US 20230350863A1

a2y Patent Application Publication o) Pub. No.: US 2023/0350863 A1

a9y United States

Yang et al.

43) Pub. Date: Nov. 2, 2023

(54) METHODS AND SYSTEMS FOR SCALABLE
DEDUPLICATION

(71) Applicant: Veritas Technologies LL.C, Santa
Clara, CA (US)

(72) Inventors: Yong Yang, Beijing (CN); Xianbo
Zhang, Plymouth, MN (US); Weibao
Wu, Vadnais Heights, MN (US); Chao
Lei, Beijing (CN); Yafeng Wang,
Beijing (CN); Haigang Wang,
Shoreview, MN (US); Lulu Wei,
Beijing (CN)

(21) Appl. No.: 18/347,395
(22) Filed: Jul. 5, 2023
Related U.S. Application Data

(63) Continuation of application No. 16/698,288, filed on
Nov. 27, 2019, now Pat. No. 11,741,060.

Publication Classification

(51) Int. CL

GOGF 16/215 (2006.01)
(52) US.CL

() SR GOGF 16/215 (2019.01)
(57) ABSTRACT

Methods, computer program products, computer systems,
and the like are disclosed that provide for scalable dedupli-
cation. Such methods, computer program products, and
computer systems can include, in response to receiving a
request to perform a lookup operation, performing the
lookup operation and, in response to the signature not being
found, forwarding the request to a remote node. Further, in
response to receiving an indication that the signature was not
found at the remote node, processing the subunit of data as
a unique subunit of data.

Scalable Deduplication System 400

Client System Client System Client System Client System Client System Client System
eve
101 110(2) 1103} 11004 110(5) 110(N)
~ ~
~ ) <
~
~ P 4
N
|=N"T1T— - —— =< —— L — - —— = I
| ~ ~ , ClustvaM_SQl
—_—Sr

[ ' | [

| !
| Catalog I | I
Cluster ‘ 160 i | I
Management i I | |
Server | i |
140 I Node Node Node Node Node Node Node |

| eesse
| 130(1) 1302, 130(3) 1304, 130(5) : 130(6 I 130(N) |
! [
[ | : |
[ l | [
[ ' | [
| | | )
I b= i
| IR DR R DU R I, G+ ——_—————— - — —d
1




US 2023/0350863 Al

Nov. 2,2023 Sheet 1 of 20

Patent Application Publication

(NJOET
SpON

001
wajsAg uonesldnpaq a|qejeas

(ehoer
SpoN

091
Bojeyen

(O

orl
Janiag

Juswabeuey Jajsn|o

NorT
waysAs jualy

AN

waysAs jual)

08}
Ejepelsiy

0/l
ejeq Jasn

(1)011 wajsAs juand




Z ‘b4

US 2023/0350863 Al

Nov. 2,2023 Sheet 2 of 20

ST

L-NJS¢c D144 JobBeuepy
[ood uoijeaiidnpag [004 uonesydnpag uoneaidnpeg
g [e007 [e907 o
. 0S¢ __
° 21015 eleq 091
pajesydnpaq XX XX Bojejeo

(I-NJoze (31144 []*4
aseqeleq aseqeleq Jobeuepy
ove 90UBISJ0Y [BI0T 80URIDJOY [BO0T] Jaisn|n

310]S elEpEIdN

1J0EZ Jeuiejuon {I-NJOET 8poN 1JOE1 8poN o

. Janiog
Juowabeuep
(2)0ET 1oure)uo) IS
{NJOEZ souteyuo)
(N)GZz 100d uogeaydnpaq (2007 .
G0l _
ylomiaN 00¢
wajsAg
NJoZe uoneoidnpaq
asegele( 99ULI8jaY [BO07] d|qejeag

(N)OET 8pON

Patent Application Publication

N)OL L coe e (Y
wioysAg JualQ waysAg juall) wiaysAg Jusiiy




Patent Application Publication  Nov. 2, 2023 Sheet 3 of 20 US 2023/0350863 A1

Scalable Deduplication System 300

Node 310
Container Management Module
> 320
Data Interface Module I [y
330
- : Metadata Interface Module
340
Local Reference Database
350

I — — 1

| Local Deduplication Pool 360 |

I I- —— —— —— ———————————————— — — — e I

I Container 370 |1

|| ||

| , ||

| Metadata Store Deduplicated Data Store | |

I 380 390

| |1

|| _ , ||

| Signature 382(1) Location 384(1) Segment 395(1) ||

|| ||

|| Signature 382(2) | Location 384(2) Segment 395(2) | :

|| |

N ) : ) I

I I n L] L] I I
||

: : Signature 382(N) Location 384(N) Segment 395(N) |

|| ||

| |1

|- —. - - - - - - e —— — — — J]




US 2023/0350863 Al

Nov. 2,2023 Sheet 4 of 20

Patent Application Publication

|
S RS A el At A N
! I |
_ | |
_ _
_ | |
_ _ | |
_ _ | I
I |
| NJOET _ 9J0EL GOEL vI0EL €)0EL Z)0EL LIOEL
eocoe | [
| 8poN | apoN _ 8poN 8poN 8poN 8poN 8poN _ o
| _ _ _ Janeg
_ | Juswabeuepy
_ _ I 001 _ Jaysn|n
_ _ | Boleyen !
_ _ | |
| | !
05T 4a1snj) N |
|95 270N - —_—— = e === —_ = |
> ~
7
_ Ve
~
~
N)OTT ce e (G vIoll £)0L1 A LoLL

weysAs jual)

waysAs jual)

waysAs juslo

waysAs el

weysAs a9

weysAs jualo

00¥ welsAg uoneosidnpaq 9|geeos




US 2023/0350863 Al

Nov. 2,2023 Sheet 5 of 20

Patent Application Publication

(NJOET
SpoN

£J0E1
SpoN

¢i0EL
SpoN

006G wa)sAg uonealdnpaq ajgejeos

G 614

(N)01S

abew| dnyoeg

(51015

ebew| dnyoeg

[C20]%

abew| dnyoeg

(€IS

abew| dnyoeg

A

{1ogt
9pON

(201s

obew| dnyoeg

(O]

abew| dnyoeg

A

A

A

A

A

T0ET
waysAs jualy




Patent Application Publication

Assign node to backup operation
605

'

Retrieve fingerprint list(s)
610

'

Select fingerprint to search for
615

'

Perform fingerprint search on
retrieved fingerprint list(s)
620

Found
selected fingerprint in
fingerprint list(s)?
825

Yes

v

Update reference
630

Nov. 2,2023 Sheet 6 of 20

US 2023/0350863 Al

Scalable Deduplicated Backup Process
600

|

Include fingerprint and data
segment in data object
680

More
fingerprints?
685

No

Perform fingerprint search
on assigned node
660

No—Pp

Found
selected fingerprint on
assigned node?
670

No—p»

Indicate reference
update failed
650

Yes

More
fingerprints?
640

Send data object
to assigned node
645




Patent Application Publication  Nov. 2, 2023 Sheet 7 of 20 US 2023/0350863 A1

Assigned Node Selection Process
700

Identify available node(s)
710

Determine node metrics for available node(s)
720

Select assigned node
using one or more of the node metrics
730

Fig. 7



Patent Application Publication  Nov. 2, 2023 Sheet 8 of 20 US 2023/0350863 A1

Fingerprint List Retrieval Process

800

Identify last full backup
810

Any
incremental backups?
820

Yes

'

Identify incremental backup(s)
830

l

Send request for location of fingerprint list(s) of
———| last full backup and any incremental backups to catalog node
840

l

Receive locations of fingerprint list(s) of
last full backup and any incremental backups
850

l

Retrieve fingerprint list(s) of last full backup
and any incremental backups
from locations identified
860

Fig. 8



Patent Application Publication

Determine location of data segment
910

l

Include location of data segment in
reference update message
920

Nov. 2,2023 Sheet 9 of 20

Reference Request Process
900

l

Include information identifying backup in
reference update message
925

l

Send reference update message
930

Received
update result message?
940

Yes

I

Indicate reference update
was not successful
960

Fig. 9

reference update successful?

Yes

'

Indicate reference update
was successful
970

US 2023/0350863 Al



Patent Application Publication

Reference Update Process
1000

Nov. 2, 2023 Sheet 10 of 20  US 2023/0350863 A1

Receive reference update request

1010

l

re

Retrieve location of data segment from

ference update message
1020

l

from

Retrieve information identifying backup

reference update message
1030

l

Add

reference for data segment
1040

refe

rence successfully added?

Yes

'

Send reference update
success message
1060

Fig. 10

1

Send reference update
failure message
1070




Patent Application Publication

Fingerprint Search Process
1100

No

Nov. 2, 2023 Sheet 11 of 20  US 2023/0350863 A1

Receive fingerprint search request
1110

l

Search local reference database for
fingerprint identified in
fingerprint search request
1120

Found
fingerprint?
1130

Send

1140

fingerprint search result message
indicating fingerprint was not found

A 4

Send
fingerprint search result message
indicating fingerprint was found
(optionally including information regarding same)
1150

Fig. 11



Patent Application Publication  Nov. 2, 2023 Sheet 12 of 20  US 2023/0350863 A1

Data Object Save Process
1200

Save fingerprint in data object
1210

Save data segment in data object
1220

Save
successful?
1230

=

Indicate failure in save process

l

Indicate fingerprint and data segment
successfully saved
1240

Fig. 12



Patent Application Publication

Data Object Send Process
1300

Nov. 2, 2023 Sheet 13 of 20

US 2023/0350863 Al

Close data object
1310

l

Send data object to assigned node
1320

>0

No

Storage
operation completed?
1330

Yes

Storage

l No

Indicate failure in store process
1360

operation successful?
1340

Yes

'

Indicate fingerprint and data segment
successfully stored
1350

Fig. 13



Patent Application Publication

Nov. 2, 2023 Sheet 14 of 20  US 2023/0350863 A1

Assigned Node Data Object Storage Process
1400

Receive data object
1405

!

Lock local resource
1410

:

Store data object
1415

!

Add local reference
1420

|

Unlock local resource
1425

Data object
stored successfully?
1430

No

|

Indicate data object
storage unsuccessful
1440

4—No

Fig. 14

v

Analyze stored data object
1450

Does
data object include
remote reference?
Yes 1460

No

'

Indicate data object
successfully stored |[4€—
1470

Select sub-data object
1475

Perform sub-data object (SDO)

processing on selected SDO —
1480
Stored
sub-data object(s)
successfully?

1485

Select

next SDO
Yes 1495
No

Yesj

sub-data objects?




Patent Application Publication

Nov. 2,2023 Sheet 15 of 20

Retrieve data object
1510

Assigned Node Sub-Data Object Storage Process

l

Determine
sub-data object information
1515

l

Generate sub-data object
1520

l

Identify node
1525

1500

identified the assigned node?

Yes

l

l

Send sub-data object to remote node

1550

Store sub-data object locally
(at assigned node)
1540

l

Receive status message
from remote node
1555

@)+

Fig. 15A

US 2023/0350863 Al




Patent Application Publication  Nov. 2, 2023 Sheet 16 of 20  US 2023/0350863 A1

Assigned Node Sub-Data Object Storage Process
1500

Stored
sub-data object

successfully?
1560
Yes
No
More
sub-data objects
to process?
1570
No
Yes
A 4
Indicate storage of sub-data object(s)
was successful
1585
A 4

Indicate storage of sub-data object
was unsuccessful
1585

Fig. 15B



Patent Application Publication

Remote Node Sub-Data Object Storage Process

1600

Nov. 2,2023 Sheet 17 of 20

US 2023/0350863 Al

Receive sub-data object

1610

l

Lock resource at remote node

1620

l

Add reference at remote node

1630

l

Unlock resource at remote node

1640

A 4

1670

Send message indicating
processing of sub-data object
on remote node was unsuccessful

Sub-data object
processed successfully?

