
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0139988 A1

US 20170 139988A1

MERX et al. (43) Pub. Date: May 18, 2017

(54) MERGE OF STACKED CALCULATION (52) U.S. Cl.
VIEWS WITH HIGHER LEVEL CPC. G06F 17/30451 (2013.01); G06F 17/30569
PROGRAMMING LANGUAGE LOGIC (2013.01)

(71) Applicant: SAP SE, Walldorf (DE) (57) ABSTRACT
A stacked calculation view, defining a calculation scenario,

(72) Inventors: JOHANNES MERX, Heidelberg (DE): having calculation views associated with high-level pro
Tobias Mindnich, Sulzbach (DE), gramming logic which can include complex analytical privi
Christoph Weyerhaeuser, Heidelberg leges. Resolving, using a high-level programming logic
(DE) layer, a calculation view having associated high-level pro

gramming logic with the next calculation view in the stack
(21) Appl. No.: 14/945,360 to generate a sub-query. Converting the Sub-query into a

format readable by a database system and separating the part
(22) Filed: Nov. 18, 2015 of the Sub-query provided by the high-level programming

logic from the Sub-query to form a high-level programming
O O logic filter in the database system format. Merge the high

Publication Classification level programming logic filter into the calculation scenario
(51) Int. Cl. to provide a calculation scenario including high-level pro

G06F 7/30 (2006.01) gramming logic information in the database system format.

OO 108
Y- CLIENT 108 CLEN

MACHINE

AGENT

DAABASE

ABLE
116

COMPUING SYSTEM

DATBASE
MANAGEMEN

MAIN MEMORY

MACHINE

NETWORK

EXTERNAL 106
SOFTWARE
COMPONENT 1 CORE 04

SOFTWARE
PLATFORM

CORE 104
SOFTWARE
PLATFORM

EXTERNAL 106
SOFTWARE
COMPONENT

18

May 18, 2017 Sheet 1 of 6 US 2017/O139988A1 Patent Application Publication

göI TVNHEIXE

US 2017/O139988A1 May 18, 2017 Sheet 2 of 6

·&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Patent Application Publication

May 18, 2017 Sheet 3 of 6 US 2017/O139988A1 Patent Application Publication

$3

Patent Application Publication May 18, 2017. Sheet 4 of 6 US 2017/O139988A1

3.

009

Patent Application Publication

May 18, 2017 Sheet 6 of 6 US 2017/O139988A1 Patent Application Publication

0,9 809 909

009

US 2017/O 139988 A1

MERGE OF STACKED CALCULATION
VIEWS WITH HIGHER LEVEL

PROGRAMMING LANGUAGE LOGIC

TECHNICAL FIELD

0001. The subject matter described herein relates to a
database system that incorporates database-level logic into a
query performed by a calculation engine layer of the data
base system.

BACKGROUND

0002 The demand for ad-hoc and real-time data analyses
by many users simultaneously is increasing in the same way
that the data quantities to be processed are increasing. To
keep pace with the competition in the current economic
climate, it is crucial to have the latest information about
processes within an organization (e.g. a company) and/or in
the market to be able to make the right decisions promptly.
0003 Higher-level programming language logic is regu
larly developed by businesses and there is an increased need
to incorporate the high-level programming logic into data
base analyses. High-level programming logic can be
expressed in a complex manner Such as with computer
readable instructions. An example of Such high-level pro
gramming logic includes user privileges. User privileges can
be defined in a complex manner especially when a user is a
member of multiple user groups, has multiple user types, or
the like.
0004. When applying the high-level programming lan
guage logic to the database analyses, the manner in which
the high-level programming logic is processed and the
manner in which the database analyses are processed can
include conflicts that can cause inefficiencies or break cal
culation cycles.

SUMMARY

0005. In one aspect, a method to be performed on one or
more data processors comprising at least part of a computer
system is described. The method can include one or more
operations as described herein. The operations can include
resolving, using a high-level programming logic layer, a first
calculation view and a second calculation view below the
first calculation view in a stacked calculation view of a
calculation scenario to form a sub-query. The Sub-query can
be converted, using the high-level programming logic layer,
into a database system format. A high-level programming
logic tag can be applied, using the high-level programming
logic layer, to the Sub-query in the database system format.
The Sub-query can be merged, using the calculation engine
layer, into the calculation scenario.
0006. In some variations, merging the sub-query into the
calculation scenario can include separating, using the cal
culation engine layer, the portion of the Sub-query provided
by the high-level programming logic from the rest of the
Sub-query, to generate a high-level programming logic filter
in the database system format. The high-level programming
logic filter can be applied, using the calculation engine layer,
to the calculation scenario.
0007. The high-level programming logic can include
complex analytical privileges. Complex analytical privi
leges can be defined in SQL. Complex analytical privileges
can define a database system user's rights to access database
information managed by the database system.

