wo 20207167388 A1 |0 0000 KO Y0 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
20 August 2020 (20.08.2020)

‘O 00 0000
(10) International Publication Number

WO 2020/167388 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

(74)

@81)

International Patent Classification:
GO6F 9/54 (2006.01) GO6F 9/32 (2006.01)

International Application Number:
PCT/US2020/012455

International Filing Date:
07 January 2020 (07.01.2020)

Filing Language: English

Publication Language: English

Priority Data:
16/275,917 14 February 2019 (14.02.2019) US

Applicant: AXTIS SEMICONDUCTOR, INC. [US/US];
62 Sherwood Drive, Metheun, Massachusetts 01844 (US).

Inventors: WANG, Xiaolin, Axis Semiconductor, Inc.,
62 Sherwood Drive, Metheun, Massachusetts 01844 (US).
WU, Qian; Axis Semiconductor, Inc., 62 Sherwood Drive,
Metheun, Massachusetts 01844 (US).

Agent: BURUM, Douglas P. et al.; Maine Cernota &
Rardin, 547 Ambherst St., 3rd Floor, Nashua, New Hamp-
shire 03063 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

84

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

(54) Title: METHOD OF SYNCHRONIZING HOST AND COPROCESSOR OPERATIONS VIA FIFO COMMUNICATION

100
202
200
Host
_L*\
204
Bus FrFo

Controller 104

DRAM
Interface Unit

Coprocassor

Fig. 2

(57) Abstract: A method of synchronizing thread execution of a host
and one or more coprocessors includes writing by the host of an event
command and at least one coprocessor instruction to a FIFO and compar-
ing of the event command with a current event register of the coproces-
sor until they match, whereupon the FIFO entries are popped and the
instructions are forwarded to the coprocessor for execution. A plurali-
ty of entry groups can be written to the FIFO, each beginning with an
event command. The instructions can direct the coprocessor to exchange
data with shared memory and apply its thread to the received data. The
processors and shared memory can be linked by a ring-type bus having
a controller that performs the comparison, popping, and instruction for-
warding. The coprocessor clears the current event register during thread
execution, and then writes an event command to the register when pro-
cessing is complete.

[Continued on next page]

WO 2020/167388 A1 |10} 00 000 00 00RO

Published:
— with international search report (Art. 21(3))

WO 2020/167388 PCT/US2020/012455

METHOD OF SYNCHRONIZING HOST AND COPROCESSOR
OPERATIONS VIA FIFO COMMUNICATION

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Patent16/275,917 filed on
February 14, 2019, which is herein incorporated by reference in its entirety for all

purposes.
FIELD OF THE INVENTION

[0001] The invention relates to multi-thread program execution, and more
particularly, to methods for synchronizing the actions of a host and at least one

coprocessor during multi-thread program execution.
BACKGROUND OF THE INVENTION

[0002] As the availability of multi-core and other multiple processor computing
devices has continued to rise, and the cost thereof has continued to fall, multi-
thread processing has become an increasingly effective approach to optimizing the
speed and efficiency with which computing devices are able to process data,
especially for applications such as image processing and voice encoding, wherein
a specified algorithm is applied repeatedly to a large number of data frames or
“batches” in a fixed timing order, with little or no interdependence between the

processing of the separate data frames.

[0003] In many cases, the functions performed by a given application can be
divided into “host” or “control” functions that have an unknown timing order and
may have interactive inputs, and one or more “helper” functions that do not have
any interactive inputs, and for which the input order is strictly defined. An

example would be a computer game, where some functions have an unknown

WO 2020/167388 PCT/US2020/012455

timing order and may have interactive inputs, such as functions that are directly
associated with user interaction, while other functions are directed to performing
certain background tasks associated with the game, such as image processing or
voice encoding, that accept and process data frames in a defined order without
user interaction. Another example would be a voice-enabled application running

on a smart appliance or a mobile device such as a cellular telephone.

[0004] In such cases, multi-thread processing can be implemented by assigning
the function(s) that perform operations with an unknown timing, including those
that support user interaction, to a “host” or “control” thread, while at least some of
the helper functions are assigned to one or more “helper” threads. Often, when
coprocessors are available, the control functions are executed on a host processor,

while some or all of the helper threads are offloaded to one or more coprocessors.

[0005] While this multi-thread, host/coprocessor approach can be very
powerful, successful implementation requires a robust and efficient method of
synchronizing and coordinating the program executions performed by the host

processor and the coprocessors.

[0006] One approach is to use hardware interrupts to synchronize the actions of
the host processor and coprocessors. However, this approach is “costly” in terms
of hardware utilization, and may be limited if the hardware platform does not

provide sufficient interrupts with suitable functionality.

[0007] Another approach is to use a “message passing interface” (“MPI”)
protocol implemented in shared memory. However, this approach is costly in

terms of execution time.

[0008] What is needed, therefore, is an efficient method of synchronizing and
coordinating the program executions of a host processor and one or more
coprocessors without dependence on interrupts, and while avoiding the execution

speed penalty of an MPI implementation.

