US 20210216478A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0216478 A1

Miller et al.

43) Pub. Date: Jul. 15, 2021

(54)

(71)

(72)

(73)

@

(22)

(63)

(60)

LOGICAL ADDRESS BASED
AUTHORIZATION OF OPERATIONS WITH
RESPECT TO A STORAGE SYSTEM

Applicant: Pure Storage, Inc., Mountain View, CA
(US)

Inventors: Ethan L. Miller, Santa Cruz, CA (US);
Ronald Karr, Palo Alto, CA (US)

Assignee: Pure Storage, Inc.
Appl. No.: 17/039,580
Filed: Sep. 30, 2020

Related U.S. Application Data

Continuation-in-part of application No. 16/711,060,
filed on Dec. 11, 2019.

Provisional application No. 62/939,518, filed on Nov.
22, 2019, provisional application No. 62/985,229,
filed on Mar. 4, 2020.

Publication Classification

(51) Int. CL
GOGF 12/14 (2006.01)
GOGF 12/02 (2006.01)
GOGF 21/64 (2006.01)
GOGF 21/31 (2006.01)
(52) US.CL

CPC ... GOGF 12/1441 (2013.01); GOGF 12/1408
(2013.01); GOGF 21/31 (2013.01); GO6F
21/64 (2013.01); GOGF 12/0246 (2013.01)

(57) ABSTRACT

An illustrative method includes a data protection system
detecting a request provided by a source to perform an
operation with respect to a storage system, the request
including a logical address that comprises a logical element
representative of a storage location within the storage sys-
tem, determining whether the logical address further com-
prises an authorization element indicating that the source is
authorized to initiate operations with respect to the storage
system, and performing, based on the determining whether
the logical address includes the authorization element, an
action with respect to the operation.

Data Protection System
400

Storage Facility
402

Instructions
406

Processing Facility
404

az07 fely abeioyg

US 2021/0216478 Al

G077 99.n0say abe.o)g Juslsisiad

YA
anuQg
abelolg

aksi
SAUQ

abeloig

A A

[
o0
<)
-

|
D
=
-—

Jul. 15,2021 Sheet 1 of 43

aot1 sejo4u0d

011 48fjo4uo)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A i
I
I
I
I
I
I
I
I
I
I
I
|
|
]
I
I
I
I
I
I
I

R —

{ FAAREL S)

Il \\

-~ -
il T A

Patent Application Publication

V20T Aely abeio)g

VOLT @2in0say abel0)g ajsisiod

kLl
= NN m>_x_o

abelo)g

dalll
anuQg
abelo)g

Vil
aMl(Q
abelo)g

AL

AA

AA

V80l

Krewnd/Aepuoosssg

d011 491104u0D

Arepuoosg/Arewnd

YOl J8jloauo)

9T aomaq Bugndwon

V70T 801maq bugndwon

001

US 2021/0216478 Al

Jul. 15,2021 Sheet 2 of 43

dl 9l

Sh] __ chr

19puedx L suononJsu|
| Youms
vl —

Jaydepy H
wajsAg Bunesadp
sng 1SOH
101 60 11T v
707 991nap Buissasoid
901

o601 as01 Va0l
D201 Jeydepy gcor Jeydepy VE0T Jaydepy

sng 1SOH sng 1SOH sng 1SOH

L0} Jojj0u0)d

Patent Application Publication

o

—
=
m .
3 ol 9Ol
y—
S
y—
8
o
[70]
=
ol
o)
-
[
0 —
e uocl
- se se se
S ysel yse|4 yse|4 yse|4 —
=
7 0]
5 BT JalloAuo)
S yse4 yseld yse|4 yselq 921n9(] 9beI0)g
"o
H. %4}
=
J
n yse|d ysel yse|d ysel
2
£
5 yseld ysel4 yseld e0c} TZT WYY cct
nm ysel AB1su3 palo)s
(=]
g
=
[="
<
g
=
=W

i aanig ey T N
CHOHH : ,
{

3
[
l

-
L
o™
~—

US 2021/0216478 Al

—199¢1

CHHHH \
|
%) L, e
A
[

-

g
T

Jul. 15,2021 Sheet 4 of 43

g
T

-

[9v]
N
~

CHH H HL | , M

—€9¢)

T

Patent Application Publication

US 2021/0216478 Al

Jul. 15, 2021 Sheet 5 of 43

Patent Application Publication

061

41 f

\&HM&&\\x m abeloig
ndo || @mspies
\\\\\\ o
651"

apop sbeioig

V¢ Ol

o &Ni ppL 0S) 0SL 051 0G)
_v/ NCONAAA

sue-
(gy}

auge

Youms

- oyl

\-g¢)
X~19

US 2021/0216478 Al

Jul. 15, 2021 Sheet 6 of 43

Patent Application Publication

“»ot

g¢ 9l

ﬁwm_‘

\wmt

HOod Jamod [euiaix]

uonnqgLysiq Jamod

Hod [eusaxg

Mod lewsexg| ¥

hﬁ

/

91

h 109UU02IBIU| "SWWIOY)

ev
A4

A

Ly Aoyiny

v v
A2 ﬁ 7] ﬁ e5h
ﬁ [
| I |
I
Aluo sindwon
apop abeloig apop abeloyg N apop abelois
N [<
NET 5T 0T

Patent Application Publication Jul. 15,2021 Sheet 7 of 43 US 2021/0216478 A1

R

Storage Node
CPU 'R
e ;.
L& . 152 . 152 Lu 1_2J/'
/’, ’I
,I II
—p! NIC ,,’ ,I
/’ 14
‘ ’,/ ’/
o 202 o /)

Non-Volatile Solid State
Memory

NVRAM 204

Flash 206

Non-Volatile Sclid State Memory
208 IRt PLD
[10210 | | Flashi/i0220
Controller 212 DRAM 216
DMA 214
Flash 222 \\ 206
16 KB Page 22 Trerriooiooiy J
— } : Energyé 1I’-\’seserve
rgezzs]| I HEN L &
. 22 FIG. 2C

Patent Application Publication Jul. 15,2021 Sheet 8 of 43 US 2021/0216478 A1

Host Controller 242

Mid-tier Controller 244

—————————— Storage Uit 152! ~ T T T T[T 7 7 7 Storage Unit 152!

— NVRAM 204

— NVRAM 204

SU Controller 246 SU Controller 246

I |
I I
I I
I I
I |
I I
I I
I I
I — RAM I — RAM
I I
I I
I I
I I
I I
I l
I I

FIG. 2D

US 2021/0216478 Al

Jul. 15, 2021 Sheet 9 of 43

Patent Application Publication

d¢ 9l4 [
(B)
09¢ 109¢ 097 09¢ 092 09¢

S) QU S A AU _

] —]

! ¥0¢ |

| L_v< \/ ~N nvaan N Y \ \/ \ /v |

| | % —_

m | S Y o A ra&ﬁm_ i

| _mL T il O A AU
]

] [}

m + / N\ \J \j * 4 ™N "

! 90z 90z | @

" 15 —useld uysed N > —useld

" (N "

]]

1 [}

] |

S 1 I IS IS NS N R A___| _

A A Ot O

]

]

]

]

]

| __

! 9G¢

| gndwo

L Y R R

Z5¢ opeig 752 spelg 76¢ dpelg

Patent Application Publication Jul. 15,2021 Sheet 10 of 43 US 2021/0216478 A1l

HININN L]

| FABRIC (SWITCH) 146] | FABRIC (SWITCH) 146 |
Blade 252 Blade 252 Blade 252
Compute module St Nyl 2 e Saqapute module
270
1
]
152 | STORAGE UNIT JORAGE UNT Endpoints 272
FLASH | [NVRAM FLASK —
. . < Authorities 168
7 7 7 \ |
Cap (o Cas 210
Storage Manager 274 | [~
FIG. 2F
| FABRIC (SWITCH) 146] | FABRIC (SWITCH) 146 |
Blade 252 Blade 252 Blade 252
Compute module Compute module Compute module
!Autrw)rites
168 NVRAM
S Se— — e | — 12
152~1 STORAGE UNIT STORAGE UNIT STORAGE UNIT W—152
1 o g il 1 e ; i
NVRAM FLASH | INVRAM FLASH | INVRAM
rarr 1§ A W SN 0 | e gl i g M - I
Vi / i) } / /
206 204 (2 6 (2_4_ RAID stripes 20

204
spanblades — T F|G. 2G

Patent Application Publication Jul. 15,2021 Sheet 11 of 43 US 2021/0216478 A1l

Cloud Services Provider

302

(3%
S
=

] 1
] [}
] [}
] [}
] [}
] [}
] [}
] [}
] [}
| Storage System 306 |
] [}
] [}
] [}
] [}
] [}
] [}
] [}
] }

FIG. 3A

Patent Application Publication Jul. 15,2021 Sheet 12 0f 43 US 2021/0216478 A1l

1 [}
| [}
1 [}
! :
1 s T ~
o i
b Storage Resources 308 b
!) !
\ [}
: N e e e e e e e e e e e /I |
1 [}
| [}
! :
|
1 [}
1 [}
1 [}
: ST T T T T T T T T T T =\ :
P : :
Lo Communications Resources 310 o
1 | |
: N S :
1 [}
| [}
! :
|
1 [}
1 [}
1 [}
: sTTTETETEE T N :
LT) !
o Processing Resources 312 Do
|\ b
TR S
| TS T T T T T T T T T e 1
| 1
! :
|
1 1
] 1
1 1
: soTTTTTETEET T ETTI T ETETIE T T TR TR T N :
vy Vo
| [|
! l Software Resources 314 b
1
[}
o /o
[}
[}
]

FIG. 3B

US 2021/0216478 Al

Jul. 15, 2021 Sheet 13 of 43

Patent Application Publication

_|||||||..|..|..||||||||..||||||||||||||..|||..||..

“ FoTTTTTTTTT YT YT T YT A ATy e e e P P P PP PP PPPPPPPmmmm et !

] ! |

I ! 8= "

i P e e = '

poob S5 |

I I fal 1] !

i I ey S o 1

oo o& |

I] [) [l et f

I 1 1o o =2 !

b %%_ a9 |

L e | g £T t

1 1= 1 5 ¢ © 3B i

| [R (=] [,] '

I K= O = o) gl '

I I et @ [4+] u.t" i

L1 12|’ 5= !

“ e sa|'\\ [T _ ¢

1 1 © - < I

“ I .C [9p) -]

= - =3 "
I I S L) ™

i ! 13 !

i I A N N 2, @ |

] oL © ool & '

i I TEEEemEeses o= P !

29 S 1

1 I s O [42] |

I ! me. k=] !

] ! = S QD '

o 28 8 i
I ! = O O

I = - 1

“ : A2 D !

P! Ewm! a !

] I o~ Ol % 1

! H P> o9l . 1

i I o o e o e e e o) dh_ o) 1

] i u“...". AUU]

I] _0 mW_ — 1

! 100] I\ (&} i Q 1

1 [Lp; I Se— e Y A b TR R, J]

|||||||||||| t

'

'

t

|

'

1

I

I

1

1

1

t

1

1

i

1

1

1

Cioud Computing Environment 316
Cloud-Based Storage System 31
E"CToI;a ‘Computing Instance

I

| Storage Controller
| Application 324
I

I

o

:

] 328

I

!

I Cloud Computing Instance
1 With Local Storage 340a
3

- - - - - .- - - - — -] -

Patent Application Publication Jul. 15,2021 Sheet 14 of 43 US 2021/0216478 A1l

*

Communication
Interface
352

— I .
e i

A 4

Processor
354

Storage Device
356 1/0 Module
358

Instructions
/
360~

FIG. 3D

Patent Application Publication Jul. 15,2021 Sheet 15 0f 43 US 2021/0216478 A1l

Data Protection System
400

Storage Facility
402

Instructions
406

Processing Facility
404

FIG. 4

Patent Application Publication Jul. 15,2021 Sheet 16 of 43 US 2021/0216478 A1l

5002A

Storage System
502
Storage Structure
Read Traffic 504-1
- —
Storage Structure
Controller 504-2
506
Write Traffic
—»
508 Storage Structure
504-N

Control
Data

FIG. 5

Patent Application Publication Jul. 15,2021 Sheet 17 0f 43 US 2021/0216478 A1l
600—<A
Storage System
Read Traffic 502
-
Storage Structure
504-1
Storage Structure
, , Controller 504-2
Write Traffic 506 —
T ~ ™ 508
|
|
: Control Storag5% itlilucture
[Data —
|
| 04
|
|
|
Instructions |
NSIUCONS 1 Phone-home
610 | Data
| 606 _|
|
: Cloud-based
! Monitoring System
| 602
|
|
|
|
|
: Processor
! 608
|
|
|
|
|
|
|
|

FIG. 6

Patent Application Publication Jul. 15,2021 Sheet 18 0f 43 US 2021/0216478 A1l

700

\

C=
l

Identify an anomaly associated with a storage system
702

'

Determine, based on the anomaly, that the storage system is
possibly being targeted by a security threat
704

'

Perform a remedial action
706

l
Ce)

FIG. 7

Patent Application Publication Jul. 15,2021 Sheet 19 of 43 US 2021/0216478 A1l

N C - D

Monitor read traffic and write traffic processed by a
—>] storage system during a time period
802

804

otal amount of read traffi
and write traffic exceeds
threshold?

No

rite traffic less compressible
than read traffic?

Determine that the storage system is possibly
being targeted by a security threat
808

l
=

FIG. 8

Patent Application Publication Jul. 15,2021 Sheet 20 of 43

900

\

=
'

Monitor read traffic and write traffic processed by a
storage system during a time period
802

”,

ead traffic within threshom
amount of write traffic during
time period?

No

otal amount of read traffi
and write traffic exceeds
threshold?

rite traffic less compressible
than read traffic?

Determine that the storage system is possibly
being targeted by a security threat
808

'
=

US 2021/0216478 Al

FIG. 9

Patent Application Publication Jul. 15,2021 Sheet 21 0f 43 US 2021/0216478 A1l

1000

\

=
l

|dentify an attribute associated with read traffic and/or write
traffic processed by a storage system
1002

'

Determine, based on the attribute, that the storage
system is possibly being targeted by a security threat
1004

l
=

FIG. 10

Patent Application Publication Jul. 15,2021 Sheet 22 0f 43 US 2021/0216478 A1l

”&‘ (o)
v

Monitor write traffic processed by a storage
—> system
1102

v

Identify format type of data instance included in
write traffic
1104

ontent of data instance matc
what is expected for format

Determine that the storage system is possibly
being targeted by a security threat
1108

!

Ce)

FIG. 11

Patent Application Publication Jul. 15,2021 Sheet 23 0f 43 US 2021/0216478 A1l

1200

\

C=)
l

|dentify a pattern associated with read traffic and/or write
traffic processed by a storage system
1202

'

Determine, based on the pattern, that the storage
system is possibly being targeted by a security threat
1204

l
=

FIG. 12

Patent Application Publication Jul. 15,2021 Sheet 24 0f 43 US 2021/0216478 A1l

NGO

Monitor read and write traffic processed by a
— storage system
1302

Identifiable header information?

feader information matches
content included in data written
to storage system?

Yes

Determine that the storage system is possibly
being targeted by a security threat D —
1308

l
Ce)

FIG. 13

Patent Application Publication Jul. 15,2021 Sheet 25 0f 43 US 2021/0216478 A1l

NGO

Monitor write traffic processed by a storage system
> 1402

Decryptable using key
maintained by authorized key
management system?

Determine that the storage system is possibly
being targeted by a security threat
1408

:
=

FIG. 14

Patent Application Publication Jul. 15,2021 Sheet 26 of 43 US 2021/0216478 A1l

~ C -)

Monitor write traffic processed by a storage system
> 1502

Data includes correct
cryptographic signature?

Determine that the storage system is possibly
being targeted by a security threat
1508

l
C=

FIG. 15

Patent Application Publication Jul. 15,2021 Sheet 27 of 43 US 2021/0216478 A1l

16& (Stfrt >

Monitor write traffic processed by a storage
— system
1602

Data already stored by storage
system being deleted or
overwritten?

Determine that the storage system is possibly
being targeted by a security threat
1606

!

=)

FIG. 16

Patent Application Publication Jul. 15,2021 Sheet 28 0f 43 US 2021/0216478 A1l

1700

\

C=)
l

Access phone home data transmitted by a storage system
1702

'

Detect, based on the phone home data, an anomaly
associated with the storage system
1704

'

Determine, based on the detected anomaly, that the storage
system is possibly being targeted by a security threat
1706

l
=)

FIG. 17

Patent Application Publication Jul. 15,2021 Sheet 29 of 43 US 2021/0216478 A1l

1800

=
l

Detect a rate at which data is read from a storage system
and written back to the storage system in encrypted form
1802

'

Determine, based on the detected rate, that the storage
system is possibly being targeted by a security threat
1804

l
=

FIG. 18

Patent Application Publication Jul. 15,2021 Sheet 30 of 43 US 2021/0216478 A1l

1900

\

C=
l

Train a machine learning model
1902

'

Input attribute data for read traffic, write traffic, and/or
storage system into the machine learning model
1904

'

Determine, based on an output of the machine learning
model, that the storage system is possibly being targeted by
a security threat
1906

l
Ce)

FIG. 19

Patent Application Publication Jul. 15,2021 Sheet 31 0f 43 US 2021/0216478 A1l

20& (Stft >

Monitor garbage collection process performed by
—> a storage system
2002

2004

No

Yes

Determine that the storage system is possibly
being targeted by a security threat
2006

!
=

FIG. 20

Patent Application Publication Jul. 15,2021 Sheet 32 0f 43 US 2021/0216478 A1l

21&‘ (o)

'

Monitor read traffic and/or write traffic processed by
— a storage system
2102

Anomaly with replicating
storage system?

Determine that the storage system is possibly
being targeted by a security threat
2108

l
Ce)

FIG. 21

Patent Application Publication Jul. 15,2021 Sheet 33 0f 43 US 2021/0216478 A1l

2200

\

=)
|

Identify an attribute associated with data read from the storage system and/or data written
to the storage system
2202

l

Present, within a graphical user interface displayed by a display device, graphical
information associated with the attribute
2204

l

Receive, by way of the graphical user interface, user input
2206

l

Determine, based on the user input, that the storage system is possibly being targeted by a
security threat
2208

|
=)

FIG. 22

Patent Application Publication Jul. 15,2021 Sheet 34 of 43 US 2021/0216478 A1l

23& < Stjﬂ >

Perform a first security threat detection process with respect to a
— storage system
2302

No

orage system possible targe
of security threat?

Perform a second security threat detection process with respect to the
storage system, the second threat detection process configured to
provide higher confidence threat detection than the first security threat
detection process
2306

'
=

FIG. 23

Patent Application Publication Jul. 15,2021 Sheet 35 0of 43 US 2021/0216478 A1l

2400

\

=)
l

Determine that a storage system is possibly being targeted
by a security threat
2402

'

Direct the storage system to generate a recovery
dataset for data stored by the storage system
2404

l
=

FIG. 24

Patent Application Publication Jul. 15,2021 Sheet 36 of 43 US 2021/0216478 A1l

2500

\

=
l

Direct a storage system to generate recovery datasets over time in accordance with a data
protection parameter set, the recovery datasets usable to restore data maintained by the
storage system to a state corresponding to a selectable point in time
2502

'

Determine that the storage system is possibly being targeted by a security threat
2504

'

Modify, in response to the determining that the storage system is possibly being targeted
by the security threat, the data protection parameter set for one or more of the recovery
datasets
2506

l
=

FIG. 25

Patent Application Publication Jul. 15,2021 Sheet 37 of 43 US 2021/0216478 A1l

2600

\

(=
|

Determine that a storage system has been targeted by a security
threat
2602

l

Restore, based on one or more recovery datasets generated by
the storage system, data stored by the storage system to an
uncorrupted state
2604

|
o)

FIG. 26

Patent Application Publication Jul. 15,2021 Sheet 38 0f 43 US 2021/0216478 A1l

2700

\

C=
l

Detect a potential data corruption in a storage system
2702

'

Analyze, in response to the detecting the potential data corruption, one or more metrics of
the storage system
2704

'

Determine, based on the analyzing of the one or more metrics of the storage system, a
corruption-free recovery point for potential use to recover from the potential data corruption
2706

l
Ca)

FIG. 27

Patent Application Publication Jul. 15,2021 Sheet 39 0f 43 US 2021/0216478 A1l

2800

\

C=)
l

Maintain configuration data for a storage system
2802

'

Determine that the storage system is corrupted due to a security threat
2804

'

Using the configuration data to reconstruct a replacement storage system for the storage
system
2806

l
(=

FIG. 28

Patent Application Publication Jul. 15,2021 Sheet 40 of 43 US 2021/0216478 A1l

2900

\

C=)
|

Determine that a storage system is possibly being targeted
by a security threat
2902

l

Provide a notification of the security threat
2904

|
Ca)

FIG. 29

30& < Stjrt >

Perform a first security threat detection process with respect to a
— storage system
3002

No torage system possible targe

of security threat?

Perform a first remedial action
3006

'

Perform a second security threat detection process with respect to the
storage system
3008

No torage system possible targe

of security threat?

Perform a second remedial action
3012

!
=

Patent Application Publication Jul. 15,2021 Sheet 41 of 43 US 2021/0216478 A1l

FIG. 30

Patent Application Publication Jul. 15,2021 Sheet 42 0f 43 US 2021/0216478 A1l

3100—\\

Authorization
Element

Logical Element

FIG. 31

Patent Application Publication Jul. 15,2021 Sheet 43 0f 43 US 2021/0216478 A1l

3200

\

=
'

Detect a request provided by a source to perform an operation with
respect to a storage system, the request including a logical address that
comprises a logical element representative of a storage location within
the storage system
3202

Log
authorization element indicating tha
the source is authorized to initiate
Qperations with respect to the

Prevent operation from being
performed
3206

Allow operation to be performed
3208

—’CE”">'—

FIG. 32

US 2021/0216478 Al

LOGICAL ADDRESS BASED
AUTHORIZATION OF OPERATIONS WITH
RESPECT TO A STORAGE SYSTEM

RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
patent application Ser. No. 16/711,060, filed Dec. 11, 2019,
which claims priority under 35 U.S.C. § 119(e) to U.S.
Provisional Patent Application No. 62/939,518, filed Nov.
22, 2019, which application is incorporated herein by ref-
erence in its entirety. This application also claims priority
under 35 U.S.C. § 119(e) to U.S. Provisional Patent Appli-
cation No. 62/985,229, filed Mar. 4, 2020, which application
is incorporated herein by reference in its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The accompanying drawings illustrate various
embodiments and are a part of the specification. The illus-
trated embodiments are merely examples and do not limit
the scope of the disclosure. Throughout the drawings, iden-
tical or similar reference numbers designate identical or
similar elements.

[0003] FIG. 1A illustrates a first example system for data
storage in accordance with some implementations.

[0004] FIG. 1B illustrates a second example system for
data storage in accordance with some implementations.
[0005] FIG. 1C illustrates a third example system for data
storage in accordance with some implementations.

[0006] FIG. 1D illustrates a fourth example system for
data storage in accordance with some implementations.
[0007] FIG. 2A is a perspective view of a storage cluster
with multiple storage nodes and internal storage coupled to
each storage node to provide network attached storage, in
accordance with some embodiments.

[0008] FIG. 2B is a block diagram showing an intercon-
nect switch coupling multiple storage nodes in accordance
with some embodiments.

[0009] FIG.2C is a multiple level block diagram, showing
contents of a storage node and contents of one of the
non-volatile solid state storage units in accordance with
some embodiments.

[0010] FIG. 2D shows a storage server environment,
which uses embodiments of the storage nodes and storage
units of some previous figures in accordance with some
embodiments.

[0011] FIG. 2E is a blade hardware block diagram, show-
ing a control plane, compute and storage planes, and authori-
ties interacting with underlying physical resources, in accor-
dance with some embodiments.

[0012] FIG. 2F depicts elasticity software layers in blades
of a storage cluster, in accordance with some embodiments.

[0013] FIG. 2G depicts authorities and storage resources
in blades of a storage cluster, in accordance with some
embodiments.

[0014] FIG. 3A sets forth a diagram of a storage system
that is coupled for data communications with a cloud
services provider in accordance with some embodiments of
the present disclosure.

[0015] FIG. 3B sets forth a diagram of a storage system in
accordance with some embodiments of the present disclo-
sure.

Jul. 15, 2021

[0016] FIG. 3C sets forth an example of a cloud-based
storage system in accordance with some embodiments of the
present disclosure.

[0017] FIG. 3D illustrates an exemplary computing device
that may be specifically configured to perform one or more
of the processes described herein.

[0018] FIG. 4 illustrates an exemplary data protection
system in accordance with some embodiments of the present
disclosure.

[0019] FIG. 5 illustrates an exemplary configuration in
which a storage system processes read traffic and write
traffic in accordance with some embodiments of the present
disclosure.

[0020] FIG. 6 shows an exemplary configuration in which
a cloud-based monitoring system is communicatively
coupled to storage system by way of a network in accor-
dance with some embodiments of the present disclosure.
[0021] FIGS. 7-30 illustrate exemplary methods in accor-
dance with some embodiments of the present disclosure.
[0022] FIG. 31 shows an exemplary logical address that
may be included in a request to perform an operation with
respect to a storage system in accordance with some
embodiments of the present disclosure.

[0023] FIG. 32 illustrates an exemplary method in accor-
dance with some embodiments of the present disclosure.

DESCRIPTION OF EMBODIMENTS

[0024] Example methods, systems, apparatuses, and prod-
ucts for detecting a possible security threat against a storage
system, performing one or more remedial actions in
response to detecting the possible security threat, and other
embodiments associated with detecting and reacting to pos-
sible security threats in accordance with embodiments of the
present disclosure are described with reference to the
accompanying drawings, beginning with FIG. 1A. FIG. 1A
illustrates an example system for data storage, in accordance
with some implementations. System 100 (also referred to as
“storage system” herein) includes numerous elements for
purposes of illustration rather than limitation. It may be
noted that system 100 may include the same, more, or fewer
elements configured in the same or different manner in other
implementations.

[0025] System 100 includes a number of computing
devices 164A-B. Computing devices (also referred to as
“client devices” herein) may be embodied, for example, a
server in a data center, a workstation, a personal computer,
a notebook, or the like. Computing devices 164A-B may be
coupled for data communications to one or more storage
arrays 102A-B through a storage area network (‘SAN”) 158
or a local area network (‘LAN’) 160.

[0026] The SAN 158 may be implemented with a variety
of data communications fabrics, devices, and protocols. For
example, the fabrics for SAN 158 may include Fibre Chan-
nel, Ethernet, Infiniband, Serial Attached Small Computer
System Interface (‘SAS”), or the like. Data communications
protocols for use with SAN 158 may include Advanced
Technology Attachment (‘ATA’), Fibre Channel Protocol,
Small Computer System Interface (‘SCSI’), Internet Small
Computer System Interface (‘iSCSI’), HyperSCSI, Non-
Volatile Memory Express (‘NVMe’) over Fabrics, or the
like. It may be noted that SAN 158 is provided for illustra-
tion, rather than limitation. Other data communication cou-
plings may be implemented between computing devices
164A-B and storage arrays 102A-B.

US 2021/0216478 Al

[0027] The LAN 160 may also be implemented with a
variety of fabrics, devices, and protocols. For example, the
fabrics for LAN 160 may include Ethernet (802.3), wireless
(802.11), or the like. Data communication protocols for use
in LAN 160 may include Transmission Control Protocol
(“TCP”), User Datagram Protocol (‘UDP”), Internet Protocol
(‘IP’), HyperText Transfer Protocol (‘HTTP’), Wireless
Access Protocol (“WAP’), Handheld Device Transport Pro-
tocol (‘HDTP?), Session Initiation Protocol (‘SIP’), Real
Time Protocol (‘RTP’), or the like.

[0028] Storage arrays 102A-B may provide persistent data
storage for the computing devices 164A-B. Storage array
102A may be contained in a chassis (not shown), and storage
array 102B may be contained in another chassis (not shown),
in implementations. Storage array 102A and 102B may
include one or more storage array controllers 110A-D (also
referred to as “controller” herein). A storage array controller
110A-D may be embodied as a module of automated com-
puting machinery comprising computer hardware, computer
software, or a combination of computer hardware and soft-
ware. In some implementations, the storage array controllers
110A-D may be configured to carry out various storage
tasks. Storage tasks may include writing data received from
the computing devices 164A-B to storage array 102A-B,
erasing data from storage array 102A-B, retrieving data from
storage array 102A-B and providing data to computing
devices 164 A-B, monitoring and reporting of disk utilization
and performance, performing redundancy operations, such
as Redundant Array of Independent Drives (‘RAID’) or
RAID-like data redundancy operations, compressing data,
encrypting data, and so forth.

[0029] Storage array controller 110A-D may be imple-
mented in a variety of ways, including as a Field Program-
mable Gate Array (‘FPGA’), a Programmable Logic Chip
(‘PLC’), an Application Specific Integrated Circuit
(“ASIC’), System-on-Chip (‘SOC’), or any computing
device that includes discrete components such as a process-
ing device, central processing unit, computer memory, or
various adapters. Storage array controller 110A-D may
include, for example, a data communications adapter con-
figured to support communications via the SAN 158 or LAN
160. In some implementations, storage array controller
110A-D may be independently coupled to the LAN 160. In
implementations, storage array controller 110A-D may
include an I/O controller or the like that couples the storage
array controller 110A-D for data communications, through a
midplane (not shown), to a persistent storage resource
170A-B (also referred to as a “storage resource” herein). The
persistent storage resource 170A-B main include any num-
ber of storage drives 171A-F (also referred to as “storage
devices” herein) and any number of non-volatile Random
Access Memory (‘NVRAM”) devices (not shown).

[0030] In some implementations, the NVRAM devices of
a persistent storage resource 170A-B may be configured to
receive, from the storage array controller 110A-D, data to be
stored in the storage drives 171A-F. In some examples, the
data may originate from computing devices 164A-B. In
some examples, writing data to the NVRAM device may be
carried out more quickly than directly writing data to the
storage drive 171A-F. In implementations, the storage array
controller 110A-D may be configured to utilize the NVRAM
devices as a quickly accessible buffer for data destined to be
written to the storage drives 171A-F. Latency for write
requests using NVRAM devices as a buffer may be

Jul. 15, 2021

improved relative to a system in which a storage array
controller 110A-D writes data directly to the storage drives
171A-F. In some implementations, the NVRAM devices
may be implemented with computer memory in the form of
high bandwidth, low latency RAM. The NVRAM device is
referred to as “non-volatile” because the NVRAM device
may receive or include a unique power source that maintains
the state of the RAM after main power loss to the NVRAM
device. Such a power source may be a battery, one or more
capacitors, or the like. In response to a power loss, the
NVRAM device may be configured to write the contents of
the RAM to a persistent storage, such as the storage drives
171A-F.

[0031] In implementations, storage drive 171A-F may
refer to any device configured to record data persistently,
where “persistently” or “persistent” refers as to a device’s
ability to maintain recorded data after loss of power. In some
implementations, storage drive 171A-F may correspond to
non-disk storage media. For example, the storage drive
171A-F may be one or more solid-state drives (‘SSDs’),
flash memory based storage, any type of solid-state non-
volatile memory, or any other type of non-mechanical stor-
age device. In other implementations, storage drive 171A-F
may include mechanical or spinning hard disk, such as
hard-disk drives (‘HDD’).

[0032] In some implementations, the storage array con-
trollers 110A-D may be configured for offloading device
management responsibilities from storage drive 171A-F in
storage array 102A-B. For example, storage array control-
lers 110A-D may manage control information that may
describe the state of one or more memory blocks in the
storage drives 171A-F. The control information may indi-
cate, for example, that a particular memory block has failed
and should no longer be written to, that a particular memory
block contains boot code for a storage array controller
110A-D, the number of program-erase (‘P/E’) cycles that
have been performed on a particular memory block, the age
of data stored in a particular memory block, the type of data
that is stored in a particular memory block, and so forth. In
some implementations, the control information may be
stored with an associated memory block as metadata. In
other implementations, the control information for the stor-
age drives 171A-F may be stored in one or more particular
memory blocks of the storage drives 171A-F that are
selected by the storage array controller 110A-D. The
selected memory blocks may be tagged with an identifier
indicating that the selected memory block contains control
information. The identifier may be utilized by the storage
array controllers 110A-D in conjunction with storage drives
171A-F to quickly identify the memory blocks that contain
control information. For example, the storage controllers
110A-D may issue a command to locate memory blocks that
contain control information. It may be noted that control
information may be so large that parts of the control infor-
mation may be stored in multiple locations, that the control
information may be stored in multiple locations for purposes
of redundancy, for example, or that the control information
may otherwise be distributed across multiple memory blocks
in the storage drive 171A-F.

[0033] In implementations, storage array controllers
110A-D may offload device management responsibilities
from storage drives 171A-F of storage array 102A-B by
retrieving, from the storage drives 171 A-F, control informa-
tion describing the state of one or more memory blocks in

US 2021/0216478 Al

the storage drives 171A-F. Retrieving the control informa-
tion from the storage drives 171A-F may be carried out, for
example, by the storage array controller 110A-D querying
the storage drives 171A-F for the location of control infor-
mation for a particular storage drive 171A-F. The storage
drives 171A-F may be configured to execute instructions
that enable the storage drive 171A-F to identify the location
of'the control information. The instructions may be executed
by a controller (not shown) associated with or otherwise
located on the storage drive 171A-F and may cause the
storage drive 171A-F to scan a portion of each memory
block to identify the memory blocks that store control
information for the storage drives 171A-F. The storage
drives 171 A-F may respond by sending a response message
to the storage array controller 110A-D that includes the
location of control information for the storage drive 171A-F.
Responsive to receiving the response message, storage array
controllers 110A-D may issue a request to read data stored
at the address associated with the location of control infor-
mation for the storage drives 171A-F.

[0034] In other implementations, the storage array con-
trollers 110A-D may further offload device management
responsibilities from storage drives 171A-F by performing,
in response to receiving the control information, a storage
drive management operation. A storage drive management
operation may include, for example, an operation that is
typically performed by the storage drive 171A-F (e.g., the
controller (not shown) associated with a particular storage
drive 171A-F). A storage drive management operation may
include, for example, ensuring that data is not written to
failed memory blocks within the storage drive 171A-F,
ensuring that data is written to memory blocks within the
storage drive 171A-F in such a way that adequate wear
leveling is achieved, and so forth.

[0035] In implementations, storage array 102A-B may
implement two or more storage array controllers 110A-D.
For example, storage array 102A may include storage array
controllers 110A and storage array controllers 110B. At a
given instance, a single storage array controller 110A-D
(e.g., storage array controller 110A) of a storage system 100
may be designated with primary status (also referred to as
“primary controller” herein), and other storage array con-
trollers 110A-D (e.g., storage array controller 110A) may be
designated with secondary status (also referred to as “sec-
ondary controller” herein). The primary controller may have
particular rights, such as permission to alter data in persis-
tent storage resource 170A-B (e.g., writing data to persistent
storage resource 170A-B). At least some of the rights of the
primary controller may supersede the rights of the secondary
controller. For instance, the secondary controller may not
have permission to alter data in persistent storage resource
170A-B when the primary controller has the right. The status
of storage array controllers 110A-D may change. For
example, storage array controller 110A may be designated
with secondary status, and storage array controller 110B
may be designated with primary status.