May 18, 2017

0008. The database system format can be column store
Syntax. The high-level programming logic layer is an SQL
layer.
0009 Implementations of the current subject matter can
include, but are not limited to, methods consistent with the
descriptions provided herein as well as articles that comprise
a tangibly embodied machine-readable medium operable to
cause one or more machines (e.g., computers, etc.) to result
in operations implementing one or more of the described
features. Similarly, computer systems are also described that
may include one or more processors and one or more
memories coupled to the one or more processors. A memory,
which can include a computer-readable storage medium,
may include, encode, store, or the like one or more programs
that cause one or more processors to perform one or more of
the operations described herein. Computer implemented
methods consistent with one or more implementations of the
current Subject matter can be implemented by one or more
data processors residing in a single computing system or
multiple computing systems. Such multiple computing sys
tems can be connected and can exchange data and/or com
mands or other instructions or the like via one or more
connections, including but not limited to a connection over
a network (e.g. the Internet, a wireless wide area network, a
local area network, a wide area network, a wired network, or
the like), via a direct connection between one or more of the
multiple computing systems, etc.
0010. The details of one or more variations of the subject
matter described herein are set forth in the accompanying
drawings and the description below. Other features and
advantages of the subject matter described herein will be
apparent from the description and drawings, and from the
claims.

DESCRIPTION OF DRAWINGS

0011 FIG. 1 shows a diagram of a system that can
implement one or more features consistent with the current
Subject matter,
0012 FIG. 2 is a diagram that illustrates a computing
architecture having one or more features consistent with the
current Subject matter,
0013 FIG. 3 is a diagram illustrating a sample architec
ture for request processing and execution control, the sample
architecture having one or more features consistent with the
current Subject matter,
0014 FIG. 4 is an illustration of an exemplary graphical
calculation view having one or more features consistent with
the current subject matter;
0015 FIG. 5 is an example of complex high-level pro
gramming logic for use in a database system having one or
more features consistent with the current Subject matter, and,
0016 FIG. 6 is a process flow diagram illustrating a
method having one or more features consistent with the
presently described subject matter.

DETAILED DESCRIPTION

0017. A database system can include multiple tables. A
table is a collection of related data held in a structured
format within a database. A table typically consists of fields,
or columns, and rows. In some variations, the cells of the
table may include database commands linking to data that is
held externally to the database.

US 2017/O 139988 A1

0018. A database system can typically include a database
management system. The database management system can
comprise multiple layers or levels. The different layers can
be configured to perform different types of operations. For
example, the lowest layer, or physical layer, of a database
management system can be configured to perform the actual
operations requested by the users of the database manage
ment system. At the physical layer, a conceptual instruction
provided by a user may have been translated into many
instructions that are readable by the database.
0019. A middle layer, or logical layer, can be configured
to consolidate external concepts and instructions into an
intermediate data structure. The intermediate data structure
can be capable of being devolved into the physical instruc
tions for implementation at the physical layer. The logical
layer can be configured to provide execution pathways of
operations to multiple different databases and/or database
tables, in response to instructions received from the top
layer, or view layer.
0020. The view layer can be configured to implement
applications that are provided to users of the database
management system. Database operations can be repre
sented as database access. In some variations, individual
databases within a database system can be viewed as the
same at this layer, despite differences in content and opera
tion of those individual databases.

