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BIODEGRADABLE PIEZOELECTRIC
ULTRASONIC TRANSDUCER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a non-provisional of and claims the
benefit of U.S. Provisional Patent Application No. 62/812,
491, filed on Mar. 1, 2019, the contents of which are
incorporated herein by reference.

COLOR DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office upon request and payment of the necessary fee.

BACKGROUND

Piezoelectric materials, a type of “smart” material that
generates electricity while deforming and vice versa, are
used in many important implantable medical devices such as
sensors, transducers, and actuators. Piezoelectric sensors
have been used along with medical catheters inside the body
to monitor important physiological pressures such as intrac-
ranial pressure, blood pressure, bladder pressure, etc.

More recently, researchers have developed implanted
piezoelectric ultrasonic transducers to disrupt the blood-
brain barrier (BBB) and facilitate the delivery of drugs into
the brain. The BBB, which is composed of tight junctions
between the endothelial cells in the blood vessels of the
brain, prevents most therapeutics from accessing the brain
tissue and thus is a major hurdle for the treatment of brain
diseases (e.g., cancers). There are several established meth-
ods for opening the BBB, which include solvent, adjuvant,
acoustic wave, lipidization, and osmostic pressure; ultra-
sound (US) or acoustic waves have been extensively studied
and shown to be safe and the most effective tool. However,
the use of external US is limited to small animals with thin
skull bones. Since the human skull is thick and absorbs more
than 90% of US energy, it requires a large and bulky array
of external US transducers, a complicated energy-focusing
operation, and a tedious MM (magnetic resonance imaging)
monitoring procedure. This extensive process would be
useful for a single treatment like viral gene delivery-based
approaches. However, in certain applications such as che-
motherapy, research has shown the opening of the BBB
requires repetitive treatment. As such, implanted US trans-
ducers (e.g., Sonocloud) have emerged as an alternative,
which can repeatedly induce low-intensity sonication deep
inside brain tissue at a precise location to open the BBB
without causing any damage to the surrounding brain tissue.

Unfortunately, all of the aforementioned pressure sensors
and US transducers rely on conventional piezoelectric mate-
rials such as PZT (lead zirconate titanate), PVDF (polyvi-
nylidene fluoride), ZnO (zinc oxide), etc., which are either
toxic and/or non-degradable. Thus, these piezoelectric
devices pose significant concerns regarding safety after
implantation and require a removal surgery, which is inva-
sive and deleterious to directly interfaced organs or tissues.

SUMMARY

The disclosure provides a powerful biodegradable and
biocompatible piezoelectric nanofiber platform for signifi-
cant medical implant applications, including a highly sen-
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sitive, wireless, biodegradable force sensor for the monitor-
ing of physiological pressures, and a biodegradable
ultrasonic transducer for the delivery of drugs across the
blood-brain barrier. Built upon materials commonly utilized
in medical implants, the devices can self-degrade, causing
no harm to the body, and avoid any invasive removal
surgeries.

The disclosed device is completely biodegradable after a
controllable lifetime and biocompatible (as it is made of
commonly implanted medical materials, such as PLLA,
PLA, PCL, PLGA, Mg, Mo, candelilla wax, etc., which have
been used extensively in many FDA-approved erodible
implants). Therefore, it doesn’t need an invasive removal
surgery which is required for other implanted ultrasonic
transducers. Other transducers also rely on toxic materials
such as PZT (which contains lead) and therefore there is
significant concern with potential leakage and toxicity of the
currently-used ultrasonic device.

The device is an ultrasonic transducer that can be
implanted inside the body (e.g., brain, bone, knee, abdomen
etc.) and can generate ultrasonic waves or acoustic pressures
that are used to stimulate the opening of biological barriers
(such as the blood brain barrier, intestinal epithelial barrier,
etc.) to facilitate the diffusion of drugs and increase uptake
of drugs into organs (e.g., brain, bone, blood, etc.). The
ultrasound generated by the device can also be used to
disrupt and kill cancerous tissues through heat generated by
cavitation. Wireless communication is another possible
application of this device. Specifically, the transducer can be
used to emit ultrasonic waves, and could therefore serve as
a replacement for all non-degradable RF wireless devices
(e.g., NFC, Bluetooth, etc.) or non-biodegradable ultrasonic
transceivers, which are intensively used for telecommuni-
cation in current electronic implants.

In one embodiment, the disclosure provides a biodegrad-
able ultrasonic transducer comprising a first biodegradable
metal electrode, a second biodegradable metal electrode, a
biodegradable piezoelectric material positioned between the
first biodegradable metal electrode and the second biode-
gradable metal electrode, and an encapsulation layer cover-
ing the first biodegradable metal electrode, the second
biodegradable metal electrode, and the biodegradable piezo-
electric material.

In another embodiment, the disclosure provides a biode-
gradable ultrasonic transducer system comprising a biode-
gradable ultrasonic transducer described above and a coil
coupled to the first biodegradable metal electrode and the
second biodegradable metal electrode.

