to generate a plurality of models using a ran 
domization process . The one or more architectural param 
eters weight the randomization process to adjust a probabil 
ity of generation of models having particular architectural 
features . To illustra the parameter selector 104 adjusts the 
architectural parameter 112 to adjust a probability of the 
plurality of models 122 including models having architec 
tural types that correspond to the architectural parameter 
112 . 

[ 0080 ] The method 500 further includes executing , by the 
processor , the automated model generation process to output 
a model , at 508. The model includes data representative of 
a neural network . For example , the automated model gen 
eration process 120 is executed to generate and train the one 
or more models 124 . 
[ 0081 ] In a particular implementation , the particular archi 
tectural features include an initial model type used by the 
weighted randomization process . For example , the architec 
tural parameter 112 may correspond to an initial model type 
included in the plurality of models 122 ( e.g. , in an initial set 
of models of an initial epoch ) . The initial model type may 
include feedforward models , recurrent models , pooling 
based two - dimensional convolutional models , daisy - chains 
of causal convolutional models , other types of models , or a 
combination thereof . 

[ 0082 ] In a particular implementation , the one or more 
characteristics indicate a type of problem associated with the 
input data set , a data type associated with the input data set , 
or a combination thereof . For example , the characteristics 
106 may indicate that the input data set 102 includes image 
data ( e.g. , is associated with an image problem ) or may 
indicate that the input data set 102 is associated with a 
classification problem ( e.g. , because the input data set 
includes labeled data ) . 
[ 0083 ] In a particular implementation , the one or more 
architectural parameters include a mutation parameter , and 
at least one model of the plurality of models generated using 
the weighted randomization process is modified based on the 
mutation parameter . For example , the mutation operation 
470 may be adjusted by the parameter selector 104 of FIG . 
1 based on the characteristics 106 . 
[ 0084 ] In a particular implementation , the method 500 
further includes , based on the one or more characteristics , 
adjusting , by the processor , one or more training hyperpa 
rameters of the automated model generation process . The 
one or more training hyperparameters control one or more 
aspects of training of the model . For example , a training 
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hyperparameter , such as learning rate , can be adjusted based 
on the characteristics 106 , similar to adjusting the architec 
tural parameter 112 . 
[ 0085 ] In a particular implementation , adjusting the one or 
more architectural parameters includes setting a first archi 
tectural parameter to a first value based on the one or more 
characteristics and setting a second architectural parameter 
to a second value based on the one or more characteristics . 
The first architectural parameter is associated with a prob 
ability that models of a first epoch of the weighted random 
ization process have a first model type , and the second 
architectural parameter is associated with a probability that 
models of the first epoch of the weighted randomization 
process have a second type . For example , if the character 
istics 106 have a positive correspondence to a first archi 
tectural parameter and a negative correspondence to a sec 
ond architectural parameter , the first architectural parameter 
can be adjusted to increase the probability that models of an 
initial epoch have a first type and the second architectural 
parameter can be adjusted to decrease the probability that 
modes of the initial epoch have a second type . 
[ 0086 ] In a particular implementation , adjusting the one or 
more architectural parameters based on the one or more 
characteristics includes comparing the one or more charac 
teristics to a set of rules that maps data set characteristics to 
architectural parameters . The set of rules maps the data set 
to characteristics of grammars , and the grammars indicate 
corresponding architectural parameters . For example , the set 
of rules 108 maps characteristics of data sets to grammars , 
such as the grammar 300 of FIG . 3 , that indicate particular 
architectural parameters . Additionally , the method 500 may 
include updating the set of rules based on characteristics of 
the model . For example , the set of rules 108 may be updated 
based on the training data 130 such that the set of rules 108 
takes into account the success ( or lack thereof ) of the one or 
more models 124. In a particular implementation , the set of 
rules are updated responsive to a score of the model satis 
fying a threshold . For example , if fitness scores of the one 
or more models 124 satisfy a threshold , the set of rules 108 
is updated based on the training data 130 . 
[ 0087 ] In a particular implementation , adjusting the one or 
more architectural parameters based on the one or more 
characteristics includes providing data indicative of the one 
or more characteristics to a particular neural network con 
figured to identify one or more architectural parameters for 
adjustment based on the data indicative of the one or more 
characteristics . For example , the particular neural network 
may include or correspond to the trained classifier 110 of 
FIG . 1 that is configured to identify architectural parameter 
( s ) based on characteristics of input sets of data . The method 
500 may further include retraining the particular neural 
network based on training data . The training data indicates 
characteristics of the model . For example , data indicative of 
the one or more models 124 may be used as the training data 
130 to further train the trained classifier 110 . 
[ 0088 ] In a particular implementation , executing the auto 
mated model generation process includes , based on a fitness 
function , selecting , by the processor , a subset of models 
from the plurality of models ( the plurality of models based 
on a genetic algorithm and corresponding to a first epoch of 
the genetic algorithm ) , performing , by the processor , at least 
one genetic operation of the genetic algorithm with respect 
to at least one model of the subset to generate a trainable 
model , sending the trainable model to an optimization 