0021. In some variations, the view layer can be a calcu
lation engine layer. The calculation engine layer can be
configured to facilitate the processing of user queries and
requests using diverse calculation operations. When pro
cessing queries, having the tables loaded into the main
memory of the database management system increases the
efficiency at which the database management system can
execute queries, improving the optimization of the database
management System.
0022. A business operating a database system may have
high-level programming logic that it desires to apply to
analyzing the data managed by the database system. High
level programming logic has become more and more com
plex. In some variations, high-level programming logic can
be expressed as complex machine readable instructions, or
computer code. Computer code can be generated in multiple
different programming languages and is processed in various
ways associated with those programming languages. High
level programming logic is typically provided at the highest
layer, or application layer. In some variations, this applica
tion layer may be a higher layer than the calculation engine
layer of the database system. The high-level programming
logic at the application layer typically does not include
operators that are directly translatable to the physical layer
which directly performs operations on the database tables.
The high-level programming logic typically can be pro
cessed in a manner different than the processing of analyses
on the database tables.

0023 High-level programming logic may be developed
for use in multiple different scenarios, one of which may
include database analyses. Consequently, the database sys
tem needs to be able to incorporate the high-level program
ming logic in its higher-level programming language format,
rather than force the provider of the high-level programming
logic to recode the high-level programming logic in a
manner that is easily processable by the physical layer of the
database system.

May 18, 2017

0024 One example of high-level programming logic can
include user privileges. A user may have privileges to view
and access a set of data. For example, the user may be
involved in sales of a product within the United States and
may have privileges to access sales data for the United
States, but not for Europe. The user may also be a member
of a brand oversight committee and have privileges to access
data associated with branding of a product, which may
include at least a subset of sales data for Europe. Conse
quently, the analytical privileges of that user can be based on
multiple parameters and models. Those parameters and
models can themselves be defined or can refer to other
elements. Such other elements can include different database
tables, external sources, or the like.
0025. Users may have even more complex privilege
structures that include several sub-selects on multiple tables,
requiring the privileges to be programmed in a programming
language. Such as in Structured Query Language (SQL) or in
a higher-level programming language. Such privilege struc
tures may be referred to as analytical privileges, where
analysis needs to be performed to determine a user's privi
leges with respect to information managed by the database
system.
0026. The database system can include a column store
having an internal format representing queries and filters.
The column store format can be in a lower-layer format that
is different from the format of the high-level programming
logic. Consequently, the high-level programming logic is not
seamlessly embeddable into the analyses of the database.
0027. Users of the database system can stack several
calculation views. High-level programming logic may be
associated with individual ones of the stacked calculation
views. Each of the high-level programming logic compo
nents need to be considered when processing the query
defined by the stacked calculation views. Therefore during
execution of Such a stacked calculation view, for each
stacked calculation view a select on this Sub calculation
view is done to apply the high-level programming logic as
additional filters. These additional filters are defined using
the higher-level programming language or different pro
gramming language and not in the database programming
language. For example, the high-level programming logic
may be defined in SQL whereas the database may be defined
in a column store syntax. Consequently, when the calcula
tion engine processes the stacked calculation views, a Switch
must be made from the calculation engine to the processing
engine for the high-level programming logic. These breaks
can introduce inefficiencies and prevent high-level program
ming logic filters from being pushed down to lower calcu
lation layers from higher calculation layers in the stacked
calculation view.

0028. The presently described subject matter contem
plates modifying the high-level programming logic associ
ated with individual ones of the stacked calculation views to
be compatible with the calculation engine, avoiding the need
to introduce breaks into the processing of the calculation
engine, and facilitate pushing down of filters to lower
calculation views in a stack. This will improve the efficiency
of the processing of the query and improve the efficiency of
the database system as a whole.
0029 FIG. 1 shows a diagram of a system 100 that can
implement one or more features of the current Subject
matter. A computing system 102 can include one or more
core software platform modules 104 providing one or more

US 2017/O 139988 A1

features of a high-level programming software system or
other Software that includes database management features.
The computing system can also aggregate or otherwise
provide a gateway via which users can access functionality
provided by one or more external software components 106.
One or more client machines 108 can access the computing
system, either via a direct connection, a local terminal, or
over a network 110 (e.g. a local area network, a wide area
network, a wireless network, the Internet, or the like).
0030. A database management agent 112 or other com
parable functionality can access a database 114 that includes
at least one table 116, which can in turn include at least one
column. The database management agent 112 can imple
ment one or more of the features of implementations dis
cussed herein. The database table can store any kind of data,
potentially including but not limited to definitions of busi
ness scenarios, business processes, and one or more business
configurations as well as transactional data, metadata, mas
ter data, etc. relating to instances or definitions of the
business scenarios, business processes, and one or more
business configurations, and/or concrete instances of data
objects and/or business objects that are relevant to a specific
instance of a business scenario or a business process, and the
like.