[0036] In some implementations, a primary controller,
such as storage array controller 110A, may serve as the
primary controller for one or more storage arrays 102A-B,
and a second controller, such as storage array controller
110B, may serve as the secondary controller for the one or
more storage arrays 102A-B. For example, storage array
controller 110A may be the primary controller for storage
array 102A and storage array 102B, and storage array

Jul. 15, 2021

controller 110B may be the secondary controller for storage
array 102A and 102B. In some implementations, storage
array controllers 110C and 110D (also referred to as “storage
processing modules”) may neither have primary or second-
ary status. Storage array controllers 110C and 110D, imple-
mented as storage processing modules, may act as a com-
munication interface between the primary and secondary
controllers (e.g., storage array controllers 110A and 110B,
respectively) and storage array 102B. For example, storage
array controller 110A of storage array 102A may send a
write request, via SAN 158, to storage array 102B. The write
request may be received by both storage array controllers
110C and 110D of storage array 102B. Storage array con-
trollers 110C and 110D {facilitate the communication, e.g.,
send the write request to the appropriate storage drive
171A-F. It may be noted that in some implementations
storage processing modules may be used to increase the
number of storage drives controlled by the primary and
secondary controllers.

[0037] In implementations, storage array controllers
110A-D are communicatively coupled, via a midplane (not
shown), to one or more storage drives 171A-F and to one or
more NVRAM devices (not shown) that are included as part
of a storage array 102A-B. The storage array controllers
110A-D may be coupled to the midplane via one or more
data communication links and the midplane may be coupled
to the storage drives 171A-F and the NVRAM devices via
one or more data communications links. The data commu-
nications links described herein are collectively illustrated
by data communications links 108A-D and may include a
Peripheral Component Interconnect Express (‘PCle’) bus,
for example.

[0038] FIG. 1B illustrates an example system for data
storage, in accordance with some implementations. Storage
array controller 101 illustrated in FIG. 1B may similar to the
storage array controllers 110A-D described with respect to
FIG. 1A. In one example, storage array controller 101 may
be similar to storage array controller 110A or storage array
controller 110B. Storage array controller 101 includes
numerous elements for purposes of illustration rather than
limitation. It may be noted that storage array controller 101
may include the same, more, or fewer elements configured
in the same or different manner in other implementations. It
may be noted that elements of FIG. 1A may be included
below to help illustrate features of storage array controller
101.

[0039] Storage array controller 101 may include one or
more processing devices 104 and random access memory
(‘RAM’) 111. Processing device 104 (or controller 101)
represents one or more general-purpose processing devices
such as a microprocessor, central processing unit, or the like.
More particularly, the processing device 104 (or controller
101) may be a complex instruction set computing (‘CISC”)
microprocessor, reduced instruction set computing (‘RISC”)
microprocessor, very long instruction word (‘VLIW’)
microprocessor, or a processor implementing other instruc-
tion sets or processors implementing a combination of
instruction sets. The processing device 104 (or controller
101) may also be one or more special-purpose processing
devices such as an ASIC, an FPGA, a digital signal proces-
sor (‘DSP”), network processor, or the like.

[0040] The processing device 104 may be connected to the
RAM 111 via a data communications link 106, which may
be embodied as a high speed memory bus such as a

US 2021/0216478 Al

Double-Data Rate 4 (‘DDR4’) bus. Stored in RAM 111 is an
operating system 112. In some implementations, instructions
113 are stored in RAM 111. Instructions 113 may include
computer program instructions for performing operations in
in a direct-mapped flash storage system. In one embodiment,
a direct-mapped flash storage system is one that that
addresses data blocks within flash drives directly and with-
out an address translation performed by the storage control-
lers of the flash drives.

[0041] In implementations, storage array controller 101
includes one or more host bus adapters 103A-C that are
coupled to the processing device 104 via a data communi-
cations link 105A-C. In implementations, host bus adapters
103A-C may be computer hardware that connects a host
system (e.g., the storage array controller) to other network
and storage arrays. In some examples, host bus adapters
103A-C may be a Fibre Channel adapter that enables the
storage array controller 101 to connect to a SAN, an
Ethernet adapter that enables the storage array controller 101
to connect to a LAN, or the like. Host bus adapters 103A-C
may be coupled to the processing device 104 via a data
communications link 105A-C such as, for example, a PCle
bus.

[0042] In implementations, storage array controller 101
may include a host bus adapter 114 that is coupled to an
expander 115. The expander 115 may be used to attach a host
system to a larger number of storage drives. The expander
115 may, for example, be a SAS expander utilized to enable
the host bus adapter 114 to attach to storage drives in an
implementation where the host bus adapter 114 is embodied
as a SAS controller.

[0043] In implementations, storage array controller 101
may include a switch 116 coupled to the processing device
104 via a data communications link 109. The switch 116
may be a computer hardware device that can create multiple
endpoints out of a single endpoint, thereby enabling multiple
devices to share a single endpoint. The switch 116 may, for
example, be a PCle switch that is coupled to a PCle bus (e.g.,
data communications link 109) and presents multiple PCle
connection points to the midplane.

[0044] In implementations, storage array controller 101
includes a data communications link 107 for coupling the
storage array controller 101 to other storage array control-
lers. In some examples, data communications link 107 may
be a QuickPath Interconnect (QPI) interconnect.

[0045] A traditional storage system that uses traditional
flash drives may implement a process across the flash drives
that are part of the traditional storage system. For example,
a higher level process of the storage system may initiate and
control a process across the flash drives. However, a flash
drive of the traditional storage system may include its own
storage controller that also performs the process. Thus, for
the traditional storage system, a higher level process (e.g.,
initiated by the storage system) and a lower level process
(e.g., initiated by a storage controller of the storage system)
may both be performed.

[0046] To resolve various deficiencies of a traditional
storage system, operations may be performed by higher
level processes and not by the lower level processes. For
example, the flash storage system may include flash drives
that do not include storage controllers that provide the
process. Thus, the operating system of the flash storage
system itself may initiate and control the process. This may
be accomplished by a direct-mapped flash storage system

Jul. 15, 2021

that addresses data blocks within the flash drives directly
and without an address translation performed by the storage
controllers of the flash drives.

[0047] The operating system of the flash storage system
may identify and maintain a list of allocation units across
multiple flash drives of the flash storage system. The allo-
cation units may be entire erase blocks or multiple erase
blocks. The operating system may maintain a map or address
range that directly maps addresses to erase blocks of the
flash drives of the flash storage system.

[0048] Direct mapping to the erase blocks of the flash
drives may be used to rewrite data and erase data. For
example, the operations may be performed on one or more
allocation units that include a first data and a second data
where the first data is to be retained and the second data is
no longer being used by the flash storage system. The
operating system may initiate the process to write the first
data to new locations within other allocation units and
erasing the second data and marking the allocation units as
being available for use for subsequent data. Thus, the
process may only be performed by the higher level operating
system of the flash storage system without an additional
lower level process being performed by controllers of the
flash drives.

[0049] Advantages of the process being performed only by
the operating system of the flash storage system include
increased reliability of the flash drives of the flash storage
system as unnecessary or redundant write operations are not
being performed during the process. One possible point of
novelty here is the concept of initiating and controlling the
process at the operating system of the flash storage system.
In addition, the process can be controlled by the operating
system across multiple flash drives. This is contrast to the
process being performed by a storage controller of a flash
drive.

[0050] A storage system can consist of two storage array
controllers that share a set of drives for failover purposes, or
it could consist of a single storage array controller that
provides a storage service that utilizes multiple drives, or it
could consist of a distributed network of storage array
controllers each with some number of drives or some
amount of Flash storage where the storage array controllers
in the network collaborate to provide a complete storage
service and collaborate on various aspects of a storage
service including storage allocation and garbage collection.
[0051] FIG. 1C illustrates a third example system 117 for
data storage in accordance with some implementations.
System 117 (also referred to as “storage system” herein)
includes numerous elements for purposes of illustration
rather than limitation. It may be noted that system 117 may
include the same, more, or fewer elements configured in the
same or different manner in other implementations.

[0052] In one embodiment, system 117 includes a dual
Peripheral Component Interconnect (‘PCI’) flash storage
device 118 with separately addressable fast write storage.
System 117 may include a storage controller 119. In one
embodiment, storage controller 119A-D may be a CPU,
ASIC, FPGA, or any other circuitry that may implement
control structures necessary according to the present disclo-
sure. In one embodiment, system 117 includes flash memory
devices (e.g., including flash memory devices 120a-n),
operatively coupled to various channels of the storage
device controller 119. Flash memory devices 120a-n, may
be presented to the controller 119A-D as an addressable

US 2021/0216478 Al

collection of Flash pages, erase blocks, and/or control ele-
ments sufficient to allow the storage device controller
119A-D to program and retrieve various aspects of the Flash.
In one embodiment, storage device controller 119A-D may
perform operations on flash memory devices 120a-% includ-
ing storing and retrieving data content of pages, arranging
and erasing any blocks, tracking statistics related to the use
and reuse of Flash memory pages, erase blocks, and cells,
tracking and predicting error codes and faults within the
Flash memory, controlling voltage levels associated with
programming and retrieving contents of Flash cells, etc.
[0053] Inone embodiment, system 117 may include RAM
121 to store separately addressable fast-write data. In one
embodiment, RAM 121 may be one or more separate
discrete devices. In another embodiment, RAM 121 may be
integrated into storage device controller 119A-D or multiple
storage device controllers. The RAM 121 may be utilized for
other purposes as well, such as temporary program memory
for a processing device (e.g., a CPU) in the storage device
controller 119.

[0054] In one embodiment, system 117 may include a
stored energy device 122, such as a rechargeable battery or
a capacitor. Stored energy device 122 may store energy
sufficient to power the storage device controller 119, some
amount of the RAM (e.g., RAM 121), and some amount of
Flash memory (e.g., Flash memory 120a-120r) for sufficient
time to write the contents of RAM to Flash memory. In one
embodiment, storage device controller 119A-D may write
the contents of RAM to Flash Memory if the storage device
controller detects loss of external power.

[0055] In one embodiment, system 117 includes two data
communications links 123a, 1235. In one embodiment, data
communications links 123a, 1235 may be PCI interfaces. In
another embodiment, data communications links 123a, 1235
may be based on other communications standards (e.g.,
HyperTransport, InfiniBand, etc.). Data communications
links 123a, 1236 may be based on non-volatile memory
express (‘NVMe’) or NVMe over fabrics (‘NVM{”) speci-
fications that allow external connection to the storage device
controller 119A-D from other components in the storage
system 117. It should be noted that data communications
links may be interchangeably referred to herein as PCI buses
for convenience.

[0056] System 117 may also include an external power
source (not shown), which may be provided over one or both
data communications links 123a, 1235, or which may be
provided separately. An alternative embodiment includes a
separate Flash memory (not shown) dedicated for use in
storing the content of RAM 121. The storage device con-
troller 119A-D may present a logical device over a PCI bus
which may include an addressable fast-write logical device,
or a distinct part of the logical address space of the storage
device 118, which may be presented as PCI memory or as
persistent storage. In one embodiment, operations to store
into the device are directed into the RAM 121. On power
failure, the storage device controller 119A-D may write
stored content associated with the addressable fast-write
logical storage to Flash memory (e.g., Flash memory 120a-
r) for long-term persistent storage.

[0057] Inone embodiment, the logical device may include
some presentation of some or all of the content of the Flash
memory devices 120a-n, where that presentation allows a
storage system including a storage device 118 (e.g., storage
system 117) to directly address Flash memory pages and

Jul. 15, 2021

directly reprogram erase blocks from storage system com-
ponents that are external to the storage device through the
PCI bus. The presentation may also allow one or more of the
external components to control and retrieve other aspects of
the Flash memory including some or all of: tracking statis-
tics related to use and reuse of Flash memory pages, erase
blocks, and cells across all the Flash memory devices;
tracking and predicting error codes and faults within and
across the Flash memory devices; controlling voltage levels
associated with programming and retrieving contents of
Flash cells; etc.

[0058] In one embodiment, the stored energy device 122
may be sufficient to ensure completion of in-progress opera-
tions to the Flash memory devices 120a-120% stored energy
device 122 may power storage device controller 119A-D and
associated Flash memory devices (e.g., 120a-r) for those
operations, as well as for the storing of fast-write RAM to
Flash memory. Stored energy device 122 may be used to
store accumulated statistics and other parameters kept and
tracked by the Flash memory devices 120a-» and/or the
storage device controller 119. Separate capacitors or stored
energy devices (such as smaller capacitors near or embedded
within the Flash memory devices themselves) may be used
for some or all of the operations described herein.

[0059] Various schemes may be used to track and optimize
the life span of the stored energy component, such as
adjusting voltage levels over time, partially discharging the
storage energy device 122 to measure corresponding dis-
charge characteristics, etc. If the available energy decreases
over time, the effective available capacity of the addressable
fast-write storage may be decreased to ensure that it can be
written safely based on the currently available stored energy.
[0060] FIG. 1D illustrates a third example system 124 for
data storage in accordance with some implementations. In
one embodiment, system 124 includes storage controllers
125a, 125b. In one embodiment, storage controllers 1254,
1255 are operatively coupled to Dual PCI storage devices
1194, 1195 and 119¢, 1194, respectively. Storage controllers
125a, 125b may be operatively coupled (e.g., via a storage
network 130) to some number of host computers 127a-n.
[0061] In one embodiment, two storage controllers (e.g.,
125a and 125b) provide storage services, such as a SCS)
block storage array, a file server, an object server, a database
or data analytics service, etc. The storage controllers 1254,
1255 may provide services through some number of network
interfaces (e.g., 126a-d) to host computers 127a-r outside of
the storage system 124. Storage controllers 1254, 1255 may
provide integrated services or an application entirely within
the storage system 124, forming a converged storage and
compute system. The storage controllers 125a, 1255 may
utilize the fast write memory within or across storage
devices119a-d to journal in progress operations to ensure the
operations are not lost on a power failure, storage controller
removal, storage controller or storage system shutdown, or
some fault of one or more software or hardware components
within the storage system 124.

[0062] Inone embodiment, controllers 125a, 1255 operate
as PCI masters to one or the other PCI buses 1284, 12856. In
another embodiment, 128a and 1285 may be based on other
communications standards (e.g., HyperTransport, Infini-
Band, etc.). Other storage system embodiments may operate
storage controllers 1254, 1255 as multi-masters for both PCI
buses 1284, 1285. Alternately, a PCI/NVMe/NVMT switch-
ing infrastructure or fabric may connect multiple storage

US 2021/0216478 Al

controllers. Some storage system embodiments may allow
storage devices to communicate with each other directly
rather than communicating only with storage controllers. In
one embodiment, a storage device controller 1194 may be
operable under direction from a storage controller 1254 to
synthesize and transfer data to be stored into Flash memory
devices from data that has been stored in RAM (e.g., RAM
121 of FIG. 1C). For example, a recalculated version of
RAM content may be transferred after a storage controller
has determined that an operation has fully committed across
the storage system, or when fast-write memory on the device
has reached a certain used capacity, or after a certain amount
of time, to ensure improve safety of the data or to release
addressable fast-write capacity for reuse. This mechanism
may be used, for example, to avoid a second transfer over a
bus (e.g., 128a, 1285) from the storage controllers 1254,
1256. In one embodiment, a recalculation may include
compressing data, attaching indexing or other metadata,
combining multiple data segments together, performing era-
sure code calculations, etc.

[0063] In one embodiment, under direction from a storage
controller 125a, 1255, a storage device controller 1194, 1195
may be operable to calculate and transfer data to other
storage devices from data stored in RAM (e.g., RAM 121 of
FIG. 1C) without involvement of the storage controllers
125a, 1255. This operation may be used to mirror data stored
in one controller 1254 to another controller 1255, or it could
be used to offload compression, data aggregation, and/or
erasure coding calculations and transfers to storage devices
to reduce load on storage controllers or the storage controller
interface 129a, 1295 to the PCI bus 1284, 1285.

[0064] A storage device controller 119A-D may include
mechanisms for implementing high availability primitives
for use by other parts of a storage system external to the Dual
PCI storage device 118. For example, reservation or exclu-
sion primitives may be provided so that, in a storage system
with two storage controllers providing a highly available
storage service, one storage controller may prevent the other
storage controller from accessing or continuing to access the
storage device. This could be used, for example, in cases
where one controller detects that the other controller is not
functioning properly or where the interconnect between the
two storage controllers may itself not be functioning prop-
erly.

[0065] In one embodiment, a storage system for use with
Dual PCI direct mapped storage devices with separately
addressable fast write storage includes systems that manage
erase blocks or groups of erase blocks as allocation units for
storing data on behalf of the storage service, or for storing
metadata (e.g., indexes, logs, etc.) associated with the stor-
age service, or for proper management of the storage system
itself. Flash pages, which may be a few kilobytes in size,
may be written as data arrives or as the storage system is to
persist data for long intervals of time (e.g., above a defined
threshold of time). To commit data more quickly, or to
reduce the number of writes to the Flash memory devices,
the storage controllers may first write data into the sepa-
rately addressable fast write storage on one more storage
devices.

[0066] In one embodiment, the storage controllers 1254,
1255 may initiate the use of erase blocks within and across
storage devices (e.g., 118) in accordance with an age and
expected remaining lifespan of the storage devices, or based
on other statistics. The storage controllers 1254, 1255 may

Jul. 15, 2021

initiate garbage collection and data migration data between
storage devices in accordance with pages that are no longer
needed as well as to manage Flash page and erase block
lifespans and to manage overall system performance.

[0067] In one embodiment, the storage system 124 may
utilize mirroring and/or erasure coding schemes as part of
storing data into addressable fast write storage and/or as part
of writing data into allocation units associated with erase
blocks. Erasure codes may be used across storage devices, as
well as within erase blocks or allocation units, or within and
across Flash memory devices on a single storage device, to
provide redundancy against single or multiple storage device
failures or to protect against internal corruptions of Flash
memory pages resulting from Flash memory operations or
from degradation of Flash memory cells. Mirroring and
erasure coding at various levels may be used to recover from
multiple types of failures that occur separately or in com-
bination.

[0068] The embodiments depicted with reference to FIGS.
2A-G illustrate a storage cluster that stores user data, such
as user data originating from one or more user or client
systems or other sources external to the storage cluster. The
storage cluster distributes user data across storage nodes
housed within a chassis, or across multiple chassis, using
erasure coding and redundant copies of metadata. Erasure
coding refers to a method of data protection or reconstruc-
tion in which data is stored across a set of different locations,
such as disks, storage nodes or geographic locations. Flash
memory is one type of solid-state memory that may be
integrated with the embodiments, although the embodiments
may be extended to other types of solid-state memory or
other storage medium, including non-solid state memory.
Control of storage locations and workloads are distributed
across the storage locations in a clustered peer-to-peer
system. Tasks such as mediating communications between
the various storage nodes, detecting when a storage node has
become unavailable, and balancing I/Os (inputs and outputs)
across the various storage nodes, are all handled on a
distributed basis. Data is laid out or distributed across
multiple storage nodes in data fragments or stripes that
support data recovery in some embodiments. Ownership of
data can be reassigned within a cluster, independent of input
and output patterns. This architecture described in more
detail below allows a storage node in the cluster to fail, with
the system remaining operational, since the data can be
reconstructed from other storage nodes and thus remain
available for input and output operations. In various embodi-
ments, a storage node may be referred to as a cluster node,
a blade, or a server.

[0069] The storage cluster may be contained within a
chassis, i.e., an enclosure housing one or more storage
nodes. A mechanism to provide power to each storage node,
such as a power distribution bus, and a communication
mechanism, such as a communication bus that enables
communication between the storage nodes are included
within the chassis. The storage cluster can run as an inde-
pendent system in one location according to some embodi-
ments. In one embodiment, a chassis contains at least two
instances of both the power distribution and the communi-
cation bus which may be enabled or disabled independently.
The internal communication bus may be an Ethernet bus,
however, other technologies such as PCle, InfiniBand, and
others, are equally suitable. The chassis provides a port for
an external communication bus for enabling communication

US 2021/0216478 Al

between multiple chassis, directly or through a switch, and
with client systems. The external communication may use a
technology such as Ethernet, InfiniBand, Fibre Channel, etc.
In some embodiments, the external communication bus uses
different communication bus technologies for inter-chassis
and client communication. If a switch is deployed within or
between chassis, the switch may act as a translation between
multiple protocols or technologies. When multiple chassis
are connected to define a storage cluster, the storage cluster
may be accessed by a client using either proprietary inter-
faces or standard interfaces such as network file system
(*‘NFS’), common internet file system (‘CIFS’), small com-
puter system interface (‘SCSI’) or hypertext transfer proto-
col (‘HTTP’). Translation from the client protocol may
occur at the switch, chassis external communication bus or
within each storage node. In some embodiments, multiple
chassis may be coupled or connected to each other through
an aggregator switch. A portion and/or all of the coupled or
connected chassis may be designated as a storage cluster. As
discussed above, each chassis can have multiple blades, each
blade has a media access control (‘MAC’) address, but the
storage cluster is presented to an external network as having
a single cluster IP address and a single MAC address in some
embodiments.

[0070] Each storage node may be one or more storage
servers and each storage server is connected to one or more
non-volatile solid state memory units, which may be
referred to as storage units or storage devices. One embodi-
ment includes a single storage server in each storage node
and between one to eight non-volatile solid state memory
units, however this one example is not meant to be limiting.
The storage server may include a processor, DRAM and
interfaces for the internal communication bus and power
distribution for each of the power buses. Inside the storage
node, the interfaces and storage unit share a communication
bus, e.g., PCI Express, in some embodiments. The non-
volatile solid state memory units may directly access the
internal communication bus interface through a storage node
communication bus, or request the storage node to access the
bus interface. The non-volatile solid state memory unit
contains an embedded CPU, solid state storage controller,
and a quantity of solid state mass storage, e.g., between 2-32
terabytes (“IB’) in some embodiments. An embedded vola-
tile storage medium, such as DRAM, and an energy reserve
apparatus are included in the non-volatile solid state
memory unit. In some embodiments, the energy reserve
apparatus is a capacitor, super-capacitor, or battery that
enables transferring a subset of DRAM contents to a stable
storage medium in the case of power loss. In some embodi-
ments, the non-volatile solid state memory unit is con-
structed with a storage class memory, such as phase change
or magnetoresistive random access memory (‘MRAM”) that
substitutes for DRAM and enables a reduced power hold-up
apparatus.

[0071] One of many features of the storage nodes and
non-volatile solid state storage is the ability to proactively
rebuild data in a storage cluster. The storage nodes and
non-volatile solid state storage can determine when a storage
node or non-volatile solid state storage in the storage cluster
is unreachable, independent of whether there is an attempt to
read data involving that storage node or non-volatile solid
state storage. The storage nodes and non-volatile solid state
storage then cooperate to recover and rebuild the data in at
least partially new locations. This constitutes a proactive

Jul. 15, 2021

rebuild, in that the system rebuilds data without waiting until
the data is needed for a read access initiated from a client
system employing the storage cluster. These and further
details of the storage memory and operation thereof are
discussed below.

[0072] FIG. 2A is a perspective view of a storage cluster
161, with multiple storage nodes 150 and internal solid-state
memory coupled to each storage node to provide network
attached storage or storage area network, in accordance with
some embodiments. A network attached storage, storage
area network, or a storage cluster, or other storage memory,
could include one or more storage clusters 161, each having
one or more storage nodes 150, in a flexible and reconfig-
urable arrangement of both the physical components and the
amount of storage memory provided thereby. The storage
cluster 161 is designed to fit in a rack, and one or more racks
can be set up and populated as desired for the storage
memory. The storage cluster 161 has a chassis 138 having
multiple slots 142. It should be appreciated that chassis 138
may be referred to as a housing, enclosure, or rack unit. In
one embodiment, the chassis 138 has fourteen slots 142,
although other numbers of slots are readily devised. For
example, some embodiments have four slots, eight slots,
sixteen slots, thirty-two slots, or other suitable number of
slots. Each slot 142 can accommodate one storage node 150
in some embodiments. Chassis 138 includes flaps 148 that
can be utilized to mount the chassis 138 on a rack. Fans 144
provide air circulation for cooling of the storage nodes 150
and components thereof, although other cooling components
could be used, or an embodiment could be devised without
cooling components. A switch fabric 146 couples storage
nodes 150 within chassis 138 together and to a network for
communication to the memory. In an embodiment depicted
in herein, the slots 142 to the left of the switch fabric 146 and
fans 144 are shown occupied by storage nodes 150, while
the slots 142 to the right of the switch fabric 146 and fans
144 are empty and available for insertion of storage node
150 for illustrative purposes. This configuration is one
example, and one or more storage nodes 150 could occupy
the slots 142 in various further arrangements. The storage
node arrangements need not be sequential or adjacent in
some embodiments. Storage nodes 150 are hot pluggable,
meaning that a storage node 150 can be inserted into a slot
142 in the chassis 138, or removed from a slot 142, without
stopping or powering down the system. Upon insertion or
removal of storage node 150 from slot 142, the system
automatically reconfigures in order to recognize and adapt to
the change. Reconfiguration, in some embodiments,
includes restoring redundancy and/or rebalancing data or
load.

[0073] Each storage node 150 can have multiple compo-
nents. In the embodiment shown here, the storage node 150
includes a printed circuit board 159 populated by a CPU
156, i.e., processor, a memory 154 coupled to the CPU 156,
and a non-volatile solid state storage 152 coupled to the CPU
156, although other mountings and/or components could be
used in further embodiments. The memory 154 has instruc-
tions which are executed by the CPU 156 and/or data
operated on by the CPU 156. As further explained below, the
non-volatile solid state storage 152 includes flash or, in
further embodiments, other types of solid-state memory.

[0074] Referring to FIG. 2A, storage cluster 161 is scal-
able, meaning that storage capacity with non-uniform stor-
age sizes is readily added, as described above. One or more

US 2021/0216478 Al

storage nodes 150 can be plugged into or removed from each
chassis and the storage cluster self-configures in some
embodiments. Plug-in storage nodes 150, whether installed
in a chassis as delivered or later added, can have different
sizes. For example, in one embodiment a storage node 150
can have any multiple of 4 TB, e.g., 8 TB, 12 TB, 16 TB, 32
TB, etc. In further embodiments, a storage node 150 could
have any multiple of other storage amounts or capacities.
Storage capacity of each storage node 150 is broadcast, and
influences decisions of how to stripe the data. For maximum
storage efficiency, an embodiment can self-configure as wide
as possible in the stripe, subject to a predetermined require-
ment of continued operation with loss of up to one, or up to
two, non-volatile solid state storage units 152 or storage
nodes 150 within the chassis.

[0075] FIG. 2B is a block diagram showing a communi-
cations interconnect 173 and power distribution bus 172
coupling multiple storage nodes 150. Referring back to FIG.
2A, the communications interconnect 173 can be included in
or implemented with the switch fabric 146 in some embodi-
ments. Where multiple storage clusters 161 occupy a rack,
the communications interconnect 173 can be included in or
implemented with a top of rack switch, in some embodi-
ments. As illustrated in FIG. 2B, storage cluster 161 is
enclosed within a single chassis 138. External port 176 is
coupled to storage nodes 150 through communications inter-
connect 173, while external port 174 is coupled directly to
a storage node. External power port 178 is coupled to power
distribution bus 172. Storage nodes 150 may include varying
amounts and differing capacities of non-volatile solid state
storage 152 as described with reference to FIG. 2A. In
addition, one or more storage nodes 150 may be a compute
only storage node as illustrated in FIG. 2B. Authorities 168
are implemented on the non-volatile solid state storages 152,
for example as lists or other data structures stored in
memory. In some embodiments the authorities are stored
within the non-volatile solid state storage 152 and supported
by software executing on a controller or other processor of
the non-volatile solid state storage 152. In a further embodi-
ment, authorities 168 are implemented on the storage nodes
150, for example as lists or other data structures stored in the
memory 154 and supported by software executing on the
CPU 156 of the storage node 150. Authorities 168 control
how and where data is stored in the non-volatile solid state
storages 152 in some embodiments. This control assists in
determining which type of erasure coding scheme is applied
to the data, and which storage nodes 150 have which
portions of the data. Each authority 168 may be assigned to
a non-volatile solid state storage 152. Each authority may
control a range of inode numbers, segment numbers, or other
data identifiers which are assigned to data by a file system,
by the storage nodes 150, or by the non-volatile solid state
storage 152, in various embodiments.

[0076] Every piece of data, and every piece of metadata,
has redundancy in the system in some embodiments. In
addition, every piece of data and every piece of metadata has
an owner, which may be referred to as an authority. If that
authority is unreachable, for example through failure of a
storage node, there is a plan of succession for how to find
that data or that metadata. In various embodiments, there are
redundant copies of authorities 168. Authorities 168 have a
relationship to storage nodes 150 and non-volatile solid state
storage 152 in some embodiments. Each authority 168,
covering a range of data segment numbers or other identi-

Jul. 15, 2021

fiers of the data, may be assigned to a specific non-volatile
solid state storage 152. In some embodiments the authorities
168 for all of such ranges are distributed over the non-
volatile solid state storages 152 of a storage cluster. Each
storage node 150 has a network port that provides access to
the non-volatile solid state storage(s) 152 of that storage
node 150. Data can be stored in a segment, which is
associated with a segment number and that segment number
is an indirection for a configuration of a RAID (redundant
array of independent disks) stripe in some embodiments.
The assignment and use of the authorities 168 thus estab-
lishes an indirection to data. Indirection may be referred to
as the ability to reference data indirectly, in this case via an
authority 168, in accordance with some embodiments. A
segment identifies a set of non-volatile solid state storage
152 and a local identifier into the set of non-volatile solid
state storage 152 that may contain data. In some embodi-
ments, the local identifier is an offset into the device and may
be reused sequentially by multiple segments. In other
embodiments the local identifier is unique for a specific
segment and never reused. The offsets in the non-volatile
solid state storage 152 are applied to locating data for
writing to or reading from the non-volatile solid state storage
152 (in the form of a RAID stripe). Data is striped across
multiple units of non-volatile solid state storage 152, which
may include or be different from the non-volatile solid state
storage 152 having the authority 168 for a particular data
segment.

[0077] If there is a change in where a particular segment
of data is located, e.g., during a data move or a data
reconstruction, the authority 168 for that data segment
should be consulted, at that non-volatile solid state storage
152 or storage node 150 having that authority 168. In order
to locate a particular piece of data, embodiments calculate a
hash value for a data segment or apply an inode number or
a data segment number. The output of this operation points
to a non-volatile solid state storage 152 having the authority
168 for that particular piece of data. In some embodiments
there are two stages to this operation. The first stage maps an
entity identifier (ID), e.g., a segment number, inode number,
or directory number to an authority identifier. This mapping
may include a calculation such as a hash or a bit mask. The
second stage is mapping the authority identifier to a par-
ticular non-volatile solid state storage 152, which may be
done through an explicit mapping. The operation is repeat-
able, so that when the calculation is performed, the result of
the calculation repeatably and reliably points to a particular
non-volatile solid state storage 152 having that authority
168. The operation may include the set of reachable storage
nodes as input. If the set of reachable non-volatile solid state
storage units changes the optimal set changes. In some
embodiments, the persisted value is the current assignment
(which is always true) and the calculated value is the target
assignment the cluster will attempt to reconfigure towards.
This calculation may be used to determine the optimal
non-volatile solid state storage 152 for an authority in the
presence of a set of non-volatile solid state storage 152 that
are reachable and constitute the same cluster. The calcula-
tion also determines an ordered set of peer non-volatile solid
state storage 152 that will also record the authority to
non-volatile solid state storage mapping so that the authority
may be determined even if the assigned non-volatile solid
state storage is unreachable. A duplicate or substitute author-

US 2021/0216478 Al

ity 168 may be consulted if a specific authority 168 is
unavailable in some embodiments.

[0078] With reference to FIG. 2A and 2B, two of the many
tasks of the CPU 156 on a storage node 150 are to break up
write data, and reassemble read data. When the system has
determined that data is to be written, the authority 168 for
that data is located as above. When the segment ID for data
is already determined the request to write is forwarded to the
non-volatile solid state storage 152 currently determined to
be the host of the authority 168 determined from the
segment. The host CPU 156 of the storage node 150, on
which the non-volatile solid state storage 152 and corre-
sponding authority 168 reside, then breaks up or shards the
data and transmits the data out to various non-volatile solid
state storage 152. The transmitted data is written as a data
stripe in accordance with an erasure coding scheme. In some
embodiments, data is requested to be pulled, and in other
embodiments, data is pushed. In reverse, when data is read,
the authority 168 for the segment ID containing the data is
located as described above. The host CPU 156 of the storage
node 150 on which the non-volatile solid state storage 152
and corresponding authority 168 reside requests the data
from the non-volatile solid state storage and corresponding
storage nodes pointed to by the authority. In some embodi-
ments the data is read from flash storage as a data stripe. The
host CPU 156 of storage node 150 then reassembles the read
data, correcting any errors (if present) according to the
appropriate erasure coding scheme, and forwards the reas-
sembled data to the network. In further embodiments, some
or all of these tasks can be handled in the non-volatile solid
state storage 152. In some embodiments, the segment host
requests the data be sent to storage node 150 by requesting
pages from storage and then sending the data to the storage
node making the original request.

[0079] In some systems, for example in UNIX-style file
systems, data is handled with an index node or inode, which
specifies a data structure that represents an object in a file
system. The object could be a file or a directory, for example.
Metadata may accompany the object, as attributes such as
permission data and a creation timestamp, among other
attributes. A segment number could be assigned to all or a
portion of such an object in a file system. In other systems,
data segments are handled with a segment number assigned
elsewhere. For purposes of discussion, the unit of distribu-
tion is an entity, and an entity can be a file, a directory or a
segment. That is, entities are units of data or metadata stored
by a storage system. Entities are grouped into sets called
authorities. Each authority has an authority owner, which is
a storage node that has the exclusive right to update the
entities in the authority. In other words, a storage node
contains the authority, and that the authority, in turn, con-
tains entities.

[0080] A segment is a logical container of data in accor-
dance with some embodiments. A segment is an address
space between medium address space and physical flash
locations, i.e., the data segment number, are in this address
space. Segments may also contain meta-data, which enable
data redundancy to be restored (rewritten to different flash
locations or devices) without the involvement of higher level
software. In one embodiment, an internal format of a seg-
ment contains client data and medium mappings to deter-
mine the position of that data. Each data segment is pro-
tected, e.g., from memory and other failures, by breaking the
segment into a number of data and parity shards, where

Jul. 15, 2021

applicable. The data and parity shards are distributed, i.e.,
striped, across non-volatile solid state storage 152 coupled
to the host CPUs 156 (See FIGS. 2E and 2G) in accordance
with an erasure coding scheme. Usage of the term segments
refers to the container and its place in the address space of
segments in some embodiments. Usage of the term stripe
refers to the same set of shards as a segment and includes
how the shards are distributed along with redundancy or
parity information in accordance with some embodiments.