1650

Yes

l

Send message indicating
successful processing of
sub-data object on remote node

1660

Fig. 16




Ll ‘B4

US 2023/0350863 Al

¢ioel Liogl
< apoN apoN
S
)
o0
o
D
2 144 Rl St 1 Studs At B[4
7)) [ood uopeolidnpaq o0 | | — — —ggJ— —+——- 100d uojjealjdnpa(] [e207
o . ot
& 001 1., Janag
~ Bojeren 0L~ P Juswabeuep
2 ez «l—— g1 oz 121813
M aseqeje( s0ualIajey [E20T] aseqejeq aousIaay [E207]
A A
/ /
\\ \\

TR 55

o RSN /7 Ggcll

TP PAAAAR

I B B Al

TOTT
waysAs Jualo

0071 wa)sAs uonealdnpaq ajqeless

Patent Application Publication



US 2023/0350863 Al

Nov. 2, 2023 Sheet 19 of 20

Patent Application Publication

zrel 8l .@..-ns
ysig leando
B—e 0681 0i8l
SI0MJON
[eondo
0¥8l
anlq ¥siqg [eond
0zsl g %siqg [eando
wayshs Iy
1oyeads 58T veT FA3:In ovar ¥zar
/A sng |1SOS 381 pexi4 pieoghay asnNop uaa10g Aejdsig
L L g A ¥ ¥
zear ggesl vGesl FeeT oot 4D 9281
0B8] olpny vdaH VaH anepau| abeio)g lajjoues pieogisy Jod |eusg Js)depy Aeidsig
& b A
. n ry 3
v ¥ ¥ ¥ v ¥ ¥ ¥
A 4 A A A A a v
. . sl
ZE8T 0esr sng
J9onuon g9sn Hod [euas ¥ ¥ ¥ k4
& A 78T CIE) 7787 vier
a0BLBIU| YJOMRN 1s)louen O/ Kowepy waiss 108$3204d |euaD
¥ ¥
8¢8l Ly8l
SALIQ 99N WSPON




US 2023/0350863 Al

Nov. 2, 2023 Sheet 20 of 20

Patent Application Publication

(NJO861

soIne(Q

0661
Rely

obe.o)g
E ]

0061

alnjoa}iyoly YJoMiaN

(1)0861

o o o| BVIASQ

061
olge4

NVS

(N)V0961

aolnag

(1)V096T

6L ‘b4
(N)90961
a%IAe(]
(1)90961
=Ll -Tg| _
dovel
FETVETS

soIne(Q

VYOv6l
Janieg

0c6l
juslIo

oL6l
juslio
0561
}omiaN
0cé6l
jusio




US 2023/0350863 Al

METHODS AND SYSTEMS FOR SCALABLE
DEDUPLICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application is a continuation of
U.S. patent application Ser. No. 16/698,288, filed Nov. 27,
2019, entitled “METHODS AND SYSTEMS FOR SCAL-
ABLE DEDUPLICATION, having Y. Yang, X. Zhang, W.
Wu, C. Lei, Y. Wang, H. Wang and L. Wei as inventors,
which is incorporated by reference herein in its entirety and
for all purposes.

FIELD OF THE INVENTION

[0002] The present invention relates to deduplication sys-
tems and, more particularly, to methods and systems for
scalable deduplication.

BACKGROUND

[0003] An ever-increasing reliance on information and
computing systems that produce, process, distribute, and
maintain such information in its various forms, continues to
put great demands on techniques for providing data storage
and access to that data storage. Business organizations can
produce and retain large amounts of data. While data growth
is not new, the pace of data growth has become more rapid,
the location of data more dispersed, and linkages between
data sets more complex. Data deduplication offers business
organizations an opportunity to dramatically reduce an
amount of storage required for data backups and other forms
of data storage and to more efficiently communicate backup
data to one or more backup storages sites.

SUMMARY

[0004] The present disclosure describes methods, com-
puter program products, computer systems, and the like are
disclosed that provide for scalable deduplication in an
efficient and effective manner. Such methods, computer
program products, and computer systems include, in
response to receiving a request to perform a lookup opera-
tion, performing the lookup operation and, in response to the
signature not being found at the assigned node, forwarding
the request to a remote node. Further, in response to receiv-
ing an indication that the signature was not found at the
remote node, processing the subunit of data as a unique
subunit of data. The request is received at an assigned node
that is one of a plurality of nodes of a cluster. The lookup
operation queries a reference database, stored at the assigned
node and comprising a first plurality of references that refer
to a first plurality of subunits of data, for a signature. The
signature is associated with a subunit of data of a backup
image, the backup image comprises the first plurality of
subunits of data stored at the assigned node and a second
plurality of subunits of data stored at a remote node, and the
remote node is a one of the plurality of nodes, other than the
assigned node. The forwarding the request to the remote
node causes the remote node to perform another lookup
operation that queries another reference database, stored at
the remote node and comprising a second plurality of
references that refer to the second plurality of subunits of
data, for the signature.

[0005] In certain such embodiments, the backup image
comprises a plurality of subunits of data, the plurality of

Nov. 2, 2023

subunits of data comprise the first plurality of subunits of
data and the second plurality of subunits of data, each
subunit of data of the plurality of subunits of data is a data
segment of the backup image, each reference of the first
plurality of references comprises a fingerprint of a corre-
sponding one of the first plurality of subunits of data, and
each reference of the second plurality of references com-
prises a fingerprint of a corresponding one of the second
plurality of subunits of data. In certain such embodiments,
such methods, computer program products, and computer
systems can include retrieving a signature list, where the
lookup operation and the another lookup operation are
performed using the signature list.

[0006] In another embodiment, such methods, computer
program products, and computer systems can include
assigning a node of the plurality of nodes to be the assigned
node, where the node is assigned as part of a backup
operation and the backup image is produced by the backup
operation. In certain such embodiments, the assigned node is
assigned based, at least in part, on at least one of a data
affinity metric, a load of the assigned node, or an available
storage space of the assigned node. In certain such embodi-
ments, such methods, computer program products, and
computer systems can include creating a data object com-
prising the unique subunit of data and sending the data
object to the assigned node. In certain such embodiments,
such methods, computer program products, and computer
systems can include receiving the data object at the assigned
node and storing the data object at the assigned node as part
of the backup operation.

[0007] In certain embodiments, such methods, computer
program products, and computer systems can include
retrieving a signature list, where the lookup operation and
the another lookup operation are performed using the sig-
nature list. In certain embodiments, such methods, computer
program products, and computer systems can include iden-
tifying a last full backup operation, identifying a location of
a signature list for the last full backup operation, retrieving
the signature list for the last full backup operation, and
determining whether one or more incremental backup opera-
tions were performed. For each incremental backup opera-
tion of the one or more incremental backup operations, the
methods, computer program products, and computer sys-
tems can include identifying the each incremental backup
operation, identifying a location of a signature list for the
each incremental backup operation, and retrieving the sig-
nature list for the each incremental backup operation. The
signature list for the last full backup operation and any of the
signature lists for the one or more incremental backup
operations can be provided as the signature list.

[0008] In certain embodiments, such methods, computer
program products, and computer systems can further
include, in response to the signature being found at the
assigned node or receipt of an indication that the signature
was found at the remote node, determining a location of the
subunit of data, creating a reference update package com-
prising the location and information identifying the backup
image, and sending the reference update package. In certain
embodiments, such methods, computer program products,
and computer systems can include receiving the reference
update package, retrieving the location and information
identifying the backup image from the reference update
package, and adding a reference for the subunit of data using
the location and information identifying the backup image.



US 2023/0350863 Al

[0009] The foregoing is a summary and thus contains, by
necessity, simplifications, generalizations, and omissions of
detail; consequently those skilled in the art will appreciate
that the summary is illustrative only and is not intended to
be in any way limiting. Other aspects, inventive features,
and advantages of the present disclosure, as defined solely
by the claims, will become apparent in the non-limiting
detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments of methods and systems such as
those disclosed herein may be better understood, and its
numerous objects, features, and advantages made apparent
to those skilled in the art by referencing the accompanying
drawings.

[0011] FIG. 1 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
according to one embodiment.

[0012] FIG. 2 is a simplified block diagram illustrating an
example of certain components of a scalable deduplication
system in greater detail, according to one embodiment.
[0013] FIG. 3 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
in which data and metadata stores are depicted in greater
detail, according to one embodiment.

[0014] FIG. 4 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
in which certain communicative couplings and changes
therein are depicted, according to one embodiment.

[0015] FIG. 5 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
in which the relationship between various backups and the
nodes on which those backups are stored is depicted, accord-
ing to one embodiment.

[0016] FIG. 6 is a flow diagram illustrating an example of
a scalable deduplicated backup process implemented in a
scalable deduplication system, according to one embodi-
ment.

[0017] FIG. 7 is a flow diagram illustrating an example of
a assigned node selection process implemented in a scalable
deduplication system, according to one embodiment.
[0018] FIG. 8 is a flow diagram illustrating an example of
a fingerprint list retrieval process implemented in a scalable
deduplication system, according to one embodiment.
[0019] FIG. 9 is a flow diagram illustrating an example of
a reference request process implemented in a scalable dedu-
plication system, according to one embodiment.

[0020] FIG. 10 is a flow diagram illustrating an example
of a reference update process implemented in a scalable
deduplication system, according to one embodiment.
[0021] FIG. 11 is a flow diagram illustrating an example of
a fingerprint search process implemented in a scalable
deduplication system, according to one embodiment.
[0022] FIG. 12 is a flow diagram illustrating an example
of a data object save process implemented in a scalable
deduplication system, according to one embodiment.
[0023] FIG. 13 is a flow diagram illustrating an example
of a data object send process implemented in a scalable
deduplication system, according to one embodiment.
[0024] FIG. 14 is a flow diagram illustrating an example
of a assigned node data object storage process implemented
in a scalable deduplication system, according to one
embodiment.

Nov. 2, 2023

[0025] FIGS. 15A and 15B illustrate a flow diagram
depicting an example of a assigned node sub-data object
storage process implemented in a scalable deduplication
system, according to one embodiment.

[0026] FIG. 16 is a flow diagram illustrating an example
of a remote node sub-data object storage process imple-
mented in a scalable deduplication system, according to one
embodiment.

[0027] FIG. 17 is a simplified block diagram illustrating
an example of components of a scalable backup deduplica-
tion system and its operation, according to one embodiment.
[0028] FIG. 18 is a simplified block diagram illustrating
components of an example computer system suitable for
implementing embodiments of the present disclosure,
according to one embodiment.

[0029] FIG. 19 is a simplified block diagram illustrating
components of an example computer system suitable for
implementing embodiments of the present disclosure,
according to one embodiment.

[0030] While the present disclosure is susceptible to vari-
ous modifications and alternative forms, specific embodi-
ments of the present disclosure are provided as examples in
the drawings and detailed description. It should be under-
stood that the drawings and detailed description are not
intended to limit the present disclosure to the particular form
disclosed. Instead, the intention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the present disclosure as defined by the appended
claims.

DETAILED DESCRIPTION

[0031] The following is intended to provide a detailed
description and examples of the methods and systems of the
disclosure, and should not be taken to be limiting of any
inventions described herein. Rather, any number of varia-
tions may fall within the scope of the disclosure, and as
defined in the claims following the description.

[0032] While the methods and systems described herein
are susceptible to various modifications and alternative
forms, specific embodiments are provided as examples in
the drawings and detailed description. It should be under-
stood that the drawings and detailed description are not
intended to limit such disclosure to the particular form
disclosed. Instead, the intention is to cover all modifications,
equivalents and alternatives falling within the spirit and
scope of the appended claims.

INTRODUCTION

[0033] Methods and systems such as those described
herein provide for improved performance in deduplication
systems and, more particularly, for scalability in dedupli-
cated backup systems. Such methods and systems facilitate
such scalability by implementing a shared-nothing architec-
ture that employs a single instance of the catalog that
maintains information regarding one or more backup opera-
tions that have been performed using the nodes of the given
cluster (though that catalog can, in certain embodiments, be
distributed), and localizes the storage of deduplicated data
and its associated metadata. In so doing, such an architecture
creates a local deduplication pool (and a local reference
database therefor) on a per-node basis. Such an architecture
avoids a number of problems that would otherwise result in
a distributed storage architecture.



US 2023/0350863 Al

[0034] In the aforementioned distributed storage architec-
ture, data would be stored on multiple nodes, as would
metadata therefor. In such a scenario, finding a given portion
of data is more complicated, as is the potential for data and
its metadata to become separated. The global signature
indexing (whether centralized or distributed) comes with
high maintenance costs and significantly increased imple-
mentation and operational complexity. Further, such systems
can suffer from a lack of data locality, resulting in an
inability to provide sufficient throughput and failing to scale
with the number of nodes in the system.

[0035] Further, in the case in which deduplication is
limited to one node, operations such as adding a node,
load-balancing, and node failover/failback also produces a
number of problems. For example, such operations, where
deduplication is limited to a single node, result in a signifi-
cant drop in the deduplication ratio, and inability to properly
manage resource usage on the node, and abnormal increases
in the backup window (owing to the inability to dynamically
adjust to changes such as those just mentioned).

