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1
CACHE MEMORY ERROR ANALYSIS AND
MANAGEMENT THEREOF

BACKGROUND

In recent years, processors in server computers are
becoming denser with an increased core count that contain
hundreds of megabytes of on-die caches. With increased
cache density, the probability for errors for cache memory
increases. For this reason, modern caches integrate error
detection and correction hardware to alleviate some of the
errors. In advanced machines that implement a RAS (Reli-
ability Availability and Serviceability) mechanism, informa-
tion about the error is recorded to help in failure analysis.
Such information often includes the exact cache line
instance, index, and other identifying information. However,
RAS management firmware is interrupt driven and is trig-
gered to run whenever a first error occurs. Consequently, the
RAS data structures are designed to record only the first
error and information about other errors is not tracked. As a
result, a burst of errors having correlation between the errors
would be impossible to analyze given the current RAS
solutions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system for cache memory error detection
according to one embodiment including an obsolete cache-
line vector.

FIG. 2 is a system for cache memory error detection
according to another embodiment including the obsolete
cache-line vector.

FIG. 3 shows a detailed view of the obsolete cache-line
vector of FIGS. 1 and 2.

FIG. 4 shows a compute service provider environment for
executing a RAS management server for analyzing correla-
tion between errors captured by the obsolete cache-line
vectors of FIGS. 1 and 2.

FIG. 5 depicts a generalized example of a suitable com-
puting environment in which the described innovations may
be implemented.

FIG. 6 is a flowchart of a method for implementing cache
memory error detection.

DETAILED DESCRIPTION

When cache line errors occur in previous systems, error
detection logic would set a pulse to trigger an alert. How-
ever, the previous systems have no ability to capture mul-
tiple errors and determine patterns associated with the errors.
Accordingly, a system is described that includes an obsolete
cache-line vector having a plurality of memory elements,
wherein each memory element has a one-to-one correspon-
dence to a cache line entry of a cache memory. The memory
elements together form the obsolete cache-line vector. The
obsolete cache-line vector can capture cache line errors that
occur at different times as signaled from an error detection
logic associated with the cache memory. Once an error is
captured, the memory element in the vector is activated and
remains activated until the entire vector is reset. A counter
can be coupled to the obsolete cache-line vector for tracking
how many of the memory elements in the obsolete cache-
line vector are activated. When a predetermined threshold is
reached, a threshold comparator can release a trigger, which
can signal a RAS system to analyze the cache memory to
determine why the errors occurred. An error events logger
can be used to track all of the errors that occurred, rather
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than just the first error. The error events logger can also use
a time stamp, which can assist the RAS system in analyzing
a correlation between the errors, such as patterns that occur
and time differences between the errors. Being able to
analyze the nature of run-time errors (exact location, repeat-
ing errors, same or multiple indexes, correlation between
indexes, etc.) allows improved in-field hardware testing for
screening unhealthy chips and servers to reduce the number
of error events.