[0081] A series of address-space transformations takes
place across an entire storage system. At the top are the
directory entries (file names) which link to an inode. Inodes
point into medium address space, where data is logically
stored. Medium addresses may be mapped through a series
of indirect mediums to spread the load of large files, or
implement data services like deduplication or snapshots.
Medium addresses may be mapped through a series of
indirect mediums to spread the load of large files, or
implement data services like deduplication or snapshots.
Segment addresses are then translated into physical flash
locations. Physical flash locations have an address range
bounded by the amount of flash in the system in accordance
with some embodiments. Medium addresses and segment
addresses are logical containers, and in some embodiments
use a 128 bit or larger identifier so as to be practically
infinite, with a likelihood of reuse calculated as longer than
the expected life of the system. Addresses from logical
containers are allocated in a hierarchical fashion in some
embodiments. Initially, each non-volatile solid state storage
unit 152 may be assigned a range of address space. Within
this assigned range, the non-volatile solid state storage 152
is able to allocate addresses without synchronization with
other non-volatile solid state storage 152.

[0082] Data and metadata is stored by a set of underlying
storage layouts that are optimized for varying workload
patterns and storage devices. These layouts incorporate
multiple redundancy schemes, compression formats and
index algorithms. Some of these layouts store information
about authorities and authority masters, while others store
file metadata and file data. The redundancy schemes include
error correction codes that tolerate corrupted bits within a
single storage device (such as a NAND flash chip), erasure
codes that tolerate the failure of multiple storage nodes, and
replication schemes that tolerate data center or regional
failures. In some embodiments, low density parity check
(‘LDPC’) code is used within a single storage unit. Reed-
Solomon encoding is used within a storage cluster, and
mirroring is used within a storage grid in some embodi-
ments. Metadata may be stored using an ordered log struc-
tured index (such as a Log Structured Merge Tree), and large
data may not be stored in a log structured layout.

[0083] In order to maintain consistency across multiple
copies of an entity, the storage nodes agree implicitly on two
things through calculations: (1) the authority that contains
the entity, and (2) the storage node that contains the author-
ity. The assignment of entities to authorities can be done by
pseudo randomly assigning entities to authorities, by split-
ting entities into ranges based upon an externally produced
key, or by placing a single entity into each authority.
Examples of pseudorandom schemes are linear hashing and
the Replication Under Scalable Hashing (‘RUSH”) family of
hashes, including Controlled Replication Under Scalable
Hashing (‘CRUSH’). In some embodiments, pseudo-ran-
dom assignment is utilized only for assigning authorities to

US 2021/0216478 Al

nodes because the set of nodes can change. The set of
authorities cannot change so any subjective function may be
applied in these embodiments. Some placement schemes
automatically place authorities on storage nodes, while other
placement schemes rely on an explicit mapping of authori-
ties to storage nodes. In some embodiments, a pseudoran-
dom scheme is utilized to map from each authority to a set
of candidate authority owners. A pseudorandom data distri-
bution function related to CRUSH may assign authorities to
storage nodes and create a list of where the authorities are
assigned. Each storage node has a copy of the pseudorandom
data distribution function, and can arrive at the same calcu-
lation for distributing, and later finding or locating an
authority. Each of the pseudorandom schemes requires the
reachable set of storage nodes as input in some embodiments
in order to conclude the same target nodes. Once an entity
has been placed in an authority, the entity may be stored on
physical devices so that no expected failure will lead to
unexpected data loss. In some embodiments, rebalancing
algorithms attempt to store the copies of all entities within
an authority in the same layout and on the same set of
machines.

[0084] Examples of expected failures include device fail-
ures, stolen machines, datacenter fires, and regional disas-
ters, such as nuclear or geological events. Different failures
lead to different levels of acceptable data loss. In some
embodiments, a stolen storage node impacts neither the
security nor the reliability of the system, while depending on
system configuration, a regional event could lead to no loss
of data, a few seconds or minutes of lost updates, or even
complete data loss.

[0085] In the embodiments, the placement of data for
storage redundancy is independent of the placement of
authorities for data consistency. In some embodiments,
storage nodes that contain authorities do not contain any
persistent storage. Instead, the storage nodes are connected
to non-volatile solid state storage units that do not contain
authorities. The communications interconnect between stor-
age nodes and non-volatile solid state storage units consists
of multiple communication technologies and has non-uni-
form performance and fault tolerance characteristics. In
some embodiments, as mentioned above, non-volatile solid
state storage units are connected to storage nodes via PCI
express, storage nodes are connected together within a
single chassis using Ethernet backplane, and chassis are
connected together to form a storage cluster. Storage clusters
are connected to clients using Ethernet or fiber channel in
some embodiments. If multiple storage clusters are config-
ured into a storage grid, the multiple storage clusters are
connected using the Internet or other long-distance network-
ing links, such as a “metro scale” link or private link that
does not traverse the internet.

[0086] Authority owners have the exclusive right to
modify entities, to migrate entities from one non-volatile
solid state storage unit to another non-volatile solid state
storage unit, and to add and remove copies of entities. This
allows for maintaining the redundancy of the underlying
data. When an authority owner fails, is going to be decom-
missioned, or is overloaded, the authority is transferred to a
new storage node. Transient failures make it non-trivial to
ensure that all non-faulty machines agree upon the new
authority location. The ambiguity that arises due to transient
failures can be achieved automatically by a consensus
protocol such as Paxos, hot-warm failover schemes, via

Jul. 15, 2021

manual intervention by a remote system administrator, or by
a local hardware administrator (such as by physically
removing the failed machine from the cluster, or pressing a
button on the failed machine). In some embodiments, a
consensus protocol is used, and failover is automatic. If too
many failures or replication events occur in too short a time
period, the system goes into a self-preservation mode and
halts replication and data movement activities until an
administrator intervenes in accordance with some embodi-
ments.

[0087] As authorities are transferred between storage
nodes and authority owners update entities in their authori-
ties, the system transfers messages between the storage
nodes and non-volatile solid state storage units. With regard
to persistent messages, messages that have different pur-
poses are of different types. Depending on the type of the
message, the system maintains different ordering and dura-
bility guarantees. As the persistent messages are being
processed, the messages are temporarily stored in multiple
durable and non-durable storage hardware technologies. In
some embodiments, messages are stored in RAM, NVRAM
and on NAND flash devices, and a variety of protocols are
used in order to make efficient use of each storage medium.
Latency-sensitive client requests may be persisted in repli-
cated NVRAM, and then later NAND, while background
rebalancing operations are persisted directly to NAND.
[0088] Persistent messages are persistently stored prior to
being transmitted. This allows the system to continue to
serve client requests despite failures and component replace-
ment. Although many hardware components contain unique
identifiers that are visible to system administrators, manu-
facturer, hardware supply chain and ongoing monitoring
quality control infrastructure, applications running on top of
the infrastructure address virtualize addresses. These virtu-
alized addresses do not change over the lifetime of the
storage system, regardless of component failures and
replacements. This allows each component of the storage
system to be replaced over time without reconfiguration or
disruptions of client request processing, i.e., the system
supports non-disruptive upgrades.

[0089] Insome embodiments, the virtualized addresses are
stored with sufficient redundancy. A continuous monitoring
system correlates hardware and software status and the
hardware identifiers. This allows detection and prediction of
failures due to faulty components and manufacturing details.
The monitoring system also enables the proactive transfer of
authorities and entities away from impacted devices before
failure occurs by removing the component from the critical
path in some embodiments.

[0090] FIG. 2C is a multiple level block diagram, showing
contents of a storage node 150 and contents of a non-volatile
solid state storage 152 of the storage node 150. Data is
communicated to and from the storage node 150 by a
network interface controller (‘NIC”) 202 in some embodi-
ments. Each storage node 150 has a CPU 156, and one or
more non-volatile solid state storage 152, as discussed
above. Moving down one level in FIG. 2C, each non-volatile
solid state storage 152 has a relatively fast non-volatile solid
state memory, such as nonvolatile random access memory
(‘NVRAM”) 204, and flash memory 206. In some embodi-
ments, NVRAM 204 may be a component that does not
require program/erase cycles (DRAM, MRAM, PCM), and
can be a memory that can support being written vastly more
often than the memory is read from. Moving down another

US 2021/0216478 Al

level in FIG. 2C, the NVRAM 204 is implemented in one
embodiment as high speed volatile memory, such as
dynamic random access memory (DRAM) 216, backed up
by energy reserve 218. Energy reserve 218 provides suffi-
cient electrical power to keep the DRAM 216 powered long
enough for contents to be transferred to the flash memory
206 in the event of power failure. In some embodiments,
energy reserve 218 is a capacitor, super-capacitor, battery, or
other device, that supplies a suitable supply of energy
sufficient to enable the transfer of the contents of DRAM
216 to a stable storage medium in the case of power loss.
The flash memory 206 is implemented as multiple flash dies
222, which may be referred to as packages of flash dies 222
or an array of flash dies 222. It should be appreciated that the
flash dies 222 could be packaged in any number of ways,
with a single die per package, multiple dies per package (i.e.
multichip packages), in hybrid packages, as bare dies on a
printed circuit board or other substrate, as encapsulated dies,
etc. In the embodiment shown, the non-volatile solid state
storage 152 has a controller 212 or other processor, and an
input output (I/O) port 210 coupled to the controller 212. I/O
port 210 is coupled to the CPU 156 and/or the network
interface controller 202 of the flash storage node 150. Flash
input output (I/O) port 220 is coupled to the flash dies 222,
and a direct memory access unit (DMA) 214 is coupled to
the controller 212, the DRAM 216 and the flash dies 222. In
the embodiment shown, the I/O port 210, controller 212,
DMA unit 214 and flash I/O port 220 are implemented on a
programmable logic device (‘PLD’) 208, e.g., an FPGA. In
this embodiment, each flash die 222 has pages, organized as
sixteen kB (kilobyte) pages 224, and a register 226 through
which data can be written to or read from the flash die 222.
In further embodiments, other types of solid-state memory
are used in place of, or in addition to flash memory illus-
trated within flash die 222.

[0091] Storage clusters 161, in various embodiments as
disclosed herein, can be contrasted with storage arrays in
general. The storage nodes 150 are part of a collection that
creates the storage cluster 161. Each storage node 150 owns
a slice of data and computing required to provide the data.
Multiple storage nodes 150 cooperate to store and retrieve
the data. Storage memory or storage devices, as used in
storage arrays in general, are less involved with processing
and manipulating the data. Storage memory or storage
devices in a storage array receive commands to read, write,
or erase data. The storage memory or storage devices in a
storage array are not aware of a larger system in which they
are embedded, or what the data means. Storage memory or
storage devices in storage arrays can include various types
of storage memory, such as RAM, solid state drives, hard
disk drives, etc. The storage units 152 described herein have
multiple interfaces active simultaneously and serving mul-
tiple purposes. In some embodiments, some of the function-
ality of a storage node 150 is shifted into a storage unit 152,
transforming the storage unit 152 into a combination of
storage unit 152 and storage node 150. Placing computing
(relative to storage data) into the storage unit 152 places this
computing closer to the data itself. The various system
embodiments have a hierarchy of storage node layers with
different capabilities. By contrast, in a storage array, a
controller owns and knows everything about all of the data
that the controller manages in a shelf or storage devices. In
a storage cluster 161, as described herein, multiple control-
lers in multiple storage units 152 and/or storage nodes 150

Jul. 15, 2021

cooperate in various ways (e.g., for erasure coding, data
sharding, metadata communication and redundancy, storage
capacity expansion or contraction, data recovery, and so on).
[0092] FIG. 2D shows a storage server environment,
which uses embodiments of the storage nodes 150 and
storage units 152 of FIGS. 2A-C. In this version, each
storage unit 152 has a processor such as controller 212 (see
FIG. 2C), an FPGA, flash memory 206, and NVRAM 204
(which is super-capacitor backed DRAM 216, see FIGS. 2B
and 2C) on a PCle (peripheral component interconnect
express) board in a chassis 138 (see FIG. 2A). The storage
unit 152 may be implemented as a single board containing
storage, and may be the largest tolerable failure domain
inside the chassis. In some embodiments, up to two storage
units 152 may fail and the device will continue with no data
loss.

[0093] The physical storage is divided into named regions
based on application usage in some embodiments. The
NVRAM 204 is a contiguous block of reserved memory in
the storage unit 152 DRAM 216, and is backed by NAND
flash. NVRAM 204 is logically divided into multiple
memory regions written for two as spool (e.g., spool_
region). Space within the NVRAM 204 spools is managed
by each authority 168 independently. Each device provides
an amount of storage space to each authority 168. That
authority 168 further manages lifetimes and allocations
within that space. Examples of a spool include distributed
transactions or notions. When the primary power to a storage
unit 152 fails, onboard super-capacitors provide a short
duration of power hold up. During this holdup interval, the
contents of the NVRAM 204 are flushed to flash memory
206. On the next power-on, the contents of the NVRAM 204
are recovered from the flash memory 206.

[0094] As for the storage unit controller, the responsibility
of the logical “controller” is distributed across each of the
blades containing authorities 168. This distribution of logi-
cal control is shown in FIG. 2D as a host controller 242,
mid-tier controller 244 and storage unit controller(s) 246.
Management of the control plane and the storage plane are
treated independently, although parts may be physically
co-located on the same blade. Each authority 168 effectively
serves as an independent controller. Each authority 168
provides its own data and metadata structures, its own
background workers, and maintains its own lifecycle.
[0095] FIG. 2E is a blade 252 hardware block diagram,
showing a control plane 254, compute and storage planes
256, 258, and authorities 168 interacting with underlying
physical resources, using embodiments of the storage nodes
150 and storage units 152 of FIGS. 2A-C in the storage
server environment of FIG. 2D. The control plane 254 is
partitioned into a number of authorities 168 which can use
the compute resources in the compute plane 256 to run on
any of the blades 252. The storage plane 258 is partitioned
into a set of devices, each of which provides access to flash
206 and NVRAM 204 resources. In one embodiment, the
compute plane 256 may perform the operations of a storage
array controller, as described herein, on one or more devices
of the storage plane 258 (e.g., a storage array).

[0096] Inthe compute and storage planes 256, 258 of FIG.
2E, the authorities 168 interact with the underlying physical
resources (i.e., devices). From the point of view of an
authority 168, its resources are striped over all of the
physical devices. From the point of view of a device, it
provides resources to all authorities 168, irrespective of

US 2021/0216478 Al

where the authorities happen to run. Each authority 168 has
allocated or has been allocated one or more partitions 260 of
storage memory in the storage units 152, e.g. partitions 260
in flash memory 206 and NVRAM 204. Each authority 168
uses those allocated partitions 260 that belong to it, for
writing or reading user data. Authorities can be associated
with differing amounts of physical storage of the system. For
example, one authority 168 could have a larger number of
partitions 260 or larger sized partitions 260 in one or more
storage units 152 than one or more other authorities 168.
[0097] FIG. 2F depicts elasticity software layers in blades
252 of a storage cluster, in accordance with some embodi-
ments. In the elasticity structure, elasticity software is sym-
metric, i.e., each blade’s compute module 270 runs the three
identical layers of processes depicted in FIG. 2F. Storage
managers 274 execute read and write requests from other
blades 252 for data and metadata stored in local storage unit
152 NVRAM 204 and flash 206. Authorities 168 fulfill client
requests by issuing the necessary reads and writes to the
blades 252 on whose storage units 152 the corresponding
data or metadata resides. Endpoints 272 parse client con-
nection requests received from switch fabric 146 supervi-
sory software, relay the client connection requests to the
authorities 168 responsible for fulfillment, and relay the
authorities” 168 responses to clients. The symmetric three-
layer structure enables the storage system’s high degree of
concurrency. Elasticity scales out efficiently and reliably in
these embodiments. In addition, elasticity implements a
unique scale-out technique that balances work evenly across
all resources regardless of client access pattern, and maxi-
mizes concurrency by eliminating much of the need for
inter-blade coordination that typically occurs with conven-
tional distributed locking.

[0098] Still referring to FIG. 2F, authorities 168 running in
the compute modules 270 of a blade 252 perform the internal
operations required to fulfill client requests. One feature of
elasticity is that authorities 168 are stateless, i.e., they cache
active data and metadata in their own blades’ 252 DRAMs
for fast access, but the authorities store every update in their
NVRAM 204 partitions on three separate blades 252 until
the update has been written to flash 206. All the storage
system writes to NVRAM 204 are in triplicate to partitions
on three separate blades 252 in some embodiments. With
triple-mirrored NVRAM 204 and persistent storage pro-
tected by parity and Reed-Solomon RAID checksums, the
storage system can survive concurrent failure of two blades
252 with no loss of data, metadata, or access to either.
[0099] Because authorities 168 are stateless, they can
migrate between blades 252. Each authority 168 has a
unique identifier. NVRAM 204 and flash 206 partitions are
associated with authorities’ 168 identifiers, not with the
blades 252 on which they are running in some. Thus, when
an authority 168 migrates, the authority 168 continues to
manage the same storage partitions from its new location.
When a new blade 252 is installed in an embodiment of the
storage cluster, the system automatically rebalances load by:
partitioning the new blade’s 252 storage for use by the
system’s authorities 168, migrating selected authorities 168
to the new blade 252, starting endpoints 272 on the new
blade 252 and including them in the switch fabric’s 146
client connection distribution algorithm.

[0100] From their new locations, migrated authorities 168
persist the contents of their NVRAM 204 partitions on flash
206, process read and write requests from other authorities

Jul. 15, 2021

168, and fulfill the client requests that endpoints 272 direct
to them. Similarly, if a blade 252 fails or is removed, the
system redistributes its authorities 168 among the system’s
remaining blades 252. The redistributed authorities 168
continue to perform their original functions from their new
locations.

[0101] FIG. 2G depicts authorities 168 and storage
resources in blades 252 of a storage cluster, in accordance
with some embodiments. Each authority 168 is exclusively
responsible for a partition of the flash 206 and NVRAM 204
on each blade 252. The authority 168 manages the content
and integrity of its partitions independently of other authori-
ties 168. Authorities 168 compress incoming data and pre-
serve it temporarily in their NVRAM 204 partitions, and
then consolidate, RAID-protect, and persist the data in
segments of the storage in their flash 206 partitions. As the
authorities 168 write data to flash 206, storage managers 274
perform the necessary flash translation to optimize write
performance and maximize media longevity. In the back-
ground, authorities 168 “garbage collect,” or reclaim space
occupied by data that clients have made obsolete by over-
writing the data. It should be appreciated that since authori-
ties’ 168 partitions are disjoint, there is no need for distrib-
uted locking to execute client and writes or to perform
background functions.

[0102] The embodiments described herein may utilize
various software, communication and/or networking proto-
cols. In addition, the configuration of the hardware and/or
software may be adjusted to accommodate various proto-
cols. For example, the embodiments may utilize Active
Directory, which is a database based system that provides
authentication, directory, policy, and other services in a
WINDOWSTM environment. In these embodiments, LDAP
(Lightweight Directory Access Protocol) is one example
application protocol for querying and moditying items in
directory service providers such as Active Directory. In
some embodiments, a network lock manager (‘NLM’) is
utilized as a facility that works in cooperation with the
Network File System (‘NFS’) to provide a System V style of
advisory file and record locking over a network. The Server
Message Block (‘SMB’) protocol, one version of which is
also known as Common Internet File System (‘CIFS’), may
be integrated with the storage systems discussed herein.
SMP operates as an application-layer network protocol
typically used for providing shared access to files, printers,
and serial ports and miscellaneous communications between
nodes on a network. SMB also provides an authenticated
inter-process communication mechanism. AMAZON™ S3
(Simple Storage Service) is a web service offered by Ama-
zon Web Services, and the systems described herein may
interface with Amazon S3 through web services interfaces
(REST (representational state transfer), SOAP (simple
object access protocol), and BitTorrent). A RESTful API
(application programming interface) breaks down a trans-
action to create a series of small modules. Each module
addresses a particular underlying part of the transaction. The
control or permissions provided with these embodiments,
especially for object data, may include utilization of an
access control list (‘ACL’). The ACL is a list of permissions
attached to an object and the ACL specifies which users or
system processes are granted access to objects, as well as
what operations are allowed on given objects. The systems
may utilize Internet Protocol version 6 (‘IPv6”), as well as
IPv4, for the communications protocol that provides an

US 2021/0216478 Al

identification and location system for computers on net-
works and routes traffic across the Internet. The routing of
packets between networked systems may include Equal-cost
multi-path routing (‘ECMP’), which is a routing strategy
where next-hop packet forwarding to a single destination
can occur over multiple “best paths” which tie for top place
in routing metric calculations. Multi-path routing can be
used in conjunction with most routing protocols, because it
is a per-hop decision limited to a single router. The software
may support Multi-tenancy, which is an architecture in
which a single instance of a software application serves
multiple customers. Each customer may be referred to as a
tenant. Tenants may be given the ability to customize some
parts of the application, but may not customize the appli-
cation’s code, in some embodiments. The embodiments may
maintain audit logs. An audit log is a document that records
an event in a computing system. In addition to documenting
what resources were accessed, audit log entries typically
include destination and source addresses, a timestamp, and
user login information for compliance with various regula-
tions. The embodiments may support various key manage-
ment policies, such as encryption key rotation. In addition,
the system may support dynamic root passwords or some
variation dynamically changing passwords.

[0103] FIG. 3A sets forth a diagram of a storage system
306 that is coupled for data communications with a cloud
services provider 302 in accordance with some embodi-
ments of the present disclosure. Although depicted in less
detail, the storage system 306 depicted in FIG. 3A may be
similar to the storage systems described above with refer-
ence to FIGS. 1A-1D and FIGS. 2A-2G. In some embodi-
ments, the storage system 306 depicted in FIG. 3A may be
embodied as a storage system that includes imbalanced
active/active controllers, as a storage system that includes
balanced active/active controllers, as a storage system that
includes active/active controllers where less than all of each
controller’s resources are utilized such that each controller
has reserve resources that may be used to support failover,
as a storage system that includes fully active/active control-
lers, as a storage system that includes dataset-segregated
controllers, as a storage system that includes dual-layer
architectures with front-end controllers and back-end inte-
grated storage controllers, as a storage system that includes
scale-out clusters of dual-controller arrays, as well as com-
binations of such embodiments.

[0104] In the example depicted in FIG. 3A, the storage
system 306 is coupled to the cloud services provider 302 via
a data communications link 304. The data communications
link 304 may be embodied as a dedicated data communica-
tions link, as a data communications pathway that is pro-
vided through the use of one or data communications
networks such as a wide area network (‘WAN”) or LAN, or
as some other mechanism capable of transporting digital
information between the storage system 306 and the cloud
services provider 302. Such a data communications link 304
may be fully wired, fully wireless, or some aggregation of
wired and wireless data communications pathways. In such
an example, digital information may be exchanged between
the storage system 306 and the cloud services provider 302
via the data communications link 304 using one or more data
communications protocols. For example, digital information
may be exchanged between the storage system 306 and the
cloud services provider 302 via the data communications
link 304 using the handheld device transfer protocol

Jul. 15, 2021

(‘“HDTP?), hypertext transfer protocol (‘HTTP’), internet
protocol (‘IP’), real-time transfer protocol (‘RTP’), trans-
mission control protocol (“TCP’), user datagram protocol
(‘“UDP”), wireless application protocol (‘“WAP’), or other
protocol.

[0105] The cloud services provider 302 depicted in FIG.
3A may be embodied, for example, as a system and com-
puting environment that provides a vast array of services to
users of the cloud services provider 302 through the sharing
of computing resources via the data communications link
304. The cloud services provider 302 may provide on-
demand access to a shared pool of configurable computing
resources such as computer networks, servers, storage,
applications and services, and so on. The shared pool of
configurable resources may be rapidly provisioned and
released to a user of the cloud services provider 302 with
minimal management effort. Generally, the user of the cloud
services provider 302 is unaware of the exact computing
resources utilized by the cloud services provider 302 to
provide the services. Although in many cases such a cloud
services provider 302 may be accessible via the Internet,
readers of skill in the art will recognize that any system that
abstracts the use of shared resources to provide services to
a user through any data communications link may be con-
sidered a cloud services provider 302.

[0106] In the example depicted in FIG. 3A, the cloud
services provider 302 may be configured to provide a variety
of'services to the storage system 306 and users of the storage
system 306 through the implementation of various service
models. For example, the cloud services provider 302 may
be configured to provide services through the implementa-
tion of an infrastructure as a service (‘laaS”) service model,
through the implementation of a platform as a service
(‘PaaS’) service model, through the implementation of a
software as a service (‘SaaS’) service model, through the
implementation of an authentication as a service (‘AaaS’)
service model, through the implementation of a storage as a
service model where the cloud services provider 302 offers
access to its storage infrastructure for use by the storage
system 306 and users of the storage system 306, and so on.
Readers will appreciate that the cloud services provider 302
may be configured to provide additional services to the
storage system 306 and users of the storage system 306
through the implementation of additional service models, as
the service models described above are included only for
explanatory purposes and in no way represent a limitation of
the services that may be offered by the cloud services
provider 302 or a limitation as to the service models that
may be implemented by the cloud services provider 302.

[0107] In the example depicted in FIG. 3A, the cloud
services provider 302 may be embodied, for example, as a
private cloud, as a public cloud, or as a combination of a
private cloud and public cloud. In an embodiment in which
the cloud services provider 302 is embodied as a private
cloud, the cloud services provider 302 may be dedicated to
providing services to a single organization rather than pro-
viding services to multiple organizations. In an embodiment
where the cloud services provider 302 is embodied as a
public cloud, the cloud services provider 302 may provide
services to multiple organizations. In still alternative
embodiments, the cloud services provider 302 may be
embodied as a mix of a private and public cloud services
with a hybrid cloud deployment.

US 2021/0216478 Al

[0108] Although not explicitly depicted in FIG. 3A, read-
ers will appreciate that a vast amount of additional hardware
components and additional software components may be
necessary to facilitate the delivery of cloud services to the
storage system 306 and users of the storage system 306. For
example, the storage system 306 may be coupled to (or even
include) a cloud storage gateway. Such a cloud storage
gateway may be embodied, for example, as hardware-based
or software-based appliance that is located on premise with
the storage system 306. Such a cloud storage gateway may
operate as a bridge between local applications that are
executing on the storage array 306 and remote, cloud-based
storage that is utilized by the storage array 306. Through the
use of a cloud storage gateway, organizations may move
primary iSCSI or NAS to the cloud services provider 302,
thereby enabling the organization to save space on their
on-premises storage systems. Such a cloud storage gateway
may be configured to emulate a disk array, a block-based
device, a file server, or other storage system that can
translate the SCSI commands, file server commands, or
other appropriate command into REST-space protocols that
facilitate communications with the cloud services provider
302.

[0109] Inorder to enable the storage system 306 and users
of the storage system 306 to make use of the services
provided by the cloud services provider 302, a cloud migra-
tion process may take place during which data, applications,
or other elements from an organization’s local systems (or
even from another cloud environment) are moved to the
cloud services provider 302. In order to successfully migrate
data, applications, or other elements to the cloud services
provider’s 302 environment, middleware such as a cloud
migration tool may be utilized to bridge gaps between the
cloud services provider’s 302 environment and an organi-
zation’s environment. Such cloud migration tools may also
be configured to address potentially high network costs and
long transfer times associated with migrating large volumes
of data to the cloud services provider 302, as well as
addressing security concerns associated with sensitive data
to the cloud services provider 302 over data communications
networks. In order to further enable the storage system 306
and users of the storage system 306 to make use of the
services provided by the cloud services provider 302, a
cloud orchestrator may also be used to arrange and coordi-
nate automated tasks in pursuit of creating a consolidated
process or workflow. Such a cloud orchestrator may perform
tasks such as configuring various components, whether
those components are cloud components or on-premises
components, as well as managing the interconnections
between such components. The cloud orchestrator can sim-
plify the inter-component communication and connections
to ensure that links are correctly configured and maintained.

[0110] In the example depicted in FIG. 3A, and as
described briefly above, the cloud services provider 302 may
be configured to provide services to the storage system 306
and users of the storage system 306 through the usage of a
SaaS service model, eliminating the need to install and run
the application on local computers, which may simplify
maintenance and support of the application. Such applica-
tions may take many forms in accordance with various
embodiments of the present disclosure. For example, the
cloud services provider 302 may be configured to provide
access to data analytics applications to the storage system
306 and users of the storage system 306. Such data analytics

Jul. 15, 2021

applications may be configured, for example, to receive vast
amounts of telemetry data phoned home by the storage
system 306. Such telemetry data may describe various
operating characteristics of the storage system 306 and may
be analyzed for a vast array of purposes including, for
example, to determine the health of the storage system 306,
to identify workloads that are executing on the storage
system 306, to predict when the storage system 306 will run
out of various resources, to recommend configuration
changes, hardware or software upgrades, workflow migra-
tions, or other actions that may improve the operation of the
storage system 306.

[0111] The cloud services provider 302 may also be con-
figured to provide access to virtualized computing environ-
ments to the storage system 306 and users of the storage
system 306. Such virtualized computing environments may
be embodied, for example, as a virtual machine or other
virtualized computer hardware platforms, virtual storage
devices, virtualized computer network resources, and so on.
Examples of such virtualized environments can include
virtual machines that are created to emulate an actual
computer, virtualized desktop environments that separate a
logical desktop from a physical machine, virtualized file
systems that allow uniform access to different types of
concrete file systems, and many others.

[0112] For further explanation, FIG. 3B sets forth a dia-
gram of a storage system 306 in accordance with some
embodiments of the present disclosure. Although depicted in
less detail, the storage system 306 depicted in FIG. 3B may
be similar to the storage systems described above with
reference to FIGS. 1A-1D and FIGS. 2A-2G as the storage
system may include many of the components described
above.

[0113] The storage system 306 depicted in FIG. 3B may
include a vast amount of storage resources 308, which may
be embodied in many forms. For example, the storage
resources 308 can include nano-RAM or another form of
nonvolatile random access memory that utilizes carbon
nanotubes deposited on a substrate, 3D crosspoint non-
volatile memory, flash memory including single-level cell
(‘SLC’) NAND flash, multi-level cell (‘MLC’) NAND flash,
triple-level cell (“TLC’) NAND flash, quad-level cell
(‘QLC’) NAND flash, or others. Likewise, the storage
resources 308 may include non-volatile magnetoresistive
random-access memory (‘MRAM?”), including spin transfer
torque (‘STT’) MRAM. The example storage resources 308
may alternatively include non-volatile phase-change
memory (‘PCM’), quantum memory that allows for the
storage and retrieval of photonic quantum information,
resistive random-access memory (‘ReRAM”), storage class
memory (‘SCM’), or other form of storage resources,
including any combination of resources described herein.
Readers will appreciate that other forms of computer memo-
ries and storage devices may be utilized by the storage
systems described above, including DRAM, SRAM,
EEPROM, universal memory, and many others. The storage
resources 308 depicted in FIG. 3A may be embodied in a
variety of form factors, including but not limited to, dual
in-line memory modules (‘DIMMSs’), non-volatile dual in-
line memory modules (‘NVDIMMSs’), M.2, U.2, and others.
[0114] The storage resources 308 depicted in FIG. 3A may
include various forms of SCM. SCM may effectively treat
fast, non-volatile memory (e.g., NAND flash) as an exten-
sion of DRAM such that an entire dataset may be treated as

US 2021/0216478 Al

an in-memory dataset that resides entirely in DRAM. SCM
may include non-volatile media such as, for example,
NAND flash. Such NAND flash may be accessed utilizing
NVMe that can use the PCle bus as its transport, providing
for relatively low access latencies compared to older proto-
cols. In fact, the network protocols used for SSDs in all-flash
arrays can include NVMe using Ethernet (ROCE, NVME
TCP), Fibre Channel (NVMe FC), InfiniBand (iWARP), and
others that make it possible to treat fast, non-volatile
memory as an extension of DRAM. In view of the fact that
DRAM is often byte-addressable and fast, non-volatile
memory such as NAND flash is block-addressable, a con-
troller software/hardware stack may be needed to convert
the block data to the bytes that are stored in the media.
Examples of media and software that may be used as SCM
can include, for example, 3D XPoint, Intel Memory Drive
Technology, Samsung’s Z-SSD, and others.

[0115] The example storage system 306 depicted in FIG.
3B may implement a variety of storage architectures. For
example, storage systems in accordance with some embodi-
ments of the present disclosure may utilize block storage
where data is stored in blocks, and each block essentially
acts as an individual hard drive. Storage systems in accor-
dance with some embodiments of the present disclosure may
utilize object storage, where data is managed as objects.
Each object may include the data itself, a variable amount of
metadata, and a globally unique identifier, where object
storage can be implemented at multiple levels (e.g., device
level, system level, interface level). Storage systems in
accordance with some embodiments of the present disclo-
sure utilize file storage in which data is stored in a hierar-
chical structure. Such data may be saved in files and folders,
and presented to both the system storing it and the system
retrieving it in the same format.

[0116] The example storage system 306 depicted in FIG.
3B may be embodied as a storage system in which additional
storage resources can be added through the use of a scale-up
model, additional storage resources can be added through
the use of a scale-out model, or through some combination
thereof. In a scale-up model, additional storage may be
added by adding additional storage devices. In a scale-out
model, however, additional storage nodes may be added to
a cluster of storage nodes, where such storage nodes can
include additional processing resources, additional network-
ing resources, and so on.

[0117] The storage system 306 depicted in FIG. 3B also
includes communications resources 310 that may be useful
in facilitating data communications between components
within the storage system 306, as well as data communica-
tions between the storage system 306 and computing devices
that are outside of the storage system 306, including embodi-
ments where those resources are separated by a relatively
vast expanse. The communications resources 310 may be
configured to utilize a variety of different protocols and data
communication fabrics to facilitate data communications
between components within the storage systems as well as
computing devices that are outside of the storage system.
For example, the communications resources 310 can include
fibre channel (‘FC”) technologies such as FC fabrics and FC
protocols that can transport SCSI commands over FC net-
work, FC over ethernet (‘FCoE’) technologies through
which FC frames are encapsulated and transmitted over
Ethernet networks, InfiniBand (‘IB’) technologies in which
a switched fabric topology is utilized to facilitate transmis-

Jul. 15, 2021

sions between channel adapters, NVM Express (‘NVMe’)
technologies and NVMe over fabrics (‘NVMeoF”) technolo-
gies through which non-volatile storage media attached via
a PCI express (‘PCle’) bus may be accessed, and others. In
fact, the storage systems described above may, directly or
indirectly, make use of neutrino communication technolo-
gies and devices through which information (including
binary information) is transmitted using a beam of neutrinos.

[0118] The communications resources 310 can also
include mechanisms for accessing storage resources 308
within the storage system 306 utilizing serial attached SCSI
(‘SAS’), serial ATA (‘SATA’) bus interfaces for connecting
storage resources 308 within the storage system 306 to host
bus adapters within the storage system 306, internet small
computer systems interface (‘iISCSI’) technologies to pro-
vide block-level access to storage resources 308 within the
storage system 306, and other communications resources
that that may be useful in facilitating data communications
between components within the storage system 306, as well
as data communications between the storage system 306 and
computing devices that are outside of the storage system
306.

