wo 2013/006967 A 1[I NI NPF V0000 00 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

17 January 2013 (17.01.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/006967 Al

(51

eay)

(22)

(25)
(26)
(30)

1

1

(72)
(73)

International Patent Classification:
HO04L 9/32 (2006.01) HO4L 12/16 (2006.01)

International Application Number:
PCT/CA2012/050461

International Filing Date:

9 July 2012 (09.07.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/178,633 8 July 2011 (08.07.2011) Us

Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

Applicant (for MG only): IBM CANADA LIM-
ITED-IBM CANADA LIMITEE [CA/CA]; 3600 Steeles
Avenue East, Markham, Ontario L3R 977 (CA).

Inventors; and

Inventors/Applicants (for US only): PIECZUL, Olgierd
Stanislaw [PL/IE]; Bldg. 6, Damastown Industrial Estate,
Dublin, 15 (IEF). MCGLOIN, Mark Alexander [IE/IE];
Bldg. 6, Damastown Industrial Estate, Dublin, 15 (IE).

(74

(8D

(84)

ZURKO, Mary Ellen [US/US]; Five Technology Park
Drive, Westtord, Massachusetts 01886 (US).

Agent: WANG, Peter; IBM Canada Limited, Dept.
B4/U59, 3600 Steeles Avenue East, Markham, Ontario
L3R 927 (CA).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: AUTHENTICATING A RICH CLIENT FROM WITHIN AN EXISTING BROWSER SESSION

104~

IS
([T

LT T0H

oo

SERVER

NETWORK

(57) Abstract: A user authenticates to a
Web- or cloud-based application from a
browser-based client. The browser-based
client has an associated rich client. After a
session is initiated from the browser-based

client (and a credential obtained), the user
can discover that the rich client is avail-

able and cause it to obtain the credential
(or anew one) for use in authenticating the
user to the application (using the rich cli-
ent) automatically, i.e., without additional

50

SERVER

108 STORAGE

FIG. 1

user input. An application interface
provides the user with a display by which

= the user can configure the rich client au-
thentication operation, such as specifying
whether the rich client should be authen-
ticated automatically if it detected as run-
ning, whether and what extent access to

114 the application by the rich client is to be

restricted, if and when access to the applic-

e ation by the rich client is to be revoked,
NT and the like.

WO 2013/006967 A1 |IIWAT 00N AV A E O A U

Published:
— with international search report (Art. 21(3))

10

15

20

25

WO 2013/006967 PCT/CA2012/050461

AUTHENTICATING A RICH CLIENT FROM WITHIN
AN EXISTING BROWSER SESSION

BACKGROUND OF THE INVENTION
Technical Field

This disclosure relates generally to application security and, in particular, to a method
to enable the passing or obtaining of a credential for a “rich client” from within an existing
web browser session.

Background of the Related Art

It is known in the prior art to integrate Web- or cloud-based applications with so-
called “rich” clients, where a “rich” client is a client (of a client-server application) that
supports its own interface (as opposed to merely exporting the web interface from the web
application itself). A “rich” client typically is not browser-based, and it is sometimes
referred to as a “thick” (as compared to a browser-based or “thin”) client. An illustrative
rich client is Lotus Notes®, which provides email, calendaring, contact management, and
instant messaging. A rich client can be used to access and automatically perform actions on
behalf of a user.

Many non-browser-based (rich) client applications of this type also have browser-
based (thin client) application counterparts or features. The thin client may be a simple web
browser and a login page. When an end-user wants to use these multiple clients at the same
time from a single workstation, he or she must authenticate separately to an authorization
server. A common approach to this requirement is to use a password that is then entered in
multiple interfaces, e.g., one for each client. This approach is not user-friendly, as the user
needs to enter his or her password multiple times. Moreover, where the user stores the

password locally (in each client), it increases the risk of compromise given that multiple

10

15

WO 2013/006967 PCT/CA2012/050461

copies are stored. Further, when the user changes the password, it likewise must be changed
in multiple places. Of course, when a user is forced to enter a password multiple times, it is
more likely than not that the user will select a weak one. Another problem arises if the Web-
or cloud-based application uses a single sign-on protocol (such as SAML or OpenlD) that
does not support password-based authentication that is typical for the thin client approach. In
such case, the user is then forced to use distinct types of authentication credentials and
techniques for each of the thick and thin clients, creating further inefficiencies and security
risks.

It would be desirable to be able to provide a technique by which a user need only
authenticate once during a session with a Web- or cloud-based application, but wherein this
authentication can be propagated, or otherwise made available, to an associated rich client

that can be discovered by the user.

10

15

20

WO 2013/006967 PCT/CA2012/050461

BRIEF SUMMARY OF THE INVENTION

According to this disclosure, a user authenticates to a Web- or cloud-based
application from a thin (browser-based) client. The client has an associated rich client.
After a session is initiated from the browser-based client (and a credential obtained), the user
can discover that the rich client is available and cause it to obtain the credential (or a new
one) for use in authenticating the user to the application (using the rich client) automatically,
i.e., without additional user input. An application interface provides the user with a display
by which the user can configure the rich client authentication operation, such as specifying
whether the rich client should be authenticated automatically if it detected as running,
whether and what extent access to the application by the rich client is to be restricted, if and
when access to the application by the rich client is to be revoked, and the like.

In one embodiment, to facilitate the described operation a control channel is
established between the browser and the rich client, which is modified to include an HTTP
server. By sending an HTTP request to a port on a localhost connection to the HTTP server,
the browser can determine if the rich client is executing and then pass the browser-based
credential.