FIG. 1 is a system diagram of a system 100 for detecting
cache memory errors. The system 100 includes a cache
memory 110 including a plurality of cache memory lines,
shown generally at 112. The cache memory 110 also
includes error detection logic 114. The error detection logic
114 outputs a plurality of error signal lines 116, wherein
each error signal line corresponds to one cache line 112.
When an error is detected on a cache line 112, the corre-
sponding output on the error signal lines 116 is activated as
a transitory pulse. As further described below, an obsolete
cache line vector 120 includes a plurality of memory ele-
ments and captures the transitory pulse of the error signal
lines 116. In particular, the plurality of memory elements are
coupled in parallel to the error detection logic 114. In one
example, an error is shown as detected at 117 resulting in
one of the error signal lines 116 being set at 118. A
corresponding memory element 119 of the obsolete cache
line vector is then set, capturing the cache line error. When
set, the memory element 119 stores activation data, which
can be a single bit or other desired length of data, indicating
that the error detection logic 114 has detected an error
condition. Once set, the corresponding memory element 119
of the cache line vector 120 remains set or locked until the
entire cache line vector is reset despite that the output 118 (a
transitory signal) on the error signal lines 116 returns to its
original state (i.e., not set). If the same transitory signal 118
on the error signal lines 116 is set again upon detecting
another cache line error, the corresponding memory element
of the cache line vector 120 is not impacted if it is already
set. Accordingly, multiple errors for the same cache line 112
are not counted more than once. A counter 130 is coupled to
each of the memory elements of the obsolete cache line
vector 120 and computes the total number of memory
elements that are set (i.e., have captured an error). Thus, the
counter 130 counts how many of cache lines 112 have had
at least one error. A threshold comparator 140 is coupled to
the counter 130 and receives a configuration input 142,
which adjusts when the threshold comparator is triggered.
When the counter 130 reaches the predetermined threshold,
as set by the configuration 142, then the threshold compara-
tor 140 outputs a trigger signal 144. The trigger signal 144
can, in turn, be received by a controller 150, which can
perform analysis on the errors in the cache 110. An error
events logger 160 receives the error signal lines 116 and time
information 162 and outputs error events 164 with associ-
ated time stamps. Thus, each time one of the error signal
lines outputs an error signal, it is captured by the error events
logger 160. The events logger 160 can also store an identifier
of the cache line that failed and a time of when it failed. The
controller 150 uses the error events 164 to perform analysis
on the errors in the cache memory 110. The controller 150
can output results 170 that include the error locations of the
cache memory 110 together with any correlation analysis.
The correlation analysis can relate to a location of cache
memory lines for which errors are detected or timing of
when the errors occurred. Generally, repeating patterns can
be identified based on location and/or timing and used to
troubleshoot potential problems with the cache memory.
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FIG. 2 shows another embodiment including a processor
200 including a cache memory 210 having a plurality of
cache lines 212 and error detection logic 214 similar to that
described in relation to FIG. 1. Additionally, the error
detection logic 214 has output lines 216 that can be set when
an error occurs in a cache line. The number of output lines
216 can equal the number of cache lines 212 so that any error
on a cache line can trigger one of the corresponding output
lines 216 to be set. An obsolete cache line vector 220 can be
coupled to the output lines 216 of the error detection logic
214. The obsolete cache line vector 220 can have a plurality
of memory elements wherein each memory element corre-
sponds to each output line 216. Whenever one of the output
lines 216 are set, even for a transitory period, the corre-
sponding memory element of the obsolete cache line vector
220 can capture that the output line was set. Analysis logic
230 can be coupled to the obsolete cache line vector 220.
The analysis logic 230 can determine correlations between
the errors and can generate a trigger signal 240 if it is
determined that corrective action should be taken. The
trigger signal 240 can be received by a cache management
controller 250, which can take corrective action on the cache
memory 210, such as by ensuring some of the problematic
cache lines are no longer used. The cache management
controller 250 can be coupled to the obsolete cache-line
vector 220 for determining which cache line or cache lines
are problematic. Although the embodiment relates to a
processor 200, the components can be included in a different
type of integrated circuit.

FIG. 3 shows further details of the obsolete cache line
vector 120. In this embodiment, the obsolete cache line
vector 120 can include N flip-flops 310, where N equals any
integer value and corresponds to a number of outputs of the
error detection logic 114 (FIG. 1). The flip-flops 310 are
shown as D-type flip-flops with a logic high coupled to the
D input and the inputs from the error detection logic 114
coupled to a clock input. When any one of the input bits
from the error detection logic transitions from a low to a
high logic value, the D flip-flop latches the D input, which
captures a logic high. Thus, a transition on the input line is
captured by the corresponding D flip-flop. A reset line 320
can be used to reset all of the flip-flops in the obsolete cache
line vector 120. Although D flip-flops are shown, there are
a variety of circuits that can be used for the obsolete cache
line vector, and any such circuits can be substituted for the
implementation of FIG. 3.