[0036] In implementing methods and systems such as
those described herein, such architectures provide a number
of advantages. For example, if a new node is added in such
an architecture, certain data sources need only be redirected
to the new assigned node, which is helpful with respect to
load-balancing of computational and storage resources.
Similarly, if one node experiences a heavy workload, one or
more backup operations can be moved from that node to
another of the nodes in the cluster. Further still if the given
assigned node becomes full, the remainder of the data/
metadata from an ongoing backup can be forwarded to
another of the cluster’s nodes. And in case of node failover/
failback, deduplicated data and its metadata can simply be
stored on another of the nodes of the cluster.

[0037] This can be accomplished, for example, by creating
a local deduplication pool and associated local reference
database on a per-node basis, thereby avoiding an increase
in the memory requirements of any given node. In so doing,
a data source’s backup image is allowed to reference data on
more than one node. Such implementations also maintain a
desirable deduplication ratio by allowing a given backup
operation to be moved from one node to another (or begun
on a first assigned node, and continued on a second). Such
support also provides the ability to smoothly transition
backup operations from one node to another, which results
in a reduction in backup window fluctuation. Further, by
facilitating any node of a given cluster to be made the
assigned node for a given backup operation, the fungibility
of nodes in such a shared-nothing architecture reduces the
architecture’s complexity, as does the need to perform
signature look up on only a single node. This also allows for
subsequent backup images from the same data source to be
stored on the same node, thereby providing data affinity and
improving resource usage. Further still a load/space balance
algorithm implemented in such an architecture is able to
enjoy more flexibility by virtue of the aforementioned
fungibility of nodes in the ability for a data source to store
backup images at any one or a combination of such nodes.
[0038] Methods and systems such as those described
herein are thus able to address a variety of situations. Such
situations include node addition, load-balancing, node-full
conditions, and node failover/failback handling. As noted,
nodes can be added to or removed from a given cluster
essentially at will, under the management of a cluster

Nov. 2, 2023

manager, such as a cluster management server. Such a
cluster management server can also provide load-balancing
in an on-demand fashion. Nodes implemented according to
such methods and systems are able to hand over data/
metadata from an ongoing backup to another of the nodes in
the cluster. The cluster management server can also handle
failover and failback of the cluster’s nodes.

[0039] Such methods and systems also provide for error
handling. In the case of a failure or crash of an assigned node
or a remote node (nodes of the cluster that are not presently
the assigned node for the given backup operation), an
architecture according to embodiments such as those
described herein is able to handle such scenarios in the
manner of a failed backup operation. In the case of the
failure of an assigned node or a remote node, any partially
added reference information that is been recorded would be
removed. Further, in the case of the failure of an assigned
node, the data object sent by a given data source (e.g., a
client system) is not recorded in the catalog, and so there is
an overall reference check. Any reference and data object
that has no related catalog entries would be treated as
garbage, and so would be subject to garbage collection on a
periodic basis. As will be appreciated in light of present
disclosure, such error scenarios are infrequent, and thus the
performance of such error handling is acceptable.

[0040] In addition to the aforementioned advantages,
architectures according to embodiments such as those
described herein provide a number of other benefits. Given
the shared-nothing architecture the implementation of local
reference databases and local deduplication pools provide,
no cross-node data management is needed, and the perfor-
mance of such architectures scales with an increase in the
number of nodes employed. Such a per-node approach also
means that the management of the data/metadata in question
is simplified. As noted, this also means that signature look up
is limited to a single node, which provides both improved
performance and simpler operation, and means that nodes
can be tracked on a per-backup source basis. The data
sources can thus easily build client-side signature lists for
such look up. Such architectures also simplify the reference
and write operations from the client-side perspective
because such client systems need only communicate with a
single node in order to perform signature look up and data
object/reference write (with the assigned node simply del-
egating any referencing and writing to remote nodes, if
needed).

Example Architectures Providing Scalable Deduplication

[0041] FIG. 1 is a simplified block diagram illustrating
components of an example scalable deduplication system
(depicted in FIG. 1 as a scalable deduplication system 100),
in which methods and systems of the present disclosure can
be implemented. Deduplication system 100 includes a net-
work 105 that communicatively couples one or more client
systems 110(1)-(N) (collectively, client systems 110), one or
more storage nodes (or more simply, nodes; depicted in FIG.
1 as nodes 130(1)-(N), and referred to collectively as nodes
130), and a cluster management server 140. As depicted in
FIG. 1, cluster management server 140 provides cluster
management functionality for a cluster 150 that includes one
or more of nodes 130. Cluster management server 140 also
supports operations associated with certain embodiments by
way of communication with nodes 130, and in particular,
one or more of nodes 130 that support a catalog according



US 2023/0350863 Al

to such embodiments (e.g., depicted in FIG. 1 as a catalog
160). Further, cluster management server 140 not only
manages failover operations, failback operations, and the
like, cluster management server 140 monitors the cluster for
status of its nodes and changes thereto (e.g., the addition of
nodes, the removal of nodes, and the like). Cluster manage-
ment server 140 is also responsible for choosing the next
assigned node, using an algorithm and/or certain metrics to
make such determinations.

[0042] While catalog 160 is depicted as being maintained
at a single node (node 130(1)), which simplifies the opera-
tion of such embodiments, such an arrangement need not
strictly be the case (e.g., catalog 160 might, in certain
embodiments, be split among two or more of nodes 130).
Further, while catalog 160 is depicted as being maintained at
node 130(1), such an arrangement need also not be the case,
and so, catalog 160 could be maintained at any of nodes 130.
In supporting such operations and arrangements, cluster
management server 140 provides support for a scalable
backup deduplication architecture according to methods and
systems such as those described herein, the features and
advantages of which are discussed subsequently.

[0043] It will be noted that the variable identifiers such as
those used herein (e.g., “N™) are used to more simply
designate the final element (e.g., client system 110(N) or
nodes 130(1)-(N)) of a series of related or similar elements
(e.g., client systems or nodes). The repeated use of such
variable identifiers is not meant to imply a correlation
between the sizes of such series of elements, although such
correlation may exist. The use of such variable identifiers
does not require that each series of elements has the same
number of elements as another series delimited by the same
variable identifier (i.e., there need be no correlation between
the number of client systems and the number of nodes, nor
is such correlation to be implied). Rather, in each instance of
use, the variable identified may hold the same or a different
value than other instances of the same variable identifier.

[0044] As noted, cluster management server 140 is com-
municatively coupled to client systems 110, and nodes 130
of cluster 150, via network 105. Cluster management server
140 can include one or more physical servers configured to
perform a variety of tasks related to the management of
cluster 150, and the implementation of backup and dedupli-
cation services for scalable deduplication system 100, such
as managing a full or incremental backup for one of client
systems 130. In the system illustrated in FIG. 1, cluster
management server 140 is further configured to communi-
cate with the nodes of one or more clusters under manage-
ment (e.g., nodes 130 of cluster 150) for purposes of storing
full or incremental backup images from client systems 110
in resources controlled by cluster management server 140.
Such communication can be via network 105 or via a direct
link between deduplication storage server 140 and nodes
130. Information that can be provided by deduplication
storage server 140 can include a unique identification asso-
ciated with each data stream provided by one of client
systems 110 to one or more of nodes 130. Cluster manage-
ment server 140 can also provide sequence number identi-
fication to identify sequential data transmitted in each
uniquely-identified data stream, and can also provide iden-
tifying information for a given backup (although such tasks
can also be managed by client systems 110 themselves).
Nodes 130 can then use such information to associate

Nov. 2, 2023

received data streams from client systems 110 in accord with
various embodiments, as further discussed below.

[0045] Backup services can be implemented in dedupli-
cation system 100 as a client-server application, with a
server component (e.g., supported by cluster management
server 140) and a client component (e.g., supported by each
of client systems 110) of the client-server backup applica-
tion. A server component can be configured to communicate
with a client component during a backup process. Certain
functions of the backup services can be performed by the
client and server components, where the functions may be
divided between the two components, or may be performed
completely by one component or the other, depending on the
implementation of the backup application. For example,
cluster management server 140 can be configured to perform
tasks related to managing backup operations, including
communicating with client systems 110 to initiate backup
tasks therefor, maintaining and managing information
regarding the deduplicated backup data maintained at one or
more of nodes 130, and other information regarding backups
of client systems 110, as well as managing or tracking
resources storing backup images for client systems 110 at
one or more of notes 130. It will be appreciated that nodes
130 can include a number of storage units, logical and/or
physical, and such alternatives and modifications are
intended to come within the scope of this disclosure.

[0046] One or more of client systems 110 (also referred to
herein as client devices) can be implemented using, for
example, a desktop computer, a laptop computer, a work-
station, a server, or the like. An example of such computing
devices is described subsequently, in connection with FIG.
18. One or more of client systems 110 can be configured to
communicate with cluster management server 140 via net-
work 105, as noted. An example of network 105, which can
be used by client systems 110 to access client management
server 140 and nodes 130, is a local area network (LAN)
utilizing Ethernet, IEEE 802.11x, or some other communi-
cations protocol. Network 105 can also include a wide area
network (WAN) and/or a public network such as the Inter-
net, for example.

[0047] FIG. 1 also illustrates client system 110(1) as
including user data 170 and metadata 180. Each of client
systems 110 can store such information, and each of client
systems 110 can store different user data 170 and metadata
180 in storage local to the given one of client systems 110.
As will be appreciated in light of the present disclosure, in
fact, a wide variety of data, metadata, executable programs,
and other such information and software accessible by each
of client systems 110 can be the subject of such backup
operations.

[0048] User data 170 can include various data that is
generated and/or consumed by applications, users, and other
entities associated with client system 110(1). Moreover, user
data 170, in the embodiment shown (as well as others), can
also include executable files, such as those used to imple-
ment applications and operating systems, as well as files that
are used or generated by such executable files. User data 170
can include files generated by user applications (e.g., word
processing programs, email programs, graphics programs, a
database application, or the like) executing on client system
110(1). Some of user data 170 may also be transferred to
backup server 130 and/or deduplication storage server 140
via a network 105 to be included in a deduplicated data store.



US 2023/0350863 Al

Each of client systems 110 can send different user data 170
to backup server 130 and/or deduplication storage server
140.

[0049] Metadata 180 can include, for example, informa-
tion regarding user data 170. Metadata 180 can be generated
by client system 110(1), such as during a backup process.
Upon an entity (e.g., an application or human user) request-
ing that client system 110(1) add all or part of user data 170
to a deduplicated data store (e.g., as part of a regularly
scheduled full or partial backup), client system 110(1) reads
user data 170 and generates metadata 180 regarding user
data 170, such as one or more identifiers (e.g., signatures,
hashes, fingerprints, or other unique identifiers) that identify
different portions of user data 170. Client system 110 can
process and communicate metadata 180 as a list (e.g., a list
of signatures) to one or more of nodes 130 and/or dedupli-
cation storage server 140. Metadata 180 can be used by
client system 110(1), along with information received from
one or more of nodes 130 and/or deduplication storage
server 140, to determine whether a portion of user data 170
is a duplicate (and so need only be referenced), or is unique
(not duplicative of the data already stored at one of nodes
130), and so, should be sent to the assigned node of notes
130, and added to the reference database and deduplication
pool thereof, as further discussed below.

[0050] In the architecture depicted in FIG. 1, nodes 130
variously store deduplicated data (e.g., in a local dedupli-
cated data store (that is, local to each of nodes 130)), and its
associated metadata (e.g., in a local reference database (that
is, local to each of nodes 130) and/or as metadata in a
metadata store of a container in which the aforementioned
data is stored). By breaking user data 170 into some number
of pieces (subunits of data) and deduplicating those pieces of
data when performing a backup operation on user data 170,
the components of scalable deduplication system 100 are
able to transfer and store the data of the resulting backup
image more efficiently, as the result of identifying unique
ones of such subunits of data (or conversely, duplicate ones
of such subunits of data).

[0051] For example, deduplication storage server 140 can
manage deduplication services such as may be provided by
a combination of the functionalities of client systems 110
and nodes 130 that eliminate duplicate data content in a
backup context. As noted, deduplication services help
reduce the amount of storage needed to store backup images
of enterprise data (e.g., user data 170) and the resources
consumed in communicating such backup images by pro-
viding a mechanism for storing a piece of information (e.g.,
a subunit of data) only once. Thus, in a backup context, if a
piece of information is stored in multiple locations within an
enterprise’s computing systems (e.g., in multiple locations at
a given one of client systems 110 and/or at multiple ones of
client systems 110), that piece of information will only be
stored once in a deduplicated backup image. Also, if the
piece of information does not change between a first backup
and a second backup, then that piece of information need not
(and in certain embodiments, will not) be stored during the
second backup, so long as that piece of information contin-
ues to be stored in the deduplicated backup image stored at
one or more of notes 130. Data deduplication can also be
employed outside of the backup context, thereby reducing
the amount of active storage occupied by files containing
duplicate data (e.g., in their entirety, or in part).