[0119] The storage system 306 depicted in FIG. 3B also
includes processing resources 312 that may be useful in
useful in executing computer program instructions and per-
forming other computational tasks within the storage system
306. The processing resources 312 may include one or more
ASICs that are customized for some particular purpose as
well as one or more CPUs. The processing resources 312
may also include one or more DSPs, one or more FPGAs,
one or more systems on a chip (‘SoCs’), or other form of
processing resources 312. The storage system 306 may
utilize the storage resources 312 to perform a variety of tasks
including, but not limited to, supporting the execution of
software resources 314 that will be described in greater
detail below.

[0120] The storage system 306 depicted in FIG. 3B also
includes software resources 314 that, when executed by
processing resources 312 within the storage system 306,
may perform a vast array of tasks. The software resources
314 may include, for example, one or more modules of
computer program instructions that when executed by pro-
cessing resources 312 within the storage system 306 are
useful in carrying out various data protection techniques to
preserve the integrity of data that is stored within the storage
systems. Readers will appreciate that such data protection
techniques may be carried out, for example, by system
software executing on computer hardware within the storage
system, by a cloud services provider, or in other ways. Such
data protection techniques can include, for example, data
archiving techniques that cause data that is no longer
actively used to be moved to a separate storage device or
separate storage system for long-term retention, data backup
techniques through which data stored in the storage system
may be copied and stored in a distinct location to avoid data
loss in the event of equipment failure or some other form of
catastrophe with the storage system, data replication tech-
niques through which data stored in the storage system is
replicated to another storage system such that the data may
be accessible via multiple storage systems, data snapshotting
techniques through which the state of data within the storage
system is captured at various points in time, data and

US 2021/0216478 Al

database cloning techniques through which duplicate copies
of data and databases may be created, and other data
protection techniques.

[0121] The software resources 314 may also include soft-
ware that is useful in implementing software-defined storage
(‘SDS’). In such an example, the software resources 314
may include one or more modules of computer program
instructions that, when executed, are useful in policy-based
provisioning and management of data storage that is inde-
pendent of the underlying hardware. Such software
resources 314 may be useful in implementing storage vir-
tualization to separate the storage hardware from the soft-
ware that manages the storage hardware.

[0122] The software resources 314 may also include soft-
ware that is useful in facilitating and optimizing I/O opera-
tions that are directed to the storage resources 308 in the
storage system 306. For example, the software resources 314
may include software modules that perform carry out vari-
ous data reduction techniques such as, for example, data
compression, data deduplication, and others. The software
resources 314 may include software modules that intelli-
gently group together 1/O operations to facilitate better
usage of the underlying storage resource 308, software
modules that perform data migration operations to migrate
from within a storage system, as well as software modules
that perform other functions. Such software resources 314
may be embodied as one or more software containers or in
many other ways.

[0123] For further explanation, FIG. 3C sets forth an
example of a cloud-based storage system 318 in accordance
with some embodiments of the present disclosure. In the
example depicted in FIG. 3C, the cloud-based storage sys-
tem 318 is created entirely in a cloud computing environ-
ment 316 such as, for example, Amazon Web Services
(‘AWS”), Microsoft Azure, Google Cloud Platform, IBM
Cloud, Oracle Cloud, and others. The cloud-based storage
system 318 may be used to provide services similar to the
services that may be provided by the storage systems
described above. For example, the cloud-based storage
system 318 may be used to provide block storage services to
users of the cloud-based storage system 318, the cloud-
based storage system 318 may be used to provide storage
services to users of the cloud-based storage system 318
through the use of solid-state storage, and so on.

[0124] The cloud-based storage system 318 depicted in
FIG. 3C includes two cloud computing instances 320, 322
that each are used to support the execution of a storage
controller application 324, 326. The cloud computing
instances 320, 322 may be embodied, for example, as
instances of cloud computing resources (e.g., virtual
machines) that may be provided by the cloud computing
environment 316 to support the execution of software appli-
cations such as the storage controller application 324, 326.
In one embodiment, the cloud computing instances 320, 322
may be embodied as Amazon Elastic Compute Cloud
(‘EC2’) instances. In such an example, an Amazon Machine
Image (‘AMI’) that includes the storage controller applica-
tion 324, 326 may be booted to create and configure a virtual
machine that may execute the storage controller application
324, 326.

[0125] In the example method depicted in FIG. 3C, the
storage controller application 324, 326 may be embodied as
a module of computer program instructions that, when
executed, carries out various storage tasks. For example, the

Jul. 15, 2021

storage controller application 324, 326 may be embodied as
a module of computer program instructions that, when
executed, carries out the same tasks as the controllers 110A,
1108 in FIG. 1 A described above such as writing data
received from the users of the cloud-based storage system
318 to the cloud-based storage system 318, erasing data
from the cloud-based storage system 318, retrieving data
from the cloud-based storage system 318 and providing such
data to users of the cloud-based storage system 318, moni-
toring and reporting of disk utilization and performance,
performing redundancy operations, such as RAID or RAID-
like data redundancy operations, compressing data, encrypt-
ing data, deduplicating data, and so forth. Readers will
appreciate that because there are two cloud computing
instances 320, 322 that each include the storage controller
application 324, 326, in some embodiments one cloud
computing instance 320 may operate as the primary con-
troller as described above while the other cloud computing
instance 322 may operate as the secondary controller as
described above. Readers will appreciate that the storage
controller application 324, 326 depicted in FIG. 3C may
include identical source code that is executed within differ-
ent cloud computing instances 320, 322.

[0126] Consider an example in which the cloud computing
environment 316 is embodied as AWS and the cloud com-
puting instances are embodied as EC2 instances. In such an
example, the cloud computing instance 320 that operates as
the primary controller may be deployed on one of the
instance types that has a relatively large amount of memory
and processing power while the cloud computing instance
322 that operates as the secondary controller may be
deployed on one of the instance types that has a relatively
small amount of memory and processing power. In such an
example, upon the occurrence of a failover event where the
roles of primary and secondary are switched, a double
failover may actually be carried out such that: 1) a first
failover event where the cloud computing instance 322 that
formerly operated as the secondary controller begins to
operate as the primary controller, and 2) a third cloud
computing instance (not shown) that is of an instance type
that has a relatively large amount of memory and processing
power is spun up with a copy of the storage controller
application, where the third cloud computing instance
begins operating as the primary controller while the cloud
computing instance 322 that originally operated as the
secondary controller begins operating as the secondary
controller again. In such an example, the cloud computing
instance 320 that formerly operated as the primary controller
may be terminated. Readers will appreciate that in alterna-
tive embodiments, the cloud computing instance 320 that is
operating as the secondary controller after the failover event
may continue to operate as the secondary controller and the
cloud computing instance 322 that operated as the primary
controller after the occurrence of the failover event may be
terminated once the primary role has been assumed by the
third cloud computing instance (not shown).

[0127] Readers will appreciate that while the embodi-
ments described above relate to embodiments where one
cloud computing instance 320 operates as the primary
controller and the second cloud computing instance 322
operates as the secondary controller, other embodiments are
within the scope of the present disclosure. For example, each
cloud computing instance 320, 322 may operate as a primary
controller for some portion of the address space supported

US 2021/0216478 Al

by the cloud-based storage system 318, each cloud comput-
ing instance 320, 322 may operate as a primary controller
where the servicing of 1/O operations directed to the cloud-
based storage system 318 are divided in some other way, and
so on. In fact, in other embodiments where costs savings
may be prioritized over performance demands, only a single
cloud computing instance may exist that contains the storage
controller application.

[0128] The cloud-based storage system 318 depicted in
FIG. 3C includes cloud computing instances 340a, 3405,
3407 with local storage 330, 334, 338. The cloud computing
instances 340a, 3405, 340n depicted in FIG. 3C may be
embodied, for example, as instances of cloud computing
resources that may be provided by the cloud computing
environment 316 to support the execution of software appli-
cations. The cloud computing instances 340a, 3405, 3407 of
FIG. 3C may differ from the cloud computing instances 320,
322 described above as the cloud computing instances 340q,
3405, 340n of FIG. 3C have local storage 330, 334, 338
resources whereas the cloud computing instances 320, 322
that support the execution of the storage controller applica-
tion 324, 326 need not have local storage resources. The
cloud computing instances 340q, 3405, 340n with local
storage 330, 334, 338 may be embodied, for example, as
EC2 MS5 instances that include one or more SSDs, as EC2
RS instances that include one or more SSDs, as EC2 13
instances that include one or more SSDs, and so on. In some
embodiments, the local storage 330, 334, 338 must be
embodied as solid-state storage (e.g., SSDs) rather than
storage that makes use of hard disk drives.

[0129] In the example depicted in FIG. 3C, each of the
cloud computing instances 340q, 3405, 340n with local
storage 330, 334, 338 can include a software daemon 328,
332, 336 that, when executed by a cloud computing instance
340q, 3405, 340n can present itself to the storage controller
applications 324, 326 as if the cloud computing instance
340q, 3405, 3402 were a physical storage device (e.g., one
or more SSDs). In such an example, the software daemon
328, 332, 336 may include computer program instructions
similar to those that would normally be contained on a
storage device such that the storage controller applications
324, 326 can send and receive the same commands that a
storage controller would send to storage devices. In such a
way, the storage controller applications 324, 326 may
include code that is identical to (or substantially identical to)
the code that would be executed by the controllers in the
storage systems described above. In these and similar
embodiments, communications between the storage control-
ler applications 324, 326 and the cloud computing instances
340a, 3405, 340n with local storage 330, 334, 338 may
utilize iISCSI, NVMe over TCP, messaging, a custom pro-
tocol, or in some other mechanism.

[0130] In the example depicted in FIG. 3C, each of the
cloud computing instances 340q, 3405, 340n with local
storage 330, 334, 338 may also be coupled to block-storage
342, 344, 346 that is offered by the cloud computing
environment 316. The block-storage 342, 344, 346 that is
offered by the cloud computing environment 316 may be
embodied, for example, as Amazon Elastic Block Store
(‘EBS’) volumes. For example, a first EBS volume may be
coupled to a first cloud computing instance 340q, a second
EBS volume may be coupled to a second cloud computing
instance 3405, and a third EBS volume may be coupled to
a third cloud computing instance 340%. In such an example,

Jul. 15, 2021

the block-storage 342, 344, 346 that is offered by the cloud
computing environment 316 may be utilized in a manner
that is similar to how the NVRAM devices described above
are utilized, as the software daemon 328, 332, 336 (or some
other module) that is executing within a particular cloud
comping instance 340q, 3405, 340» may, upon receiving a
request to write data, initiate a write of the data to its
attached EBS volume as well as a write of the data to its
local storage 330, 334, 338 resources. In some alternative
embodiments, data may only be written to the local storage
330, 334, 338 resources within a particular cloud comping
instance 340a, 3405, 340x. In an alternative embodiment,
rather than using the block-storage 342, 344, 346 that is
offered by the cloud computing environment 316 as
NVRAM, actual RAM on each of the cloud computing
instances 340q, 3405, 340, with local storage 330, 334, 338
may be used as NVRAM, thereby decreasing network
utilization costs that would be associated with using an EBS
volume as the NVRAM.

[0131] In the example depicted in FIG. 3C, the cloud
computing instances 340a, 3405, 340n with local storage
330, 334, 338 may be utilized, by cloud computing instances
320, 322 that support the execution of the storage controller
application 324, 326 to service /O operations that are
directed to the cloud-based storage system 318. Consider an
example in which a first cloud computing instance 320 that
is executing the storage controller application 324 is oper-
ating as the primary controller. In such an example, the first
cloud computing instance 320 that is executing the storage
controller application 324 may receive (directly or indirectly
via the secondary controller) requests to write data to the
cloud-based storage system 318 from users of the cloud-
based storage system 318. In such an example, the first cloud
computing instance 320 that is executing the storage con-
troller application 324 may perform various tasks such as,
for example, deduplicating the data contained in the request,
compressing the data contained in the request, determining
where to the write the data contained in the request, and so
on, before ultimately sending a request to write a dedupli-
cated, encrypted, or otherwise possibly updated version of
the data to one or more of the cloud computing instances
340q, 3405, 340 with local storage 330, 334, 338. Fither
cloud computing instance 320, 322, in some embodiments,
may receive a request to read data from the cloud-based
storage system 318 and may ultimately send a request to
read data to one or more of the cloud computing instances
340q, 3405, 340n with local storage 330, 334, 338.

[0132] Readers will appreciate that when a request to write
data is received by a particular cloud computing instance
340a, 3405, 340n with local storage 330, 334, 338, the
software daemon 328, 332, 336 or some other module of
computer program instructions that is executing on the
particular cloud computing instance 340q, 3405, 340r may
be configured to not only write the data to its own local
storage 330, 334, 338 resources and any appropriate block-
storage 342, 344, 346 that are offered by the cloud comput-
ing environment 316, but the software daemon 328, 332, 336
or some other module of computer program instructions that
is executing on the particular cloud computing instance
340q, 3405, 3402 may also be configured to write the data
to cloud-based object storage 348 that is attached to the
particular cloud computing instance 340a, 3406, 3407.. The
cloud-based object storage 348 that is attached to the par-
ticular cloud computing instance 340a, 3405, 340 may be

US 2021/0216478 Al

embodied, for example, as Amazon Simple Storage Service
(°S3”) storage that is accessible by the particular cloud
computing instance 340a, 3405, 3407z In other embodi-
ments, the cloud computing instances 320, 322 that each
include the storage controller application 324, 326 may
initiate the storage of the data in the local storage 330, 334,
338 of the cloud computing instances 340q, 3405, 3407 and
the cloud-based object storage 348.

[0133] Readers will appreciate that, as described above,
the cloud-based storage system 318 may be used to provide
block storage services to users of the cloud-based storage
system 318. While the local storage 330, 334, 338 resources
and the block-storage 342, 344, 346 resources that are
utilized by the cloud computing instances 340a, 3405, 340n
may support block-level access, the cloud-based object
storage 348 that is attached to the particular cloud comput-
ing instance 340qa, 3405, 340n supports only object-based
access. In order to address this, the software daemon 328,
332, 336 or some other module of computer program
instructions that is executing on the particular cloud com-
puting instance 340q, 3405, 340r may be configured to take
blocks of data, package those blocks into objects, and write
the objects to the cloud-based object storage 348 that is
attached to the particular cloud computing instance 340q,
3405, 340n.

[0134] Consider an example in which data is written to the
local storage 330, 334, 338 resources and the block-storage
342, 344, 346 resources that are utilized by the cloud
computing instances 340q, 3405, 3407 in 1 MB blocks. In
such an example, assume that a user of the cloud-based
storage system 318 issues a request to write data that, after
being compressed and deduplicated by the storage controller
application 324, 326 results in the need to write 5 MB of
data. In such an example, writing the data to the local storage
330, 334, 338 resources and the block-storage 342, 344, 346
resources that are utilized by the cloud computing instances
340a, 3405, 340n is relatively straightforward as 5 blocks
that are 1 MB in size are written to the local storage 330,
334, 338 resources and the block-storage 342, 344, 346
resources that are utilized by the cloud computing instances
340q, 3405, 3407. In such an example, the software daemon
328, 332, 336 or some other module of computer program
instructions that is executing on the particular cloud com-
puting instance 340q, 3405, 3407 may be configured to: 1)
create a first object that includes the first 1 MB of data and
write the first object to the cloud-based object storage 348,
2) create a second object that includes the second 1 MB of
data and write the second object to the cloud-based object
storage 348, 3) create a third object that includes the third 1
MB of data and write the third object to the cloud-based
object storage 348, and so on. As such, in some embodi-
ments, each object that is written to the cloud-based object
storage 348 may be identical (or nearly identical) in size.
Readers will appreciate that in such an example, metadata
that is associated with the data itself may be included in each
object (e.g., the first 1 MB of the object is data and the
remaining portion is metadata associated with the data).

[0135] Readers will appreciate that the cloud-based object
storage 348 may be incorporated into the cloud-based stor-
age system 318 to increase the durability of the cloud-based
storage system 318. Continuing with the example described
above where the cloud computing instances 340a, 3405,
340 are EC2 instances, readers will understand that EC2
instances are only guaranteed to have a monthly uptime of

Jul. 15, 2021

99.9% and data stored in the local instance store only
persists during the lifetime of the EC2 instance. As such,
relying on the cloud computing instances 340q, 3405, 340n
with local storage 330, 334, 338 as the only source of
persistent data storage in the cloud-based storage system 318
may result in a relatively unreliable storage system. Like-
wise, EBS volumes are designed for 99.999% availability.
As such, even relying on EBS as the persistent data store in
the cloud-based storage system 318 may result in a storage
system that is not sufficiently durable. Amazon S3, however,
is designed to provide 99.999999999% durability, meaning
that a cloud-based storage system 318 that can incorporate
S3 into its pool of storage is substantially more durable than
various other options.

[0136] Readers will appreciate that while a cloud-based
storage system 318 that can incorporate S3 into its pool of
storage is substantially more durable than various other
options, utilizing S3 as the primary pool of storage may
result in storage system that has relatively slow response
times and relatively long I/O latencies. As such, the cloud-
based storage system 318 depicted in FIG. 3C not only
stores data in S3 but the cloud-based storage system 318 also
stores data in local storage 330, 334, 338 resources and
block-storage 342, 344, 346 resources that are utilized by the
cloud computing instances 340a, 34056, 3407, such that read
operations can be serviced from local storage 330, 334, 338
resources and the block-storage 342, 344, 346 resources that
are utilized by the cloud computing instances 340a, 3405,
340n, thereby reducing read latency when users of the
cloud-based storage system 318 attempt to read data from
the cloud-based storage system 318.

[0137] In some embodiments, all data that is stored by the
cloud-based storage system 318 may be stored in both: 1) the
cloud-based object storage 348, and 2) at least one of the
local storage 330, 334, 338 resources or block-storage 342,
344, 346 resources that are utilized by the cloud computing
instances 340a, 3405, 340x. In such embodiments, the local
storage 330, 334, 338 resources and block-storage 342, 344,
346 resources that are utilized by the cloud computing
instances 340a, 3405, 340 may effectively operate as cache
that generally includes all data that is also stored in S3, such
that all reads of data may be serviced by the cloud comput-
ing instances 340a, 3405, 340 without requiring the cloud
computing instances 340a, 3405, 3407 to access the cloud-
based object storage 348. Readers will appreciate that in
other embodiments, however, all data that is stored by the
cloud-based storage system 318 may be stored in the cloud-
based object storage 348, but less than all data that is stored
by the cloud-based storage system 318 may be stored in at
least one of the local storage 330, 334, 338 resources or
block-storage 342, 344, 346 resources that are utilized by the
cloud computing instances 340a, 34056, 340z. In such an
example, various policies may be utilized to determine
which subset of the data that is stored by the cloud-based
storage system 318 should reside in both: 1) the cloud-based
object storage 348, and 2) at least one of the local storage
330, 334, 338 resources or block-storage 342, 344, 346
resources that are utilized by the cloud computing instances
3404, 3405, 340n.

[0138] As described above, when the cloud computing
instances 340q, 3405, 340, with local storage 330, 334, 338
are embodied as EC2 instances, the cloud computing
instances 340q, 3405, 340, with local storage 330, 334, 338
are only guaranteed to have a monthly uptime of 99.9% and

US 2021/0216478 Al

data stored in the local instance store only persists during the
lifetime of each cloud computing instance 340a, 3405, 340
with local storage 330, 334, 338. As such, one or more
modules of computer program instructions that are execut-
ing within the cloud-based storage system 318 (e.g., a
monitoring module that is executing on its own EC2
instance) may be designed to handle the failure of one or
more of the cloud computing instances 340a, 3405, 340n
with local storage 330, 334, 338. In such an example, the
monitoring module may handle the failure of one or more of
the cloud computing instances 340a, 3405, 340 with local
storage 330, 334, 338 by creating one or more new cloud
computing instances with local storage, retrieving data that
was stored on the failed cloud computing instances 340a,
3405, 340n from the cloud-based object storage 348, and
storing the data retrieved from the cloud-based object stor-
age 348 in local storage on the newly created cloud com-
puting instances. Readers will appreciate that many variants
of this process may be implemented.

[0139] Consider an example in which all cloud computing
instances 340q, 3405, 340, with local storage 330, 334, 338
failed. In such an example, the monitoring module may
create new cloud computing instances with local storage,
where high-bandwidth instances types are selected that
allow for the maximum data transfer rates between the
newly created high-bandwidth cloud computing instances
with local storage and the cloud-based object storage 348.
Readers will appreciate that instances types are selected that
allow for the maximum data transfer rates between the new
cloud computing instances and the cloud-based object stor-
age 348 such that the new high-bandwidth cloud computing
instances can be rehydrated with data from the cloud-based
object storage 348 as quickly as possible. Once the new
high-bandwidth cloud computing instances are rehydrated
with data from the cloud-based object storage 348, less
expensive lower-bandwidth cloud computing instances may
be created, data may be migrated to the less expensive
lower-bandwidth cloud computing instances, and the high-
bandwidth cloud computing instances may be terminated.

[0140] Readers will appreciate that in some embodiments,
the number of new cloud computing instances that are
created may substantially exceed the number of cloud com-
puting instances that are needed to locally store all of the
data stored by the cloud-based storage system 318. The
number of new cloud computing instances that are created
may substantially exceed the number of cloud computing
instances that are needed to locally store all of the data
stored by the cloud-based storage system 318 in order to
more rapidly pull data from the cloud-based object storage
348 and into the new cloud computing instances, as each
new cloud computing instance can (in parallel) retrieve
some portion of the data stored by the cloud-based storage
system 318. In such embodiments, once the data stored by
the cloud-based storage system 318 has been pulled into the
newly created cloud computing instances, the data may be
consolidated within a subset of the newly created cloud
computing instances and those newly created cloud com-
puting instances that are excessive may be terminated.

[0141] Consider an example in which 1000 cloud com-
puting instances are needed in order to locally store all valid
data that users of the cloud-based storage system 318 have
written to the cloud-based storage system 318. In such an
example, assume that all 1,000 cloud computing instances
fail. In such an example, the monitoring module may cause

Jul. 15, 2021

100,000 cloud computing instances to be created, where
each cloud computing instance is responsible for retrieving,
from the cloud-based object storage 348, distinct Yioo,000th
chunks of the valid data that users of the cloud-based storage
system 318 have written to the cloud-based storage system
318 and locally storing the distinct chunk of the dataset that
it retrieved. In such an example, because each of the 100,000
cloud computing instances can retrieve data from the cloud-
based object storage 348 in parallel, the caching layer may
be restored 100 times faster as compared to an embodiment
where the monitoring module only create 1000 replacement
cloud computing instances. In such an example, over time
the data that is stored locally in the 100,000 could be
consolidated into 1,000 cloud computing instances and the
remaining 99,000 cloud computing instances could be ter-
minated.

[0142] Readers will appreciate that various performance
aspects of the cloud-based storage system 318 may be
monitored (e.g., by a monitoring module that is executing in
an EC2 instance) such that the cloud-based storage system
318 can be scaled-up or scaled-out as needed. Consider an
example in which the monitoring module monitors the
performance of the could-based storage system 318 via
communications with one or more of the cloud computing
instances 320, 322 that each are used to support the execu-
tion of a storage controller application 324, 326, via moni-
toring communications between cloud computing instances
320, 322, 340q, 3405, 340, via monitoring communications
between cloud computing instances 320, 322, 340a, 3405,
3407 and the cloud-based object storage 348, or in some
other way. In such an example, assume that the monitoring
module determines that the cloud computing instances 320,
322 that are used to support the execution of a storage
controller application 324, 326 are undersized and not
sufficiently servicing the I/O requests that are issued by users
of the cloud-based storage system 318. In such an example,
the monitoring module may create a new, more powerful
cloud computing instance (e.g., a cloud computing instance
of a type that includes more processing power, more
memory, etc.) that includes the storage controller application
such that the new, more powerful cloud computing instance
can begin operating as the primary controller. Likewise, if
the monitoring module determines that the cloud computing
instances 320, 322 that are used to support the execution of
a storage controller application 324, 326 are oversized and
that cost savings could be gained by switching to a smaller,
less powerful cloud computing instance, the monitoring
module may create a new, less powerful (and less expensive)
cloud computing instance that includes the storage controller
application such that the new, less powerful cloud comput-
ing instance can begin operating as the primary controller.

[0143] Consider, as an additional example of dynamically
sizing the cloud-based storage system 318, an example in
which the monitoring module determines that the utilization
of'the local storage that is collectively provided by the cloud
computing instances 340a, 3405, 340x has reached a pre-
determined utilization threshold (e.g., 95%). In such an
example, the monitoring module may create additional
cloud computing instances with local storage to expand the
pool of local storage that is offered by the cloud computing
instances. Alternatively, the monitoring module may create
one or more new cloud computing instances that have larger
amounts of local storage than the already existing cloud
computing instances 340q, 3405, 3407, such that data stored

US 2021/0216478 Al

in an already existing cloud computing instance 340a, 3405,
3402 can be migrated to the one or more new cloud
computing instances and the already existing cloud comput-
ing instance 340qa, 3405, 340n can be terminated, thereby
expanding the pool of local storage that is offered by the
cloud computing instances. Likewise, if the pool of local
storage that is offered by the cloud computing instances is
unnecessarily large, data can be consolidated and some
cloud computing instances can be terminated.

[0144] Readers will appreciate that the cloud-based stor-
age system 318 may be sized up and down automatically by
a monitoring module applying a predetermined set of rules
that may be relatively simple of relatively complicated. In
fact, the monitoring module may not only take into account
the current state of the cloud-based storage system 318, but
the monitoring module may also apply predictive policies
that are based on, for example, observed behavior (e.g.,
every night from 10 PM until 6 AM usage of the storage
system is relatively light), predetermined fingerprints (e.g.,
every time a virtual desktop infrastructure adds 100 virtual
desktops, the number of IOPS directed to the storage system
increase by X), and so on. In such an example, the dynamic
scaling of the cloud-based storage system 318 may be based
on current performance metrics, predicted workloads, and
many other factors, including combinations thereof.

[0145] Readers will further appreciate that because the
cloud-based storage system 318 may be dynamically scaled,
the cloud-based storage system 318 may even operate in a
way that is more dynamic. Consider the example of garbage
collection. In a traditional storage system, the amount of
storage is fixed. As such, at some point the storage system
may be forced to perform garbage collection as the amount
of available storage has become so constrained that the
storage system is on the verge of running out of storage. In
contrast, the cloud-based storage system 318 described here
can always ‘add’ additional storage (e.g., by adding more
cloud computing instances with local storage). Because the
cloud-based storage system 318 described here can always
‘add’ additional storage, the cloud-based storage system 318
can make more intelligent decisions regarding when to
perform garbage collection. For example, the cloud-based
storage system 318 may implement a policy that garbage
collection only be performed when the number of 10PS
being serviced by the cloud-based storage system 318 falls
below a certain level. In some embodiments, other system-
level functions (e.g., deduplication, compression) may also
be turned off and on in response to system load, given that
the size of the cloud-based storage system 318 is not
constrained in the same way that traditional storage systems
are constrained.

[0146] Readers will appreciate that embodiments of the
present disclosure resolve an issue with block-storage ser-
vices offered by some cloud computing environments as
some cloud computing environments only allow for one
cloud computing instance to connect to a block-storage
volume at a single time. For example, in Amazon AWS, only
a single EC2 instance may be connected to an EBS volume.
Through the use of EC2 instances with local storage,
embodiments of the present disclosure can offer multi-
connect capabilities where multiple EC2 instances can con-
nect to another EC2 instance with local storage (‘a drive
instance’). In such embodiments, the drive instances may
include software executing within the drive instance that
allows the drive instance to support I/O directed to a

Jul. 15, 2021

particular volume from each connected EC2 instance. As
such, some embodiments of the present disclosure may be
embodied as multi-connect block storage services that may
not include all of the components depicted in FIG. 3C.

[0147] In some embodiments, especially in embodiments
where the cloud-based object storage 348 resources are
embodied as Amazon S3, the cloud-based storage system
318 may include one or more modules (e.g., a module of
computer program instructions executing on an EC2
instance) that are configured to ensure that when the local
storage of a particular cloud computing instance is rehy-
drated with data from S3, the appropriate data is actually in
S3. This issue arises largely because S3 implements an
eventual consistency model where, when overwriting an
existing object, reads of the object will eventually (but not
necessarily immediately) become consistent and will even-
tually (but not necessarily immediately) return the overwrit-
ten version of the object. To address this issue, in some
embodiments of the present disclosure, objects in S3 are
never overwritten. Instead, a traditional ‘overwrite’ would
result in the creation of the new object (that includes the
updated version of the data) and the eventual deletion of the
old object (that includes the previous version of the data).

[0148] In some embodiments of the present disclosure, as
part of an attempt to never (or almost never) overwrite an
object, when data is written to S3 the resultant object may
be tagged with a sequence number. In some embodiments,
these sequence numbers may be persisted elsewhere (e.g., in
a database) such that at any point in time, the sequence
number associated with the most up-to-date version of some
piece of data can be known. In such a way, a determination
can be made as to whether S3 has the most recent version of
some piece of data by merely reading the sequence number
associated with an object—and without actually reading the
data from S3. The ability to make this determination may be
particularly important when a cloud computing instance
with local storage crashes, as it would be undesirable to
rehydrate the local storage of a replacement cloud comput-
ing instance with out-of-date data. In fact, because the
cloud-based storage system 318 does not need to access the
data to verify its validity, the data can stay encrypted and
access charges can be avoided.

[0149] The storage systems described above may carry out
intelligent data backup techniques through which data stored
in the storage system may be copied and stored in a distinct
location to avoid data loss in the event of equipment failure
or some other form of catastrophe. For example, the storage
systems described above may be configured to examine each
backup to avoid restoring the storage system to an undesir-
able state. Consider an example in which malware infects
the storage system. In such an example, the storage system
may include software resources 314 that can scan each
backup to identify backups that were captured before the
malware infected the storage system and those backups that
were captured after the malware infected the storage system.
In such an example, the storage system may restore itself
from a backup that does not include the malware—or at least
not restore the portions of a backup that contained the
malware. In such an example, the storage system may
include software resources 314 that can scan each backup to
identify the presences of malware (or a virus, or some other
undesirable), for example, by identifying write operations
that were serviced by the storage system and originated from
a network subnet that is suspected to have delivered the

US 2021/0216478 Al

malware, by identifying write operations that were serviced
by the storage system and originated from a user that is
suspected to have delivered the malware, by identifying
write operations that were serviced by the storage system
and examining the content of the write operation against
fingerprints of the malware, and in many other ways.
[0150] Readers will further appreciate that the backups
(often in the form of one or more snapshots) may also be
utilized to perform rapid recovery of the storage system.
Consider an example in which the storage system is infected
with ransomware that locks users out of the storage system.
In such an example, software resources 314 within the
storage system may be configured to detect the presence of
ransomware and may be further configured to restore the
storage system to a point-in-time, using the retained back-
ups, prior to the point-in-time at which the ransomware
infected the storage system. In such an example, the pres-
ence of ransomware may be explicitly detected through the
use of software tools utilized by the system, through the use
of'a key (e.g., a USB drive) that is inserted into the storage
system, or in a similar way. Likewise, the presence of
ransomware may be inferred in response to system activity
meeting a predetermined fingerprint such as, for example, no
reads or writes coming into the system for a predetermined
period of time.

[0151] Readers will appreciate that the various compo-
nents described above may be grouped into one or more
optimized computing packages as converged infrastructures.
Such converged infrastructures may include pools of com-
puters, storage and networking resources that can be shared
by multiple applications and managed in a collective manner
using policy-driven processes. Such converged infrastruc-
tures may be implemented with a converged infrastructure
reference architecture, with standalone appliances, with a
software driven hyper-converged approach (e.g., hyper-
converged infrastructures), or in other ways.

[0152] Readers will appreciate that the storage systems
described above may be useful for supporting various types
of software applications. For example, the storage system
306 may be useful in supporting artificial intelligence (‘AI’)
applications, database applications, DevOps projects, elec-
tronic design automation tools, event-driven software appli-
cations, high performance computing applications, simula-
tion applications, high-speed data capture and analysis
applications, machine learning applications, media produc-
tion applications, media serving applications, picture
archiving and communication systems (‘PACS’) applica-
tions, software development applications, virtual reality
applications, augmented reality applications, and many
other types of applications by providing storage resources to
such applications.

[0153] The storage systems described above may operate
to support a wide variety of applications. In view of the fact
that the storage systems include compute resources, storage
resources, and a wide variety of other resources, the storage
systems may be well suited to support applications that are
resource intensive such as, for example, Al applications. Al
applications may be deployed in a variety of fields, includ-
ing: predictive maintenance in manufacturing and related
fields, healthcare applications such as patient data & risk
analytics, retail and marketing deployments (e.g., search
advertising, social media advertising), supply chains solu-
tions, fintech solutions such as business analytics & report-
ing tools, operational deployments such as real-time analyt-

Jul. 15, 2021

ics tools, application performance management tools, IT
infrastructure management tools, and many others.

[0154] Such AI applications may enable devices to per-
ceive their environment and take actions that maximize their
chance of success at some goal. Examples of such Al
applications can include IBM Watson, Microsoft Oxford,
Google DeepMind, Baidu Minwa, and others. The storage
systems described above may also be well suited to support
other types of applications that are resource intensive such
as, for example, machine learning applications. Machine
learning applications may perform various types of data
analysis to automate analytical model building. Using algo-
rithms that iteratively learn from data, machine learning
applications can enable computers to learn without being
explicitly programmed. One particular area of machine
learning is referred to as reinforcement learning, which
involves taking suitable actions to maximize reward in a
particular situation. Reinforcement learning may be
employed to find the best possible behavior or path that a
particular software application or machine should take in a
specific situation. Reinforcement learning differs from other
areas of machine learning (e.g., supervised learning, unsu-
pervised learning) in that correct input/output pairs need not
be presented for reinforcement learning and sub-optimal
actions need not be explicitly corrected.

[0155] In addition to the resources already described, the
storage systems described above may also include graphics
processing units (‘GPUs’), occasionally referred to as visual
processing unit (‘VPUs’). Such GPUs may be embodied as
specialized electronic circuits that rapidly manipulate and
alter memory to accelerate the creation of images in a frame
buffer intended for output to a display device. Such GPUs
may be included within any of the computing devices that
are part of the storage systems described above, including as
one of many individually scalable components of a storage
system, where other examples of individually scalable com-
ponents of such storage system can include storage compo-
nents, memory components, compute components (e.g.,
CPUs, FPGAs, ASICs), networking components, software
components, and others. In addition to GPUs, the storage
systems described above may also include neural network
processors (‘NNPs’) for use in various aspects of neural
network processing. Such NNPs may be used in place of (or
in addition to) GPUs and may be also be independently
scalable.

[0156] As described above, the storage systems described
herein may be configured to support artificial intelligence
applications, machine learning applications, big data ana-
Iytics applications, and many other types of applications.
The rapid growth in these sort of applications is being driven
by three technologies: deep learning (DL), GPU processors,
and Big Data. Deep learning is a computing model that
makes use of massively parallel neural networks inspired by
the human brain. Instead of experts handcrafting software, a
deep learning model writes its own software by learning
from lots of examples. Such GPUs may include thousands of
cores that are well-suited to run algorithms that loosely
represent the parallel nature of the human brain.