In a further embodiment, the disclosure provides a
method of constructing a biodegradable ultrasonic trans-
ducer. The method comprises electrospinning PLLA nano-
fiber to form a nanofiber mesh by rotating a drum at a speed
of between 2,000-4,000 rpm, annealing the nanofiber mesh
between 100° C.-110° C. for a first period of time, annealing
the nanofiber mesh between 155° C.-165 C for a second
period of time, sandwiching the annealed nanofiber mesh
between a first biodegradable metal electrode and a second
biodegradable metal electrode to form a sensor, electrically
coupling the sensor to a wire, and encapsulating the sensor
and the wire with a biodegradable medical polymer.

In another embodiment, the disclosure provides a method
of delivering a therapeutic through a blood-brain barrier. The
method comprises applying the biodegradable ultrasonic
transducer that was constructed by the method described
above to a craniotomy defect, transmitting an ultrasonic
wave signal through the wire, and delivering a pulsed
acoustic pressure to the defect.
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Other aspects of the invention will become apparent by
consideration of the detailed description and accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 illustrates PLLA nanofibers with highly control-
lable and excellent piezoelectric performance for biodegrad-
able implanted piezoelectric devices. The image at Top is a
simplified schematic of the treated piezoelectric PLLLA nano-
fibers. The image at Bottom Left is the schematic of a
biodegradable pressure sensor and ultrasound (US) trans-
ducer. The image at Bottom Right is a schematic illustrating
the biodegradable US transducer, implanted inside the brain,
which can repeatedly induce US to open the blood-brain
barrier (BBB) and facilitate the delivery of drugs into the
brain.

FIG. 2 illustrates material characterization of the electro-
spun PLLA. (A) Results from differential scanning calorim-
etry (DSC) of electrospun PLLA nanofiber films collected at
different spin speeds. (B) The 2D X-ray diffraction (2D
XRD) images show orientation of crystal domains inside the
electrospun PLLA nanofibers, made with different collection
speeds. (C) Scanning electron microscopy (SEM) images
show PLLA nanofiber alignment with different collection
speeds. (Scale bars, 40 um.) (D) Graphical summary illus-
trating the trend that, as the PLLA nanofibers are collected
at faster speeds, the Herman orientation factor (i.e., crystal
alignment) and crystallinity percentage generally increase.

FIG. 3 illustrates piezoelectric characterization of the
treated PLLA nanofiber films. (A) Charge output from
stretched, bulk piezo-PLLA (yellow) and treated electrospun
PLLA, collected at different speeds, under the same impact
force. (B) Displacement of stretched, bulk PLLA (yellow)
and treated electrospun PLLA, collected at different speeds,
under the same voltage (20 V,, ) at 1 Hz. (C) Displacement
of 300 rpm PLLA negative-control sample (red) and 4,000
rpm PLLA (black), under increasing magnitudes of voltage
at 1 Hz. (D) Comparison of the piezoelectric performance
for 3,000 rpm electrospun PLLA samples annealed under
different conditions over a 14-d period.

FIG. 4 illustrates a wireless, biodegradable PLI.A-nano-
fiber force sensor. (A) Comparison of calibration curves for
a biodegradable sensor using stretched, bulk piezo-PLLA
film (black) and a 4,000 rpm electrospun PLLLA nanofiber
film (red). Inset shows the optical image of the biodegrad-
able and flexible force sensor, made from the PLLA nano-
fibers. (Scale bar, 5 mm.) (B) Output from a charge ampli-
fying circuit connected to a 4,000 rpm electrospun,
biodegradable PLLA sensor that is subjected to 10,000
cycles of a 10-N force. (C) Simplified schematic of the
implanted, wireless pressure sensor in a mouse (Left) and
optical image of a mouse receiving the wireless PLLA
sensor implanted (Right). NFC, near-field communication
chip. (D) Comparison of the simulated abdominal pressure
signals, wirelessly recorded from an implanted biodegrad-
able PLLA nanofiber sensor using a 300 rpm negative
control (black) and a 4,000 rpm film (red).

FIG. 5 illustrates US characterization of the biodegrad-
able PLLA-nanofiber transducer. (A) The output pressure
from the transducer with different electrospinning speeds
under the same input voltage. The Inset is the simplified
schematic of the experiment. (B) Output pressure from a
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biodegradable US transducer made from 4,000 rpm electro-
spun PLL A under the same input voltage after different days
in PBS at 37° C.

FIG. 6 illustrates an in vivo experiment to demonstrate the
application of PLLA nanofiber transducer for the BBB
opening and drug delivering. (A) The schematic (Left) and
optical image (Right) of the in vivo experiment. (B) The
optical images of a typical biodegradable US transducer at
different days in the buffered solution at an accelerated-
degradation temperature of 70° C. (Scale bars, 5 mm.) (C)
Representative images showing the autofluorescent signal of
blood protein at the coronal section (C2) from the brains of
mice that received US from the 4,000 rpm PLLA transducer
(Left) and the 300 rpm PLLA negative-control transducer
(Right). (D) Representative images show the blood protein
signal at different coronal sections of the same mouse brain
receiving the US treatment. Section C3 (Right) is closer to
the implanted transducer, while section C1 (Lett) is far away
from the implanted US transducer, serving as an internal
control. (Scale bars in C and D, 30 um.) (E) Representative
images show the signal of dextran (FITC) at the coronal
sections from the brains of mice that received different
treatments and samples. The dashed lines show the boundary
between the brain and the biodegradable device. The asterisk
(*) shows the position of the implanted device. (Scale bars,
50 um.)

FIG. 7 is a schematic of a biodegradable ultrasonic
transducer system as disclosed herein.