WO 2020/167388 PCT/US2020/012455

SUMMARY OF THE INVENTION

[0009] The present invention is a method of synchronizing and coordinating the
program executions of a host processor and one or more coprocessors without
dependence on interrupts, and while avoiding the execution speed penalty of an
MPI implementation. The invention achieves these goals by implementing at least
one FIFO that can store “event” commands as well as coprocessor instructions
such as data flow and synchronization instructions. According to the disclosed
method, the host processor writes a series of entries to the FIFO that begins with
an event command stored in the “head” of the FIFO. In embodiments, the entries
can comprise a plurality of entry groups, each of which includes an event

command followed by an associated group of coprocessor instructions.

[0010] In some embodiments that include a plurality of coprocessors, a FIFO is
dedicated to each of the coprocessors. In addition, each of the coprocessors
maintains a “current event” register where the coprocessor stores an event

command when it is ready to receive new input.

[0011] According to the disclosed method, during program operation the head
entries of the FIFOs and the current event registers of the associated coprocessors
are compared with each other on a continuous or pseudo-continuous basis. When
the event command stored in the current event register of a coprocessor is found to
be equal to, or otherwise “agrees with” the event command stored as the head
entry of its associated FIFO, the coprocessor instructions that immediately follow
the event command in the FIFO are sequentially “popped” from the FIFO until the
next event command is encountered, or until the last entry written to the FIFO has
been popped. In embodiments, the FIFO entries are cleared as they are popped
from the FIFO, and the remaining entries are advanced so that if a subsequent

event command is encountered it is located in the head of the FIFO.

[0012] The popped coprocessor instructions are forwarded to the coprocessor
for execution. Typically, execution by the coprocessor of these popped

instructions causes the coprocessor to obtain input data of the type and in the

WO 2020/167388 PCT/US2020/012455

order that is known to be required by the helper thread of the coprocessor. In
embodiments, the coprocessor instructions can be data transfer commands, for
example between shared DRAM and the coprocessor, and/or synchronization
commands between the host and coprocessor. After executing the popped
coprocessor instructions that are received from the FIFO, the coprocessor typically
proceeds to execute applicable commands that are included in the helper thread
assigned to the coprocessor. For example, the popped instructions from the FIFO
may direct the coprocessor to exchange data with shared DRAM, after which the
newly received data is encoded or otherwise processed by the coprocessor, as

directed by its helper thread.

[0013] While it is executing the popped instructions and helper thread
commands, the coprocessor sequencer clears its current event register or writes
some other registry entry to the current event register that does not correspond to
or “agree with” any event command entries in the FIFO, so that additional
coprocessor instructions are not popped from the FIFO until the coprocessor is
ready for them. Once the coprocessor has executed all of the popped instructions
received from the FIFO, and has performed any and all processing steps as
directed by its helper thread, the coprocessor writes an event command to its
current event register indicating that it is ready to receive further popped
commands from the FIFO. In embodiments, the coprocessor also transmits a
“done” message to the host processor, which allows the host processor to monitor
the progress of the coprocessor in executing the instructions that it previously
wrote to the FIFO. When an expected number of “done” commands is received by
the host processor, it can, for example, exchange additional data between the
DRAM and associated input and output channels, and then write a new string of

entries to the FIFO.

[0014] In embodiments, the host processor and the one or more coprocessors are
interconnected via a ring-type bus, such as the bus architecture disclosed in US
patent 8,181,003 (incorporated herein by reference in its entirety for all purposes),

for which the present inventors are co-inventors. In some of these embodiments,

WO 2020/167388 PCT/US2020/012455

the bus includes a bus controller, which can be implemented as a finite state
machine (FSM) in hardware and/or software. In embodiments, the bus controller
is responsible for comparing the contents of the FIFO header(s) and coprocessor
current event register(s), for popping coprocessor instructions from the FIFO(s),
and for transmitting the popped coprocessor instructions to the coprocessor(s) for

execution.

[0015] Embodiments include additional FIFOs, wherein the FIFO described
above can be referred to as the “scheduled” FIFO, and the additional FIFOs can
include, for example, one or more host read FIFOs, host write FIFOs, and/or
coprocessor write FIFOs. In various embodiments, the host read FIFO(s) can be
used by the host to read registers of the coprocessor(s), the host write FIFO(s) can
be used by the host to write to coprocessor registers, and/or the coprocessor write
FIFO(s) can be used by the coprocessor(s) to write to the host without a “host
read” command. In particular, in some embodiments the “done” messages can be

sent by any of the coprocessors to the host via a coprocessor write FIFO.