FIG. 4 is a computing system diagram of a network-based
compute service provider 400 that illustrates one environ-
ment in which embodiments described herein can be used.
By way of background, the compute service provider 400
(i.e., the cloud provider) is capable of delivery of computing
and storage capacity as a service to a community of end
recipients. In an example embodiment, the compute service
provider can be established for an organization by or on
behalf of the organization. That is, the compute service
provider 400 may offer a “private cloud environment.” In
another embodiment, the compute service provider 400
supports a multi-tenant environment, wherein a plurality of
customers operate independently (i.e., a public cloud envi-
ronment). Generally speaking, the compute service provider
400 can provide the following models: Infrastructure as a
Service (“laaS”), Platform as a Service (“PaaS”), and/or
Software as a Service (“SaaS”). Other models can be pro-
vided. For the IaaS model, the compute service provider 400
can offer computers as physical or virtual machines and
other resources. The virtual machines can be run as guests by
a hypervisor, as described further below. The PaaS model
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4

delivers a computing platform that can include an operating
system, programming language execution environment,
database, and web server. Application developers can
develop and run their software solutions on the compute
service provider platform without the cost of buying and
managing the underlying hardware and software. The SaaS
model allows installation and operation of application soft-
ware in the compute service provider. In some embodiments,
end users access the compute service provider 400 using
networked client devices, such as desktop computers, lap-
tops, tablets, smartphones, etc. running web browsers or
other lightweight client applications. Those skilled in the art
will recognize that the compute service provider 400 can be
described as a “cloud” environment.

In some implementations of the disclosed technology, the
computer service provider 400 can be a cloud provider
network. A cloud provider network (sometimes referred to
simply as a “cloud”) refers to a pool of network-accessible
computing resources (such as compute, storage, and net-
working resources, applications, and services), which may
be virtualized or bare-metal. The cloud can provide conve-
nient, on-demand network access to a shared pool of con-
figurable computing resources that can be programmatically
provisioned and released in response to customer com-
mands. These resources can be dynamically provisioned and
reconfigured to adjust to variable load. Cloud computing can
thus be considered as both the applications delivered as
services over a publicly accessible network (e.g., the Inter-
net, a cellular communication network) and the hardware
and software in cloud provider data centers that provide
those services.

With cloud computing, instead of buying, owning, and
maintaining their own data centers and servers, organiza-
tions can acquire technology such as compute power, stor-
age, databases, and other services on an as-needed basis. The
cloud provider network can provide on-demand, scalable
computing platforms to users through a network, for
example allowing users to have at their disposal scalable
“virtual computing devices” via their use of the compute
servers and block store servers. These virtual computing
devices have attributes of a personal computing device
including hardware (various types of processors, local
memory, random access memory (“RAM”), hard-disk and/
or solid state drive (“SSD”) storage), a choice of operating
systems, networking capabilities, and pre-loaded application
software. Each virtual computing device may also virtualize
its console input and output (“I/O”) (e.g., keyboard, display,
and mouse). This virtualization allows users to connect to
their virtual computing device using a computer application
such as a browser, application programming interface, soft-
ware development kit, or the like, in order to configure and
use their virtual computing device just as they would a
personal computing device. Unlike personal computing
devices, which possess a fixed quantity of hardware
resources available to the user, the hardware associated with
the virtual computing devices can be scaled up or down
depending upon the resources the user requires. Users can
choose to deploy their virtual computing systems to provide
network-based services for their own use and/or for use by
their customers or clients.

