
IN
US 20200175378A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0175378 A1

McDonnell et al . (43) Pub . Date : Jun . 4 , 2020

(54) AUTOMATED MODEL BUILDING SEARCH
SPACE REDUCTION

(52) U.S. CI .
CPC GOON 3/086 (2013.01) ; GO6N 3/0445

(2013.01) ; GO6N 3/04 (2013.01)
(71) Applicant : SparkCognition , Inc. , Austin , TX (US)

(57) ABSTRACT
(72) Inventors : Tyler S. McDonnell , Austin , TX (US) ;

Sari Andoni , Austin , TX (US) ;
Junhwan Choi , Austin , TX (US) ;
Jimmie Goode , Austin , TX (US) ;
Yiyun Lan , Austin , TX (US) ; Keith D.
Moore , Cedar Park , TX (US) ; Gavin
Sellers , Austin , TX (US)

(21) Appl . No .: 16 / 205,088

A method includes receiving , by a processor , an input data
set . The input data set includes a plurality of features . The
method includes determining , by the processor , one or more
characteristics of the input data set . The method includes ,
based on the one or more characteristics , adjusting , by the
processor , one or more architectural parameters of an auto
mated model generation process . The automated model
generation process is configured to generate a plurality of
models using a weighted randomization process . The one or
more architectural parameters weight the weighted random
ization process to adjust a probability of generation of
models having particular architectural features . The method
further includes executing , by the processor , the automated
model generation process to output a mode , the model
including data representative of a neural network .

(22) Filed : Nov. 29 , 2018

Publication Classification
(51) Int . Ci .

G06N 3/08 (2006.01)
GOON 3/04 (2006.01)

100

104
120 Parameter Selector

106
Automated Model

Generation Process
102 Characteristic (s) 122

Input Data
Set 108

Set of Rules Adjust Architectural
Parameter

Plurality of
Models

110 112

Trained Classifier

124

130 One or More
Models (e.g. ,

Neural Networks) Training

100 100

104

120

Parameter Selector

Automated Model Generation Process

Patent Application Publication

106

102

Characteristic (s)

122

Input Data Set

108

Set of Rules

Adjust Architectural Parameter

Plurality of Models

112

110

Trained Classifier

Jun . 4 , 2020 Sheet 1 of 5

124

- 130

One or More
Models (e.g. , Neural Networks)

Training

US 2020/0175378 A1

FIG . 1

220

200 7

222

224

210

212

Identify Characteristic (s)

202

Densely Connected Feedforward Layers

Set of Rules (or Classifier)

204

Recurrent Structures (RNN , LSTM , GRU , etc.)

Patent Application Publication

First Input Data Set

Supervised Problem

226

228

Pooling - based 2D convolutional neural networks

Daisy Chains of Causal Convolutional Blocks

FIG . 2A

220

230

Jun . 4 , 2020 Sheet 2 of 5

222

224

- 210

212

206

Identify Characteristic (s)

Set of Rules (or Classifier)

Densely Connected Feedforward Layers

208

Recurrent Structures (RNN , LSTM , GRU , etc.)

Second Input Data Set

Industrial Time Series Problem

226

228

Pooling - based 2D convolutional neural networks

Daisy Chains of Causal Convolutional Blocks

US 2020/0175378 A1

FIG . 2B

Patent Application Publication Jun . 4 , 2020 Sheet 3 of 5 US 2020/0175378 A1

300

[302
N- > MODULE
MODULE - > MODULE MODULE
MODULE - > LINEAR
MODULE - > LSTM
LINEAR - > SIZE ACT
LSTM - > LAYERS SIZE

Production Rules

SIZE - > < number >
LAYERS - > < number >
ACT - > < activation type >
< number > : = 1 | 2 | ... m
< activation type > : = relu | identity | gauss | sigmoid

[304
~ Terminal Symbols

FIG . 3

Patent Application Publication Jun . 4 , 2020 Sheet 4 of 5 US 2020/0175378 A1

400

Additional Devices /
Processors / Cores / Threads

490

itol
410

Genetic Algorithm (e.g. , 1st Device / Processor / Core / Thread)
420

Input Set

000000000000 OOO
Models

440 460
Fitness Function Crossover

450 470 Stagnation
Criterion Mutation

Models 430

000000000000 booo
402

422 Trainable
Model Input Data

Set 482
T Trained Model

480

Backpropagation Trainer (e.g. , 2nd Device / Processor / Core / Thread)

FIG . 4

Patent Application Publication Jun . 4 , 2020 Sheet 5 of 5 US 2020/0175378 A1

500

502

Receive , by a processor , an input data set , the input data
set including a plurality of features .

504

Determine , by the processor , one or more characteristics of
the input data set

506

Based on the one or more characteristics , adjust , by the
processor , one or more architectural parameters of an

automated model generation process , where the automated
model generation process is configured to generate a
plurality of models using a randomization process , and

where the one or more architectural parameters weight the
randomization process to adjust a probability of generation

of models having particular architectural features

508

Execute , by the processor , the automated model generation
process to output a model , the model including data

representative of a neural network

FIG . 5

US 2020/0175378 A1 Jun . 4 , 2020
1

AUTOMATED MODEL BUILDING SEARCH
SPACE REDUCTION

BACKGROUND

[0001] Computers are often used to solve complex quan
titative and qualitative problems . For certain types of prob
lems , advanced computing techniques , such as genetic algo
rithms , may be available to develop a model , such as a
neural network , that is used to solve the problem . However ,
genetic algorithms may take a large number of iterations to
converge on an acceptable neural network .
[0002] Furthermore , various types of machine - learning
problems exist . For example , regression problems involve
evaluating a series of inputs to predict a numeric output ,
classification problems involve evaluating a series of inputs
to predict a categorical output , and reinforcement learning
involves performing actions within an environment while
learning from feedback from the actions . Due to the differ
ences in the various types of problems , the available mecha
nisms to generate and in a neural network may be
problem - specific . For example , a method of generating and
training a neural network to solve a regression problem may
be significantly less efficient for generating and training a
neural network to solve a classification problem

teristics in the set of rules , one or more architectural param
eters are selected . In this implementation , the set of rules
may be generated based on analysis of a plurality (e.g. ,
hundreds or thousands) of previously generated neural net
works . In an alternate implementation , a classifier is gener
ated and trained using data representative of previously
generated neural networks and the classifier is configured to
output a neural network grammar based on the characteris
tics of the input data .
[0005] After selecting the one or more architectural
parameters , the one or more architectural parameters are
adjusted to weight a randomization process (e.g. , a genetic
algorithm) to adjust a probability of generation of models
(e.g. , neural networks) having particular architectural fea
tures . For example , if the characteristics of the input data file
are associated with recurrent structures , either in the set of
rules or by the trained classifier , an architectural parameter
corresponding to recurrent structures (e.g. , recurrent neural
networks (RNNs) , long short - term memory (LSTM) layers ,
gated recurrent unit (GRU) layers , as non - limiting
examples) is adjusted to increase the likelihood that neural
networks having recurrent structures are included in the
randomization process . To further illustrate , a weight asso
ciated with recurrent structures may be increased , which
increases the likelihood that neural networks having recur
rent structures (as opposed to other randomly selected neural
networks) are included in the randomization process . As
another example , if the set of rules (or the trained classifier)
indicates that feedforward layers have a negative correspon
dence to the characteristics of the input data set , an archi
tectural parameter corresponding to feedforward layers is
adjusted to decrease the likelihood that neural networks
having feedforward layers are included in the randomization
process . Thus , a randomization process can be weighted
(through adjustment of the architectural parameters) to focus
the randomization process on particular types of neural
networks that are expected to perform well given the char
acteristics of the input data set , which can increase the speed
and reduce the amount of processing resources used by the
automated model generation process in converging
acceptable neural network .

SUMMARY

an

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure describes systems and
methods for efficiently generating neural networks for dif
ferent types of problems by automatically adjusting archi
tectural parameters of an automated model building process .
The architectural parameters are automatically adjusted
based on characteristics of an input data set . Adjusting the
architectural parameters operates to reduce the search space
for a reliable neural network to solve a given problem . For
example , parameters of an automatic model generation
process , such as a genetic algorithm , may be biased to
increase the probability that certain types of neural networks
are used during evolution (e.g. , as part of an initial set of
models or set of models generated during a later epoch) .
Thus , adjusting the architectural parameters based on char
acteristics of the input data set can result in the automated
model building process focusing on types of neural networks
that are particularly suited to processing the input data set ,
which can reduce the amount of time and processing
resources used by the automated model building process to
converge on an acceptable neural network (e.g. , a neural
network that satisfies a fitness or other criteria) .
[0004] To illustrate , an input data set is analyzed to
determine characteristics of the input data set . The charac
teristics may indicate a data type of the input data set , a
problem to be solved by the input data set , etc. For example ,
if the input data set includes industrial time - series data , the
characteristics may indicate that the input data set is time
stamped and sequential and that the input data set includes
continuous values (as compared to categorical values) .
Based on the characteristics of the input data set , one or
more parameters of an automated model generation process
are selected for adjustment . In a particular implementation ,
the characteristics are compared to a set of rules that maps
characteristics of data sets to neural network grammars . As
used herein , a neural network grammar is a list of rules that
specify a topology or an architecture of a neural network .
Based on the grammars that are associated with the charac

[0006] FIG . 1 illustrates a particular implementation of a
system that is operable to adjust an architectural parameter
of an automated model generation process based on char
acteristics of an input data set ;
[0007] FIGS . 2A and 2B illustrate particular examples of
selecting architectural parameters to adjust based on char
acteristics of input data in accordance with one or more
aspects disclosed herein ;
[0008] FIG . 3 illustrates an example of a grammar that
indicates architectural parameters of a neural network ;
[0009] FIG . 4 illustrates is a diagram to illustrate a par
ticular implementation of a system that is operable to
determine a topology of a neural network , such as a neural
network of FIG . 1 , based on execution of a genetic algo
rithm ; and
[0010] FIG . 5 is a flowchart to illustrate a particular
implementation of a method of operation at the system of
FIG . 1 .