trainer , and adding a trained model received from the 
optimization trainer as an input to a second epoch of the 
genetic algorithm that is subsequent to the first epoch . For 
example , a subset of the input set 420 of FIG . 4 may be 
selected for performance of at least one genetic operation , 
such as the crossover operation 460 or the mutation opera 
tion 470 , and at least one model ( e.g. , the trainable model 
422 ) may be provided to the backpropagation trainer 480 for 
training into the trained model 482. The fitness function may 
be evaluated based on the input data set , and the optimiza 
tion trainer may be configured to use a portion of the input 
data set to train the trainable model . 

[ 0089 ] The method 500 enables generation and training of 
one or more models faster , and using fewer processing 
resources , than other model generation techniques . For 
example , by adjusting one or more architectural parameters 
to adjust the probability that models having certain types of 
architectures are included in an input set of an automated 
model generation process , the method 500 provides fitter 
models than would otherwise be included using a purely 
random process . Providing fitter models reduces the number 
of epochs used to converge on the one or more models , 
which increases the speed and decreases the processing 
resources used by the automated model generation process . 
[ 0090 ] It is to be understood that the division and ordering 
of steps described herein shown in the flowchart of FIG . 5 
is for illustrative purposes only and is not be considered 
limiting . In alternative implementations , certain steps may 
be combined and other steps may be subdivided into mul 
tiple steps . Moreover , the ordering of steps may change . 
[ 0091 ] In conjunction with the described aspects , a 
method includes receiving , by a processor , an input data set . 
The input data set includes a plurality of features . The 
method includes determining , by the processor , one or more 
characteristics of the input data set . The method includes , 
based on the one or more characteristics , adjusting , by the 
processor , one or more architectural parameters of an auto 
mated model generation process . The automated model 
generation process is configured to generate a plurality of 
models using a weighted randomization process . The one or 
more architectural parameters weight the weighted random 
ization process to adjust a probability of generation of 
models having particular architectural features . The method 
further includes executing , by the processor , the automated 
model generation process to output a model . The model 
includes data representative of a neural network . 
[ 0092 ] In conjunction with the described aspects , a com 
puting device includes a processor and a memory storing 
instructions executable by the processor to perform opera 
tions including receiving an input data set . The input data set 
includes a plurality of features . The operations include 
determining one or more characteristics of the input data set . 
The operations include , based on the one or more charac 
teristics , adjusting one or more architectural parameters of 
an automated model generation process . The automated 
model generation process is configured to generate a plu 
rality of models using a weighted randomization process . 
The one or more architectural parameters weight the 
weighted randomization process to adjust a probability of 
generation of models having particular architectural fea 
tures . The operations further include executing the auto 
mated model generation process to output a model . The 
model includes data representative of a neural network . 