FIG. 8 illustrates a biodegradable ultrasonic transducer as
disclosed herein.

FIG. 9 illustrates neuronal health after 2 weeks implan-
tation inside rat brain. At 2 weeks, no differences in neuronal
density or GFAP expression were observed between the
PLLA sensor and stainless steel implants, based on the
immunofluoresecent images of NeuN/Caspase-3 (A and B)
and GFAP/ED-1 (D and E) images and the quantifications of
Neuronal counts (C) and GFAP intensity within 100 pm
from the implant at the brain surface, normalized to the
deeper region of the same images (F). Two animals and 4
sections each were used. Data presented as mean+SEM).

FIG. 10 illustrates neuronal health after 4 week implan-
tation inside rat brain. At 4 weeks, no differences in neuronal
density or GFAP expression were observed between the
PLLA sensors and stainless-steel implants, based on the
immunofluorescent images of NeuN/Caspase-3 (A and B)
and GFAP/ED-1 (E and F) and the quantification of neuronal
counts (C) and GFAP intensity within 100 pm from the
implant at the brain surface, normalized to the deeper region
of the same images (G). For quantification, two animals and
4 sections each were used. Data presented as meantSEM.
Additionally, examples of non-implanted control region (D
and H) showed similar distribution of NeuN, Caspase-3 (D),
GFAP and ED-1 positive cells (H) as the implanted regions.
These data clearly describe biocompatibility of our PLLA
transducer and its degradation byproducts at least for 4 week
implantation inside brain.

FIG. 11 graphically demonstrates the ability of transmit-
ting and receiving ultrasonic waves of the biodegradable
ultrasonic transducer of FIG. 8 with different number of
piezoelectric PLLA layers. In order to characterize the
transmitting properties of the transducer, the acoustic pres-
sure generated from the biodegradable transducers are mea-
sured from the capsule hydrophone (A and B). Additionally,
the output voltages of the multilayers biodegradable trans-
ducers, subjected to a 10 kPa acoustic pressure at 1 MHz, are
demonstrated (C and D).
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FIG. 12 shows that the device generates an audible sound
at a frequency of 9 kHz before degrading inside a buffer
solution. This shows the ability of the device to vibrate and
generate acoustic waves under applied electrical voltage.

DETAILED DESCRIPTION

Before any embodiments of the invention are explained in
detail, it is to be understood that the invention is not limited
in its application to the details of construction and the
arrangement of components set forth in the following
description or illustrated in the following drawings. The
invention is capable of other embodiments and of being
practiced or of being carried out in various ways.

Piezoelectricity is a phenomenon which allows materials
to convert deformation into electricity and vice versa. Piezo-
electric materials are often used for force/pressure sensors,
transducers, and generators. The materials can be fabricated
into nano- and microstructures and interfaced with soft
tissues to monitor biological forces. Since piezoelectric
materials can generate electricity from mechanical impact,
they can serve as appealing sensing materials, alternative to
the described passive semiconductors and capacitive poly-
mers, for self-powered force sensors. However, commonly
used piezoelectric materials such as lead zirconate titanate
(PZT) and polyvinylidene difluoride (PVDF) contain toxic
or non-biodegradable components, respectively, and thus are
not favorable for implantation inside the human body.

Poly-L-lactic acid (PLLA), a biocompatible and biode-
gradable polymer has recently been found to exhibit piezo-
electricity when appropriately processed, thereby offering an
excellent platform to construct safer, biodegradable piezo-
electric implants, which can avoid problematic removal
surgeries. The material exhibits shear piezoelectricity due to
electrical polarity present in the carbon-oxygen double-bond
branching off from the polymer backbone chain. Although
possessing a modest piezoelectric response (5-15 pC/N),
PLLA has a low dielectric constant, which allows the
material to perform the same energy-conversion efficacy as
the common piezoelectric polymer PVDF. By creating a
multilayered structure, one can achieve even higher piezo-
electricity from PLLA, with an “effective” conversion effi-
ciency, similar to that of ceramic PZT.

Previously, thermally stretched, compression-molded
PLLA bulk films were employed to create a biodegradable
piezoelectric force sensor. However, stretched PLLA bulk
films pose several problems, including low reproducibility,
film rigidity, and modest piezoelectric constants (~5 to 12
pC/N) (20, 21), which render the bulk PLLA films useless
for actuators, transducers or highly sensitive pressure sen-
sors. Recently, biodegradable amino acid crystals (e.g.,
glycine) have been reported with an excellent piezoelectric
constant. However, it is challenging to fabricate these pow-
der-based materials into functional films and orient the
crystals in a repeatable manner to obtain a controllable
piezoelectric performance for device applications. A few
researchers have utilized electrospinning to create flexible
PLLA piezoelectric nanofiber films, but the reported works
struggle with major limitations. First, these reports lack
appropriate material processing to stabilize the nanomaterial
or utilize the shear-piezoelectric mode (i.e., d14) of PLLA
for an optimal piezoelectric performance. Consequently, the
PLLA nanofibers can only produce small, unstable electrical
signals under applied force. Second, the measured electrical
signals are often mixed with other noises caused by friction
between the rough nanofiber film and metal electrodes,
commonly known as the triboelectric effect. Third, there is
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no report on the ability to control the piezoelectric perfor-
mance of the PLLA nanofibers. These major drawbacks
collectively restrict applications of this nanomaterial. As a
result, there are only a few reported applications of piezo-
electric PLLA nanofibers for non-degradable and non-im-
plantable force sensors or energy harvesters.