[0016] The present invention is a method of synchronizing program executions
of a host processor and of a coprocessor. The method includes the following
steps:

A) dividing an application into a host portion and a helper portion;

B) implementing of the host portion on the host processor and implementing
the helper portion on the coprocessor;

C) writing to a FIFO by the host processor of FIFO entries that include an
event command followed by at least one coprocessor instruction,
whereby the event command occupies a head of the FIFO;

D) comparing the event command in the FIFO head with a registry entry in
a current event register of the coprocessor;

E) repeating step D) until the registry entry in the current event register
agrees with the event command in the FIFO head;

F) popping the event command and the at least one coprocessor instruction

from the FIFO and forwarding the popped at least one coprocessor

WO 2020/167388 PCT/US2020/012455

instruction to the coprocessor, said popping being continued until all of
the FIFO entries have been popped, or until a FIFO entry is encountered
that is a subsequent event command;

G) writing by the coprocessor to the current event register of an entry that
does not agree with any remaining FIFO entry event commands;

H) executing by the coprocessor of the helper portion of the application;

I) transmitting by the coprocessor to the host processor of a message
indicating that execution of the helper portion has been completed; and

J) writing by the coprocessor to the current event register of an event

command registry entry.

[0017] In embodiments, the FIFO and the coprocessor are linked by a bus
having a bus controller, and wherein steps D), E), and F) are executed by the bus

controller. In some of these embodiments, the bus has a ring architecture.

[0018] In any of the above embodiments, the registry entry in the current event
register can be deemed to agree with the event command in the FIFO head if it is

identical with the event command in the FIFO head.

[0019] Any of the above embodiments can further include a coprocessor
memory as part of the coprocessor and a shared memory that is accessible to the
coprocessor, and wherein the at least one popped coprocessor instruction includes
an instruction directing the coprocessor to read data from the shared memory into
the coprocessor memory. In some of these embodiments, the at least one popped
coprocessor instruction includes a command directing the coprocessor to exchange
data with the shared memory. In any of these embodiments, the shared memory
can be accessible to the host processor, and the host portion of the application can
include commands directing the host processor to exchange data between the

shared memory and at least one input and/or output channel.

[0020] In any of the above embodiments, the at least one popped coprocessor
instruction can include at least one of a data flow command and a synchronization

command.

WO 2020/167388 PCT/US2020/012455

[0021] In any of the above embodiments, in step C) the FIFO entries written by
the host to the FIFO can include a plurality of entry groups, each entry group
comprising an event command followed by at least one coprocessor instruction.

In some of these embodiments, step F) further includes advancing the FIFO entries
in the FIFO so that when a FIFO entry is encountered that is a subsequent event

command, the subsequent event command occupies the head of the FIFO.

[0022] Any of the above embodiments can further include reading by the host
processor of the event command in the FIFO head and writing by the host

processor of the event command to the current event register of the coprocessor.

[0023] In any of the above embodiments, the helper portion can be free of any

interactive inputs and can have an input order that is strictly defined.

[0024] In any of the above embodiments, the host portion can be subject to
timing that is not predetermined. In some of these embodiments, the host portion

is subject to interactive timing that is not predetermined,

[0025] In any of the above embodiments, the application can be a pipelined

multi-batch execution program.

[0026] In any of the above embodiments, the message indicating that execution
of the helper portion has been completed can be transmitted by the coprocessor to

the host processor via a coprocessor write FIFO.

[0027] And any of the above embodiments can further include at least one of
reading by the host of a register of the coprocessor via a host read FIFO, writing
by the host to a register of the coprocessor via a host write FIFO, and writing by

the coprocessor to the host via a coprocessor write FIFO.

[0028] The features and advantages described herein are not all-inclusive and,
in particular, many additional features and advantages will be apparent to one of
ordinary skill in the art in view of the drawings, specification, and claims.

Moreover, it should be noted that the language used in the specification has been

WO 2020/167388 PCT/US2020/012455

principally selected for readability and instructional purposes, and not to limit the

scope of the inventive subject matter.
BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Fig. 1 1is a block diagram illustrating an embodiment of the present

invention that includes a single coprocessor and FIFO;

[0030] Fig. 2 is a block diagram of an embodiment of the present invention that
implements communication between the host, DRAM, and a coprocessor using a

ring-bus and bus controller;

[0031] Fig. 3 is a flow diagram illustrating the operation and interactions
between a host, bus controller, and coprocessor in an embodiment of the present

invention;

[0032] Fig. 4 is a block diagram illustrating an embodiment of the present

invention that includes a plurality of FIFOs;
[0033] Fig. 5 is a block diagram that illustrates the embodiment of Fig. 4; and

[0034] Fig. 61is ablock diagram similar to Fig. 5 but directed to an embodiment

of the invention that includes a plurality of coprocessors and FIFOs;
DETAILED DESCRIPTION

[0035] With reference to Fig. 1, the present invention is a method of
synchronizing and coordinating the program executions of a host processor 100
and one or more coprocessors 102 without dependence on interrupts, and while
avoiding the execution speed penalty of an MPI implementation. The invention
achieves these goals by implementing at least one FIFO 104 that can store “event”
commands as well as coprocessor instructions such as data flow and
synchronization instructions. According to the disclosed method, the host

processor 100 writes a series of entries to the FIFO 104 that begins with an

“event” command stored in the “head” 106 of the FIFO 104. In addition, each of

WO 2020/167388 PCT/US2020/012455

the coprocessors 102 maintains a “current event” register 108 where the

coprocessor 102 stores an event command when it is ready to receive new input.