0031. The database management agent 112 or other com
parable functionality can be configured to load a database
table 116, or other comparable data set, into the main
memory 118. The database management agent 112 can be
configured to load the information from the database 114 to
the main memory 118 in response to receipt of a query
instantiated by a user or computer system through one or
more client machines 108, external software components
106, core software platforms 104, or the like.
0032 FIG. 2 is a diagram that illustrates a computing
architecture 200 including a database system that includes
three layers: a top layer, calculation engine layer 210, an
intermediate layer, or logical layer 220, and a top layer, or
physical table-pool 230. One or more application servers
235 implementing database client applications 237 can
access the database system 300, as shown in FIG. 3. Cal
culation scenarios can be executed by a calculation engine,
which can form part of a database or which can be part of
the calculation engine layer 210 (which is associated with
the database). The calculation engine layer 210 can be based
on and/or interact with the other two layers, the logical layer
220 and the physical table pool 230. In some variations, the
physical table pool 230 can comprise database operations
configured to access and perform the database operations on
the individual tables. In some variations, the basis of the
physical table pool 230 consists of physical tables (called
indexes) containing the data, which can be stored on one
more database servers 240. Various tables 231-234 can be
joined using logical metamodels 221-224 defined by the
logical layer 220 to form an index. For example, the tables
231-234 in a cube (e.g. an online analytical processing or
“OLAP index) can be assigned roles (e.g., fact or dimen
sion tables) and joined to form a star Schema. It is also
possible to form join indexes (e.g. join index B 222 in FIG.
2), which can act like database views in computing envi
ronments such as the Fast Search Infrastructure (FSI) avail
able from SAP SE of Walldorf, Germany.
0033. A calculation scenario 250 can include individual
nodes (e.g. calculation nodes) 211-214, which in turn can
each define operations such as joining various physical or

May 18, 2017

logical indexes and other calculation nodes (e.g., CView 4 is
a join of CView 2 and CView 3). That is, the input for a node
211-214 can be one or more physical, join, or OLAP indexes
or calculation nodes. A calculation node as used herein
represents a operation Such as a projection, aggregation,
join, union, minus, intersection, and the like. Additionally, as
described below, in addition to a specified operation, calcu
lation nodes can sometimes be enhanced by filtering and/or
sorting criteria. In some implementations, calculated attri
butes can also be added to calculation nodes.

0034. In a calculation scenario 250, two different repre
sentations can be provided, including a) a pure calculation
scenario in which all possible attributes are given and b) an
instantiated model that contains only the attributes requested
in the query (and required for further calculations). Thus,
calculation scenarios can be created that can be used for
various queries. With Such an arrangement, a calculation
scenario 250 can be created which can be reused by multiple
queries even if Such queries do not require every attribute
specified by the calculation scenario 250. For on-the-fly
scenarios this means that the same calculation scenario (e.g.,
in XML format, etc.) can be used for different queries and
sent with the actual query. The benefit is that on application
server side the XML description of a calculation scenario
can be used for several queries and thus not for each possible
query one XML has to be stored.
0035. Every calculation scenario 250 can be uniquely
identifiable by a name (e.g., the calculation scenario 250 can
be a database object with a unique identifier, etc.). Accord
ingly, the calculation scenario 250 can be queried in a
manner similar to a view in a SQL database. Thus, the query
is forwarded to the calculation node 211-214 for the calcu
lation scenario 250 that is marked as the corresponding
default node. In addition, a query can be executed on a
particular calculation node 211-214 (as specified in the
query). Furthermore, nested calculation scenarios can be
generated in which one calculation scenario 250 is used as
Source in another calculation scenario (e.g. via a calculation
node 211-214 in this calculation scenario 250). Each calcu
lation node 211-214 can have one or more output tables. One
output table can be consumed by several calculation nodes
211-214.
0036 FIG. 3 is a diagram 300 illustrating a sample
architecture for request processing and execution control. As
shown in FIG. 3, artifacts 305 in different domain specific
languages can be translated by their specific compilers 310
into a common representation called a "calculation scenario'
250 (which is also referred to in in FIG. 3 as a calculation
model). To achieve enhanced performance, the models and
programs written in these languages are executed inside the
database server 240. This arrangement eliminates the need to
transfer large amounts of data between the database server
240 and a client application 237, which can be executed by
an application server 235. Once the different artifacts 305
are compiled into this calculation scenario 315, they can be
processed and executed in the same manner. A calculation
engine 320 executes the calculation scenarios 315.
0037. A calculation scenario 315 can be a directed acyclic
graph with arrows representing data flows and nodes that
represent operations. Each node includes a set of inputs and
outputs and an operation (or optionally multiple operations)
that transforms the inputs into the outputs. In addition to
their primary operation, each node can also include a filter
condition for filtering the result set. The inputs and the