In an alternative embodiment, the control channel is implemented using standard
operating system mechanisms. In particular, the rich client registers a content type in the
operating system and establishes itself as a handler for that type. When it is required to
initiate the rich client authentication, the browser makes an HT TP request to the application,
requesting a new credential. The HTTP response includes the credential with mime type that
matches the content type registered. The new credential is then passed through the operating

system to the rich client, which then uses it to authenticate to the application.

10

WO 2013/006967 PCT/CA2012/050461

The above-described authentication method may be performed in an apparatus. The
apparatus comprises a processor, and computer memory holding computer program
instructions which, when executed, perform the method.

In another alternative embodiment, the authentication method is performed by a
computer program product in a computer readable medium for use in a data processing
system. The computer program product holds computer program instructions which, when
executed by the data processing system, perform the method.

The foregoing has outlined some of the more pertinent features of the invention.
These features should be construed to be merely illustrative. Many other beneficial results
can be attained by applying the disclosed invention in a different manner or by modifying the

invention as will be described.

10

15

WO 2013/006967 PCT/CA2012/050461

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 depicts an exemplary block diagram of a distributed data processing
environment in which exemplary aspects of the illustrative embodiments may be
implemented;

FIG. 2 is an exemplary block diagram of a data processing system in which
exemplary aspects of the illustrative embodiments may be implemented,;

FIG. 3 illustrates a client application and its associated Web- or cloud-based server
application in which the technique of this disclosure is implemented;

FIG. 4 is a process flow diagram describing the basic operating scenario of this
disclosure;

FIG. 5 is a display page from an application interface by which a user configures an
access policy according to this disclosure; and

FIG. 6 is a display page from the application interface by which the user initiates the

rich client authentication operation, or revokes a previously-authorized access.

10

15

20

WO 2013/006967 PCT/CA2012/050461

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with reference to FIGs. 1-2,
exemplary diagrams of data processing environments are provided in which illustrative
embodiments of the disclosure may be implemented. It should be appreciated that FIGs. 1-2
are only exemplary and are not intended to assert or imply any limitation with regard to the
environments in which aspects or embodiments of the disclosed subject matter may be
implemented. Many modifications to the depicted environments may be made without
departing from the spirit and scope of the present invention.

With reference now to the drawings, FIG. 1 depicts a pictorial representation of an
exemplary distributed data processing system in which aspects of the illustrative
embodiments may be implemented. Distributed data processing system 100 may include a
network of computers in which aspects of the illustrative embodiments may be implemented.
The distributed data processing system 100 contains at least one network 102, which is the
medium used to provide communication links between various devices and computers
connected together within distributed data processing system 100. The network 102 may
include connections, such as wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 are connected to network 102
along with storage unit 108. In addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for example, personal computers,
network computers, or the like. In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to the clients 110, 112, and 114.
Clients 110, 112, and 114 are clients to server 104 in the depicted example. Distributed data

processing system 100 may include additional servers, clients, and other devices not shown.

10

15

20

WO 2013/006967 PCT/CA2012/050461

In the depicted example, distributed data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host computers, consisting of thousands of
commercial, governmental, educational and other computer systems that route data and
messages. Of course, the distributed data processing system 100 may also be implemented to
include a number of different types of networks, such as for example, an intranet, a local area
network (LAN), a wide area network (WAN), or the like. As stated above, FIG. 1 is intended
as an example, not as an architectural limitation for different embodiments of the disclosed
subject matter, and therefore, the particular elements shown in FIG. 1 should not be
considered limiting with regard to the environments in which the illustrative embodiments of
the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an exemplary data processing
system is shown in which aspects of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as client 110 in FIG. 1, in which
computer usable code or instructions implementing the processes for illustrative
embodiments of the disclosure may be located.

With reference now to FIG. 2, a block diagram of a data processing system is shown
in which illustrative embodiments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in FIG. 1, in which computer-usable
program code or instructions implementing the processes may be located for the illustrative

embodiments. In this illustrative example, data processing system 200 includes

10

15

20

WO 2013/006967 PCT/CA2012/050461

communications fabric 202, which provides communications between processor unit 204,
memory 206, persistent storage 208, communications unit 210, input/output (I/O) unit 212,
and display 214.

Processor unit 204 serves to execute instructions for software that may be loaded into
memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation. Further, processor unit 204 may
be implemented using one or more heterogeneous processor systems in which a main
processor is present with secondary processors on a single chip. As another illustrative
example, processor unit 204 may be a symmetric multi-processor (SMP) system containing
multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of storage devices. A storage
device is any piece of hardware that is capable of storing information either on a temporary
basis and/or a permanent basis. Memory 206, in these examples, may be, for example, a
random access memory or any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms depending on the particular implementation.
For example, persistent storage 208 may contain one or more components or devices. For
example, persistent storage 208 may be a hard drive, a flash memory, a rewritable optical
disk, a rewritable magnetic tape, or some combination of the above. The media used by
persistent storage 208 also may be removable. For example, a removable hard drive may be
used for persistent storage 208.

Communications unit 210, in these examples, provides for communications with
other data processing systems or devices. In these examples, communications unit 210 is a

network interface card. Communications unit 210 may provide communications through the

10

15

20

WO 2013/006967 PCT/CA2012/050461

use of either or both physical and wireless communications links.

Input/output unit 212 allows for input and output of data with other devices that may
be connected to data processing system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse. Further, input/output unit 212
may send output to a printer. Display 214 provides a mechanism to display information to a
user.