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[ 0093 ] In a particular implementation , the particular archi 
tectural features include an initial model type used by the 
weighted randomization process , and the initial model type 
includes feedforward models , recurrent models , pooling 
based two - dimensional convolutional models , daisy - chains 
of convolutional models , or a combination thereof . For 
example , the architectural parameter 112 may include an 
initial model type , and the initial model type may include 
feedforward models , recurrent models , pooling - based two 
dimensional convolutional models , daisy - chains of convo 
lutional models , or a combination thereof . Additionally , or 
alternatively , the one or more characteristics indicate a type 
of problem associated with the input data set , a data type 
associated with the input data set , or a combination thereof . 
For example , the characteristics 106 may indicate a type of 
problem associated with the input data set 102 , a data type 
associated with the input data set 102 , or a combination 
thereof . 
[ 0094 ] In conjunction with the described aspects , a com 
puter - readable storage device stores instructions that , when 
executed , cause a computer to perform operations including 
receiving an input data set . The input data set includes a 
plurality of features . The operations include determining one 
or more characteristics of the input data set . The operations 
include , based on the one or more characteristics , adjusting 
one or more architectural parameters of an automated model 
generation process . The automated model generation pro 
cess is configured to generate a plurality of models using a 
weighted randomization process . The one or more architec 
tural parameters weight the weighted randomization process 
to adjust a probability of generation of models having 
particular architectural features . The operations further 
include executing the automated model generation process 
to output a model . The model includes data representative of 
a neural network . 
[ 0095 ] In a particular implementation , the operations fur 
ther include setting a first architectural parameter to a first 
value based on the one or more characteristics . The first 
architectural parameter is associated with a probability that 
models of a first epoch of the weighted randomization 
process have a first model type . For example , the architec 
tural parameter 112 can be set , based on the characteristics 
106 , to a value that increases ( or decreases ) a probability that 
models of a first epoch of the automated model generation 
process 120 have a first model type . Additionally , or alter 
natively , the operations further include updating a set of 
rules or a trained classifier based on a data set indicating a plurality of previously - generated models and characteristics 
of input data associated with the plurality of previously 
generated models . The set of rules or the trained classifier is 
used to determine the one or more architectural parameters . 
For example , the set of rules 108 or the trained classifier 110 
may be generated ( and / or trained ) based on data indicating 
a plurality of previously - generated models and characteris 
tics of input data associated with the plurality of previously 
generated models . 
[ 0096 ] The systems and methods illustrated herein may be 
described in terms of functional block components , screen 
shots , optional selections and various processing steps . It 
should be appreciated that such functional blocks may be 
realized by any number of hardware and / or software com 
ponents configured to perform the specified functions . 
[ 0097 ] For example , the system may employ various inte 
grated circuit components , e.g. , memory elements , process 