The disclosure provides a strategy for materials process-
ing, device assembly, and electronic integration to 1)
achieve biodegradable and biocompatible piezoelectric
PLLA nanofibers with a highly controllable, efficient, and
stable piezoelectric performance, and 2) demonstrate biode-
gradable, safe piezoelectric devices built upon this powerful
nanomaterial (FIG. 1). First, it is demonstrated that a bio-
degradable force sensor, made with the PLLA nanofiber
film, possesses higher sensitivity and flexibility than that of
the reported thermally stretched PLLA bulk film and can be
used to wirelessly monitor vital physiological pressures.
Second, it is demonstrated that the same PLLA nanofiber
sensor acts as a biodegradable ultrasonic transducer that can
be implanted into the brain to open the BBB and safely
self-degrade, causing no harm to the body. Despite several
achievements in the field of biodegradable electronics, this
report introduces a biodegradable, highly efficient piezoelec-
tric US transducer, which is only made of materials com-
monly utilized in medical implants to facilitate the BBB
opening for the delivery of drugs into the brain.

In order to improve the piezoelectric response of PLLA,
the two major material properties that need to be addressed
are the crystallinity and orientation of the polymer chains.
By improving these properties, the carbon-oxygen double
bonds (C—0) present in the helical PLLLA backbone become
aligned resulting in an inherent net polarization, and a
well-documented shear piezoelectric response under applied
force. The PLL A nanofibers are made using an electrospin-
ning process. The speed of the rotating drum was varied
from 300 to 4,000 rpm, while other parameters such as the
voltage applied to the needle, distance to collector, needle
gauge, flow rate, and solution concentrations were held
constant. This resulted in PLLA nanofiber mats with differ-
ent levels of fiber orientation. The nanofiber mat samples
initially made by the electrospinning setup are highly amor-
phous and unstable, as seen by the DSC (differential scan-
ning calorimetry). Therefore, the samples were carefully
annealed and slowly cooled down in two serial steps at 105°
C. and 160.1° C. to improve the crystallinity. After these
annealing processes, the crystallinities of the processed
nanofiber samples appear to be in about the same range of
70% to 88% (see DSC data of FIG. 2 (at A)). The nanofiber
films, collected at smaller spin speeds, have lower levels of
fiber alignment. Therefore, the 300 rpm electrospun PLLA
sample was selected as a negative control due to its lower
crystallinity and poor fiber orientation, which results in
little-to-no piezoelectric effect. X-ray diffraction (XRD) data
show that all of the samples are predominantly (200) and
(110) (miller index for crystal planes) crystal phases, indi-
cating the presence of (3-form crystal structures, which is
the piezoelectric phase of PLLA. Additionally, as seen in the
2D XRD images of FIG. 2 (at B), electrospinning with a
faster collector speed improves the orientation of the crystal
domains in each nanofiber. The fiber alignment over the
entire film also appeared to increase with faster collector
speeds, as seen in the scanning electron microscopy (SEM)
images (FIG. 2 (at C)). However, macroscopic orientation of
the PLLA fibers and the molecular alignment are also related
to the jet speed (dictated by applied voltage used for
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electrospinning). By tuning the jet speed to match the drum
speed, the optimal piezoelectric PLLA film can be gener-
ated.

Estimation of the crystallinity (using DSC) and Herman’s
orientation factor (using 2D XRD) for the electrospun PLLA
samples is described in FIG. 2 (at D), which shows that
improving the collector drum speed generally results in
higher crystallinity and crystal alignment in the nanofibers.
Thus, by tailoring the collector and jet speeds, the piezo-
electricity of the nanofibers can be controlled.

The piezoelectric performance of the PLLA nanofiber
films was assessed through an impact test (i.e., generation of
voltage under impact force) and an actuation test (i.e.,
displacement under an applied electric field). To create the
PLLA sensor for these tests, the PLLA film was annealed
and cut at a 45° angle relative to the fiber direction to utilize
shear piezoelectricity by maximizing shear force under an
applied normal force. The fully treated and cut PLLA films
possess a stable, efficient, and highly controllable piezoelec-
tric performance, which has not been achieved by previous
reports for the PLLA nanofibers. The films were then
sandwiched between aluminum foil electrodes and Kapton
tape. For impact testing, the PLL A sensor was subjected to
a consistent force induced by an actuator, which was inte-
grated with a dynamic force sensor and driven by a defined
voltage waveform. The charge output from the PLLA
sample was measured with an electrometer. All of the
sensors had the same area of 161.29 mm? and thicknesses in
the range of 19 to 28 Additionally, prior to fabrication of the
sensors, all of the films are soaked in deionized water to
minimize the influence of the triboelectric effect.