Instructions for the operating system and applications or programs are located on
persistent storage 208. These instructions may be loaded into memory 206 for execution by
processor unit 204. The processes of the different embodiments may be performed by
processor unit 204 using computer implemented instructions, which may be located in a
memory, such as memory 206. These instructions are referred to as program code, computer-
usable program code, or computer-readable program code that may be read and executed by
a processor in processor unit 204. The program code in the different embodiments may be
embodied on different physical or tangible computer-readable media, such as memory 206 or
persistent storage 208.

Program code 216 is located in a functional form on computer-readable media 218
that is selectively removable and may be loaded onto or transferred to data processing system
200 for execution by processor unit 204. Program code 216 and computer-readable media
218 form computer program product 220 in these examples. In one example, computer-
readable media 218 may be in a tangible form, such as, for example, an optical or magnetic
disc that is inserted or placed into a drive or other device that is part of persistent storage 208
for transfer onto a storage device, such as a hard drive that is part of persistent storage 208. In

a tangible form, computer-readable media 218 also may take the form of a persistent storage,

10

15

20

WO 2013/006967 PCT/CA2012/050461

such as a hard drive, a thumb drive, or a flash memory that is connected to data processing
system 200. The tangible form of computer-readable media 218 is also referred to as
computer-recordable storage media. In some instances, computer-recordable media 218 may
not be removable.

Alternatively, program code 216 may be transferred to data processing system 200
from computer-readable media 218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212. The communications link and/or
the connection may be physical or wireless in the illustrative examples. The computer-
readable media also may take the form of non-tangible media, such as communications links
or wireless transmissions containing the program code. The different components illustrated
for data processing system 200 are not meant to provide architectural limitations to the
manner in which different embodiments may be implemented. The different illustrative
embodiments may be implemented in a data processing system including components in
addition to or in place of those illustrated for data processing system 200. Other components
shown in FIG. 2 can be varied from the illustrative examples shown. As one example, a
storage device in data processing system 200 is any hardware apparatus that may store data.
Memory 206, persistent storage 208, and computer-readable media 218 are examples of
storage devices in a tangible form.

In another example, a bus system may be used to implement communications fabric
202 and may be comprised of one or more buses, such as a system bus or an input/output bus.
Of course, the bus system may be implemented using any suitable type of architecture that
provides for a transfer of data between different components or devices attached to the bus

system. Additionally, a communications unit may include one or more devices used to

- 10 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

transmit and receive data, such as a modem or a network adapter. Further, a memory may be,
for example, memory 206 or a cache such as found in an interface and memory controller
hub that may be present in communications fabric 202.

Computer program code for carrying out operations of the present invention may be
written in any combination of one or more programming languages, including an object-
oriented programming language such as Java' ", Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer, or entirely on the remote computer or server. In
the latter scenario, the remote computer may be connected to the user's computer through any
type of network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider).

Those of ordinary skill in the art will appreciate that the hardware in FIGs. 1-2 may
vary depending on the implementation. Other internal hardware or peripheral devices, such
as flash memory, equivalent non-volatile memory, or optical disk drives and the like, may be
used in addition to or in place of the hardware depicted in FIGs 1-2. Also, the processes of
the illustrative embodiments may be applied to a multiprocessor data processing system,
other than the SMP system mentioned previously, without departing from the spirit and scope
of the disclosed subject matter.

As will be seen, the techniques described herein may operate in conjunction within

the standard client-server paradigm such as illustrated in FIG. 1 in which client machines

-11 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

communicate with an Internet-accessible Web-based portal executing on a set of one or more
machines. End users operate Internet-connectable devices (e.g., desktop computers,
notebook computers, Internet-enabled mobile devices, or the like) that are capable of
accessing and interacting with the portal. Typically, each client or server machine is a data
processing system such as illustrated in FIG. 2 comprising hardware and software, and these
entities communicate with one another over a network, such as the Internet, an intranet, an
extranet, a private network, or any other communications medium or link. A data processing
system typically includes one or more processors, an operating system, one or more
applications, and one or more utilities. The applications on the data processing system
provide native support for Web services including, without limitation, support for HTTP,
SOAP, XML, WSDL, UDDI, and WSFL, among others. Information regarding SOAP,
WSDL, UDDI and WSFL is available from the World Wide Web Consortium (W3C), which
is responsible for developing and maintaining these standards; further information regarding
HTTP and XML is available from Internet Engineering Task Force (IETF). Familiarity
with these standards is presumed.

As is well-known, and by way of additional background, authentication is the process
of validating a set of credentials that are provided by a user or on behalf of a user.
Authentication is accomplished by verifying something that a user knows, something that a
user has, or something that the user is, i.e. some physical characteristic about the user.
Something that a user knows may include a shared secret, such as a user’s password, or by
verifying something that is known only to a particular user, such as a user’s cryptographic
key. Something that a user has may include a smartcard or hardware token. Some physical

characteristic about the user might include a biometric input, such as a fingerprint or a retinal

-12-

10

15

20

WO 2013/006967 PCT/CA2012/050461

map. It should be noted that a user is typically, but not necessarily, a natural person; a user
could be a machine, computing device, or other type of data processing system that uses a
computational resource. It should also be noted that a user typically but not necessarily
possesses a single unique identifier; in some scenarios, multiple unique identifiers may be
associated with a single user.

An authentication credential is a set of challenge/response information that is used in
various authentication protocols. For example, a username and password combination is the
most familiar form of authentication credentials. Other forms of authentication credential
may include various forms of challenge/response information, Public Key Infrastructure
(PKI) certificates, smartcards, biometrics, and so forth. Typically, an authentication is
presented by a user as part of an authentication protocol sequence with an authentication
Server or service.