US 2020/0175378 A1 Jun . 4 , 2020
2

DETAILED DESCRIPTION

[0011] Referring to FIG . 1 , a particular illustrative
example of a system 100 is shown . The system 100 , or
portions thereof , may be implemented using (e.g. , executed
by) one or more computing devices , such as laptop com
puters , desktop computers , mobile devices , servers , and
Internet of Things devices and other devices utilizing
embedded processors and firmware or operating systems ,
etc. In the illustrated example , the system 100 includes a
parameter selector 104 and an automated model generation
process 120 .
[0012] It is to be understood that operations described
herein as being performed by the parameter selector 104 and
the automated model generation process 120 may be per
formed by a device executing instructions . The instructions
may be stored at a memory , such as a random - access
memory (RAM) , a read - only memory (ROM) , a computer
readable storage device , an enterprise storage device , any
other type of memory , or a combination thereof . In a
particular implementation , the operations described with
reference to the parameter selector 104 and the automated
model generation process 120 are performed by a processor
(e.g. , a central processing unit (CPU) , graphics processing
unit (GPU) , or other type of processor) . In some implemen
tations , the operations of the parameter selector 104 are
performed on a different device , processor (e.g. , CPU , GPU ,
or other type of processor) , processor core , and / or thread
(e.g. , hardware or software thread) than the automated
model generation process 120. Moreover , execution of cer
tain operations of the pas meter selector 104 or the auto
mated model generation process 120 may be parallelized .
[0013] The parameter selector 104 is configured to receive
an input data set 102 and to determine one or more charac
teristics 106 of the input data set 102. The characteristics 106
may indicate a data type of the input data set 102 , a problem
to be solved for the input data set 102 , a size of the input data
set 102 , other characteristics associated with the input data
set 102 , or a combination thereof . The parameter selector
104 is further configured to adjust an architectural parameter
112 of the automated m generation process 120 based on
the characteristics 106. In a particular implementation , the
parameter selector 104 is configured to select the architec
tural parameter 112 using a set of rules 108 , as further
described herein . In another particular implementation , the
parameter selector 104 is configured to select the architec
tural parameter 112 using a trained classifier 110 , as further
described herein .
[0014] The automated model generation process 120 is
configured to generate a plurality of models 122 using a
weighted randomization process . In a particular implemen
tation , the automated model generation process 120 includes
a genetic algorithm . In this implementation , the plurality of
models 122 includes one or more sets of models generated
during one or more epochs of the genetic algorithm . For
example , the plurality of models 122 may include a set of
initial models used as input to a first epoch of the genetic
algorithm , a set of models output by the first epoch and used
as input to a second epoch of the genetic algorithm , and
other sets of models output by other epochs of the genetic
algorithm . The automated model generation process 120 is
configured to generate sets of models during each epoch
using the weighted randomization process . For example , if
all the weights of the architectural parameters are the same ,
the automated model generation process 120 generates an

initial set of models by randomly (or pseudo - randomly)
selecting models having various architectures , and the initial
set of models are evolved across multiple epochs , as further
described with reference to FIG . 4. As a particular example ,
one or more models may be mutated or crossed - over (e.g. ,
combined) during a first epoch , as further described with
reference to FIG . 4 , to generate models of an output set of
the first epoch . The output set is used as an input set to a next
epoch of the automated model generation process 120 .
Additional epochs continue in this manner , by evolving
(e.g. , performing genetic operations on) an input set of
models to generate an output set of models , as further
described with reference to FIG . 4 .

[0015] The architectural parameter 112 weights the
weighted randomization process of the automated model
generation process 120 to control a probability of generation
of models having particular architectural features . For
example , if the architectural parameter 112 corresponds to
recurrency , the architectural parameter 112 can be adjusted
(e.g. , by increasing a weight) to increase a probability of
generation of recurrent models by the weighted randomiza
tion process . As another example , if the architectural param
eter 112 corresponds to pooling , the architectural parameter
112 can be adjusted (e.g. , by decreasing a weight) to
decrease the probability of generation of pooling - based
models by the weighted randomization process . The archi
tectural parameter 112 is adjusted based on the characteris
tics 106 , as further described herein .
[0016] The automated model generation process 120 is
configured to generate the plurality of models 122 during
performance of the automated model generation process 120
(e.g. , during multiple epochs of the genetic algorithm) . The
automated model generation process 120 is further config
ured to output one or more models 124 (e.g. , data indicative
of one or more neural networks) . In a particular implemen
tation , the automated model generation process 120 is con
figured to execute for a set amount of time (e.g. , a particular
number of epochs) , and the one or more models 124 are the
“ fittest ” models generated during the last epoch of the
automated model generation process 120. Alternatively , the
automated model generation process 120 may be executed
until the automated model generation process 120 converges
on one or more models having fitness scores that satisfy a
fitness threshold . The fitness scores may be based on a
frequency and / or a magnitude of errors produced by testing
the one or more models 124 on a portion on the input data
set 102. For example , if the one or more models 124 are
trained , based on the input data set 102 to predict a value of
a particular feature , the fitness score may be based on the
number of correctly predicted features for a testing portion
of the input data set 102 compared to the total number of
features (both correctly and incorrectly predicted) . Addition
ally , or alternatively , the fitness score may indicate charac
teristics of the model , such as a density (e.g. , how many
layers are included in the neural network , how many con
nections are included in the neural network , etc.) of the
model . Additionally , or alternatively , the fitness score may
be based on the amount of time taken by the automated
model generation process 120 to converge on the one or
more models 124. Data indicative of the one or more models
124 , such as data indicating an architecture type of the one
or more models 124 , the fitness score , or a combination
thereof , can be used as training data 130 to train the
parameter selector 104 .

US 2020/0175378 A1 Jun . 4 , 2020
3

[0017] The execution of the automated model generation
process 120 results in (e.g. , outputs) the one or more models
124. The one or more models 124 are executable by the
processor that executes the automated model generation
process 120 (or by another processor or by another device)
to perform an operation , such as classification , clustering ,
anomaly detection , or some other type of operation based on
input data . Stated another way , the automated model gen
eration process 120 uses an unknown data set (e.g. , the input
data set 102) to generate software (e.g. , the one or more
models 124) that is configured to perform one or more
operations based on related data sets . As a particular non
limiting example , if the input data set 102 includes time
series data from a sensor of a device , the automated model
generation process 120 may be executed to train a neural
network that can be executed by a processor to perform
anomaly detection based on real - time (or near real - time)
time - series data from the sensor . In this example , the one or
more models 124 can be used to predict when a fault is likely
to occur at the device , which can be used to repair the device
before damage occurs or to apply shorter pre - emptive
repairs instead of waiting for the device to fail . Because the
automated model generation process 120 is biased to include
models having particular architectural types (or to exclude
models having particular architectural types) , the one or
more models 124 may be generated faster than compared to
a model generation process that randomly selects models for
use during the model generation process . Additionally , the
one or more models 124 may have a higher fitness score than
models that are generated using other model generation
techniques .
[0018] During operation , the parameter selector 104
receives the input data set 102. The input data set 102
includes a plurality of features . The input data set 102 may
include input data (e.g. , features) for which one or more
neural networks are to be trained to solve a problem . For
example , the input data set 102 may include image data of
handwritten digits , and the input data set 102 may be used
to determine which digit (e.g. , 0-9) is shown in each image ,
as a non - limiting example . In other examples , the input data
set 102 includes other types of data that is to be used to solve
other types of problems .
[0019] The parameter selector 104 determines the charac
teristics 106 based on the input data set 102. In a particular
implementation , the characteristics 106 indicate a type of
problem associated with the input data set , a data type
associated with the input data set , or a combination thereof .
To illustrate , in a particular example , the input data set 102
includes industrial time - series data . In this example , the
characteristics 106 include that the input data set 102 is
time - stamped and sequential , and that the input data set 102
includes continuous features (e.g. , numerical features) . As
another example , the input data set 102 includes data for a
classification task . In this example , the characteristics 106
include that the data includes one or more categorical
features and that the data is indicated for classification . As
yet another example , if the input data set 102 includes image
data , the characteristics 106 indicate that a data type of the
input data set 102 includes image data .
(0020] The parameter selector 104 adjusts the architec
tural parameter 112 based on the characteristics 106. For
example , the characteristics 106 may correspond to one or
more types of architectures of neural networks , and the
parameter selector 104 may select and adjust the architec

tural parameter 112 to weight the weighted randomization
process of the automated model generation process 120 to
adjust a probability of generation of models having the one
or more types of architectures .
(0021] In a particular implementation , the parameter
selector 104 selects the architectural parameter 112 using the
set of rules 108. For example , the parameter selector 104
may store or have access to the set of rules 108. In this
implementation , the set of rules 108 maps characteristics of
data sets to architectural parameters . For example , the set of
rules 108 may map characteristics of data sets to grammars
that indicate architectural parameters of neural networks . As
a particular example , the set of rules 108 may map charac
teristics of standard (or “ flat ”) supervised problems to archi
tectural parameters corresponding to densely connected
feedforward layers . As another example , the set of rules 108
may map characteristics of sequence problems to recurrent
structures (such as recurrent neural networks (RNNs) , long
short - term memory (LSTM) layers , or gated recurrent units
(GRU) layers , as non - limiting examples) . As another
example , the set of rules 108 may map characteristics of
image problems (e.g. , input image data) to pooling - based 2D
convolutional neural networks . As another example , the set
of rules 108 may map characteristics of industrial time series
data to daisy chains of causal convolutional blocks . In a
particular implementation , the set of rules 108 is based on
analysis of a plurality of models that were previously
generated by the automated model generation process 120 ,
based on analysis of other models , or a combination thereof .
[0022] In a particular implementation , the set of rules 108
includes weight values . For example , a first rule may map a
first characteristic to a first architectural parameter with a
first weight value , and a second rule may map the first
characteristic to a second architectural parameter with a
second weight value . For example , time series data may be
mapped to daisy chains of causal convolutional weight
values with a first weight value , and time series data may be
mapped to recurrent structures with a second weight value .
The weight value indicates how much the parameter selector
104 will adjust the architectural par heter . For example , if
the second weight value is less than the first weight value ,
the parameter adjuster will adjust architectural parameters
such that the probability of models having daisy chains of
causal convolution blocks is greater than the probability of
models having recurrent structures . In some implementa
tions , the weight may be negative . For negative weights , the
parameter selector 104 may adjust the architectural param
eter 112 to reduce the probability that models have the
particular architectural feature .
[0023] In another particular implementation , the param
eter selector 104 selects the architectural parameter 112
using the trained classifier 110. To illustrate , the parameter
selector 104 provides data indicative of the characteristics
106 to the trained classifier 110 , and the trained classifier 110
identifies one or more architectural parameters for adjust
ment based on the data indicative of the characteristics 106 .
The trained classifier 110 may be trained based on data
indicative of previous models generated by the automated
model generation process 120 (e.g. , data indicative of archi
tectural types of the previous models) and data indicative of
characteristics of the input data used to train the previous
models . For example , characteristics of input data may be
labeled with an architectural parameter corresponding to the
model generated for the input data , and this labeled data may