ing elements , logic elements , look - up tables , and the like , 
which may carry out a variety of functions under the control 
of one or more microprocessors or other control devices . 
Similarly , the software elements of the system may be 
implemented with any programming or scripting language 
such as C , C ++ , C # , Java , JavaScript , VBScript , Macro 
media Cold Fusion , COBOL , Microsoft Active Server 
Pages , assembly , PERL , PHP , AWK , Python , Visual Basic , 
SQL Stored Procedures , PL / SQL , any UNIX shell script , 
and extensible markup language ( XML ) with the various 
algorithms being implemented with any combination of data 
structures , objects , processes , routines or other program 
ming elements . Further , it should be noted that the system 
may employ any number of techniques for data transmis 
sion , signaling , data processing , network control , and the 
like . 
[ 0098 ] The systems and methods of the present disclosure 
may be embodied as a customization of an existing system , 
an add - on product , a processing apparatus executing 
upgraded software , a standalone system , a distributed sys 
tem , a method , a data processing system , a device for data 
processing , and / or a computer program product . Accord 
ingly , any portion of the system or a module may take the 
form of a processing apparatus executing code , an internet 
based ( e.g. , cloud computing ) embodiment , an entirely hard 
ware embodiment , or an embodiment combining aspects of 
the internet , software and hardware . Furthermore , the sys 
tem may take the form of a computer program product on a 
computer - readable storage medium or device having com 
puter - readable program code ( e.g. , instructions ) embodied 
or stored in the storage medium or device . Any suitable 
computer - readable storage medium or device may be uti 
lized , including hard disks , CD - ROM , optical storage 
devices , magnetic storage devices , and / or other storage 
media . Thus , also not shown in FIG . 1 , the system 100 may 
be implemented using one or more computer hardware 
devices ( which may be communicably coupled via local 
and / or wide - area networks ) that include one or more pro 
cessors , where the processor ( s ) execute software instruc 
tions corresponding to the various components of FIG . 1 . 
Alternatively , one or more of the components of FIG . 1 may 
be implemented using a hardware device , such as a field 
programmable gate array ( FPGA ) device , an application 
specific integrated circuit ( ASIC ) device , etc. As used 
herein , a “ computer - readable storage medium ” or “ com 
puter - readable storage device ” is not a signal . 
[ 0099 ] Systems and methods may be described herein with 
reference to screen shots , block diagrams and flowchart 
illustrations of methods , apparatuses ( e.g. , systems ) , and 
computer media according to various aspects . It will be 
understood that each functional block of a block diagrams 
and flowchart illustration , and combinations of functional 
blocks in block diagrams and flowchart illustrations , respec 
tively , can be implemented by computer program instruc 
tions . 
[ 0100 ] Computer program instructions may be loaded 
onto a computer or other programmable data processing 
apparatus to produce a machine , such that the instructions 
that execute on the computer or other programmable data 
processing apparatus create means for implementing the 
functions specified in the flowchart block or blocks . These 
computer program instructions may also be stored in a 
computer - readable memory or device that can direct a 
computer or other programmable data processing apparatus 
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to function in a particular manner , such that the instructions 
stored in the computer - readable memory produce an article 
of manufacture including instruction means which imple 
ment the function specified in the flowchart block or blocks . 
The computer program instructions may also be loaded onto 
a computer or other programmable data processing appara 
tus to cause a series of operational steps to be performed on 
the computer or other programmable apparatus to produce a 
computer - implemented process such that the instructions 
which execute on the computer or other programmable 
apparatus provide steps for implementing the functions 
specified in the flowchart block or blocks . 
[ 0101 ] Accordingly , functional blocks of the block dia 
grams and flowchart illustrations support combinations of 
means for performing the specified functions , combinations 
of steps for performing the specified functions , and program 
instruction means for performing the specified functions . It 
will also be understood that each functional block of the 
block diagrams and flowchart illustrations , and combina 
tions of functional blocks in the block diagrams and flow 
chart illustrations , can be implemented by either special 
purpose hardware - based computer systems which perform 
the specified functions or steps , or suitable combinations of 
special purpose hardware and computer instructions . 
[ 0102 ] Although the disclosure may include a method , it is 
contemplated that it may be embodied as computer program 
instructions on a tangible computer - readable medium , such 
as a magnetic or optical memory or a magnetic or optical 
disk / disc . All structural , chemical , and functional equiva 
lents to the elements of the above - described exemplary 
embodiments that are known to those of ordinary skill in the 
art are expressly incorporated herein by reference and are 
intended to be encompassed by the present claims . More 
over , it is not necessary for a device or method to address 
each and every problem sought to be solved by the present 
disclosure , for it to be encompassed by the present claims . 
Furthermore , no element , component , or method step in the 
present disclosure is intended to be dedicated to the public 
regardless of whether the element , component , or method 
step is explicitly recited in the claims . As used herein , the 
terms " comprises " , " comprising " , or any other variation 
thereof , are intended to cover a non - exclusive inclusion , 
such that a process , method , article , or apparatus that com 
prises a list of elements does not include only those elements 
but may include other elements not expressly listed or 
inherent to such process , method , article , or apparatus . 
[ 0103 ] Changes and modifications may be made to the 
disclosed embodiments without departing from the scope of 
the present disclosure . These and other changes or modifi 
cations are intended to be included within the scope of the 
present disclosure , as expressed in the following claims . 