[0036] With reference to Fig. 2, in embodiments the host processor and all of
the coprocessors are interconnected via a ring-type bus 200, such as the bus
architecture disclosed in US patent 8,181,003 (incorporated herein by reference in
its entirety for all purposes), for which the present inventors are co-inventors. In
some of these embodiments, the bus 200 includes a bus controller 202, which can
be implemented as a finite state machine (FSM) in hardware and/or software. In
embodiments, the bus controller 202 is responsible for comparing the contents of
the FIFO header(s) 106 and coprocessor current event register(s) 108, for popping
coprocessor instructions from the FIFO(s) 104, and for transmitting the
coprocessor instructions from the FIFO(s) 104 to the coprocessor(s) 102 for
execution. In the illustrated embodiment, the FIFO 104 is implemented in a
DRAM interface unit 204 that is accessible to both the host 100 and the

coprocessor 102.

[0037] Fig. 3 is a flow diagram that illustrates an embodiment of the present
method wherein the program executions of a host 100 and coprocessor 102 are
synchronized by a FIFO 104 and bus controller 202 so as to process a plurality of
data frames, as might be the case for a voice encoding application. According to
the illustrated example, the host 100 receives N frames of digitized voice data 300
from an input channel and stores them in DRAM 204 that is accessible to both the
host 100 and coprocessor 102. In addition, the host 100 outputs N frames of
processed voice data 302 from the DRAM 204 to an output channel. Since there
are now N frames of input data in DRAM that are ready to be encoded or
otherwise processed, the host 100 then writes N sequential groups of entries 304
to the FIFO 104, where each entry group begins with an event command “Event =
1.” The entry groups are essentially identical, in that each entry group includes
coprocessor instructions that direct the coprocessor to input a frame of input data
from the DRAM 204 into internal memory of the coprocessor, encode or otherwise

process the data, and then write the processed data back to the DRAM 204 as

WO 2020/167388 PCT/US2020/012455

output data. At this point the host 100 proceeds with other tasks, or simply waits
306 to receive N x “done” messages from the coprocessor 102, which will indicate

that all of the N frames of input data have been processed by the coprocessor 102.

[0038] Note that in various embodiments the host 100 is able to write event
commands to the current event register 108 of the coprocessor 102, for example to
force the popping of entries when handling error conditions. Meanwhile the bus
controller 202 continuously or pseudo continuously compares 308 the head of the
FIFO 106 with the contents of the coprocessor current event register 108 to
determine if they are equal to each other 310, or otherwise “agree” with each
other, where agreement can be any defined relationship between the two entries.
When the event command stored in the current event register 108 of the
coprocessor 102 is found to be equal to, or otherwise agree with, the event
command stored as the head entry 106 of its associated FIFO, the event command
and coprocessor instructions that immediately follow the event command in the
FIFO are “popped” 312 from the FIFO 104 until the next event command is
encountered 314, or until the last entry written to the FIFO 104 has been popped.
The popped coprocessor instructions are transmitted to the coprocessor for
execution. In embodiments, the FIFO entries are cleared as they are popped from
the FIFO 104, and the remaining FIFO entries are advanced, so that if a
subsequent event command is encountered and the popping process is halted, the

subsequent event command occupies the head 106 of the FIFO 104.

[0039] The presence of an event command such as “Event = 17 in the current
event register 108 at the time it is matched 310 with the head entry 108 of the
FIFO 104 indicates that the coprocessor 102 is ready and waiting for instructions
316 from the bus controller 202. Upon receiving the popped coprocessor
instructions, the coprocessor 102 writes 318 “Event = 0” or some other entry to
the current event register 108 that will not match any of the event command
entries in the FIFO 100, so as to indicate that the coprocessor 102 is busy and is

not prepared to receive any further coprocessor instructions from the FIFO 104.

10

WO 2020/167388 PCT/US2020/012455

[0040] In the illustrated example, the popped coprocessor instructions direct the
coprocessor 102 to read an input data frame 320 from DRAM 204 to location n+1
of the coprocessor internal memory, and to output a processed data frame 322
from location n-1 to the DRAM 204. The coprocessor 102 also proceeds to
encode or otherwise process the input data frame 322 at location n+1 according to
code that is included in the helper thread that is assigned to the coprocessor 102.
Once processing of the data frame is complete, the coprocessor 102 sends a
“done” message 326 to the host 100, increments 328 the value of n, and sets the
current event register 330 back to Event = 1, thereby indicating that it is ready to

receive more popped instructions from the FIFO 104.

[0041] When an expected number of “done” messages is received 306 by the
host processor 100, it can, for example, read 300 and write 302 additional data to
and from the DRAM 204, and then write a new string of entries 304 to the FIFO
102.