[0157] Advances in deep neural networks have ignited a
new wave of algorithms and tools for data scientists to tap
into their data with artificial intelligence (Al). With
improved algorithms, larger data sets, and various frame-
works (including open-source software libraries for machine
learning across a range of tasks), data scientists are tackling

US 2021/0216478 Al

new use cases like autonomous driving vehicles, natural
language processing and understanding, computer vision,
machine reasoning, strong Al, and many others. Applica-
tions of such techniques may include: machine and vehicular
object detection, identification and avoidance; visual recog-
nition, classification and tagging; algorithmic financial trad-
ing strategy performance management; simultaneous local-
ization and mapping; predictive maintenance of high-value
machinery; prevention against cyber security threats, exper-
tise automation; image recognition and classification; ques-
tion answering; robotics; text analytics (extraction, classifi-
cation) and text generation and translation; and many others.
Applications of Al techniques has materialized in a wide
array of products include, for example, Amazon Echo’s
speech recognition technology that allows users to talk to
their machines, Google Translate™ which allows for
machine-based language translation, Spotify’s Discover
Weekly that provides recommendations on new songs and
artists that a user may like based on the user’s usage and
traffic analysis, Quill’s text generation offering that takes
structured data and turns it into narrative stories, Chatbots
that provide real-time, contextually specific answers to ques-
tions in a dialog format, and many others.

[0158] Data is the heart of modern Al and deep learning
algorithms. Before training can begin, one problem that
must be addressed revolves around collecting the labeled
data that is crucial for training an accurate Al model. A full
scale Al deployment may be required to continuously col-
lect, clean, transform, label, and store large amounts of data.
Adding additional high quality data points directly translates
to more accurate models and better insights. Data samples
may undergo a series of processing steps including, but not
limited to: 1) ingesting the data from an external source into
the training system and storing the data in raw form, 2)
cleaning and transforming the data in a format convenient
for training, including linking data samples to the appropri-
ate label, 3) exploring parameters and models, quickly
testing with a smaller dataset, and iterating to converge on
the most promising models to push into the production
cluster, 4) executing training phases to select random
batches of input data, including both new and older samples,
and feeding those into production GPU servers for compu-
tation to update model parameters, and 5) evaluating includ-
ing using a holdback portion of the data not used in training
in order to evaluate model accuracy on the holdout data. This
lifecycle may apply for any type of parallelized machine
learning, not just neural networks or deep learning. For
example, standard machine learning frameworks may rely
on CPUs instead of GPUs but the data ingest and training
workflows may be the same. Readers will appreciate that a
single shared storage data hub creates a coordination point
throughout the lifecycle without the need for extra data
copies among the ingest, preprocessing, and training stages.
Rarely is the ingested data used for only one purpose, and
shared storage gives the flexibility to train multiple different
models or apply traditional analytics to the data.

[0159] Readers will appreciate that each stage in the Al
data pipeline may have varying requirements from the data
hub (e.g., the storage system or collection of storage sys-
tems). Scale-out storage systems must deliver uncompro-
mising performance for all manner of access types and
patterns—from small, metadata-heavy to large files, from
random to sequential access patterns, and from low to high
concurrency. The storage systems described above may

Jul. 15, 2021

serve as an ideal Al data hub as the systems may service
unstructured workloads. In the first stage, data is ideally
ingested and stored on to the same data hub that following
stages will use, in order to avoid excess data copying. The
next two steps can be done on a standard compute server that
optionally includes a GPU, and then in the fourth and last
stage, full training production jobs are run on powerful
GPU-accelerated servers. Often, there is a production pipe-
line alongside an experimental pipeline operating on the
same dataset. Further, the GPU-accelerated servers can be
used independently for different models or joined together to
train on one larger model, even spanning multiple systems
for distributed training. If the shared storage tier is slow, then
data must be copied to local storage for each phase, resulting
in wasted time staging data onto different servers. The ideal
data hub for the Al training pipeline delivers performance
similar to data stored locally on the server node while also
having the simplicity and performance to enable all pipeline
stages to operate concurrently.

[0160] Although the preceding paragraphs discuss deep
learning applications, readers will appreciate that the storage
systems described herein may also be part of a distributed
deep learning (‘DDL’) platform to support the execution of
DDL algorithms. The storage systems described above may
also be paired with other technologies such as TensorFlow,
an open-source software library for datatlow programming
across a range of tasks that may be used for machine
learning applications such as neural networks, to facilitate
the development of such machine learning models, applica-
tions, and so on.

[0161] The storage systems described above may also be
used in a neuromorphic computing environment. Neuromor-
phic computing is a form of computing that mimics brain
cells. To support neuromorphic computing, an architecture
of interconnected “neurons” replace traditional computing
models with low-powered signals that go directly between
neurons for more efficient computation. Neuromorphic com-
puting may make use of very-large-scale integration (VLSI)
systems containing electronic analog circuits to mimic
neuro-biological architectures present in the nervous system,
as well as analog, digital, mixed-mode analog/digital VLSI,
and software systems that implement models of neural
systems for perception, motor control, or multisensory inte-
gration.

[0162] Readers will appreciate that the storage systems
described above may be configured to support the storage or
use of (among other types of data) blockchains. In addition
to supporting the storage and use of blockchain technolo-
gies, the storage systems described above may also support
the storage and use of derivative items such as, for example,
open source blockchains and related tools that are part of the
IBM™ Hyperledger project, permissioned blockchains in
which a certain number of trusted parties are allowed to
access the block chain, blockchain products that enable
developers to build their own distributed ledger projects, and
others. Blockchains and the storage systems described
herein may be leveraged to support on-chain storage of data
as well as off-chain storage of data.

[0163] Off-chain storage of data can be implemented in a
variety of ways and can occur when the data itself is not
stored within the blockchain. For example, in one embodi-
ment, a hash function may be utilized and the data itself may
be fed into the hash function to generate a hash value. In
such an example, the hashes of large pieces of data may be

US 2021/0216478 Al

embedded within transactions, instead of the data itself.
Readers will appreciate that, in other embodiments, alter-
natives to blockchains may be used to facilitate the decen-
tralized storage of information. For example, one alternative
to a blockchain that may be used is a blockweave. While
conventional blockchains store every transaction to achieve
validation, a blockweave permits secure decentralization
without the usage of the entire chain, thereby enabling low
cost on-chain storage of data. Such blockweaves may utilize
a consensus mechanism that is based on proof of access
(PoA) and proof of work (PoW).

[0164] The storage systems described above may, either
alone or in combination with other computing devices, be
used to support in-memory computing applications. In-
memory computing involves the storage of information in
RAM that is distributed across a cluster of computers.
Readers will appreciate that the storage systems described
above, especially those that are configurable with customi-
zable amounts of processing resources, storage resources,
and memory resources (e.g., those systems in which blades
that contain configurable amounts of each type of resource),
may be configured in a way so as to provide an infrastructure
that can support in-memory computing. Likewise, the stor-
age systems described above may include component parts
(e.g., NVDIMMs, 3D crosspoint storage that provide fast
random access memory that is persistent) that can actually
provide for an improved in-memory computing environment
as compared to in-memory computing environments that
rely on RAM distributed across dedicated servers.

[0165] In some embodiments, the storage systems
described above may be configured to operate as a hybrid
in-memory computing environment that includes a universal
interface to all storage media (e.g., RAM, flash storage, 3D
crosspoint storage). In such embodiments, users may have
no knowledge regarding the details of where their data is
stored but they can still use the same full, unified API to
address data. In such embodiments, the storage system may
(in the background) move data to the fastest layer avail-
able—including intelligently placing the data in dependence
upon various characteristics of the data or in dependence
upon some other heuristic. In such an example, the storage
systems may even make use of existing products such as
Apache Ignite and GridGain to move data between the
various storage layers, or the storage systems may make use
of custom software to move data between the various
storage layers. The storage systems described herein may
implement various optimizations to improve the perfor-
mance of in-memory computing such as, for example,
having computations occur as close to the data as possible.

[0166] Readers will further appreciate that in some
embodiments, the storage systems described above may be
paired with other resources to support the applications
described above. For example, one infrastructure could
include primary compute in the form of servers and work-
stations which specialize in using General-purpose comput-
ing on graphics processing units (‘GPGPU”) to accelerate
deep learning applications that are interconnected into a
computation engine to train parameters for deep neural
networks. Each system may have Ethernet external connec-
tivity, InfiniBand external connectivity, some other form of
external connectivity, or some combination thereof. In such
an example, the GPUs can be grouped for a single large
training or used independently to train multiple models. The
infrastructure could also include a storage system such as

Jul. 15, 2021

those described above to provide, for example, a scale-out
all-flash file or object store through which data can be
accessed via high-performance protocols such as NFS, S3,
and so on. The infrastructure can also include, for example,
redundant top-of-rack Ethernet switches connected to stor-
age and compute via ports in MLAG port channels for
redundancy. The infrastructure could also include additional
compute in the form of whitebox servers, optionally with
GPUs, for data ingestion, pre-processing, and model debug-
ging. Readers will appreciate that additional infrastructures
are also be possible.

[0167] Readers will appreciate that the storage systems
described above, either alone or in coordination with other
computing machinery may be configured to support other Al
related tools. For example, the storage systems may make
use of tools like ONXX or other open neural network
exchange formats that make it easier to transfer models
written in different Al frameworks. Likewise, the storage
systems may be configured to support tools like Amazon’s
Gluon that allow developers to prototype, build, and train
deep learning models. In fact, the storage systems described
above may be part of a larger platform, such as IBM™
Cloud Private for Data, that includes integrated data science,
data engineering and application building services.

[0168] Readers will further appreciate that the storage
systems described above may also be deployed as an edge
solution. Such an edge solution may be in place to optimize
cloud computing systems by performing data processing at
the edge of the network, near the source of the data. Edge
computing can push applications, data and computing power
(i.e., services) away from centralized points to the logical
extremes of a network. Through the use of edge solutions
such as the storage systems described above, computational
tasks may be performed using the compute resources pro-
vided by such storage systems, data may be storage using the
storage resources of the storage system, and cloud-based
services may be accessed through the use of various
resources of the storage system (including networking
resources). By performing computational tasks on the edge
solution, storing data on the edge solution, and generally
making use of the edge solution, the consumption of expen-
sive cloud-based resources may be avoided and, in fact,
performance improvements may be experienced relative to
a heavier reliance on cloud-based resources.

[0169] While many tasks may benefit from the utilization
of an edge solution, some particular uses may be especially
suited for deployment in such an environment. For example,
devices like drones, autonomous cars, robots, and others
may require extremely rapid processing—so fast, in fact,
that sending data up to a cloud environment and back to
receive data processing support may simply be too slow. As
an additional example, some IoT devices such as connected
video cameras may not be well-suited for the utilization of
cloud-based resources as it may be impractical (not only
from a privacy perspective, security perspective, or a finan-
cial perspective) to send the data to the cloud simply because
of the pure volume of data that is involved. As such, many
tasks that really on data processing, storage, or communi-
cations may be better suited by platforms that include edge
solutions such as the storage systems described above.

[0170] The storage systems described above may alone, or
in combination with other computing resources, serves as a
network edge platform that combines compute resources,
storage resources, networking resources, cloud technologies

US 2021/0216478 Al

and network virtualization technologies, and so on. As part
of the network, the edge may take on characteristics similar
to other network facilities, from the customer premise and
backhaul aggregation facilities to Points of Presence (PoPs)
and regional data centers. Readers will appreciate that
network workloads, such as Virtual Network Functions
(VNFs) and others, will reside on the network edge plat-
form. Enabled by a combination of containers and virtual
machines, the network edge platform may rely on control-
lers and schedulers that are no longer geographically co-
located with the data processing resources. The functions, as
microservices, may split into control planes, user and data
planes, or even state machines, allowing for independent
optimization and scaling techniques to be applied. Such user
and data planes may be enabled through increased accelera-
tors, both those residing in server platforms, such as FPGAs
and Smart NICs, and through SDN-enabled merchant silicon
and programmable ASICs.

[0171] The storage systems described above may also be
optimized for use in big data analytics. Big data analytics
may be generally described as the process of examining
large and varied data sets to uncover hidden patterns,
unknown correlations, market trends, customer preferences
and other useful information that can help organizations
make more-informed business decisions. As part of that
process, semi-structured and unstructured data such as, for
example, internet clickstream data, web server logs, social
media content, text from customer emails and survey
responses, mobile-phone call-detail records, IoT sensor data,
and other data may be converted to a structured form.

[0172] The storage systems described above may also
support (including implementing as a system interface)
applications that perform tasks in response to human speech.
For example, the storage systems may support the execution
intelligent personal assistant applications such as, for
example, Amazon’s Alexa, Apple Siri, Google Voice, Sam-
sung Bixby, Microsoft Cortana, and others. While the
examples described in the previous sentence make use of
voice as input, the storage systems described above may also
support chatbots, talkbots, chatterbots, or artificial conver-
sational entities or other applications that are configured to
conduct a conversation via auditory or textual methods.
Likewise, the storage system may actually execute such an
application to enable a user such as a system administrator
to interact with the storage system via speech. Such appli-
cations are generally capable of voice interaction, music
playback, making to-do lists, setting alarms, streaming pod-
casts, playing audiobooks, and providing weather, traffic,
and other real time information, such as news, although in
embodiments in accordance with the present disclosure,
such applications may be utilized as interfaces to various
system management operations.

[0173] The storage systems described above may also
implement Al platforms for delivering on the vision of
self-driving storage. Such Al platforms may be configured to
deliver global predictive intelligence by collecting and ana-
lyzing large amounts of storage system telemetry data points
to enable effortless management, analytics and support. In
fact, such storage systems may be capable of predicting both
capacity and performance, as well as generating intelligent
advice on workload deployment, interaction and optimiza-
tion. Such Al platforms may be configured to scan all
incoming storage system telemetry data against a library of
issue fingerprints to predict and resolve incidents in real-

Jul. 15, 2021

time, before they impact customer environments, and cap-
tures hundreds of variables related to performance that are
used to forecast performance load.

[0174] The storage systems described above may support
the serialized or simultaneous execution of artificial intelli-
gence applications, machine learning applications, data ana-
Iytics applications, data transformations, and other tasks that
collectively may form an Al ladder. Such an Al ladder may
effectively be formed by combining such elements to form
a complete data science pipeline, where exist dependencies
between elements of the Al ladder. For example, Al may
require that some form of machine learning has taken place,
machine learning may require that some form of analytics
has taken place, analytics may require that some form of
data and information architecting has taken place, and so on.
As such, each element may be viewed as a rung in an Al
ladder that collectively can form a complete and sophisti-
cated Al solution.

[0175] The storage systems described above may also,
either alone or in combination with other computing envi-
ronments, be used to deliver an Al everywhere experience
where Al permeates wide and expansive aspects of business
and life. For example, Al may play an important role in the
delivery of deep learning solutions, deep reinforcement
learning solutions, artificial general intelligence solutions,
autonomous vehicles, cognitive computing solutions, com-
mercial UAVs or drones, conversational user interfaces,
enterprise taxonomies, ontology management solutions,
machine learning solutions, smart dust, smart robots, smart
workplaces, and many others.

[0176] The storage systems described above may also,
either alone or in combination with other computing envi-
ronments, be used to deliver a wide range of transparently
immersive experiences (including those that use digital
twins of various “things” such as people, places, processes,
systems, and so on) where technology can introduce trans-
parency between people, businesses, and things. Such trans-
parently immersive experiences may be delivered as aug-
mented reality technologies, connected homes, virtual
reality technologies, brain-computer interfaces, human aug-
mentation technologies, nanotube electronics, volumetric
displays, 4D printing technologies, or others.

[0177] The storage systems described above may also,
either alone or in combination with other computing envi-
ronments, be used to support a wide variety of digital
platforms. Such digital platforms can include, for example,
5G wireless systems and platforms, digital twin platforms,
edge computing platforms, loT platforms, quantum comput-
ing platforms, serverless PaaS, software-defined security,
neuromorphic computing platforms, and so on.

[0178] The storage systems described above may also be
part of a multi-cloud environment in which multiple cloud
computing and storage services are deployed in a single
heterogeneous architecture. In order to facilitate the opera-
tion of such a multi-cloud environment, DevOps tools may
be deployed to enable orchestration across clouds. Likewise,
continuous development and continuous integration tools
may be deployed to standardize processes around continu-
ous integration and delivery, new feature rollout and provi-
sioning cloud workloads. By standardizing these processes,
a multi-cloud strategy may be implemented that enables the
utilization of the best provider for each workload.

[0179] The storage systems described above may be used
as a part of a platform to enable the use of crypto-anchors

US 2021/0216478 Al

that may be used to authenticate a product’s origins and
contents to ensure that it matches a blockchain record
associated with the product. Similarly, as part of a suite of
tools to secure data stored on the storage system, the storage
systems described above may implement various encryption
technologies and schemes, including lattice cryptography.
Lattice cryptography can involve constructions of crypto-
graphic primitives that involve lattices, either in the con-
struction itself or in the security proof. Unlike public-key
schemes such as the RSA, Diffie-Hellman or Elliptic-Curve
cryptosystems, which are easily attacked by a quantum
computer, some lattice-based constructions appear to be
resistant to attack by both classical and quantum computers.

[0180] A quantum computer is a device that performs
quantum computing. Quantum computing is computing
using quantum-mechanical phenomena, such as superposi-
tion and entanglement. Quantum computers differ from
traditional computers that are based on transistors, as such
traditional computers require that data be encoded into
binary digits (bits), each of which is always in one of two
definite states (0 or 1). In contrast to traditional computers,
quantum computers use quantum bits, which can be in
superpositions of states. A quantum computer maintains a
sequence of qubits, where a single qubit can represent a one,
a zero, or any quantum superposition of those two qubit
states. A pair of qubits can be in any quantum superposition
of 4 states, and three qubits in any superposition of 8 states.
A quantum computer with n qubits can generally be in an
arbitrary superposition of up to 2"n different states simulta-
neously, whereas a traditional computer can only be in one
of these states at any one time. A quantum Turing machine
is a theoretical model of such a computer.

[0181] The storage systems described above may also be
paired with FPGA-accelerated servers as part of a larger Al
or ML infrastructure. Such FPGA-accelerated servers may
reside near (e.g., in the same data center) the storage systems
described above or even incorporated into an appliance that
includes one or more storage systems, one or more FPGA-
accelerated servers, networking infrastructure that supports
communications between the one or more storage systems
and the one or more FPGA-accelerated servers, as well as
other hardware and software components. Alternatively,
FPGA-accelerated servers may reside within a cloud com-
puting environment that may be used to perform compute-
related tasks for Al and ML jobs. Any of the embodiments
described above may be used to collectively serve as a
FPGA-based Al or ML platform. Readers will appreciate
that, in some embodiments of the FPGA-based Al or ML
platform, the FPGAs that are contained within the FPGA-
accelerated servers may be reconfigured for different types
of ML models (e.g., LSTMs, CNNs, GRUs). The ability to
reconfigure the FPGAs that are contained within the FPGA-
accelerated servers may enable the acceleration of a ML or
Al application based on the most optimal numerical preci-
sion and memory model being used. Readers will appreciate
that by treating the collection of FPGA-accelerated servers
as a pool of FPGAs, any CPU in the data center may utilize
the pool of FPGAs as a shared hardware microservice, rather
than limiting a server to dedicated accelerators plugged into
it.

[0182] The FPGA-accelerated servers and the GPU-accel-
erated servers described above may implement a model of
computing where, rather than keeping a small amount of
data in a CPU and running a long stream of instructions over

Jul. 15, 2021

it as occurred in more traditional computing models, the
machine learning model and parameters are pinned into the
high-bandwidth on-chip memory with lots of data streaming
though the high-bandwidth on-chip memory. FPGAs may
even be more efficient than GPUs for this computing model,
as the FPGAs can be programmed with only the instructions
needed to run this kind of computing model.

[0183] The storage systems described above may be con-
figured to provide parallel storage, for example, through the
use of a parallel file system such as BeeGFS. Such parallel
files systems may include a distributed metadata architec-
ture. For example, the parallel file system may include a
plurality of metadata servers across which metadata is
distributed, as well as components that include services for
clients and storage servers.

[0184] The systems described above can support the
execution of a wide array of software applications. Such
software applications can be deployed in a variety of ways,
including container-based deployment models. Container-
ized applications may be managed using a variety of tools.
For example, containerized applications may be managed
using Docker Swarm, Kubernetes, and others. Containerized
applications may be used to facilitate a serverless, cloud
native computing deployment and management model for
software applications. In support of a serverless, cloud
native computing deployment and management model for
software applications, containers may be used as part of an
event handling mechanisms (e.g., AWS Lambdas) such that
various events cause a containerized application to be spun
up to operate as an event handler.

[0185] The systems described above may be deployed in
a variety of ways, including being deployed in ways that
support fifth generation (‘5G”) networks. 5G networks may
support substantially faster data communications than pre-
vious generations of mobile communications networks and,
as a consequence may lead to the disaggregation of data and
computing resources as modern massive data centers may
become less prominent and may be replaced, for example,
by more-local, micro data centers that are close to the
mobile-network towers. The systems described above may
be included in such local, micro data centers and may be part
of or paired to multi-access edge computing (‘MEC’) sys-
tems. Such MEC systems may enable cloud computing
capabilities and an IT service environment at the edge of the
cellular network. By running applications and performing
related processing tasks closer to the cellular customer,
network congestion may be reduced and applications may
perform better.

[0186] Insome examples, a non-transitory computer-read-
able medium storing computer-readable instructions may be
provided in accordance with the principles described herein.
The instructions, when executed by a processor of a com-
puting device, may direct the processor and/or computing
device to perform one or more operations, including one or
more of the operations described herein. Such instructions
may be stored and/or transmitted using any of a variety of
known computer-readable media.

[0187] A non-transitory computer-readable medium as
referred to herein may include any non-transitory storage
medium that participates in providing data (e.g., instruc-
tions) that may be read and/or executed by a computing
device (e.g., by a processor of a computing device). For
example, a non-transitory computer-readable medium may
include, but is not limited to, any combination of non-

US 2021/0216478 Al

volatile storage media and/or volatile storage media. Exem-
plary non-volatile storage media include, but are not limited
to, read-only memory, flash memory, a solid-state drive, a
magnetic storage device (e.g. a hard disk, a floppy disk,
magnetic tape, etc.), ferroelectric random-access memory
(“RAM”), and an optical disc (e.g., a compact disc, a digital
video disc, a Blu-ray disc, etc.). Exemplary volatile storage
media include, but are not limited to, RAM (e.g., dynamic
RAM).

[0188] FIG. 3D illustrates an exemplary computing device
350 that may be specifically configured to perform one or
more of the processes described herein. As shown in FIG.
3D, computing device 350 may include a communication
interface 352, a processor 354, a storage device 356, and an
input/output (“I/O”) module 358 communicatively con-
nected one to another via a communication infrastructure
360. While an exemplary computing device 350 is shown in
FIG. 3D, the components illustrated in FIG. 3D are not
intended to be limiting. Additional or alternative compo-
nents may be used in other embodiments. Components of
computing device 350 shown in FIG. 3D will now be
described in additional detail.

[0189] Communication interface 352 may be configured
to communicate with one or more computing devices.
Examples of communication interface 352 include, without
limitation, a wired network interface (such as a network
interface card), a wireless network interface (such as a
wireless network interface card), a modem, an audio/video
connection, and any other suitable interface.

[0190] Processor 354 generally represents any type or
form of processing unit capable of processing data and/or
interpreting, executing, and/or directing execution of one or
more of the instructions, processes, and/or operations
described herein. Processor 354 may perform operations by
executing computer-executable instructions 362 (e.g., an
application, software, code, and/or other executable data
instance) stored in storage device 356.

[0191] Storage device 356 may include one or more data
storage media, devices, or configurations and may employ
any type, form, and combination of data storage media
and/or device. For example, storage device 356 may include,
but is not limited to, any combination of the non-volatile
media and/or volatile media described herein. Electronic
data, including data described herein, may be temporarily
and/or permanently stored in storage device 356. For
example, data representative of computer-executable
instructions 362 configured to direct processor 354 to per-
form any of the operations described herein may be stored
within storage device 356. In some examples, data may be
arranged in one or more databases residing within storage
device 356.

[0192] I/O module 358 may include one or more [/O
modules configured to receive user input and provide user
output. [/O module 358 may include any hardware, firm-
ware, software, or combination thereof supportive of input
and output capabilities. For example, I/O module 358 may
include hardware and/or software for capturing user input,
including, but not limited to, a keyboard or keypad, a
touchscreen component (e.g., touchscreen display), a
receiver (e.g., an RF or infrared receiver), motion sensors,
and/or one or more input buttons.

[0193] I/O module 358 may include one or more devices
for presenting output to a user, including, but not limited to,
a graphics engine, a display (e.g., a display screen), one or

Jul. 15, 2021

more output drivers (e.g., display drivers), one or more
audio speakers, and one or more audio drivers. In certain
embodiments, /O module 358 is configured to provide
graphical data to a display for presentation to a user. The
graphical data may be representative of one or more graphi-
cal user interfaces and/or any other graphical content as may
serve a particular implementation. In some examples, any of
the systems, computing devices, and/or other components
described herein may be implemented by computing device
350.

[0194] Advantages and features of the present disclosure
can be further described by the following statements.
[0195] 1. A method comprising: detecting, by a data
protection system, a request provided by a source to perform
an operation with respect to a storage system, the request
including a logical address that comprises a logical element
representative of a storage location within the storage sys-
tem; determining, by the data protection system, whether the
logical address further comprises an authorization element
indicating that the source is authorized to initiate operations
with respect to the storage system; and performing, by the
data protection system based on the determining whether the
logical address includes the authorization element, an action
with respect to the operation.

[0196] 2. The method of any of the preceding statements,
wherein: the determining whether the logical address
includes the authorization element comprises determining
that the logical address does include the authorization ele-
ment; and the performing of the action with respect to the
operation comprises allowing the operation to be performed
with respect to the storage location represented by the
logical address.

[0197] 3. The method of any of the preceding statements,
wherein the allowing the operation to be performed com-
prises performing the operation.

[0198] 4. The method of any of the preceding statements,
wherein the allowing the operation to be performed com-
prises directing the storage system to perform the operation.

[0199] 5. The method of any of the preceding statements,
wherein: the determining whether the logical address
includes the authorization element comprises determining
that the logical address does not include the authorization
element; and the performing of the action with respect to the
operation comprises preventing the operation from being
performed.

[0200] 6. The method of any of the preceding statements,
wherein the request comprises one or more of a request to
write data to the storage location represented by the logical
address, read data from the storage location represented by
the logical element, delete data stored at the storage location
represented by the logical element, or modify data stored at
the storage location represented by the logical element.

[0201] 7. The method of any of the preceding statements,
further comprising providing, by the data protection system,
data specifying the authorization element to the source prior
to the source providing the request to perform the operation.
[0202] 8. The method of any of the preceding statements,
further comprising: receiving, by the data protection system,
an authorization request from the source; and authenticating,
by the data protection system, the source based on the
authorization request; wherein the providing of the data
specifying the authorization element to the source is per-
formed in response to the authenticating.

US 2021/0216478 Al

[0203] 9. The method of any of the preceding statements,
further comprising: maintaining, by the data protection
system, data representative of the authorization element;
wherein the determining whether the logical address
includes the authorization element comprises comparing
data included in the logical address to the data representative
of the authorization element.

[0204] 10. The method of any of the preceding statements,
wherein the determining whether the logical address
includes the authorization element comprises analyzing a
predetermined sequence of bits included in the logical
address for the authorization element.

[0205] 11. The method of any of the preceding statements,
wherein the predetermined sequence of bits are at a begin-
ning of the logical address.

[0206] 12. The method of any of the preceding statements,
wherein the predetermined sequence of bits includes at least
eight bits.

[0207] 13. The method of any of the preceding statements,
wherein the logical element comprises a block address.
[0208] 14. The method of any of the preceding statements,
wherein the authorization element comprises one or more of
a security token, a digital signature of data associated with
the operation, a digital signature of the logical element, or a
bit sequence generated in accordance with an authorization
scheme used by the data protection system.

[0209] 15. A system comprising: a memory storing
instructions; a processor communicatively coupled to the
memory and configured to execute the instructions to: detect
a request provided by a source to perform an operation with
respect to a storage system, the request including a logical
address that comprises a logical element representative of a
storage location within the storage system; determine
whether the logical address further comprises an authoriza-
tion element indicating that the source is authorized to
initiate operations with respect to the storage system; and
perform, based on the determining whether the logical
address includes the authorization element, an action with
respect to the operation.

[0210] 16. The system of any of the preceding statements,
wherein: the determining whether the logical address
includes the authorization element comprises determining
that the logical address does include the authorization ele-
ment; and the performing of the action with respect to the
operation comprises allowing the operation to be performed
with respect to the storage location represented by the
logical address.

[0211] 17. The system of any of the preceding statements,
wherein: the determining whether the logical address
includes the authorization element comprises determining
that the logical address does not include the authorization
element; and the performing of the action with respect to the
operation comprises preventing the operation from being
performed.

[0212] 18. The system of any of the preceding statements,
wherein the request comprises one or more of a request to
write data to the storage location represented by the logical
address, read data from the storage location represented by
the logical element, delete data stored at the storage location
represented by the logical element, or modify data stored at
the storage location represented by the logical element.
[0213] 19. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to provide data specifying the authorization

Jul. 15, 2021

element to the source prior to the source providing the
request to perform the operation.

[0214] 20. A non-transitory computer-readable medium
storing instructions that, when executed, direct a processor
of a computing device to: detect a request provided by a
source to perform an operation with respect to a storage
system, the request including a logical address that com-
prises a logical element representative of a storage location
within the storage system; determine whether the logical
address further comprises an authorization element indicat-
ing that the source is authorized to initiate operations with
respect to the storage system; and perform, based on the
determining whether the logical address includes the autho-
rization element, an action with respect to the operation.

[0215] 1. A method comprising: determining, by a data
protection system, that a total amount of read traffic and
write traffic processed by a storage system during a time
period exceeds a threshold, the read traffic representing data
read from the storage system during the time period and the
write traffic representing data written to the storage system
during the time period; determining, by the data protection
system, that the write traffic is less compressible than the
read traffic; and determining, by the data protection system
based on the total amount of read traffic and write traffic
exceeding the threshold and on the write traffic being less
compressible than the read traffic, that the storage system is
possibly being targeted by a security threat.

[0216] 2. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, an attribute associated with one or more of the data read
from the storage system or the data written to the storage
system; wherein the determining that the storage system is
possibly being targeted by the security threat is further based
on the attribute.

[0217] 3. The method of any of the preceding statements,
wherein the attribute comprises one or more of: a host
attribute associated with a host associated with the storage
system, the data read from the storage system or the data
written to the storage system being associated with the host;
an attribute of a source of the read traffic and the write traffic;
an attribute of a storage structure within the storage system
and from which the data is being read or to which the data
is being written; or a storage format attribute associated with
a storage format used by the storage system.

[0218] 4. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, a format type of a data instance included in the data
written to the storage system; and determining, by the data
protection system, that a content of the data instance does
not match what would be expected to be received by the
storage system for the identified format type; wherein the
determining that the storage system is possibly being tar-
geted by the security threat is further based on the determi-
nation that the content of the data instance does not match
what would be expected to be received by the storage system
for the identified format type.

[0219] 5. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, a pattern associated with one or more of the read traffic
or the write traffic; wherein the determining that the storage
system is possibly being targeted by the security threat is
further based on the pattern.

US 2021/0216478 Al

[0220] 6. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the data written to the storage system does not
include identifiable header information or that the data
written to the storage system includes header information
that does not match content included in the data written to
the storage system; wherein the determining that the storage
system is possibly being targeted by the security threat is
further based on the determining that the data written to the
storage system does not include the identifiable header
information or that the data written to the storage system
includes header information that does not match the content
included in the data written to the storage system.

[0221] 7. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the data read from the storage system is at least
partially compressed and includes the identifiable header
information; wherein the determining that the storage sys-
tem is possibly being targeted by the security threat is further
based on the determining that the data read from the storage
system is compressed and includes the identifiable header
information.

[0222] 8. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the data written to the storage system includes
data that is not decryptable with a key maintained by an
authorized key management system external to the storage
system; wherein the determining that the storage system is
possibly being targeted by the security threat is further based
on the determining that the data written to the storage system
includes data that is not decryptable with the key maintained
by the key management system.

[0223] 9. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the data written to the storage system does not
include a correct cryptographic signature associated with an
external data encryption service associated with the storage
system; wherein the determining that the storage system is
possibly being targeted by the security threat is further based
on the determining that the data written to the storage system
does not include the correct cryptographic signature.

[0224] 10. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that data already stored by the storage system is
deleted or overwritten by the data written to the storage
system; wherein the determining that the storage system is
possibly being targeted by the security threat is further based
on the determining that the data already stored by the storage
system is deleted or overwritten by the data written to the
storage system.

[0225] 11. The method of any of the preceding statements,
further comprising: accessing, by the data protection system,
phone home data transmitted by the storage system; and
detecting, by the data protection system based on the phone
home data, an anomaly associated with the storage system;
wherein the determining that the storage system is possibly
being targeted by the security threat is further based on the
detected anomaly.

[0226] 12. The method of any of the preceding statements,
wherein the detecting of the anomaly comprises determining
that an overall compressibility of data stored by the storage
system is below a historical norm associated with one or
more of the storage system or a different storage system.

Jul. 15, 2021

[0227] 13. The method of any of the preceding statements,
further comprising: detecting, by the data protection system,
a rate at which data is read from the storage system and
written back to the storage system in encrypted form;
wherein the determining that the storage system is possibly
being targeted by the security threat is further based on the
detected rate.

[0228] 14. The method of any of the preceding statements,
further comprising: inputting, by the data protection system,
data representative of one or more attributes of the read
traffic, the write traffic, or the storage system into a machine
learning model; wherein the determining that the storage
system is possibly being targeted by the security threat is
further based on an output of the machine learning model.
[0229] 15. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, an anomaly in a garbage collection process per-
formed by the storage system; wherein the determining that
the storage system is possibly being targeted by the security
threat is further based on the determining of the anomaly in
the garbage collection process.

[0230] 16. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, an attribute of an additional storage system configured
to replicate data stored by the storage system; wherein the
determining that the storage system is possibly being tar-
geted by the security threat is further based on the attribute
of the additional storage system.

[0231] 17. The method of any of the preceding statements,
wherein the threshold represents one or more of a rate, an
aggregate amount, or a difference compared to a historical
trend associated with the storage system.

[0232] 18. The method of any of the preceding statements,
further comprising performing, by the data protection sys-
tem in response to the determining that the storage system is
possibly being targeted by the security threat, a remedial
action with respect to the storage system.

[0233] 19. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
directing the storage system to generate a recovery dataset
for data stored by the storage system.

[0234] 20. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
further comprises directing the storage system to transmit
the recovery dataset to a remote storage system for storage
by the remote storage system.

[0235] 21. The method of any of the preceding statements,
wherein the transmitting of the recovery dataset to the
remote storage system is performed using a network file
system (NFS) protocol.