1. A method of neural network generation , the method 
comprising : 

receiving , by a processor , an input data set , the input data 
set including a plurality of features ; 

determining , by the processor , one or more characteristics 
of the input data set ; 

based on the one or more characteristics , adjusting , by the 
processor , one or more architectural parameters of an 
automated model generation process , wherein the auto 
mated model generation process is configured to gen 
erate a plurality of models using a weighted random 
ization process , wherein the one or more architectural 
parameters weight the weighted randomization process 

to adjust a probability of generation of models having 
particular architectural features , and wherein adjusting 
the one or more architectural parameters includes set 
ting a first architectural parameter to a first value , the 
first architectural parameter associated with a probabil 
ity that models of a first epoch of the weighted ran 
domization process have a first model type ; and 

executing , by the processor , the automated model gen 
eration process to output a model , the model including 
data representative of a neural network . 

2. The method of claim 1 , wherein the particular archi 
tectural features comprise an initial model type used by the 
weighted randomization process . 

3. The method of claim 2 , wherein the initial model type 
comprises feedforward models , recurrent models , pooling 
based two - dimensional convolutional models , daisy - chains 
of causal convolutional models , or a combination thereof . 

4. The method of claim 1 , wherein the one or more 
architectural parameters include a mutation parameter , and 
wherein at least one model of the plurality of models 
generated using the weighted randomization process is 
modified based on the mutation parameter . 

5. The method of claim 1 , further comprising , based on 
the one or more characteristics , adjusting , by the processor , 
one or more training hyperparameters of the automated 
model generation process , wherein the one or more training 
hyperparameters control one or more aspects of training of 
the model . 

6. The method of claim 1 , wherein adjusting the one or 
more architectural parameters further includes : 

setting a second architectural parameter to a second value 
based on the one or more characteristics , the second 
architectural parameter associated with a probability 
that models of the first epoch of the weighted random 
ization process have a second model type . 

7. The method of claim 1 , wherein the one or more 
characteristics indicate a type of problem associated with the 
input data set , a data type associated with the input data set , 
or a combination thereof . 

8. The method of claim 1 , wherein adjusting the one or 
more architectural parameters based on the one or more 
characteristics comprises comparing the one or more char 
acteristics to a set of rules that maps data set characteristics 
to architectural parameters , wherein the set of rules maps the 
data set to characteristics of grammars , and wherein the 
grammars indicate corresponding architectural parameters . 

9. The method of claim 8 , further comprising updating the 
set of rules based on characteristics of the model . 

10. The method of claim 9 , wherein the set of rules are 
updated responsive to a score of the model satisfying a 
threshold . 

11. The method of claim 1 , wherein adjusting the one or 
more architectural parameters based on the one or more 
characteristics comprises providing data indicative of the 
one or more characteristics to a particular neural network 
configured to identify one or more architectural parameters 
for adjustment based on the data indicative of the one or 
more characteristics . 

12. The method of claim 11 , further comprising retraining 
the particular neural network based on training data , the 
training data indicating characteristics of the model . 

13. The method of claim 1 , wherein executing the auto 
mated model generation process comprises : 
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based on a fitness function , selecting , by the processor , a 
subset of models from the plurality of models , the 
plurality of models based on a genetic algorithm and 
corresponding to a first epoch of the genetic algorithm ; 

performing , by the processor , at least one genetic opera 
tion of the genetic algorithm with respect to at least one 
model of the subset to generate a trainable model ; 

sending the trainable model to an optimization trainer ; 
and 

adding a trained model received from the optimization 
trainer as input to a second epoch of the genetic 
algorithm that is subsequent to the first epoch . 

14. The method of claim 13 , wherein the fitness function 
is evaluated based on the input data set , and wherein the 
optimization trainer is configured to use a portion of the 
input data set to train the trainable model . 

15. A computing device comprising : 
a processor ; and 
a memory storing instructions executable by the processor 

to perform operations comprising : 
receiving an input data set , the input data set including 

a plurality of features ; 
determining one or more characteristics of the input 

data set ; 

or 

based on the one or more characteristics , adjusting one 
or more architectural parameters of an automated 
model generation process , wherein the automated 
model generation process is configured to generate a 
plurality of models using a weighted randomization 
process , wherein the one more architectural 
parameters weight the weighted randomization pro 
cess to adjust a probability of generation of models 
having particular architectural features , and wherein 
adjusting the one or more architectural parameters 
includes setting a first architectural parameter to a 
first value , the first architectural parameter associ 
ated with a probability that models of a first epoch of 
the weighted randomization process have a first 
model type ; and 

executing the automated model generation process to 
output a model , the model including data represen 
tative of a neural network . 