A cloud provider network can be formed as a number of
regions, where a region is a separate geographical area in
which the cloud provider clusters data centers. Each region
can include two or more availability zones connected to one
another via a private high speed network, for example a fiber
communication connection. An availability zone (also
known as an availability domain, or simply a “zone”) refers
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to an isolated failure domain including one or more data
center facilities with separate power, separate networking,
and separate cooling from those in another availability zone.
A data center refers to a physical building or enclosure that
houses and provides power and cooling to servers of the
cloud provider network. Preferably, availability zones
within a region are positioned far enough away from one
other that the same natural disaster should not take more
than one availability zone offline at the same time. Custom-
ers can connect to availability zones of the cloud provider
network via a publicly accessible network (e.g., the Internet,
a cellular communication network) by way of a transit center
(TC). TCs are the primary backbone locations linking cus-
tomers to the cloud provider network, and may be collocated
at other network provider facilities (e.g., Internet service
providers, telecommunications providers) and securely con-
nected (e.g. via a VPN or direct connection) to the avail-
ability zones. Each region can operate two or more TCs for
redundancy. Regions are connected to a global network
which includes private networking infrastructure (e.g., fiber
connections controlled by the cloud provider) connecting
each region to at least one other region. The cloud provider
network may deliver content from points of presence outside
of, but networked with, these regions by way of edge
locations and regional edge cache servers. This compart-
mentalization and geographic distribution of computing
hardware enables the cloud provider network to provide
low-latency resource access to customers on a global scale
with a high degree of fault tolerance and stability.

The cloud provider network may implement various com-
puting resources or services that implement the disclosed
techniques for TLS session management, which may include
an elastic compute cloud service (referred to in various
implementations as an elastic compute service, a virtual
machines service, a computing cloud service, a compute
engine, or a cloud compute service), data processing service
(s) (e.g., map reduce, data flow, and/or other large scale data
processing techniques), data storage services (e.g., object
storage services, block-based storage services, or data ware-
house storage services) and/or any other type of network
based services (which may include various other types of
storage, processing, analysis, communication, event han-
dling, visualization, and security services not illustrated).
The resources required to support the operations of such
services (e.g., compute and storage resources) may be pro-
visioned in an account associated with the cloud provider, in
contrast to resources requested by users of the cloud pro-
vider network, which may be provisioned in user accounts.

The particular illustrated compute service provider 400
includes a plurality of server computers 402A-402D. While
only four server computers are shown, any number can be
used, and large centers can include thousands of server
computers. The server computers 402A-402D can provide
computing resources for executing software instances 406 A-
406D. In one embodiment, the instances 406A-406D are
virtual machines. As known in the art, a virtual machine is
an instance of a software implementation of a machine (i.e.
a computer) that executes applications like a physical
machine. In the example of virtual machine, each of the
servers 402A-402D can be configured to execute a hyper-
visor 408 or another type of program configured to enable
the execution of multiple instances 406 on a single server.
Additionally, each of the instances 406 can be configured to
execute one or more applications. Each of the server com-
puters 402A-402D can include a cache 407 and an obsolete
cache-line vector 409, similar to those described above.
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It should be appreciated that although the embodiments
disclosed herein are described primarily in the context of
virtual machines, other types of instances can be utilized
with the concepts and technologies disclosed herein. For
instance, the technologies disclosed herein can be utilized
with storage resources, data communications resources, and
with other types of computing resources. The embodiments
disclosed herein might also execute all or a portion of an
application directly on a computer system without utilizing
virtual machine instances.

One or more server computers 404 can be reserved for
executing software components for managing the operation
of the server computers 402 and the instances 406. For
example, the server computer 404 can execute a manage-
ment component 410. A customer can access the manage-
ment component 410 to configure various aspects of the
operation of the instances 406 purchased by the customer.
For example, the customer can purchase, rent or lease
instances and make changes to the configuration of the
instances. The customer can also specify settings regarding
how the purchased instances are to be scaled in response to
demand. The management component can further include a
policy document to implement customer policies. An auto
scaling component 412 can scale the instances 406 based
upon rules defined by the customer. In one embodiment, the
auto scaling component 412 allows a customer to specify
scale-up rules for use in determining when new instances
should be instantiated and scale-down rules for use in
determining when existing instances should be terminated.
The auto scaling component 412 can consist of a number of
subcomponents executing on different server computers 402
or other computing devices. The auto scaling component
412 can monitor available computing resources over an
internal management network and modify resources avail-
able based on need.