FIG. 3 (at A) illustrates charge outputs from the PLLA
samples subjected to a 30-N impact force. The signals
generated from the 6 treated PLLLA samples clearly show the
electrospun sample collected at 4,000 rpm has the largest
charge output of about 0.9 nC while the 300 rpm sample
exhibits little-to no charge output (~0.1 nC). The highly
aligned nanofiber film, collected at 3,000 and 4,000 rpm
drum speeds, noticeably outperforms the bulk piezoelectric
PLLA film [annealed and stretched with a 3.5 draw ratio
(DR)]. All open-circuit voltage outputs for these piezoelec-
tric nanofiber films were reversible when the electrode
connections were swapped, indicating that the PLLA is truly
polarized, and that the measured signal is minimally influ-
enced by triboelectricity.

The impact measurement was also repeated using dry
films, and the resulting data was used to estimate the shear
piezoelectric coefficient (d,,) for all of the samples. Using
the measured mechanical properties of the PLLA films, the
piezoelectric constant of the samples was roughly estimated;
the 4,000 rpm sample appears to exhibit a d,, of =19 pC/N,
while the conventional bulk PLLA film only exhibits a d,,
of =12 pC/N. This indicates that the processing of PLLA
nanofibers significantly improves the material’s shear piezo-
electric response. Furthermore, cutting the PLLA films at
45° angles to utilize shear piezoelectricity was also justified
by comparing the charge outputs of a 0° and 45° cut film
under the same applied force. For the actuation measure-
ment, a treated PLLA film (1.27 cmx1.27 cm) was sand-
wiched in the center of aluminum foil electrodes (9.53
mmx9.53 mm). A controlled voltage waveform was then
applied to the sensor, and the displacement in the exposed
right corner of the sample was measured using a laser
displacement sensor. As seen in FIG. 3 (at B), the treated
PLLA nanofiber samples vibrate with the same frequency (1
Hz) as the applied sinusoidal voltage waveform (20 V).
The 4,000 rpm electrospun sample again exhibits the great-
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est displacement (~4.5 um), while the stretched 3.5 DR bulk
film and 300 rpm electrospun samples exhibited no measur-
able displacement. This result confirms the superior piezo-
electric performance of the highly aligned nanofiber film. In
addition, as the amplitude of the applied voltage increases,
the amplitude of displacement for the electrospun films also
increases, and the displacement is frequency dependent
(FIG. 3 (at C). Piezoelectric performance in the treated
PLLA nanofiber film is also stable. This advantage is sig-
nificant as there has been little research to avoid depolar-
ization of the PLLA nanofibers over time. Indeed, as seen in
FIG. 3 (at D), only an electrospun sample (3,000 rpm) that
underwent the full annealing processes (i.e., annealed at
both 105° C. and 160.1° C.) has a stable piezoelectric output
under the same applied force (~30 N) for 7 d, with a
marginal loss (~6%) in signal at 14 d. In contrast, the
untreated (i.e., not annealed) and partially treated (i.e.,
annealed only at 105° C.) samples rapidly lose their perfor-
mance and are therefore not stable for long-term implant
applications.

After verifying the piezoelectric effect of the PLLA
nanofibers, a biodegradable force sensor was created by
using the nanofibers, molybdenum (Mo) electrodes, and
encapsulating untreated PLLA layers (FIG. 1). PLLA or
PLA are common biodegradable polymers used in Food and
Drug Administration (FDA)-approved implanted tissue scaf-
folds, bone screws, and drug carriers. Molybdenum is a
common nutrient and a biodegradable metal. A biodegrad-
able piezoelectric force sensor was previously reported,
however, the device was based on the stretched PLLA bulk
film, which is less flexible, exhibits much lower piezoelec-
tric performance, and consequently offers lower sensitivity
for force detection.

FIG. 4 (at A) clearly illustrates this by showing that the
slope of a calibration curve for a biodegradable sensor made
with a treated 4,000 rpm electrospun PLLA film is 1.8 times
steeper than that of a sensor, using a conventional thermally
stretched, bulk PLLA film (DR=3.5). However, when com-
pared to a sensor made of a common non-degradable piezo-
electric PVDF-TrFE film (which exhibits a higher d,; of
approximately 34 pC/N), the biodegradable 4,000 rpm elec-
trospun PLLA sensor appears to produce lower-amplitude
signals under the same applied force. It is also shown that the
charge output from the same 4,000 rpm sensor is stable for
over 10,000 cycles of the same impact force (10 N). Not
only was the 4,000 rpm electrospun film more sensitive, but
its higher crystallinity did not appear to result in any
significant changes to the degradation rate when compared
to the bulk PLLA piezoelectric film. Without being encap-
sulated, the PLLA films exhibited a reduction in piezoelec-
tricity after being exposed to aqueous environments due to
plastic deformation under an applied load. It was then
demonstrated that the nanofiber sensor can be used to
monitor intra-abdominal pressure in a mouse.

The sensor (5 mmx5 mm) was fully implanted into the
abdominal cavity of a mouse and connected to a small
printed circuit board (PCB) via a subcutaneous (s.c.) bio-
degradable wire made of Mo and coated in PLLLA. The PCB
contains a charge amplifying circuit, a wireless near-field
communication (NFC) chip and a commercial antenna. The
entire PCB was sealed inside an 18 mmx14 mm PDMS
(polydimethylsiloxane) box and subcutaneously implanted
at the back of the animal (FIG. 4 (at C)). Thus, the abdomi-
nal sensor and the connecting wires can self-degrade, while
the non-degradable PCB could be easily removed at the end
of the sensor’s lifetime in a minimally invasive manner. The
mouse’s abdomen, filled with saline solution, was then
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manually stimulated to generate an internal fluid pressure,
which mimicked a change in intra-abdominal pressure. A
clearly distinguishable signal (FIG. 4 (at D)) was wirelessly
measured while the mouse’s abdomen was periodically
depressed and relaxed. The measured pressure signal was
then compared to the signal generated by a 300 rpm PLLA
sensor (negative control) to verify the signal was not gen-
erated by triboelectricity and motion artifacts of the wires
(FIG. 4 (at D)). These results clearly demonstrate the poten-
tial of the biodegradable PLLA sensor for monitoring vital
physiological pressures inside the body.