Nov. 2, 2023

[0052] As will be appreciated in light of the present
disclosure, deduplication services can also be implemented
in a scalable deduplication system 100 as a client-server
application (not shown), with a server component (e.g.,
residing on deduplication storage server 140) and a client
component (e.g., residing on one or more of client systems
110) of the client-server application. For example, during a
backup process for storing a backup of user data 170 in the
local deduplicated data stores of one or more of nodes 130,
a client component of the deduplication services can be
configured to generate metadata 180 regarding user data
170, such as one or more identifiers, or signatures, that can
identify different portions of user data 170, and to commu-
nicate metadata 180 to a server component. Certain func-
tions of the deduplication services can be performed by the
client and server components, where the functions may be
divided between the two components, or may be performed
completely by one component or the other, depending on the
implementation of the backup application.

[0053] It will be appreciated that each of the foregoing
components of scalable deduplication system 100, as well as
alternatives and modifications thereto, are discussed in fur-
ther detail below. In this regard, it will be appreciated that
network storage can be implemented by any type of com-
puter-readable storage medium, including, but not limited
to, internal or external hard disk drives (HDD), optical
drives (e.g., CD-R, CD-RW, DVD-R, DVD-RW, and the
like), flash memory drives (e.g., USB memory sticks and the
like), tape drives, removable storage in a robot or standalone
drive, and the like. Alternatively, it will also be appreciated
that, in light of the present disclosure, scalable deduplication
system 100 and network 105 can include other components
such as routers, firewalls and the like that are not germane
to the discussion of the present disclosure and will not be
discussed further herein. It will also be appreciated that other
configurations are possible.

[0054] FIG. 2 is a simplified block diagram illustrating an
example of certain components of a scalable deduplication
system in greater detail, according to one embodiment, and
so depicts a scalable deduplication system 200. As before,
scalable deduplication system 200 includes a number of
client systems (client systems 110), a cluster management
server (cluster management server 140), and a number of
nodes (nodes 130), communicatively coupled to one another
by way of a network (network 105). As noted earlier, cluster
management server 140 can provide functionality including
cluster management (e.g., as by way of a cluster manager
210) and deduplication management (e.g., as by way of a
deduplication manager 215). It is to be understood that while
cluster manager 210 and deduplication manager 215 are
depicted in FIG. 2 as being separate from one another, their
functionality can be integrated.

[0055] Also depicted in FIG. 2 is catalog 160, which is
illustrated as being maintained at node 130(1). While thus
illustrated, it is to be appreciated that catalog 160 can be
distributed among more than one of notes 130, and can be
distributed among storage units of node 130(1). It is to be
understood, however, that scalable deduplication system 200
typically maintains only a single instance of catalog 160 as
the active catalog for the given cluster, at any one time
(although, allowing for other instances of catalog 160 to
exist as inactive instance, for the given cluster, which are
therefore not available to the backup processes of scalable
deduplication system 200).



US 2023/0350863 Al

[0056] Nodes 130 can maintain information such as a local
reference database (e.g., examples of which are depicted in
FIG. 2 as local reference databases 220(1)-(N), which are
referred to in the aggregate as local reference databases 220)
and a local deduplication pool (e.g., examples of which are
depicted in FIG. 2 as local deduplication pools 225(1)-(N),
which are referred to in the aggregate as local deduplication
pools 225). Local reference databases 220 include informa-
tion such as, for example, information identifying the con-
tainers in the local deduplication pool, information identi-
fying the backup to which a given subunit of data (e.g., data
segment) belongs, a fingerprint or other signature for that
subunit of data, the location of that subunit of data in the
corresponding one of local deduplication pools 225, and
other such useful information. Further, a node’s local ref-
erence database can not only reference data segments stored
in that node’s local deduplication pool, but can also refer-
ence data segments stored in other nodes’ local deduplica-
tion pools (or the containers stored therein, e.g., as by way
of container identifiers and note identifiers). Local dedupli-
cation pools 225 include the aforementioned subunits of data
(data segments), as well as certain metadata associated
therewith. In certain embodiments, local deduplication pools
can be maintained in memory at their respective ones of
nodes 130 (in order to provide improved performance), and
subsequently persisted to persistent storage, while local
reference databases 220 are maintained on such persistent
storage.

[0057] In this regard, an example with further detail of
local reference databases 220 and local deduplication pools
225 is presented in connection with node 130(N). As with
others of notes 130, node 130(N) includes a local reference
database (a local reference database 220(N)) and a local
deduplication pool (a local deduplication pool 225(N)).
Local reference database 220(N) can include, for example,
references to the data segments stored in local deduplication
pool 225(N). Local deduplication pool 225(N), in turn, can
include a number of containers (e.g., depicted in FIG. 1 as
containers 230(1)-(N), referred to in the aggregate as con-
tainers 230), for example. Containers 230 each include a
metadata store (e.g., an example of which is depicted in FIG.
1 as a metadata store 240) and a deduplicated data store (e.g.,
an example of which is depicted in FIG. 1 as a deduplicated
data store 250). Examples of such metadata stores and
deduplicated data stores are described in further detail in
connection with FIG. 3, subsequently. Node 130(N) main-
tains local reference database 220(N) and local deduplica-
tion pool 225(N) to maintain the deduplicated data for which
node 130(N) is responsible. In so doing, the architecture of
scalable deduplication system 200 implements a share-
nothing architecture, in which one or more of nodes 130 can
be replaced by other such nodes (e.g., as by moving a given
node’s local reference database and local deduplication pool
to the other node), node failure can be efficiently and
effectively addressed, and other such advantages enjoyed.

[0058] As will be appreciated in light of the present
disclosure, while a deduplication pool such as local dedu-
plication pool 225(N) can maintain deduplicated data seg-
ments directly (e.g., as a storage area in which deduplicated
data can be stored, and so storing only such deduplicated
data segments, with all metadata residing, for example, in a
local reference database such as local reference database
220(N)), local deduplication pool 225(N) is depicted in FIG.
2 as including a number of containers (depicted in FIG. 2 as

Nov. 2, 2023

containers 230(1)-(N), which are referred to in the aggregate
as containers 230). An example of the contents of such
containers (which are to be understood as logical in nature)
is container 230(1), which includes metadata store 240 and
deduplicated data store 250. In the implementation of con-
tainers 230 illustrated in FIG. 2, the deduplicated data
segments stored in deduplicated data store 250 are referred
to by information (e.g., fingerprints or other signature infor-
mation) stored in metadata store 240, along with information
about the portions of backup images stored in the corre-
sponding local deduplication pool (e.g., such as that
described previously). In such an implementation, local
reference database 220(N) can include information (e.g.,
fingerprints or other signature information, container infor-
mation, data segment offsets, and/or other information) that
allows one or more of client systems 110 to determine
whether a given deduplicated data segment is resident on the
note in question (e.g., node 130(N)), while information in
metadata store 240 allows the client system in question to
find the given deduplicated data segment (e.g., in the case of
the client system performing a restoration operation) or
update a reference thereto (e.g., in the case of the client
system performing a backup operation). An example of this
latter implementation is also described in further detail in
connection with FIG. 3, subsequently.

[0059] In light of the foregoing, it will be appreciated that
various metadata maintained by each of nodes 130 can be
stored in that node’s local reference database, allowing
client systems 110 to determine if portions of a backup
image (e.g., portions of user data 170) are non-duplicative of
portions already stored in the corresponding local dedupli-
cation pool. Once the client system in question determines
that a portion of user data 170 is not duplicative of the data
already stored in the assigned node’s local deduplication
pool (and thus should be added thereto), the client system
can store that portion of user data 170 and its corresponding
identifier (fingerprint or other signature) for the portion in a
data object (e.g., a container, such as those discussed sub-
sequently), and subsequently send the resulting data object
to the assigned node. Examples of processes that can support
such operations are described subsequently in connection
with FIGS. 6-16.

[0060] On the assigned node, in certain embodiments
employing containers, once a given container is full of
unique portions, the entire container can be written to a
location in the local deduplication pool. The container
written to the local deduplication pool can also include a
local container index, which indicates a local location of
each unique portion stored within the container (or other
such storage construct). This information can be maintained,
for example, in the assigned node’s local reference database.
The local container index can contain a signature associated
with each unique segment stored in the container, or alter-
natively can contain a shortened version of the signature of
each unique segment stored in the container. An assigned
node (e.g., node 130(N) in the present example) can store a
reference to the container that identifies the container (e.g.,
a container reference such as a container identifier) in its
local reference database. The signature of a unique portion
can also be associated with the location of the unique portion
in an entry of its container’s metadata store. Thus, an
identification of a portion’s location, or a container identi-
fier, can be found using the signature of the portion as a key
in the metadata maintained at the assigned node. The loca-



US 2023/0350863 Al

tion of the portion within the container identified by the
container identifier can be found in the local container index
for the container (local reference database) by using at least
a portion of the signature as a key in that index, for example.
[0061] Multiple backup images can be stored by nodes
130. For example, a first backup image can be captured from
user data 170 and can be stored in the local deduplication
pools of one or more of nodes 130. A subsequent backup
image captured from user data 170 can contain duplicate
portions that are identical to portions of the first backup
image already stored at nodes 130 and can contain unique
portions that are different from portions of the first backup
image (and so, portions that correspond to changes made to
user data 170). The unique portions of the subsequent
backup image can be sent to notes 130, while the duplicate
portions are not sent (since the duplicate portions are iden-
tical to instances of portions already stored by nodes 130).
Since only single instances of portions of a backup image are
stored at nodes 130, the local reference database and/or
metadata stores at each node can provide a mapping of a
backup image to the various non-duplicative portions that
compose the backup image, which are stored in their respec-
tive local deduplication pools. Thus, a single backup image
can be associated with multiple portions stored throughout
scalable deduplication system 200, and multiple backup
images can be associated with a single portion (e.g., the
multiple backup images share the single portion).

[0062] FIG. 3 is a simplified block diagram illustrating an
example of components of a node in a scalable deduplication
system, in which data and metadata stores are depicted in
greater detail, according to one embodiment. Thus, FIG. 3
depicts a scalable deduplication system 300 (portion of a
scalable deduplication system such as scalable deduplication
system 200), and more particularly, a node 310 therein (e.g.,
in the manner of node 130(N) depicted in FIG. 2). In this
more detailed depiction, node 310 can be seen to include a
container management module 320, a data interface module
330, and a metadata interface module 340. In the manner of
node 130(N), node 310 also maintains a local reference
database 350 (in the manner of local reference databases 220
of FIG. 2) and a local deduplication pool 360 (in the manner
of local deduplication pools 225 of FIG. 2). Local dedupli-
cation pool 360 includes one or more containers (e.g., an
example of which is depicted in FIG. 3 as container 370).
[0063] In turn, container 370 includes a metadata store (in
the manner of metadata store 240 of FIG. 2), which includes
a number of signatures (e.g., fingerprints; depicted in FIG. 3
as signatures 382(1)-(N), and referred to in the aggregate as
signatures 32) and associated locations (depicted in FIG. 3
as locations 384(1)-(N), and referred to in the aggregate as
locations 384) of their associated data segments, which are
depicted as being stored in a deduplicated data store 390 as
segments 395(1)-(N) (and referred to in the aggregate as
segment 395).

[0064] In order to perform data deduplication, a dedupli-
cation system needs to be able to identify redundant copies
of'data (e.g., files, data segments, or other units of data). One
way that can provide a reasonable likelihood of finding
duplicated instances of data is to divide file data into
segments (e.g., data segments, such as consistently-sized
segments, although techniques for using variable-sized seg-
ments exist), which are analyzed for duplication in the
deduplicated data store. Thus, if only a portion of a large file
is modified, then only the segment of data corresponding to

Nov. 2, 2023

that portion of the file need be stored (e.g., as one of
segments 395 deduplicated data store 390) and the remain-
der of the file segments need not be stored. In embodiments
such as those described herein, a backup image file can be
divided into a plurality of chunks, and each chunk can be
divided into a plurality of fixed-size segments, for example.
Thus, a signature can be searched for in signatures 382, and
if a match is found, the location of the corresponding one of
segment 395 can be determined using the corresponding one
of locations 384. In certain embodiments, such searching is
performed by one of client systems 110 by such client
system sending a request for the requisite metadata (e.g.,
information from local reference database 350 and/or meta-
data from the metadata stores of the relevant ones of the
containers in question (e.g., metadata store 380)), as is
discussed subsequently.