US 2020/0175378 A1 Jun . 4 , 2020
4

be used as supervised training data to train the trained
classifier 110 to identify architectural parameters based on
characteristics of input data . In a particular implementation ,
the trained classifier 110 includes a neural network classifier .
In other implementations , the trained classifier 110 includes
a decision tree classifier , a support vector machine classifier ,
a regression classifier , a naive Bayes classifier , a perceptron
classifier , or another type of classifier .
[0024] After selecting the architectural parameter 112 , the
parameter selector 104 adjusts the architectural parameter
112 to adjust a probability of generation of models (by the
automated model generation process 120) having particular
architectural features . In a particular implementation , the
architectural feature includes an initial model type used by
the weighted randomization process of the automated model
generation process 120. The initial model type may include
feedforward models , recurrent models , pooling - based two
dimensional convolutional models , daisy - chains of causal
convolutional models , other types of models , or a combi
nation thereof . To illustrate , the parameter selector 104 may
set the architectural parameter 112 to a first value based on
the characteristics 106 , the first architectural parameter
associated with a probability that models of a first epoch of
the weighted randomization process have a first model type ,
and the parameter selector 104 may set a second architec
tural parameter to a second value based on the characteris
tics 106 , the second architectural parameter associated with
a probability that models of the first epoch of the weighted
randomization process have a second model type .
[0025] As an example , the characteristics 106 may indi
cate that the input data set 102 includes image data . In this
example , the set of rules 108 (or the trained classifier 110)
indicate that pooling - based 2D convolutional neural net
works have a positive correspondence with image data and
that densely connected feedforward layers have a negative
correspondence with image data . Based on the characteris
tics 106 , the parameter selector 104 selects the architectural
parameter 112 (corresponding to pooling - based 2D convo
lutional neural networks) and a second architectural param
eter (corresponding to densely connected feedforward lay
ers) for adjustment . In this example , the parameter selector
104 adjusts the architectural parameter 112 to increase the
probability that the plurality of models 122 include pooling
based 2D convolutional neural networks . In this example ,
the parameter selector 104 also adjusts the second architec
tural parameter to decrease the probability that the plurality
of models 122 include models having densely connected
feedforward layers . Adjusting the architectural parameters in
this manner may cause the automated model generation
process 120 to converge faster on the one or more models
124 using fewer processing resources , because models that
are more likely to be successful have a higher likelihood of
being generated and used in the automated model generation
process 120 (and models that are less likely to be successful
have a lower likelihood of being generated) .
[0026] The architectural parameter 112 may also include a
mutation parameter . A mutation parameter controls mutation
that occurs during the automated model generation process
120 , such that at least one model of the plurality of models
122 is modified based on the mutation parameter . For
example , mutation may occur to one or more models during
an epoch of the automated model generation process 120. As
further described with reference to FIG . 4 , mutation includes
changing at least one characteristic of the model . The

mutation parameter indicates how likely mutation is to
occur , what type of mutation is likely to occur (e.g. , what
characteristic is likely to change) , or both . The mutation
parameter may be adjusted based on the characteristics 106 .
For example , the set of rules 108 (or the trained classifier
110) may indicate an adjustment to a mutation parameter
that corresponds to the characteristics 106 , and the mutation
parameter (e.g. , the architectural parameter 112) may be
adjusted accordingly .
[0027] In a particular implementation , the parameter
selector 104 also selects and adjusts one or more training
hyperparameters of the automated model generation process
120. The one or more training hyperparameters control one
or more aspects of training of the model . As used herein , a
hyperparameter refers to a characteristic that determines
how a model is trained . For example , a hyperparameter may
include a learning rate of a neural network (e.g. , how quickly
a neural network updates other parameters) , momentum of
a neural network , number of epochs of the automated model
generation process 120 , batch size , or a combination thereof .
The parameter selector 104 may adjust the hyperparameter
based on the characteristics 106. For example , the set of
rules 108 (or the trained classifier 110) may indicate that a
particular hyperparameter corresponds to the characteristics
106 , and the parameter selector 104 may adjust the particular
hyperparameter accordingly .
[0028] After the architectural parameter 112 is adjusted ,
the automated model generation process 120 is executed .
For example , a processor executes the automated model
generation process 120. During execution of the automated
model generation process 120 , the plurality of models 122
are generated . The plurality of models 122 are generated
using a weighted randomization process , where architectural
parameters control the weights . For example , if a particular
architectural parameter has a higher weight than another
architectural parameter , models having a particular archi
tectural type have a higher probability of being included in
an initial set (or other set) of models generated by the
automated model generation process 120. The plurality of
models 122 includes an initial set of models generated as
input to an initial epoch as well as other sets of models
generated as output sets of one or more epochs , as further
described with reference to FIG . 4. The automated model
generation process 120 may be executed until the automated
model generation process 120 converges on the one or more
models 124. As an example , the one or more models 124
may be the fittest model (s) of a last epoch of the automated
model generation process 120. In a particular implementa
tion , the number of epochs of the automated model genera
tion process 120 is set prior to execution of the automated
model generation process 120 , and the one or more models
124 are taken from the output set of the last epoch . Alter
natively , the automated model generation process 120 may
be executed for a particular amount of time (e.g. , until a time
limit has expired) . Alternatively , the automated model gen
eration process 120 may be executed until at least one model
of an output set has a score that satisfies a threshold (e.g. ,
until the automated model generation process 120 converges
on an acceptable model) , and the one or more models 124
are the one or more models that satisfy the threshold . Thus ,
the one or more models 124 may be referred to as the output
of the automated model generation process 120 .
[0029] The one or more models 124 are trained to perform
a task based on input data . As a particular example , the one

US 2020/0175378 A1 Jun . 4 , 2020
5

or more models 124 may be trained based on the input data
set 102 to perform a classification task . To further illustrate ,
the input data set 102 may include industrial time - series data
indicative of various operating states of a device (e.g. ,
industrial machinery , such as a wind turbine , a power plant ,
a generator , etc.) , and the one or more models 124 may be
trained to identify an operating state (or to predict a fault
state) based on real - time time series input data . As another
example , the one or more models 124 may be trained to
perform clustering on credit card transactions to identify
potentially fraudulent transactions . These examples are non
limiting , and in other implementations the one or more
models 124 are trained to perform other machine learning
tasks .
[0030] In some implementations , after the one or more
models 124 are generated and trained , data indicative of the
one or more models 124 is provided as the training data 130
to update the parameter selector 104. The training data 130
indicates characteristics , such as architecture types , of the
one or more models 124. Updating the parameter selector
104 based on the training data 130 enables the parameter
selector 104 to account for the success of the one or more
models 124 generated by the automated model generation
process 120 .
[0031] In a particular implementation , the parameter
selector 104 updates the set of rules 108 based on the
training data 130 (e.g. , based on the characteristics of the
one or more models 124) . In some implementations , the set
of rules 108 are updated responsive to scores of the one or
more models 124 satisfying a threshold . For example , if
fitness scores of the one or more models 124 satisfy (e.g. , are
greater than or equal to) a first threshold , the set of rules 108
may be updated to indicate a correspondence between the
characteristics 106 and architectural parameters indicating
architectural types of the one or more models 124. If the set
of rules 108 already indicate a correspondence between the
characteristics 106 and the architectural parameters , a
weighting associated with the architectural parameter may
be increased . As another example , if fitness scores of the one
or more models 124 fail to satisfy (e.g. , are less than) a
second threshold , the set of rules 108 may be updated to
indicate a negative correspondence between the character
istics 106 and architectural parameters indicating architec
tural types of the one or more models 124. If the set of rules
108 already indicates a correspondence between the char
acteristics 106 and the architectural parameters , a weighting
associated with the architectural parameters may be
decreased . Thus , the set of rules 108 may be updated to
account for the success (or lack thereof) of the one or more
models 124 .
[0032] In an alternate implementation , the parameter
selector 104 uses the training data 130 as training data to
retrain the trained classifier 110. For example , the training
data 130 may include data corresponding to the character
istics 106 and a label indicating an architectural parameter
corresponding to architectural types of the one or more
models 124. In this example , the training data 130 is used as
labeled training data to update the trained classifier 110. In
a particular implementation , the trained classifier 110 is
updated only if fitness scores of the one or more models 124
satisfy (e.g. , are greater than or equal to) a first threshold .
Additionally , or alternatively , an alternate label (e.g. , indi
cating a negative correspondence) may be used if the fitness
scores of the one or more models 124 fail to satisfy (e.g. , are

less than) a second threshold . Thus , the trained classifier 110
may be trained to account for the success (or lack thereof)
of the one or more models 124 .

[0033] The system 100 enables the automated model gen
eration process 120 to converge on the one or more models
124 faster than other model generation processes . For
example , the architectural parameter 112 may be adjusted
based on the characteristics 106 to increase the probability
that an initial set of models of the automated model gen
eration process 120 includes models having architectural
types that were previously successful for similar input data
sets . These models may be fitter than other types of models
at modeling the input data set 102. Increasing the probability
that models having higher fitness are included in the initial
set of models may decrease the number of epochs needed to
converge on an acceptable neural network (e.g. , the one or
more models 124) , thereby increasing speed of the auto
mated model generation process 120 and decreasing the
amount of processing resources utilized by the automated
model generation process 120. Additionally , because fitter
models are introduced in the initial set of models , the overall
fitness of the one or more models 124 may be improved as
compared to model generation processes that randomly
determine the initial set of models . The architectural param
eter 112 can be adjusted by an amount that still maintains
some randomness in the selection of the initial input set in
order to try models having different architectural parameters
in case there is a type that has not yet been tried for the input
data set 102 that performs better than those that have been
previously tried . Adjusting a mutation parameter , or a hyper
parameter , based on the characteristics 106 can similarly
improve the speed of the automated model generation pro
cess 120 and reduce the amount of processing resources
used by the automated model generation process 120 .
[0034] It will be appreciated that the systems and methods
of the present disclosure may be applicable in various
scenarios , infrastructures , and data environments . As an
illustrative non - limiting example , the input data set 102 may
include timestamped data from a large array of sensors
distributed around a wind farm and may also include time
stamped uptime / downtime data of individual wind turbines .
The system 100 may generate a neural network model that
is configured to predict how likely a wind turbine is to fail .
The neural network model may , in a particular example ,
increase failure lead time from 3-5 days to 30-40 days ,
which can result in reduced downtime and monetary savings
for an operator of the wind farm . The system 100 may be
capable of automatically building similar kinds of models
that predict numerical values or states (e.g. , failures) for
internet of things (IoT) , utilities , and oil / gas infrastructures .
[0035] As another illustrative non - limiting example , the
input data set 102 may include health data and the system
100 may automatically build a model to predict whether a
patient exhibiting certain health conditions is likely to have
a particular ailment . As another illustrative non - limiting
example , the input data set 102 may include financial data
and the system 100 may automatically build a model to
forecast market conditions . As another illustrative non
limiting example , the input data set 102 may include net
work security , network log , and / or malware data , and the
system 100 may automatically build a model to implement
firewall filtering rules , endpoint anti - malware detection , a
bot / botnet detector , etc.