In addition to monitoring intra-abdominal pressure, it was
demonstrated that the same PLLA nanofiber sensor can also
be used as a biodegradable ultrasound (US) transducer. The
PLLA nanofibers’ ability to transmit or receive ultrasonic
waves was tested. During US transmission testing (FIG. 5
(at A, Inset)), a capsule hydrophone was used to measure the
acoustic pressure. The PLLA device was driven by a func-
tion generator to produce a continuous ultrasonic wave at 1
MHz. As seen in FIG. 5 (at A), there was no signal detected
when the function generator was “off” When the generator
was “on,” all PLLA transducers generated distinct acoustic
waves while the 300 rpm sample (negative-control sample,
non-piezoelectric) resulted in only noise. The trend is similar
in the US receiving test; in all of these experiments, the
highly aligned 4,000 rpm sample provided the highest
conversion signals. Interestingly, the PLLA transducers can
act as speakers to generate audible sounds and even play
music.

A degradation experiment was conducted and demon-
strated that a transducer, using encapsulating layers of
untreated PLLA (100 um thick), can have a lifetime of up to
8 d in phosphate buffer saline (PBS) at 37° C. (FIG. 5 (at B)).
Longer functional lifetimes can certainly be achieved by
engineering the properties [i.e., thickness or molecular
weight (MW)] of the encapsulating PLLA layers or using
other biodegradable encapsulating polymers.

As proof-of-concept on a potential application of the
biodegradable transducer, the PLLA device was employed,
made of 4,000 rpm nanofiber samples, for disruption of the
BBB in vivo. The experiment is illustrated in FIG. 6 (at A).
A 5 mmx5 mm biodegradable US transducer, which was
connected to flexible, biodegradable PLLA-encapsulated
Mo wires, was placed on a craniotomy defect in a mouse
skull. The spatial pressure field of the biodegradable trans-
ducer was recorded. The transducer was operated at 1 MHz
to generate an acoustic pressure of 0.3 MPa (rarefaction
pressure value) in a series of 2 shots lasting 30 s, with a 30-s
break between each shot. The device functioned well in its
predefined lifetime and eventually self-degraded (FIG. 6 (at
B)). The brains were processed for fluorescence analysis of
bloodborne elements to gauge leakage of the BBB. Two
indicators of leakage were intentionally chosen in order to
reflect the relative degree of BBB disruption. Tissue auto-
fluorescence at 488 nm was associated with the presence of
the 64.5 kDa (in MW) blood protein hemoglobin, which has
been suggested to leak across a disrupted BBB. As seen in
FIG. 6 (at C), a noticeable halo of autofluorescence (green
stain) could be seen around various microvessels (red stain)
in the brains of mice sonicated by the 4,000 rpm transducer.
In contrast, no similar signal was observed from the same
coronal sections (C2) of the control mouse, sonicated by the
300 rpm non-piezoelectric control sample. Additional brain
sections of the control mouse (receiving the non-piezoelec-
tric device) were documented. As further illustrated in FIG.
6 (at D), for the mice that received US treatment, the closer
the coronal sections were to the implanted transducer, the
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more disrupted vessels were associated with autofluorescent
signals. This serves as an internal control and clearly shows
the local US-induced BBB opening. The BBB opening was
again confirmed by immunofluorescence analysis on the
leakage of the serum protein IgG (~150 kDa).

To further certify the potential application of the biode-
gradable device for delivering therapeutics or pharmaceuti-
cal agents through the BBB, another in vivo animal model
was performed. The procedure of this experiment was
similar to the previous experiment except that the dextran (3
kDa, FITC, Lysine Fixable; Thermo Fisher) as a drug model
was retro-orbitally injected into the mice after the sonication
process. Additionally, another control group in which mice
did not receive the microbubbles before sonication was
added to this experiment in order to validate the effect of
microbubbles in the BBB opening. As seen in FIG. 6 (at E,
Left), a remarkable level of green signal (FITC) was found
around the microvessels in the brain of mice that received
the treatments by the 4,000 rpm transducer and
microbubbles. It is noticeable that the intensity of the FITC
signal is reduced at deeper areas of the brain. On the other
hand, no green signal was detected from the same coronal
sections of the two control samples, FIG. 6 (at E, Center and
Right). If higher output acoustic pressure and wireless
powering are needed for the US transducer, the device can
be fabricated with multiple layers of PLLA nanofiber films
and utilize the inductive coupling effect.