16. The computing device of claim 15 , wherein the 
particular architectural features comprise an initial model 
type used by the weighted randomization process , and 
wherein the initial model type comprises feedforward mod 
els , recurrent models , pooling - based two - dimensional con 
volutional models , daisy - chains of convolutional models , or 
a combination thereof . 

17. The computing device of claim 15 , wherein the one or 
more characteristics indicate a type of problem associated 
with the input data set , a data type associated with the input 
data set , or a combination thereof . 

18. A computer - readable storage device storing instruc 
tions that , when executed by a processor , cause the processor 
to perform operations comprising : 

receiving an input data set , the input data set including a 
plurality of features ; 

determining one or more characteristics of the input data 
set ; 

based on the one or more characteristics , adjusting one or 
more architectural parameters of an automated model 
generation process , wherein the automated model gen 
eration process is configured to generate a plurality of 

models using a weighted randomization process , 
wherein the one or more architectural parameters 
weight the weighted randomization process to adjust a 
probability of generation of models having particular 
architectural , and wherein adjusting the one or more 
architectural parameters includes setting a first archi 
tectural parameter to a first value , the first architectural 
parameter associated with a probability that models of 
a first epoch of the weighted randomization process 
have a first model type ; and 

executing the automated model generation process to 
output one or more models , the one or more models 
including data representative of one or more neural 
networks . 

19. ( canceled ) 
20. The computer - readable storage device of claim 18 , 

wherein the operations further comprise updating a set of 
rules or a trained classifier based on a data set indicating a 
plurality of previously - generated models and characteristics 
of input data associated with the plurality of previously 
generated models , and wherein the set of rules or the trained 
classifier is used to determine the one or more architectural 
parameters . 

21. A method of neural network generation , the method 
comprising : 

receiving , by a processor , an input data set , the input data 
set including a plurality of features ; 

determining , by the processor , one or more characteristics 
of the input data set ; 

based on the one or more characteristics , adjusting , by the 
processor , one or more architectural parameters of an 
automated model generation process , wherein the auto 
mated model generation process is configured to gen 
erate a plurality of models using a weighted random 
ization process , wherein the one or more architectural 
parameters weight the weighted randomization process 
to adjust a probability of generation of models having 
particular architectural features , wherein adjusting the 
one or more architectural parameters based on the one 
or more characteristics comprises comparing the one or 
more characteristics to a set of rules that maps data set 
characteristics to architectural parameters , wherein the 
set of rules maps the data set to characteristics of 
grammars , and wherein the grammars indicate corre 
sponding architectural parameters ; and 

executing , by the processor , the automated model gen 
eration process to output a model , the model including 
data representative of a neural network . 

22. The method of claim 21 , wherein the particular 
architectural features comprise an initial model type used by 
the weighted randomization process . 

23. The method of claim 22 , wherein the initial model 
type comprises feedforward models , recurrent models , pool 
ing - based two - dimensional convolutional models , daisy 
chains of causal convolutional models , or a combination 
thereof . 

24. The method of claim 21 , wherein the one or more 
architectural parameters include a mutation parameter , and 
wherein at least one model of the plurality of models 
generated using the weighted randomization process is 
modified based on the mutation parameter . 

25. The method of claim 21 , further comprising , based on 
the one or more characteristics , adjusting , by the processor , 
one or more training hyperparameters of the automated 
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plurality of models using a weighted randomization 
process , wherein the one or more architectural 
parameters weight the weighted randomization pro 
cess to adjust a probability of generation of models 
having particular architectural features , wherein 
adjusting the one or more architectural parameters 
based on the one or more characteristics comprises 
comparing the one or more characteristics to a set of 
rules that maps data set characteristics to architec 
tural parameters , wherein the set of rules maps the 
data set to characteristics of grammars , and wherein 
the grammars indicate corresponding architectural 
parameters ; and 

executing the automated model generation process to 
output a model , the model including data represen 
tative of a neural network . 

35. The computing device of claim 34 , wherein the 
particular architectural features comprise an initial model 
type used by the weighted randomization process , and 
wherein the initial model type comprises feedforward mod 
els , recurrent models , pooling - based two - dimensional con 
volutional models , daisy - chains of convolutional models , or 
a combination thereof . 

model generation process , wherein the one or more training 
hyperparameters control one or more aspects of training of 
the model . 