US 2017/O 139988 A1

outputs of the operations can be table valued parameters
(i.e., user-defined table types that are passed into a procedure
or function and that provide an efficient way to pass multiple
rows of data to a client application 237 at the application
server 235). Inputs can be connected to tables or to the
outputs of other nodes. A calculation scenario 315 can
Support a variety of node types such as (i) nodes for set
operations such as projection, aggregation, join, union,
minus, intersection, and (ii) SQL nodes that execute a SQL
statement which is an attribute of the node. In addition, to
enable parallel execution, a calculation scenario 315 can
contain split and merge operations. A split operation can be
used to partition input tables for Subsequent processing steps
based on partitioning criteria. Operations between the split
and merge operation can then be executed in parallel for the
different partitions. Parallel execution can also be performed
without split and merge operation Such that all nodes on one
level can be executed in parallel until the next synchroni
Zation point. Split and merge allows for enhanced/automati
cally generated parallelization. If a user knows that the
operations between the split and merge can work on por
tioned data without changing the result, he or she can use a
split. Then, the nodes can be automatically multiplied
between split and merge and partition the data.
0038 A calculation scenario 315 can be defined as part of
database metadata and invoked multiple times. A calculation
scenario 315 can be created, for example, by a SQL state
ment “CREATE CALCULATION SCENARIO 3NAMEs
USING <XML or JSOND’. Once a calculation scenario 315
is created, it can be queried (e.g., “SELECT A, B, C FROM
<scenario name>, etc.). In some cases, databases can have
pre-defined calculation scenarios 315 (default, previously
defined by users, etc.). Calculation scenarios 315 can be
persisted in a repository (coupled to the database server 240)
or in transient scenarios. Calculation scenarios 315 can also
be kept in-memory.
0039 Calculation scenarios 315 are more powerful than
traditional SQL queries or SQL views for many reasons. One
reason is the possibility to define parameterized calculation
schemas that are specialized when the actual query is issued.
Unlike a SQL view, a calculation scenario 315 does not
describe the actual query to be executed. Rather, it describes
the structure of the calculation. Further information is sup
plied when the calculation scenario is executed. This further
information can include parameters that represent values
(for example in filter conditions). To provide additional
flexibility, the operations can optionally also be refined upon
invoking the calculation model. For example, at definition
time, the calculation scenario 315 may contain an aggrega
tion node containing all attributes. Later, the attributes for
grouping can be Supplied with the query. This allows having
a predefined generic aggregation, with the actual aggrega
tion dimensions Supplied at invocation time. The calculation
engine 320 can use the actual parameters, attribute list,
grouping attributes, and the like Supplied with the invocation
to instantiate a query specific calculation scenario 315. This
instantiated calculation scenario 315 is optimized for the
actual query and does not contain attributes, nodes or data
flows that are not needed for the specific invocation.
0040. When the calculation engine 320 gets a request to
execute a calculation scenario 315, it can first optimize the
calculation scenario 315 using a rule based model optimizer
322. Examples for optimizations performed by the model
optimizer can include “pushing down” filters and projections