[0236] 22. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
notifying the remote storage system of the security threat.
[0237] 23. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the storage system is actually not being targeted
by the security threat; and directing, by the data protection
system in response to the determining that the host data is
actually not being targeted by the security threat, the storage
system to delete the recovery dataset.

[0238] 24. The method of any of the preceding statements,
wherein the recovery dataset comprises a snapshot of a
storage structure within the storage system.

US 2021/0216478 Al

[0239] 25. The method of any of the preceding statements,
further comprising preventing, by the data protection sys-
tem, the recovery dataset from being deleted until one or
more conditions are fulfilled.

[0240] 26. The method of any of the preceding statements,
further comprising directing, by the data protection system,
the storage system to generate recovery datasets over time in
accordance with a data protection parameter set, the recov-
ery datasets usable to restore data maintained by the storage
system to a state corresponding to a selectable point in time.

[0241] 27. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
directing, in response to the determining that the storage
system is possibly being targeted by the security threat, the
storage system to use one or more of the recovery datasets
to restore the data maintained by the storage system to a state
that corresponds to a point in time that precedes a point in
time at which the data protection system determines that the
storage system is possibly being targeted by the security
threat.

[0242] 28. The method of any of the preceding statements,
wherein the performing of the remedial action further com-
prises modifying, in response to the determining that the
storage system is possibly being targeted by the security
threat, the data protection parameter set for one or more of
the recovery datasets.

[0243] 29. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a reten-
tion duration for the recovery datasets, the retention duration
defining a duration that each recovery dataset is saved before
being deleted; and the modifying of the data protection
parameter set comprises one or more of increasing the
retention duration or suspending the retention duration so
that at least some of the recovery datasets are not deleted
without a specific instruction provided by a source that
manages the storage system.

[0244] 30. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a recov-
ery dataset generation frequency that defines a frequency at
which the recovery datasets are generated; and the modify-
ing of the data protection parameter set comprises increasing
the recovery dataset generation frequency.

[0245] 31. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a remote
storage frequency that defines a frequency at which a subset
of recovery datasets in the recovery datasets are transmitted
to a remote storage system connected to the storage system
by way of a network; and the modifying of the data
protection parameter set comprises modifying the remote
storage frequency.

[0246] 32. The method of any of the preceding statements,
further comprising: maintaining, by the data protection
system, configuration data for the storage system; and deter-
mining, by the data protection system, that the storage
system is corrupted due to the security threat; wherein the
performing of the remedial action comprises using, in
response to the determining that the storage system is
corrupted, the configuration data to reconstruct a replace-
ment storage system for the storage system.

[0247] 33. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
providing a notification of the security threat.

Jul. 15, 2021

[0248] 34. The method of any of the preceding statements,
wherein the performing of the remedial action comprises
restoring, by the data protection system based on one or
more recovery datasets generated by the storage system, data
stored by the storage system to an uncorrupted state.
[0249] 35. The method of any of the preceding statements,
wherein the one or more recovery datasets comprise one or
more of a recovery dataset generated prior to the determin-
ing that the storage system is possibly being targeted by the
security threat or a recovery dataset generated after the
determining that the storage system is possibly being tar-
geted by the security threat.

[0250] 36. The method of any of the preceding statements,
wherein the recovery dataset generated prior to the deter-
mining that the storage system is possibly being targeted by
the security threat comprises a provisional ransomware
recovery structure that can only be deleted or modified in
accordance with one or more ransomware recovery param-
eters.

[0251] 37. The method of any of the preceding statements,
wherein the one or more ransomware recovery parameters
specify a number or type of authenticated entities that have
to approve a deletion or modification of the provisional
ransomware recovery structure before the provisional ran-
somware recovery structure can be deleted or modified.
[0252] 38. The method of any of the preceding statements,
wherein the one or more ransomware recovery parameters
specify a retention duration before which the provisional
ransomware recovery structure can be deleted or modified.
[0253] 39. The method of any of the preceding statements,
wherein the restoring is further based on a version of the data
stored by the storage system that resides on a system other
than the storage system.

[0254] 40. The method of any of the preceding statements,
wherein: the determining that the storage system is possibly
being targeted by the security threat constitutes a first threat
detection process; and the method further comprises per-
forming, by the data protection system in response to
performing the first threat detection process, a second threat
detection process different than the first threat detection
process and configured to either confirm that the storage
system is possibly being targeted by the security threat with
a higher confidence threat detection than the first threat
detection process or determine that the storage system is not
being targeted by the security threat.

[0255] 41. The method of any of the preceding statements,
wherein the determining that the storage system is possibly
being targeted by the security threat comprises determining
that there is a potential data corruption in the storage system,
and wherein the method further comprises: analyzing, by the
data protection system in response to the detecting of the
potential data corruption, metrics of the storage system; and
determining, by the data protection system based on the
analyzing of the metrics of the storage system, a corruption-
free recovery point for potential use to recover from the
potential data corruption.

[0256] 42. The method of any of the preceding statements,
further comprising: determining, by the data protection
system, that the read traffic is within a threshold amount of
the write traffic during the time period; wherein the deter-
mining that the storage system is possibly being targeted by
the security threat is further based on the determining that
the read traffic is within the threshold amount of the write
traffic during the time period.

US 2021/0216478 Al

[0257] 43. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, an attribute associated with one or more of the data read
from the storage system or the data written to the storage
system; presenting, by the data protection system within a
graphical user interface displayed by a display device,
graphical information associated with the attribute; and
receiving, by the data protection system by way of the
graphical user interface, user input; wherein the determining
that the storage system is possibly being targeted by the
security threat is further based on the user input.

[0258] 44. The method of any of the preceding statements,
further comprising using, by the data protection system, an
unmanipulable clock source internal to the storage system to
track the time period.

[0259] 45. The method of any of the preceding statements,
wherein the data protection system is implemented by a
controller within the storage system.

[0260] 46. The method of any of the preceding statements,
wherein the data protection system is implemented by a
computing system communicatively coupled to the storage
system by way of a network.

[0261] 47. The method of any of the preceding statements,
wherein the determining that the storage system is possibly
being targeted by the security threat comprises determining
that ransomware is possibly on the storage system (e.g., that
a ransomware attack is possibly in progress or operation
against the storage system).

[0262] 48. A system comprising: a memory storing
instructions; a processor communicatively coupled to the
memory and configured to execute the instructions to:
determine that a total amount of read traffic and write traffic
processed by a storage system during a time period exceeds
a threshold, the read traffic representing data read from the
storage system during the time period and the write traffic
representing data written to the storage system during the
time period; determine that the write traffic is less compress-
ible than the read traffic; and determine, based on the total
amount of read traffic and write traffic exceeding the thresh-
old and on the write traffic being less compressible than the
read traffic, that the storage system is possibly being targeted
by a security threat.

[0263] 49. The system of statement 48, implementing any
of the methods recited in the preceding statements.

[0264] 50. A non-transitory computer-readable medium
storing instructions that, when executed, direct a processor
of' a computing device to: determine that a total amount of
read traffic and write traffic processed by a storage system
during a time period exceeds a threshold, the read traffic
representing data read from the storage system during the
time period and the write traffic representing data written to
the storage system during the time period; determine that the
write traffic is less compressible than the read traffic; and
determine, based on the total amount of read traffic and write
traffic exceeding the threshold and on the write traffic being
less compressible than the read traffic, that the storage
system is possibly being targeted by a security threat.
[0265] 51. The non-transitory computer-readable medium
of statement 50, implementing any of the methods recited in
the preceding statements.

[0266] Additional advantages and features of the present
disclosure can be further described by the following state-
ments.

Jul. 15, 2021

[0267] 1. A method comprising: performing, by a data
protection system for a storage system, a first security threat
detection process; determining, by the data protection sys-
tem based on the performing of the first security threat
detection process, that the storage system is possibly being
targeted by a security threat; and performing, by the data
protection system, a second security threat detection pro-
cess, the second security threat detection process providing
higher confidence threat detection than the first security
threat detection process.

[0268] 2. The method of any of the preceding statements,
further comprising confirming, by the data protection system
based on the performing of the second security threat
detection process, that the storage system is possibly being
targeted by the security threat.

[0269] 3. The method of any of the preceding statements,
further comprising: performing, by the data protection sys-
tem based on the determining that the storage system is
possibly being targeted by the security threat, a first remedial
action with respect to the storage system; and performing, by
the data protection system based on the confirming that the
storage system is possibly being targeted by the security
threat, a second remedial action with respect to the storage
system.

[0270] 4. The method of any of the preceding statements,
wherein the first remedial action is different than the second
remedial action.

[0271] 5. The method of any of the preceding statements,
wherein the first remedial action or the second remedial
action comprises one or more of providing a notification,
generating a first recovery dataset, preventing a second
recovery dataset from being deleted or modified, modifying
a data protection parameter set for a third recovery dataset,
or restoring data stored by the storage system to an uncor-
rupted state.

[0272] 6. The method of any of the preceding statements,
further comprising determining, by the data protection sys-
tem based on the performing of the second security threat
detection process, that the storage system is not being
targeted by the security threat.

[0273] 7. The method of any of the preceding statements,
further comprising reverting back, by the data protection
system based on the determining that the storage system is
not being targeted by the security threat, to performing the
first security threat detection process.

[0274] 8. The method of any of the preceding statements,
further comprising performing, by the data protection sys-
tem based on the determining that the storage system is
possibly being targeted by the security threat, a remedial
action with respect to the storage system.

[0275] 9. The method of any of the preceding statements,
wherein the performing of the second security threat detec-
tion process is performed in response to the determining that
the storage system is possibly being targeted by the security
threat.

[0276] 10. The method of any of the preceding statements,
wherein the performing of the second security threat detec-
tion process is performed in parallel with the performing of
the first security threat detection process.

[0277] 11.The method of any of the preceding statements,
wherein the data protection system is implemented by a
controller within the storage system.

US 2021/0216478 Al

[0278] 12. The method of any of the preceding statements,
wherein the data protection system is implemented by a
computing system communicatively coupled to the storage
system by way of a network.

[0279] 13. The method of any of the preceding statements,
wherein the determining that the storage system is possibly
being targeted by the security threat comprises determining
that a ransomware attack is possibly in progress against the
storage system.

[0280] 14. A system comprising: a memory storing
instructions; a processor communicatively coupled to the
memory and configured to execute the instructions to:
perform, for a storage system, a first security threat detection
process; determine, based on the performing of the first
security threat detection process, that the storage system is
possibly being targeted by a security threat; and perform a
second security threat detection process, the second security
threat detection process providing higher confidence threat
detection than the first security threat detection process.
[0281] 15. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to confirm, based on the performing of the
second security threat detection process, that the storage
system is possibly being targeted by the security threat.
[0282] 16. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to: perform, based on the determining that the
storage system is possibly being targeted by the security
threat, a first remedial action with respect to the storage
system; and perform, based on the confirming that the
storage system is possibly being targeted by the security
threat, a second remedial action with respect to the storage
system.

[0283] 17. The system of any of the preceding statements,
wherein the first remedial action is different than the second
remedial action.

[0284] 18. The system of any of the preceding statements,
wherein the first remedial action or the second remedial
action comprises one or more of providing a notification,
generating a first recovery dataset, preventing a second
recovery dataset from being deleted or modified, moditying
a data protection parameter set for a third recovery dataset,
or restoring data stored by the storage system to an uncor-
rupted state.

[0285] 19. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to determine, based on the performing of the
second security threat detection process, that the storage
system is not being targeted by the security threat.

[0286] 20. A non-transitory computer-readable medium
storing instructions that, when executed, direct a processor
of a computing device to: perform, for a storage system, a
first security threat detection process; determine, based on
the performing of the first security threat detection process,
that the storage system is possibly being targeted by a
security threat; and perform a second security threat detec-
tion process, the second security threat detection process
providing higher confidence threat detection than the first
security threat detection process.

[0287] Additional advantages and features of the present
disclosure can be further described by the following state-
ments.

[0288] 1. A method comprising: directing, by a data pro-
tection system, a storage system to generate recovery data-

Jul. 15, 2021

sets over time in accordance with a data protection param-
eter set, the recovery datasets usable to restore data
maintained by the storage system to a state corresponding to
a selectable point in time; determining, by the data protec-
tion system, that the storage system is possibly being tar-
geted by a security threat; and modifying, by the data
protection system in response to the determining that the
storage system is possibly being targeted by the security
threat, the data protection parameter set for one or more of
the recovery datasets.

[0289] 2. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a reten-
tion duration for the recovery datasets, the retention duration
defining a duration that each recovery dataset is saved before
being deleted; and the modifying of the data protection
parameter set comprises one or more of increasing the
retention duration or suspending the retention duration so
that at least some of the recovery datasets are not deleted
without a specific instruction provided by a source that
manages the storage system.

[0290] 3. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a recov-
ery dataset generation frequency that defines a frequency at
which the recovery datasets are generated; and the modify-
ing of the data protection parameter set comprises increasing
the recovery dataset generation frequency.

[0291] 4. The method of any of the preceding statements,
wherein: the data protection parameter set specifies a remote
storage frequency that defines a frequency at which a subset
of recovery datasets in the recovery datasets are transmitted
to a remote storage system connected to the storage system
by way of a network; and the modifying of the data
protection parameter set comprises modifying the remote
storage frequency.

[0292] 5. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, an anomaly with respect to the storage system; wherein
the determining that the storage system is possibly being
targeted by the security threat is based on the identifying of
the anomaly.

[0293] 6. The method of any of the preceding statements,
wherein the identifying of the anomaly comprises: deter-
mining that a total amount of read traffic and write traffic
processed by the storage system during a time period
exceeds a threshold, the read traffic representing data read
from the storage system during the time period and the write
traffic representing data written to the storage system during
the time period; and determining, by the data protection
system, that the write traffic is less compressible than the
read traffic.

[0294] 7. The method of any of the preceding statements,
further comprising performing, by the data protection sys-
tem in response to the determination that the storage system
is possibly being targeted by the security threat, an addi-
tional remedial action with respect to the storage system.
[0295] 8. The method of any of the preceding statements,
wherein the performing of the additional remedial action
comprises directing the storage system to transmit a recov-
ery dataset included in the recovery datasets to a remote
storage system for storage by the remote storage system.
[0296] 9. The method of any of the preceding statements,
wherein the performing of the additional remedial action
comprises providing a notification of the security threat.

US 2021/0216478 Al

[0297] 10. The method of any of the preceding statements,
wherein the data protection system is implemented by a
controller within the storage system.

[0298] 11. The method of any of the preceding statements,
wherein the data protection system is implemented by a
computing system communicatively coupled to the storage
system by way of a network.

[0299] 12. The method of any of the preceding statements,
wherein the determining that the storage system is possibly
being targeted by the security threat comprises determining
that ransomware is possibly on the storage system.

[0300] 13. The method of any of the preceding statements,
further comprising using, by the data protection system, at
least one of the recovery datasets to restore the data main-
tained by the storage system to the state corresponding to the
selectable point in time.

[0301] 14. The method of any of the preceding statements,
wherein the determining that the storage system is possibly
being targeted by the security threat is performed while the
recovery datasets are being generated.

[0302] 15. A system comprising: a memory storing
instructions; a processor communicatively coupled to the
memory and configured to execute the instructions to: direct
a storage system to generate recovery datasets over time in
accordance with a data protection parameter set, the recov-
ery datasets usable to restore data maintained by the storage
system to a state corresponding to a selectable point in time;
determine that the storage system is possibly being targeted
by a security threat; and modify, by in response to the
determining that the storage system is possibly being tar-
geted by the security threat, the data protection parameter set
for one or more of the recovery datasets.

[0303] 16. The system of any of the preceding statements,
wherein: the data protection parameter set specifies a reten-
tion duration for the recovery datasets, the retention duration
defining a duration that each recovery dataset is saved before
being deleted; and the modifying of the data protection
parameter set comprises one or more of increasing the
retention duration or suspending the retention duration so
that at least some of the recovery datasets are not deleted
without a specific instruction provided by a source that
manages the storage system.

[0304] 17. The system of any of the preceding statements,
wherein: the data protection parameter set specifies a recov-
ery dataset generation frequency that defines a frequency at
which the recovery datasets are generated; and the modify-
ing of the data protection parameter set comprises increasing
the recovery dataset generation frequency.

[0305] 18. The system of any of the preceding statements,
wherein: the data protection parameter set specifies a remote
storage frequency that defines a frequency at which a subset
of recovery datasets in the recovery datasets are transmitted
to a remote storage system connected to the storage system
by way of a network; and the modifying of the data
protection parameter set comprises modifying the remote
storage frequency.

[0306] 19. The system of any of the preceding statements,
wherein: the processor is further configured to execute the
instructions to identify an anomaly with respect to the
storage system; and the determining that the storage system
is possibly being targeted by the security threat is based on
the identifying of the anomaly.

[0307] 20. A non-transitory computer-readable medium
storing instructions that, when executed, direct a processor

Jul. 15, 2021

of'a computing device to: direct a storage system to generate
recovery datasets over time in accordance with a data
protection parameter set, the recovery datasets usable to
restore data maintained by the storage system to a state
corresponding to a selectable point in time; determine that
the storage system is possibly being targeted by a security
threat; and modity, by in response to the determining that the
storage system is possibly being targeted by the security
threat, the data protection parameter set for one or more of
the recovery datasets.

[0308] Additional advantages and features of the present
disclosure can be further described by the following state-
ments.

[0309] 1. A method comprising: detecting, by a data
protection system for a storage system, a potential data
corruption in the storage system;

[0310] analyzing, by the data protection system in
response to the detecting of the potential data corruption,
one or more metrics of the storage system; and determining,
by the data protection system based on the analyzing of the
one or more metrics of the storage system, a corruption-free
recovery point for potential use to recover from the potential
data corruption.

[0311] 2. The method of any of the preceding statements,
further comprising: selecting, by the data protection system
based on the corruption-free recovery point, a recovery
dataset corresponding to the corruption-free recovery point;
and restoring, by the data protection system based on the
selected recovery dataset, data stored by the storage system
to an uncorrupted state.

[0312] 3. The method of any of the preceding statements,
further comprising determining, by the data protection sys-
tem, that the storage system is possibly being targeted by a
security threat that causes the potential data corruption.
[0313] 4. The method of any of the preceding statements,
wherein the recovery dataset comprises one or more of a
recovery dataset generated prior to the determining that the
storage system is possibly being targeted by the security
threat or a recovery dataset generated after the determining
that the storage system is possibly being targeted by the
security threat.

[0314] 5. The method of any of the preceding statements,
wherein the recovery dataset generated prior to the deter-
mining that the storage system is possibly being targeted by
the security threat comprises a provisional ransomware
recovery structure that can only be deleted or modified in
accordance with one or more ransomware recovery param-
eters.

[0315] 6. The method of any of the preceding statements,
wherein the one or more ransomware recovery parameters
specify a number or type of authenticated entities that have
to approve a deletion or modification of the provisional
ransomware recovery structure before the provisional ran-
somware recovery structure can be deleted or modified.
[0316] 7. The method of any of the preceding statements,
wherein the one or more ransomware recovery parameters
specify a retention duration before which the provisional
ransomware recovery structure can be deleted or modified.
[0317] 8. The method of any of the preceding statements,
further comprising: receiving, by the data protection system,
user input; wherein the determining that the storage system
is possibly being targeted by the security threat is based on
the user input.

US 2021/0216478 Al

[0318] 9. The method of any of the preceding statements,
further comprising: identifying, by the data protection sys-
tem, an anomaly with respect to the storage system; wherein
the determining that the storage system is possibly being
targeted by the security threat is based on the identifying of
the anomaly.

[0319] 10. The method of any of the preceding statements,
wherein the restoring is further based on a version of the data
stored by the storage system that resides on a system other
than the storage system.

[0320] 11. The method of any of the preceding statements,
further comprising presenting, by the data protection system,
a visualization of at least one metric included in the one or
more metrics.

[0321] 12. The method of any of the preceding statements,
further comprising: receiving, by the data protection system,
user input based on the visualization; wherein the determin-
ing of the corruption-free recovery point is further based on
the user input.

[0322] 13. The method of any of the preceding statements,
wherein the data protection system is implemented by a
controller within the storage system.

[0323] 14. The method of any of the preceding statements,
wherein the data protection system is implemented by a
computing system communicatively coupled to the storage
system by way of a network.

[0324] 15. A system comprising: a memory storing
instructions; a processor communicatively coupled to the
memory and configured to execute the instructions to: detect
a potential data corruption in a storage system; analyze, in
response to the detecting of the potential data corruption,
one or more metrics of the storage system; and determine,
based on the analyzing of the one or more metrics of the
storage system, a corruption-free recovery point for poten-
tial use to recover from the potential data corruption.
[0325] 16. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to: select, based on the corruption-free recovery
point, a recovery dataset corresponding to the corruption-
free recovery point; and restore, based on the selected
recovery dataset, data stored by the storage system to an
uncorrupted state.

[0326] 17. The system of any of the preceding statements,
wherein the processor is further configured to execute the
instructions to determine that the storage system is possibly
being targeted by a security threat that causes the potential
data corruption.

[0327] 18. The system of any of the preceding statements,
wherein the recovery dataset comprises one or more of a
recovery dataset generated prior to the determining that the
storage system is possibly being targeted by the security
threat or a recovery dataset generated after the determining
that the storage system is possibly being targeted by the
security threat.

[0328] 19. The system of any of the preceding statements,
wherein the recovery dataset generated prior to the deter-
mining that the storage system is possibly being targeted by
the security threat comprises a provisional ransomware
recovery structure that can only be deleted or modified in
accordance with one or more ransomware recovery param-
eters.

[0329] 20. A non-transitory computer-readable medium
storing instructions that, when executed, direct a processor
of' a computing device to: detect a potential data corruption

Jul. 15, 2021

in a storage system; analyze, in response to the detecting of
the potential data corruption, one or more metrics of the
storage system; and determine, based on the analyzing of the
one or more metrics of the storage system, a corruption-free
recovery point for potential use to recover from the potential
data corruption.

[0330] One or more embodiments may be described herein
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claims. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

[0331] To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

[0332] While particular combinations of various functions
and features of the one or more embodiments are expressly
described herein, other combinations of these features and
functions are likewise possible. The present disclosure is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

[0333] Malicious entities (e.g., hackers, malware, and/or
other entities) may gain unauthorized access to a storage
system, such as any of the storage systems described herein.
With such access, the malicious entities may target the
storage system with a security threat, such as a ransomware
attack, a malware attack, and/or one more other operations
configured to destroy, modify, render unusable, or otherwise
negatively affect the storage system and/or data maintained
by the storage system.

[0334] The methods and systems described herein may be
configured to detect that a storage system is possibly being
targeted by a security threat and to perform various remedial
actions in response to detecting that the storage system is
possibly being targeted by the security threat.

[0335] The methods and systems described herein may
additionally or alternatively be configured to detect inad-
vertent corruption and/or deletion of data stored by a storage
system, such as caused by administrative or application
errors. For example, the methods and systems described
herein may implement monitoring for unexpected behaviors
and controls on deletion of certain kinds of data.

[0336] Various advantages and benefits may be realized in
accordance with the methods and systems described herein.
For example, by detecting and performing one or more

US 2021/0216478 Al

remedial actions with respect to a security threat targeting a
storage system, the methods and systems described herein
may minimize or eliminate data corruption, structural dam-
age, and/or performance degradation that may occur as a
result of the security threat. Moreover, by implementing a
data protection system at the storage level, the methods and
systems described herein may provide a last line of defense
against security threats, or other forms of corrupting actions,
should other data security measures taken at levels above the
storage level (e.g., at the client, server, application, or
network levels) fail to identify and/or thwart the security
threats or other forms of corrupting actions. This may
improve the operation of computing devices at both the
storage level and at other levels above the storage level.

[0337] FIG. 4 illustrates an exemplary data protection
system 400 (“system 400”). As shown, system 400 may
include, without limitation, a storage facility 402 and a
processing facility 404 selectively and communicatively
coupled to one another. Facilities 402 and 404 may each
include or be implemented by hardware and/or software
components (e.g., processors, memories, communication
interfaces, instructions stored in memory for execution by
the processors, etc.). In some examples, facilities 402 and
404 may be distributed between multiple devices and/or
multiple locations as may serve a particular implementation.

[0338] Storage facility 402 may maintain (e.g., store)
executable data used by processing facility 404 to perform
any of the operations described herein. For example, storage
facility 402 may store instructions 406 that may be executed
by processing facility 404 to perform any of the operations
described herein. Instructions 406 may be implemented by
any suitable application, software, code, and/or other
executable data instance. Storage facility 402 may also
maintain any data received, generated, managed, used, and/
or transmitted by processing facility 404. Storage facility
402 may additionally maintain any other suitable type of
data as may serve a particular implementation.

[0339] Processing facility 404 may be configured to per-
form (e.g., execute instructions 406 stored in storage facility
402 to perform) various processing operations described
herein. References herein to operations performed by system
400 may be understood to be performed by processing
facility 404.

[0340] FIG. 5 illustrates an exemplary configuration 500
in which a storage system 502 processes read traffic and
write traffic. The read traffic represents data read from
storage system 502 and the write traffic represents data
written to storage system 502.

[0341] Storage system 502 may be implemented by any of
the storage systems, devices, and/or components described
herein. For example, storage system 502 may be imple-
mented by a local storage system (e.g., a storage system
located on-site at a customer’s premises) and/or by a remote
storage system (e.g., a storage system located in the cloud).

[0342] As shown, storage system 502 includes a plurality
of storage structures 504 (e.g., storage structures 504-1
through 504-N) and a controller 506. Storage structures 504
may each include any logical structure within which data
may be stored and/or organized. For example, storage struc-
tures 504 may include one or more snapshots, volumes, file
systems, object stores, object buckets, key value or rela-
tional or other databases, backup datasets, objects that
manage a group of volumes, container objects, blocks, etc.

Jul. 15, 2021

In some examples, storage structures 504 are maintained in
one or more storage elements (e.g., storage arrays, memo-
ries, etc.).

[0343] Controller 506 may be configured to control opera-
tions of elements included in storage system 502 and may be
implemented by any suitable combination of processors,
operating systems, and/or other components as described
herein. In particular, controller 506 may be configured to
produce control data 508 configured to control storage
structures 504. For example, control data 508 may be
representative of one or more instructions to create, modify,
write to, read from, delete, eradicate, and/or otherwise
interact with storage structures 504.

[0344] Read traffic may represent data read from storage
system 502 by a source (e.g., a host in communication with
storage system 502), and write traffic may represent data
written to storage system 502 by the source. Read and write
traffic may occur in response to the source transmitting one
or more requests to storage system 502. These requests may
include instructions for controller 506 to perform one or
more operations. Such operations may include writing data
to a storage structure 504, reading data from a storage
structure 504, deleting data from a storage structure 504,
overwriting data within a storage structure 504, and/or
deleting a storage structure 504 itself.

[0345] In some examples, read traffic, write traffic, and/or
one or more requests to interface with storage system 502
may originate from a malicious source and be representative
of a ransomware attack on any of the components and/or
data within storage system 502 and/or any other malicious
operation that destroys, modifies, renders unusable, or oth-
erwise affects any of the components and/or data within
storage system 502.

[0346] Accordingly, as described herein, system 400 may,
in some examples, be configured to monitor the read and
write traffic processed by storage system 502 (e.g., by
monitoring one or more requests provided by one or more
sources to storage system 502) to ascertain whether storage
system 502 is possibly being targeted by a security threat.

[0347] In some examples, system 400 is implemented by
storage system 502. For example, system 400 may be at least
partially implemented by controller 506. Additionally or
alternatively, system 400 may be at least partially imple-
mented by one or more computing devices or systems
separate from and in communication with storage system
502.

[0348] To illustrate, FIG. 6 shows an exemplary configu-
ration 600 in which a cloud-based monitoring system 602 is
communicatively coupled to storage system 502 by way of
a network 604. Cloud-based monitoring system 602 may at
least partially implement system 400.

[0349] Network 604 may include the Internet, a wide area
network, a local area network, a provider-specific wired or
wireless network (e.g., a cable or satellite carrier network or
a mobile telephone network), a content delivery network,
and/or any other suitable network. Data may flow between
storage system 502 and cloud-based data monitoring system
602 using any communication technologies, devices, media,
and protocols as may serve a particular implementation.

[0350] Cloud-based monitoring system 602 may be imple-
mented by one or more server-side computing devices
configured to communicate with storage system 502 by way
of network 604. For example, cloud-based monitoring sys-

US 2021/0216478 Al

tem 602 may be implemented by one or more servers or
other physical computing devices.

[0351] Cloud-based monitoring system 602 may be con-
figured to perform one or more remote monitoring opera-
tions with respect to storage system 502. For example,
cloud-based monitoring system 602 may be configured to
remotely monitor read and write traffic processed by storage
system 502 and/or requests processed by storage system
502. To this end, as shown, cloud-based monitoring system
602 may receive phone-home data 606 from controller 506
of storage system 502 by way of network 604. Phone-home
data 606 may include various types of data that may be used
by cloud-based monitoring system 602 to monitor various
types of operations performed by storage system 502. In
particular, phone-home data 606 may include data represen-
tative of one or more metrics and/or attributes associated
with read and write traffic, one or more metrics and/or
attributes associated with components within storage system
502, one or more requests provided by a source to storage
system 502, and/or any other data as may serve a particular
implementation.

[0352] As shown, cloud-based monitoring system 602
may include a processor 608 configured to process phone-
home data 606. Processor 608 may process phone-home
data 606 in any suitable manner. For example, processor 608
may determine, based on phone-home data 606, that storage
system 502 is possibly being targeted by a security threat
and transmit instructions 610 to controller 506 to perform
one or more remedial actions configured to counteract the
security threat.

[0353] Various methods that may be performed by system
400 and/or any implementation thereof are described in
connection with various flowcharts depicted in the figures.
While the flowcharts depicted in the figures illustrate exem-
plary operations according to one embodiment, other
embodiments may omit, add to, reorder, and/or modify any
of the operations shown in the flowcharts depicted in the
figures. Moreover, each of the operations shown in the
flowcharts depicted in the figures may be performed in any
of the ways described herein.

[0354] FIG. 7 illustrates an exemplary method 700 of
dealing with a possible security threat attack against a
storage system (e.g., storage system 502). At operation 702,
system 400 identifies an anomaly associated with a storage
system. At operation 704, system 400 determines, based on
the identified anomaly, that the storage system is possibly
being targeted by a security threat. At operation 706, system
400 performs a remedial action (e.g., in response to deter-
mining that the storage system is possibly being targeted by
the security threat). Examples of each of these operations are
described herein.

[0355] Various ways in which system 400 may identify an
anomaly associated with a storage system and determine that
the storage system is possibly being targeted by a security
threat are described in connection with FIGS. 8-23. Each of
the processes described in connection with these figures may
be performed independently to determine that a storage
system is possibly being targeted by a security threat.
Alternatively, any number of the processes described in
connection with these figures may be performed concur-
rently and/or sequentially in any order to determine that a
storage system is possibly being targeted by a security
threat.

Jul. 15, 2021

[0356] FIG. 8 illustrates an exemplary traffic-based secu-
rity threat detection method 800 that may be performed by
system 400 and/or any implementation thereof. Method 800
may be used alone or in combination with any of the other
security threat detection methods described herein.

[0357] At operation 802, system 400 monitors read traffic
and write traffic processed by a storage system during a time
period. The read traffic represents data read from the storage
system during the time period and the write traffic represents
data written to the storage system during the same time
period. In some examples, system 400 is configured to use
an unmanipulable clock source internal to the storage system
to track the time period.

[0358] System 400 may monitor read and write traffic in
any suitable manner. For example, system 400 may analyze
metrics generated by the storage system and/or a cloud-
based monitoring system (e.g., cloud-based monitoring sys-
tem 602) that are representative of an amount of read and
write traffic, the type of data included in the read and write
traffic, a source of the read and/or write traffic, timestamp
data indicative of a date and/or time that the read and write
traffic occurs, and/or any other attribute of the read and write
traffic as may serve a particular implementation.

[0359] The time period during which system 400 monitors
the read and write traffic may be of any suitable duration. In
some examples, the time period may be set in response to
user input (e.g., by an administrator). Additionally or alter-
natively, the time period may be set and/or adjusted auto-
matically by system 400 based on an occurrence of one or
more events and/or based on one or more attributes associ-
ated with the read and/or write traffic.

[0360] At decision 804, system 400 determines whether a
total amount of read and write traffic exceeds a threshold. At
decision 806, system 400 determines whether the write
traffic is less compressible than the read traffic. If the total
amount of read and write traffic exceeds the threshold (“Yes”
at decision 804) and the write traffic is less compressible, or
has a far high number of incompressible blocks than the read
traffic, than the read traffic (“Yes” at decision 806), system
400 determines at operation 808 that the storage system is
possibly being targeted by a security threat. This is because
rewriting data as encrypted data is typical of a ransomware
attack, and encrypted data is generally not very compressible
(in some cases, encrypted data is entirely incompressable).
Otherwise, system 400 continues monitoring the read and
write traffic (“No” at decision 804 and/or decision 806).
[0361] The threshold to which system 400 compares the
total amount of read and write traffic may be any suitable
value and type. For example, the threshold may be a
particular amount of bytes of data included in the read and
write traffic during the time period. Additionally or alterna-
tively, the threshold may be representative of a rate (e.g., a
certain amount of data per second, minute, hour, or some
other time increment). Additionally or alternatively, the
threshold may be representative of aggregate amount (e.g.,
a total number of bytes). Additionally or alternatively, the
threshold may be representative of a difference from his-
torical trends. As an illustration, if system 400 detects a
spike in a total amount of read and write traffic during a
particular time period compared to a similar time period on
a different day, this may be indicative of a possible security
threat against the storage system.

[0362] In some examples, the threshold to which system
400 compares the total amount of read and write traffic may

US 2021/0216478 Al

be set in response to user input (e.g., by an administrator).
Additionally or alternatively, the threshold may be set and/or
adjusted automatically by system 400 based on an occur-
rence of one or more events and/or based on one or more
attributes associated with the read and/or write traffic. For
example, the threshold may be increased during periods of
time when the total amount of read and write traffic are
typically higher than average. Likewise, the threshold may
be decreased during periods of time when the total amount
of read and write traffic are typically lower than average.

[0363] In some examples, system 400 may maintain data
representative of multiple thresholds each corresponding to
different types of data included in the read and write traffic
and/or to any other attribute of the read and write traffic. In
these examples, system 400 may concurrently compare
different segments of the read and write traffic to the
different thresholds. If one or more of the thresholds are met,
system 400 may satisfy decision 804 (e.g., by proceeding
along the “Yes” branch of decision 804).

[0364] System 400 may determine whether the write traf-
fic is less compressible than the read traffic in any suitable
manner. For example, system 400 may determine an overall
compressibility (e.g., in terms of percentage and/or total
amount of storage space saved if compressed) of the write
traffic and of the read traffic during the time period. If the
overall compressibility of the write traffic is less than the
overall compressibility of the read traffic (e.g., by more than
a particular threshold), this may indicate that the write traffic
includes encrypted data (which has a relatively low amount
of compressibility), which may be indicative of a ransom-
ware attack and/or any other type of security threat. It will
be recognized that overall compressibility is only one metric
that may be used to determine whether the write traffic is less
compressible than the read traffic. Other metrics may include
file by file comparisons of compressibility, peak compress-
ibility metrics, etc.