As will now be described, and with reference to FIG. 3, the technique that is the
subject of this disclosure typically is implemented in a scenario in which a Web- or cloud-
based application comprises client-side and server-side components. The client-side
components comprise a web browser or code associated therewith (e.g., a browser plug-in,
applet, or the like) 300, and non-browser-based client 302, each of which executes in client
machine 304, such as described above with respect to FIG. 2. For example, client machine
304 comprises processor 306, computer memory 308, and operating system 310. The
browser-based client may be referred to herein as a “thin” client, and the non-browser-based
client may be referred to as a “thick” or “rich” client. Each such client component is adapted

to interoperate with the server-side component comprising server application 312 over

- 13-

10

15

20

WO 2013/006967 PCT/CA2012/050461

network 314, such as shown in FIG. 1. Server application 304 may be either Web-, or
cloud-based and it also executes on one or more machines such as shown in FIG. 2.

Browser-based client 300 has an established authentication mechanism with its
associated server application 312. Likewise, non-browser-based or “rich” client 302 has an
established authentication mechanism with the server application 312. These authentication
mechanisms may be the same or different. As noted above, a “rich” client is not browser-
based. An illustrative rich client application is Lotus Notes®, which provides email,
calendaring, contact management, and instant messaging, although rich clients can be
implemented in any client-server application. In this example, the server application 304 is
Domino® data server. Of course, these examples are not meant to limit the disclosed subject
matter, which may be implemented with any Web- or cloud-based application.

According to this disclosure, a control channel 316 is established between the
browser-based client 300, on the one hand, and the non-browser-based client 302, on the
other hand. The control channel is used to pass information between these components, as
will be described. In one embodiment, control channel 316 is implemented using a localhost
connection 318, over which the browser-based client 300 communicates with an HTTP
server instance 320 associated with the rich client. Communications between the client 300
and client 302 in this embodiment typically occur over HTTPS, although this is not a
requirement. In an alternative embodiment, and as will be described, the control channel is
implemented using the operating system 310 itself, e.g., by having the rich client register as a
handler for a particular mime type. The control channel may be implemented in other ways,

e.g., as a shared memory segment, an interprocess communication (IPC), by a network call,

- 14 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

by a file, or the like. In the event the control channel is observable by other client processes,
it should be secured using known techniques.

A typical operating scenario of this disclosure is now described with respect to the
process flow in FIG. 4. At step 400, an end user has opened an instance of the browser 300
and has authenticated to the server application 312, typically by entering a user identifier
(UID), and a password, at an SSL-secured logon page rendered in the browser. As a result,
the browser obtains and stores an associated credential 305, which is provided by the server
application. This operation as indicated at step 402 establishes a user session or “web-based
user session.” As a consequence, the user can then take one or more actions as permitted by
the Web- or cloud-based application. According to this disclosure, after the user session is
initiated from the browser (i.e., during the existing web session), the rich client 302 is
discovered and is authenticated to the server application 312, preferably automatically and
without requiring the end user to input additional authenticated-related information. In other
words, the rich client authentication is carried out transparently - in effect “under the covers”
—but in the manner expected by the server application. The end user, however, does not
need to perform the usual tasks associated with the authentication operation from the rich
client. He or she authenticates once (using the browser-based approach), and that
authentication enables or facilitates the rich client-based authentication.

Preferably, this rich client automatic logon (auto-logon) operation is accomplished as
follows. It assumes that the user (or another) has configured certain discovery and
authentication operations, preferably using an application interface that is described below.
At step 404, a check is performed to determine whether the user desires to authenticate to the

server application using the rich client. If the user desires to authenticate to the server

-15-

10

15

20

WO 2013/006967 PCT/CA2012/050461

application, a discovery step 406 is performed. Discovery step 406 identifies if any rich
client(s) are executing in the client machine (and there may be many of them). The
discovery step may be performed actively, e.g., by having the browser issue one or more
requests over the localhost connection and receiving “status” responses in return, or it may be
carried out passively, e.g., by having such status information available to the browser and
displayable on-demand. In the alternative, when a rich client is started, its execution state is
just exposed to the user in some manner, e.g., audibly, visually, or the like. The nature of
the discovery process will depend on the implementation. Other discovery techniques that
might be used include having the rich client open a port on an HTTP server instance and
having the browser iterate over a set of available ports until it locates the open port, which
indicates that the rich client is executing. Where IPC is used as the control channel, an
operating system publish mechanism may be used to provide a notification that the rich client
is executing. These examples are not meant to be limiting.

Following discovery, the routine continues at step 408, in which the rich client
obtains a credential to perform the actual authentication to the server application. In one
embodiment, the credential is just the credential 305 obtained during the browser-based
authentication to the application server. In this embodiment, the browser simply passes the
credential to the rich client via the control channel. In an alternative embodiment, the rich
client has registered as a handler to the local operating system for a mime content type (e.g.,
x-application/rich-auth). At step 408, the browser issues an HT TP request to the server
application requesting a new credential; the HTTP response from the server application
includes the new credential and a header that identifies the associated mime type. Because

the rich client is registered as a handler for this mime type, the HTTP response (the new

- 16 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

credential) is propagated through the operating system kernel to the rich client, which then
uses it to authenticate, once again without requiring explicit user input. In this alternative
embodiment, the control channel uses the standard OS mechanisms and thus is platform-
independent. At step 410, the rich client completes the authentication to the server
application and the process terminates.

One or more steps shown in FIG. 4 may be carried out in a different order. One or
more steps may be combined, or a substitution may be implemented.