US 2020/0175378 A1 Jun . 4 , 2020
6

[0036] As another illustrative non - limiting example , the
system 100 may generate a neural network to output aircraft
auto - pilot operations (e.g. throttle , steer , flaps , etc.) based on
reinforcement learning . In such an example , the reward
function optimized by the neural network may involve
aircraft altitude , aircraft distance traveled , etc. As yet
another example , the system 100 may generate a neural
network to predict oil / gas industry workover events (e.g. ,
events that lead to major maintenance or remedial operations
on a rig or well , which can lead to considerable production
time lost and expense incurred) .
[0037] Yet another example of a problem set that can be
solved with neural networks generated with the system 100
described herein is data fusion . In this case , data aggregated
from a large number of sensors of various types , including
multiple sensors of the same type , is collected and used to
identify an object , action or phenomenon that would not be
entirely detectable with any one sensor or with a small
subset of sensors . For example , the detection of a submarine
may be performed based on the inputs received from mul
tiple sonar buoys which provide input to the generated
neural network . Another example may be the identification
of a particular type of aircraft based on both the audio
signature and a visual view (which may be partially
obscured or have a low resolution) .
[0038] Referring to FIGS . 2A and 2B , particular examples
of selecting architectural parameters to adjust based on
characteristics of input data are shown . In a particular
implementation , the architectural parameters are set by the
parameter selector 104 of FIG . 1 .
[0039] FIG . 2A illustrates a first example 200 of selecting
architectural parameters to be adjusted based on character
istics of input data . In the first example 200 , characteristics
of a first input data set 202 are identified , at 210. For
example , data types of the first input data set 202 may be
identified , a type of problem corresponding to the first input
data set 202 may be identified , timestamps may be identi
fied , labels may be identified , other characteristics may be
identified , or a combination thereof . The characteristics of
the first input data set 202 may be identified by the parameter
selector 104 of FIG . 1 .
[0040] In the first example 200 , the first input data set 202
corresponds to a standard (or " flat ") supervised problem
204. For example , the first input data set 202 may include
labeled data indicating that the problem associated with the
first input data set 202 is the supervised problem 204. After
identifying the characteristics of the first input data set 202
(e.g. , the supervised problem 204) , the characteristics are
provided to a set of rules (or a trained classifier) at 212 to
select an architectural parameter from the set of architectural
parameters 220. The set of rules (or the trained classifier)
may include or correspond to the set of rules 108 (or the
trained classifier 110) of FIG . 1. The set of architectural
parameters 220 may include a first architectural parameter
222 (corresponding to densely connected feedforward lay
ers) , a second architectural parameter 224 (corresponding to
recurrent structures , such as RNNs , LSTM layers , GRUS ,
etc.) , a third architectural parameter 226 (corresponding to
pooling - based 2D convolutional neural networks) , and a
fourth architectural parameter 228 (corresponding to daisy
chains of causal convolutional blocks) .
[0041] Based on the set of rules (or the trained classifier) ,
it is determined that densely connected feedforward layers
are successful at modeling standard supervised problems .

Thus , based on the characteristics of the first input data set
202 , the first architectural parameter 222 is adjusted to
increase the probability that an initial set of models used by
a weighted randomization process (e.g. , the automated
model generation process 120 of FIG . 1) includes models
having densely connected feedforward layers . This may
improve the speed with which the weighted randomization
process converges on an acceptable neural network (e.g. , a
neural network that satisfies a fitness or other criteria) .
[0042] FIG . 2B illustrates a second example 230 of select
ing architectural parameters to be adjusted based on char
acteristics of input data . In the second example 230 , char
acteristics of a second input data set 206 are identified , at
210. For example , data types of the second input data set 206
may be identified , a type of problem corresponding to the
second input data set 206 may be identified , timestamps may
be identified , labels may be identified , other characteristics
may be identified , or a combination thereof . The character
istics of the second input data set 206 may be identified by
the parameter selector 104 of FIG . 1 .
[0043] In the second example 230 , the second input data
set 206 corresponds to an industrial time - series problem
208. For example , the second input data set 206 may include
timestamped measurement data indicating that the problem
associated with the second input data set 206 is the industrial
time - series problem 208. After identifying the characteris
tics of the second input data set 206 (e.g. , the industrial
time - series problem 208) , the characteristics are provided to
a set of rules (or a trained classifier) at 212 to select an
architectural parameter from the set of architectural param
eters 220 .

[0044] Based on the set of rules (or the trained classifier) ,
it is determined that daisy chains of causal convolutional
blocks are successful at modeling industrial time - series
problems . Thus , based on the characteristics of the second
input data set 206 , the fourth architectural parameter 228 is
adjusted to increase the probability that an initial set of
models used by a weighted randomization process (e.g. , the
automated model generation process 120 of FIG . 1) includes
models having daisy chains of causal convolutional blocks .
This may improve the speed with which the weighted
randomization process converges on an acceptable neural
network (e.g. , a neural network that satisfies a fitness or
other criteria) .
[0045] Referring to FIG . 3 , a particular example of a
grammar 300 that indicates architectural parameters for a
neural network is shown . The grammar 300 indicates archi
tectural parameter (s) that can be adjusted by the parameter
selector 104 of FIG . 1. Because the grammar 300 indicates
particular architectural parameters of neural networks , the
grammar 300 can be referred to as defining a search space
for a neural network architecture .
[0046] The grammar 300 includes production rules 302 .
The production rules 302 define which neural network
substructures are allowed to evolve . In the particular
example illustrated in FIG . 3 , a neural network (N) includes
two modules (MODULE) . Any number of these residual
blocks may be strung together to describe a topology or
architecture of a neural network . Each module includes a
linear layer , LSTM layers , or a combination thereof . The
linear layer is defined by a particular size and an activation
type . The LSTM layers are defined by a number of layers
and a size .

US 2020/0175378 A1 Jun . 4 , 2020
7

[0047] In the particular example illustrated in FIG . 3 , the
size of a linear layer (or LSTM layers) is defined by a
number , the number of layers of the LSTM layers) is
defined by a number , and the activation type is defined by a
particular type of activation function . To illustrate , the
numbers include integers from 1 to m , where m is a
maximum number . M may be any maximum allowed size of
a neural network layer . The activation types include a
rectified linear unit (relu) function , an identity function , a
gaussian function , or a sigmoid function . In other imple
mentations , the activation types include other types of
activation functions .
[0048] The grammar 300 further includes terminal sym
bols 304. The terminal symbols 304 include the elementary
building blocks that are used to produce the neural network
structures . In the particular example illustrated in FIG . 3 , the
terminal symbols 304 include the number and the activation
type .
[0049] In the particular example illustrated in FIG . 3 , the
grammar 300 evolves RNNs and can be used for sequence
problems . In other implementations , other grammars
describe other neural network architectures , such as convo
lutional neural networks , densely connected feedforward
layers , pooling - based 2D convolutional neural networks ,
daisy chains of causal convolutional blocks , other types of
recurrent structures (e.g. , GRUs) , other types of neural
networks , or a combination thereof . As described with
reference to FIG . 1 , architectural parameters associated with
the grammar 300 (or other grammars) can be used to change
the probability that models having particular types of archi
tectures are generated by the automated model generation
process 120 , which can cause the automated model genera
tion process 120 to converge faster on an acceptable model
(e.g. , a model that satisfies a fitness or other criteria) .
[0050] Referring to FIG . 4 , a particular implementation of
a system 400 for determining a topology of a neural network
is shown . In FIG . 4 , a neural network topology may be
“ evolved ” using a genetic algorithm 410. The genetic algo
rithm 410 automatically generates a neural network based on
a particular data set , such as an illustrative input data set 402 ,
and based on a recursive neuroevolutionary search process .
In an illustrative example , the input data set 402 is the input
data set 102 shown in FIG . 1. During each iteration of the
search process (also called an “ epoch ” or “ generation ” of the
genetic algorithm 410) , an input set 420 (or population) is
" evolved ” to generate an output set 430 (or population) .
Each member of the input set 420 and the output set 430 is
a model (e.g. , a data structure) that represents a neural
network . Thus , neural network topologies can be evolved
using the genetic algorithm 410. The input set 420 of an
initial epoch of the genetic algorithm 410 may be randomly
or pseudo - randomly generated . In a particular implementa
tion , the input set 420 of the initial epoch of the genetic
algorithm 410 is generated based on one or more architec
tural parameters , which weight the selection of the input set
420 toward selection of particular neural network architec
tures , as described with reference to FIG . 1. After that , the
output set 430 of one epoch may be the input set 420 of the
next (non - initial) epoch , as further described herein .
[0051] The input set 420 and the output set 430 each
includes a plurality of models , where each model includes
data representative of a neural network . For example , each
model may specify a neural network by at least a neural
network topology , a series of activation functions , and

connection weights . The topology of a neural network
includes a configuration of nodes of the neural network and
connections between such nodes . The models may also be
specified to include other parameters , including but not
limited to bias values / functions and aggregation functions .
[0052] In some examples , a model of a neural network is
a data structure that includes node data and connection data .
The node data for each node of a neural network may
include at least one of an activation function , an aggregation
function , or a bias (e.g. , a constant bias value or a bias
function) . The activation function of a node may be a step
function , sine function , continuous or piecewise linear func
tion , sigmoid function , hyperbolic tangent function , or
another type of mathematical function that represents a
threshold at which the node is activated . The biological
analog to activation of a node is the firing of a neuron . The
aggregation function is a mathematical function that com
bines (e.g. , sum , product , etc.) input signals to the node . An
output of the aggregation function may be used as input to
the activation function . The bias is a constant value or
function that is used by the aggregation function and / or the
activation function to make the node more or less likely to
be activated . The connection data for each connection in a
neural network includes at least one of a node pair or a
connection weight . For example , if a neural network
includes a connection from node N1 to node N2 , then the
connection data for that connection may include the node
pair < N1 , N2 > . The connection weight is a numerical
quantity that influences if and / or how the output of N1 is
modified before being input at N2 . In the example of a
recurrent neural network , a node may have a connection to
itself (e.g. , the connection data may include the node pair
< N1 , N1 >) .
[0053] The genetic algorithm 410 includes or is otherwise
associated with a fitness function 440 , a stagnation criterion
450 , a crossover operation 460 , and a mutation operation
470. The fitness function 440 is an objective function that
can be used to compare the models of the input set 420. In
some examples , the fitness function 440 is based on a
frequency and / or magnitude of errors produced by testing a
model on the input data set 402. As a simple example ,
assume the input data set 402 includes ten rows , that the
input data set 402 includes two columns denoted A and B ,
and that the models illustrated in FIG . 4 represent neural
networks that output a predicted value of B given an input
value of A. In this example , testing a model may include
inputting each of the ten values of A from the input data set
402 , comparing the predicted values of B to the correspond
ing actual values of B from the input data set 402 , and
det ng if and / or by how much the two predicted and
actual values of B differ . To illustrate , if a particular neural
network correctly predicted the value of B for nine of the ten
rows , then the a relatively simple fitness function 440 may
assign the corresponding model a fitness value of 9 / 10 = 0.9 .
It is to be understood that the previous example is for
illustration only and is not to be considered limiting . In some
aspects , the fitness function 440 may be based on factors
unrelated to error frequency or error rate , such as number of
input nodes , node layers , hidden layers , connections , com
putational complexity , etc.
[0054] In a particular aspect , fitness evaluation of models
may be performed in parallel . To illustrate , the illustrated
system may include additional devices , processors , cores ,
and / or threads 490 to those that execute the genetic algo