A deployment component 414 can be used to assist
customers in the deployment of new instances 406 of
computing resources. The deployment component can have
access to account information associated with the instances,
such as who is the owner of the account, credit card
information, country of the owner, etc. The deployment
component 414 can receive a configuration from a customer
that includes data describing how new instances 406 should
be configured. For example, the configuration can specify
one or more applications to be installed in new instances
406, provide scripts and/or other types of code to be
executed for configuring new instances 406, provide cache
logic specifying how an application cache should be pre-
pared, and other types of information. The deployment
component 414 can utilize the customer-provided configu-
ration and cache logic to configure, prime, and launch new
instances 406. The configuration, cache logic, and other
information may be specified by a customer using the
management component 410 or by providing this informa-
tion directly to the deployment component 414. The instance
manager can be considered part of the deployment compo-
nent.

Customer account information 415 can include any
desired information associated with a customer of the multi-
tenant environment. For example, the customer account
information can include a unique identifier for a customer, a
customer address, billing information, licensing informa-
tion, customization parameters for launching instances,
scheduling information, auto-scaling parameters, previous
IP addresses used to access the account, etc.

A network 430 can be utilized to interconnect the server
computers 402A-402D and the server computer 404. The
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network 430 can be a local area network (LAN) and can be
connected to a Wide Area Network (WAN) 440 so that end
users can access the compute service provider 400. It should
be appreciated that the network topology illustrated in FIG.
4 has been simplified and that many more networks and
networking devices can be utilized to interconnect the
various computing systems disclosed herein.

A RAS manager server computer 460 is coupled to the
network 430 and can receive results from individual server
computers relating to error location of errors in cache
memory 407 on any of the servers 402A-402D, which can
be obtained by the obsolete cache-line vector 409. The RAS
manager server 460 can then perform correlation analysis
based on the timing and location of the errors. By receiving
results from multiple different server computers, the RAS
manager server computer 460 can perform a global analysis
of cache performance in the compute service provider
environment 400. Additionally, the RAS manager server 460
can perform a reset of any of the obsolete cache-line vectors,
such as by activating the reset line 320 (FIG. 3).

FIG. 5 depicts a generalized example of a suitable com-
puting environment 500 in which the described innovations
may be implemented. The computing environment 500 is
not intended to suggest any limitation as to scope of use or
functionality, as the innovations may be implemented in
diverse general-purpose or special-purpose computing sys-
tems. For example, the computing environment 500 can be
any of a variety of computing devices (e.g., desktop com-
puter, laptop computer, server computer, tablet computer,
etc.).

With reference to FIG. 5, the computing environment 500
includes one or more processing units 510, 515 and memory
520, 525. In FIG. 5, this basic configuration 530 is included
within a dashed line. The processing units 510, 515 execute
computer-executable instructions. A processing unit can be
a general-purpose central processing unit (CPU), processor
in an application-specific integrated circuit (ASIC) or any
other type of processor. In a multi-processing system, mul-
tiple processing units execute computer-executable instruc-
tions to increase processing power. For example, FIG. 5
shows a central processing unit 510 as well as a graphics
processing unit or co-processing unit 515. A cache memory
516 can be separate from the central processing unit 510 (as
shown) or integrated therein. Coupled to the cache memory
516 is a cache-line vector 517, which can capture cache line
errors in a similar manner as described above in relation to
the obsolete cache-line vector 120 of FIG. 1. A RAS
manager 518 can receive an output of the cache-line vector
517 and can analyze results of failing cache lines, such as a
correlation between different cache lines that failed. The
tangible memory 520, 525 may be volatile memory (e.g.,
registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the
two, accessible by the processing unit(s). The memory 520,
525 stores software 580 implementing one or more innova-
tions described herein, in the form of computer-executable
instructions suitable for execution by the processing unit(s).

A computing system may have additional features. For
example, the computing environment 500 includes storage
540, one or more input devices 550, one or more output
devices 560, and one or more communication connections
570. An interconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing environment 500. Typically, operating system
software (not shown) provides an operating environment for
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other software executing in the computing environment 500,
and coordinates activities of the components of the comput-
ing environment 500.