[0365] As indicated at operation 808, based on the total
amount of read traffic and write traffic exceeding the thresh-
old and on the write traffic being less compressible than the
read traffic, system 400 may determine that the storage
system is possibly being targeted by a security threat.
System 400 may take one or more other factors into con-
sideration when determining whether the storage system is
possibly being targeted by the security threat.

[0366] For example, FIG. 9 illustrates another exemplary
traffic-based security threat detection method 900 that may
be performed by system 400 and/or any implementation
thereof. Method 900 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0367] Method 900 is similar to method 800, except that
method 900 further includes another condition that needs to
be satisfied before system 400 determines that the storage
system is possibly being targeted by the security threat. In
particular, at decision 902, system 400 determines whether
the read traffic is within a threshold amount of the write
traffic during the time period. This threshold amount may be
relatively small such that satisfaction of this condition
occurs when the total amount of read traffic during the time
period is approximately the same as the total amount of write
traffic during the time period. This may be indicative of a
ransomware attack or other security threat against the stor-

Jul. 15, 2021

age system in which data maintained by the storage system
is being read out, encrypted, and written back to the storage
system.

[0368] Hence, if system 400 determines that the read
traffic is within the threshold amount of the write traffic
during the time period (“Yes” at decision 902), and if the
results of decisions 804 and 806 are both “Yes” as described
in connection with FIG. 8, system 400 may determine that
the storage system is possibly being targeted by a security
threat.

[0369] FIG. 10 illustrates an exemplary attribute-based
security threat detection method 1000 that may be per-
formed by system 400 and/or any implementation thereof.
Method 1000 may be used alone or in combination with any
of the other security threat detection methods described
herein. For example, method 1000 may be used in combi-
nation with method 800 and/or method 900 to detect data
substreams within all of the read and write traffic to a storage
system that may be indicative of a methodical attempt by a
malicious entity to corrupt data maintained by the storage
system (e.g., by encrypting data and/or overwriting a col-
lection of unencrypted data).

[0370] At operation 1002, system 400 identifies an attri-
bute associated with read traffic and/or write traffic pro-
cessed by a storage system. This identification may be
performed while system 400 is monitoring the read and/or
write traffic processed by the storage system as described
herein. At operation 1004, system 400 determines, based on
the identified attribute, that the storage system is possibly
being targeted by a security threat.

[0371] The attribute identified in operation 1002 may be
any suitable attribute as may serve a particular implemen-
tation. For example, the attribute may include a host attri-
bute that identifies a particular host associated with the
storage system. In this implementation, system 400 may
monitor host-specific data read from the storage system
and/or host-specific data written to the storage system to
detect a possible security threat against the storage system.
This may be beneficial if there are multiple hosts associated
with a particular storage system. In this scenario, host-
specific data associated with each host may be monitored in
accordance with a different rule set specific to each host.
[0372] To illustrate, a particular host may be associated
with highly sensitive data (e.g., financial data or other types
of personal data) maintained by a storage system that may be
more prone to a ransomware attack and/or other type of
security threat than other data that is not as sensitive. In this
example, a relatively stringent rule set (e.g., a relatively low
threshold for decision 804) may be used when monitoring
read and/or write traffic associated with this host. For
example, a relatively stringent rule set may be used for a host
that does not normally issue traffic to a particular dataset.
[0373] As another example, the attribute identified in
operation 1002 may include an attribute of a storage struc-
ture (e.g., storage structure 504) within the storage system.
For example, the attribute may include an identifier of a
particular volume and/or other type of storage structure
within the storage system to which data is being written
and/or from which data is being read, a storage capacity of
a storage structure to which data is being written and/or from
which data is being read, and/or any other suitable attribute
associated with a particular storage structure.

[0374] To illustrate, system 400 may monitor read and
write traffic associated with a particular volume within a

US 2021/0216478 Al

storage system to determine whether a total amount of read
and write traffic exceeds a threshold (decision 804) and/or
whether the write traffic is less compressible than the read
traffic (decision 806). In this manner, a security threat that
targets a particular storage structure within a storage system
may be more effectively detected.

[0375] As another example, the attribute identified at
operation 1002 may include a storage format attribute that
identifies and/or is otherwise associated with a storage
format used by the storage system. For example, the storage
format attribute may indicate that the storage system is using
an object storage format, a block storage format, and/or a file
storage format. This data may be used in any manner to more
specifically specify a rule set used to monitor for possible
security threats against the storage system.

[0376] In some examples, such as in a file-based and/or
object-based storage system, stored data (e.g., files and/or
objects) may be identifiable as being of a particular type
(e.g., an image file, a video file, a ZIP archive, a text file, a
machine code binary file, a log file, a database table space,
etc.). However, the content of the data may instead look like
encrypted data (e.g. randomized and incompressible con-
tent) that does not match what would be expected of the
particular type. System 400 may be configured to detect
these types of content versus format type mismatches and,
based on one or more of the mismatches, determine that the
storage system is possibly being targeted by a security
threat.

[0377] To illustrate, FIG. 11 shows an exemplary format
type-based security threat detection method 1100 that may
be performed by system 400 and/or any implementation
thereof. Method 1100 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0378] At operation 1102, system 400 monitors write
traffic processed by a storage system. This may be per-
formed in any of the ways described herein.

[0379] At operation 1104, system 400 identifies a format
type of a data instance (e.g., a file and/or object) included in
the write traffic. The format type may be indicative of a
particular type of data (e.g., an image file, a database
tablespace, etc.). System 400 may identify the format type
based on metadata associated with the data instance, a file
extension of the data instance, and/or in any other suitable
manner.

[0380] At decision 1106, system 400 determines whether
the content of the data instance matches what is expected for
the identified format type. If the content of the data instance
does not match what is expected for the identified format
type (“No” at decision 1106), system 400 may, at operation
1108, determine that the storage system is possibly being
targeted by a security threat. If the content of the data
instance does match what is expected for the identified
format type (“Yes” at decision 1106), system continues
monitoring the write traffic processed by the storage system.
In some examples, a threshold number of mismatches
between data instances and identified format types may be
detected before system 400 determines that the storage
system is possibly being targeted by a security threat.

[0381] FIG. 12 illustrates an exemplary pattern-based
security threat detection method 1200 that may be per-
formed by system 400 and/or any implementation thereof.

Jul. 15, 2021

Method 1200 may be used alone or in combination with any
of the other security threat detection methods described
herein.

[0382] At operation 1202, system 400 identifies a pattern
associated with read traffic and/or write traffic processed by
a storage system. This identification may be performed
while system 400 is monitoring the read and/or write traffic
processed by the storage system as described herein. At
operation 1204, system 400 determines, based on the iden-
tified pattern, that the storage system is possibly being
targeted by a security threat.

[0383] System 400 may identify the pattern at operation
1202 in any suitable manner. For example, a ransomware
attack may repeatedly read data and write the same data in
encrypted form in an identifiable pattern of read/writes. This
pattern may be identified by system 400 based one or more
metrics associated with the read and write traffic and used to
determine that the storage system is possibly being targeted
by a security threat. Such metrics may be included in data
maintained by a controller of a storage system and/or in
phone home data transmitted by the storage system to a
cloud-based monitoring system.

[0384] As another example, system 400 may identify a
pattern involving reading from a block volume in some
pattern with direct overwrites of compressible data with
incompressible data (e.g., with no identifiable data format
headers, or with incompressible content versus prior content
that was compressible) a short time later, particularly in a
sequential pattern of reads and a trailing pattern of sequen-
tial overwrites. To illustrate, such a pattern may include a
read of the first few blocks of a block volume or partition or
another recognizable structure stored on a block volume that
may be the start of a file system or host-based block device
(e.g., alogical volume in a volume manager), followed by an
overwrite of that data with relatively incompressible data. In
some examples, such a pattern may begin at logical block
address (LBA) zero.

[0385] As another example, system 400 may identify any
pattern of reading unmapped blocks and rewriting of those
same blocks with relatively incompressible data, or writing
an equivalent amount of relatively incompressible data
elsewhere in the storage system.

[0386] These patterns, as well as others that may be
detected by system 400, are not common /O patterns for a
storage system and may accordingly be flagged by system
400 as being indicative of a possible security threat against
the storage system.

[0387] System 400 may detect a pattern indicative of a
possible security threat against a storage system over any
suitable amount of time. For example, some patterns may be
relatively subtle and therefore detected by system 400 over
a relatively long amount of time using one or more metrics,
machine learning algorithms, and/or other detection algo-
rithms. Other patterns may be detected relatively quickly by
system 400.

[0388] In some examples, a confidence level of the deter-
mination made by system 400 that the storage system is
possibly being targeted by a security threat may change over
time as one or more patterns are detected and/or tracked by
system 400. For example, a detected pattern may result in
system 400 determining that the storage system is possibly
being targeted by a security threat with an initial confidence
level. Over time, if the pattern persists or becomes more

US 2021/0216478 Al

prevalent, the confidence level of the determination that the
storage system is possibly being targeted by the security
threat may increase.

[0389] FIG. 13 shows an exemplary header information-
based security threat detection method 1300 that may be
performed by system 400 and/or any implementation
thereof. Method 1300 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0390] At operation 1302, system 400 monitors read and
write traffic processed by a storage system. This may be
performed in any of the ways described herein.

[0391] At decision 1304, system 400 determines whether
the write traffic includes identifiable header information. If
the write traffic does not include identifiable header infor-
mation (“No” at decision 1304), system 400 may, at opera-
tion 1308, determine that the storage system is possibly
being targeted by a security threat.

[0392] If the write traffic does include identifiable header
information (“Yes” at decision 1304), system 400 deter-
mines, at decision 1306, whether the header information
matches content included in data written to the storage
system. If the header information does not match content
included in data written to the storage system, system 400
may, at operation 1308, determine that the storage system is
possibly being targeted by a security threat. Alternatively, if
the header information does match content included in data
written to the storage system, system 400 may return to
monitoring the write traffic at operation 1302.

[0393] As used herein, header information may refer to
supplemental data included in (e.g., placed at a beginning of)
a block of data being transmitted to the storage system. The
header information may identify a format, type, and/or other
attribute of data included in a payload portion of the block
of data being transmitted to the storage system. Additionally
or alternatively, the header information may include a check-
sum and/or other data that may be used to test for corrupted
data.

[0394] In some examples, legitimate data (e.g., data not
associated with a security threat) being written to a storage
system includes identifiable header information that matches
content (e.g., payload content) included in the data being
written to the storage system. For example, if the identifiable
header information of legitimate data indicates that the
payload data has a certain format, the payload data should
have that format.

[0395] However, data associated with a security threat
(e.g., a ransomware attack and/or an attempt to write corrupt
data to the storage system) may either not have identifiable
header information or include identifiable header informa-
tion that does not match content included in the data being
written to the storage system. For example, data being
written to a storage system as part of a security threat against
the storage system may include header information related
to known image, video, sound, or archive files, but payload
data included in the data being written to the storage system
may not be of any of those types of files. As another
example, files may be renamed as part of a re-encryption
performed by a malicious entity. For example, if a collection
of JPEG files are rewritten into new files with new names,
those names may not indicate that they are JPEG files. To
detect this, system 400 may determine that a preponderance
of files in a directory tree, for example, had been of a

Jul. 15, 2021

particular set of file types by filename pattern, and that those
files are being replaced by new files that no longer have that
filename pattern.

[0396] Accordingly, if data being written to the storage
system does not include identifiable header information,
system 400 may flag the data as possibly being representa-
tive of a security threat against the storage system. Addi-
tionally or alternatively, if data written to the storage system
includes identifiable header information, but the header
information does not match content included in the data
written to the storage, system 400 may flag the data as
possibly being representative of a security threat against the
storage system.

[0397] In some examples, system 400 may determine file
formats from header data when reading files. This may be
performed when files are written out with a name pattern
(such as with a .JPG suffix), by recognizing contents of
configuration files (such as a database configuration file
identifying certain files or block devices as being used as
specific parts of a database (logs, tablespaces, etc.)), and/or
in any suitable manner. Accordingly, system 400 may detect
a change in filename pattern by detecting when reads have
a particular detectable format but writes do not have the
same format, or when writes of files with known filename
formats (such as JPG suffixes or the many other suffixes
associated with file types) do not result in files with a
recognizable format. In response, system 400 may flag data
involved in these writes as possibly being representative of
a security threat against the storage system.

[0398] In some examples, system 400 may base a deter-
mination of whether a storage system is being targeted by a
security threat by comparing header information included in
read traffic with header information included in write traffic.
For example, if data read from the storage system is at least
partially compressed (e.g., already compressed image,
video, or sound files, or even compressed archives) and
includes identifiable header information, but no similar
identifiable header information can be found in the data
being written to the storage system, this may indicate that
the read data is being replaced with encrypted data. Hence,
system 400 may in this scenario determine that the storage
system is possibly being targeted by a security threat.
[0399] FIG. 14 shows an exemplary cryptography-based
security threat detection method 1400 that may be per-
formed by system 400 and/or any implementation thereof.
Method 1400 may be used alone or in combination with any
of the other security threat detection methods described
herein.

[0400] At operation 1402, system 400 monitors write
traffic processed by a storage system. This may be per-
formed in any of the ways described herein.

[0401] At decision 1404, system 400 determines whether
data included in the write traffic is encrypted. If the data is
not encrypted (“No” at decision 1404), system 1402 con-
tinues monitoring the write traffic (operation 1402).

[0402] However, if the data is encrypted (“Yes™ at decision
1404), system 400 determines at decision 1406 whether the
encrypted data is decryptable using a key maintained by an
authorized key management system. If the data is decrypt-
able using a key maintained by the authorized key manage-
ment system (“Yes” at decision 1406), system 1402 contin-
ues monitoring the write traffic (operation 1402).

[0403] However, if the data is not decryptable using a key
maintained by the authorized key management system

US 2021/0216478 Al

(“No” at decision 1406), system 400 may determine, at
operation 1408, that the storage system is possibly being
targeted by a security threat.

[0404] In this example, the authorized key management
system may be implemented by any suitable entity and/or
system external to and in communication with the storage
system. For example, the authorized key management sys-
tem may utilize the key management interoperability pro-
tocol (KMIP) to encrypt legitimate data before the legitimate
data is written to the storage system. In some examples, an
authorized key management system external to the storage
system may facilitate data in motion security before the data
is written to the storage system. In some examples, such data
in motion security may not prevent system 400 from pro-
filing the underlying data (e.g., the data that has been
encrypted) for compressibility.

[0405] System 400 may determine whether data included
in the write traffic is decryptable into recognizable unen-
crypted data using a key maintained by an authorized key
management system in any suitable manner. For example,
system 400 may route the write traffic through the authorized
key management system before allowing the write traffic to
be written to the storage system. The authorized key man-
agement system may determine whether the write traffic is
decryptable in any suitable manner. As another example,
system 400 may maintain a copy of the key maintained by
the authorized key management system and perform any
suitable process configured to determine whether the data
included in the write traffic is decryptable using the key. As
another example, there could be multiple keys that might be
used to encrypt data, where the key used for encryption of
a particular data item is not obvious from the item itself.
Multiple candidate keys could be tried for decryption, as a
result, to determine if any of them can decrypt the data into
a form that is recognizable as unencrypted.

[0406] If the data included in the write traffic is not
decryptable by any of several candidate keys maintained by
the authorized key management system, system 400 may
determine that the data is possibly associated with a security
threat against the storage system.

[0407] FIG. 15 shows another exemplary cryptography-
based security threat detection method 1500 that may be
performed by system 400 and/or any implementation
thereof. Method 1500 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0408] At operation 1502, system 400 monitors write
traffic processed by a storage system. This may be per-
formed in any of the ways described herein.

[0409] At decision 1504, system 400 determines whether
data included in the write traffic is encrypted. If the data is
not encrypted (“No” at decision 1504), system 1502 con-
tinues monitoring the write traffic (operation 1502).

[0410] However, if the data is encrypted (“Yes™ at decision
1504), system 400 determines at decision 1506 whether the
encrypted data includes a correct cryptographic signature.
As used herein, a cryptographic signature may refer to any
sequence of data (e.g., a digital signature) that indicates that
data has been encrypted using a key maintained by an
authorized key management system.

[0411] If the encrypted data does include a correct cryp-
tographic signature (“Yes” at decision 1506), system 1502
continues monitoring the write traffic (operation 1502).

Jul. 15, 2021

[0412] However, if the encrypted data does not include a
correct cryptographic signature (“No” at decision 1506),
system 400 may determine, at operation 1508, that the
storage system is possibly being targeted by a security
threat.

[0413] In some examples, method 1400 and/or method
1500 may be leveraged to provide an end-to-end authenti-
cation heuristic from applications through the storage stack
to prevent an unauthenticated process from writing data
associated with a security threat (e.g., ransomware blocks) to
the storage system in the first place.

[0414] FIG. 16 shows an exemplary stored data-based
security threat detection method 1600 that may be per-
formed by system 400 and/or any implementation thereof.
Method 1600 may be used alone or in combination with any
of the other security threat detection methods described
herein.

[0415] At operation 1602, system 400 monitors write
traffic processed by a storage system. This may be per-
formed in any of the ways described herein.

[0416] At decision 1604, system 400 determines whether
data already stored by the storage system is being deleted or
overwritten by the write traffic. If data is not being deleted
or overwritten (“No” at decision 1604), system 400 contin-
ues monitoring the write traffic at operation 1602.

[0417] However, if data is being deleted or overwritten by
the write traffic (“Yes™ at decision 1604), system 400 may
determine, at operation 1606, that the storage system is
possibly being targeted by a security threat.

[0418] System 400 may determine that data already stored
by the storage system is being deleted or overwritten by
write traffic in any suitable manner. For example, in a file or
object based storage system, deletions and overwrites can be
detected directly. In the case of an object based storage
system that is being used by a host to store file systems or
databases, deletions may be inferred by system 400 by a
combination of previously read data being overwritten
quickly, or sometime later (such as because blocks added to
a free list were eventually reused), by being unmapped, or by
being overwritten with zeros. Such deletions or overwrites
may in and of themselves be indicative of a possible security
threat against a storage system. Additionally or alternatively,
such deletions or overwrites in combination with any of the
other security threat detection methods described herein may
be indicative of a possible security threat against a storage
system.

[0419] FIG. 17 shows a remote security threat detection
method 1700 that may be performed by system 400 and/or
any implementation thereof. Method 1700 may be used
alone or in combination with any of the other security threat
detection methods described herein.

[0420] At operation 1702, system 400 accesses phone
home data (e.g., phone home data 606) transmitted by a
storage system. This may be performed in any of the ways
described herein.

[0421] At operation 1704, system 400 detects, based on
the phone home data, an anomaly associated with the storage
system. The anomaly may include any of the anomalies
described herein.

[0422] At operation 1706, system 400 determines, based
on the detected anomaly, that the storage system is possibly
being targeted by a security threat.

[0423] To illustrate, a cloud-based monitoring system
implementation of system 400 may use the phone home data

US 2021/0216478 Al

transmitted thereto by a storage system to identify a pattern
and or attribute of read and/or write traffic that may be
indicative of a possible security threat against the storage
system. For example, system 400 may detect that an overall
compressibility of data stored by the storage system is below
a historical norm associated with the storage system or with
a different storage system (e.g., a different storage system
that has one or more similar attributes as the storage system).
Based on this, system 400 may determine that the storage
system is possibly being targeted by a security threat.
[0424] In some examples, system 400 may be provided
with user input that identifies certain metrics that system 400
should focus on (e.g., in phone home data and/or in metrics
data maintained by the storage system) when monitoring for
anomalies that may be indicative of a security threat against
the storage system. For example, a customer of a storage
system may provide user input representative of expected
types of data for the write traffic so that system 400 may take
that information into account when analyzing the write
traffic.

[0425] FIG. 18 shows an exemplary rate-based security
threat detection method 1800 that may be performed by
system 400 and/or any implementation thereof. Method
1800 may be used alone or in combination with any of the
other security threat detection methods described herein.
[0426] At operation 1802, system 400 detects a rate at
which data is read from a storage system and written back
to the storage system in encrypted form. At operation 1804,
system 400 determines, based on the detected rate, that the
storage system is possibly being targeted by a security
threat.

[0427] To illustrate, some relatively slow write patterns
may be an indication that a malicious entity is in fact doing
something that a normal program that encrypts a dataset for
legitimate purposes would not be doing. For example, a
sequential process that reads data and writes back that same
data in incompressible form, but that does so at a rate that
is much slower than a legitimate process would do so may
itself be an indication that the storage system is being
targeted by a security threat. System 400 may be configured
to detect this difference in rate and, in response, determine
that the storage system is possibly being targeted by a
security threat.

[0428] As another example, a process that slowly rewrites
a set of files that were originally in a recognizable format
into a nonrecognizable format may be an indication that the
storage system is being targeted by a security threat. Based
on this relatively slow rewrite process, system 400 may
determine that the storage system is possibly being targeted
by a security threat.

[0429] As another example, a read/write process that is
relatively faster than what would be expected during a
particular time period may be an indication that the storage
system is being targeted by a security threat. For example,
during a weekend when read/write traffic is historically
relatively slow, if system 400 detects a rate of read/writes
that is above a particular threshold, system 400 may deter-
mine that the storage system is possibly being targeted by a
security threat.

[0430] Rate-based detection of security threats may be
performed over any suitable amount of time. For example,
to detect relatively slow rates, system 400 may monitor one
or more metrics associated with read/write traffic over the
course of a relatively long period of time. In these cases,

Jul. 15, 2021

system 400 may lock down and/or otherwise maintain one or
more recovery datasets (e.g., provisional ransomware recov-
ery structures, as described herein) for a relatively long
period of time in case they are needed to recover from data
corruption caused by the security threat.

[0431] FIG. 19 shows an exemplary machine learning
model-based security threat detection method 1900 that may
be performed by system 400 and/or any implementation
thereof. Method 1900 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0432] At operation 1902, a machine learning model is
trained (e.g., by system 400 and/or any other system) to
detect anomalies associated with read/write traffic processed
by a storage system. The machine learning model may be
supervised and/or unsupervised as may serve a particular
implementation and may be configured to implement one or
more decision tree learning algorithms, association rule
learning algorithms, artificial neural network learning algo-
rithms, deep learning algorithms, bitmap algorithms, and/or
any other suitable data analysis technique as may serve a
particular implementation. In some examples, the machine
learning model is trained with actual ransomware payloads.
[0433] In some examples, the machine learning model is
trained using honeypot files, sectors of blocks, and/or any
other data structure configured to serve as a decoy for
ransomware and other security threats. These honeypot data
structures may be maintained by system 400 at any suitable
location (e.g., within the storage system or remote from the
storage system). Based on how attackers interact with the
honeypot data structures, system 400 may train the machine
learning model. The honeypot outputs may additionally or
alternatively be used in combination with any of the other
security threat detection methods described herein.

[0434] At operation 1904, system 400 inputs attribute data
for read traffic, write traffic, and/or the storage system into
the machine learning model. The machine learning model
may process this attribute data in any suitable manner. For
example, the machine learning model may be trained to look
at deduplication checksum/hashes in a data reducing storage
array leveraging an out of band cloud service that cannot be
compromised. This may allow the machine learning model
to recognize when write traffic differs from a historical trend.
As another example, the machine learning model may be
configured to detect actual ransomware payloads within
write traffic.

[0435] At operation 1906, system 400 determines, based
on an output of the machine learning model, that the storage
system is possibly being targeted by a security threat. This
may be performed in any suitable manner. For example, the
output of the machine learning may include a confidence
score. If the confidence score is above a certain threshold,
system 400 may determine that the storage system is pos-
sibly being targeted by a security threat.

[0436] FIG. 20 shows an exemplary garbage collection-
based security threat detection method 2000 that may be
performed by system 400 and/or any implementation
thereof. Method 2000 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0437] At operation 2002, system 400 monitors a garbage
collection process performed by a storage system. The
garbage collection process may include any process config-
ured to reclaim storage system space as described herein.

US 2021/0216478 Al

[0438] At decision 2004, system 400 determines whether
there is an anomaly in the garbage collection process per-
formed by the storage system. If system 400 does not
determine that there is an anomaly in the garbage collection
process performed by the storage system (“No” at decision
2004), system 400 continues monitoring the garbage col-
lection process at operation 2002. However, if system 400
determines that there is an anomaly in the garbage collection
process performed by the storage system (“Yes” at decision
2004), system 400 may determine at operation 2006 that the
storage system is possibly being targeted by a security
threat.

[0439] System 400 may detect an anomaly in a garbage
collection process performed by a storage system in any
suitable manner. For example, as data in a segment becomes
invalid due to a ransomware attack or other security threat,
the data becomes more attractive for garbage collection.
This may result in a higher than average amount of garbage
collection performed by the storage system. This change in
garbage collection may be detected by system 400 by
analyzing metrics associated with the garbage collection
process and may be used to determine that the storage
system is possibly being targeted by a security threat.

[0440] System 400 may additionally or alternatively
monitor one or more other internal processes performed by
a storage system to determine whether the storage system is
possibly being targeted by a security threat. For example,
system 400 may monitor a deep compression process per-
formed by one or more libraries within a storage system. In
this example, system 400 may monitor for block patterns
that match one or more rootkits and/or other structures that
are put in place during the full lifecycle of a malicious
attack. Such block patterns may be indicative of an impend-
ing encryption process that happens at the end of the
malicious attack. If such block patterns are detected, system
400 may determine that the storage system is possibly being
targeted by a security threat.

[0441] In some configurations, first and second storage
systems are configured to serve as replicating storage sys-
tems one for another. For example, any data stored in the
first storage system may be replicated in the second storage
system. This may provide various data redundancy and
security features. In these configurations, system 400 may be
configured to identify attributes of both storage systems
(e.g., by monitoring read/write traffic at both storage sys-
tems) to determine whether one or both of the storage
systems are possibly being targeted by a security threat.

[0442] To illustrate, FIG. 21 shows an exemplary repli-
cating storage system-based security threat detection
method 2100 that may be performed by system 400 and/or
any implementation thereof. Method 2100 may be used
alone or in combination with any of the other security threat
detection methods described herein.

[0443] At operation 2102, system 400 monitors read and/
or write traffic processed by a storage system. This may be
performed in any of the ways described herein.

[0444] At decision 2104, system 400 determines whether
there is an anomaly associated with the storage system (e.g.,
with the read and/or write traffic processed by the storage
system). This may be performed in any of the ways
described herein. If system 400 does not detect an anomaly
(“No” at decision 2104), system 400 continues monitoring
the read and/or write traffic at operation 2102.

Jul. 15, 2021

[0445] However, if system 400 detects an anomaly (“Yes”
at decision 2104), system 400 may determine whether a
similar (e.g., the same) anomaly exists at a replicating
storage system configured to replicate data stored by the
storage system (decision 2106).

[0446] If system 400 does not detect an anomaly at the
replicating storage system (“No” at decision 2106), system
400 continues monitoring the read and/or write traffic at
operation 2102.

[0447] However, if system 400 detects an anomaly at the
replicating storage system (“Yes” at decision 2106), system
400 may determine at operation 2108, based on the anomaly
being detected at both storage systems, that the storage
system (and, in some cases, the replicating storage system)
is possibly being targeted by a security threat.

[0448] By way of example, analyzers implementing sys-
tem 400 may be run on both storage systems when a dataset
is replicated between a first and second storage system, with
results compared so that the two storage systems can serve
as checks on each other. For example, metrics that lead
system 400 to provisionally determine that the first storage
system is possibly being targeted by a security threat may be
exchanged to ensure that both storage systems are seeing the
same information.

[0449] Since many read and write requests (or file system,
database, or object requests) may only be received by one of
the storage systems, the other storage system may only have
some metrics. For example, the second storage system, such
as one that is the target of an asymmetric form of replication
for a dataset, may only have information on general com-
pressibility of writes for that dataset. The two storage
systems may still exchange the metrics they do have with
each other, with each comparing the metrics they do know
to those coming from the other storage system and using the
metrics received from the other storage system.

[0450] For example, a combination of actual profiles of
read, writes, overwrites, compressibility of data in actual
read and write requests, and metrics organized by hosts may
be exchanged with the storage systems comparing general
compressibility of written data for anomalies between the
two storage systems and with the additional information
from a first storage system used to duplicate the first storage
system’s analysis on the second storage system.

[0451] In a symmetrically replicated storage system with
symmetric access to replicated datasets, metrics may be
exchanged to ensure that both storage systems have the
relevant data necessary for either of them to detect some
types of anomalies, such as because some read, write, or
other requests are directed to one of the two storage systems
while other read, write, or other requests are directed to the
other of the two storage systems.

[0452] These kinds of exchanges may further be used to
detect some examples where one or the other storage system
has been compromised. For example, secure hashes of
metrics that both storage systems are expected to know may
be exchanged rather than exchanging those metrics directly,
so a compromised storage system cannot use trends in a
common metric received from the other storage system to
guess future values for that metric to fool the paired storage
system. Since metrics can have some natural differences
between two storage systems such as due to other activity,
differences in snapshots, or delays in when updates are
received and processed, securely hashed metrics may allow
for approximations. This may be done in several ways, such

US 2021/0216478 Al

as by providing a small set of secure hashes corresponding
to discrete ranges of values. For example, if a compress-
ibility factor or compressibility factors within time ranges is
provided for recent updates to a dataset, such as based on a
percentage, if a first storage system sees an overall com-
pressibility in recent updates of 20% on 100 MB of updates
in the prior 30 second interval, and another sees a compress-
ibility of recent updates of 18% on 99 MB of updates in the
prior 30 second interval, then the first storage system may
securely hash values representing two compressibility
ranges of 18% to 20% and 20% to 22% each combined with
two update quantity ranges of 98 MB to 100 MB and 100
MB to 102 MB, (forming four secure hashes of each
compressibility range with each update quantity range) and
the second storage system may securely hash values repre-
senting two compressibility ranges of 16% to 18% and 18%
to 20% each combined with three update quantity ranges of
96 MB to 98 MB, 98 MB to 100 MB, and 100 MB to 102
MB (forming six secure hashes of each compressibility
range with each update quantity range). Since one of the
ranges from the first storage system agrees with one of the
ranges from the second storage system, the storage systems
can be seen as agreeing closely enough without having
exchanged too much data about their actual metrics.

[0453] In some examples, metrics may be shared to some
third system or to a cloud service or some vendor provided
service for comparison purposes, in addition to or rather than
the two storage systems themselves sharing these anomaly
detection metrics data between them. If the two storage
systems do not exchange these metrics, then an external
system or service can be more certain that the metrics it is
receiving from each system are not being guessed at by
compromised storage system based on data it is exchanging
with an uncompromised storage system.

[0454] FIG. 22 shows an exemplary user input-based
security threat detection method 2200 that may be per-
formed by system 400 and/or any implementation thereof.
Method 2200 may be used alone or in combination with any
of the other security threat detection methods described
herein.

[0455] At operation 2202, system 400 identifies an attri-
bute associated with data read from the storage system
and/or data written to the storage system. The attribute may
include one or more of the attributes described herein.

[0456] At operation 2204, system 400 presents, within a
graphical user interface displayed by a display device,
graphical information associated with the attribute. For
example, system 400 may present one or more graphs,
analytics information, etc. associated with the attribute.

[0457] At operation 2206, system 400 receives user input
by way of the graphical user interface (and/or by way of any
other means for receiving user input, such as by way of an
API). For example, a user (e.g., an administrator) may, based
on the graphical information, provide user input indicating
that the attribute is indicative of a possible security threat
against the storage system.

[0458] At operation 2208, system 400 determines, based
on the user input, that the storage system is possibly being
targeted by a security threat.

[0459] To illustrate, system 400 may provide a graph over
time of various metrics that may be useful for determining
when an attack may have started over time. Based on this

Jul. 15, 2021

graph, a user may provide user input indicating that the
storage system has been possibly targeted by a security
threat.

[0460] In some examples, system 400 may be configured
to perform multiple security threat detection processes to
determine whether a storage system is being targeted by a
security threat. For example, system 400 may perform two
or more of the security threat detection methods described in
connection with FIGS. 8-22. These threat detection pro-
cesses may be performed in parallel and/or serially as may
serve a particular implementation.

[0461] Some security threat detection processes provide
higher confidence threat detection than others. In other
words, some security threat detection processes may detect
a possible security threat with higher accuracy than others.
However, a relatively high confidence threat detection
method may, in some instances, be more resource intensive
and/or take more time than relatively low confidence threat
detection methods. Hence, in some examples, system 400
may be configured to initially use a first security threat
detection process to provisionally determine that a storage
system is a target of a security threat. System 400 may then
use a second security threat detection process that provides
higher confidence threat detection than the first security
threat detection process to verify the provisional determi-
nation that the storage system is a target of the security
threat.

[0462] To illustrate, FIG. 23 shows an exemplary multi-
level security threat detection method 2300 that may be
performed by system 400 and/or any implementation
thereof. Method 2300 may be used alone or in combination
with any of the other security threat detection methods
described herein.

[0463] At operation 2302, system 400 performs a first
security threat detection process with respect to a storage
system. The first security threat detection process may
include any of the security threat detection processes
described herein.

[0464] At decision 2304, system 400 determines, based on
the first security threat detection process, whether the stor-
age system is a possible target of a security threat. If system
400 determines that the storage system is not a possible
target of security threat based on the first security threat
detection process (“No” at decision 2304), system 400
continues to perform the first security threat detection pro-
cess at operation 2302.

[0465] However, if system 400 determines, based on the
first security threat detection process, that the storage system
is a possible target of a security threat (“Yes” at decision
2304), system 400 may perform a second security threat
detection process with respect to the storage system (opera-
tion 2306). The second security threat detection process is
configured to provide higher confidence threat detection
than the first security threat detection process. Based on the
results of the second security threat detection process, sys-
tem 400 may either confirm that the storage system is being
targeted by the security threat or determine that the storage
system is not being targeted by the security threat.

[0466] Insome examples, the second security threat detec-
tion process is performed in response to determining that the
storage system is possibly being targeted by the security
threat. Alternatively, the second security threat detection
process may be performed in parallel with the first second
security threat detection process.

US 2021/0216478 Al

[0467] In method 2300, the first and second security threat
detection processes may be different in some examples. For
example, the first security threat detection process may
require less resources to perform than the second security
threat detection process. In alternative examples, the first
and second security threat detection processes are similar
processes. In these examples, the second security threat
detection process may, for example, be performed for a
longer duration and/or with different parameters to provide
the higher confidence threat detection. In alternative
examples, the first and second security threat detection
processes are the same, just performed over different time
periods to make a determination with different levels of
accuracy.

[0468] Various remedial actions that may be performed by
system 400 in response to determining that a storage system
is possibly being targeted by a security threat are described
in connection with FIGS. 24-30. Each of the processes
described in connection with these figures may be performed
independently or in combination (e.g., sequentially or con-
currently) with other processes used to perform a remedial
action. Moreover, each of the remedial action processes
described in connection with these figures may be performed
in connection with one or more of the security threat
detection processes described herein.

[0469] FIG. 24 shows an exemplary recovery dataset-
based remedial action method 2400 that may be performed
by system 400 and/or any implementation thereof. Method
2400 may be used alone or in combination with any of the
other remedial action methods described herein.