US 2020/0175378 A1 Jun . 4 , 2020
8

now

rithm 410. These additional devices , processors , cores , and /
or threads 490 may test model fitness in parallel based on the
input data set 402 and may provide the resulting fitness
values to the genetic algorithm 410 .
[0055] In a particular aspect , the genetic algorithm 410
may be configured to perform speciation . For example , the
genetic algorithm 410 may be configured to cluster the
models of the input set 420 into species based on “ genetic
distance ” between the models . Because each model repre
sents a neural network , the genetic distance between two
models may be based on differences in nodes , activation
functions , aggregation functions , connections , connection
weights , etc. of the two models . In an illustrative example ,
the genetic algorithm 410 may be configured to serialize a
model into a string , such as a normalized vector . In this
example , the genetic distance between models may be
represented by a binned hamming distance between the
normalized vectors , where each bin represents a subrange of
possible values .
[0056] Because the genetic algorithm 410 is configured to
mimic biological evolution and principles of natural selec
tion , it may be possible for a species of models to become
“ extinct . ” The stagnation criterion 450 may be used to
determine when a species should become extinct , as further
described below . The crossover operation 460 and the muta
tion operation 470 may be highly stochastic under certain
constraints and a defined set of probabilities optimized for
model building , which may produce reproduction operations
that can be used to generate the output set 430 , or at least a
portion thereof , from the input set 420. Crossover and
mutation are further described below .
[0057] Operation of the illustrated system is
described . It is to be understood , however , that in alternative
implementations certain operations may be performed in a
different order than described . Moreover , operations
described as sequential may be instead be performed at least
partially concurrently , and operations described as being
performed at least partially concurrently may instead be
performed sequentially .
[0058] During a configuration stage of operation , a user
may specify the input data set 402 or data sources from
which the input data set 402 is determined . The user may
also specify a goal for the genetic algorithm 410. For
example , if the genetic algorithm 410 is being used to
determine a topology of the one or more models 124 , the
user may provide one or more characteristics of the neural
networks . The system 400 may then constrain models pro
cessed by the genetic algorithm 410 to those that have the
one or more characteristics .
[0059] Thus , in particular implementations , the user can
configure various aspects of the models that are to be
generated / evolved by the genetic algorithm 410. Configu
ration input may indicate a particular data field of the data
set that is to be included in the model or a particular data
field of the data set that is to be omitted from the model , may
constrain allowed model topologies (e.g. , to include no more
than a specified number of input nodes output nodes , no
more than a specified number of hidden layers , no recurrent
loops , etc.) .
[0060] Further , in particular implementations , the user can
configure aspects of the genetic algorithm 410 , such as via
input to graphical user interfaces (GUI) . For example , the
user may provide input to limit a number of epochs that will
be executed by the genetic algorithm 410. Alternatively , the

user may specify a time limit indicating an amount of time
that the genetic algorithm 410 has to execute before output
ting a final output model , and the genetic algorithm 410 may
determine a number of epochs that will be executed based on
the specified time limit . To illustrate , an initial epoch of the
genetic algorithm 410 may be timed (e.g. , using a hardware
or software timer at the computing device executing the
genetic algorithm 410) , and a total number of epochs that are
to be executed within the specified time limit may be
determined accordingly . As another example , the user may
constrain a number of models evaluated in each epoch , for
example by constraining the size of the input set 420 and / or
the output set 430 .
[0061] After configuration operations are performed , the
genetic algorithm 410 may begin execution based on the
input data set 402. Parameters of the genetic algorithm 410
may include but are not limited to , mutation parameter (s) , a
maximum number of epochs the genetic algorithm 410 will
be executed , a threshold fitness value that results in termi
nation of the genetic algorithm 410 even if the maximum
number of generations has not been reached , whether par
allelization of model testing or fitness evaluation is enabled ,
whether to evolve a feedforward or recurrent neural net
work , etc. As used herein , a “ mutation parameter " affects the
likelihood of a mutation operation occurring with respect to
a candidate neural network , the extent of the mutation
operation (e.g. , how many bits , bytes , fields , characteristics ,
etc. change due to the mutation operation) , and / or the type
of the mutation operation (e.g. , whether the mutation
changes a node characteristic , a link characteristic , etc.) . In
some examples , the genetic algorithm 410 may utilize a
single mutation parameter or set of mutation parameters for
all models . In such examples , the mutation parameter may
impact how often , how much , and / or what types of muta
tions can happen to any model of the genetic algorithm 410 .
In alternative examples , the genetic algorithm 410 maintains
multiple mutation parameters or sets of mutation param
eters , such as for individual or groups of models or species .
In particular aspects , the mutation parameter (s) affect cross
over and / or mutation operations , which are further described
herein . In a particular implementation , the mutation param
eter is adjusted by the system 400 based on characteristics of
the input data set 402 , as described with reference to FIG . 1 .
[0062] The genetic algorithm 410 may automatically gen
erate an initial set of models based on the input data set 402
and configuration input . Each model may be specified by at
least a neural network topology , an activation function , and
link weights . The neural network topology may indicate an
arrangement of nodes (e.g. , neurons) . For example , the
neural network topology may indicate a number of input
nodes , a number of hidden layers , a number of nodes per
hidden layer , and a number of output nodes . The neural
network topology may also indicate the interconnections
(e.g. , axons or links) between nodes . In some aspects , layers
nodes may be used instead of or in addition to single nodes .
Examples of layer types include long short - term memory
(LSTM) layers , gated recurrent units (GRU) layers , fully
connected layers , and convolutional neural network (CNN)
layers . In such examples , layer parameters may be involved
instead of or in addition to node parameters .
[0063] The initial set of models may be input into an initial
epoch of the genetic algorithm 410 as the input set 420 , and
at the end of the initial epoch , the output set 430 generated
during the initial epoch may become the input set 420 of the

US 2020/0175378 A1 Jun . 4 , 2020
9

next epoch of the genetic algorithm 410. In some examples ,
the input set 420 may have a specific number of models .
[0064] For the initial epoch of the genetic algorithm 410 ,
the topologies of the models in the input set 420 may be
randomly or pseudo - randomly generated within constraints
specified by any previously input configuration settings or
by one or more architectural parameters . Accordingly , the
input set 420 may include models with multiple distinct
topologies . For example , a first model may have a first
topology , including a first number of input nodes associated
with a first set of data parameters , a first number of hidden
layers including a first number and arrangement of hidden
nodes , one or more output nodes , and a first set of intercon
nections between the nodes . In this example , a second model
of epoch may have a second topology , including a second
number of input nodes associated with a second set of data
parameters , a second number of hidden layers including a
second number and arrangement of hidden nodes , one or
more output nodes , and a second set of interconnections
between the nodes . The first model and the second model
may or may not have the same number of input nodes and / or
output nodes .
[0065] The genetic algorithm 410 may automatically
assign an activation function , an aggregation function , a
bias , connection weights , etc. to each model of the input set
420 for the initial epoch . In some aspects , the connection
weights are assigned randomly or pseudo - randomly . In some
implementations , a single activation function is used for
each node of a particular model . For example , a sigmoid
function may be used as the activation function of each node
of the particular model . The single activation function may
be selected based on configuration data . For example , the
configuration data may indicate that a hyperbolic tangent
activation function is to be used or that a sigmoid activation
function is to be used . Alternatively , the activation function
may be randomly or pseudo - randomly selected from a set of
allowed activation functions , and different nodes of a model
may have different types of activation functions . In other
implementations , the activation function assigned to each
node may be randomly or pseudo - randomly selected (from
the set of allowed activation functions) for each node the
particular model . Aggregation functions may similarly be
randomly or pseudo - randomly assigned for the models in the
input set 420 of the initial epoch . Thus , the models of the
input set 420 of the initial epoch may have different topolo
gies (which may include different input nodes corresponding
to different input data fields if the data set includes many
data fields) and different connection weights . Further , the
models of the input set 420 of the initial epoch may include
nodes having different activation functions , aggregation
functions , and / or bias values / functions .
[0066] Each model of the input set 420 may be tested
based on the input data set 402 to determine model fitness .
For example , the input data set 402 may be provided as input
data to each model , which processes the input data set
(according to the network topology , connection weights ,
activation function , etc. , of the respective model) to generate
output data . The output data of each model may be evaluated
using the fitness function 440 to determine how well the
model modeled the input data set 402 (i.e. , how conducive
each model is to clustering the input data) . In some
examples , fitness of a model based at least in part on