[0065] That being the case, rather than comparing a seg-
ment itself to each segment stored in deduplication data
store (which can be enormously time- and processing-
prohibitive), detection of duplicative data is usually per-
formed by comparing smaller data signatures of each data
segment. Client systems 110 can thus use a signature such as
signatures 382 to determine whether a given segment is
already stored in deduplicated data store 390. Each such
signature can be a checksum or hash value that is calculated
based on data within the data segment. In many embodi-
ments, signatures such as fingerprints can be generated in a
manner that produces the same identifier for identical items
of data (e.g., using a cryptographically strong, collision
resistant hash function), while also producing different iden-
tifiers for non-identical items of data. Regardless of which
particular technique is used to generate such signatures, the
same signature-generation technique will typically be imple-
mented by all deduplication performed by client systems
110, although techniques exist to allow for the use of
multiple signature-generation techniques. In one example,
signature generation can be performed by deduplication
clients (e.g., client software modules running on client
systems 110 of FIG. 1). Signatures generated by client
software on client systems 110 can be used to search
signatures provided by nodes such as notes 130. In so doing,
such an approach avoids the need to communicate duplicate
data segments, and so is significantly less resource intensive
(given that the corresponding signatures are significantly
smaller, in terms of size, compared to the data segments they
represent). That being the case, client systems 110 need only
communicate the unique data segments (and their associated
signatures) to the appropriate one(s) of notes 130.

[0066] By comparing a newly generated signature of a
new segment to signatures 382 of segments 395, client
systems 110 can determine whether the new segment should
be added to deduplicated data store 390 (e.g., the new
segment is a unique segment). In particular, if a new
segment’s signature does not match any existing signatures
maintained by notes 130, the client system in question can
determine that the new segment is not already stored within
those segments. In response, a client system can add the new
segment and its signature to a data object that will be sent to
the assigned node of notes 130, upon completion of the
backup operation, as described subsequently herein. The
client system in question, one of client systems 110, can use
the metadata that client system maintains (e.g., metadata
180) to provide additional information to the assigned node
(e.g., identify each requested segment by its corresponding



US 2023/0350863 Al

signature, backup identifier, time and date, and/or other
information). Client systems 110 can transmit the requisite
segments, associated fingerprints, and other associated infor-
mation over network 105 via a data stream, for example.
[0067] As the requested segments are received, the
assigned node can write the segments into a fixed-size
container located in its memory, such as a cache. Once the
container is full, the entire container can be written to a
location in its local deduplication pool. As noted, this
operation can also be performed with respect to a container
(or, depending on the implementation, the data segments
stored therein) stored in a cloud deduplication pool such.
The assigned node can also use metadata generated thereby,
such as locations 384, that indicates the location of each
segment written to deduplicated data store 390. For
example, each unique segment can be associated with a
location (e.g., location 384(1)) of the particular segment,
such as a container identification (container ID) that contains
the unique segment (e.g., segment 395(1)).

[0068] FIG. 4 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
in which certain communicative couplings and changes
therein are depicted, according to one embodiment. A scal-
able deduplication system 400, in the manner of other such
scalable Deduplication systems, is thus depicted as includ-
ing a number of client systems (client systems 110), a
number of nodes (nodes 130, which are members of cluster
150), and a cluster management server (cluster management
server 140). As also depicted earlier, cluster management
server 140 has access to a catalog (catalog 160) maintained
atnode 130(1), and is communicatively coupled to notes 130
(and also, though not shown in FIG. 4, to client systems
110). Scalable deduplication system 400 is presented here to
illustrate concepts related to the addition of one or more
nodes to cluster 150, and removal of one or more nodes from
cluster 150.

[0069] In the former case, a node such as node 130(6)
might be added to cluster 150 in order to provide additional
deduplication pool resources to cluster 150. In such a case,
cluster management server 140 will manage the inclusion of
node 130(6) in cluster 150, and in so doing, provide such
added resources to client systems 110. Ones of client sys-
tems 110 (e.g., client systems 110(4) and 110(N), in the
example presented in FIG. 4, as indicated by the dashed lines
appearing therein) can avail themselves of such additional
resources in situations such as their present assigned node
becoming full, for purposes of load-balancing, and other
such advantageous purposes. The architecture of scalable
deduplication system 400 and other such implementations
are able to take advantage of their shared-nothing architec-
ture in such situations as a result of the fungibility of the
nodes employed therein.

[0070] In the latter case, a node such as node 130(6) might
be removed from cluster 150 as the result of, for example,
the need for maintenance of such a node’s hardware or
software. In such a case, cluster management server 140
again manages the removal of node 130(6) from cluster 150,
which can include moving or copying the node’s local
reference database and local deduplication pool to another of
nodes 130, thereby allowing node 130(6) to be gracefully
taken off-line and shutdown. Here again, access to node 130
(6) by client systems 110(4) and 110(N) is shifted to ones of
nodes 130 to which the local reference database and local
deduplication pool in question are moved (again, in the

Nov. 2, 2023

example presented in FIG. 4, as indicated by the dashed lines
appearing therein), where the movement of such information
could be, for example, to node 130(4) four client systems
110(4) and 110(N).

[0071] FIG. 5 is a simplified block diagram illustrating an
example of components of a scalable deduplication system,
in which the relationship between various backups and the
nodes on which those backups are stored is depicted, accord-
ing to one embodiment. Using certain components described
in connection with FIGS. 1-4, a scalable deduplication
system 500 is depicted, in which a number of backups are
made (thereby allowing a description of the processes
involved). That being the case, client system 130(1) gener-
ates a number of backup images (e.g., depicted in FIG. 5 as
backup images 510(1)-(N), which are referred to in the
aggregate as backup images 510), which are stored variously
among nodes 130(1)-(N). As will be appreciated in light of
the present disclosure, backup images 510 can be represen-
tative of full or incremental backup operations.

[0072] As is illustrated, backup images can be stored
entirely on a single node, split between nodes (e.g., in the
case in which the storage of a first assigned node becomes
full), or stored with other backup images at a given node. In
the situation depicted in FIG. 5, node 130(1) stores backup
image 510(1) in its entirety, and a portion of a backup image
510(2). The remainder of backup image 510(2) is stored at
node 130(2), along with backup images 510(3) and 510(4),
in their entirety. By contrast, backup image 510(5) is stored
alone and in its entirety at node 130(3), as is the case for
backup image 510(N) being stored at node 130(N).

Example Processes for Scalable Deduplication Systems

[0073] FIG. 6 is a flow diagram illustrating an example of
a scalable deduplicated backup process implemented in a
scalable deduplication system, according to one embodi-
ment. FIG. 6 thus depicts a scalable be duplicated backup
process 600, which begins with the assignment of an
assigned node to the backup operation to be performed
(605). An example of a process for assigning an assigned
node to a backup operation is provided in connection with
FIG. 7 and its description, subsequently.

[0074] Next, one or more fingerprint lists are retrieved
(610). For example, a fingerprint list corresponding to the
deduplicated data segments of the last full backup operation
may be retrieved. Additionally, one or more fingerprint lists
corresponding to the deduplicated data segments of one or
more incremental backup operations performed subsequent
to the last full backup operation may also be retrieved. An
example of a process for retrieving such fingerprint lists is
described in connection with FIG. 8, subsequently.

[0075] Having retrieved the requisite fingerprint list(s),
scalable deduplicated backup process 600 proceeds with the
selection of a fingerprint for the first (or next) data segment
that is to be searched for (615). Scalable deduplicated
backup process 600 then searches the fingerprint list(s) for
the selected fingerprint (620). A determination is then made
as to whether the selected fingerprint was found in the
fingerprint list(s) in question (625).

[0076] In the case in which the selected fingerprint is
found in one of the fingerprint lists, a process of updating a
reference to the (deduplicated) data segment, which is
already stored on the assigned node or one of the other
(remote) nodes, is performed (630). An example of a process
for updating such references is provided in connection with



US 2023/0350863 Al

FIGS. 9 and 10, and their associated descriptions, subse-
quently. Further, it is to be appreciated that, while nodes
other than the assigned node are among the nodes of the
cluster in question (e.g., nodes 130 of cluster 150), such
nodes are referred to herein as remote nodes, in order to
distinguish such remote nodes from the assigned node (the
node at which any data segments resulting from the current
backup operation, as well as any associated metadata (e.g.,
fingerprints) are stored).

[0077] A determination is then made as to whether the
reference update operation was successful (635). If the
reference update operation was successful, a determination
is then made as to whether further fingerprints remain to be
selected and searched for (640). If further fingerprints
remain to be searched, scalable deduplicated backup process
600 loops to the selection of the next fingerprint to be
searched for (615). Otherwise, if the fingerprints for the
backup operation have been searched, one or more data
objects (though typically, one data object) are sent to the
assigned node (645). Such a data object can be, for example,
a container such as one of containers 230 in FIG. 2. An
example of a process for sending a data object to an assigned
node is provided in connection with FIG. 13 and its asso-
ciated description, subsequently. Scalable deduplicated
backup process 600 then concludes.

[0078] Alternatively, in the case in which the reference
update operation was not successtul (635), an indication is
provided (e.g., such as to cluster management server 140),
indicating that the reference update operation has failed
(650). Scalable deduplicated backup process 600 then con-
cludes.

[0079] Returning to the determination as to whether the
selected fingerprint was found in the fingerprint lists in
question (625), if the selected fingerprint was not found in
those fingerprint lists, a fingerprint search process is per-
formed on the assigned node (660). An example of a process
for performing a fingerprint search process on the assigned
node is described in greater detail in connection with FIG.
11, subsequently.

[0080] A determination is then made as to whether the
selected fingerprint was found as a result of the search
performed on the assigned node (670). If the selected
fingerprint was found on the assigned node, the reference
update process noted earlier is performed (630). As before,
a determination as to the success of this reference update
operation is made (635). If the reference update operation
was successful, a determination is made as to whether
additional fingerprints remain to be searched (640), and
either scalable deduplicated backup process 600 loops to the
selection of the next fingerprint (615) or any data object
produced by scalable deduplicated backup process 600 is
sent to the assigned node (645) (with scalable deduplicated
backup process 600 then concluding).

[0081] Alternatively, if the selected fingerprint is not
found on the assigned node (670), scalable deduplicated
backup process 600 proceeds with the inclusion of the
selected fingerprint and the data object associated there with
in the data object noted earlier (680). As will be appreciated
in light of the present disclosure, such an instance reflects
that the data segment in question is unique (its fingerprint
having not been found), and so no copy thereof being stored
on the cluster’s nodes. An example of a process for including
fingerprints and their associated data segments in the data
object is described in connection with FIG. 12, subsequently.

Nov. 2, 2023

[0082] A determination is then made as to whether addi-
tional fingerprints remain to be searched (685). If further
fingerprints remain to be searched, scalable deduplicated
backup process 600 loops to the selection of the next
fingerprint to be searched for (615). Otherwise, if the
fingerprints for the backup operation have been searched,
one or more data objects (though typically, one data object)
that have been created are sent to the assigned node (645)
(by way of connector “A”). As noted, an example of a
process for sending a data object to an assigned node is
provided in connection with FIG. 13 and its associated
description, subsequently. Scalable deduplicated backup
process 600 then concludes.

[0083] FIG. 7 is a flow diagram illustrating an example of
a assigned node selection process implemented in a scalable
deduplication system, according to one embodiment. An
assigned node selection process 700 begins with the iden-
tification of one or more available nodes (e.g., one or more
of notes 130 available for selection as an assigned node)
(710). A determination is then made as to one or more
metrics (node metrics) available for use in selecting the
assigned node (720). Such metrics can include gathering
information with regard to the workload of each node
available for selection (and so selecting the node with the
lowest workload), selecting the node with the largest amount
of free space (which could be based, for example, on how
recently the node was added to the cluster), data affinity, the
capabilities of each node (e.g., computational performance,
network bandwidth supported, proximity (logical and/or
physical), age of backup information stored (increasing the
likelihood of duplicates), or the like), or other such factors.
The available node(s) and one or more node metrics having
been determined, and assigned node is selected from the
available nodes, using the one or more node metrics (730).
Assigned node selection process 700 then concludes.

[0084] FIG. 8 is a flow diagram illustrating an example of
a fingerprint list retrieval process implemented in a scalable
deduplication system, according to one embodiment. A
fingerprint list retrieval process 800 is thus depicted, and
begins with the identification of a last full backup of the data
in question (backup image) by the scalable backup dedupli-
cation system (810). A determination is then made as to
whether any incremental backups (backup images) have
been made subsequent to the last full backup (820). Such
might be the case, for example, in an architecture in which
changes made to the data are tracked subsequent to such full
backup. If one or more incremental backups exist, those
incremental backups are identified (830). Having identified
the last full backup and any incremental backups, fingerprint
list retrieval process 800 proceeds to sending a request for
the requisite fingerprint list(s) to the catalog node (840), the
catalog node being the one or more nodes of notes 130 at
which the catalog for the last full backup in any incremental
backups is stored. Information as to such catalog nodes can
be provided, for example, by a cluster management server
such as cluster management server 140.