The particular manner in which the rich client authenticates to the server application
312 is not an aspect of this disclosure. Known techniques for this purpose include, without
limitation, SAML-based authentication (in which the server issues a SAML assertion that is
then forward to the rich client, which authenticates with the assertion or exchanges it for
another credential), OAuth-based authentication (in which the server issues an O Auth token
that is used by the rich client to authenticate), one-time token-based authentication (in which
the server generates a random nonce that is kept server-side and associated with the user),
and the like.

In the first embodiment, wherein the browser-based client 300 communicates with the
rich client directly over the control channel, the server application and the local HTTP server
(executing in association with the rich client) may operate in different domains. The local
HTTP server may be an adjunct to the rich client, or integral therewith. Accordingly, known
cross-domain communication methods (e.g., script inclusion) should be used to facilitate this
interaction. In another variant, rather than using a local HTTP server, a browser plug-in or
signed applet may be used to interact with the application server to obtain the credential and

implement the rich client authentication.

-17 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

FIG. 5 illustrates a representative application interface 322 (FIG. 3) by which a user
(or other person or entity) may configure the operation. This interface may be exported to
the browser as one or more web pages, although this is not a limitation. A representative
page 500 exposes a set of configuration elements, such as input fields, HTML fill-in forms,
radio buttons, and the like. Thus, for example, by selecting radio button 502, the user can
request that all running rich clients be discovered upon initiation of the web session. By
selecting radio button 504, the user can elect to have the status of all running rich clients
updated on request. The user may select radio button to specify that the rich client is
authenticated automatically when it is detected as running. Using options available from list
506, the user can specify a restriction or limitation on how the rich client interacts with the
server application. Thus, for example, the list may expose one or more options, e.g., the
access is “read-only,” that access is available for a limited time that may be specified, that
only certain functions or application programming interfaces (APIs) are available, and so
forth. These are merely representative configuration options, and one of ordinary skill will
appreciate that other configuration options may be implemented as desired. The
configuration interface may also provide a control that, once selected, enables the user to
start the rich client directly from the browser if that client is not running. Using this
interface, the user configures a “policy” that defines how the rich client should be
authenticated to the server application. A set of default policies may be exposed to a user to
facilitate this option. While an embodiment of the interface has been described, one or more
alternative approaches may be used, e.g. using a command line interface, defining a policy

programmatically, or the like.

- 18 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

FIG. 6 illustrates a discovery page 600 of the interface. This page is displayed after
the discovery step as previously described. In this example, the discovery operation has
identified two rich clients (Client1, and Client2) that are executing in the client machine, and
these clients are represented here by icons 602 and 604. Icon 602 includes an indication or
visual cue that a credential has been issued for Client1 associated therewith. By selecting
that icon, the end user may be afforded an opportunity (e.g., via a separate dialog) to
invalidate Client1’s authentication; in the alternative, selection of icon 602 itself terminates
the rich client authentication. In either case, access to the server application from the rich
client is effectively revoked (by invalidating the credential). By selecting icon 604, the end
user can initiate the process of obtaining the credential, as described above, so Client2 can
access and use the server application.

Thus, according to this technique, a user can enable a rich client to authenticate to the
server application automatically, and based on a policy defined by the user. This policy may
specify that the credential can be issued only for a particular time period, or that it only be
used to access a part of the application, or the like. Access is revocable, once again under the
user’s configured policy.

The disclosed subject matter has many advantages. A key advantage is the user need
only authenticate once during a session with a Web- or cloud-based application (and in one
place). Using the described technique, this authentication is then, in effect, used to enable an
associated rich client to access the application. Another advantage is that such access by the
rich client can be customized according to a user-configured policy, and the user can revoke
such access by the rich client as desired. Using the discovery feature, the user can view the

rich clients running locally and authenticate them by requesting the server application (or

-19-

10

15

20

WO 2013/006967 PCT/CA2012/050461

other entity) issue a credential (or token, or the like), which credential is then used by the rich
client to authenticate the user to the application. The technique provides several local
mechanisms for propagating an existing browser-based credential to the rich client, or
enabling the rich client to obtain a new credential.

The technique may be used with any rich client, irrespective of how that client
authenticates to the server application.

In one described embodiment, the technique enables automatic and direct propagation
of a (browser-based) client application credential to a counterpart non-browser process that is
associated with the browser application. This solution obviates the user having to log into
the rich client if it is desired to launch that client within an existing web-based user session.

As used herein, the “credential” should be broadly construed to refer to any
credential, token, data set or data that facilitates access to the server application. As noted
above, the client (whether browser-based or rich) has an established authentication
mechanism with its associated server application, and the disclosed technique honors the
semantics and communication protocols involved.

The auto-login solution of this disclosure provides a unique interaction between the
browser-based client and the associated rich client, both of which preferably are associated
with the Web- or cloud-based server application. The solution assumes that an existing user
session between the browser-based client and the server application is in place, in other
words, that a credential has been previously generated when the end user logged into the
server application.

Although not meant to be limiting, in a representative embodiment, the server

application executes an application server (such as IBM® WebSphere® server), which

-20 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

includes support for one or more server-based code functions, typically in the form of J2EE-
compliant servlets.

The functionality described above may be implemented as a standalone approach,
e.g., a software-based function executed by a processor, or it may be available as a managed
service (including as a web service via a SOAP/XML interface). The particular hardware
and software implementation details described herein are merely for illustrative purposes are
not meant to limit the scope of the described subject matter.