Finally, to demonstrate the biocompatibility of the PLLA
nanofiber devices, these devices were implanted subcutane-
ously into the backs of mice and the intracranial cavity of
rats for histology analysis. The histological images from
both experiments showed that the device elicits minimal
fibrosis and immune response after implantation for 2 and 4
wk. Collectively, these results illustrate that the biodegrad-
able PLLA transducer can be implanted safely into the brain
to locally and effectively open the BBB, which could
facilitate the delivery of drugs into the brain for the treat-
ment of various brain diseases or disorders. Built upon
materials commonly utilized in medical implants, the trans-
ducer can self-degrade, causing no harm to the body, and
avoid any invasive brain surgery for removal.

FIG. 7 illustrates a schematic of a biodegradable piezo-
electric ultrasonic transducer system 10. The biodegradable
piezoelectric ultrasonic transducer system 10 includes a
transducer 14, a link 18, and a coil 22. FIG. 8 also illustrates
a constructed biodegradable piezoelectric ultrasonic trans-
ducer 14 and a link 18. In one construction, the size of the
ultrasonic patch is 5 mmx5 mm. The transducer 14 com-
prises a first biodegradable metal electrode 26 and a second
biodegradable metal electrode 30. A biodegradable piezo-
electric material 34 is positioned between the first electrode
26 and the second electrode 30.

The biodegradable piezoelectric material 34 is positioned
between the electrodes 26, 30 can be PLLA, silk, glycine,
etc., which are all biodegradable and safe for use inside the
body. The piezoelectric material 34 may have an area greater
than or equal to the area of the electrodes 26, 30. As
illustrated in FIGS. 7-8, the piezoelectric material 34
includes an area slightly greater than the area of the elec-
trodes 26, 30 as the piezoelectric material 34 extends beyond
the edges of the electrodes 26, 30. In one construction, the
piezoelectric material PLLA can be treated by mechanical
stretching and thermal annealing to obtain stable piezoelec-
tric properties (Eli Curry et al. Biodegradable piezoelectric
force sensor, PNAS, 2018). The PLLA can also be processed
into a stable piezoelectric material through electrospinning
and thermal treatment. The piezoelectric film can be pre-



US 11,826,495 B2

11

pared by electrospinning a 4% w/v solution of PLLA
dissolved in a 1:4 mixture of N,N-Dimethylformamide
(DMF) and dichloromethane (DCM). The solution is
pumped at a constant rate of 2 ml/hr through a 22-gauge
needle with a 14 kV (kilovolts) DC voltage applied to it (Eli
Curry et al. Biodegradable piezoelectric nanofiber based
transducer, PNAS Jan. 7, 2020 117 (1) 214-220). This
electrified solution is then sprayed at a ground aluminum
drum rotating at speeds from 300-4,500 rpm (rotations per
minute). This results in a nanofiber mat of PLLA (diameter
~300 nm) with varying degrees of alignment based on
rotating drum speed. These fibrous mats are then annealed at
105° C. for 10 hr and allowed to cool to room temperature.
They are then annealed at 160° C. for 10 hr and allowed to
cool to room temperature. Finally, the electrospun films are
cut at a 45° angle relative to the oriented direction in order
to harvest the shear piezoelectric signal of the film.

The metal electrodes 26, 30 can comprise different bio-
degradable metals, including: Molybdenum (Mo), Magne-
sium (Mg), Iron (Fe), Zinc (Zn) conducting polymers, etc. or
an alloy of any of the previously mentioned metals. The
electrodes 26, 30 and piezoelectric material 34 are covered
in an encapsulation layer 38 with a biodegradable medical
polymer. The encapsulation layer 38 can comprise poly
(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA),
candelilla wax, polycaprolactone (PCL), metals such as Mo
or other suitable biodegradable polymer.

The link 18 includes a first wire 42 and a second wire 46
coupled to the transducer 14. The first wire 42 is coupled to
the first biodegradable metal electrode 26 and the second
wire 46 is coupled to the second biodegradable metal
electrode 30. The first wire 42 and the second wire 46
comprise Mo in one construction and is encapsulated inside
a flexible biodegradable encapsulation layers made of PLA,
poly(glycerol sebacate) (PGS), poly(octamethylene maleate
(anhydride) citrate) (POMaC), PLGA, or other suitable
biodegradable polymer. As illustrated in FIG. 7, the trans-
ducer 14 and the link 18 are encapsulated with the same
encapsulation layer 38. By controlling the thickness,
molecular weight, or by using different polymers, the func-
tional-lifetime of the transducer 14 can be engineered and
pre-defined prior to implantation.

The inductive coil 22 is coupled to the link 18. The
inductive coil 22 includes a first end 50 coupled to the
second wire 46 and a second end 54 coupled to the first wire
46. The inductive coil 22 comprises Mg or Mo which can
receive power supplied through a resonant inductive cou-
pling effect from an outside transmitting coil to provide
power to the ultrasonic transducer 14. The inductive coil 22
is encapsulated inside a biodegradable polymer of PLA or
PGS or PoMac or PLGA, or another suitable biodegradable
polymer. The inductive coil 22 also is biodegradable, similar
as the transducer 14. As illustrated in FIG. 7, the transducer
14, the link 18, and the coil 22 are encapsulated with the
same encapsulation layer 38.