[0085] In return (e.g., as from the aforementioned cluster
management server), the locations of the fingerprint lists for
the last full backup and any incremental backups are
received by the client system (850). Next, using this infor-
mation, the client system can retrieve the requisite finger-
print lists for the last full backup and any incremental
backups from the locations identified therein (860). Finger-
print list retrieval process 800 then concludes.



US 2023/0350863 Al

[0086] FIG. 9 is a flow diagram illustrating an example of
a reference request process implemented in a scalable dedu-
plication system, according to one embodiment. A reference
request process 900 is thus depicted that begins with a
determination of the location of the data segment in question
(910). Once the location of the data segment in question has
been determined, this location information is included in a
reference update message (920). Also included in the refer-
ence update message is information identifying the backup
in question (925). The reference update message is then sent
to the assigned node (930). As will be appreciated light of
the present disclosure, the reference update message can, in
the alternative, be sent directly to a node storing the data
segment in question, in certain embodiments. Further in this
regard, such embodiments can then send the requisite infor-
mation (e.g., the location of the data segment and informa-
tion identifying the back question, as well as information
identifying the node storing the data segment) to the
assigned node. In any event, a determination is made as to
whether an update result messages been received (940). In
so doing, reference request process 900 iterates until the
receipt of the update result message.

[0087] Having received the update result message, a deter-
mination is made as to whether the reference update opera-
tion was successful (950 close friend. If the update result
message indicates that the reference update was unsuccess-
ful, and indication to this effect is made (960) and reference
request process 900 concludes. Alternatively, if the update
result message indicates that the reference update was
successful, and indication to this effect is made (970) and
reference request process 900 concludes.

[0088] FIG. 10 is a flow diagram illustrating an example
of a reference update process implemented in a scalable
deduplication system, according to one embodiment. FIG.
10 thus depicts a reference update process 1000, as can be
executed by an assigned node, for example. Reference
update process 1000 begins with the receipt of a reference
update request (1010), as might be received, for example,
from a client system such as one of client systems 110. Once
the note in question is in receipt of the reference update
request, information regarding location of the data segment
in question is retrieved from the reference update message
(1020). Also retrieved from the reference update message is
information identifying the backup for which the reference
is to be updated (1030). At the structure, a reference is added
to the metadata for the data segment in question (1040).
Such an operation can, for example, result in an update to a
local reference database on a given node (e.g., local refer-
ence databases to 20 of nodes 130) and/or reference infor-
mation in a metadata store (e.g., metadata store 240).
[0089] An attempt to add the requisite reference having
been made, a determination is made as to whether the
reference was successfully added (1050). If the reference
was successfully added to the metadata in question, a
reference update success message is sent by the assigned
node, for example, to the client system in question (1060),
and reference update process 1000 then concludes. In the
alternative, if the addition of the reference was not success-
ful, a reference update failure message is sent by the
assigned node to the client system in question (1070), and,
as before, reference update process 1000 concludes.
[0090] FIG. 11 is a flow diagram illustrating an example of
a fingerprint search process implemented in a scalable
deduplication system, according to one embodiment. FIG.

Nov. 2, 2023

11 thus depicts a fingerprint search process 1100, as can be
carried out by an assigned node in performing a fingerprint
search requested by a client system. Fingerprint search
process 1100 begins with receipt of a fingerprint search
request from such a client system (1110). The assigned node
then searches the local reference database for the fingerprint
identified in the fingerprint search request (1120). A deter-
mination is then made as to whether the fingerprint in
question has been found (1130). If the fingerprint in question
is found at the assigned node, a fingerprint search result
message indicating that the fingerprint has been found (and,
optionally, including information regarding that fingerprint
(e.g., its location and/or other identifying information)) is
sent to the requesting client system (1140). Fingerprint
search process 1100 then concludes. Alternatively, if the
fingerprint in question was not found, a fingerprint search
result message is sent indicating that the fingerprint was not
found (1150), and figure print search process 1100 once
again concludes.

[0091] FIG. 12 is a flow diagram illustrating an example
of a data object save process implemented in a scalable
deduplication system, according to one embodiment. FIG.
12 thus depicts a data object save process 1200, in which a
client system includes a data segment, its associated finger-
print, and other related information, such as information
identifying the backup being performed. Data object save
process 1200 thus begins with saving the fingerprint in
question in the data object (1210). As noted, the data
segment in question is also saved in the data object (1220).
A determination is then made as to whether the fingerprint,
data segment, and, optionally, other related information, was
safe successfully in the data object (1230). If the fingerprint,
data segment, and, optionally, other related information was
successfully saved in the data object, an indication to this
effect is made (1240), and data object save process 1200
concludes. Alternatively, if a failure occurred in the saving
of the fingerprint, the data segment, and/or other related
information, and indication of this failure is provided
(1250), and, as before, data object save process 1200 con-
cludes.

[0092] FIG. 13 is a flow diagram illustrating an example
of a data object send process implemented in a scalable
deduplication system, according to one embodiment. FIG.
13 thus depicts a data object send process 1300, as can be
carried out by a client system sending a data object accord-
ing to certain embodiments, for example. Data object send
process 1300 begins with the closing of the data object by
the client system (1310). The data object, having been
closed, is then sent to the assigned node (1320). Data object
send process 1300 then awaits the receipt of notification
from the assigned node, indicating that the storage operation
has completed (1330). A determination is then made as to
whether the storage operation was successful (1340). If the
storage operation was successful, and indication as to the
successful storage of the fingerprint, the data segment, and
any other related information is provided (1350), data object
send process 1300 then concludes. Alternatively, if one or
more of the fingerprint, the data segment, and/or any related
information is not successful, the failure in the storage
process is indicated (1360), and data object send process
1300 once again concludes.

[0093] FIG. 14 is a flow diagram illustrating an example
of a assigned node data object storage process implemented
in a scalable deduplication system, according to one



US 2023/0350863 Al

embodiment. FIG. 14 thus depicts an assigned node data
object storage process 1400, which begins with the receipt
of a data object at the assigned node, having been sent from
the client system in question (1405). The assigned node,
having received the data object, locks one or more local
resources in order to update those resources with the infor-
mation in the data object received (1410). Information in the
data object (e.g., information regarding the fingerprint and
associated data segment, as well as other information such
as information identifying the backup operation completed)
is then stored at the assigned node (1415). At this juncture,
one or more local references can be added to the metadata
maintained at the assigned node (e.g., in the local reference
database and/or in one or more metadata stores) (1420). The
aforementioned information having been stored, the one or
more local resources can then be unlocked by the assigned
node (1425).

[0094] A determination is then made as to whether the data
object was successtully stored (1430). In the case in which
storage of the data object was unsuccessful, an indication to
this effect is provided by the assigned node to the client
system (1440). Alternatively, if the data object was stored
successfully, the store data object is then analyzed by the
assigned node (1450). Assigned node data object storage
process 1400, having analyzed the store data object, makes
a determination as to whether the stored data object includes
one or more remote references (1460). In the case in which
the store data object does not include any remote references
(as used herein, indicating a reference to a data segment
maintain on a node other than the assigned node), an
indication can be made to the client system indicating that
the data object received from the client system was stored
successfully (1470). As will be appreciated in light of the
present disclosure, such is the case because no further
operations are needed to store the data object, the data object
having been stored successfully (and having no remote
references). Assigned node data object storage process 1400
then concludes.

[0095] Alternatively, in the case in which the data object
includes one or more remote references (1460), a process of
generating one or more corresponding sub-data objects, and
either storing a given one of the sub-data objects at the
assigned node or sending that information to the appropriate
remote node(s) is performed. To this end, a sub-data object
is selected from among one or more sub-data objects
included in the data object being stored (1475). Sub-data
object processing is then performed on the selected sub-data
object (1480). An example of a process for generating and
sending such sub-data objects is provided in connection with
FIG. 15 and its description, subsequently. A determination is
then made as to whether the sub-data object in question was
saved successfully (1485). In the case in which the sub-data
object was not successfully stored, an indication to this
effect is sent to the client system (1440). As can be seen in
FIG. 14, such indication can be made with respect to the
particular sub-data object in question, or more simply by an
indication that, as a whole, the data object was not stored
successfully.

[0096] Alternatively, if the sub-data object in question was
successfully stored, a determination can be made as to
whether additional sub-data objects remain to be processed
(1490). If further sub-data objects remain be processed,
assigned node data object storage process 1400 proceeds to
the selection of the next sub-data object (1495), and iterates

Nov. 2, 2023

performing the aforementioned sub-data object processing
on the selected sub-data object (1480). Assigned node data
object storage process 1400 then continues as noted above.
[0097] If further sub-data objects do not remain to be
processed, assigned node data object storage process 1400
proceeds to making an indication that the data object in
question was successfully stored (1470). Assigned node data
object storage process 1400 then concludes.

[0098] FIGS. 15A and 15B illustrate a flow diagram
depicting an example of a assigned node sub-data object
storage process implemented in a scalable deduplication
system, according to one embodiment. FIGS. 15A and 15B
thus depict an assigned node sub-data object storage process
1500, which begins with the identification of the data object
in question (1510). Next, sub-data object information for the
given sub-data object is determined (1515). The sub-data
object itself is then generated (1520). Next, the node that is
to maintain the sub-data object is identified (1525). A
determination is then made as to whether the node thus
identified is the assigned node (1530). If the identified node
is the assigned node, the sub-data object is stored locally (at
the assigned node), in the manner noted with regard to the
storage of the data object (that being the lock, add, unlock
sequence noted earlier) (1540). It is to be understood while
such an outcome is possible, it will typically not be the case,
as such data would simply be stored as part of the data object
in question as part of the backup operation (though situa-
tions may exist, such as if the sub-data object were the result
of a separate backup operation). Alternatively, if the iden-
tified node is not the assigned node (and so is another node,
such as one of nodes 130, and referred to herein as a “remote
node” (indicating that such node is not the assigned node)),
the assigned node sends the sub-data object to the remote
node (1550). In such situations, the assigned node can send
a “reference request” to such remote nodes, where data
maintained at such nodes is referenced by the given backup.
The assigned node then awaits receipt of a status message
from the remote node (1555).

[0099] At this juncture, whether stored locally or by a
remote node, assigned node sub-data object storage process
1500 proceeds, via connector “A”, a determination is made
as to whether the sub-data object was stored successfully
(1560). In the case in which some manner of failure occurred
in the storage of the sub-data object, assigned node sub-data
object storage process 1500 proceeds with making an indi-
cation that the storage of the sub-data object was unsuccess-
ful (1565), and assigned node sub-data object storage pro-
cess 1500 concludes.

[0100] Alternatively, if the sub-data object in question was
successfully stored, a determination as to whether more
sub-data objects remain to be processed is made (1570). If
further sub-data objects remain to be processed, assigned
node sub-data object storage process 1500 proceeds, via
connector “B”, to making a determination as to the sub-data
object information for the next sub-data object (1515), and
assigned node sub-data object storage process 1500 contin-
ues. In the alternative, if no further sub-data objects remain
to be processed, an indication is made to the effect that the
storage of the sub-data object(s) was successful (1580), and
assigned node sub-data object storage process 1500 con-
cludes.

[0101] FIG. 16 is a flow diagram illustrating an example
of a remote node sub-data object storage process imple-
mented in a scalable deduplication system, according to one



US 2023/0350863 Al

embodiment. FIG. 16 thus depicts a remote node sub-data
object storage process 1600, which begins with the receipt
of a sub-data object from the assigned node (1610). In a
manner comparable to that noted earlier, the remote node
locks the requisite resources in preparation for adding a
reference to its data (e.g., a corresponding one of the data
segments maintained by the remote node) (1620). The
remote node then adds the aforementioned reference (1630),
and then unlocks the affected resource(s) (1640). A deter-
mination is then made as to whether the sub-data object was
processed successfully (1650). If such processing was suc-
cessful, the remote node sends a message to the assigned
node indicating that processing of the sub-data object by the
remote node was successful (1660), and remote node sub-
data object storage process 1600 concludes. Alternatively, if
processing of the sub-data object was not successful, the
remote node sends a message to the assigned node indicating
that such processing was unsuccessful (1670), and remote
node sub-data object storage process 1600 concludes.