[0042] With reference to Fig. 4, embodiments include additional FIFOs 402 -
404, wherein the FIFO 100 described above can be referred to as the “scheduled”
FIFO 100, and the additional FIFOs can include, for example, one or more host
read FIFOs 400, host write FIFOs 402, and/or coprocessor write FIFOs 404. In
various embodiments, the host read FIFO(s) 400 can be used by the host 100 to
read registers of the coprocessor(s) 102, the host write FIFO(s) 402 can be used by
the host 100 to write to coprocessor registers, and/or the coprocessor write
FIFO(s) 404 can be used by the coprocessor 102 to write to the host 100 without a
“host read” command. In some embodiments, the “done” messages can be sent
326 by any of the coprocessors 102 to the host 100 via a coprocessor write FIFO
404.

[0043] Fig. 5 is a simplified block diagram that illustrates the method of Fig. 4
as implemented in a voice encoding application. In the illustrated example, the
voice data frames are received 500 from an input channel at a rate of one frame

every 20 ms, and are stored 502 in DRAM 204. Each frame is considered a

11

WO 2020/167388 PCT/US2020/012455

“batch,” whereby a pipeline multi-batch execution process is applied to a plurality
of input frames received from a single input channel. As discussed above, the
host 100 is responsible for receiving 300, 500 the input frames from an input
channel and storing them 502 in DRAM 204, and for outputting data frames 302,
504 from DRAM 204 to an output channel after they have been encoded by the

coprocessor 102.

[0044] Tables 1-3 illustrate the code (Table 1) that is executed by the host 100
and the code (Table 2) that is executed by the coprocessor 102, as well as the
entries (Table 3) that are written to the FIFO 104 by the host 100 before they are
popped by the bus controller 202 in the embodiment of Fig. 5.

[0045] Table 1: Host CPU Program

while (! Done) {

receive input of F frames from
input channels

send output of F frames to
output channels

write F frames of input/output
pair each starting with event #1 to
scheduled FIFO as shown

receive F frames of “end” from
COprocessor }

Note: f = loop time / 20 ms

[0046] Table 2: Coprocessor Program
1. Set current Event = 1
2. Start encoding algorithm

2

3. Write to CPU to indicate frame processing “done’

4. Goto 1

[0047] Table 3: Scheduled FIFO Content

Entries from Head of Scheduled
FIFO -

12

WO 2020/167388 PCT/US2020/012455

001: Event =1

002: Command for input of frame n+1 data transfer from dram Addr Xn+1
to coprocessor

003: Command for output of frame n-1 data transfer from coprocessor to
DRAM Addr Yn-1

004: Event =1

005: Command for input of frame n+2 data transfer from DRAM Addr
Xn+2 to coprocessor

006:Comand for output of frame n data transfer from coprocessor to DRAM
Addr Yn

[0048] Note that the batch rate for the illustrated example is the loop time
divided by the frame time. For example, if the loop time is 100 ms and the frames
are received at a rate of 20 ms per frame, then for each loop, the host 100 will be
able to receive and process 100/20 = 5 frames of voice data, and each string of
entries that is written by the host 100 to the FIFO 104 will include five batches of
entries, each beginning with an event command and followed by data read/write

instructions to be executed by the coprocessor 102.

[0049] Accordingly, in the illustrated example, the host 100 and coprocessor
102 are able to operate separately and independently from each other, including
writing to and reading from the DRAM 204, because the events and associated
coprocessor commands that are stored in the FIFO 104 serve to ensure that there
are no read-after-write or other synchronization errors, or other problems. As
such, no interrupts are required, and no added protocol is needed for

synchronization and data transfer.

[0050] In the illustrated embodiment, the event commands are used essentially
as “ready” flags. In other embodiments, a plurality of different types of event
commands can be implemented, for example “Event = 1,” “Event = 2,” etc. This
can be helpful if, for example, the coprocessor requires input from the FIFO at
different stages of data processing, and/or for identifying and handling error

conditions.

13

WO 2020/167388 PCT/US2020/012455

[0051] In a multi-core processor environment, the memory requirement, and
thus the power consumption, of a pipelined multi-batch execution can be further
reduced by distributing the “helper” data processing among a plurality of sub-
functions or helper “threads,” each having a similar time of execution, where each
of the sub-functions is assigned to a separate coprocessor core. According to this
approach, each of the coprocessor cores is only required to contain the code for a

single one of the sub-functions.

[0052] If, for example, there are n cores, then the total “helper” processing time
is reduced by 1/n as compared to an implementation with only one core, such as in
the previous example. Accordingly, the clock rate required for multi-core
embodiments is much slower than for single core embodiments, and also the
power consumption can be greatly reduced. Or, if the clock rate is maintained,
then multi-core embodiments can perform encoding or other data processing for a
larger number of channels at a given rate as compared to single-core

embodiments.

[0053] It should be noted, however, that in multi-core embodiments data flow is
sometimes required between the sub-functions, i.e. between the cores, as well as
input and output data flow between shared DRAM and the cores, which causes the
networking requirements for some multi-core embodiments to be much more
complex than for single-core embodiments. The networking structure describe in
US Patent 8,811,387 (incorporated herein by reference in its entirety for all

purposes) can be a good solution in some of these embodiments.