The tangible storage 540 may be removable or non-
removable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which
can be used to store information in a non-transitory way and
which can be accessed within the computing environment
500. The storage 540 stores instructions for the software 580
implementing one or more innovations described herein.

The input device(s) 550 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to
the computing environment 500. The output device(s) 560
may be a display, printer, speaker, CD-writer, or another
device that provides output from the computing environment
500.

The communication connection(s) 570 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media can use an electrical, opti-
cal, RF, or other carrier.

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient
presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering is required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover,
for the sake of simplicity, the attached figures may not show
the various ways in which the disclosed methods can be used
in conjunction with other methods.

Any of the disclosed methods can be implemented as
computer-executable instructions stored on one or more
computer-readable storage media (e.g., one or more optical
media discs, volatile memory components (such as DRAM
or SRAM), or non-volatile memory components (such as
flash memory or hard drives)) and executed on a computer
(e.g., any commercially available computer, including smart
phones or other mobile devices that include computing
hardware). The term computer-readable storage media does
not include communication connections, such as signals and
carrier waves. Any of the computer-executable instructions
for implementing the disclosed techniques as well as any
data created and used during implementation of the dis-
closed embodiments can be stored on one or more computer-
readable storage media. The computer-executable instruc-
tions can be part of, for example, a dedicated software
application or a software application that is accessed or
downloaded via a web browser or other software application
(such as a remote computing application). Such software can
be executed, for example, on a single local computer (e.g.,
any suitable commercially available computer) or in a
network environment (e.g., via the Internet, a wide-area
network, a local-area network, a client-server network (such
as a cloud computing network), or other such network) using
one or more network computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known in the art are omitted. For example, it should be
understood that the disclosed technology is not limited to
any specific computer language or program. For instance,
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aspects of the disclosed technology can be implemented by
software written in C++, Java, Perl, any other suitable
programming language. Likewise, the disclosed technology
is not limited to any particular computer or type of hardware.
Certain details of suitable computers and hardware are well
known and need not be set forth in detail in this disclosure.

It should also be well understood that any functionality
described herein can be performed, at least in part, by one or
more hardware logic components, instead of software. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard
Products (ASSPs), System-on-a-chip systems (SOCs), Com-
plex Programmable Logic Devices (CPLDs), etc.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely
accessed through a suitable communication means. Such
suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, software appli-
cations, cable (including fiber optic cable), magnetic com-
munications, electromagnetic communications (including
RF, microwave, and infrared communications), electronic
communications, or other such communication means.

FIG. 6 is a flowchart of a method for detecting cache line
errors in a cache memory. In process block 610, multiple
activated signals of a cache-line error detection logic are
captured. For example, in FIG. 1, the error detection logic
114 activates (i.e., active high or low) any of the signal lines
116 that correspond to a cache line where an error has been
detected. The cache-line vector 120 can then capture a pulse
that occurs on the signal lines 116 by setting a memory
element (e.g., a flip-flop) coupled to the signal lines 116. In
process block 620, a count is made of the total number of the
different memory elements that have captured an activated
signal line. For example, in FIG. 1, each memory element in
the obsolete cache-line vector 120 that has captured an
activated signal line 116 can be included in a total count by
the counter 130. Thus, for example, if 10 cache line errors
occur on 10 different cache lines, then the counter 130 will
have a count of 10. Duplicate cache line errors are not
re-counted due to the structure of the memory elements. For
example, in FIG. 3, once a flip-flop receives an activated bit,
the flip-flop locks in the logic high value until reset.

The disclosed methods, apparatus, and systems should not
be construed as limiting in any way. Instead, the present
disclosure is directed toward all novel and nonobvious
features and aspects of the various disclosed embodiments,
alone and in various combinations and subcombinations
with one another. The disclosed methods, apparatus, and
systems are not limited to any specific aspect or feature or
combination thereof, nor do the disclosed embodiments
require that any one or more specific advantages be present
or problems be solved.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only examples of the invention and should not be taken as
limiting the scope of the invention. We therefore claim as
our invention all that comes within the scope of these claims.