[0102] FIG. 17 is a simplified block diagram illustrating
an example of components of a scalable backup deduplica-
tion system and its operation, according to one embodiment.
FIG. 17 thus illustrates a scalable deduplication system 1700
that includes certain components described previously in
connection with FIGS. 1-5. Scalable deduplication system
1700 once again includes a client system (client system
110(1), or more simply, the client system), nodes (nodes
130(1)-(2), or more simply the first node and the second
node), and a cluster management server (cluster manage-
ment server 140), communicatively coupled in the afore-
mentioned manner. Also as before, a catalog (catalog 160) is
maintained at node 130(1), and nodes 130(1)-(2) maintain
their respective local reference databases (local reference
databases 220(1)-(2), or more simply the first and second
local reference databases) and local deduplication pools
(local deduplication pools 225(1)-(2), or more simply the
first and second local deduplication pools).

[0103] The operations illustrated as occurring in scalable
deduplication system 1700 are as follows. The client system
first determines the identity of the assigned node by refer-
encing catalog 160 (1705), which has been assigned by
cluster management server 140 (1710). Having determined
the assigned node (in this case, the first node), the client
accesses the catalog to determine the location of the previ-
ous full backup image and any incremental backup images
(1715). The client then reads the signature lists for the full
backup and any incremental backups from the assigned node
(1720). At this juncture, the client performs a lookup opera-
tions (i.e., searches) on the signature lists thus obtained
(1725). If the client finds the given signature in the signature
lists, a reference can be added to the local reference database
in question, subsequently.

[0104] Alternatively, if the signature in question is not
found in the signature lists, the client performs a lookup
operation on the assigned node’s location (1730). However,
if the assigned node is full, for example, a lookup operation
can be performed in the assigned forward node location
pool, at the second node (1735). If the signature in question
is not found at the first node or the second node, the data
segment can be written to the assigned node (1740) and
stored in its local deduplication pool (the first local dedu-
plication pool), or, if the first node is full, written to the
assigned forward node (the second node) and stored in its
local deduplication pool (the second local deduplication

Nov. 2, 2023

pool (1745). At this juncture, the client system can send the
signature as a reference to the data segment to the assigned
node (the first node) for storage in its local reference
database (the first local reference database) (1750), or, if the
first node is full, to the assigned forward node (the second
node) and stored in its local reference database (the second
local reference database) (1755).

[0105] In performing a process such as that just described,
the client systems of scalable deduplication system 1700 are
able to provide data segments and their references to nodes
130 for unique data segments, and add references for non-
unique data segments. In so doing, the process of storing
such deduplicated backup images also result in the updating
of catalog 160, thereby facilitating the storage of further
deduplicated backup images.

[0106] As can be seen in FIG. 17, a given backup image
remains tied to one backup source (e.g., the client system),
and node information can be recorded on a per-backup
image (and so, per-backup source) basis. Further, the storage
of'backup images can be assigned (i.e., the assigned node for
a given backup image assigned) according to data affinity,
allowing for the more efficient use of computing and net-
working resources. In the case in which a given assigned
node becomes full (or becomes overloaded with respect to
computing, storage, and/or networking resources), a new
node can be chosen based on its resource usage (while being
tracked under the related node list for the backup source).
Additionally, some or all of the existing data/metadata for a
given data source can be moved to the new assigned node.
Further still the latest node for a given backup source can be
selected, in order to maintain locality of that backup source’s
data. This can be achieved, in certain embodiments, by
selecting the latest node in the backup source node list as the
assigned node.

An Example Computing and Network Environment

[0107] As noted, the systems described herein can be
implemented using a variety of computer systems and
networks. The following illustrates an example configura-
tion of a computing device such as those described herein.
The computing device may include one or more processors,
a random access memory (RAM), communication inter-
faces, a display device, other input/output (I/O) devices
(e.g., keyboard, trackball, and the like), and one or more
mass storage devices (e.g., optical drive (e.g., CD, DVD, or
Blu-ray), disk drive, solid state disk drive, non-volatile
memory express (NVME) drive, or the like), configured to
communicate with each other, such as via one or more
system buses or other suitable connections. While a single
system bus 514 is illustrated for ease of understanding, it
should be understood that the system buses 514 may include
multiple buses, such as a memory device bus, a storage
device bus (e.g., serial ATA (SATA) and the like), data buses
(e.g., universal serial bus (USB) and the like), video signal
buses (e.g., ThunderBolt®, DVI, HDMI, and the like),
power buses, or the like.

[0108] Such CPUs are hardware devices that may include
a single processing unit or a number of processing units, all
of which may include single or multiple computing units or
multiple cores. Such a CPU may include a graphics pro-
cessing unit (GPU) that is integrated into the CPU or the
GPU may be a separate processor device. The CPU may be
implemented as one or more micCroprocessors, microcom-
puters, microcontrollers, digital signal processors, central



US 2023/0350863 Al

processing units, graphics processing units, state machines,
logic circuitries, and/or any devices that manipulate signals
based on operational instructions. Among other capabilities,
the CPU may be configured to fetch and execute computer-
readable instructions stored in a memory, mass storage
device, or other computer-readable storage media.

[0109] Memory and mass storage devices are examples of
computer storage media (e.g., memory storage devices) for
storing instructions that can be executed by the processors
502 to perform the various functions described herein. For
example, memory can include both volatile memory and
non-volatile memory (e.g., RAM, ROM, or the like) devices.
Further, mass storage devices may include hard disk drives,
solid-state drives, removable media, including external and
removable drives, memory cards, flash memory, floppy
disks, optical disks (e.g., CD, DVD, Blu-ray), a storage
array, a network attached storage, a storage area network, or
the like. Both memory and mass storage devices may be
collectively referred to as memory or computer storage
media herein and may be any type of non-transitory media
capable of storing computer-readable, processor-executable
program instructions as computer program code that can be
executed by the processors as a particular machine config-
ured for carrying out the operations and functions described
in the implementations herein.

[0110] The computing device may include one or more
communication interfaces for exchanging data via a net-
work. The communication interfaces can facilitate commu-
nications within a wide variety of networks and protocol
types, including wired networks (e.g., Ethernet, DOCSIS,
DSL, Fiber, USB, etc.) and wireless networks (e.g., WLAN,
GSM, CDMA, 802.11, Bluetooth, Wireless USB, ZigBee,
cellular, satellite, etc.), the Internet and the like. Communi-
cation interfaces can also provide communication with
external storage, such as a storage array, network attached
storage, storage area network, cloud storage, or the like.
[0111] The display device may be used for displaying
content (e.g., information and images) to users. Other /O
devices may be devices that receive various inputs from a
user and provide various outputs to the user, and may
include a keyboard, a touchpad, a mouse, a printer, audio
input/output devices, and so forth. The computer storage
media, such as memory 504 and mass storage devices, may
be used to store software and data, such as, for example, an
operating system, one or more drivers (e.g., including a
video driver for a display such as display 180), one or more
applications, and data. Examples of such computing and
network environments are described below with reference to
FIGS. 18 and 19.

[0112] FIG. 18 depicts a block diagram of a computer
system 1810 suitable for implementing aspects of the sys-
tems described herein. Computer system 1810 includes a
bus 1812 which interconnects major subsystems of com-
puter system 1810, such as a central processor 1814, a
system memory 1817 (typically RAM, but which may also
include ROM, flash RAM, or the like), an input/output
controller 1818, an external audio device, such as a speaker
system 1820 via an audio output interface 1822, an external
device, such as a display screen 1824 via display adapter
1826, serial ports 1828 and 1830, a keyboard 1832 (inter-
faced with a keyboard controller 1833), a storage interface
1834, a USB controller 1837 operative to receive a USB
drive 1838, a host bus adapter (HBA) interface card 1835A
operative to connect with a optical network 1890, a host bus

Nov. 2, 2023

adapter (HBA) interface card 1835B operative to connect to
a SCSI bus 1839, and an optical disk drive 1840 operative
to receive an optical disk 1842. Also included are a mouse
1846 (or other point-and-click device, coupled to bus 1812
via serial port 1828), a modem 1847 (coupled to bus 1812
via serial port 1830), and a network interface 1848 (coupled
directly to bus 1812).

[0113] Bus 1812 allows data communication between cen-
tral processor 1814 and system memory 1817, which may
include read-only memory (ROM) or flash memory (neither
shown), and random access memory (RAM) (not shown), as
previously noted. RAM is generally the main memory into
which the operating system and application programs are
loaded. The ROM or flash memory can contain, among other
code, the Basic Input-Output System (BIOS) which controls
basic hardware operation such as the interaction with periph-
eral components. Applications resident with computer sys-
tem 1810 are generally stored on and accessed from a
computer-readable storage medium, such as a hard disk
drive (e.g., fixed disk 1844), an optical drive (e.g., optical
drive 1840), a universal serial bus (USB) controller 1837, or
other computer-readable storage medium.

[0114] Storage interface 1834, as with the other storage
interfaces of computer system 1810, can connect to a
standard computer-readable medium for storage and/or
retrieval of information, such as a fixed disk drive 1844.
Fixed disk drive 1844 may be a part of computer system
1810 or may be separate and accessed through other inter-
face systems. Modem 1847 may provide a direct connection
to a remote server via a telephone link or to the Internet via
an internet service provider (ISP). Network interface 1848
may provide a direct connection to a remote server via a
direct network link to the Internet via a POP (point of
presence). Network interface 1848 may provide such con-
nection using wireless techniques, including digital cellular
telephone connection, Cellular Digital Packet Data (CDPD)
connection, digital satellite data connection or the like.
[0115] Many other devices or subsystems (not shown)
may be connected in a similar manner (e.g., document
scanners, digital cameras and so on). Conversely, all of the
devices shown in FIG. 18 need not be present to practice the
systems described herein. The devices and subsystems can
be interconnected in different ways from that shown in FIG.
18. The operation of a computer system such as that shown
in FIG. 18 will be readily understood in light of the present
disclosure. Code to implement portions of the systems
described herein can be stored in computer-readable storage
media such as one or more of system memory 1817, fixed
disk 1844, optical disk 1842, or USB drive 1838. The
operating system provided on computer system 1810 may be
WINDOWS, UNIX, LINUX, IOS, or other operating sys-
tem

[0116] Moreover, regarding the signals described herein,
those skilled in the art will recognize that a signal can be
directly transmitted from a first block to a second block, or
a signal can be modified (e.g., amplified, attenuated,
delayed, latched, buffered, inverted, filtered, or otherwise
modified) between the blocks. Although the signals of the
above described embodiment are characterized as transmit-
ted from one block to the next, other embodiments may
include modified signals in place of such directly transmitted
signals as long as the informational and/or functional aspect
of the signal is transmitted between blocks. To some extent,
a signal input at a second block can be conceptualized as a



US 2023/0350863 Al

second signal derived from a first signal output from a first
block due to physical limitations of the circuitry involved
(e.g., there will inevitably be some attenuation and delay).
Therefore, as used herein, a second signal derived from a
first signal includes the first signal or any modifications to
the first signal, whether due to circuit limitations or due to
passage through other circuit elements which do not change
the informational and/or final functional aspect of the first
signal.

[0117] FIG. 19 is a block diagram depicting a network
architecture 1900 in which client systems 1910, 1920 and
1930, as well as storage servers 1940A and 1940B (any of
which can be implemented using computer system 1910),
are coupled to a network 1950. Storage server 1940A is
further depicted as having storage devices 1960A(1)-(N)
directly attached, and storage server 1940B is depicted with
storage devices 1960B(1)-(N) directly attached. Storage
servers 1940A and 1940B are also connected to a SAN
fabric 1970, although connection to a storage area network
is not required for operation. SAN fabric 1970 supports
access to storage devices 1980(1)-(N) by storage servers
1940A and 1940B, and so by client systems 1910, 1920 and
1930 via network 1950. An intelligent storage array 1990 is
also shown as an example of a specific storage device
accessible via SAN fabric 1970.

[0118] With reference to computer system 1810, modem
1847, network interface 1848 or some other method can be
used to provide connectivity from each of client computer
systems 1910, 1920 and 1930 to network 1950. Client
systems 1910, 1920 and 1930 are able to access information
on storage server 1940A or 1940B using, for example, a web
browser or other client software (not shown). Such a client
allows client systems 1910, 1920 and 1930 to access data
hosted by storage server 1940A or 19408 or one of storage
devices 1960A(1)-(N), 1960B(1)-(N), 1980(1)-(N) or intel-
ligent storage array 1990. FIG. 19 depicts the use of a
network such as the Internet for exchanging data, but the
systems described herein are not limited to the Internet or
any particular network-based environment.