May 18, 2017

so that intermediate results 326 are narrowed down earlier,
or the combination of multiple aggregation and join opera
tions into one node. The optimized model can then be
executed by a calculation engine model executor 324 (a
similar or the same model executor can be used by the
database directly in some cases). This includes decisions
about parallel execution of operations in the calculation
scenario 315. The model executor 324 can invoke the
required operators (using, for example, a calculation engine
operators module 328) and manage intermediate results.
Most of the operators are executed directly in the calculation
engine 320 (e.g., creating the union of several intermediate
results). The remaining nodes of the calculation scenario 315
(not implemented in the calculation engine 320) can be
transformed by the model executor 324 into a set of logical
database execution plans. Multiple set operation nodes can
be combined into one logical database execution plan if
possible.
0041. The calculation scenarios 315 of the calculation
engine 320 can be exposed as a special type of database
views called calculation views. That means a calculation
view can be used in SQL queries and calculation views can
be combined with tables and Standard views using joins and
Sub queries. When Such a query is executed, the database
executor inside the SQL processor needs to invoke the
calculation engine 320 to execute the calculation scenario
315 behind the calculation view. In some implementations,
the calculation engine 320 and the SQL processor are calling
each other: on one hand the calculation engine 320 invokes
the SQL processor for executing set operations and SQL
nodes and, on the other hand, the SQL processor invokes the
calculation engine 320 when executing SQL queries with
calculation views.
0042 FIG. 4 is an illustration of an exemplary graphical
calculation view 400 having one or more features consistent
with the current Subject matter. The graphical calculation
view 400 is an example of a calculation view that can be
presented to a user of the database management system. The
calculation view can also be presented to a user in a scripted
fashion. For example, an SQL Script representing the cal
culation view can be presented to the user.
0043. A calculation scenario 250 as described herein can
include a type of node referred to herein as a semantic node
(or sometimes Semantic root node). A database modeler can
flag the root node (output) in a graphical calculation view to
which the queries of the database applications directed as
semantic node. This arrangement allows the calculation
engine 320 to easily identify those queries and to thereby
provide a proper handling of the query in all cases.
0044) The database tables 231-234 may be defined in
column store syntax. The column store syntax can be
associated with a column-based non-clustered index geared
toward increasing query performance for workloads that
involve large amounts of data, Such as in databases.
0045 High-level programming logic may be introduced
at the calculation engine layer 210, or at a higher layer. The
high-level programming logic may include analytical privi
leges. These analytical privileges may be associated with
individual ones of the calculation nodes 211-214, or calcu
lation views. The analytical privileges may define access
rights to information specified by the calculations nodes
211-214. Various calculation nodes can be joined to various
ones of the other calculation nodes. For example, calculation
node 214 is a join of calculation node 212 and calculation

US 2017/O 139988 A1

node 213. Typically stacked calculation nodes can be
merged. Merging stacked calculation views can allow the
calculation engine of the calculation engine layer 210 to
optimize the query and introduce efficiencies. When calcu
lation nodes have associated high-level programming logic
in a different format, they cannot be merged.
0046. The presently described subject matter contem
plates incorporating complex high-level programming logic,
Such as complex analytical privileges, into a calculation
scenario in a format consistent with the format utilized by
the calculation scenario processing engines. FIG. 5 is an
example of complex high-level programming logic 500 for
use in a database system having one or more features
consistent with the current subject matter. The complex
high-level programming logic 500, may include, for
example, complex analytical privileges, that call other data
base objects and/or tables. Furthermore the high-level pro
gramming logic may be provided in a format not readable by
the calculation scenario processing engines. The presently
described subject matter contemplates modifying the high
level programming logic 500 to be merged with the calcu
lation scenario, thereby improving the efficiency of process
ing the calculation scenario and facilitating optimization of
the core database operations resulting from the calculation
scenario.
0047 FIG. 6 is a process flow diagram 600 illustrating a
method having one or more features consistent with the
presently described subject matter.
0048. At 602, a first calculation view associated with a
high-level programming logic filter and a second calculation
view below the first calculation view in the stacked calcu
lation view of a calculation scenario can be resolved by the
high-level programming logic layer to form a Sub-query in
the high-level programming logic format. In some varia
tions, for example, the high-level programming logic can be
complex analytical privileges defined in SQL. The high
level programming logic layer can be the SQL layer, for
example at artifacts 305. The SQL layer can be configured
to resolve the first calculation view, the second calculation
view and the analytical privileges to form a Sub-query.
0049. In some variations, the high-level programming
logic layer can include a high-level programming logic
programming language processing engine. The high-level
programming logic programming language processing
engine may be configured to process instructions provided at
a higher-level than the calculation engine layer.
0050. At 604, the sub-query can be converted into a
database system format by the high-level programming logic
layer. Following the example above, the SQL-based sub
query can be converted into a column store syntax.
0051. At 606, the high-level programming logic layer can
apply a high-level programming logic tag to the Sub-query
in the database system format, the high-level programming
logic tag providing an indication that the Sub-query includes
high-level programming logic. In some variations, the high
level programming logic tag can include a query hint. The
resulting Sub-query can be a filter for application in the
calculation scenario.
0052 At 608, the calculation engine layer 210 can merge
the Sub-query with the high-level programming logic tag
into the calculation scenario. In some variations, the calcu
lation engine layer 210 can be configured to separate the
filter, which has resulted from the complex analytical privi
leges and is now in column store syntax format, from the