More generally, computing devices within the context of the disclosed subject matter
are each a data processing system (such as shown in FIG. 2) comprising hardware and
software, and these entities communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any other communications medium or
link. The applications on the data processing system provide native support for Web and
other known services and protocols including, without limitation, support for HTTP, FTP,
SMTP, SOAP, XML, WSDL, UDDI, and WSFL, among others. Information regarding
SOAP, WSDL, UDDI and WSFL is available from the World Wide Web Consortium
(W3C), which is responsible for developing and maintaining these standards; further
information regarding HTTP, FTP, SMTP and XML is available from Internet Engineering
Task Force (IETF). Familiarity with these known standards and protocols is presumed.

The rich client auto-login scheme described herein may be implemented in or in
conjunction with various server-side architectures including simple n-tier architectures, web
portals, federated systems, and the like. The application server component may be located in

a domain that differs from the domain of one or more back-end applications and, thus, the

221 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

techniques herein may be practiced in a loosely-coupled server (including a “cloud”-based)
environment. The application server itself may be hosted in the cloud.

Still more generally, the subject matter described herein can take the form of an
entirely hardware embodiment, an entirely software embodiment or an embodiment
containing both hardware and software elements. In a preferred embodiment, the function is
implemented in software, which includes but is not limited to firmware, resident software,
microcode, and the like. Furthermore, as noted above, the auto-login functionality can take
the form of a computer program product accessible from a computer-usable or computer-
readable medium providing program code for use by or in connection with a computer or any
instruction execution system. For the purposes of this description, a computer-usable or
computer readable medium can be any apparatus that can contain or store the program for
use by or in connection with the instruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromagnetic, infrared, or a
semiconductor system (or apparatus or device). Examples of a computer-readable medium
include a semiconductor or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic
disk and an optical disk. Current examples of optical disks include compact disk —read only
memory (CD-ROM), compact disk —read/write (CD-R/W) and DVD. The computer-
readable medium is a tangible item.

The computer program product may be a product having program instructions (or
program code) to implement one or more of the described functions. Those instructions or
code may be stored in a computer readable storage medium in a data processing system after

being downloaded over a network from a remote data processing system. Or, those

_02-

10

15

20

WO 2013/006967 PCT/CA2012/050461

instructions or code may be stored in a computer readable storage medium in a server data
processing system and adapted to be downloaded over a network to a remote data processing
system for use in a computer readable storage medium within the remote system.

In a representative embodiment, the client and server components as described are
implemented in a special purpose computer, preferably in software executed by one or more
processors. The software is maintained in one or more data stores or memories associated
with the one or more processors, and the software may be implemented as one or more
computer programs. Collectively, this special-purpose hardware and software comprises the
components that provide the rich client auto-login functionality.

The function(s) described may be implemented as an adjunct or extension to an
existing application server function or operation.

While the above describes a particular order of operations performed by certain
embodiments of the invention, it should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a different order, combine certain
operations, overlap certain operations, or the like. References in the specification to a given
embodiment indicate that the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not necessarily include the particular
feature, structure, or characteristic.

Finally, while given components of the system have been described separately, one of
ordinary skill will appreciate that some of the functions may be combined or shared in given
instructions, program sequences, code portions, and the like.

A “browser” as used herein is not intended to refer to any specific browser (e.g.,

Internet Explorer, Safari, FireFox, or the like), but should be broadly construed to refer to

-3 .

10

15

20

WO 2013/006967 PCT/CA2012/050461

any client-side rendering engine that can access and display Internet-accessible resources.
Further, while typically the client-server interactions occur using HTTP, as noted above, this
is not a limitation either. The client server interaction may be formatted to conform to the
Simple Object Access Protocol (SOAP) and travel over HTTP (over the public Internet),
FTP, or any other reliable transport mechanism (such as IBM® MQSeries” technologies and
CORBA, for transport over an enterprise intranet) may be used. Also, the term “web site” or
“service provider” should be broadly construed to cover a web site (a set of linked web
pages), a domain at a given web site or server, a trust domain associated with a server or set
of servers, or the like. A “service provider domain” may include a web site or a portion of a
web site. Any application or functionality described herein may be implemented as native
code, by providing hooks into another application, by facilitating use of the mechanism as a
plug-in, by linking to the mechanism, and the like.

As noted, the above-described rich client auto-login function may be used in any
system, device, portal, site, or the like wherein a non-browser based client application
credential needs to be passed to an associated browser process. More generally, the
described technique is designed for use in any operating environment wherein given
information (including, without limitation, credential data) is desired to be persisted from a
client application to an associated browser process in an automated manner.

While the embodiment described above provides for authenticating a rich client from
within an existing browser session, the basic technique also may be implemented in the
scenario where the rich client is authenticated to the web application and it is desired to pass
the existing credential to the thin client. In this scenario, and provided that the rich client

has a way to ensure that access (to the application) by the thin client is permissible, a control

-4 .

WO 2013/006967 PCT/CA2012/050461

channel is enabled between the rich client and an available browser-based client. The
credential obtained by the rich client is then passed to the browser-based client to enable the
user to be authenticated.

The server application enables access to a service, a server, an application program, a
process, a page (e.g., a wiki, a web page, etc.), a file, a linked object, a directory, or the like.

Having described our invention, what we now claim is as follows.

-25-

10

15

20

WO 2013/006967 PCT/CA2012/050461

CLAIMS

1. A method of authenticated user access to a server application, comprising;:

receiving user input in a browser-based client to initiate a web session with the server
application;

receiving a credential at the browser-based client;

within the web session, identifying a rich client capable of interacting with the server
application;

within the web session, providing the rich client with a credential, the credential
being one of: the credential received at the browser-based client, and a new credential
received from the server application; and

within the web session, using the credential provided to the rich client to authenticate

the user to the server application using the rich client.