[0054] Fig. 6 illustrates an embodiment of the present invention that includes a
plurality of coprocessors 324a —k with a FIFO 104a — k dedicated to each of the
coprocessors 324a — k, as can be applied for example to a partitioned voice
encoder that implements pipelined multi-batch execution on a multi-core
coprocessor. Tables 4, 5, and 6 illustrate the code (Table 4) that is executed in the

embodiment of Fig. 6 by the host 100 and the code (Table 5) that is executed by

14

WO 2020/167388 PCT/US2020/012455

the coprocessor 102, as well as the entries (Table 6) that are written to the FIFOs
104a-k by the host 100 before they are popped by the bus controller 202.

[0055] Table 4: Host CPU Program

while (! Done) {
receive input of F frames from input channels
send output of F frames to output channels

write F frames of input/output pair each starting with event #1 to
scheduled FIFO as shown

receive F frames of “end” from coprocessor}

Note: f = loop time / 20 ms

[0056] Table S: Coprocessor Programs

Program in core 1

1. Set current Event = 1

2. Start subvn k algorithm

3. If core == 1. wrote to CPU to indicate batch processing “done”
4. Goto 1

Program in core k
1. Set current Event = 1
2. Start subvn k algorithm

3. If core == 1. wrote to CPU to indicate batch processing “done”
4. Goto 1

[0057] Table 6: Scheduled FIFO Content

Entries from head of Scheduled FIFO of Coprocessor Core 1 -
001: Event =1

002: Command for input of frame n-1 data transfer from Coprocessor Core
k to DRAM Addr Yn-1

003: Event =1

004: Command for input of frame n data transfer from Coprocessor Core k
to DRAM Addr Yn

Entries from head of Scheduled FIFO of Coprocessor Core k -
001: Event =1

15

WO 2020/167388 PCT/US2020/012455

002: Command for input of frame n-1 data transfer from Coprocessor Core
k to DRAM Addr Yn-1

003: Event =1

004: Command for input of frame n data transfer from Coprocessor Core k
to DRAM Addr Yn

[0058] Another example of an application that can be addressed by
embodiments of the present invention is a deep learning inference application.
These applications are similar to voice encoding applications, in that for voice and
video inference the frame structure is similar to the frame structure for a voice
encoding application that has a fixed rate of input. Often, the rate of input can be
fixed for other inference programs as well. As such, the present invention can be
implemented in at least three different ways using scheduled FIFOs 104 to provide
the synchronization and data flow mechanism in a pipeline multi-batch execution:
e asingle channel inference program using a single coprocessor;
e a multi-channel inference program using a plurality of coprocessors; or
e a single channel or multi-channel inference program for which the
program is divided into sub-functions, and each of the sub-functions is

assigned to a coprocessor core.

[0059] In embodiments, the current event register is accessible to the host. In
some of these embodiments, the host is able, if necessary, to initiate execution by
a coprocessor of its helper thread by reading the event command that is currently

in the FIFO head and writing it to the current event register of the coprocessor.

[0060] The foregoing description of the embodiments of the invention has been
presented for the purposes of illustration and description. Each and every page of
this submission, and all contents thereon, however characterized, identified, or
numbered, is considered a substantive part of this application for all purposes,
irrespective of form or placement within the application. This specification is not
intended to be exhaustive or to limit the invention to the precise form disclosed.

Many modifications and variations are possible in light of this disclosure.

16

WO 2020/167388 PCT/US2020/012455

[0061] Although the present application is shown in a limited number of forms,
the scope of the invention is not limited to just these forms, but is amenable to
various changes and modifications without departing from the spirit thereof. The
disclosure presented herein does not explicitly disclose all possible combinations
of features that fall within the scope of the invention. The features disclosed
herein for the various embodiments can generally be interchanged and combined
into any combinations that are not self-contradictory without departing from the
scope of the invention. In particular, the limitations presented in dependent
claims below can be combined with their corresponding independent claims in any
number and in any order without departing from the scope of this disclosure,

unless the dependent claims are logically incompatible with each other.

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2020/167388 PCT/US2020/012455

CLAIMS

I claim:

1. A method of synchronizing program executions of a host processor and of a
coprocessor, the method comprising:

A) dividing an application into a host portion and a helper portion;

B) implementing of the host portion on the host processor and
implementing the helper portion on the coprocessor;

C) writing to a FIFO by the host processor of FIFO entries that
include an event command followed by at least one coprocessor instruction,
whereby the event command occupies a head of the FIFO;

D) comparing the event command in the FIFO head with a registry
entry in a current event register of the coprocessor;

E) repeating step D) until the registry entry in the current event
register agrees with the event command in the FIFO head;

F) popping the event command and the at least one coprocessor
instruction from the FIFO and forwarding the popped at least one
coprocessor instruction to the coprocessor, said popping being continued
until all of the FIFO entries have been popped, or until a FIFO entry is
encountered that is a subsequent event command;

G) writing by the coprocessor to the current event register of an
entry that does not agree with any remaining FIFO entry event commands;

H) executing by the coprocessor of the helper portion of the
application;

I) transmitting by the coprocessor to the host processor of a message
indicating that execution of the helper portion has been completed; and

J) writing by the coprocessor to the current event register of an event

command registry entry.