May 18, 2017

query resulting from merging of the stacked calculation
views. The calculation engine layer 210 can add the filter to
the statement context for the calculation scenario.
0053 At 610, steps 602, 604, 606, and 608 can be
repeated for each calculation view in the stack having
associated high-level programming logic.
0054. At 612, the resulting calculation scenario can be
instantiated resulting in results that take into account the
high-level programming logic.
0055 Without in any way limiting the scope, interpreta
tion, or application of the claims appearing herein, a tech
nical effect of one or more of the example embodiments
disclosed herein may include facilitating the merging of
calculation views of a calculation scenarios while maintain
ing the security features of each of the calculation views.
The merge can improve the execution times for queries that
include analytical privileges.
0056. Without in any way limiting the scope, interpreta
tion, or application of the claims appearing herein, a tech
nical effect of one or more of the example embodiments
disclosed herein may include introducing analytical privi
lege data for users into the calculation scenario to facilitate
the creation of operations that can optimize or filter results
based on those analytical privileges.
0057. One or more aspects or features of the subject
matter described herein may be realized in digital electronic
circuitry, integrated circuitry, specially designed ASICs (ap
plication specific integrated circuits), computer hardware,
firmware, software, and/or combinations thereof. These
various implementations may include implementation in one
or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device (e.g., mouse, touch screen,
etc.), and at least one output device.
0058. These computer programs, which can also be
referred to as programs, Software, Software applications,
applications, components, or code, include machine instruc
tions for a programmable processor, and can be imple
mented in a high-level procedural language, an object
oriented programming language, a functional programming
language, a logical programming language, and/or in assem
bly/machine language. As used herein, the term “machine
readable medium” refers to any computer program product,
apparatus and/or device. Such as for example magnetic discs,
optical disks, memory, and Programmable Logic Devices
(PLDs), used to provide machine instructions and/or data to
a programmable processor, including a machine-readable
medium that receives machine instructions as a machine
readable signal. The term “machine-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor. The machine-readable
medium can store such machine instructions non-transito
rily, Such as for example as would a non-transient Solid State
memory or a magnetic hard drive or any equivalent storage
medium. The machine-readable medium can alternatively or
additionally store Such machine instructions in a transient
manner, Such as for example as would a processor cache or
other random access memory associated with one or more
physical processor cores.
0059. To provide for interaction with a user, the subject
matter described herein can be implemented on a computer

US 2017/O 139988 A1

having a display device, such as for example a cathode ray
tube (CRT) or a liquid crystal display (LCD) monitor for
displaying information to the user and a keyboard and a
pointing device. Such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, Such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni
tion hardware and Software, optical scanners, optical point
ers, digital image capture devices and associated interpre
tation software, and the like.
0060. The subject matter described herein may be imple
mented in a computing system that includes a back-end
component (e.g., as a data server), or that includes a middle
ware component (e.g., an application server), or that
includes a front-end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user may interact with an implementation of the
Subject matter described herein), or any combination of Such
back-end, middleware, or front-end components. The com
ponents of the system may be interconnected by any form or
medium of digital data communication (e.g., a communica
tion network). Examples of communication networks
include a local area network (“LAN”), a wide area network
(“WAN'), and the Internet.
0061 The computing system may include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.
0062. The subject matter described herein can be embod
ied in Systems, apparatus, methods, and/or articles depend
ing on the desired configuration. The implementations set
forth in the foregoing description do not represent all
implementations consistent with the Subject matter
described herein. Instead, they are merely some examples
consistent with aspects related to the described subject
matter. Although a few variations have been described in
detail above, other modifications or additions are possible.
In particular, further features and/or variations can be pro
vided in addition to those set forth herein. For example, the
implementations described above can be directed to various
combinations and Subcombinations of the disclosed features
and/or combinations and subcombinations of several further
features disclosed above. In addition, the logic flow(s)
depicted in the accompanying figures and/or described
herein do not necessarily require the particular order shown,
or sequential order, to achieve desirable results. Other imple
mentations may be within the scope of the following claims.
What is claimed is:
1. A method to be performed on one or more data

processors comprising at least part of a computer system, the
method comprising:

resolving, using a high-level programming logic layer, a
first calculation view and a second calculation view
below the first calculation view in a stacked calculation
view of a calculation scenario to form a Sub-query;

May 18, 2017

converting, using the high-level programming logic layer,
the Sub-query into a database system format;

applying, using the high-level programming logic layer, a
high-level programming logic tag to the Sub-query in
the database system format; and,

merging, using the calculation engine layer, the Sub-query
into the calculation scenario.