reliability of the model , performance of the model , com
plexity (or sparsity) of the model , size of the latent space , or
a combination thereof .
[0067] In some examples , the genetic algorithm 410 may
employ speciation . In a particular aspect , a species ID of
each of the models may be set to a value corresponding to
the species that the model has been clustered into . Next , a
species fitness may be determined for each of the species .
The species fitness of a species may be a function of the
fitness of one or more of the individual models in the
species . As a simple illustrative example , the species fitness
of a species may be the average of the fitness of the
individual models in the species . As another example , the
species fitness of a species may be equal to the fitness of the
fittest or least fit individual model in the species . In alter
native examples , other mathematical functions may be used
to determine species fitness . The genetic algorithm 410 may
maintain a data structure that tracks the fitness of each
species across multiple epochs . Based on the species fitness ,
the genetic algorithm 410 may identify the “ fittest ” species ,
which may also be referred to as “ elite species . ” Different
numbers of elite species may be identified in different
embodiments .
[0068] In a particular aspect , the genetic algorithm 410
uses species fitness to determine if a species has become
stagnant and is therefore to become extinct . As an illustrative
non - limiting example , the stagnation criterion 450 may
indicate that a species has become stagnant if the fitness of
that species remains within a particular range (e.g. , +/- 5 %)
for a particular number (e.g. , 5) epochs . If a species satisfies
a stagnation criterion , the species and all underlying models
may be removed from the genetic algorithm 410 .
[0069] The fittest models of each " elite species ” may be
identified . The fittest models overall may also be identified .
An “ overall elite ” need not be an “ elite member , " e.g. , may
come from a non - elite species . Different numbers of “ elite
members ” per species and " overall elites ” may be identified
in different embodiments . "
[0070] The output set 430 of the epoch may be generated .
In the illustrated example , the output set 430 includes the
same number of models as the input set 420. The output set
430 may include each of the “ overall elite ” models and each
of the " elite member " models . Propagating the “ overall
elite ” and “ elite member " models to the next epoch may
preserve the “ genetic traits ” resulted in caused such models
being assigned high fitness values .
[0071] The rest of the output set 430 may be filled out by
random reproduction using the crossover operation 460
and / or the mutation operation 470. After the output set 430
is generated , the output set 430 may be provided as the input
set 420 for the next epoch of the genetic algorithm 410 .
[0072] During a crossover operation 460 , a portion of one
model is combined with a portion of another model , where
the size of the respective portions may or may not be equal .
When normalized vectors are used to represent neural net
works , the crossover operation may include concatenating
bits / bytes / fields 0 to p of one normalized vector with bits /
bytes / fields p + 1 to q of another normalized vectors , where p
and q are integers and p + q is equal to the size of the
normalized vectors . When decoded , the resulting normal
ized vector after the crossover operation produces a neural
network that differs from each of its " parent " neural net

US 2020/0175378 A1 Jun . 4 , 2020
10

works in terms of topology , activation function , aggregation
function , bias value / function , link weight , or any combina
tion thereof .
[0073] Thus , the crossover operation 460 may be a ran
dom or pseudo - random operator that generates a model of
the output set 430 by combining aspects of a first model of
the input set 420 with aspects of one or more other models
of the input set 420. For example , the crossover operation
460 may retain a topology of hidden nodes of a first model
of the input set 420 but connect input nodes of a second
model of the input set to the hidden nodes . As another
example , the crossover operation 460 may retain the topol
ogy of the first model of the input set 420 but use one or
more activation functions of the second model of the input
set 420. In some aspects , rather than operating on models of
the input set 420 , the crossover operation 460 may be
performed on a model (or models) generated by mutation of
one or more models of the input set 420. For example , the
mutation operation 470 may be performed on a first model
of the input set 420 to generate an intermediate model and
the crossover operation may be performed to combine
aspects of the intermediate model with aspects of a second
model of the input set 420 to generate a model of the output
set 430 .
[0074] During the mutation operation 470 , a portion of a
model is randomly modified . The frequency , extent , and / or
type of mutations may be based on the mutation parameter
(s) described above , which may be user - defined , randomly
selected / adjusted , or adjusted based on characteristics of the
input set 420. When normalized vector representations are
used , the mutation operation 470 may include randomly
modifying the value of one or more bits / bytes / portions in a
normalized vector .
[0075] The mutation operation 470 may thus be a random
or pseudo - random operator that generates or contributes to
a model of the output set 430 by mutating any aspect of a
model of the input set 420. For example , the mutation
operation 470 may cause the topology of a particular model
of the input set to be modified by addition or omission of one
or more input nodes , by addition or omission of one or more
connections , by addition or omission of one or more hidden
nodes , or a combination thereof . As another example , the
mutation operation 470 may cause one or more activation
functions , aggregation functions , bias values / functions , and /
or or connection weights to be modified . In some aspects ,
rather than operating on a model of the input set , the
mutation operation 470 may be performed on a model
generated by the crossover operation 460. For example , the
crossover operation 460 may combine aspects of two models
of the input set 420 to generate an intermediate model and
the mutation operation 470 may be performed on the inter
mediate model to generate a model of the output set 430 .
[0076] The genetic algorithm 410 may continue in the
manner described above through multiple epochs until a
specified termination criterion , such as a time limit , a
number of epochs , or a threshold fitness value (e.g. , of an
overall fittest model) , is satisfied . When the termination
criterion is satisfied , an overall fittest model of the last
executed epoch may be selected and output as reflecting the
topology of the one or more models 124 of FIG . 1. The
aforementioned genetic algorithm - based procedure may be
used to determine the topology of zero , one , or more than
one neural network of the one or more models 124 .

[0077] Referring to FIG . 5 , a particular example of a
method 500 of operation of the system 100 is shown . The
method 500 includes receiving , by a processor , an input data
set , at 502. The input data set includes a plurality of features .
For example , the processor receives the input data set 102 of
FIG . 1 .

[0078] The method 500 includes determining , by the pro
cessor , one or more characteristics of the input data set , at
504. For example , the parameter selector 104 (e.g. , the
processor) determines the characteristics 106 of the input
data set 102 .

[0079] The method 500 includes , based on the one or more
characteristics , adjusting , by the processor , one or more
architectural parameters of an automated model generation
process , at 506. The automated model generation process is
configured to generate a plurality of models using a ran
domization process . The one or more architectural param
eters weight the randomization process to adjust a probabil
ity of generation of models having particular architectural
features . To illustra the parameter selector 104 adjusts the
architectural parameter 112 to adjust a probability of the
plurality of models 122 including models having architec
tural types that correspond to the architectural parameter
112 .

[0080] The method 500 further includes executing , by the
processor , the automated model generation process to output
a model , at 508. The model includes data representative of
a neural network . For example , the automated model gen
eration process 120 is executed to generate and train the one
or more models 124 .
[0081] In a particular implementation , the particular archi
tectural features include an initial model type used by the
weighted randomization process . For example , the architec
tural parameter 112 may correspond to an initial model type
included in the plurality of models 122 (e.g. , in an initial set
of models of an initial epoch) . The initial model type may
include feedforward models , recurrent models , pooling
based two - dimensional convolutional models , daisy - chains
of causal convolutional models , other types of models , or a
combination thereof .

[0082] In a particular implementation , the one or more
characteristics indicate a type of problem associated with the
input data set , a data type associated with the input data set ,
or a combination thereof . For example , the characteristics
106 may indicate that the input data set 102 includes image
data (e.g. , is associated with an image problem) or may
indicate that the input data set 102 is associated with a
classification problem (e.g. , because the input data set
includes labeled data) .
[0083] In a particular implementation , the one or more
architectural parameters include a mutation parameter , and
at least one model of the plurality of models generated using
the weighted randomization process is modified based on the
mutation parameter . For example , the mutation operation
470 may be adjusted by the parameter selector 104 of FIG .
1 based on the characteristics 106 .
[0084] In a particular implementation , the method 500
further includes , based on the one or more characteristics ,
adjusting , by the processor , one or more training hyperpa
rameters of the automated model generation process . The
one or more training hyperparameters control one or more
aspects of training of the model . For example , a training

US 2020/0175378 A1 Jun . 4 , 2020
11

hyperparameter , such as learning rate , can be adjusted based
on the characteristics 106 , similar to adjusting the architec
tural parameter 112 .
[0085] In a particular implementation , adjusting the one or
more architectural parameters includes setting a first archi
tectural parameter to a first value based on the one or more
characteristics and setting a second architectural parameter
to a second value based on the one or more characteristics .
The first architectural parameter is associated with a prob
ability that models of a first epoch of the weighted random
ization process have a first model type , and the second
architectural parameter is associated with a probability that
models of the first epoch of the weighted randomization
process have a second type . For example , if the character
istics 106 have a positive correspondence to a first archi
tectural parameter and a negative correspondence to a sec
ond architectural parameter , the first architectural parameter
can be adjusted to increase the probability that models of an
initial epoch have a first type and the second architectural
parameter can be adjusted to decrease the probability that
modes of the initial epoch have a second type .
[0086] In a particular implementation , adjusting the one or
more architectural parameters based on the one or more
characteristics includes comparing the one or more charac
teristics to a set of rules that maps data set characteristics to
architectural parameters . The set of rules maps the data set
to characteristics of grammars , and the grammars indicate
corresponding architectural parameters . For example , the set
of rules 108 maps characteristics of data sets to grammars ,
such as the grammar 300 of FIG . 3 , that indicate particular
architectural parameters . Additionally , the method 500 may
include updating the set of rules based on characteristics of
the model . For example , the set of rules 108 may be updated
based on the training data 130 such that the set of rules 108
takes into account the success (or lack thereof) of the one or
more models 124. In a particular implementation , the set of
rules are updated responsive to a score of the model satis
fying a threshold . For example , if fitness scores of the one
or more models 124 satisfy a threshold , the set of rules 108
is updated based on the training data 130 .
[0087] In a particular implementation , adjusting the one or
more architectural parameters based on the one or more
characteristics includes providing data indicative of the one
or more characteristics to a particular neural network con
figured to identify one or more architectural parameters for
adjustment based on the data indicative of the one or more
characteristics . For example , the particular neural network
may include or correspond to the trained classifier 110 of
FIG . 1 that is configured to identify architectural parameter
(s) based on characteristics of input sets of data . The method
500 may further include retraining the particular neural
network based on training data . The training data indicates
characteristics of the model . For example , data indicative of
the one or more models 124 may be used as the training data
130 to further train the trained classifier 110 .
[0088] In a particular implementation , executing the auto
mated model generation process includes , based on a fitness
function , selecting , by the processor , a subset of models
from the plurality of models (the plurality of models based
on a genetic algorithm and corresponding to a first epoch of
the genetic algorithm) , performing , by the processor , at least
one genetic operation of the genetic algorithm with respect
to at least one model of the subset to generate a trainable
model , sending the trainable model to an optimization

trainer , and adding a trained model received from the
optimization trainer as an input to a second epoch of the
genetic algorithm that is subsequent to the first epoch . For
example , a subset of the input set 420 of FIG . 4 may be
selected for performance of at least one genetic operation ,
such as the crossover operation 460 or the mutation opera
tion 470 , and at least one model (e.g. , the trainable model
422) may be provided to the backpropagation trainer 480 for
training into the trained model 482. The fitness function may
be evaluated based on the input data set , and the optimiza
tion trainer may be configured to use a portion of the input
data set to train the trainable model .