In an alternative construction, the transducer 14 can be
connected to a non-degradable link and a non-degradable
coil or other electronics to receive power. During the
implantation of such a system, the transducer 14 can be
implanted into the tissue that it needs to target (e.g., inside
the skull, close to dura mater to open the blood brain barrier)
while the non-degradable electronics (in replacement of the
inductive coil 22 in FIG. 7) can be implanted subcutaneously
and far away from the delicate tissue to be targeted. After the
transducer 14 is used, the non-degradable electronics can be
removed in a minimally-invasive manner while the trans-
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ducer 14 will self-degrade without the need to be removed
thus minimizing surgical risk.

In another alternative construction, a transcutaneous wire
can be connected to the transducer 14 and an external power
source can be used to power the transducer. The wire will be
very small. After the functional lifetime of the transducer 14,
the transcutaneous wires can be removed through a mini-
mally invasive surgery while leaving the biodegradable
transducer intact within the delicate/important tissue.

The biocompatibility of the transducer 14 (including
piezoelectric PLLA, encapsulating layer PLA, and electrode
Mo) inside the brain has been tested. The result after one
month shows minimal immune rejection and an excellent
biocompatibility of the device.

To examine if implantation of the transducer 14 has
caused any inflammatory or damaging reactions on the
underlying cortical tissues, the neuronal density and health
underneath the transducer and stainless steel samples at
week 2 and week 4 were compared (see FIG. 9 and FIG. 10).
The distribution of neurons is similar between the control
and the PLLA device (FIG. 9 (at A and B) and FIG. 10 (at
A and B)), with no significant difference in neuronal density
(FIG. 9 (at C) and FIG. 10 (at C)).

Moreover, all neurons appear healthy, based on the lack of
NeuN/Caspase-3 co-localization. Qualitatively, the distribu-
tion of GFAP positive cells (astrocytes) and ED-1 positive
cells (macrophage in the meningeal layer and activated
microglia in the brain) also appear similar between the
stainless steel and the sensor-implanted regions, and also
between the sensor-implanted regions and non-implanted
control regions (i.e., regions without any implants). Quan-
tification of the GFAP intensity showed no significant dif-
ference between the two implanted areas (FIG. 9 (at F) and
FIG. 10 (at F)), and also between the implanted areas and the
areas without any implant. Taken together, this histological
study suggests that the implanted PLLA-transducer is
benign and does not cause harmful host tissue response
inside the brain for the periods examined.

In another biocompatibility test, the PLLA transducer 10
(with the same structure and materials including piezoelec-
tric PLLA sandwiched between Mo electrodes and encap-
sulated in PLLA) was implanted inside a subcutaneous area of
mice and the results show a very minimal inflammation or
mild immune response to the implant.

It has been shown that the transducer 14 can generate as
well as receive ultrasonic wave in a wide range of frequen-
cies. FIG. 11 shows that a transducer 14 with a varying
number of piezoelectric PLLA layers can generate different
acoustic pressures under the same applied input voltage at 1
MHz or provide different output voltage values (Vpp) when
being subjected to the same applied acoustic pressure (gen-
erated by a commercial ultrasonic transmitter) at 1 MHz
frequency in water. Increasing the number of PLLA layers
boosts the sensitivity or the power of the transducer.

It is also shown that the transducer 10 can generate sound
under an applied electrical signal. Under an AC input
voltage at 9 kHz, the device can generate an audible sound.
The transducer 10 degrades afterward as illustrated in FIG.
12.

Various features and advantages of the invention are set
forth in the following claims.

What is claimed is:

1. A biodegradable ultrasonic transducer comprising:
a first biodegradable metal electrode;

a second biodegradable metal electrode;
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abiodegradable piezoelectric material positioned between
the first biodegradable metal electrode and the second
biodegradable metal electrode;

a first link comprised of a biodegradable material, the first
link coupled to the first biodegradable metal electrode
and a coil;

a second link comprised of a biodegradable material, the
second link coupled to the second biodegradable metal
electrode and the coil; and

an encapsulation layer covering the first biodegradable
metal electrode, the second biodegradable metal elec-
trode, the biodegradable piezoelectric material, the first
link, and the second link,

wherein the biodegradable ultrasonic transducer is con-
figured for implantation near a target and to receive
power through the first link and the second link to
generate ultrasound waves for delivery to the target.

2. The transducer of claim 1, wherein the biodegradable

piezoelectric material comprises poly (L-lactic acid)
(PLLA).

3. The transducer of claim 1, wherein the encapsulation

layer comprises a biodegradable medical polymer.

4. The transducer of claim 3, wherein the biodegradable

medical polymer is poly(lactic acid) (PLA).
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5. The transducer of claim 1, wherein the biodegradable
piezoelectric material has a piezoelectric constant greater
than 12 pC/N.

6. The transducer of claim 1, wherein the biodegradable
piezoelectric material has a perimeter greater than a perim-
eter of the first biodegradable metal electrode or the second
biodegradable metal electrode.

7. A biodegradable ultrasonic transducer system compris-
ing:

a biodegradable ultrasonic transducer of claim 1; and

a coil coupled to the first biodegradable metal electrode

and the second biodegradable metal electrode.

8. The system of claim 7, wherein the coil is coupled to
the first biodegradable metal electrode with a first wire and
to the second biodegradable metal electrode with a second
wire.

9. The system of claim 8, wherein the first wire and the
second wire comprise Molybdenum (Mo).

10. The system of claim 8, wherein the coil is covered
with the encapsulation layer.

11. The system of claim 9, wherein the coil is covered
with the encapsulation layer.
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