26. The method of claim 21 , wherein adjusting the one or 
more architectural parameters further includes : 

setting a first architectural parameter to a first value based 
on the one or more characteristics , the first architectural 
parameter associated with a probability that models of 
a first epoch of the weighted randomization process 
have a first model type ; and 

setting a second architectural parameter to a second value 
based on the one or more characteristics , the second 
architectural parameter associated with a probability 
that models of the first epoch of the weighted random 
ization process have a second model type . 

27. The method of claim 21 , wherein the one or more 
characteristics indicate a type of problem associated with the 
input data set , a data type associated with the input data set , 
or a combination thereof . 

28. The method of claim 21 , further comprising updating 
the set of rules based on characteristics of the model . 

29. The method of claim 28 , wherein the set of rules are 
updated responsive to a score of the model satisfying a 
threshold . 

30. The method of claim 21 , wherein adjusting the one or 
more architectural parameters based on the one or more 
characteristics further comprises providing data indicative 
of the one or more characteristics to a particular neural 
network configured to identify one or more architectural 
parameters for adjustment based on the data indicative of the 
one or more characteristics . 

31. The method of claim 30 , further comprising retraining 
the particular neural network based on training data , the 
training data indicating characteristics of the model . 

32. The method of claim 21 , wherein executing the 
automated model generation process comprises : 
based on a fitness function , selecting , by the processor , a 

subset of models from the plurality of models , the 
plurality of models based on a genetic algorithm and 
corresponding to a first epoch of the genetic algorithm ; 

performing , by the processor , at least one genetic opera 
tion of the genetic algorithm with respect to at least one 
model of the subset to generate a trainable model ; 

sending the trainable model to an optimization trainer ; 
and 

adding a trained model received from the optimization 
trainer as input to a second epoch of the genetic 
algorithm that is subsequent to the first epoch . 

33. The method of claim 32 , wherein the fitness function 
is evaluated based on the input data set , and wherein the 
optimization trainer is configured to use a portion of the 
input data set to train the trainable model . 

34. A computing device comprising : 
a processor ; and 
a memory storing instructions executable by the processor 

to perform operations comprising : 
receiving an input data set , the input data set including 

a plurality of features ; 
determining one or more characteristics of the input 

36. The computing device of claim 34 , wherein the one or 
more characteristics indicate a type of problem associated 
with the input data set , a data type associated with the input 
data set , or a combination thereof . 

37. A computer - readable storage device storing instruc 
tions that , when executed by a processor , cause the processor 
to perform operations comprising : 

receiving an input data set , the input data set including a 
plurality of features : 

determining one or more characteristics of the input data 
set ; 

based on the one or more characteristics , adjusting one or 
more architectural parameters of an automated model 
generation process , wherein the automated model gen 
eration process is configured to generate a plurality of 
models using a weighted randomization process , 
wherein the one or more architectural parameters 
weight the weighted randomization process to adjust a 
probability of generation of models having particular 
architectural features , wherein adjusting the one or 
more architectural parameters based on the one or more 
characteristics comprises comparing the one or more 
characteristics to a set of rules that maps data set 
characteristics to architectural parameters , wherein the 
set of rules maps the data set to characteristics of 
grammars , and wherein the grammars indicate corre 
sponding architectural parameters ; and 

executing the automated model generation process to 
output one or more models , the one or more models 
including data representative of one or more neural 
networks . 

38. The computer - readable storage device of claim 37 , 
wherein the operations further comprise setting a first archi 
tectural parameter to a first value based on the one or more 
characteristics , the first architectural parameter associated 
with a probability that models of a first epoch of the 
weighted randomization process have a first model type . 

data set ; 
based on the one or more characteristics , adjusting one 

or more architectural parameters of an automated 
model generation process , wherein the automated 
model generation process is configured to generate a 
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39. The computer - readable storage device of claim 37 , 
wherein the operations further comprise updating the set of 
rules based on a data set indicating a plurality of previously 
generated models and characteristics of input data associated 
with the plurality of previously - generated models . 