2. The method of claim 1, wherein the FIFO and the coprocessor are
linked by a bus having a bus controller, and wherein steps D), E), and F)

are executed by the bus controller.

18

WO 2020/167388 PCT/US2020/012455

3. The method of claim 2, wherein the bus has a ring architecture.

4. The method of any preceding claim, wherein the registry entry in the
current event register is deemed to agree with the event command in the

FIFO head if it is identical with the event command in the FIFO head.

5. The method of any preceding claim, further comprising a coprocessor
memory included in the coprocessor and a shared memory that is accessible
to the coprocessor, and wherein the at least one popped coprocessor
instruction includes an instruction directing the coprocessor to read data

from the shared memory into the coprocessor memory.

6. The method of claim 5, wherein the at least one popped coprocessor
instruction includes a command directing the coprocessor to exchange data

with the shared memory.

7. The method of claim 5, wherein the shared memory is accessible to
the host processor, and wherein the host portion of the application includes
commands directing the host processor to exchange data between the shared

memory and at least one input and/or output channel.

8. The method of any preceding claim, wherein the at least one popped
coprocessor instruction includes at least one of a data flow command and a

synchronization command.

9. The method of any preceding claim, wherein in step C) the FIFO
entries written by the host to the FIFO include a plurality of entry groups,
each entry group comprising an event command followed by at least one

coprocessor instruction.

10. The method of claim 9, wherein step F) further includes advancing
the FIFO entries in the FIFO so that when a FIFO entry is encountered that

is a subsequent event command, the subsequent event command occupies

the head of the FIFO.

19

WO 2020/167388 PCT/US2020/012455

11. The method of any preceding claim, further comprising reading by
the host processor of the event command in the FIFO head and writing by
the host processor of the event command to the current event register of the

coprocessor.

12. The method of any preceding claim, wherein the helper portion does

not have any interactive inputs and has an input order that is strictly defined.

13. The method of any preceding claim, wherein the host portion is subject to

timing that is not predetermined.

14. The method of claim 13, wherein the host portion is subject to interactive

timing that is not predetermined.

15. The method of any preceding claim, wherein the application is a pipelined

multi-batch execution program.

16. The method of any preceding claim, wherein the message indicating
that execution of the helper portion has been completed is transmitted by

the coprocessor to the host processor via a coprocessor write FIFO.

17. The method of any preceding claim, further comprising at least one
of:

reading by the host of a register of the coprocessor via a host read
FIFO;

writing by the host to a register of the coprocessor via a host write FIFO;
and

writing by the coprocessor to the host via a coprocessor write FIFO.

20

PCT/US2020/012455

WO 2020/167388

1/6

Jsuod alipn

-
<3
-—

o

AE

H Jojuiod peay

<
(-
—

TN
M’

Qi psinpeyos

o
<
-—

4]

0414 Pauss o pesH A

0L

JUBAT JUBLIND

N\

1SOH

108s8001d0oN)

A 4

WO 2020/167388 PCT/US2020/012455

2/6

100
202
200
; Host
| I 204
Bus g \
Controller 104
DRAM
interface Unit

102

Coprocessor

Fig. 2

PCT/US2020/012455

WO 2020/167388

3/6

L = JueAz o} so)sibay
WUBAT JUsLND 188

Jp—
0ge %
U JUSWSIou]
=
8z¢ %
}80H O} ,8uUlp, pusg
\\..(\\
2 TAN %
L+U SUUIBY §S8201d
g
{4 %
WYHQ 01 L-U sweld inding
\\\E.l\\
A %,
LU sel 4 indu
\\..........\
gce %
0 = JU8AZ 0}
Jeysifbal juaung 198
\\B...\\
gLe %
IBJORUOD SN WY
- UOHONASUL JO) HBAA
o 10558901007

S8A

ON

& PUBWILIOD
| JUBAB = PBAY Odld

=

4323

Jossancidor) o) puss
pue uogongsu
Josseooudon dod

LY JUMEn

a0t
J@sifey 30 &

v

J085800d0o9 WIol) pealaosl
(BUOPR, XN [RUR JIBAA

80¢

L = jsag yum suifeq dnosb

Anus yoey "Odid o
sdnoib Anus N SIIAA

\\\

y0g

ANYM(] Wol sewey N IndinG
Z20¢e

A

Ulim pesy Qi asedwod

J8jjojuon sng

WYHQ Ul 8J0js
‘SOLBI4 N SAISSY

1SOH

¢ "Bid

WO 2020/167388

4/6

Coprocessor

PCT/US2020/012455

Host

> Current Event

> Head of Sched FIFO

/

108

&

Schgdu‘

@ Read pointer

Host Reiad FIFO

106

s
[es]

i., Write pointer

400

'
ot

D

i Wrile pointer -j

Host Write FIFO

L

Read pointer

o

&

el
p—

402

»{ Read pointer

iﬂ Write pointer

Coprocessar Write FIFO

¥

<&

A4

N
o’