[0089] The method 500 enables generation and training of
one or more models faster , and using fewer processing
resources , than other model generation techniques . For
example , by adjusting one or more architectural parameters
to adjust the probability that models having certain types of
architectures are included in an input set of an automated
model generation process , the method 500 provides fitter
models than would otherwise be included using a purely
random process . Providing fitter models reduces the number
of epochs used to converge on the one or more models ,
which increases the speed and decreases the processing
resources used by the automated model generation process .
[0090] It is to be understood that the division and ordering
of steps described herein shown in the flowchart of FIG . 5
is for illustrative purposes only and is not be considered
limiting . In alternative implementations , certain steps may
be combined and other steps may be subdivided into mul
tiple steps . Moreover , the ordering of steps may change .
[0091] In conjunction with the described aspects , a
method includes receiving , by a processor , an input data set .
The input data set includes a plurality of features . The
method includes determining , by the processor , one or more
characteristics of the input data set . The method includes ,
based on the one or more characteristics , adjusting , by the
processor , one or more architectural parameters of an auto
mated model generation process . The automated model
generation process is configured to generate a plurality of
models using a weighted randomization process . The one or
more architectural parameters weight the weighted random
ization process to adjust a probability of generation of
models having particular architectural features . The method
further includes executing , by the processor , the automated
model generation process to output a model . The model
includes data representative of a neural network .
[0092] In conjunction with the described aspects , a com
puting device includes a processor and a memory storing
instructions executable by the processor to perform opera
tions including receiving an input data set . The input data set
includes a plurality of features . The operations include
determining one or more characteristics of the input data set .
The operations include , based on the one or more charac
teristics , adjusting one or more architectural parameters of
an automated model generation process . The automated
model generation process is configured to generate a plu
rality of models using a weighted randomization process .
The one or more architectural parameters weight the
weighted randomization process to adjust a probability of
generation of models having particular architectural fea
tures . The operations further include executing the auto
mated model generation process to output a model . The
model includes data representative of a neural network .

US 2020/0175378 A1 Jun . 4 , 2020
12

[0093] In a particular implementation , the particular archi
tectural features include an initial model type used by the
weighted randomization process , and the initial model type
includes feedforward models , recurrent models , pooling
based two - dimensional convolutional models , daisy - chains
of convolutional models , or a combination thereof . For
example , the architectural parameter 112 may include an
initial model type , and the initial model type may include
feedforward models , recurrent models , pooling - based two
dimensional convolutional models , daisy - chains of convo
lutional models , or a combination thereof . Additionally , or
alternatively , the one or more characteristics indicate a type
of problem associated with the input data set , a data type
associated with the input data set , or a combination thereof .
For example , the characteristics 106 may indicate a type of
problem associated with the input data set 102 , a data type
associated with the input data set 102 , or a combination
thereof .
[0094] In conjunction with the described aspects , a com
puter - readable storage device stores instructions that , when
executed , cause a computer to perform operations including
receiving an input data set . The input data set includes a
plurality of features . The operations include determining one
or more characteristics of the input data set . The operations
include , based on the one or more characteristics , adjusting
one or more architectural parameters of an automated model
generation process . The automated model generation pro
cess is configured to generate a plurality of models using a
weighted randomization process . The one or more architec
tural parameters weight the weighted randomization process
to adjust a probability of generation of models having
particular architectural features . The operations further
include executing the automated model generation process
to output a model . The model includes data representative of
a neural network .
[0095] In a particular implementation , the operations fur
ther include setting a first architectural parameter to a first
value based on the one or more characteristics . The first
architectural parameter is associated with a probability that
models of a first epoch of the weighted randomization
process have a first model type . For example , the architec
tural parameter 112 can be set , based on the characteristics
106 , to a value that increases (or decreases) a probability that
models of a first epoch of the automated model generation
process 120 have a first model type . Additionally , or alter
natively , the operations further include updating a set of
rules or a trained classifier based on a data set indicating a plurality of previously - generated models and characteristics
of input data associated with the plurality of previously
generated models . The set of rules or the trained classifier is
used to determine the one or more architectural parameters .
For example , the set of rules 108 or the trained classifier 110
may be generated (and / or trained) based on data indicating
a plurality of previously - generated models and characteris
tics of input data associated with the plurality of previously
generated models .
[0096] The systems and methods illustrated herein may be
described in terms of functional block components , screen
shots , optional selections and various processing steps . It
should be appreciated that such functional blocks may be
realized by any number of hardware and / or software com
ponents configured to perform the specified functions .
[0097] For example , the system may employ various inte
grated circuit components , e.g. , memory elements , process

ing elements , logic elements , look - up tables , and the like ,
which may carry out a variety of functions under the control
of one or more microprocessors or other control devices .
Similarly , the software elements of the system may be
implemented with any programming or scripting language
such as C , C ++ , C # , Java , JavaScript , VBScript , Macro
media Cold Fusion , COBOL , Microsoft Active Server
Pages , assembly , PERL , PHP , AWK , Python , Visual Basic ,
SQL Stored Procedures , PL / SQL , any UNIX shell script ,
and extensible markup language (XML) with the various
algorithms being implemented with any combination of data
structures , objects , processes , routines or other program
ming elements . Further , it should be noted that the system
may employ any number of techniques for data transmis
sion , signaling , data processing , network control , and the
like .
[0098] The systems and methods of the present disclosure
may be embodied as a customization of an existing system ,
an add - on product , a processing apparatus executing
upgraded software , a standalone system , a distributed sys
tem , a method , a data processing system , a device for data
processing , and / or a computer program product . Accord
ingly , any portion of the system or a module may take the
form of a processing apparatus executing code , an internet
based (e.g. , cloud computing) embodiment , an entirely hard
ware embodiment , or an embodiment combining aspects of
the internet , software and hardware . Furthermore , the sys
tem may take the form of a computer program product on a
computer - readable storage medium or device having com
puter - readable program code (e.g. , instructions) embodied
or stored in the storage medium or device . Any suitable
computer - readable storage medium or device may be uti
lized , including hard disks , CD - ROM , optical storage
devices , magnetic storage devices , and / or other storage
media . Thus , also not shown in FIG . 1 , the system 100 may
be implemented using one or more computer hardware
devices (which may be communicably coupled via local
and / or wide - area networks) that include one or more pro
cessors , where the processor (s) execute software instruc
tions corresponding to the various components of FIG . 1 .
Alternatively , one or more of the components of FIG . 1 may
be implemented using a hardware device , such as a field
programmable gate array (FPGA) device , an application
specific integrated circuit (ASIC) device , etc. As used
herein , a “ computer - readable storage medium ” or “ com
puter - readable storage device ” is not a signal .
[0099] Systems and methods may be described herein with
reference to screen shots , block diagrams and flowchart
illustrations of methods , apparatuses (e.g. , systems) , and
computer media according to various aspects . It will be
understood that each functional block of a block diagrams
and flowchart illustration , and combinations of functional
blocks in block diagrams and flowchart illustrations , respec
tively , can be implemented by computer program instruc
tions .
[0100] Computer program instructions may be loaded
onto a computer or other programmable data processing
apparatus to produce a machine , such that the instructions
that execute on the computer or other programmable data
processing apparatus create means for implementing the
functions specified in the flowchart block or blocks . These
computer program instructions may also be stored in a
computer - readable memory or device that can direct a
computer or other programmable data processing apparatus

US 2020/0175378 A1 Jun . 4 , 2020
13

to function in a particular manner , such that the instructions
stored in the computer - readable memory produce an article
of manufacture including instruction means which imple
ment the function specified in the flowchart block or blocks .
The computer program instructions may also be loaded onto
a computer or other programmable data processing appara
tus to cause a series of operational steps to be performed on
the computer or other programmable apparatus to produce a
computer - implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide steps for implementing the functions
specified in the flowchart block or blocks .
[0101] Accordingly , functional blocks of the block dia
grams and flowchart illustrations support combinations of
means for performing the specified functions , combinations
of steps for performing the specified functions , and program
instruction means for performing the specified functions . It
will also be understood that each functional block of the
block diagrams and flowchart illustrations , and combina
tions of functional blocks in the block diagrams and flow
chart illustrations , can be implemented by either special
purpose hardware - based computer systems which perform
the specified functions or steps , or suitable combinations of
special purpose hardware and computer instructions .
[0102] Although the disclosure may include a method , it is
contemplated that it may be embodied as computer program
instructions on a tangible computer - readable medium , such
as a magnetic or optical memory or a magnetic or optical
disk / disc . All structural , chemical , and functional equiva
lents to the elements of the above - described exemplary
embodiments that are known to those of ordinary skill in the
art are expressly incorporated herein by reference and are
intended to be encompassed by the present claims . More
over , it is not necessary for a device or method to address
each and every problem sought to be solved by the present
disclosure , for it to be encompassed by the present claims .
Furthermore , no element , component , or method step in the
present disclosure is intended to be dedicated to the public
regardless of whether the element , component , or method
step is explicitly recited in the claims . As used herein , the
terms " comprises " , " comprising " , or any other variation
thereof , are intended to cover a non - exclusive inclusion ,
such that a process , method , article , or apparatus that com
prises a list of elements does not include only those elements
but may include other elements not expressly listed or
inherent to such process , method , article , or apparatus .
[0103] Changes and modifications may be made to the
disclosed embodiments without departing from the scope of
the present disclosure . These and other changes or modifi
cations are intended to be included within the scope of the
present disclosure , as expressed in the following claims .

1. A method of neural network generation , the method
comprising :

receiving , by a processor , an input data set , the input data
set including a plurality of features ;

determining , by the processor , one or more characteristics
of the input data set ;

based on the one or more characteristics , adjusting , by the
processor , one or more architectural parameters of an
automated model generation process , wherein the auto
mated model generation process is configured to gen
erate a plurality of models using a weighted random
ization process , wherein the one or more architectural
parameters weight the weighted randomization process

to adjust a probability of generation of models having
particular architectural features , and wherein adjusting
the one or more architectural parameters includes set
ting a first architectural parameter to a first value , the
first architectural parameter associated with a probabil
ity that models of a first epoch of the weighted ran
domization process have a first model type ; and

executing , by the processor , the automated model gen
eration process to output a model , the model including
data representative of a neural network .

2. The method of claim 1 , wherein the particular archi
tectural features comprise an initial model type used by the
weighted randomization process .

3. The method of claim 2 , wherein the initial model type
comprises feedforward models , recurrent models , pooling
based two - dimensional convolutional models , daisy - chains
of causal convolutional models , or a combination thereof .

4. The method of claim 1 , wherein the one or more
architectural parameters include a mutation parameter , and
wherein at least one model of the plurality of models
generated using the weighted randomization process is
modified based on the mutation parameter .

5. The method of claim 1 , further comprising , based on
the one or more characteristics , adjusting , by the processor ,
one or more training hyperparameters of the automated
model generation process , wherein the one or more training
hyperparameters control one or more aspects of training of
the model .