What is claimed is:

1. A system of error detection in an integrated circuit, the
system comprising:

a cache memory including a plurality of cache memory

lines;
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error detection logic coupled to the cache memory, the
error detection logic including a plurality of outputs,
wherein each of the plurality of outputs has a one-to-
one correspondence with the plurality of cache memory
lines such that one of the plurality of outputs is con-
figured to be activated when an error is detected on a
corresponding cache memory line;

a cache line vector coupled to the plurality of outputs of

the error detection logic, the cache line vector including
a plurality of memory elements for storing activation
data indicating which of the plurality of outputs from
the error detection logic has been activated, wherein
each of the plurality of memory elements of the cache
line vector has a one-to-one correspondence with the
plurality of cache memory lines; and

a counter coupled to the cache line vector for counting

how many of the plurality of memory elements in the
cache line vector are storing activation data.

2. The system of claim 1, further including an error events
logger that stores information about cache memory line
errors that occurred in each of the plurality of cache memory
lines.

3. The system of claim 1, further including a configurable
threshold comparator coupled to the counter, wherein the
configurable threshold comparator is triggered when the
counter reaches a predetermined threshold.

4. The system of claim 3, further including a controller
coupled to the configurable threshold comparator, the con-
troller configured to determine correlations in the errors
detected on the plurality of cache memory lines.

5. The system of claim 1, wherein the cache line vector
includes a plurality of flip-flops that store the activation data.

6. A system, comprising:

a cache memory including a plurality of cache lines;

error detection logic coupled to the plurality of cache lines

and configured to activate one or more outputs in
association with an error in the plurality of cache lines;

a cache line vector including a plurality of memory

elements coupled to the one or more outputs of the error
detection logic for storing error data generated by the
error detection logic, the plurality of memory elements
having a one-to-one correspondence with the plurality
of cache lines; and

a counter coupled to the cache line vector that counts a

total number of the plurality of memory elements that
are storing error data in the cache line vector.

7. The system of claim 6, further including analysis logic
coupled to the cache line vector, the analysis logic producing
a trigger signal in response to detected outputs from the
cache line vector.

8. The system of claim 6, wherein the cache line vector
includes a plurality of flip-flops coupled in parallel with the
one or more outputs of the error detection logic.

9. The system of claim 6, further including an error events
logger coupled to the one or more outputs of the error
detection logic to capture which of the plurality of cache
lines had an error.

10. The system of claim 9, wherein the error events logger
associates a timestamp with each captured error.

11. The system of claim 6, further including a threshold
comparator coupled to the counter for determining when the
counter has exceeded a threshold value and for activating a
trigger in response.

12. The system of claim 11, wherein the threshold com-
parator has a configuration input for modifying the threshold
value.
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13. The system of claim 6, further comprising a controller
coupled to the cache line vector for correlating errors that
occurred in the cache memory.

14. A method, comprising:

capturing multiple activated signals of a cache-line error 5

detection logic, wherein the capturing is performed in

a cache-line vector having a different memory element

associated with each cache line of a cache memory; and
counting, via a counter coupled to the cache-line vector,

a total number of the different memory elements in the 10

cache-line vector that have captured one of the multiple

activated signals.

15. The method of claim 14, further including activating
a trigger signal when a threshold comparator coupled to the
counter detects that the counter reached a predetermined 15
value.

16. The method of claim 14, further including storing an
event for each of the multiple activated signals, wherein the
storing of the event includes storing an identifier of the cache
line that failed and a time stamp of when it failed. 20

17. The method of claim 16, further including analyzing
the events of the cache lines that failed for a correlation
therebetween.

18. The method of claim 14, wherein each of the multiple
activated signals occur when corresponding cache line errors 25
occur.

19. The method of claim 14, wherein the memory ele-
ments are flip-flops with clock signal lines coupled to the
cache-line error detection logic.

#* #* #* #* #* 30