Fig. 4

B Write pointer -j

Read pointer

——

PCT/US2020/012455

WO 2020/167388

5/6

G ‘614

awel
S0I0A PBpoIUg
P Wypioby Buipoousy
- Ve J0ssa00idon
0ze oL
eeE sor NdD1sOH
WYH(Ui owed]
nding sloyg <
y0G
v \
EEA U] WvYdQ 302 b
SW (7 / swel
oL @, a2I0A pojduweg inding
10858204d0N) pue NdD Ussmisg §<mam . o
swel induy a0
paseys Odlid peinpayos A NS SWi O¢ / owel

206 —

00%

aolon pejdwes nduj

PCT/US2020/012455

WO 2020/167388

6/6

g b1

Byce APEE
3| b uians . R 3 ujgns
1 Buipoouz > =Pl GLipoous
) 10ss8001d00)
201
% 8100 10888001d0D § D e
uesmjaq paleys Qld peinpayds -
001 SO
NVH Ul suel - oor NdO 1S0H
indino sioig 4 —
70T % \\\\
WY&HO B
SWwi Qg / swiel
@ 8910A pejdwes Inding
Wv+H(Q Ul p
) BH01 swel nduj ai0lg oW 07 / SUel
, 8010 pedwes 1ndu
B0ce L 8107 10858204d00) pue NdoD &0G \\\ 00s IOA Pa| Sl i

usemieq paieys Odld peinpeyos

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2020/012455

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 9/54(2006.01)i, GOGF 9/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F 9/54; GO6F 009/46; GO6F 012/00; GO6F 013/38; GOGF 12/08; GO6F 15/76;, GOGF 9/38; GO6F 9/46, GOGF 9/48; GO6F 9/32

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

cKOMPASS(KIPO internal) & Keywords: multi-core, divide, FIFO(First-Input-First-Output), thread, synchronize

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Paragraphs [0038], [0163]; and figure 2

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2005-0223382 A1 (MARK DAVID LIPPETT) 06 October 2005 1-17
Paragraphs [0017], [0029], [0068], [0137]; and figure 8

A US 2006-0004942 A1 (RICKY C. HETHERINGION et al.) 05 January 2006 1-17
Paragraphs [0031], [0042], [0063]; and figures 4, 8

A US 2012-0089812 A1 (GRAEME ROY SMITH) 12 April 2012 1-17
Paragraphs [0025], [0055], [0066]; and figure 1

A US 2002-0166017 A1 (JASON SEUNG-MIN KIM et al.) 07 November 2002 1-17
Paragraphs [0024], [0035]; and figure 1

A KR 10-2013-0093571 A (SYNOPSYS, INC. et al.) 22 August 2013 1-17

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"D" document cited by the applicant in the international application

"E" eatlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ngn

Date of the actual completion of the international search
28 April 2020 (28.04.2020)

Date of mailing of the international search report

29 April 2020 (29.04.2020)

Name and mailing address of the [SA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No, 182-42-481-8578

S

Authorized officer

s il

Nvae\
Sad ity
R .
KIM, Sung Hee R R
LIS ey
SRS R 1 R
&
Telephone No. +82-42-481-3516 Mt

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2020/012455
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005-0223382 Al 06/10/2005 US 10268609 B2 23/04/2019
US 2014-0025857 Al 23/01/2014
US 2014-0026141 Al 23/01/2014
US 8533716 B2 10/09/2013
US 9779042 B2 03/10/2017
US 2006-0004942 Al 05/01/2006 EP 1766529 Al 28/03/2007
US 7240160 Bl 03/07/2007
US 7685354 Bl 23/03/2010
US 7873776 B2 18/01/2011
WO 2006-004875 Al 12/01/2006
US 2012-0089812 Al 12/04/2012 EP 2441013 Al 18/04/2012
US 9158575 B2 13/10/2015
WO 2010-142987 Al 16/12/2010
US 2002-0166017 Al 07/11/2002 US 7996592 B2 09/08/2011
WO 02-088970 Al 07/11/2002
KR 10-2013-0093571 A 22/08/2013 CN 1955931 A 02/05/2007
EP 1770509 A2 04/04/2007
EP 2328076 Al 01/06/2011
EP 2328077 Al 01/06/2011
JP 2007-133858 A 31/05/2007
JP 2012-089154 A 10/05/2012
JP 2013-239199 A 28/11/2013
JP 5311732 B2 09/10/2013
JP 5386572 B2 15/01/2014
JP 5651214 B2 07/01/2015
KR 10-1369352 Bl 04/03/2014
KR 10-1392934 Bl 12/05/2014
KR 10-2007-0037427 A 04/04/2007
US 2007-0220294 Al 20/09/2007
US 2007-0220517 Al 20/09/2007
US 2014-0068619 Al 06/03/2014
US 2014-0282593 Al 18/09/2014
US 2014-0317378 Al 23/10/2014
US 2015-0378776 Al 31/12/2015
US 8533503 B2 10/09/2013
US 8732439 B2 20/05/2014
US 8751773 B2 10/06/2014
US 9164953 B2 20/10/2015
US 9286262 B2 15/03/2016
US 9442886 B2 13/09/2016

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