2. The method as described in claim 1 wherein the step of identifying the rich
client includes initiating a discovery operation to determine an operating state of one or more

rich clients executing locally.

3. The method as described in claim 2 further including:

providing the user a display indicating the one or more rich clients executing locally;
and

receiving a selection from the user identifying the rich client that is to be provided

with the credential.

- 26 -

10

15

WO 2013/006967 PCT/CA2012/050461

4. The method as described in claim 1 further including establishing a control

channel between the browser-based client and the rich client.

5. The method as described in claim 4 further including providing the rich client

with the credential using the control channel.

6. The method as described in claim 1 wherein the credential provided to the rich

client is associated with a policy that defines at least one access restriction with respect to the

server application.

7. The method as described in claim 6 wherein the policy is a user-configured

policy.

8. The method as described in claim 1 further including invalidating the

credential provided to the rich client.

_27 -

WO 2013/006967 PCT/CA2012/050461

9. Apparatus to provide authenticated user access to a server application,
comprising:
a processor;
computer memory holding computer program instructions that when executed by the
5 processor perform a method comprising;:

receiving user input in a browser-based client to initiate a web session with
the server application;

receiving a credential at the browser-based client;

within the web session, identifying a rich client capable of interacting with the

10 server application;

within the web session, providing the rich client with a credential, the
credential being one of: the credential received at the browser-based client, and a new
credential received from the server application; and

within the web session, using the credential provided to the rich client to

15 authenticate the user to the server application using the rich client.

10. The apparatus as described in claim 9 wherein the step of identifying the rich
client includes initiating a discovery operation to determine an operating state of one or more
rich clients executing locally.

20

11. The apparatus as described in claim 10 wherein the method further includes:

providing the user a display indicating the one or more rich clients executing locally;

and

-28 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

receiving a selection from the user identifying the rich client that is to be provided

with the credential.

12. The apparatus as described in claim 9 wherein the method further includes

establishing a control channel between the browser-based client and the rich client.

13. The apparatus as described in claim 12 wherein the method further includes

providing the rich client with the credential using the control channel.

14. The apparatus as described in claim 9 wherein the credential provided to the

rich client is associated with a policy that defines at least one access restriction with respect

to the server application.

15. The apparatus as described in claim 14 wherein the policy is a user-configured

policy.

16. The apparatus as described in claim 9 wherein the method further includes

invalidating the credential provided to the rich client.

-29.

10

15

20

WO 2013/006967 PCT/CA2012/050461

17. A computer program product in a computer readable medium for use in a data
processing system to provide authenticated user access to a server application, the computer
program product holding computer program instructions which, when executed by the data
processing system, perform a method comprising:

receiving user input in a browser-based client to initiate a web session with the server
application;

receiving a credential at the browser-based client;

within the web session, identifying a rich client capable of interacting with the server
application;

within the web session, providing the rich client with a credential, the credential
being one of: the credential received at the browser-based client, and a new credential
received from the server application; and

within the web session, using the credential provided to the rich client to authenticate

the user to the server application using the rich client.

18. The computer program product as described in claim 17 wherein the step of
identifying the rich client includes initiating a discovery operation to determine an operating

state of one or more rich clients executing locally.

19. The computer program product as described in claim 18 wherein the method
further includes:
providing the user a display indicating the one or more rich clients executing locally;

and

-30 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

receiving a selection from the user identifying the rich client that is to be provided

with the credential.

20. The computer program product as described in claim 17 wherein the method
further includes establishing a control channel between the browser-based client and the rich

client.

21. The computer program product as described in claim 20 wherein the method

further includes providing the rich client with the credential using the control channel.

22. The computer program product as described in claim 17 wherein the

credential provided to the rich client is associated with a policy that defines at least one

access restriction with respect to the server application.

23. The computer program product as described in claim 22 wherein the policy is

a user-configured policy.

24. The computer program product as described in claim 17 wherein the method

further includes invalidating the credential provided to the rich client.

-31 -

10

15

20

WO 2013/006967 PCT/CA2012/050461

25. A method to facilitate access to a server application by a second client from
within a user session initiating by a first client, wherein the first and second clients are co-
located, comprising;:

establishing a control channel between the first and second clients;

while the user session is on-going, discovering that the second client is available to
interact with the server application;

providing the second client a credential; and

using the credential to authenticate the user to the server application using the second

client.

26. The method as described in claim 25 wherein the first client is a browser-

based client, and the second client is a non-browser-based client.

27. The method as described in claim 25 wherein the credential provided to the

second client is a credential obtained by the first client when the user session is initiated.

28. The method as described in claim 25 wherein the credential provided to the

second client is obtained by registering the second client to receive a response from the

application server, the response including the credential.