2. The method of claim 1, wherein merging the Sub-query
into the calculation scenario comprises:

separating, using the calculation engine layer, the portion
of the Sub-query provided by the high-level program
ming logic from the rest of the Sub-query, to generate
a high-level programming logic filter in the database
system format; and,

applying, using the calculation engine layer, the high
level programming logic filter to the calculation sce
nario.

3. The method of claim 1, wherein the high-level pro
gramming logic includes complex analytical privileges.

4. The method of claim 3, wherein the complex analytical
privileges are defined in SQL.

5. The method of claim 3, wherein the complex analytical
privileges define a database system user's rights to access
database information managed by the database system.

6. The method of claim 1, wherein the database system
format is column store syntax.

7. The method of claim 1, wherein the high-level pro
gramming logic layer is an SQL layer.

8. A system comprising:
at least one data processor; and,
memory coupled to the at least one data processor, the
memory storing instructions, which, when executed,
cause the at least one data processor to perform opera
tions comprising:
resolving, using a high-level programming logic layer,

a first calculation view and a second calculation view
below the first calculation view in a stacked calcu
lation view of a calculation scenario to form a
Sub-query;

converting, using the high-level programming logic
layer, the Sub-query into a database system format;

applying, using the high-level programming logic
layer, a high-level programming logic tag to the
Sub-query in the database system format; and,

merging, using the calculation engine layer, the Sub
query into the calculation scenario.

9. The system of claim 8, wherein merging the sub-query
into the calculation scenario comprises:

separating, using the calculation engine layer, the portion
of the Sub-query provided by the high-level program
ming logic from the rest of the Sub-query, to generate
a high-level programming logic filter in the database
system format; and,

applying, using the calculation engine layer, the high
level programming logic filter to the calculation sce
nario.

10. The system of claim 8, wherein the high-level pro
gramming logic includes complex analytical privileges.

11. The system of claim 10, wherein the complex ana
lytical privileges are defined in SQL.

12. The system of claim 10, wherein the complex ana
lytical privileges define a database system user's rights to
access database information managed by the database sys
tem.

US 2017/O 139988 A1

13. The system of claim 8, wherein the database system
format is column store syntax.

14. The system of claim 8, wherein the high-level pro
gramming logic layer is an SQL layer.

15. A non-transitory computer program product storing
instructions that, when executed by at least one program
mable processor forming part of at least one computing
system, cause the at least one programmable processor to
perform operations comprising:

resolving, using a high-level programming logic layer, a
first calculation view and a second calculation view
below the first calculation view in a stacked calculation
view of a calculation scenario to form a Sub-query;

converting, using the high-level programming logic layer,
the Sub-query into a database system format;

applying, using the high-level programming logic layer, a
high-level programming logic tag to the Sub-query in
the database system format; and,

merging, using the calculation engine layer, the Sub-query
into the calculation scenario.

16. The computer program product of claim 15, wherein
merging the Sub-query into the calculation scenario com
prises:

May 18, 2017

separating, using the calculation engine layer, the portion
of the Sub-query provided by the high-level program
ming logic from the rest of the Sub-query, to generate
a high-level programming logic filter in the database
system format; and,

applying, using the calculation engine layer, the high
level programming logic filter to the calculation sce
nario.

17. The computer program product of claim 15, wherein
the high-level programming logic includes complex analyti
cal privileges.

18. The computer program product of claim 17, wherein
the complex analytical privileges are defined in SQL.

19. The computer program product of claim 17, wherein
the complex analytical privileges define a database system
user's rights to access database information managed by the
database system.

20. The computer program product of claim 15, wherein
the database system format is column store syntax.

21. The computer program product of claim 15, wherein
the high-level programming logic layer is an SQL layer.

k k k k k