OTHER EMBODIMENTS

[0119] The example systems and computing devices
described herein are well adapted to attain the advantages
mentioned as well as others inherent therein. While such
systems have been depicted, described, and are defined by
reference to particular descriptions, such references do not
imply a limitation on the claims, and no such limitation is to
be inferred. The systems described herein are capable of
considerable modification, alteration, and equivalents in
form and function, as will occur to those ordinarily skilled
in the pertinent arts in considering the present disclosure.
The depicted and described embodiments are examples only,
and are in no way exhaustive of the scope of the claims.

[0120] Such example systems and computing devices are
merely examples suitable for some implementations and are
not intended to suggest any limitation as to the scope of use
or functionality of the environments, architectures and
frameworks that can implement the processes, components
and features described herein. Thus, implementations herein
are operational with numerous environments or architec-
tures, and may be implemented in general purpose and
special-purpose computing systems, or other devices having
processing capability. Generally, any of the functions
described with reference to the figures can be implemented

Nov. 2, 2023

using software, hardware (e.g., fixed logic circuitry) or a
combination of these implementations. The term “module,”
“mechanism” or “component” as used herein generally
represents software, hardware, or a combination of software
and hardware that can be configured to implement pre-
scribed functions. For instance, in the case of a software
implementation, the term “module,” “mechanism” or “com-
ponent” can represent program code (and/or declarative-
type instructions) that performs specified tasks or operations
when executed on a processing device or devices (e.g.,
CPUs or processors). The program code can be stored in one
or more computer-readable memory devices or other com-
puter storage devices. Thus, the processes, components and
modules described herein may be implemented by a com-
puter program product.

[0121] The foregoing thus describes embodiments includ-
ing components contained within other components (e.g.,
the various elements shown as components of computer
system 1210). Such architectures are merely examples, and,
in fact, many other architectures can be implemented which
achieve the same functionality. In an abstract but still
definite sense, any arrangement of components to achieve
the same functionality is effectively “associated” such that
the desired functionality is achieved. Hence, any two com-
ponents herein combined to achieve a particular function-
ality can be seen as “associated with” each other such that
the desired functionality is achieved, irrespective of archi-
tectures or intermediate components. Likewise, any two
components so associated can also be viewed as being
“operably connected,” or “operably coupled,” to each other
to achieve the desired functionality.

[0122] Furthermore, this disclosure provides various
example implementations, as described and as illustrated in
the drawings. However, this disclosure is not limited to the
implementations described and illustrated herein, but can
extend to other implementations, as would be known or as
would become known to those skilled in the art. Reference
in the specification to “one implementation,” “this imple-
mentation,” “these implementations™ or “some implemen-
tations” means that a particular feature, structure, or char-
acteristic described is included in at least one
implementation, and the appearances of these phrases in
various places in the specification are not necessarily all
referring to the same implementation. As such, the various
embodiments of the systems described herein via the use of
block diagrams, flowcharts, and examples. It will be under-
stood by those within the art that each block diagram
component, flowchart step, operation and/or component
illustrated by the use of examples can be implemented
(individually and/or collectively) by a wide range of hard-
ware, software, firmware, or any combination thereof.
[0123] The systems described herein have been described
in the context of fully functional computer systems; how-
ever, those skilled in the art will appreciate that the systems
described herein are capable of being distributed as a
program product in a variety of forms, and that the systems
described herein apply equally regardless of the particular
type of computer-readable media used to actually carry out
the distribution. Examples of computer-readable media
include computer-readable storage media, as well as media
storage and distribution systems developed in the future.
[0124] The above-discussed embodiments can be imple-
mented by software modules that perform one or more tasks
associated with the embodiments. The software modules



US 2023/0350863 Al

discussed herein may include script, batch, or other execut-
able files. The software modules may be stored on a
machine-readable or computer-readable storage media such
as magnetic floppy disks, hard disks, semiconductor
memory (e.g., RAM, ROM, and flash-type media), optical
discs (e.g., CD-ROMs, CD-Rs, and DVDs), or other types of
memory modules. A storage device used for storing firm-
ware or hardware modules in accordance with an embodi-
ment can also include a semiconductor-based memory,
which may be permanently, removably or remotely coupled
to a microprocessor/memory system. Thus, the modules can
be stored within a computer system memory to configure the
computer system to perform the functions of the module.
Other new and various types of computer-readable storage
media may be used to store the modules discussed herein.
[0125] In light of the foregoing, it will be appreciated that
the foregoing descriptions are intended to be illustrative and
should not be taken to be limiting. As will be appreciated in
light of the present disclosure, other embodiments are pos-
sible. Those skilled in the art will readily implement the
steps necessary to provide the structures and the methods
disclosed herein, and will understand that the process
parameters and sequence of steps are given by way of
example only and can be varied to achieve the desired
structure as well as modifications that are within the scope
of the claims. Variations and modifications of the embodi-
ments disclosed herein can be made based on the description
set forth herein, without departing from the scope of the
claims, giving full cognizance to equivalents thereto in all
respects.
[0126] Although the present invention has been described
in connection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.
What is claimed is:
1. A method comprising:
in response to receiving a request to perform a lookup
operation, performing the lookup operation, wherein
the request is received at an assigned node that is one
of a plurality of nodes of a cluster,
the lookup operation queries a reference database,
stored at the assigned node and comprising a first
plurality of references that refer to a first plurality of
subunits of data, for a signature,
the signature is associated with a subunit of data of a
backup image,
the backup image comprises the first plurality of sub-
units of data stored at the assigned node and a second
plurality of subunits of data stored at a remote node,
and
the remote node is a one of the plurality of nodes, other
than the assigned node; and
in response to the signature not being found at the
assigned node,
forwarding the request to a remote node, wherein
the forwarding the request to the remote node causes
the remote node to perform another lookup opera-
tion that queries another reference database, stored
at the remote node and comprising a second
plurality of references that refer to the second
plurality of subunits of data, for the signature,

Nov. 2, 2023

in response to receiving an indication that the signature
was not found at the remote node, processing the
subunit of data as a unique subunit of data.
2. The method of claim 1, wherein
the backup image comprises a plurality of subunits of
data,
the plurality of subunits of data comprise the first plurality
of subunits of data and the second plurality of subunits
of data,
each subunit of data of the plurality of subunits of data is
a data segment of the backup image,
each reference of the first plurality of references com-
prises a fingerprint of a corresponding one of the first
plurality of subunits of data, and
each reference of the second plurality of references com-
prises a fingerprint of a corresponding one of the
second plurality of subunits of data.
3. The method of claim 2, further comprising:
retrieving a signature list, wherein
the lookup operation and the another lookup operation
are performed using the signature list.
4. The method of claim 1, further comprising:
assigning a node of the plurality of nodes to be the
assigned node, wherein
the node is assigned as part of a backup operation, and
the backup image is produced by the backup operation.
5. The method of claim 4, wherein
the assigned node is assigned based, at least in part, on at
least one of
a data affinity metric,
a load of the assigned node, or
an available storage space of the assigned node.
6. The method of claim 4, further comprising:
creating a data object comprising the unique subunit of
data; and
sending the data object to the assigned node.
7. The method of claim 6, further comprising:
receiving the data object at the assigned node; and
storing the data object at the assigned node as part of the
backup operation.
8. The method of claim 1, further comprising:
retrieving a signature list, wherein
the lookup operation and the another lookup operation
are performed using the signature list.
9. The method of claim 8, wherein the retrieving com-
prises:
identifying a last full backup operation;
identifying a location of a signature list for the last full
backup operation;
retrieving the signature list for the last full backup opera-
tion;
determining whether one or more incremental backup
operations were performed;
in response to a determination that the one or more
incremental backup operations were performed,
for each incremental backup operation of the one or
more incremental backup operations,
identifying the each incremental backup operation,
identifying a location of a signature list for the each
incremental backup operation, and
retrieving the signature list for the each incremental
backup operation; and



US 2023/0350863 Al
16

providing the signature list for the last full backup opera-
tion and any of the signature lists for the one or more
incremental backup operations, as the signature list.
10. The method of claim 1, further comprising:
in response to the signature being found at the assigned
node or receipt of an indication that the signature was
found at the remote node,
determining a location of the subunit of data,
creating a reference update package comprising the
location and information identifying the backup
image, and
sending the reference update package.
11. The method of claim 10, further comprising:
receiving the reference update package;
retrieving the location and information identifying the
backup image from the reference update package; and
adding a reference for the subunit of data using the
location and information identifying the backup image.
12. A non-transitory computer-readable storage medium,
comprising program instructions, which, when executed by
one or more processors of a computing system, perform a
method comprising:
in response to receiving a request to perform a lookup
operation, performing the lookup operation, wherein
the request is received at an assigned node that is one
of a plurality of nodes of a cluster,
the lookup operation queries a reference database,
stored at the assigned node and comprising a first
plurality of references that refer to a first plurality of
subunits of data, for a signature,
the signature is associated with a subunit of data of a
backup image,
the backup image comprises the first plurality of sub-
units of data stored at the assigned node and a second
plurality of subunits of data stored at a remote node,
and
the remote node is a one of the plurality of nodes, other
than the assigned node; and
in response to the signature not being found at the
assigned node,
forwarding the request to a remote node, wherein
the forwarding the request to the remote node causes
the remote node to perform another lookup opera-
tion that queries another reference database, stored
at the remote node and comprising a second
plurality of references that refer to the second
plurality of subunits of data, for the signature,
in response to receiving an indication that the signature
was not found at the remote node, processing the
subunit of data as a unique subunit of data.
13. The non-transitory computer-readable storage
medium of claim 12, wherein the method further comprises:
in response to the signature being found at the assigned
node or receipt of an indication that the signature was
found at the remote node,
determining a location of the subunit of data,
creating a reference update package comprising the
location and information identifying the backup
image, and
sending the reference update package.
14. The non-transitory computer-readable storage
medium of claim 13, wherein the method further comprises:
receiving the reference update package;

Nov. 2, 2023

retrieving the location and information identifying the
backup image from the reference update package; and
adding a reference for the subunit of data using the
location and information identifying the backup image.
15. The non-transitory computer-readable storage
medium of claim 12, wherein the method further comprises:
assigning a node of the plurality of nodes to be the
assigned node, wherein
the node is assigned as part of a backup operation, and
the backup image is produced by the backup operation.
16. The non-transitory computer-readable storage
medium of claim 15, wherein
the assigned node is assigned based, at least in part, on at
least one of
a data affinity metric,
a load of the assigned node, or
an available storage space of the assigned node.
17. The non-transitory computer-readable storage
medium of claim 15, wherein
creating a data object comprising the unique subunit of
data;
sending the data object to the assigned node;
receiving the data object at the assigned node; and
storing the data object at the assigned node as part of the
backup operation.
18. The non-transitory computer-readable storage
medium of claim 12, wherein the method further comprises:
retrieving a signature list, wherein
the lookup operation and the another lookup operation
are performed using the signature list.
19. The non-transitory computer-readable storage
medium of claim 18, wherein the retrieving comprises:
identifying a last full backup operation;
identifying a location of a signature list for the last full
backup operation;
retrieving the signature list for the last full backup opera-
tion;
determining whether one or more incremental backup
operations were performed;
in response to a determination that the one or more
incremental backup operations were performed,
for each incremental backup operation of the one or
more incremental backup operations,
identifying the each incremental backup operation,
identifying a location of a signature list for the each
incremental backup operation, and
retrieving the signature list for the each incremental
backup operation; and
providing the signature list for the last full backup opera-
tion and any of the signature lists for the one or more
incremental backup operations, as the signature list.
20. A computing system comprising:
one or more processors; and
a computer-readable storage medium coupled to the one
or more processors, comprising program instructions,
which, when executed by the one or more processors,
perform a method comprising
in response to receiving a request to perform a lookup
operation, performing the lookup operation, wherein
the request is received at an assigned node that is one
of a plurality of nodes of a cluster,
the lookup operation queries a reference database,
stored at the assigned node and comprising a first



US 2023/0350863 Al Nov. 2, 2023
17

plurality of references that refer to a first plurality
of subunits of data, for a signature,
the signature is associated with a subunit of data of
a backup image,
the backup image comprises the first plurality of
subunits of data stored at the assigned node and a
second plurality of subunits of data stored at a
remote node, and
the remote node is a one of the plurality of nodes,
other than the assigned node; and
in response to the signature not being found at the
assigned node,
forwarding the request to a remote node, wherein
the forwarding the request to the remote node
causes the remote node to perform another
lookup operation that queries another reference
database, stored at the remote node and com-
prising a second plurality of references that
refer to the second plurality of subunits of data,
for the signature,
in response to receiving an indication that the sig-
nature was not found at the remote node, process-
ing the subunit of data as a unique subunit of data.

#* #* #* #* #*