-30.-

WO 2013/006967

1/4
=]
104~
— |
| =5
SERVER
=]
106~
I
I 5o
SERVER
e e
i 204 206 208
X / /
. PROCESSOR PERSISTENT
| UNIT MEMORY STORAGE
! @ 202 @ @
' \
1 < >
i
-l i I
i [communications] [INPUT/OUTPUT
|) / \ \
L0 A2 214
220 COMPUTER 218

READABLE MEDIA

PROGRAM CODE

N
216

FIG. 2

PCT/CA2012/050461

CLIENT

112

WO 2013/006967

PCT/CA2012/050461

2/4

CLIENT MACHINE
/304
COMPUTER MEMORY 308
300~ WEB BROWSER []
7 312
305 314 /
318 CONTROL | ~316
\\ CHANNEL SERVER
APPLICATION
localhost
NON-BROWSER- HTTP CONFIGURATION
0S BASED CLIENT SERVER INTERFACE
APPLICATION \
/ / / 322
310 302 320
PROCESSOR(S) 306
FIG. 3
USER OPENS BROWSER AND 400
AUTHENTICATES TO SERVER APPLICATION
¥
USER WEB SESSION ESTABLISHED 402
BROWSER-BASED CREDENTIAL SAVED
¥
PERFORM CHECK TO DETERMINE WHETHER
404

FIG. 4

THE USER DESIRES TO AUTHENTICATE TO THE
SERVER APPLICATION USING THE RICH CLIENT

v

PERFORM DISCOVERY OPERATION IS NECESSARY

~-406

v

RICH CLIENT OBTAINS CREDENTIAL, EITHER FROM
BROWSER-BASED CLIENT, OR BY OBTAINING A NEW
CREDENTIAL BY REGISTERING AS AN OS HANDLER

~-408

v

RICH CLIENT COMPLETES AUTHENTICATION
TO THE SERVER APPLICATION; USER IS NOW
AUTHENTICATED VIA THE RICH CLIENT

410

WO 2013/006967 PCT/CA2012/050461

3/4

CO--——--- 1) =lgll x

< @J [@J [* http:// RichClientConfigurator.html }J D v /9'

502\0 Discover rich client(s) upon initiation of web session

504\0 Update status B

Access option(s) Configure a custom
P policy for rich client
read-only
time-based L =
function-restricted 506
etc.
>
Save
D f—t
\4
<] A [il -
5007

FIG. 5

WO 2013/006967 PCT/CA2012/050461
4/4
7 R R — Eh_‘l)¢
O - . J
f (v v
http:// RichClientDiscovery.html J
&) (@) (2] v ») D
A
602 604
Client1 Client2
These rich clients are
"Active" available locally
=
b
D —3
\4
<] : [i >
6007

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2012/050461

A CLASSIFICATION OF SUBJECT MATTER
IPC: HO4L 9/32 (2006.01) , HO4L 12716 (2006.01)

According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (2006.01) : HO4L 9/32, HO4L 12/16

Documentation searched other than minimum documentation to the exte

nt that such documents are included in the fields searched

Electronic database(s) consulted during the mternational search (name of database(s) and, where practicable, search terms used)

Canadian Patent Database, WEST, TotalPatent, Epoque
Kevwords: thin/thick client,web browser session, credential, web/cloud-
client, authentication, auto-logon/login, configuration intertace

based apoplication, control channel, HTTP server, handler, rich

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categorv* | Citation of document, with mdication, where appropriate, of the relevant passages Relevant to claim No.

A US2010057836A1, 04 March 2010 (04-03-2010)
*** whole document ***

A US2006031407A1, 09 February 2006 (09-02-2006)
*** whole document ***

A US2011219427A1, 08 September 2011 (08-09-2011)
*¥** whole document ***

A US2012151568A1. 14 June 2012 (14-06-2012)
*** whole document ***

1-24

1-24

1-24

1-24

[1 Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents

“AY document detining the general state of the art which 1s not considered
to be of particular relevance

“E” earlier application or patent but published on or atter the mternational
tiling date

"L document which may throw doubts on priority clamm(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

“pr document published prior to the international filing date but later than
the priority date claimed

“T later document published after the mternational filing date or priority
date and not in contlict with the aln]l)llgatlon but cited to understand
the principle or theory underlying the invention

XU document of particular relevance; the claimed invention cannot be
considered novel or cannot be congidered to involve an inventive
step when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to mvolve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent tamily

Date of the actual completion of the international search

25 October 2012 (25-10-2012)

Date of mailing of the international search report

01 November 2012 (01-11-2012)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Lawrence J. Engel (819) 997-2936

Form PCT/ISA/210 (second sheet) (July 2009)

Page 3 of 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2012/050461

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons :

||] Claim Nos. :

because they relate to subject matter not required to be searched by this Authority, namely :

2. |] Claim Nos. :

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent
that no meaningful international search can be carried out, specifically

3. [] Claim Nos. :

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. IIT Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows :

Group I: claims 1-24 are drawn to a method and apparatus for authenticating a user’s access to a server application.
Group II: claims 25-28 are drawn to a method to facilitate access to a server application by a second client within a user session initiated by
a first client.

1. [] Asall required additional search fees were timelv paid by the applicant, this international search report covers all

searchable claims.

2. |] Asall searchable claims could be searched without effort justifving additional fees, this Authority did not invite

pavment of additional fees.

3. [X] Asonly some of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claim Nos. : 1-24

4. |] No required additional search fees were timely paid by the applicant. Consequently, this international search report is

restricted to the invention first mentioned in the claims; it is covered by claim Nos. :

Remark on Protest | | The additional search fees were accompanied by the applicant’s protest and. where applicable,

the pavment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest

fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the pavment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009) Page 2 of 4

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/CA2012/0504061
Patent Document Publication Patent Family ~ Publication
Cited in Search Report Date Member(s) Date
US2010057836A1 04 March 2010 None

(04-03-2010)

US2006031407A1 09 February 2006
(09-02-2006)

US2006168149A1 27 July 2006 (27-07-2006)
US8244875B2 14 August 2012 (14-08-2012)

US2011219427A1 08 September 2011 None
(08-09-2011)
US2012151568A1 14 June 2012 None

(14-06-2012)

Form PCT/ISA/210 (patent family annex) (July 2009)

Page 4 of 4

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