6. The method of claim 1 , wherein adjusting the one or
more architectural parameters further includes :

setting a second architectural parameter to a second value
based on the one or more characteristics , the second
architectural parameter associated with a probability
that models of the first epoch of the weighted random
ization process have a second model type .

7. The method of claim 1 , wherein the one or more
characteristics indicate a type of problem associated with the
input data set , a data type associated with the input data set ,
or a combination thereof .

8. The method of claim 1 , wherein adjusting the one or
more architectural parameters based on the one or more
characteristics comprises comparing the one or more char
acteristics to a set of rules that maps data set characteristics
to architectural parameters , wherein the set of rules maps the
data set to characteristics of grammars , and wherein the
grammars indicate corresponding architectural parameters .

9. The method of claim 8 , further comprising updating the
set of rules based on characteristics of the model .

10. The method of claim 9 , wherein the set of rules are
updated responsive to a score of the model satisfying a
threshold .

11. The method of claim 1 , wherein adjusting the one or
more architectural parameters based on the one or more
characteristics comprises providing data indicative of the
one or more characteristics to a particular neural network
configured to identify one or more architectural parameters
for adjustment based on the data indicative of the one or
more characteristics .

12. The method of claim 11 , further comprising retraining
the particular neural network based on training data , the
training data indicating characteristics of the model .

13. The method of claim 1 , wherein executing the auto
mated model generation process comprises :

US 2020/0175378 A1 Jun . 4 , 2020
14

based on a fitness function , selecting , by the processor , a
subset of models from the plurality of models , the
plurality of models based on a genetic algorithm and
corresponding to a first epoch of the genetic algorithm ;

performing , by the processor , at least one genetic opera
tion of the genetic algorithm with respect to at least one
model of the subset to generate a trainable model ;

sending the trainable model to an optimization trainer ;
and

adding a trained model received from the optimization
trainer as input to a second epoch of the genetic
algorithm that is subsequent to the first epoch .

14. The method of claim 13 , wherein the fitness function
is evaluated based on the input data set , and wherein the
optimization trainer is configured to use a portion of the
input data set to train the trainable model .

15. A computing device comprising :
a processor ; and
a memory storing instructions executable by the processor

to perform operations comprising :
receiving an input data set , the input data set including

a plurality of features ;
determining one or more characteristics of the input

data set ;

or

based on the one or more characteristics , adjusting one
or more architectural parameters of an automated
model generation process , wherein the automated
model generation process is configured to generate a
plurality of models using a weighted randomization
process , wherein the one more architectural
parameters weight the weighted randomization pro
cess to adjust a probability of generation of models
having particular architectural features , and wherein
adjusting the one or more architectural parameters
includes setting a first architectural parameter to a
first value , the first architectural parameter associ
ated with a probability that models of a first epoch of
the weighted randomization process have a first
model type ; and

executing the automated model generation process to
output a model , the model including data represen
tative of a neural network .

16. The computing device of claim 15 , wherein the
particular architectural features comprise an initial model
type used by the weighted randomization process , and
wherein the initial model type comprises feedforward mod
els , recurrent models , pooling - based two - dimensional con
volutional models , daisy - chains of convolutional models , or
a combination thereof .

17. The computing device of claim 15 , wherein the one or
more characteristics indicate a type of problem associated
with the input data set , a data type associated with the input
data set , or a combination thereof .

18. A computer - readable storage device storing instruc
tions that , when executed by a processor , cause the processor
to perform operations comprising :

receiving an input data set , the input data set including a
plurality of features ;

determining one or more characteristics of the input data
set ;

based on the one or more characteristics , adjusting one or
more architectural parameters of an automated model
generation process , wherein the automated model gen
eration process is configured to generate a plurality of

models using a weighted randomization process ,
wherein the one or more architectural parameters
weight the weighted randomization process to adjust a
probability of generation of models having particular
architectural , and wherein adjusting the one or more
architectural parameters includes setting a first archi
tectural parameter to a first value , the first architectural
parameter associated with a probability that models of
a first epoch of the weighted randomization process
have a first model type ; and

executing the automated model generation process to
output one or more models , the one or more models
including data representative of one or more neural
networks .

19. (canceled)
20. The computer - readable storage device of claim 18 ,

wherein the operations further comprise updating a set of
rules or a trained classifier based on a data set indicating a
plurality of previously - generated models and characteristics
of input data associated with the plurality of previously
generated models , and wherein the set of rules or the trained
classifier is used to determine the one or more architectural
parameters .

21. A method of neural network generation , the method
comprising :

receiving , by a processor , an input data set , the input data
set including a plurality of features ;

determining , by the processor , one or more characteristics
of the input data set ;

based on the one or more characteristics , adjusting , by the
processor , one or more architectural parameters of an
automated model generation process , wherein the auto
mated model generation process is configured to gen
erate a plurality of models using a weighted random
ization process , wherein the one or more architectural
parameters weight the weighted randomization process
to adjust a probability of generation of models having
particular architectural features , wherein adjusting the
one or more architectural parameters based on the one
or more characteristics comprises comparing the one or
more characteristics to a set of rules that maps data set
characteristics to architectural parameters , wherein the
set of rules maps the data set to characteristics of
grammars , and wherein the grammars indicate corre
sponding architectural parameters ; and

executing , by the processor , the automated model gen
eration process to output a model , the model including
data representative of a neural network .

22. The method of claim 21 , wherein the particular
architectural features comprise an initial model type used by
the weighted randomization process .

23. The method of claim 22 , wherein the initial model
type comprises feedforward models , recurrent models , pool
ing - based two - dimensional convolutional models , daisy
chains of causal convolutional models , or a combination
thereof .

24. The method of claim 21 , wherein the one or more
architectural parameters include a mutation parameter , and
wherein at least one model of the plurality of models
generated using the weighted randomization process is
modified based on the mutation parameter .

25. The method of claim 21 , further comprising , based on
the one or more characteristics , adjusting , by the processor ,
one or more training hyperparameters of the automated

US 2020/0175378 A1 Jun . 4 , 2020
15

plurality of models using a weighted randomization
process , wherein the one or more architectural
parameters weight the weighted randomization pro
cess to adjust a probability of generation of models
having particular architectural features , wherein
adjusting the one or more architectural parameters
based on the one or more characteristics comprises
comparing the one or more characteristics to a set of
rules that maps data set characteristics to architec
tural parameters , wherein the set of rules maps the
data set to characteristics of grammars , and wherein
the grammars indicate corresponding architectural
parameters ; and

executing the automated model generation process to
output a model , the model including data represen
tative of a neural network .

35. The computing device of claim 34 , wherein the
particular architectural features comprise an initial model
type used by the weighted randomization process , and
wherein the initial model type comprises feedforward mod
els , recurrent models , pooling - based two - dimensional con
volutional models , daisy - chains of convolutional models , or
a combination thereof .

model generation process , wherein the one or more training
hyperparameters control one or more aspects of training of
the model .

26. The method of claim 21 , wherein adjusting the one or
more architectural parameters further includes :

setting a first architectural parameter to a first value based
on the one or more characteristics , the first architectural
parameter associated with a probability that models of
a first epoch of the weighted randomization process
have a first model type ; and

setting a second architectural parameter to a second value
based on the one or more characteristics , the second
architectural parameter associated with a probability
that models of the first epoch of the weighted random
ization process have a second model type .

27. The method of claim 21 , wherein the one or more
characteristics indicate a type of problem associated with the
input data set , a data type associated with the input data set ,
or a combination thereof .

28. The method of claim 21 , further comprising updating
the set of rules based on characteristics of the model .

29. The method of claim 28 , wherein the set of rules are
updated responsive to a score of the model satisfying a
threshold .

30. The method of claim 21 , wherein adjusting the one or
more architectural parameters based on the one or more
characteristics further comprises providing data indicative
of the one or more characteristics to a particular neural
network configured to identify one or more architectural
parameters for adjustment based on the data indicative of the
one or more characteristics .

31. The method of claim 30 , further comprising retraining
the particular neural network based on training data , the
training data indicating characteristics of the model .

32. The method of claim 21 , wherein executing the
automated model generation process comprises :
based on a fitness function , selecting , by the processor , a

subset of models from the plurality of models , the
plurality of models based on a genetic algorithm and
corresponding to a first epoch of the genetic algorithm ;

performing , by the processor , at least one genetic opera
tion of the genetic algorithm with respect to at least one
model of the subset to generate a trainable model ;

sending the trainable model to an optimization trainer ;
and

adding a trained model received from the optimization
trainer as input to a second epoch of the genetic
algorithm that is subsequent to the first epoch .

33. The method of claim 32 , wherein the fitness function
is evaluated based on the input data set , and wherein the
optimization trainer is configured to use a portion of the
input data set to train the trainable model .

34. A computing device comprising :
a processor ; and
a memory storing instructions executable by the processor

to perform operations comprising :
receiving an input data set , the input data set including

a plurality of features ;
determining one or more characteristics of the input

36. The computing device of claim 34 , wherein the one or
more characteristics indicate a type of problem associated
with the input data set , a data type associated with the input
data set , or a combination thereof .

37. A computer - readable storage device storing instruc
tions that , when executed by a processor , cause the processor
to perform operations comprising :

receiving an input data set , the input data set including a
plurality of features :

determining one or more characteristics of the input data
set ;

based on the one or more characteristics , adjusting one or
more architectural parameters of an automated model
generation process , wherein the automated model gen
eration process is configured to generate a plurality of
models using a weighted randomization process ,
wherein the one or more architectural parameters
weight the weighted randomization process to adjust a
probability of generation of models having particular
architectural features , wherein adjusting the one or
more architectural parameters based on the one or more
characteristics comprises comparing the one or more
characteristics to a set of rules that maps data set
characteristics to architectural parameters , wherein the
set of rules maps the data set to characteristics of
grammars , and wherein the grammars indicate corre
sponding architectural parameters ; and

executing the automated model generation process to
output one or more models , the one or more models
including data representative of one or more neural
networks .

38. The computer - readable storage device of claim 37 ,
wherein the operations further comprise setting a first archi
tectural parameter to a first value based on the one or more
characteristics , the first architectural parameter associated
with a probability that models of a first epoch of the
weighted randomization process have a first model type .

data set ;
based on the one or more characteristics , adjusting one

or more architectural parameters of an automated
model generation process , wherein the automated
model generation process is configured to generate a

US 2020/0175378 A1 Jun . 4 , 2020
16

39. The computer - readable storage device of claim 37 ,
wherein the operations further comprise updating the set of
rules based on a data set indicating a plurality of previously
generated models and characteristics of input data associated
with the plurality of previously - generated models .