[0470] At operation 2402, system 400 determines that a
storage system is possibly being targeted by a security
threat. This may be performed in any of the ways described
herein.

[0471] At operation 2404, system 400 directs the storage
system to generate, in response to the determination that the
storage system is possibly being targeted by the security
threat, a recovery dataset for data stored by the storage
system. The recovery dataset may include a snapshot, a
backup dataset, an ordered log of metadata describing an
ordered application of updates to data maintained by the
storage system, and/or any other suitable data structure that
may be used to restore data to an uncorrupted state. The
recovery dataset 400 may be for all data stored by the
storage system, data stored on a particular storage structure
(e.g., a volume), data associated with a particular host,
and/or any other subset of data stored by the storage system.
[0472] By directing the storage system to immediately
generate a recovery dataset in response to determining that
the storage system is possibly being targeted by the security
threat, system 400 may use the recovery dataset (or direct
the storage system to use the recovery dataset) to restore at
least some of the data maintained by the storage system to
an uncorrupted state should the possible security threat turn
out to be an actual security threat. In some examples, the
recovery dataset is used in combination with one or more
previously generated recovery datasets and/or other data
sources (e.g., data residing at a host) to restore data that is
already corrupted before the recovery dataset is generated in
response to the determination that the storage system is
possibly being targeted by the security threat.

[0473] In some examples, system 400 may direct the
storage system to transmit the recovery dataset to a remote
storage system for storage by the remote storage system. The

Jul. 15, 2021

remote storage system may include any combination of
computing devices remote from and communicatively
coupled to the storage system (e.g., by way of a network). In
this manner, the recovery dataset itself may be protected
from the security threat. In some examples, the transmission
of the recovery dataset to the remote storage system is
performed using a NFS protocol, an object store protocol, an
SMB storage protocol, an S3 storage protocol, and/or any
other storage protocol as may serve a particular implemen-
tation. In some examples, the remote storage system is
implemented by write-only media with restrictions on dele-
tions.

[0474] In some examples, system 400 may notify the
remote storage system of the security threat so that the
remote storage system may abstain from deleting the recov-
ery dataset until one or more conditions are fulfilled. Such
conditions may include, but are not limited to, input pro-
vided by one or more authenticated entities, a notification
from system 400 that it is safe to delete the recovery dataset,
etc. For example, system 400 may determine that the storage
system is actually not being targeted by the security threat.
In response, system 400 may transmit a command to the
remote storage system for the remote storage system to
delete the recovery dataset.

[0475] In embodiments where the recovery dataset is
stored within the storage system, system 400 may prevent
the recovery dataset from being deleted or modified until
system 400 determines that the recovery dataset is not
needed to restore data within the storage system. For
example, system 400 may direct the storage system to lock
down the recovery dataset, make the recovery dataset read-
only, make the recovery dataset hidden, and/or otherwise
protect the recovery dataset. When one or more conditions
are fulfilled (e.g., input from one or more authenticated
entities, passage of a set amount of time, etc.), system 400
may allow the storage system to delete the recovery dataset.
[0476] FIG. 25 shows an exemplary continuous data pro-
tection-based remedial action method 2500 that may be
performed by system 400 and/or any implementation
thereof. Method 2500 may be used alone or in combination
with any of the other remedial action methods described
herein.

[0477] At operation 2502, system 400 directs a storage
system to generate recovery datasets over time (e.g., as a
rolling set of snapshots) in accordance with a data protection
parameter set. As described herein, these recovery datasets
are usable to restore data maintained by the storage system
to a state corresponding to a selectable point in time. The
data protection parameter set may define one or more
parameters associated with the generation of the recovery
datasets over time, as described herein.

[0478] At operation 2504, system 400 determines that the
storage system is possibly being targeted by a security
threat. This may be performed in any of the ways described
herein. In some examples, one or more of the recovery
datasets generated at operation 2502 are generated prior to
system 400 determining that the storage system is possibly
being targeted by the security threat. One or more of the
recovery datasets generated at operation 2502 may also be
generated subsequent to system 400 determining that the
storage system is possibly being targeted by the security
threat.

[0479] At operation 2506, system 400 modifies, in
response to determining that the storage system is possibly

US 2021/0216478 Al

being targeted by the security threat, the data protection
parameter set for one or more of the recovery datasets.
[0480] To illustrate, the data protection parameter set may
specify a retention duration for one or more of the recovery
datasets. The retention duration defines a duration that each
recovery dataset is saved before being deleted (e.g., 24 or 48
hours, or longer in the case of, for example, a weekend or
extended break). In the absence of a detected security threat,
each recovery dataset may be retained for only a relatively
short duration before being deleted. However, based on a
determination that the storage system is possibly being
targeted by a security threat, system 400 may either increase
the retention duration or suspend the retention duration so
that at least some of the recovery datasets are not deleted
without a specific instruction provided by a source that
manages the storage system. In this manner, one or more of
the recovery datasets may be used to restore data on the
storage system to an uncorrupted state if system 400 deter-
mines that the storage system has in actuality been targeted
by the security threat.

[0481] As another example, the data protection parameter
set may additionally or alternatively specify a recovery
dataset generation frequency that defines a frequency at
which the recovery datasets are generated. In this example,
based on a determination that the storage system is possibly
being targeted by a security threat, system 400 may increase
the recovery dataset generation frequency so that more
recovery datasets are available for use in restoring data on
the storage system to an uncorrupted state if system 400
determines that the storage system has in actuality been
targeted by the security threat.

[0482] As another example, the data protection parameter
set may additionally or alternatively specify a remote stor-
age frequency that defines a frequency at which a subset of
recovery datasets in the recovery datasets are transmitted to
a remote storage system connected to the storage system by
way of a network (e.g., by using a network file system,
streaming backup, or object storage protocol). In this
example, based on a determination that the storage system is
possibly being targeted by a security threat, system 400 may
modify the remote storage frequency. For example, system
400 may increase the remote storage frequency so that more
recovery datasets are stored in a read-only format on the
remote storage system and available for use in restoring data
on the storage system to an uncorrupted state if system 400
determines that the storage system has in actuality been
targeted by the security threat.

[0483] System 400 may additionally or alternatively direct
the storage system to generate (e.g., periodically and/or in
response to an occurrence of certain events) one or more
provisional ransomware recovery structures (e.g., snap-
shots). These provisional ransomware recovery structures
may be configured such that they can only be deleted or
modified in accordance with one or more ransomware
recovery parameters. For example, the one or more ransom-
ware recovery parameters may specify a number or a col-
lection of types of authenticated entities that have to approve
a deletion or modification of a provisional ransomware
recovery structure before the provisional ransomware recov-
ery structure can be deleted or modified. As another
example, the one or more ransomware recovery parameters
may specify a minimum retention duration before which the
provisional ransomware recovery structure can be deleted or
modified.

Jul. 15, 2021

[0484] In some examples, any of the recovery datasets
generated herein may be converted to a set of locked-down
snapshots (or other suitable types of recovery datasets),
possibly as a combination of discretionary snapshots formed
early in a possible attack which can be deleted by the storage
system itself if system 400 determines that the detection was
a false alarm that did not stand up to deeper scrutiny.
Additionally or alternatively, instead of formalizing forma-
tion and holds on discretionary snapshots, garbage collec-
tion, merges, deletions, and/or other maintenance on con-
tinuous data protection stores or frequent snapshots may be
put on hold pending further analysis. For example, as soon
as a bump in incompressible writes is received that is beyond
historical norms, system 400 may initiate discretionary
lockdowns to avoid deleting recent recoverable images of
the storage system that precede the increase in incompress-
ible writes. If the increase in incompressible writes reverts
to the historical norm or does not hold up as sufficient to
indicate a plausible ransomware attack, then the discretion-
ary snapshots or holds on maintenance operations may be
released. If they do hold up, they may be converted into
ransomware/corruption protection snapshots with their
increased scrutiny required for deletion (or with no means of
deleting them within some designated or scheduled time
frame). In the case of a continuous data protection store,
rather than forming a ransomware/corruption protection
snapshot, cleanup or merger of consistency points within the
continuous data protection store itself may be blocked from
occurring or severely reduced if a plausible sustained attack
is detected, with the same kinds of models for duration of
time and change authorization models that are described for
ransomware/corruption protection snapshots.

[0485] A continuous data protection store is a feature of a
storage system that records updates to a dataset in such a
way that consistent images of prior contents of the dataset
can be accessed with a low time granularity (often on the
order of seconds, or even less), and stretching back for a
reasonable period of time (often hours or days). These allow
access to very recent consistent points in time for the dataset,
and also allow access to access to points in time for a dataset
that might have just preceded some event that, for example,
caused parts of the dataset to be corrupted or otherwise lost,
while retaining close to the maximum number of updates
that preceded that event. Conceptually, they are like a
sequence of snapshots of a dataset taken very frequently and
kept for a long period of time, though continuous data
protection stores are often implemented quite differently
from snapshots. A storage system implementing a data
continuous data protection store may further provide a
means of accessing these points in time, accessing one or
more of these points in time as snapshots or as cloned copies,
or reverting the dataset back to one of those recorded points
in time.

[0486] Over time, to reduce overhead, some points in the
time held in a continuous data protection store can be
merged with other nearby points in time, essentially deleting
some of these points in time from the store. This can reduce
the capacity needed to store updates. It may also be possible
to convert a limited number of these points in time into
longer duration snapshots. For example, such a store might
keep a low granularity sequence of points in time stretching
back a few hours from the present, with some points in time
merged or deleted to reduce overhead for up to an additional
day. Stretching back in the past further than that, some of

US 2021/0216478 Al

these points in time could be converted to snapshots repre-
senting consistent point-in-time images from only every few
hours.

[0487] FIG. 26 shows an exemplary data restoration
method 2600 that may be performed by system 400 and/or
any implementation thereof. Method 2600 may be used
alone or in combination with any of the other remedial
action methods described herein.

[0488] At operation 2602, system 400 determines that a
storage system has been targeted by a security threat. As part
of this, system 400 may identify data on the storage that has
been corrupted by the security threat.

[0489] At operation 2604, system 400 restores (e.g., by
directing the storage system to restore), based on one or
more recovery datasets generated by the storage system, data
stored by the storage system to an uncorrupted state.
[0490] The one or more recovery datasets used to restore
the data to the uncorrupted state at operation 2604 may
include one or more recovery datasets generated prior to
system 400 determining that the storage system is possibly
being targeted by the security threat (e.g., a recovery dataset
generated in accordance with continuous data protection-
based remedial action method 2500 and/or a provisional
ransomware recovery structure). Additionally or alterna-
tively, the one or more recovery datasets used to restore the
data to the uncorrupted state at operation 2604 may include
one or more recovery datasets generated after system 400
determines that the storage system is possibly being targeted
by the security threat (e.g., a recovery dataset generated in
accordance with recovery dataset-based remedial action
method 2400).

[0491] Insome examples, system 400 may further perform
the data restoration based on a version of the data that
resides on a system other than the storage system. This other
system may include a replicating storage system, a host
computing device, and/or any other suitable system as may
serve a particular implementation. For example, host data
residing on a host computing device may be used in com-
bination with one or more of the recovery datasets described
herein to restore data residing on the storage system to an
uncorrupted state.

[0492] In some examples, system 400 may select a recov-
ery dataset for use in restoring data to the storage system by
first determining a corruption-free recovery point for the
storage system. This corruption-free recovery point corre-
sponds to a point in time that precedes any data corruption
caused by the security threat. System 400 may then select a
recovery dataset that corresponds to the corruption-free
recovery point for use in a data restoration process.

[0493] System 400 may determine a corruption-free
recovery point for a storage system in any suitable manner.
For example, FIG. 27 shows an exemplary data restoration
method 2700 that may be performed by system 400 and/or
any implementation thereof. Method 2700 may be used
alone or in combination with any of the other remedial
action methods described herein.

[0494] At operation 2702, system 400 detects a potential
data corruption in a storage system. The potential data
corruption may be caused by any of the security threats
described herein. System 400 may detect the potential data
corruption based on one or more metrics maintained or
generated by the storage system, an analysis of the data
stored by the storage system, and one or more attributes of
a security threat that causes the potential data corruption.

Jul. 15, 2021

[0495] At operation 2704, system 400 analyzes, in
response to detecting the potential data corruption, one or
more metrics of the storage system. These metrics may be
any of the metrics described herein.

[0496] At operation 2706, system 400 determines, based
on the analyzing of the one or more metrics of the storage
system, a corruption-free recovery point for potential use to
recover from the potential data corruption. The corruption-
free recovery point may be determined automatically by
system 400 based on one or more metrics associated with the
storage system and/or data maintained by the storage sys-
tem. Additionally or alternatively, system 400 may deter-
mine the corruption-free recovery point based on user input
provided by a user.

[0497] To illustrate, in some examples, system 400 may
present (e.g., within a graphical user interface) one or more
visualizations that may assist a user in identifying a corrup-
tion-free recovery point. For example, system 400 may
visualize changes and/or types of changes either in a con-
tinuous data protection store or in a time-ordered set of
snapshots. For example, system 400 may provide a graph
over time of various metrics that may be useful for deter-
mining when an attack may have started over time, where
changes are related to differences between snapshots or
between continuous data protection consistency points, pre-
sented in time order. These metrics may include reads,
writes, compressibility of reads, compressibility of writes,
and hosts issuing requests, including possibly a visualization
of unusual compressibility ratios for particular datasets and
from particular hosts.

[0498] If file, object, or database information is available
for a set of changes (such as but not exclusively because the
storage system is itself a file, database, or object server, or
because a storage system hosting a block volume used by a
client host to store a file system, object store, or database has
suitable format analyzers that can determine file, object/
bucket, or database changes from the stored file system or
database), system 400 can further add metrics related to
number of files or objects or database elements or blobs
read, with their compressibility, including from various
hosts, and number of files or objects written, overwritten, or
created and then written, again including compressibility. A
visualizer may provide the ability to zoom into directories,
buckets, files, tablespaces, or objects that show activity of
interest, and then provide graphs or other visualizations to
show activity against those over time, including the ability
to segregate by hosts or networks from which requests were
received.

[0499] By being able to hone in on a particular update
stream which seems to be the source of deliberate corruption
or encryption, these visualizations can be used by a user to
trace back in time to when that activity may have started.
Then, a continuous data protection consistency point or
snapshot from prior to that can be used as a corruption-free
starting point for recovery from the attack. Further, system
400 can visualize activity from the hosts used for the attack
to isolate which parts of the storage system may have been
attacked and corrupted or encrypted, which should suggest
that other stored data was not affected and can likely be
considered safe.

[0500] FIG. 28 shows an exemplary replacement storage
system reconstruction method 2800 that may be performed
by system 400 and/or any implementation thereof. Method

US 2021/0216478 Al

2800 may be used alone or in combination with any of the
other remedial action methods described herein.

[0501] At operation 2802, system 400 maintains configu-
ration data for a storage system. The configuration data may
include data representative of one or more host connections
and identities, storage system target endpoint addresses,
and/or other types of configuration information for a storage
system.

[0502] At operation 2804, system 400 determines that the
storage system is corrupted due to a security threat. This
determination may be performed in any suitable manner.
[0503] At operation 2806, system 400 uses the configu-
ration data to reconstruct a replacement storage system for
the storage system. The replacement storage system may be
separate from the storage system and/or within the same
storage system as may serve a particular implementation.
[0504] FIG. 29 shows an exemplary notification-based
remedial action method 2900 that may be performed by
system 400 and/or any implementation thereof. Method
2900 may be used alone or in combination with any of the
other remedial action methods described herein.

[0505] At operation 2902, system 400 determines that a
storage system is possibly being targeted by a security
threat. This may be performed in any of the ways described
herein.

[0506] At operation 2904, system 400 provides a notifi-
cation in response to the determination that the storage
system is possibly being targeted by the security threat. The
notification may be in any suitable format. For example, the
notification may include a message (e.g., a text message
and/or an email), a notification within a user interface used
by a user (e.g., an administrator) to manage the storage
system, a phone call, and/or any other suitable type of
notification as may serve a particular implementation.
[0507] FIG. 30 shows an exemplary multi-level remedial
action method 3000 that may be performed by system 400
and/or any implementation thereof. Method 3000 may be
used alone or in combination with any of the other remedial
action methods described herein.

[0508] At operation 3002, system 400 performs a first
security threat detection process with respect to a storage
system. The first security threat detection process may
include any of the security threat detection processes
described herein.

[0509] At decision 3004, system 400 determines, based on
the first security threat detection process, whether the stor-
age system is a possible target of a security threat. If system
400 determines that the storage system is not a possible
target of security threat based on the first security threat
detection process (“No” at decision 3004), system 400
continues to perform the first security threat detection pro-
cess at operation 3002.

[0510] However, if system 400 determines, based on the
first security threat detection process, that the storage system
is a possible target of a security threat (“Yes” at decision
3004), system 400 may perform a first remedial action
(operation 3006). The first remedial action may include any
of the remedial actions described herein.

[0511] System 400 may also perform a second security
threat detection process with respect to the storage system
(operation 3008). The second security threat detection pro-
cess may be configured to provide higher confidence threat
detection than the first security threat detection process.

Jul. 15, 2021

Operations 3006 and 3008 may be performed concurrently
or sequentially as may serve a particular implementation.
[0512] Based on the results of the second security threat
detection process, system 400 may either confirm that the
storage system is possibly being targeted by the security
threat (““Yes” at decision 3010) or determine that the storage
system is not being targeted by the security threat (“No” at
decision 3010). if system 400 determines that the storage
system is not being targeted by the security threat (“No” at
decision 3010), system 400 may revert back to performing
the first security threat detection process (which may require
less resources to perform then the second security threat
detection process). However, if system 400 confirms that the
storage system is possibly being targeted by the security
threat (“Yes” at decision 3010), system 400 may perform a
second remedial action at operation 3012. The second reme-
dial action may include any of the remedial actions
described herein.

[0513] In some examples, the second remedial action is
different than the first remedial action. For example, the first
remedial action may include providing a notification to an
administrator of the storage system that the storage system
is possibly being targeted by a security threat. If the second
security threat detection process confirms this, system 400
may perform a more comprehensive remedial action (the
second remedial action), such as creating and/or locking
down one or more recovery datasets that may be used to
restore corrupted data to an uncorrupted state (such as with
the authorization models described herein for ransomware
protection snapshots).

[0514] Various ways in which the methods and systems of
detecting a possible security threat against a storage system
and taking one or more remedial actions in response to the
security threat are now described.

[0515] In some examples, a cloud-based monitoring sys-
tem implementation of system 400 may provide integrity
checks to a storage system or a host that may be used to
certify that the storage system or host is running normally
and has not been compromised. This may be performed in
any suitable manner.

[0516] Additionally or alternatively, system 400 may
leverage write and deletion protected storage mechanisms to
ensure availability of some number of ransomware/corrup-
tion protection snapshots, copies, or backups. These are also
useful to support legal holds or other related operational
purposes.

[0517] Additionally or alternatively, system 400 may pro-
vide minimum authorization requirements for policy
changes (and possibly limits to how already locked down
data can be affected by an authorized change in policy) that
can be applied to the establishment or configuration of any
policies, models, and/or processes described herein. Mini-
mum authorization may require, for example, various com-
binations of authorization by authenticated operators,
administrators, managers, a storage system’s vendor, a stor-
age system’s selling partner, an Al entity that evaluates
requests, etc. A policy may also stipulate a set of combina-
tions that are allowed to change the policy. Allowed com-
binations may require, for example, at least a minimum
number of managers as well as either multiple entities within
the storage system vendor or multiple entities within a
storage system’s selling partner, as well as certification by at
least two of several Al entities evaluating the change.
Additionally or alternatively, an additional set of managers

US 2021/0216478 Al

(and one or more CxO level authenticated users) may
override one or more authorizing entities (e.g., a storage
system seller or an Al engine) that would need to authorize
a change with fewer managers or without CxCO level
authorization from an authenticated CxO level user.

[0518] In some examples, duration times for recovery
datasets or other time-related models described herein may
not generally be based on clocks which are subject to
external modification, such as time of day clocks. For
example, time interval (or time since power-on) clocks can
be used (which are often built into CPUs or other hardware)
by system 400, with interval information being persisted
periodically so a reboot or failover within a storage system
can leverage prior known intervals to ensure that a minimum
absolute time has passed since some time or event associated
with a protection snapshot or other aspect of a particular
model described herein. This may ensure that an external
manipulation of time (such as by hijacking an NTP server on
a network) cannot be used to speed up automatic deletion
activities. Moreover, if system 400 identifies unusual dis-
crepancies between interval-based time measurement and
time-of-day clock times, system 400 may flag this as a
potential indicator that the storage system is being targeted
by a security threat.

[0519] In some examples, system 400 may facilitate rep-
lication of data (e.g., rule set data) between administrative
authorities. This may provide an additional level of protec-
tion against inadvertent or malicious modification of such
data.

[0520] In some examples, system 400 may direct a first
storage system to store replication data in a second storage
system with a separate implementation such as through the
first storage system storing replicated data as files or objects
in a second storage system, or otherwise using the second
storage system’s regular store operations, rather than
through a protocol link between identically implemented
storage systems. In this manner, bugs which may be used to
attack one of the storage systems may be ineffective at
attacking the other storage system.

[0521] In some examples, the protection methods and
systems described herein may be layered in various ways to
increase the robustness of the overall system in ensuring that
uncorrupted data is available somewhere. For example,
system 400 may provide for storing data into a separately
implemented storage system under a separate administrative
domain which itself keeps a set of snapshots or includes
continuous data protection and which is monitored for
corruption by a monitoring service. In this scenario, the
primary storage system also includes snapshots or continu-
ous data protection (or both) and is also monitored by the
monitoring service.

[0522] Some cases of potential corruption or ransomware
or other attacks may not be detected by automated software
but may be noticed or anticipated by humans. For example,
a manager or human resources person may have concerns
about a disgruntled employee, or someone in information
technology may notice some behaviors that do not make
sense. In such cases, a user may provide a user input
command for system 400 to direct a storage system to create
provisional or locked down ransomware/corruption protec-
tion snapshots that may otherwise have been created by
policy or by software. In a continuous data protection store,
this may result in a set of backward looking locked-down
snapshots and recover points, as well. This may also result

Jul. 15, 2021

in a temporary change, with lesser authorization require-
ments, to increase the rate of creating protection snapshots
or to increase the time limits in policies before they can be
deleted.

[0523] In addition to support for human operators, an API
may also be provided by system 400 for creation of ran-
somware/corruption protection snapshots or for locking
down recent snapshots or for managing the creation of
provisional protection snapshots (or any other type of pro-
visional ransomware recovery structure) and their conver-
sion to fully protected snapshots. Then, for example, addi-
tional security software such as network or server traffic
monitors, or software interacting with software threat ana-
lyzer services, may also trigger creation and management of
combinations of creation of ransomware/corruption protec-
tion snapshots, provisional protection snapshots, and con-
versions of provisional protection snapshots into full pro-
tection snapshots. Such an API may also trigger increases in
time limits before protection snapshots can be deleted.
[0524] In some examples, a storage system may require
certification from a certain number of monitoring services or
monitoring service endpoints (such as at least two, or a
majority of several such services or endpoints) for the
storage system to delete discretionary ransomware protec-
tion snapshots and checkpoints or to alter their policy to
reduce the period of time they will be retained or to alter the
period of time or the amount of activity needed to determine
that the provisional detection does or does not rise to the
level that the discretionary snapshots will be automatically
released or will automatically be converted into full ran-
somware protection snapshots.

[0525] In some examples, system 400 may utilize an
authorization scheme with respect to a logical address
included in a request to perform an operation with respect to
a storage system. This may ensure that a source of the
request is authorized to initiate operations with respect to the
storage system. For example, as described herein, the logical
address based authorization scheme may cause unauthorized
operations (e.g., operations associated with security threats
against the storage system) to fail at least a large percentage
of the time.

[0526] As used herein, a logical address includes infor-
mation (referred to herein as a logical element) representa-
tive of a virtual or physical storage location (e.g., a particular
block, file location, volume, partition, memory location,
etc.) within a storage system. For example, an illustrative
logical address may include a block address that refers to a
particular volume block of a storage structure.

[0527] A logical address may be included in a request to
perform an operation in order to identify a storage location
associated with the operation. For example, a read access
request from a source may include a logical address that
identifies a storage location from which the source is
requesting to read data. As another example, a write access
request from a source may include a logical address that
identifies a storage location to which the source is requesting
to write data. As another example, a delete or modify access
request from a source may include a logical address that
identifies a storage location of data that the source is
requesting to delete or modify.

[0528] In accordance with the principles described herein,
a logical address based authorization scheme used by system
400 may require an authorization element to be included in
a logical address (in addition to the logical element that

US 2021/0216478 Al

represents a storage location) of a request in order for an
operation associated with the request to be performed. The
authorization element may include a security token, a digital
signature of data associated with the operation, a digital
signature of the logical element, and/or any other bit
sequence generated in accordance with the authorization
scheme. By requiring the inclusion of such an authorization
element in a logical address, system 400 may cause unau-
thorized operations (e.g., operations associated with security
threats against the storage system) to fail at least a large
percentage of the time. This is because it may be very
unlikely (or at least take many attempts) for an unauthorized
source to include a valid authorization element in a logical
address.

[0529] FIG. 31 shows an exemplary logical address 3100
that may be included in a request to perform an operation
with respect to a storage system. As shown, logical address
3100 includes a logical element 3102 and an authorization
element 3104. Logical element 3102 and authorization ele-
ment 3104 may each be of any suitable length (e.g., in terms
of bits). For example, logical element 3102 may be twenty
or more bits long, and authorization element may be eight to
twenty bits long. Authorization element 3104 may be
located at a beginning of logical address 3100, as shown, or
at any other suitable position within logical element logical
address 3100.

[0530] As described herein, system 400 may analyze logi-
cal address 3100 to determine whether logical address 3100
includes authorization element 3104, and whether authori-
zation element 3104 is valid. Based on these determinations,
system 400 may perform a suitable action with respect to the
operation associated with the request.

[0531] To illustrate, FIG. 32 shows an exemplary logical
address based method 3200 for authorizing operations with
respect to a storage system. Method 3200 may be performed
by system 400 and/or any implementation thereof and used
alone or in combination with any of the other methods
described herein.

[0532] At operation 3202, system 400 detects a request
provided by a source to perform an operation with respect to
a storage system. The request may include a logical address
that comprises a logical element representative of a storage
location within the storage system.

[0533] At decision 3204, system 400 determines whether
the logical address also includes an authorization element
indicating that the source is authorized to initiate operations
with respect to the storage system. This determination may
be performed in any suitable manner.

[0534] For example, system 400 may analyze a predeter-
mined sequence of bits included in the logical address for the
authorization element. As described herein, the predeter-
mined sequence of bits may be located at any suitable
position within the logical address. For example, the prede-
termined sequence of bits may be at a beginning of the
logical address.

[0535] In some examples, system 400 may maintain data
representative of the authorization element and compare this
data with data included in the logical address. Based on this
comparison, system 400 may determine whether the logical
address includes a valid authorization element.

[0536] System 400 may alternatively determine whether
an authorization element is valid in any other suitable
manner. For example, if the authorization element includes
a digital signature of data associated with the operation,

Jul. 15, 2021

system 400 may generate a second digital signature of the
data and then compare the second digital signature with the
digital signature included in the authorization element. If the
two digital signatures are the same, system 400 may deter-
mine that the authorization element is valid. It will be
recognized that a digital signature may also include other
elements besides data, such as the logical element and/or a
secret that the source has previously provided to system 400.
[0537] If system 400 determines that the logical address
does not include the authorization element, or that the
logical address includes an invalid authorization element
(“No” at decision 3204), system 400 prevents the operation
from being performed at operation 3206. This may be
performed in any suitable manner. For example, system 400
may block (or direct the storage system to block) the request.
[0538] Alternatively, if system 400 determines that the
logical address does include a valid authorization element
(“Yes” at decision 3204), system 400 allows the operation to
be performed 3208. This may be performed in any suitable
manner. For example, system 400 may perform (or direct the
storage system to perform) the operation.

[0539] System 400 may perform any other suitable action
with respect to the operation as may serve a particular
implementation. For example, if system 400 determines that
the logical address does not include the authorization ele-
ment, or that the logical address includes an invalid autho-
rization element (“No” at decision 3204), system 400 may
alternatively allow the operation to be performed, but in a
restricted manner. For example, system 400 may throttle
(e.g., slow down) the operation and/or otherwise restrict the
operation so as to minimize potential data corruption that
could be caused by the operation.

[0540] A source of a request may be made aware of the
requirements for including an authorization element in a
logical address in any suitable manner. For example, system
400 (or any other entity) may provide data specifying the
authorization element to the source. In some examples, this
may be performed in response to system 400 receiving an
authorization request from the source and authenticating the
source based on the request. The data specifying the autho-
rization element may specify the actual bit sequence to be
included in the logical address as the authorization element
and/or parameters to be used by the source to generate the
authorization element. For example, the data specifying the
authorization element may include parameters that instruct
the source to generate a digital signature of data associated
with the operation and/or a digital signature of the logical
element.

[0541] As an example of the foregoing, a storage system
client may communicate a logical address (associated with
a volume) to a storage system to access (e.g., read, write,
unmap, or virtually copy) particular blocks of the volume. If
that address is 64 bits long, but only 40 bits are ever needed
to address any block, then the remaining 24 bits (e.g., the
upper, most significant bits) may be used to encode some-
thing. That way, the storage system client can communicate
ablock address in the lower 40 bits and something else in the
upper 24 bits, thus using the normal addressing scheme
provided by a block protocol (e.g., SCSI or NVMe) to
provide both a block address and some extra piece of
information which is ignored for addressing purposes but is
used for some other purpose. As described herein, this extra
piece of information may be an authorization element (e.g.,
a digital signature calculated by applying some exchanged

US 2021/0216478 Al

key (such as a symmetric or one part of a public/private key
pair) applied to digitally sign a block number and possibly
a volume identifier). For write transactions it could even
digitally sign the block contents.
[0542] When the storage system receives an [/O request
with an address, it can split that address between the actual
address part (e.g., the least significant 40 bits) and the
validation part (e.g., the most significant 24 bits) and can use
that validation part to determine that the client request was
correctly digitally signed and could then reject the request.
[0543] In the preceding description, various exemplary
embodiments have been described with reference to the
accompanying drawings. It will, however, be evident that
various modifications and changes may be made thereto, and
additional embodiments may be implemented, without
departing from the scope of the invention as set forth in the
claims that follow. For example, certain features of one
embodiment described herein may be combined with or
substituted for features of another embodiment described
herein. The description and drawings are accordingly to be
regarded in an illustrative rather than a restrictive sense.
What is claimed is:
1. A method comprising:
detecting, by a data protection system, a request provided
by a source to perform an operation with respect to a
storage system, the request including a logical address
that comprises a logical element representative of a
storage location within the storage system;

determining, by the data protection system, whether the
logical address further comprises an authorization ele-
ment indicating that the source is authorized to initiate
operations with respect to the storage system; and

performing, by the data protection system based on the
determining whether the logical address includes the
authorization element, an action with respect to the
operation.

2. The method of claim 1, wherein:

the determining whether the logical address includes the

authorization element comprises determining that the
logical address does include the authorization element;
and

the performing of the action with respect to the operation

comprises allowing the operation to be performed with
respect to the storage location represented by the logi-
cal address.

3. The method of claim 2, wherein the allowing the
operation to be performed comprises performing the opera-
tion.

4. The method of claim 2, wherein the allowing the
operation to be performed comprises directing the storage
system to perform the operation.

5. The method of claim 1, wherein:

the determining whether the logical address includes the

authorization element comprises determining that the
logical address does not include the authorization ele-
ment; and

the performing of the action with respect to the operation

comprises preventing the operation from being per-
formed.

6. The method of claim 1, wherein the request comprises
one or more of a request to write data to the storage location
represented by the logical address, read data from the
storage location represented by the logical element, delete
data stored at the storage location represented by the logical

Jul. 15, 2021

element, or modify data stored at the storage location
represented by the logical element.

7. The method of claim 1, further comprising providing,
by the data protection system, data specifying the authori-
zation element to the source prior to the source providing the
request to perform the operation.

8. The method of claim 7, further comprising:

receiving, by the data protection system, an authorization

request from the source; and

authenticating, by the data protection system, the source

based on the authorization request;

wherein the providing of the data specifying the authori-

zation element to the source is performed in response to
the authenticating.

9. The method of claim 1, further comprising:

maintaining, by the data protection system, data repre-

sentative of the authorization element;

wherein the determining whether the logical address

includes the authorization element comprises compar-
ing data included in the logical address to the data
representative of the authorization element.

10. The method of claim 1, wherein the determining
whether the logical address includes the authorization ele-
ment comprises analyzing a predetermined sequence of bits
included in the logical address for the authorization element.

11. The method of claim 10, wherein the predetermined
sequence of bits are at a beginning of the logical address.

12. The method of claim 10, wherein the predetermined
sequence of bits includes at least eight bits.

13. The method of claim 1, wherein the logical element
comprises a block address.

14. The method of claim 1, wherein the authorization
element comprises one or more of a security token, a digital
signature of data associated with the operation, a digital
signature of the logical element, or a bit sequence generated
in accordance with an authorization scheme used by the data
protection system.

15. A system comprising:

a memory storing instructions;

a processor communicatively coupled to the memory and

configured to execute the instructions to:

detect a request provided by a source to perform an
operation with respect to a storage system, the
request including a logical address that comprises a
logical element representative of a storage location
within the storage system;

determine whether the logical address further com-
prises an authorization element indicating that the
source is authorized to initiate operations with
respect to the storage system; and

perform, based on the determining whether the logical
address includes the authorization element, an action
with respect to the operation.

16. The system of claim 15, wherein:

the determining whether the logical address includes the

authorization element comprises determining that the
logical address does include the authorization element;
and

the performing of the action with respect to the operation

comprises allowing the operation to be performed with
respect to the storage location represented by the logi-
cal address.

US 2021/0216478 Al

17. The system of claim 15, wherein:

the determining whether the logical address includes the
authorization element comprises determining that the
logical address does not include the authorization ele-
ment; and

the performing of the action with respect to the operation
comprises preventing the operation from being per-
formed.

18. The system of claim 15, wherein the request com-
prises one or more of a request to write data to the storage
location represented by the logical address, read data from
the storage location represented by the logical element,
delete data stored at the storage location represented by the
logical element, or modify data stored at the storage location
represented by the logical element.

19. The system of claim 15, wherein the processor is
further configured to execute the instructions to provide data

Jul. 15, 2021

specifying the authorization element to the source prior to
the source providing the request to perform the operation.
20. A non-transitory computer-readable medium storing
instructions that, when executed, direct a processor of a
computing device to:
detect a request provided by a source to perform an
operation with respect to a storage system, the request
including a logical address that comprises a logical
element representative of a storage location within the
storage system,
determine whether the logical address further comprises
an authorization element indicating that the source is
authorized to initiate operations with respect to the
storage system; and
perform, based on the determining whether the logical
address includes the authorization element, an action
with respect to the operation.

#* #* #* #* #*

